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Abstract : A single generation of leptons (resp. of quarks) can be described by the small­
est irreducible non typical (resp. typical) representation of the Lie superalgebra SU(2 1 1 J .  
Here, the "super" qualifier refers t o  left-right parity. I t  is shown that reducible indecom­
posable representations describe mixing between families .The smallest representations of 
this kind are of several types. One describes the mixing of each leptonic generation with a 
corresponding right neutrino. Another describes either the coupling between generations 
of extended leptonic families of the previous kind or the coupling between generations of 
quarks. This leads then to particular parametrizations for the Yukawa couplings and gives 
constraints between masses and mixing matrices (for instance a relation between Cabibbo 
angle and quark masses ) .  The bosonic sector of the Standard Model can i tself be described 
in terms of a generalised Yang-Mills field incorporating both the usual Yang-Mills fields of 
SU(2)  x U( l )  and the complex doublet of Higgs fields. 

Keywords : Standard Model, Lepton Masses, Quark Masses, Cabibbo angle, Kobayashi­
Maskawa, Neutrino Mixing, Higgs, Lie Superalgebras, Non-commutative geometry. 
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Discrete Directions i n  t h e  Standard Model 

0. Introduction 

Properties of the fermions in the Standard Model (gauge couplings to the SU(2) group 
of weak isospin, to the U(l )  group of weak hypercharge and Yukawa couplings to the 
Higgs fields) are recovered, when there is no mixing, by assuming that individual families 
of leptons and quarks are described by irreducible representations of the Lie superalgebra 
SU(2 j l ) .  A simultaneous description of the different generations and of their mixings can 
be done by using the reducible indecomposable representations of this superalgebra. This 
was already discussed in [1 ] . In this reference the role of SU(2 j l )  in the bosonic sector 
was also discussed. Here, we summarise the situation of the fermionic sector. The "super" 
qualifier refers here to a Z2-symmetry that has nothing to do with usual "super-symmetry" 
since it  refers to transformations that do not exchange bosons and fermions but describes 
the content and mixings between the worlds of right and left particles (it may help two 
think of these two worlds as parallel universes or as the two components of a non-connected 
Space-Time, as in [3] ) .  

1 .  T h e  Lie superalgebra SU(2 j l )  
SU(2 j l )  i s  a finite dimensional simple Lie superalgebra of dimension 8 .  I t  can be 

explicitely defined in terms of 3 x 3 matrices of supertrace zero, the grading operator being 
diag (  1 , 1 ,- 1 ) . It also coincides (is isomorphic) with the orthosymplectic Lie superalgebra 
Osp(2 j2 ) .  The same Lie superalgebra could also be defined as the algebra of derivations 
of a Grassmann algebra with two generators. We call Ii , fz , h and Y the generators of 
its even part and D± ,  D± those of the odd part. The "even" part of this superalgebra 
coincides with the Lie algebra of SU(2) x U( l ) .  The "odd" part has real dimension 4 
(complex dimension 2) and is itself a representation space (a complex doublet) for the 
even part. The ( super) commutation relations are given as follows (with I± � J,�r, ) .  

[h , h] = ±I± 
[Y, D±] = -D± 

[h , D±J = ±%D± 
[I± , 0±] = [J± ,  D±J = 0 

{D± ,  D± }  = Vil± 

[I+ , L] = h 
[Y, D±J = D± 

[I±, fl'!'] = }zfl± 
{fl± , fl±} = {fl± , fl'l'}  = 0 

{D± , fl�}  = ±J3 + Y/2 

[Y, f±] = [Y, h] = 0 
[h , D7J = �tn� 
[I± , D'l'] = v'zD± 

{D± , fl± }  = {D±, D�}  = 0 

Because it is a super-algebra, its representation spaces can be decomposed into an 
"even" subspace and an ''odd" subspace ( Z2-grading) .  Even generators leave invariant 
separately the right and left subspaces. Odd generators mix the two subspaces. Even 
generators are associated with usual gauge fields -valued in Lie(SU(2) x U( l )) - whereas 
odd generators are associated with Higgs fields. It is natural to expect that elementary 
fermions (leptons and quarks) should be associated with representations that are, in some 
sense " the smallest ones " .  This is indeed the case. Usually one describes elementary 
particles in terms of the smallest irreducible representations (fundamental representations) 
of Lie algebras. But a Lie superalgebra is not ,  strictly speaking, a Lie algebra, and, in the 
case of SU(2 j l ) ,  two new features arise. 

The first is  that there exist two kinds of representations, the typical and the non-typical 
ones. In the typical case, the dimension of the "even" subspace is equal to the dimension 
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of t he  "odd" subspace. This means that there i s  an  equal number o f  degrees of freedom 
for the left and right sectors. In the non-typical case, this number is different for the two 
chirality sectors. The mere existence of non-typical representation can be interpreted in 
terms of parity violation. We shall see that the smallest non-typical representation (call it 
[£] ) describes a massive charged Dirac lepton and a massless (left) neutrino -for instance 
the electron and its neutrino. We shall see t hat the smallest typical representation (call it 
[ q] ) describes a single generation of quarks -for instance the up ad down quarks. 

The other new feature is that reducible representations are not necessarily fully re­
ducible: reducible indecomposable representations do exist. In our approach the existence 
of several generations is linked to the existence of reducible indecomposable representa­
tions. It is natural to restrict our attention to the "smallest" ones, in particular to t hose 
that contain the typical or non-typical irreducible representations of smallest dimensions 
as direct summands. Being indecomposable, they have a taste of "elementarity" , but, 
being reducible, they j ustify that, in  some limit ,  one can build a reasonable theory while 
forgetting the particles associated with the complement of the direct summand. SU(2 [ 1 )  
has many kinds of reducible indecomposable representations. A s  far as quarks and leptons 
are concerned, the most important ones are the following -the precise matrix realization 
of generators is given in the appendix. 

1 ) [t'] I> [l ] 
2) ( [t'] I> [ l ] )I> ( [£]I> [l ] ) I> ( [£]I> [1 ] )  ( 1 ) 
3) [q]'B [q] 'B [q] 

The first describes the coupling of a usual single leptonic family with its right neutrino 
( [1] denotes t he trivial representation) ,  t he second describes the coupling of three such 
extended families. The last describes the couplings of three quark generations. In this 
last case the Cartan subalgebra is not diagonal. Taking into account a necessary factor 
three for color, the whole fermionic content -with massive neutrinos as well as mixing 
bewteen generations, both in the quark and leptonic sectors- is therefore described by the 
sum of one representation of type 2 and three identical representations of type 3.  We shall 
j ustify this claim in the following. There are other kinds of indecomposable representations 
(some of them are described in [2] ) . But the ones displayed above are, in a sense, more 
fundamental than others since they involve t he smallest irreducible representations. 

The representations that we consider here are not hermitian representations. Most 
of the time, in Lagrangian models describing a multiplet of particles, it is not necessary 
to add explicitely the contribution of a corresponding multiplet of antiparticles because 
both contributions are equal and the only requirement is to add the hermitian conjugate 
of the interaction te.rm in order to build a real Lagrangian. In the present case, t his is 
not so. This can be traced back to the existence of a superalgebra (anti)-automorphism 
that cannot be implemented by hermitian conjugacy. The net result is that one has to add 
to the lagrangian both contributions coming from a multiplet and its conjugate multiplet. 
These two contributions are different .  In the case of several families of quarks described 
by a reducible indecomposable representation, the generator Y itself is not hermitian and, 
being non-diagonal, would lead to flavour changing neutral currents .  The fact of adding 
both contributions coming from the representations describibing quarks and anti-quarks 
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precisely cancels these unwanted currents .  A description o f  these particular representations 
involve a priori several complex parameters that cannot all be made real when there are 
more than two generations. This, together with the fact that we have to add the two -
unequal- contributions coming from quarks and anti-quarks, is an algebraic interpretation 
at the root of existence of CF-violation. Only the expression of generators describing 
representations [.CJ , [q] etc. are given in the appendix. Those describing the conjugate 
representations [£] , [q] etc. can be obtained from the previous ones by changing the sign of 
the off-diagonal blocks. For instance, in the case of [£] by changing � into �1 . 

2. SU(2 l l )  and the bosonic sector of the Standard Model 
The bosonic fields of the Standard Model are described by an SU(2) gauge field, a 

U ( l )  gauge field, and one complex doublet of Higgs fields. From the previous description 
of SU(2 l l ) ,  we see that the whole family of bosonic fields builds up a representation space 
for the Lie superalgebra SU(2 l l )  which can be identified with the adjoint representation 
itself. This representation is of dimension 8 and denoted by [A] . The branching rule of 
this adjoint representation with respect to Lie(SU(2) x U(l ) )  is 

1 1 [A] ----+ (I =  O) y=o EB (I =  l ) y=o EB (I =  2 lv=1 EB (I =  2)y=-I  (2 )  

where y denotes the eigenvalue (hypercharge) of  Y. The adjoint representation contains 
therefore an SU(2) triplet of zero hypercharge, a singlet of zero hypercharge, and two 
isodoublets of weak hypercharge - 1  and + 1 .  The first two SU(2) representations are 

therefore naturally associated with usual gauge fields W and vVs (usually called B in 

the literature) , the last two with the Higgs field if> = ( :: ) and its charged conjugated 

� = (f0 , ¢_ ) .  The adjoint representation is a typical representation. It can be seen that 
the whole Lagrangian for the bosonic sector of the Standard Model (Yang-Mills term and 
Higgs potential) can be obtained from the curvature of a generalized connection. This 
was first described by [3] in terms of the non commutative geometry of a non-connected 
space, then in [4] where a formalism resting on the use of algebraic superconnections was 
introduced. The introduction of the Lie superalgebra SU (2 1 1 ) , in relation with the previous 
approach was done in [1] . We do not use either of the above formalisms in the present 
paper and take only the appearance of representations of SU(2 l l )  in the Standard Model 
as an observational fact. Let us only mention that generalized gauge field incorporating 
both Yang-Mills and Higgs field can be decomposed along the generators of SU(2 l l )  as 
follows. 

A = i(v2 W7 + w8 Y + <Po n+ +  <P+ n_ + fo n'_ + ¢_ n, ) J6 µ µ µ µ + (3)  

The constant µ i s  an arbitrary mass, and the numerical constants that appear in this 
expression only insure that the final kinetic term of gauge fields in the Lagrangian is 
correctly normalized. The mass generation (symmetry breaking) is associated with the 
generators n+ and l1'_ . The curvature itself is obtained from A by using a d operator 
acting not only on the fields but also on the matrices. This curvature contains also a 
constant term that can be interpreted as the contribution of a background connection. 
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One recovers the whole bosonic part of the Standard Model by taking the trace (not the 
supertrace) of the square of the curvature. Although it is not the purpose of the present 
article, we would like to stress that the approach followed to get the bosonic part of the 
Lagrangian is not at all a gauging of the super-algebra SU(2 l l ) .  Like with other Lie 
superalgebras, this would lead to serious positivity problems -as it was discussed and 
recognized many times in the past ( [5]) . 

3. Elementary fermions as representations of SU(2 l l )  
To characterize a representation (irreducible o r  reducible indecomposable) ,  i t  i s  enough 

to know the matrices describing action of the odd generators. Action of the even generators 
h and Y can then be obtained from the commutation rules given in the first section. The 
explicit expressions for odd generators are given with compact notations in the appendix. 
The action of !1+ , for instance, is gotten from those formulae by replacing the symbol 
!1+ by 1 and n_ n+ !1'._ by zero. The dimensionless constants K, a, /3, etc. that appear 
there are arbitrary. They reflect the arbitrariness coming into the normalization of scalar 
products defined in the different representation spaces appearing in the branching rule of 
SU(2 J l )  versus SU(2) X U(l ) .  Representations involving different sets of parameters are 
equivalent (although not unitarily in general) .  These constants are a priori complex, but 
they can usually made real by chiral rotations of the fermionic fields. The three generations 
case requires however more care. Yukawa couplings beween Higgs fields and a fermionic 
multiplet 1J! are written as follows .  

( 4 )  

The mass term corresponding to a given representation i s  obtained by  replacing ¢0  and ¢0 
by 1 and ¢+,  ef,_ by 0. Only generators l1+ and !1'._ contribute to it .  As already discussed, 
the whole contribution of a given family to the Lagrangian density should be gotten by 
adding to [4J another term of the same kind associated with the representation describing 
the corresponding antiparticules. 

Leptons. In the Standard Model, a single generation of leptons is described by a left 
SU(2) doublet (I = tl of (weak) hypercharge y = - 1  and a right singlet (I = 0) of hyper­
charge y = -2. The direct sum of these two representations is a reducible representation 
of Lie(SU(2) x U(l ) )  but an irreducible representation of the Lie superalgebra SU(2 l l )  -
actually, the fundamental representation. It is the smallest non typical irreducible repre­
sentation. As explained before, "non typical" means that the number of left handed fields 
-here two- is not equal to the number of right handed fields -here one. Let us define the 
graded hypercharge as follows. For a left Pauli spinor, it is equal to the hypercharge and for 
a right Pauli spinor, it is equal to the opposite of the hypercharge. Then it is clear that, for 
a given leptonic family, the sum of graded hypercharges vanishes : 2 x ( - 1 ) - 1 x ( -2) = 0. 
We called [.CJ this 3-dimensional representation. Under SU(2) x U(l) we have the branching 
rule 

1 
[.CJ ---7 (I = 2 )y=-1 Ell (I = O)y=-2 (5 )  

Quarks. In the Standard Model, a single generation of quarks is described by a 
left SU(2) doublet (I = t l  of hypercharge y = � and by two right singlets (I = 0) of 
hypercharges y = -�  and y = ! ·  The direct sum of these three representations is a 
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reducible representation of Lie(SU(2) x U(l ) )  but  an irreducible representation of the Lie 
superalgebra SU(2 l l ) .  We call it [q] .  Here again, the graded sum of hypercharges (the 
sum of graded hypercharges) vanishes : 2 x ( i) - 1 X ( -:/) - 1 x ( 1 )  = 0. This the smallest 
typical irreducible representation. It is "typical" since the number of left handed fields 
-here two- is equal to the number of right handed fields. Under SU(2) x U( l )  we have the 
branching rule 

(6) 

The value y = i used in the above representation is however not imposed by representation 
theory of SU(2 l l )  alone. Every other value (except y = ±1 )  leads to a typical represen­
tation of the same type. The particular value i is gotten by imposing the constraint of 
cancellation of anomalies along with a factor three for color. 

Mixing of irreducible representations. Starting with the observation that one recap­
tures all the aspects of the Standard Model (nothing less, nothing more) by postulating 
that single fermionic families of leptonic or quark type are described by irreducible rep­
resentations of SU (2 1 1 ) and that their coupling to the Higgs fields is described as above 
by using the odd generators of SU(2 l l ) ,  we postulate that mixing between different gen­
erations of quarks or of leptons should be described by the smallest non fully reducible 
representations. 

Right neutrinos. In the "minimal" version of the Standard Model, the neutrino is 
only left-handed and does not have any right-handed partner. This is at the origin of 
parity violation in nature. It is possible however to introduce, by hand, a right handed 
partner. In order for the theory to be still compatible with experience (evidence of parity 
violation in weak interactions) ,  the coupling of this right-handed neutrino to the gauge 
fields should be extremely weak. It is usually described as an SU(2) x U(l )  singlet (I =  0 
and y = 0 ) .  Its possible observability comes only from the fact that it is coupled to the 
other fermions by Yukawa couplings involving the Higgs field. This induces a trilinear 
coupling between this right-handed neutrino, the other leptons and the longitudinal part 
of the gauge bosons. From the non-zero value of the neutral Higgs field in the vacuum, 
one also gets a direct coupling to its left-handed partner and therefore a mass term for the 
neutrino itself (Dirac mass term). The smallest reducible indecomposable representation 
of the Lie superalgebra SU (2 1 1 ) involving the fundamental representation has dimension 4 
and can be written as the sum (not a direct sum) of the leptonic multiplet [t'] -describing 
eL , VL and eR- and of the �rivial representation [1] -describing VR . The fact that [f] :B [ 1 ]  
is not a direct sum (matrix elements of odd generators beween VR and eL , VL and eR 
do not vanish) implies existence of the Yukawa couplings previously described. Explicit 
expressions for odd generators are given in the appendix. 

Mixing between leptonic generations.If the electronic neutrino is massive, the same 
property should be expected for those associated respectively with the muon and the 
tau family. Moreover, one can consider the possibility of mixing between leptonic fam­
ilies. This would lead in particular to violation of the three leptonic numbers. Several 
mech anisms have been proposed to describe this theroretically. Since we are presenting a 
unified description of all elementary fermions,  it is natural to look for a mechanism sug­
gested by the reducible indecomposable representations of the Lie superalgebra SU(2 l l  ) . 
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Such a mechanism exists and is unique. I t  comes from the  fact that the  representation 
( [C] I> [l ] ) I>  ( [C] I>  [l ] ) I>  ( [C] I> [1 ] ) does exist. Explicit expressions for odd generators are again 
given in the appendix. Notice that it is not possible to build a reducible indecomposable 
representation involving only single copies of the leptonic representation [CJ . It is necessary, 
in order to build something indecomposable involving several generations, to take into ac­
count the right handed partners of the neutrinos. Both masses for leptons and mixing 
matrix can be gotten from the modulus and phase of the matrix describing the Yukawa 
interaction. 

Mixing between quark generations.In the Standard Model, existence of mixing between 
generations of quarks is described by introducing arbitrary Yukawa couplings between 
the different families. Here, it comes from the fact that the reducible indecomposable 
representation [q] I> [q]I> [q] does exist . This representation is rather special in the sense 
that, not only it is not a highest weight representations but the Cartan subalgebra (the 
hypercharge generator) is not diagonal. The fact that such a representation is not a direct 
sum implies existence of Yukawa couplings mixing the generations .  Because of the fact that 
Y is non diagonal (i t  contains complex parameters in Jordan position) , one could fear that 
one gets flavour changing neutral currents .  The point is that, after adding the contribution 
of the representation describing antiparticles, the unwanted contribution cancels out . The 
number of unknown parameters entering the expression of odd generators -and therefore 
the matrix of Yukawa couplings- can be chosen smaller than the number of constants 
describing masses and mixing angles. For this reason, we can obtain non-trivial relations 
between these observable quantities. For instance, in the case of two generations (the 
indecomposable representation [q]I> [q] does exist) , mass matrices for sectors of charge 2/3 
and - 1 /3 ,  gotten from the expression of odd generators given in the appendix are 

� ( a 
a 0 � )  � c j3 0 7) (7) 

where 
. 1 

b � � - 1/3 12 y � -E'JJ a = 3 + la l 2  
3 

In this two-generations case, all these parameters can be made real. We have also to add 
the contribution coming from the representation describing antiquarks. This changes the 
above mass matrices and in particular the relation between the above constants and the 
quark masses. One finds 

M(2/3) = µ ( � � )  M ( - 1 /3) = µ ( � � )  (8) 

We introduce the diagonal mass matrix 

(9) 

The unitary matrices are -in the case of two generations- pure rotation matrices, and 
their coefficients (angles) depend only on the unknwown parameters a, b and y. One can 
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express these angles solely in terms of ratios of quark masses (the eigenvalues of M( Q) ) . 
This was already done in [ 1 ]  and we give here a short derivation of this result. 

From equation (8) we get det(M(Q))  det(M(Q))  and Tr(M (Q)) 
Tr(UL(Q)tM(Q)UR(Q)) = Tr(M(Q)UR(Q)UL(Q) t ) .  We parametrize the rotation matri­
ces as follows .  

( 1 0) 

It can be seen that, in this two generations case, UR( Q) is gotten from UL ( Q) by replacing Bq by 7r - Bq . Therefore 

( 1 1 )  

From the equation for the determinant, we get det (ii (n) = mu me = µ2a2 and 

det ( M (-i)) = md ms = µ2 /32 . From the equation for the trace we get (mu + 

me ) sin (B2;3) = 2µa and (m d + m. ) sin (B_ 1;3) = 2µ/3. Therefore 

sin (B-1 ;3 ) = 2� 
m d + m �  ( 1 2) 

and the Cabibbo angle is equal to 

( 1 3) 

This relation can be approximated (in radians) by 

( 14 )  

The observation that I Bc l  can be fitted by  fiiii was done many years ago and was then V m, 
obtained in [7] using ad hoc conjectured mass matrices (different from those obtained above 
from representation theory of SU (2 1 1 ) ) . 

In the case of two generations, the number of independent constants entering the 
Standard Model is equal to 5, four masses and one angle. The case of three generations 
can be handled similarly. In this last case, we have six masses and four independent 
parameters in the Kobayashi-Maskawa matrix ( three moduli and one phase), therefore 1 0  
constants. The two equations giving the eigenvalues are now cubic rather than quadratic. 
This leads to relations between the parameters that are less "simple" than in the two 
generation case. Here again one can take a smaller number of independent parameters in 
SU(2 l l )  representations. The results turn out to be rather sensitive to the precise values of 
all quark masses -remember that there is a factor of the order of 1010 between the square of 
the top mass and the square of the up mass! A detailed discussion of the three-generations 
case is done in [6] .  
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Concluding remarks 

The emergence of irreducible representations of SU(2 l l )  (typical and non-typical) in 
the Standard Model is here presented as an empirical fact. Postulating this property 
amounts to recover the fact that fermions have to appear in specific SU(2) doublets or 
singlets of given chirality and appropriate hypercharge. In the Standard Model, the values 
of those hypercharges is fixed by experiment (we know the electric charges of quarks 
and leptons ) whereas, in the present approach, their values are uniquely determined by 
algebraic constraints. The fact that irreducible representations of this superalgebra could 
describe quarks and leptons was already noticed in [8] [9] . 

The new observation here is that reducible indecomposable representations of the 
same Lie superalgebra provide a clue with respect to the problem of generations, both for 
quarks and leptons -including the phenomena of neutrino masses and neutrino oscillations. 
It also provides a pattern of elementary fermions in agreement with all the features of the 
Standard Model. The corresponding algebraic constraints appearing in the mixing matrices 
(the matrices of odd generators expressing the indecomposability of these representations ) 
lead to a possible diminution of the number of arbitrary parameters of the Standard Model 
and to relations that seem to agree with experiment. All this analysis is however carried at 
the classical level. We know that , in the framework of perturbative quantum field theories, 
a relation (or a numerical value) appearing at the classical level has no definitive meaning 
unless it is shown that the quantum field theory should preserve this particular relation. 
We do not know yet what happens at the quantum level but the whole approach seems to 
have many nice features, therefore there is a hope that some of them should remain after 
proper quantization. The gauging -in a non-commutative way- of the discrete symmetry 
expressing our freedom of chasing between left and right is precisely described by Higgs 
fields. It was shown (cf. [3] and also [4] where a rather different formalism is used ) 
that taking acount such a gauging leads to the whole bosonic sector of the Standard 
Model, including its Higgs potential with symmetry breaking. SU(2 l l )  appears also as a 
global symmetry of the free bosonic sector. The final total Lagrangian is invariant under 
SU(2) x U(l)  as usual (with spontaneous symmetry breaking to U( l ) ) .  All these features 
are rather intriguing and the approach deserves certainly more understanding. 
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Appendix 
We give here the odd generators for the representations used in the text. 
The leptonic and quark representations [£] and [q] .  ( 0 0 

0 0 
[q] =  µ 

an'.... an+ 
-(Jn_ (Jn+ 

The representation [£] :B [1 J 

(n+/K ) ( 17n+ ) ) n_ K -17n'._ 

02 x2 

The representation [q] :B [q]:B [q] .  
It i s  described b y  1 2  x 1 2  matrices. Each block appearing below refers t o  a 4 x 4 matrix. 

With 

( A B' B"' ) 
µ 0 A B" 

0 0 A 

B' = ( � �( ) 
C1 � C1 (c:, 1) = ( �g� 

C(' = C1 (c:" , 1") 

B" = ( � �(' ) 
_ ( an'.... an+ ) C2 - -(Jn_ (Jn+ 

C;" = C1 (c:"' , 1"' )  

These generators obey the commutation relations of SU(2 j l )  provided the following con­
straints are satisfied. 

c:(3 = t ; /Cl' = ! ; e' (3 = -1' a 

The representation ( [f]:B [l] ):B ( [f]:B [ l ] ) :B ( [f]:B [1 ] )  

With 

A, = ( i; �f )  
B"' = ( � er ) 

C( = C1 (0 , 17' ) 

( Ai B' B
.
"' ) 

µ 0 Az B" 
0 0 A3 

B' = 0 �( ) 
Ci . C ( 1 / ) (n+/K; 1 = 1 K; , 17; = n_/K; 

B" = ( � �(' ) 
q = ( K;� '._ Ki�+ ) 

C;" = C1 (0 , 17"' )  
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