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Abstract: In this paper, a modified Josephson junction model is proposed, which splits the two-
dimensional electron gas by inserting a middle superconductor strip into a conventional Josephson
junction. This modification enhances the superconducting proximity effect, thus avoiding the appear-
ance of a soft gap and inducing a stable Majorana zero-energy mode. Through numerical simulation,
the impact of the middle superconductor strip with different widths on the energy band structure is
studied, and a significant increase in the topological energy gap is found. In addition, the modified
system maintains a robust topological gap even at a strong in-plane magnetic field.

Keywords: Majorana zero-energy mode; Josephson junction; band structures; symmetry breaking

1. Introduction

The Majorana zero-energy modes (MZMs), as quasiparticles, exhibit non-Abelian
anyonic statistics in condensed matter physics [1–4]. MZMs exhibit non-Abelian statistics,
meaning that when the positions of two MZMs are exchanged, the systems will usually end
in different states from the original one. It has been predicted in topologically non-trivial
quantum matters such as the boundaries of one-dimensional topological superconductors
and the vortex cores of two-dimensional topological superconductors [5–7]. The research
of MZMs is not only significant for fundamental physics but also holds promising appli-
cations in realizing topological quantum computation. Due to their robustness of local
perturbations, MZMs become good candidates for realizing fault-tolerant quantum compu-
tation [8,9]. Furthermore, the non-Abelian exchange statistics of MZMs also provides new
possibilities for quantum information coding, which may lead to a significant improvement
in the power and security of quantum computers [10].

Topological superconductivity is a special superconducting state [11], which has non-
trivial topological properties and also has the zero resistance and complete diamagnetism
of superconductors. These properties are mainly manifested in the existence of stable
zero-energy modes at the edge or defect of materials. The existence of superconducting
gaps in the band structures of topological superconductors is related to the properties
of the system. The existence of a topological gap is also a necessary condition for the
emergence and stability of MZMs [12,13]. The topological superconductor platform is a
promising candidate for the realization of MZMs. It can be divided into intrinsic topological
superconductors and artificial topological superconductors [14]. Most current experiments
focus on one-dimensional semiconducting nanowires with specific materials [15]. A hybrid
system based on s-wave superconductors and topological insulators was proposed by Fu
and Kane [16]. This scheme uses the superconducting proximity effects and the spin–orbit
coupling on the surface of topological insulators to recreate Kitaev’s one-dimensional
chain model. After that, Lutchyn and Oreg independently extended this assumption to
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the semiconductor–superconductor heterostructures [8,17–19] which belong to artificial
topological superconductors.

Another important heterostructure system is the two-dimensional Josephson junction
proposed in 2017 [20,21]. They proposed a setup that could couple multiple MZMs to
achieve the braiding operations required for topological quantum computing. Pientka
calculated the local density of states (LDOS) around the boundary of the systems based
on the tight-binding model of the Hamiltonian, thus verifying the appearance of MZMs in
the system, with the position of the MZMs being confined to both ends of the Josephson
junction. This kind of setup can also be combined with other Josephson junction systems
to achieve extensible quantum bit design [22,23]. The two-dimensional hybrid system
introduces superconducting phase difference control methods [20,21,24,25] and retains
gate voltage control methods [10], allowing for more precise control of the positions and
quantities of MZMs compared to the one-dimensional full-shell nanowire system. Recently,
a similar scheme based on a superconductor–normal–superconductor (SNS) hybrid system
was proposed [26], which is expected to greatly reduce the required magnetic field in
addition to the advantages above [27]. Therefore, seeking a way to create stable MZMs
based on this kind of SNS hybrid system becomes the focus of our work.

Introducing the superconducting phase difference control method in the two-dimensional
SNS Josephson junction can effectively reduce the critical magnetic field Bcrit which is
required to induce the topological phase. When the phase difference between the two
superconductors reaches φ = π, the topological phase transition can be achieved at a
lower external magnetic field [20], and the destruction of the topological gap can be
avoided. Meanwhile, the superconducting phase difference generated by supercurrent or
gate electrodes also allows us to control and modify MZMs by electrical means [21,22] so
that it has a broad application prospect.

Recent experiments have realized some two-dimensional hybrid SNS systems based
on superconducting phase difference, where topological non-trivial phases predicted by the
theory are successfully observed through zero-bias conductance peaks [28–30] or directly
measuring the phase [31–33]. However, due to the influence of quasiparticle trajectories in
the two-dimensional electron gas region [34], soft gaps that impact the stability of MZMs
still appeared in the experiments [35]. In order to eliminate the soft gap that appeared in
these experiments, many studies have attempted to find out the cause of the soft gap in
MZMs induced by the superconducting phase difference [36]. From a semiclassical point
of view, Egap ≃ h̄vF/Lt when the width of the semiconductor W is much smaller than the
trajectory Lt, based on Thouless’s theory. Thus, a long electron’s trajectory induced by
momentum along the direction of translation symmetry in a straight junction reduces the
Egap. One can tackle this problem by designing a new experimental setup with a serrated
normal region to shorten trajectories by geometric constraints [37,38].

In this work, we propose a new setup of SNS Josephson junctions to create stable
Majorana zero modes based on the superconducting phase difference and external magnetic
field. We insert a third superconductor layer in a Josephson junction to form a modified
system, in which the Andreev energy levels are not degenerate anymore, so time-reversal
symmetry breaking can be achieved in this system [39–42]. Moreover, this modified setup
can be realized and modulated in experiments. Our work mainly focuses on analyzing
the band structures of the new system and finding the optimal conditions for generating
stable MZMs.

2. Setup

The Josephson junction consists of a 2D strip of a semiconductor and two supercon-
ductors on both sides [20,21]. One can modify the original junction by inserting a thin
superconducting strip in the middle of the semiconductor strip. This modified system can
create the hard-induced superconducting gap and eliminate the impact of the soft gap.
We set the x-axis parallel to the Josephson junction and the y-axis perpendicular to the
Josephson junction as shown in Figure 1.
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The two-dimensional electron gas (2DEG) with a x-direction magnetic field is the blue
region, and its Hamiltonian reads [43]

ĤN =
[ p̂2

x + p̂2
y

2meff
− µ

]

σ0τz + α( p̂yσx − p̂xσy)τz +
1
2

gµBBxσxτ0. (1)

The yellow regions are the superconductors with different superconducting phases,
and the Hamiltonian is

ĤS =
[ p̂2

x + p̂2
y

2meff
− µ

]

σ0τz + ∆ cos ϕσ0τx + ∆ sin ϕσ0τy. (2)

Here, p̂x and p̂y are the momenta of the electrons. For the 2DEG material, meff
is the effective electron mass, µ is the chemical potential, α is the spin–orbit coupling
strength, and g is the Landé g factor, so the 1

2 gµBBx denotes the Zeeman splitting in the
x-direction [44]. For the s-wave superconductor, ∆ represents the coupling strength of the
s-wave superconductors, and ∆

′ is the coupling strength of the middle superconductor.
The superconducting phase difference between the top and bottom superconductors is
φ = π, so the superconducting phases of these two superconductors are ϕ = ± φ

2 = ±π
2 ,

and the superconducting phases of the middle superconductor is ϕ′ = 0.

Bx

Bx

WWmid

y

x

∆eiφ/2

∆e−iφ/2

∆
′

Figure 1. The modified Josephson junction. The distance between the two superconductors remains
W = 200 nm, unchanged, and the width of the middle superconducting layer Wmid varies.

Therefore, for the three different s-wave superconductors with different coupling
strengths ∆ and superconducting phases ϕ, we can distinguish the Hamiltonian in these
three regions. The Hamiltonian of the top and bottom superconductors is

ĤT,B =
[ p̂2

x + p̂2
y

2meff
− µ

]

σ0τz + ∆ cos(±
π

2
)σ0τx + ∆ sin(±

π

2
)σ0τy. (3)

The Hamiltonian of the middle superconductor where ϕ′ = 0 reads

ĤM =
[ p̂2

x + p̂2
y

2meff
− µ

]

σ0τz + ∆
′ cos(0)σ0τx + ∆

′ sin(0)σ0τy. (4)

The middle superconductor is not essentially different from the original two supercon-
ductors, so we can take ∆

′ = ∆.
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In this two-dimensional system, the Hamiltonian acts on the Nambu basis Ψ(x, y) =
(Ψe↑, Ψe↓, Ψh↓,−Ψh↑)

T , and the Pauli matrices σi act on spin degrees of freedom Ψ↑ or Ψ↓

and τi act on particle degrees of freedom Ψe or Ψh. Hence, we can analyze the system’s
symmetry on the Nambu basis.

3. Symmetry

Based on the modified setup, we can obtains the expression of its Hamiltonian, which
can be used to analyze the symmetries

Ĥ =







































[ p̂2
x + p̂2

y

2meff
− µ

]

σ0τz + ∆
′σ0τx |y| < Wmid/2

[ p̂2
x + p̂2

y

2meff
− µ

]

σ0τz + α( p̂yσx − p̂xσy)τz +
1
2

gµBBxσxτ0 Wmid/2 < |y| < W/2

[ p̂2
x + p̂2

y

2meff
− µ

]

σ0τz ± ∆σ0τy W/2 < |y|

(5)

Similar to the experimental junction [24,28], the spatial symmetry of our system can be
analyzed directly based on this Hamiltonian and Figure 1. For the y > 0 region, under the
spatial inversion transform y → −y,

+φ/2 → −φ/2, p̂y → − p̂y. (6)

The transformed expression for its Hamiltonian corresponds to the y < 0 region, and vice versa.

The time-reversal operator for the spin-1/2 system is

T = −iσyK, (7)

where K is the complex conjugate operator [45]. The Hamiltonian for different regions
under the time-reversal transformation is as follows. For the 2EDG region, the Hamiltonian
ĤN transforms as

T ĤN(r̂, p̂)T −1 =
[ p̂2

x + p̂2
y

2meff
− µ

]

σ0τz + α
[

p̂yσx − p̂xσy

]

τz. (8)

And the Hamiltonian ĤS for s-wave superconductors with different superconducting
phases can be shown as

T ĤS(r̂, p̂)T −1 =
[ p̂2

x + p̂2
y

2meff
− µ

]

σ0τz + ∆ cos ϕσ0τx + ∆ sin ϕσ0(−τy). (9)

The Hamiltonian ĤM for the middle superconductor with ϕ = 0 is time-reversal
symmetrical, which can be shown as

T ĤM(r̂, p̂)T −1 =
[ p̂2

x + p̂2
y

2meff
− µ

]

σ0τz + ∆σ0τx. (10)

Similarly, when the superconducting phases ±φ/2 = 0, both the top and the bottom
superconductors ĤT,B have time-reversal symmetry,

T ĤT,B(r̂, p̂)T −1 = ĤT,B(r̂, p̂). (11)
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But when introducing the superconducting phase difference φ = π, the Hamiltonian
ĤT,B with superconducting phases ϕ = ±π

2 do not keep the time-reversal symmetry

T ĤT,B(r̂, p̂)T −1 =
[ p̂2

x + p̂2
y

2meff
− µ

]

σ0τz ± ∆σ0(−τy). (12)

whereas for the 2DEG region, the time-reversal symmetry can be broken by an applied
in-plane magnetic field Bx,

T ĤN(r̂, p̂)T −1 =
[ p̂2

x + p̂2
y

2meff
− µ

]

σ0τz + α
[

p̂yσx − p̂xσy

]

τz −
1
2

gµBBxσxτ0. (13)

We can also define the particle–hole operator

P = iτyT = τyσyK, (14)

which anti-commutes with the Hamiltonian Ĥ with particle–hole symmetry as [P , Ĥ]+ = 0.
Therefore, under the action of the particle–hole symmetry, the Hamiltonians in different
regions transform as

P ĤN(r̂, p̂)P−1 = −
[ p̂2

x + p̂2
y

2meff
− µ

]

σ0τz − α
[

p̂yσx − p̂xσy

]

τz −
1
2

gµBBxσxτ0, (15)

and for the s-wave superconductor regions, the Hamiltonian ĤS

P ĤS(r̂, p̂)P−1 = −
[ p̂2

x + p̂2
y

2meff
− µ

]

σ0τz − ∆ cos ϕσ0τx − ∆ sin ϕσ0τy. (16)

As a result, the Hamiltonians in different regions are protected by particle–hole sym-
metry for the arbitrary in-plane magnetic field Bx and superconducting phase difference as

P Ĥ(r̂, p̂)P−1 = −Ĥ(r̂, p̂). (17)

Our system has both particle–hole symmetry and time-reversal symmetry. It is in the
symmetry class BDI with the Z topological invariant without the in-plane magnetic fields.
When the time-reversal symmetry is broken, the system reduces into symmetry class D,
with the Z2 topological invariant, which depends on the parity of the Z topological invari-
ant [46,47]. Therefore, the topological phase transition will occur when the Z topological
invariant changes from even to odd, and MZMs arise in the non-trivial topological phase at
the boundary of the system [20,21].

However, based on the above analysis, the introduction of the new superconducting
layer with ϕ′ = 0 does not break the time-reversal symmetry of this system, so the magnetic
fields which can break the time-reversal symmetry and induce topological phase transitions
are still necessary to create MZMs.

4. Band Structures

To describe the behavior of the system’s band structures under different conditions,
we apply the finite difference approximation to the continuum Hamiltonian. We follow
the similar steps of Melo [48] and implement the tight-binding model by using the Kwant
software package [49] (1.4.3) to discretize the above continuous Hamiltonian onto a square
grid with lattice constant a = 10 nm[50].

Based on the translation symmetry in the x direction of the system, we can calculate
the band structures at different momenta by applying the sparse diagonalization method
to the tight-binding Hamiltonian [10]. Except for the magnetic field Bx and the width of
the middle superconducting layer Wmid, in this article, all other system parameters are set
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to the following values: meff = 0.04me; g = 13; µ = 0.2 meV; α = 10 meV nm; ∆ = 1 meV;
W = 200 nm; and LSC = 400 nm.

Consider a Josephson junction without a middle superconductor layer (W = 200 nm
and Wmid = 0) and create a superconducting phase difference φ = π in the superconductors
at both ends. The band structures of this junction are shown in Figure 2. The red dashed
line represents the case where the external magnetic field Bx = 0, and the band structures
cross, indicating that the proximity effect of superconductivity is weak when the width of
the Josephson junction W = 200 nm. The solid line represents the band structures of the
Josephson junction with an external magnetic field Bx = 0.5T, and it does not cross, so the
system has a topological gap. Introducing a superconducting phase difference allows the
system to induce topological phase transitions and generate the MZMs at lower external
magnetic fields.

−π − π/2 0 π/2 π
Lxkx

−0.2

0

0.2

E
/∆

Figure 2. Band structures of the Josephson junction in the case of Wmid = 0 and φ = π. The dashed
line represents the normal state without an external magnetic field, and the solid line represents the
topological state with an external magnetic field Bx = 0.5T. There are mini gaps at some specific kx in
the band structures of MZMs induced by the external magnetic field.

However, as in the results of the previous experiments, the topological gap induced
by the magnetic field is soft and unstable. To this end, we insert a superconducting strip
inside the two-dimensional electron gas to enlarge the topological gap of the system.

5. Results and Discussion

We establish a modified Josephson junction by inserting a middle superconductor strip
inside the semiconductor. The width of the modified Josephson junction is W = 200 nm.
The numerical simulation results of the modified setup are shown in Figure 3, which
can demonstrate the effect of different widths of the new superconductor layer Wmid on
this system.

Our modified system significantly changes the width of the 2DEG region of the
Josephson junction by inserting the width of the intermediate superconducting layer
because the width of the 2DEG electron gas region affects the ease with which the system
enters the topological superconducting phase. In most cases, decreasing the width of the
2DEG region leads to stronger superconducting proximity effects, allowing the system to be
induced into the topological phase by lower magnetic fields (or even zero magnetic fields).
The superconducting phase difference of the superconductors at both ends can induce the
system to have a certain topological gap, and the width of the 2DEG region affects the
size and distribution of this induced topological gap [51], thus affecting the formation and
observation of MZMs. On the contrary, increasing the width of the 2deg region decreases
the induced topological gap, making the system require a stronger magnetic field to obtain
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the topological phase transition. However, the 2DEG region width also affects the degree
of MZMs localization at the edges, and a larger 2DEG region width makes the MZMZs
more localized and thus easier to detect and manipulate.

−π − π/2 0 π/2 π
Lxkx

−0.2

0

0.2

E
/∆

(a) Wmid = 30 nm

−π − π/2 0 π/2 π
Lxkx

−0.2

0

0.2

E
/∆

(b) Wmid = 90 nm

Figure 3. Band structures of Josephson junction with third superconductor layer in the case of an
external magnetic field Bx = 0.5T.

To study the effects of different widths of the middle superconductor strip on the
topological gap as well as on the stability of the MZMs, we calculate the band struc-
tures of the modified Josephson junction with two different superconductor strip widths
Wmid = 30 nm and Wmid = 30 nm. Compared with the Josephson junction without the
middle superconductor strip indicated by the blue solid line in Figure 1, the 2DEG region
of the modified Josephson junction with the insertion of the middle superconductor will be
decomposed into two smaller regions as shown in Figure 2. Moreover, since we fix the total
width of the Josephson junction at W = 200 nm, compared with the case where the middle
superconductor strip width Wmid = 30 nm, when Wmid = 90 nm, the 2DEG region of the
modified Josephson junction will be shrunk, so the superconducting proximity effects in
the junction will be enhanced. Therefore, the topological gap will increase with the increase
in the strip’s width, and the band structures of the Josephson junction will flatten after
inserting the middle superconductor strip.

The in-plane magnetic field is the main way to induce and regulate the topological
phase transition, and the magnetic field that affects the realization of the MZMs is mainly
parallel to the 2DEG region. The magnetic field in this direction plays a key role in realizing
the topological superconducting phase and observing the Majorana zero mode. In the
Josephson junction, the external magnetic field induces a topological phase transition of the
system from the trivial phase to the topological superconducting phase, which is crucial for
creating and observing MZMs. When the magnetic field is sufficiently large compared to
the superconducting energy gap, a zero-bias conductance peak can be observed, which is
an important indication of the presence of MZMs.

To verify the stability of the Majorana zero-energy mode and search for the most
suitable experimental conditions, we conduct band structure simulations under various
in-plane magnetic fields in Figure 4. The results in Figure 4a show that when the in-plane
magnetic field Bx = 0, there is no band crossing in the system, indicating the presence of a
tough gap. However, since the time-reversal symmetry is not broken, the system remains
in a trivial topological phase without MZMs. When the in-plane magnetic field of the
system is at a lower value such as Bx = 0.25T or Bx = 0.5T, the time-reversal symmetry of
the system is broken by the magnetic field. It allows the system to enter the topological
non-trivial phase more easily. In Figure 4b,c, we calculate the band structures of the system
at Bx = 0.25T or Bx = 0.5T. A wide topological energy gap can be observed in both figures,
indicating that the system’s band structures have a stable hard induced energy gap under a
lower in-plane magnetic field. So it also means that this is an ideal condition for creating
stable MZMs. We also calculate the band structure at Bx = 1T (Figure 4d). Even with a
strong magnetic field, the system band structures still have no band crossing.
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−π − π/2 0 π/2 π
Lxkx

−0.2

0

0.2

E
/∆

(a) Bx = 0T

−π − π/2 0 π/2 π
Lxkx

−0.2

0

0.2

E
/∆

(b) Bx = 0.25T

−π − π/2 0 π/2 π
Lxkx

−0.2

0

0.2

E
/∆

(c) Bx = 0.5T

−π − π/2 0 π/2 π
Lxkx

−0.2

0

0.2

E
/∆

(d) Bx = 1T

Figure 4. Band structures of Josephson junction with the width of the middle superconductor layer
Wmid = 30 nm and different external magnetic fields.

Therefore, based on our results, we find that the topological gap of the band structures
will gradually decrease as the in-plane magnetic field increases. In particular, when the
magnetic field is Bx = 1T, severe damage to the topological gap is observed in the previous
experimental platform, which is not conducive to generating stable MZMs. However,
the result in Figure 4d shows that the modified system still has a topological gap at Bx = 1T.
It implies that our modified system can generate MZMs in a wider range of magnetic
field conditions.

In the Josephson junction, precision devices such as superconducting quantum inter-
ferometry devices are used to precisely control the magnetic flux through the Josephson
junction. Especially in small superconducting junctions, the in-plane magnetic field can
change the energy-gap structures of the system, leading to the closure and opening of the
topological gap, which are important implications for the observation and manipulation of
MZMs. In conclusion, the magnetic field is a key factor in creating and controlling MZMs
in 2D superconducting systems, and the physical behavior of MZMs can be effectively
regulated by precisely controlling the magnitude and direction of the magnetic field as well
as the parameters of the junction.

6. Conclusions

In the current research, the Josephson junction is a core component in the field of
superconducting electronics. To modify the Josephson junction, we propose to insert a
middle superconductor strip into a junction. The middle superconducting layer will divide
the original continuous 2DEG region into two smaller regions. This modification changes
the structure of the electron gas, reducing the quasiparticle trajectory in the 2DEG. Due
to the existence of the inserted superconductor, the superconducting proximity effect is
enhanced, which could avoid the appearance of soft gaps and provide a possibility for
creating stable Majorana zero-energy modes.

Based on the Bogoliubov–de Gennes Hamiltonian on the two-dimensional electron gas
and s-wave superconductor regions, we can discretize this continuous Hamiltonian to the
tight-binding Hamiltonian in the lattice system. By numerical simulations, we investigate
the effect of middle superconductor strips with different widths W and in-plane magnetic
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fields Bx on the band structures of Josephson junctions. In the case of no superconductor
strips inserted, there is a soft gap in the band structures of the system, and the topological
gap disappears when the in-plane magnetic field is zero. The insertion of the middle
superconductor strips significantly increases the topological gap of the Josephson junctions,
which is of great importance for improving the stability of MZMs. In addition, we also
compare the band structures of the modified system with different in-plane magnetic fields
Bx. The results show that the modified system can maintain a certain topological gap even
at higher in-plane magnetic fields, which demonstrates the robustness of our modified
setup in a strong magnetic field environment.

This modified Josephson junction can reduce the destruction of the MZMs by the
magnetic field. On the one hand, the introduction of the superconducting phase difference
can reduce the critical magnetic field Bcrit for the topological phase transition of the system.
On the other hand, the inserted middle superconductor strips make the topological gap
of the system significantly increase, and a more stable MZMs can be maintained even at
a strong magnetic field. This modification on the structure of the Josephson junction is
more convenient to experiment with, which facilitates future experimental studies and
applications. The influence of the superconducting phase difference and the supercon-
ducting coupling strength between three s-wave superconductors of the system deserves
to be studied in depth. These studies will help us understand the physical properties of
modified Josephson junctions more comprehensively, and provide theoretical support for
future application development.
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