Journal of Physics: Conference Series

PAPER « OPEN ACCESS

A new type of smart pointer for data object
reference both in memory and in root files

To cite this article: T Li and X T Huang 2016 J. Phys.: Conf. Ser. 762 012001

View the article online for updates and enhancements.

Related content

- Monitoring of guantum mode correlation

functions in the presence of pointer state

phase relaxation
E Trifanova and A Trifanov

- Next-Generation Navigational

Infrastructure and the ATLAS Event Store
P van Gemmeren, D Malon, M Nowak et
al.

- Purity sieve for models with factorizable

interactions
Oleg Lychkovskiy

Recent citations

- Design and development of JUNO event

data model
Teng Liet al

- Application of SNIPER framework to

BESIII physics analysis
Xin Xia et al

This content was downloaded from IP address 131.169.4.70 on 19/01/2018 at 10:21

https://doi.org/10.1088/1742-6596/762/1/012001
http://iopscience.iop.org/article/10.1088/1742-6596/735/1/012044
http://iopscience.iop.org/article/10.1088/1742-6596/735/1/012044
http://iopscience.iop.org/article/10.1088/1742-6596/735/1/012044
http://iopscience.iop.org/article/10.1088/1742-6596/513/5/052036
http://iopscience.iop.org/article/10.1088/1742-6596/513/5/052036
http://iopscience.iop.org/article/10.1088/1742-6596/174/1/012030
http://iopscience.iop.org/article/10.1088/1742-6596/174/1/012030
http://iopscience.iop.org/1674-1137/41/6/066201
http://iopscience.iop.org/1674-1137/41/6/066201
http://iopscience.iop.org/1674-1137/41/5/056202
http://iopscience.iop.org/1674-1137/41/5/056202

ACAT2016 IOP Publishing
Journal of Physics: Conference Series 762 (2016) 012001 doi:10.1088/1742-6596/762/1/012001

A new type of smart pointer for data object reference both in
memory and in root files

T Litand X T Huang!

School of Physics, Shandong University, No.27 Shanda South Road, Jinan, Shandong,
250100, China

liteng@hepg.sdu.edu.cn, huangxt@sdu.edu.cn

Abstract. Based on ROOT framework, we develop a new mechanism named as SmartRef for
event data correlations in offline data processing of High Energy Physics experiments.
SmartRef uses the Universally Unique Identifier in ROOT to handle correlations between
event data objects, both in memory and in ROOT files. It also provides a lazy-loading
functionality to speed up event selection processes and simplify data input system. We have
applied SmartRef to the JUNO offline software and used it as a test-bed. The test results show
that SmartRef provides a significant improvement in event selection processes.

1. Introduction

In offline data processing applications of High Energy Physics experiments, the event data model
defines entities of the event data management, file input/output (I/O), even data storage and physics
analysis. Therefore, the design of event data model plays an important role for functionalities and
performances of the whole offline software.

From the physics analysis point of view, neutrino physics experiments are different from accelerator
physics experiments. The formers such as Daya Bay [1] and JUNO [2, 3] have two special
requirements. Firstly, time relations between signal events must be supported due to the working
principle of the Liquid Scintillator detector [4]. Secondly, high efficient data access and storage
capabilities must be implemented due to the rare neutrino signal events compared with the
backgrounds.

In order to meet the requirements mentioned above, both pointers of C++ and TRef of ROOT are
investigated. Plain C++ pointers or smart pointers within the standard C++ library can only handle the
relationship of objects in memory, but the correlated objects cannot be saved into different files. TRef
is provided by ROOT [5] as a mechanism for the correlation of TObjects, but does have some
limitations. Firstly, the lazy-loading mechanism of TRef requires correlated objects to be saved within
TTrees with the same entry number, and it is designed for object correlation within one event. If TRef
is used for object correlations across different events, the TBranchRef, which holds extra information
for the lazy-loading mechanism, takes too much space. Figure 1 shows that the size of TBranchRef
rapidly increases as a function of the number of correlated objects saved into a TTree.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd 1

ACAT2016 IOP Publishing
Journal of Physics: Conference Series 762 (2016) 012001 doi:10.1088/1742-6596/762/1/012001

2]
= 100 TObject

80 Int_t fUniquelD

j |

SmartRef

60—

401

20}

L 1.4 Long64_t m_entry
9 2|0 dlo Blo slo 160 il TProcessID* fPID
entries EventObject* GetObject()
Figure 1. Space usage of TBranchRef Figure 2. Design of SmartRef

2. SmartRef

2.1. Design of SmartRef

SmartRef is derived from TObject of ROOT and its key members are listed in Figure 2. The
fUniquelD variable of type integer and the fPID, a pointer to the TProcessID object make use of the
UUID (Universally Unique IDentifier) tool [6] in ROOT to build correlations between SmartRef and
its referenced object (RO). The m_entry variable of type long integer records location of the RO when
written into a ROOT file in term of TTree. The GetObject() function is designed to retrieve the RO
and directly returns a pointer to it if the RO has been already loaded into memory. And if not,
SmartRef firstly invokes the lazy-loading mechanism to load the RO from ROOT files and then
returns a pointer to it.

2.2. Working principle

UUIDs are deployed to build correlations between SmartRef and its ROs. In a ROOT process, one or
several instances of TProcessID are automatically created by the global TROOT, each of which keeps
a UUID and one global integer. Associated with the TProcessID instance, an array of pointers is
created simultaneously. When a SmartRef refers to a TObject, the value of the global integer is added
by 1 and assigned to the fUniquelD member of both the SmartRef and the referenced TObject.
Meanwhile, the fPID member of the SmartRef is set to the address of the current TProcessID and the
RO is put into the n-th (n equals to the fUniquelD) slot of the array. The reference between SmartRef
and its RO is constructed with the UUID and fUniquelD as showing in figure 3. In reverse, when users
retrieve the RO, the SmartRef underlyingly queries its fPID and fUniquelD to get the array holding
ROs and the position of the RO in the array.

TProcessID
{uuID)

~—

\\
Pointer array
SmartRef
ot |00 | e
“T———___ | Referenced Object
[fOniquem]

Figure 3. Working principle of SmartRef

When a SmartRef and its RO are written into a ROOT file, the corresponding TProcessID are also
written into the file at the same time. When the ROOT file is opened, TProcessIDs are automatically

http://www.baidu.com/link?url=ShH0nykGyRIIpJDJ_JZrFlkX8vsPxlk8aOe5BHiF_YxYH5SZLbgfOTaXjKo3cuDr4DglSse-mwQpLF5PuhdQZjwKYnUEYRYkgGx6PgsNHfW3rmimn32FnJqoLXxKOb7K

ACAT2016
Journal of Physics: Conference Series 762 (2016) 012001

IOP Publishing
doi:10.1088/1742-6596/762/1/012001

loaded into memory, and the corresponding array is created simultaneously. Once a RO is loaded into
memory, it is put into that array accordingly.

2.3. Lazy loading

For neutrino experiments like Daya Bay and JUNO, one signal event consists of a very large load of
data. It is not necessary and inefficient to read the whole event into memory at one blow during the
event selection process because only partial of the event data is enough to perform fast event selection.
And it adds burden to I/O operations if more redundant information is read. In this case, the lazy-
loading mechanism is very essential.

We design the SmartRef and an I/0 manager module, InputElementKeeper, to achieve the lazy-
loading functionality. During an output process, when a TTree holding ROs is created, a special table,
TablePerTree, which keeps integer values, is also created. Whenever a RO is written into a TTree, its
fUniquelD member is saved into the TablePerTree too. Before a ROOT file is closed, all objects of
type TablePerTree are written into this file associated with the TTrees. At the same time, the
corresponding UUID of the TProcessID are also written into the file as the meta-data.

When the input system is initializing, the InputElementKeeper module scans all input files, analyze
the metadata of these files and then construct a table, which keeps the mapping relationship between
UUIDs and files. When users access an object referenced by a SmartRef instance, the SmartRef
instance firstly looks it up in the memory to check if the object has been loaded. If not, it will query
the InputElementKeeper and search for the file that holds the RO. Once the file is found,
InputElementKeeper will search the TablePerTree and load the RO into memory.

Comparing with the relatively large event data object, the metadata of files and TablePerTrees only
take a small space, about 4 bytes per event object, and it takes O (1) time complexity to search the
TablePerTree. So the efficiency of lazy loading is high, and the extra space needed is relatively small.

3. Application in JUNO
The SmartRef mechanism is successfully deployed in the offline software of JUNO, and it plays an
important role in the event data model.

3.1. Design of JUNO event data model

EvtNavigator

wvertor<SmartRef*> m_header
TTimeStamp m_timestamp

I

GenHeader

SimHeader

SmartRef m_svent

SmartRef m_svent

{

f

PhyHeader

SmartRef m_event

I

GenEvent

SimEvent

PhyEvent

Figure 4. Design of JUNO Event Data Model

Figure 4 shows the design schema of JUNO event data model. All the event classes are derived from
TObject directly or indirectly in order to take advantage of functionalities of data management
provided by ROOT. To achieve quick event selection, the event data objects are divided into two
levels: header and event. They keep the meta-information and full-information, respectively. In each
header class, one or more SmartRefs are deployed to correlate its event objects. In this way, users are

ACAT2016 IOP Publishing
Journal of Physics: Conference Series 762 (2016) 012001 doi:10.1088/1742-6596/762/1/012001

able to get the header of one event quickly for the meta-data and make decisions whether or not to
load the whole event object to perform further analysis.

The EvtNavigator is another application of SmartRef. It keeps a list of SmartRef instances that
refers event headers of different data processing stages (including generator, simulation,
reconstruction, calibration, etc.) of one event and is used to easily navigate objects between different
processing stages in one event. It turns out that SmartRef makes the correlation analyses of the inverse
beta decay very conveniently and efficiently.

3.2. Performance test

To test the performance of SmartRef mechanism, we use JUNO offline software framework based on
SNIPER [7] as a test-bed and generate two large statistical data samples with and without SmartRef,
respectively. Figure 5 and Figure 6 show the comparison of the space usage of ROOT files and the
time consuming of loading the data from ROOT files in two cases. The result shows that the extra
space needed by SmartRef is very small, and the speed of lazy-loading and normal-loading is almost
the same.

[4s]
L2000

E DataModel with SmartRef o

= Plain DataModel
LJ

1800

1600

1400

1200

1000

800

600

400

200

L L L L L dxad
0 20 30 40 50 60 70 80 90 100

Entries
Figure 5. Comparison of space usage between plain data and data with
SmartRef.

90

Time(s)

E DataModel with SmartRef

80 -
- Plain DataModel

70

60

50

40

30

20

o b e b b b b b L Ly fxae?
10 20 30 40 50 60 70 80 90 100
Events

Figure 6. Comparison of the loading-speed between plain data and data
with SmartRef.

ACAT2016 IOP Publishing
Journal of Physics: Conference Series 762 (2016) 012001 doi:10.1088/1742-6596/762/1/012001

We also test the event selection process by randomly selecting about 50% of the generated event
data and comparing the time consuming of two cases. The result shows that the lazy-loading speeds up
the event-selection process by a factor of 35%, as shown in Figure 7.

90

E DataModel with SmartRef

II - Plain DataModel

80

70

60

50

40

30

e b b b b b b b L L ix1e?
10 20 30 40 50 60 70 80 90 100
events

Figure 4. Comparison of time consuming of event-
selection between plain data and data with SmartRef

4. Conclusion

We design and develop a smart pointer mechanism, called SmartRef, based on ROOT. The
mechanism supports lazy-loading from persistent ROOT files and correlations between objects within
one event and across events. The testing shows that it works very well in JUNO and might be used by
other experiments too.

Acknowledgements

We acknowledge the supports from the Joint Large-Scale Scientific Facility Funds of the NSFC and
CAS (U1532258), the Program for New Century Excellent Talents in University (NCET-13-0342)
and the Shandong Natural Science Funds for Distinguished Young Scholar (JQ201402).

References

[1] F.P. An et al. (Daya Bay Collaboration), A Precision Measurement of the Neutrino Mixing
Angle theta_13 using Reactor Antineutrinos at Daya Bay, arXiv:1202.6181

[2] Z. Djurcic et al. (JUNO Collaboration), JUNO Conceptual Design Report, arXiv:1508.07166

[3] F.P. Anetal. (JUNO Collaboration), Neutrino Physics with JUNO, arXiv:1507.05613

[4] F.P.Anetal. (Daya Bay Collaboration), A side-by-side comparison of Daya Bay antineutrino
detectors, Nucl. Instrum. and Meth. A 685 78 (2012).

[5] R. Brun, F. Rademakers, ROOT — An object oriented data analysis framework, Nucl. Inst.
Meth. in Phys. Res. A 389 (1997) 81-86.

[6] Balki¢ Z, So5 tari¢ D, Horvat G. Geohash and uuid identifier for multi-agent system,
Technologies and Applications Lecture Notes in Computer Science Volume 7327, 2012, pp 290-298
[71 J. H. Zou et al. SNiPER: an offline software framework for non-collider physics experiments, J.
Phys. Conf. Ser., 664(7): 072053 (2015)

http://link.springer.com/search?facet-creator=%22Zoran+Balki%C4%87%22
http://link.springer.com/search?facet-creator=%22Damir+%C5%A0o%C5%A1tari%C4%87%22
http://link.springer.com/search?facet-creator=%22Goran+Horvat%22
http://link.springer.com/book/10.1007/978-3-642-30947-2
http://link.springer.com/book/10.1007/978-3-642-30947-2
http://link.springer.com/bookseries/558

	2.1. Design of SmartRef
	2.2. Working principle
	2.3. Lazy loading

