

Collective enhancement and nuclear shape transitions

V. Parvathi,* Asmitha M. R., and A. K. Rhine Kumar
Department of Physics, Cochin University of Science and Technology, Kochi - 682022, India

Introduction

The Nuclear Level Density (NLD), the number of energy levels per unit of excitation energy, is a crucial statistical property that exhibits a remarkable characteristic of rapidly increasing with higher excitation energy [1]. In deformed nuclei, collective enhancement in level density (CELD) arises from additional degrees of freedom associated with collective motions [2]. Since, rotational effects are generally more dominant than the vibrational effects, deformed nuclei generally exhibits a more noticeable enhancement. Hansen et al. introduced an enhancement factor, K_{rot} , to the intrinsic level density which is a deformation dependent factor [3]. This enhancement effect tends to diminish at higher excitation energies, a phenomenon known as fadeout. This study focuses on investigating CELD and its fadeout in ^{185}Re nuclei, utilizing Free Energy Surfaces (FES) as a tool to explore nu-

clear shape transitions and their connection to the CELD behavior at excited states.

Theoretical Framework

The total free energy at high spin and temperature using Nilsson-Strutinsky method is given by [4],

$$F_{TOT} = E_{RLDM} + \sum_{Z,N} \delta F$$

The shell corrections to free energy and spin are rewritten as

$$F_{TOT} = E_{LDLDM} + \sum_{Z,N} \delta F^\omega + \frac{1}{2} \omega \left(I_{TOT} + \sum_{Z,N} \delta I \right)$$

where $\delta F^\omega = F^\omega - \tilde{F}^\omega$ and $I_{TOT} = \xi_{rig}(\omega) + \delta I$.

The intrinsic level density equation is obtained as

$$\rho_{int} = \frac{\exp(S)}{(2\pi)^2 \sqrt{D}}$$

where $S = \Omega + \beta E - \alpha N - \mu M$, is the entropy of the system and D is the determinant obtained by the second derivatives of grand potential Ω and $\alpha = \beta\lambda$ and $\mu = \beta\gamma$.

The total level density of a nucleus is given by [3],

$$\rho_{tot} = \rho_{int} * K_{coll}$$

where $K_{coll} = K_{rot} * K_{vib}$

$$K_{rot} = \begin{cases} (\sigma^2 - 1)f(E^*) & \text{if } \sigma^2 > 1 \\ 1 & \text{if } \sigma^2 \leq 1 \end{cases}$$

Here, $\sigma^2 = \frac{IT}{\hbar^2}$ and $I = \frac{2}{5}m_0AR^2(1 + \frac{\beta_2}{3})$. $f(E^*) = \left\{ 1 + \exp \frac{E^* - E_{cr}}{d_{cr}} \right\}^{-1}$ is the Fermi function which represents the fadeout of collective motions. $E_{cr} = 120\beta_2 A^{1/3}$ and $d_{cr} = 1400\beta_2^2/A^{2/3}$.

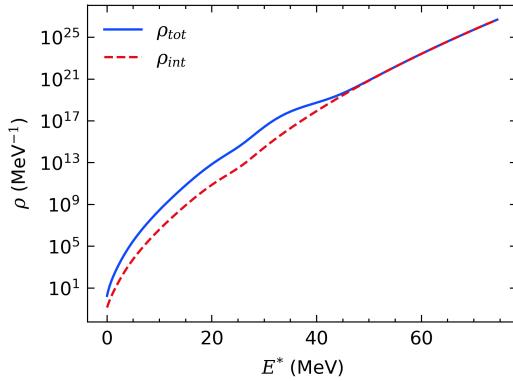


FIG. 1: Intrinsic and collective level densities plotted as a function of excitation energy.

*Electronic address: parvathiindeevaram@gmail.com

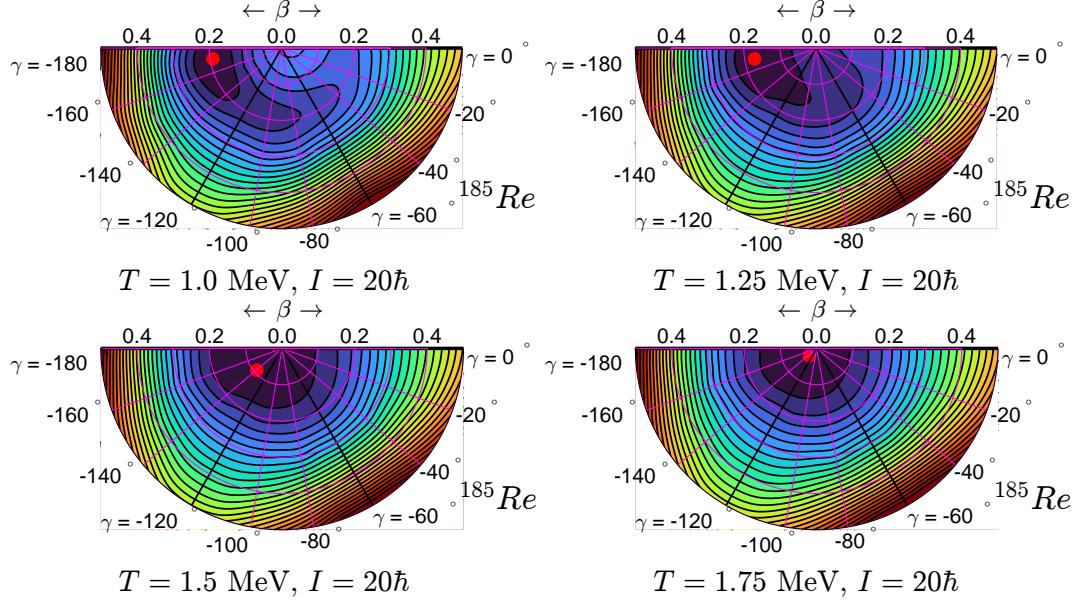


FIG. 2: The Free Energy Surfaces (FES) plotted as a function of β_2 and γ at different temperatures with $I = 20\hbar$.

Results and Discussion

In this study, we focus on the ^{185}Re nucleus to investigate the phenomenon of collective enhancement in level density. Experimentally, P. Roy *et. al.* observed a collective enhancement in the ^{185}Re compound nucleus, which was noticeable only at lower excitation energies [5]. Fig. 1 illustrates both the intrinsic and collective level densities as functions of excitation energy, revealing a clear enhancement in the NLD. However, this CELD fades out beyond an excitation energy of 40 MeV.

Fig. 2 shows the FES plotted against the quadrupole deformation (β_2) and the triaxiality (γ) parameter at various temperatures, with the angular momentum fixed at $20\hbar$. Initially, the nucleus exhibits a non-collective oblate shape with $\beta_2 = 0.2$. As the temperature increases, a distinct change in the most probable nuclear shape is observed. At $T = 1.5$ MeV, the nucleus exhibits a nearly spherical shape with its most probable shape at $\beta_2 = 0.1$ and $\gamma = -140^\circ$. At $T = 1.75$ MeV, the most probable shape of the nucleus is showing a spherical structure. The critical

temperature for the fadeout of the collective enhancement was calculated as 1.62 MeV [5]. Therefore, at $T = 1.75$ MeV, the spherical shape of the nucleus likely accounts for the observed fadeout of the CELD.

Acknowledgments

Authors acknowledge the financial support provided by the Department of Science and Technology (DST), India, via the DST-INSPIRE Program. This work is also supported by the Science and Engineering Research Board (SERB) under Grant Code: CRG/2023/004323.

References

- [1] N. Bohr, Nature **137**, 344 (1936).
- [2] Rajkumar Santra *et. al.*, Phys. Rev. C **107**, 064611 (2023).
- [3] G. Hansen and A. Jensen, Nucl. Phys. A **406**, 236 (1983).
- [4] P. Arumugam *et. al.*, Phys. Rev. C **69**, 054313 (2004).
- [5] Pratap Roy *et. al.*, Phys. Rev. C **88**, 031601 (2013).