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Abstract : A single generation of leptons (resp. of quarks) can be described by the small-
est irreducible non typical (resp. typical) representation of the Lie superalgebra SU(2|1).
Here, the “super” qualifier refers to left-right parity. It is shown that reducible indecom-
posable representations describe mixing between families.The smallest representations of
this kind are of several types. One describes the mixing of each leptonic generation with a
corresponding right neutrino. Another describes either the coupling between generations
of extended leptonic families of the previous kind or the coupling between generations of
quarks. This leads then to particular parametrizations for the Yukawa couplings and gives
constraints between masses and mixing matrices (for instance a relation between Cabibbo
angle and quark masses). The bosonic sector of the Standard Model can itself be described
in terms of a generalised Yang-Mills field incorporating both the usual Yang-Mills fields of
SU(2) x U(1) and the complex doublet of Higgs fields.
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Discrete Directions in the Standard Model

0. Introduction

Properties of the fermions in the Standard Model (gauge couplings to the SU(2) group
of weak isospin, to the U(1) group of weak hypercharge and Yukawa couplings to the
Higgs fields) are recovered, when there is no mixing, by assuming that individual families
of leptons and quarks are described by irreducible representations of the Lie superalgebra
SU(2(1). A simultaneous description of the different generations and of their mixings can
be done by using the reducible indecomposable representations of this superalgebra. This
was already discussed in [1]. In this reference the role of SU(2(1) in the bosonic sector
was also discussed. Here,we summarise the situation of the fermionic sector. The “super”
qualifier refers here to a Zy-symmetry that has nothing to do with usual “super-symmetry”
since it refers to transformations that do not exchange bosons and fermions but describes
the content and mixings between the worlds of right and left particles (it may help two
think of these two worlds as parallel universes or as the two components of a non-connected
Space-Time, as in [3]).

1. The Lie superalgebra SU(2|1)

SU(2|1) is a finite dimensional simple Lie superalgebra of dimension 8. It can be
explicitely defined in termsof 3 x 3 matrices of supertrace zero, the grading operator being
diag(1,1,-1). It also coincides (is isomorphic) with the orthosymplectic Lie superalgebra
Osp(2|2). The same Lie superalgebra could also be defined as the algebra of derivations
of a Grassmann algebra with two generators. We call I1,Iz,I3 and Y the generators of
its even part and 4, Q) those of the odd part. The “even” part of this superalgebra
coincides with the Lie algebra of SU(2) x U(1). The “odd” part has real dimension 4
(complex dimension 2) and is itself a representation space (a complex doublet) for the
even part. The (super) commutation relations are given as follows (with Iy = 11%2)

(I3, I+] = £, (4,1 ]=1I; Y I =Y, I]=0
[V, Q4] = Q4 Y, Q4] =0, (I3, Q4] = ﬂ:%ﬂi
(I5, Q4] = 304 [, Q%] = 7594 I+, %] = 4
(,04]) = [I1,04) =0 {94,094} = {4,022} =0 {04,094} ={04,0%}=0
{Q4,04) = V2La {Q4,0)} = L+ Y/2

Because it is a super-algebra, its representation spaces can be decomposed into an
“even” subspace and an ‘“‘odd” subspace (Z;-grading). Even generators leave invariant
separately the right and left subspaces. Odd generators mix the two subspaces. Even
generators are associated with usual gauge fields -valued in Lie(SU(2) x U(1)) — whereas
odd generators are associated with Higgs fields. It is natural to expect that elementary
{ermions (leptons and quarks) should be associated with representations that are, in some
sense “ the smallest ones”. This is indeed the case. Usually one describes elementary
particles in terms of the smallest irreducible representations (fundamental representations)
of Lie algebras. But a Lie superalgebra is not, strictly speaking, a Lie algebra, and, in the
case of SU(2|1), two new features arise.

The first is that there exist two kinds of representations, the typical and the non-typical
ones. In the typical case, the dimension of the “even” subspace is equal to the dimension
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of the “odd” subspace. This means that there is an equal number of degrees of freedom
for the left and right sectors. In the non-typical case, this number is different for the two
chirality sectors. The mere existence of non-typical representation can be interpreted in
terms of parity violation. We shall see that the smallest non-typical representation (call it
[4]) describes a massive charged Dirac lepton and a massless (left) neutrino —for instance
the electron and its neutrino. We shall see that the smallest typical representation (call it
(q]) describes a single generation of quarks —for instance the up ad down quarks.

The other new feature is that reducible representations are not necessarily fully re-
ducible: reducible indecomposable representations do exist. In our approach the existence
of several generations is linked to the existence of reducible indecomposable representa-
tions. It is natural to restrict our attention to the “smallest” ones, in particular to those
that contain the typical or non-typical irreducible representations of smallest dimensions
as direct summands. Being indecomposable, they have a taste of “elementarity”, but,
being reducible, they justify that, in some limit, one can build a reasonable theory while
forgetting the particles associated with the complement of the direct summand. SU(2|1)
has many kinds of reducible indecomposable representations. As far as quarks and leptons
are concerned, the most important ones are the following —~the precise matrix realization
of generators is given in the appendix.

ISUE-INY
2) (M= 0)» (@) (=2 1)) (1)
3) [q]®[q]®[q]

The first describes the coupling of a usual single leptonic family with its right neutrino
([1] denotes the trivial representation), the second describes the coupling of three such
extended families. The last describes the couplings of three quark generations. In this
last case the Cartan subalgebra is not diagonal. Taking into account a necessary factor
three for color, the whole fermionic content —with massive neutrinos as well as mixing
bewteen generations, both in the quark and leptonic sectors— is therefore described by the
sum of one representation of type 2 and three identical representations of type 3. We shall
justify this claim in the following. There are other kinds of indecomposable representations
(some of them are described in [2]). But the ones displayed above are, in a sense, more
fundamental than others since they involve the smallest irreducible representations.

The representations that we consider here are not hermitian representations. Most
of the time, in Lagrangian models describing a multiplet of particles, it is not necessary
to add explicitely the contribution of a corresponding multiplet of antiparticles because
both contributions are equal and the only requirement is to add the hermitian conjugate
of the interaction term in order to build a real Lagrangian. In the present case, this is
not so. This can be traced back to the existence of a superalgebra (anti)-automorphism
that cannot be implemented by hermitian conjugacy. The net result is that one has to add
to the lagrangian both contributions coming from a multiplet and its conjugate multiplet.
These two contributions are different. In the case of several families of quarks described
by a reducible indecomposable representation, the generator Y itself is not hermitian and,
being non-diagonal, would lead to flavour changing neutral currents. The fact of adding
both contributions coming from the representations describibing quarks and anti-quarks
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precisely cancels these unwanted currents. A description of these particular representations
involve a priori several complex parameters that cannot all be made real when there are
more than two generations. This, together with the fact that we have to add the two -
unequal- contributions coming from quarks and anti-quarks, is an algebraic interpretation
at the root of existence of CP-violation. Only the expression of generators describing
representations [€], [g] ete. are given in the appendix. Those describing the conjugate
representations [£], [g] etc. can be obtained from the previous ones by changing the sign of
the off-diagonal blocks. For instance, in the case of [¢] by changing + into =L

2. SU(2|1) and the bosonic sector of the Standard Model

The bosonic fields of the Standard Model are described by an SU(2) gauge field, a
U(1) gauge field, and one complex doublet of Higgs fields. From the previous description
of SU(2|1), we see that the whole family of bosonic fields builds up a representation space
for the Lie superalgebra SU(2|1) which can be identified with the adjoint representation
itself. This representation is of dimension 8 and denoted by [A]. The branching rule of
this adjoint representation with respect to Lie(SU(2) x U(1)) is

] = (1= 00 © (I = 1)y ® (1 = $)ys @ (I = o (2)

where y denotes the eigenvalue (hypercharge) of Y. The adjoint representation contains
therefore an SU(2) triplet of zero hypercharge, a singlet of zero hypercharge, and two
isodoublets of weak hypercharge —1 and +1. The first two SU(2) representations are

therefore naturally associated with usual gauge fields W and Ws (usually called B in
Pe

b+
@ = (49, d_). The adjoint representation is a typical representation. It can be seen that
the whole Lagrangian for the bosonic sector of the Standard Model (Yang-Mills term and
Higgs potential) can be obtained from the curvature of a generalized connection. This
was first described by [3] in terms of the non commutative geometry of a non-connected
space, then in [4] where a formalism resting on the use of algebraic superconnections was
introduced. The introduction of the Lie superalgebra SU(2]1), in relation with the previous
approach was done in [1]. We do not use either of the above formalisms in the present
paper and take only the appearance of representations of SU(2|1) in the Standard Model
as an observational fact. Let us only mention that generalized gauge field incorporating
both Yang-Mills and Higgs field can be decomposed along the generators of SU(2|1) as
follows.

the literature), the last two with the Higgs field & = ( ) and its charged conjugated

A=iaRT + Moy P, L Prq | Gogr P 3)
VB om 1 1 It
The constant g is an arbitrary mass, and the numerical constants that appear in this
expression only insure that the final kinetic term of gauge fields in the Lagrangian is
correctly normalized. The mass generation (symmetry breaking) is associated with the
generators 14 and Q. The curvature itself is obtained from A by using a d operator
acting not only on the fields but also on the matrices. This curvature contains also a
constant term that can be interpreted as the contribution of a background connection.
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One recovers the whole bosonic part of the Standard Model by taking the trace (not the
supertrace) of the square of the curvature. Although it is not the purpose of the present
article, we would like to stress that the approach followed to get the bosonic part of the
Lagrangian is not at all a gauging of the super-algebra SU(2|1). Like with other Lie
superalgebras, this would lead to serious positivity problems —as it was discussed and
recognized many times in the past ([5]).

3. Elementary fermions as representations of SU(2|1)

To characterize a representation (irreducible orreducible indecomposable),itis enough
to know the matrices describing action of the odd generators. Action of the even generators
I3 and Y can then be obtained from the commutation rules given in the first section. The
explicit expressions for odd generators are given with compact notations in the appendix.
The action of 4, for instance, is gotten from those formulae by replacing the symbol
Q4 by 1 and Q_ Q, Q. by zero. The dimensionless constants &, a, 8, etc. that appear
there are arbitrary. They reflect the arbitrariness coming into the normalization of scalar
products defined in the different representation spaces appearing in the branching rule of
SU(2]1) versus SU(2) x U(1). Representations involving different sets of parameters are
equivalent (although not unitarily in general). These constants are a priori complex, but
they can usually made real by chiral rotations of the fermionic fields. The three generations
case requires however more care. Yukawa couplings beween Higgs fields and a fermionic
multiplet ¥ are written as follows.

T (¢ot + 240 + G0 +3_Q) U + hec. (4)

The mass term corresponding to a given representation is obtained by replacing ¢ and %
by 1 and ¢4, ¢_ by 0. Only generators Q4 and Q' contribute to it. As already discussed,
the whole contribution of a given family to the Lagrangian density should be gotten by
adding to [4] another term of the same kind associated with the representation describing
the corresponding antiparticules.

Leptons. In the Standard Model, a single generation of leptons is described by a left
SU(2) doublet (I = 1) of (weak) hypercharge y = —1 and a right singlet (I = 0) of hyper-
charge y = —2. The direct sum of these two representations is a reducible representation
of Lie(SU(2) x U(1)) but an irreducible representation of the Lie superalgebra SU(2|1) -
actually, the fundamental representation. It is the smallest non typical irreducible repre-
sentation. As explained before, “non typical” means that the number of left handed fields
-here two- is not equal to the number of right handed fields —here one. Let us define the
graded hypercharge as follows. For a left Pauli spinor, it is equal to the hypercharge and for
aright Pauli spinor, it is equal to the opposite of the hypercharge. Then it is clear that, for
a given leptonic family, the sum of graded hypercharges vanishes : 2x (—1)—1x(—2) = 0.
We called [€] this 3-dimensional representation. Under SU(2) x U(1) we have the branching

rule
6] — (= 3)y=-1© (I = 0)y=s (5)

Quarks. In the Standard Model, a single generation of quarks is described by a

left SU(2) doublet (I = %) of hypercharge y = 3 and by two right singlets (I = 0) of
4

hypercharges y = —% and y = 3. The direct sum of these three representations is a
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reducible representation of Lie(SU(2) x U(1)) but an irreducible representation of the Lie
superalgebra SU(2|1). We call it [q]. Here again, the graded sum of hypercharges (the
sum of graded hypercharges) vanishes : 2 x (1) —1 x (3%) =1 x (3) = 0. This the smallest
typical irreducible representation. It is “typical” since the number of left handed fields
~here two- is equal to the number of right handed fields. Under SU(2) x U(1) we have the
branching rule

[al — T =3)y=3 &8 =0), 1o2 & =0)4:2 (6)

[Z N

The value y = % used in the above representation is however not imposed by representation

theory of SU(2|1) alcne. Every other value (except y = +1) leads to a typical represen-
tation of the same type. The particular value % is gotten by imposing the constraint of
cancellation of anomalies along with a factor three for color.

Mizing of irreducible representations. Starting with the observation that one recap-
tures all the aspects of the Standard Model (nothing less, nothing more) by postulating
that single fermionic families of leptonic or quark type are described by irreducible rep-
resentations of SU(2|1) and that their coupling to the Higgs fields is described as above
by using the odd generators of SU(2|1), we postulate that mixing between different gen-
erations of quarks or of leptons should be described by the smallest non fully reducible
representations.

Right neutrinos. In the “minimal” version of the Standard Model, the neutrino is
only left-handed and does not have any right-handed partner. This is at the origin of
parity violation in nature. It is possible however to introduce, by hand, a right handed
partner. In order for the theory to be still compatible with experience (evidence of parity
violation in weak interactions), the coupling of this right-handed neutrino to the gauge
fields should be extremely weak. It is usually described as an SU(2) x U(1) singlet (I =0
and y = 0). Its possible observability comes only from the fact that it is coupled to the
other fermions by Yukawa couplings involving the Higgs field. This induces a trilinear
coupling between this right-handed neutrino, the other leptons and the longitudinal part
of the gauge bosons. From the non-zero value of the neutral Higgs field in the vacuum,
one also gets a direct coupling to its left-handed partner and therefore a mass term for the
neutrino itself (Dirac mass term). The smallest reducible indecomposable representation
of the Lie superalgebra SU(2|1) involving the fundamental representation has dimension 4
and can be written as the sum (not a direct sum) of the leptonic multiplet [¢] —describing
er,vr and eg- and of the trivial representation (1] —describing vg. The fact that [¢]® [1]
is not a direct sum (matrix elements of odd generators beween vg and er,vy and eg
do not vanish) implies existence of the Yukawa couplings previously described. Explicit
expressions for odd generators are given in the appendix.

Mizing between leptonic gemerations.If the electronic neutrino is massive, the same
property should be expected for those associated respectively with the muon and the
tau family. Moreover, one can consider the possibility of mixing between leptonic fam-
ilies. This would lead in particular to violation of the three leptonic numbers. Several
mechanisms have been proposed to describe this theroretically. Since we are presenting a
unified description of all elementary fermions, it is natural to look for a mechanism sug-
gested by the reducible indecomposable representations of the Lie superalgebra SU(2|1).
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Such a mechanism exists and is unique. It comes from the fact that the representation
(a2 (@3 [1])® ([¢)® [1]) does exist. Explicit expressions for odd generators are again
given in the appendix. Notice that it is not possible to build a reducible indecomposable
representation involving only single copies of the leptonic representation [£]. It is necessary,
in order to build something indecomposable involving several generations, to take into ac-
count the right handed partners of the neutrinos. Both masses for leptons and mixing
matrix can be gotten from the modulus and phase of the matrix describing the Yukawa
interaction.

Mizing between quark generations.In the Standard Model, existence of mixing between
generations of quarks is described by introducing arbitrary Yukawa couplings between
the different families. Here, it comes from the fact that the reducible indecomposable
representation [q]® [q]® [q] does exist. This representation is rather special in the sense
that, not only it is not a highest weight representations but the Cartan subalgebra (the
hypercharge generator) is not diagonal. The fact that such a representation is not a direct
sum implies existence of Yukawa couplings mixing the generations. Because of the fact that
1" is non diagonal (it contains complex parameters in Jordan position) , one could fear that
one gets flavour changing neutral currents. The point is that, after adding the contribution
of the representation describing antiparticles, the unwanted contribution cancels out. The
number of unknown parameters entering the expression of odd generators —and therefore
the matrix of Yukawa couplings— can be chosen smaller than the number of constants
describing masses and mixing angles. For this reason, we can obtain non-trivial relations
between these observable quantities. For instance, in the case of two generations (the
indecomposable representation [q]® [q] does exist), mass matrices for sectors of charge 2/3
and —1/3, gotten from the expression of odd generators given in the appendix are

(62) s(0 ) g

1 ) .2
- = Cob=2 |8 y= —¢
a 3+|a| ; 3 BI° y=-€B

where

In this two-generations case, all these parameters can be made real. We have also to add
the contribution coming from the representation describing antiquarks. This changes the
above mass matrices and in particular the relation between the above constants and the
quark masses. One finds

[e]

wizs) = u 2) My =u) ;) (®)

Ris

We introduce the diagonal mass matrix

M(Q) = Ur(QMQUR(Q)! 9)

The unitary matrices are -in the case of two generations- pure rotation matrices, and
their coefficients (angles) depend only on the unknwown parameters a, b and y. One can
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express these angles solely in terms of ratios of quark masses (the eigenvalues of f’VT(Q))
This was already done in [1] and we give here a short derivation of this result.

From equation (8) we get det(M(Q)) = det(M(Q)) and Tr(M(Q)) =
(uL(Q)T M(QWUR(Q)) =Tr(M (Q)Z/{R(Q)UL(Q)T) We parametrize the rotation matri-

ces as follows.
_{ cos(8g/2) sin(8g/2)
Ur(Q) = (—sin(é’Q/Q) COS(GQ/2)) no

It can be seen that, in this two generations case, Ug(Q) is gotten from Uy (Q) by replacing
6o by 7 — fg. Therefore

Un(QUL(@) = ( sin(g) °95(9Q)) (11)

—cos(fg) sin(fg)

From the equation for the determinant, we get det (H(%)) = m, m, = p2a? and

det (ﬁ (—%)) = mg ms; = p?B%  From the equation for the trace we get (m, +
m.) sin (62/3) =2ua and (ma+ m,)sin (6’_1/3) = 2uf. Therefore

sin (625) = 2LTETE sin (64/s) = DATEE (12)

and the Cabibbo angle is equal to

0273 —0_1/3

8. =
2

(13)

This relation can be approximated (in radians)

CAES \/7 \/7 (14)

The observation that |6.| can be fitted by was done many years ago and was then

obtained in [7] using ad hoc conjectured mass matrlces (different from those obtained above
from representation theory of SU(2|1)).

In the case of two generations, the number of independent constants entering the
Standard Model is equal to 5, four masses and one angle. The case of three generations
can be handled similarly. In this last case, we have six masses and four independent
parameters in the Kobayashi-Maskawa matrix (three moduli and one phase), therefore 10
constants. The two equations giving the eigenvalues are now cubic rather than quadratic.
This leads to relations between the parameters that are less “simple” than in the two
generation case. Here again one can take a smaller number of independent parameters in
SU(2|1) representations. The results turn out to be rather sensitive to the precise values of
all quark masses ~remember that there is a factor of the order of 10!° between the square of
the top mass and the square of the up mass! A detailed discussion of the three-generations
case is done in [6].
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Concluding remarks

The emergence of irreducible representations of SU(2/1) (typical and non-typical) in
the Standard Model is here presented as an empirical fact. Postulating this property
amounts to recover the fact that fermions have to appear in specific SU(2) doublets or
singlets of given chirality and appropriate hypercharge. In the Standard Model, the values
of those hypercharges is fixed by experiment (we know the electric charges of quarks
and leptons) whereas, in the present approach, their values are uniquely determined by
algebraic constraints. The fact that irreducible representations of this superalgebra could
describe quarks and leptons was already noticed in [8][9].

The new observation here is that reducible indecomposable representations of the
same Lie superalgebra provide a clue with respect to the problem of generations, both for
quarks and leptons —including the phenomena of neutrino masses and neutrino oscillations.
It also provides a pattern of elementary fermions in agreement with all the features of the
Standard Model. The corresponding algebraic constraints appearing in the mixing matrices
(the matrices of odd generators expressing the indecomposability of these representations)
lead to a possible diminution of the number of arbitrary parameters of the Standard Model
and to relations that seem to agree with experiment. All this analysis is however carried at
the classical level. We know that, in the framework of perturbative quantum field theories,
a relation (or a numerical value) appearing at the classical level has no definitive meaning
unless it is shown that the quantum field theory should preserve this particular relation.
We do not know yet what happens at the quantum level but the whole approach seems to
have many nice features, therefore there is a hope that some of them should remain after
proper quantization. The gauging —in a non-commutative way— of the discrete symmetry
expressing our freedom of chosing between left and right is precisely described by Higgs
fields. It was shown (cf. [3] and also [4] where a rather different formalism is used)
that taking acount such a gauging leads to the whole bosonic sector of the Standard
Model, including its Higgs potential with symmetry breaking. SU(2|1) appears also as a
global symmetry of the free bosonic sector. The final total Lagrangian is invariant under
SU(2) x U(1) as usual (with spontaneous symmetry breaking to U(1)). All these features
are rather intriguing and the approach deserves certainly more understanding.
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Appendix
We give here the odd generators for the representations used in the text.
The leptonic and quark representations [¢] and [q].

0 0 X0y Eo
0 Ly /x 0 0 Lo 2o
(t]=p e Q-/k [d= w , , deT sETs
(KQ w,) 0 aQl o)y 0 0
- * —BO_ By 0 0

The representation [£]® (1]

Qi/k Q!
) (PN < Ok > <_7}le
! Ql
( 526 g) + ) D2>(2

The representation [q]® [q]® [q].
It is described by 12 x 12 matrices. Each block appearing below refers to a 4 x 4 matrix.

‘4 BI BIH
wlo 4 B
0 0 4
With

_(0 G , [0 C} . (0 CI
A= (Cz 0 ) 5= <0 0 B=10 o
0o o . Q4 al af)
"o 1 - — + — +
B = (O 0 > Cl = Cl(s* 7) - (79_ -—EQ’_ CZ = —,BQ_ ﬂQ—Q—
Ci = 01(57771) C{' =C (6",7”) C;" — 01(611177,;,)
These generators obey the commutation relations of SU(2|1) provided the following con-

straints are satisfied.

h=% ;5 ya=3 ; é€f=—ya

The representation ([¢]® [1])® ([¢(]® np= (= 1))

Al B B!
pl o 4, B
0 0 A
With

(0 C ,_ (0 C w_ (0 CY
‘4"<05 o) B‘(o 0 B"={o

" 0 C;” (R ) — Q+/'€i me{_ - Rl K’Q’*'
B" = <0 0 > Cl—cl(l/’czanz)‘ <Q—/K’1 *771'9’_ 02— 0 0

C{ — 01(0,7]’) Ci’ _ 01(0777//) C{” — Cl(oan”’)
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