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Introduction

The Standard Model (SM) of particles and interactions successfully describes particle physics. In the last
years growing evidence has been established, indicating that the SM must be extended to possibly include
new physics. The main indication for such a need has come from neutrino physics. Ten years ago physicists
measured for the �rst time some peculiar properties of neutrinos coming from the atmosphere, using sensitive
underground detectors. Compared to the expectation there was a huge amount of neutrinos missing. Three
years later another experiment showed a clear de�cit of neutrinos, and this time the neutrinos came from
the Sun. These observations were then con�rmed by experiments based on neutrino beams from particle
accelerators, hence proving the disappearance of neutrinos of speci�c �avours during their travel from the
source to the detector and under speci�c kinematical conditions. The most promising explanation for this
is the oscillation of a neutrino type into another to which the detector is not sensitive. The oscillation
mechanism of one particle into another is only possible if they possess mass - and the neutrinos are assumed
massless according to the SM. So the hypothesis of neutrino oscillation lies beyond the SM.

The OPERA experiment (Oscillation Project with Emulsion tRacking Apparatus) is a neutrino oscillation
project with a long baseline travel for the neutrinos, such to be sensitive to the signal of oscillation of atmo-
spheric neutrinos. It is an appearance experiment, the �rst aiming to directly reveal the oscillation of muon
neutrinos into tau neutrinos, νµ → ντ . Muon neutrinos are produced arti�cially and are sent by means of
a high energy neutrino beam from CERN in Geneva to the Gran Sasso Laboratory in Italy (CNGS) over a
distance of 732 km. In order to observe ντ interactions, the OPERA apparatus consists of electronic detectors
and a huge target mass of 1.8kton made of lead and nuclear emulsion �lms, recording these interactions.

Concerning the atmospheric sector of neutrino oscillation, the ντ appearance is still an outstanding missing
piece of the neutrino oscillation puzzle. The OPERA detector was especially designed to study this subject.
Its expected performance can be estimated also thanks to a detailed knowledge of the CNGS neutrino �ux.
So far, the best knowledge about the CNGS beam only relied on simulations. Since the understanding of the
neutrino �ux is one of the main ingredients of any oscillation analysis, we have started a study of the CNGS
beam �ux by using real neutrino interactions collected by OPERA in a �rst run held in 2007.

The electronic detectors of the experiment, in fact, provide us valuable information about the neutrino inter-

actions. From data collected during the run of autumn 2007, we selected events coming from muon neutrino

charged current interactions which produced a muon detected in the electronic detectors of the apparatus.

These events are used together with simulated events in an unfolding procedure that allows to infer the

original neutrino beam spectrum from the knowledge of the kinematical distribution of the selected muons.

The result obtained by the candidate in this Diploma Thesis is a �rst attempt for such a measurement and

will bring to interesting developments towards a deeper understanding of the OPERA neutrino beam.
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Chapter 1

Neutrino Physics

1.1 History of the Neutrino

If we look back for more than a hundred years, the knowledge about particles was rather small. That
was the time when the research in this �eld was just at its beginning. It all started with Thomson
discovering the electron in the year 1897. Together with the discovery of the radioactivity appeared
the β-decay-problem. The radioactive nucleus emits an electron. This is a two-body decay and
the energy and momentum of the initial and �nal state must be conserved. But as measuements
showed, this is not at all the case. The energy spectrum of a β-decay electron is continuous. This
fact led to Pauli's hypothesis of the neutrino in 1930 [1]: Pauli tried to save the energy conservation
principle in suggesting that electrical neutral particles exist in the nuclei, which he called neutrons.
These particles are of spin ½ and therefore obey the exclusion principle. Pauli also suggested that
the neutrons are of around the same mass as the electrons [2]. It was Fermi who - in his theory of
beta decay (1934) - �rst referred to these particles as neutrinos. But it would last another 20 years
until the existence of the neutrinos would be proven experimentally. This happened in the famous
experiment by Reines and Cowan in 1956. They measured the cross-section for the inverse β-decay
reaction: p + νe → n + e+ [3].
One year later Pontecorvo enunciated the following assumptions:

� The neutrino and the antineutrino emitted in β-processes are di�erent particles.
� There exist interactions with no conservation of the lepton number.

From these he deduced that it is possible for neutrinos in vacuum to transform into antineutrinos
and vice versa. For doing so both the neutrino and antineutrino have to be particle mixtures of two
neutral Majorana particles1. The oscillations were supposed to take place between an active and a
sterile neutrino. Therefore Pontecorvo not only stated neutrino oscillations, but also proposed the
existence of sterile neutrinos [4].
Shortly after that, in 1962, was an experiment taking place at the Brookhaven AGS2, whose aim
was to observe interactions of high-energy neutrinos with matter. The neutrinos needed for this
were produced through the decay of pions: π+ → µ+ + νµ and π− → µ− + νµ. The results of this
experiment showed that the neutrinos, which were used, produced only muons and no electrons.
This fact led to the question if there are two kinds of neutrinos, as the predictions based on the

1see Chapter 1.3
2Alternating Gradient Synchrotron

3



4 CHAPTER 1. NEUTRINO PHYSICS

theory with νµ = νe were not consistent with the measurement. The absence of the electrons and
also the problem with the forbidden decay µ+ → e++γ would be explained by the fact that νµ 6= νe,
i.e. that there exist at least two �avours of neutrinos - the νµ was discovered [5]. In 1988, Lederman,
Schwartz, and Steinberger were honoured with the Nobel Prize for the discovery of the νµ [6].
The model for the energy production for stars on the main-sequence, like our sun, states that the
main source is fusion, taking place deep inside the star. Four protons are supposed to form an
alpha particle. Doing so they emit neutrinos. With their extremely small interaction cross-section,
neutrinos are the only way to see into the interior of a star and so to verify directly the hypothesis of
the energy generation via nuclear fusion [7]. An experiment with exactly this aim was constructed
by Davis et al. deep under the earth in a mine of the Homestake Mining Company in the USA. By
using the inverse β-process 37Cl + νe → 37Ar + e−, one hoped to observe solar neutrinos. Besides
that, the experiment should have provided an upper limit on the �ux of extraterrestrial neutrinos
[8]. In 1968 a paper was published by Davis et al. [9] which hold a very interesting fact: the
predicted neutrino �ux was 2.0± 1.2× 10−35s−1 per 37Cl atom. However, the experiment provides
an upper limit of 0.3× 10−35s−1 per 37Cl atom. This measured limit is around seven times smaller
than the prediction. This fact is referred to as the solar ν de�cit problem.
A year earlier, Pontecorvo wrote about solar neutrinos in conjunction with neutrino oscillation. He
stated that, if the oscillation length is smaller than the radius of the region of the sun in which
neutrinos were produced, oscillations would be smeared out and therefore not directly observable.
Anyhow, there would be an e�ect which can be seen on the Earth: the observable solar neutrino
�ux must be two times smaller than the total neutrino �ux [4].
The Gargamelle heavy liquid chamber was a CERN3 neutrino experiment. The bubble chamber
was exposed to neutrino and antineutrino beams, searching for neutral current (NC) events. These
had to be compared with the charged current (CC) interactions:

NC: νµ + N → νµ + hadrons, νµ + N → νµ + hadrons
CC: νµ + N → µ− + hadrons, νµ + N → µ+ + hadrons

One has to take into account that there would be other interpretations of the events found during
the experiment than the neutral current hypothesis. The experimental evidence for neutral currents
found in 1973 was con�rmed by scientists at Fermilab shortly after the discovery at CERN [10, 11].

In summer 1975 Perl and others found the following reaction:

e+ + e− → e± + µ∓ + missing energy

For this they had no explanation. The missing energy and as well the missing momentum required
two additional particles or even more:

e+ + e− → e± + µ∓+ ≥ 2 undetected particles

These events were found using SLAC-LBL4 at centre-of-mass energies of 4 GeV [12]. One year later
they came up with a simple hypothesis which could explain all the data: these events are evidence
of a pair production of heavy leptons. The mass of these leptons has to be within the range of 1.6
to 2.0 GeV. The temporary name of this new particle was U, standing for 'unknown'.

e+ + e− → U+ + U−

3Conseil Européen pour la Recherche Nucléaire; Geneva.
4Stanford Linear Accelerator Center - Lawrence Berkeley Laboratory



1.1. HISTORY OF THE NEUTRINO 5

The produced U's were supposed to decay almost immediately. Then the e and µ in the previous
reaction are decay products of the U's. They also claimed that the U decays into a charged lepton
and at least two undetected particles, which have to be neutrinos for most of the events.

U− → νU + e− + νe

U− → νU + µ− + νµ

The above reactions are two possible decay modes [13]. In 1977 the U got its present name - the τ
lepton. So the observed events undergo the following reaction:

e+ + e− → τ+ + τ−

The positron electron annihilation produces two τ 's which almost immediately decay. Taking into
account some newer events, Perl et al. measured the mass of the τ to be mτ = 1.90 ± 0.10 GeV .
For the corresponding neutrino ντ , they found an upper limit mντ < 0.6 GeV [14].
In 1995 Perl and Reines received the Nobel Prize for the "discovery of the τ" and the "detection of
the neutrino", respectively [6].
On 24 February 1987 one observed optically the supernova SN1987A. Knowing that a supernova is
accompanied by a neutrino burst, scientists working at the Kamiokande II detector5 searched for
events caused by the supernova. They actually found eleven electron events suitable for a neutrino
burst. These neutrinos were the �rst detected ones coming from a supernova [15]. At this time all
the available neutrino detectors were not capable to registrate the small time di�erence between the
arriving photons and the neutrinos which would have been proof for their mass. For the detection
of cosmic neutrinos, Koshiba (Kamiokande) and Davis (Homestake) won the Nobel Prize in 2002[6].
Beginning in the year 1989, several experiments collected data to determine the number of light
neutrino types (eg. LEP (Large Electron-Positron Collider) at CERN and SLC (Stanford Linear
Collider) in Stanford). Combining these results we get [16]:

Nν = 2.991± 0.061

As there can only be three types of neutrinos, there wont exist any others than νe, νµ, and ντ .
In particular, the �rst direct evidence for the tau neutrino was reported in the year 2000 by the
DONUT6 collaboration [17].
In the following years the de�cit of the solar and atmospheric neutrinos was con�rmed by several
experiments: in 1998 Super-Kamiokande showed evidence for neutrino oscillation of atmospheric
neutrinos, while SNO7 presented the �rst direct indication of neutrino oscillation of solar neutrinos
in 2001.
One compares the two ratios Rdata=(observed number of µ-events)/(observed number of e-events)
and RMC=(expected number of µ-events)/(expected number of e-events) and gets results of around
R(µ/e) = Rdata/RMC ≈ 0.6. The explanation for this observation is neutrino oscillation, favouring
the channel νµ ↔ ντ . Hence the neutrinos are not massless [18, 19, 20].
At the "Neutrino '98" international physics conference hold in Japan, physicists from the Super-
Kamiokande Experiment8 announced that they had found evidence for neutrino oscillation. Pre-
sented data suggest that muon neutrinos disappear into tau neutrinos which were not detected by
the experiment. This is due to the neutrino oscillation process that can only happen if neutrinos

5Large underground water detector sited in the Mozumi mine in Kamioka, Japan. It has the capability to detect
neutrinos through the scattering reaction νe + e → νe + e and through νe + p+ → e+ + n.

6Direct Observation of NU Tau, a Fermilab experiment, USA.
7Sudbury Neutrino Oscillation, USA
8successor of the Kamiokande detector
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possess mass [21]. The limits for the neutrino masses are listed in Table 1.1. The possible distinc-
tions between neutrino and antineutrino properties are ignored for the muon and tau familiy [22].

mass limit CL

mνe < 2 eV 95%
mνe < 225 eV 95%
mνµ < 0.19 MeV 90%
mντ < 18.2 MeV 95%

Table 1.1: Neutrino mass limits and their con�dence level. [22]

1.2 The Standard Model of particles and interactions

The knowledge about particles is united in the Standard Model (SM). The SM is a quantum �eld
theory which describes the fundamental particles as well as the fundamental forces and was formu-
lated in the 1970s. It says that all matter is built up by only a small number of particles. These
particles obey the Fermi-Dirac statistics and thus are called fermions. They have half-integer spin.
The fermions again are split into two groups: the leptons and the quarks.

Leptons (spin=½) Quarks (spin=½)

Flavour
Mass

Electric charge Flavour
Mass

Electric charge
MeV GeV

e electron 0.511 -1 u up 0.31 2/3
νe electron neutrino ≤ 0.010 0 d down 0.31 -1/3

µ muon 105.66 -1 c charm 1.6 2/3
νµ muon neutrino ≤ 0.16 0 s strange 0.50 -1/3

τ tau 1777 -1 t top 180 2/3
ντ tau neutrino ≤ 18 0 b bottom 4.6 -1/3

Table 1.2: Fermions [1]

As one can see in Table 1.2, the leptons are grouped into three �avours. Each �avour consists of
a charged lepton and of a neutral one called neutrino. The muon and the tau are heavy versions
of the electron, but unlike the electron they are not stable and decay into neutrinos, electrons, and
other particles. The muon has a mean lifetime of 2.2× 10−6s, and the much shorter one of the tau
is 2.9× 10−13s. The leptons are fundamental particles which do not have a substructure and exist
as free particles. As quantum numbers they carry the so called lepton number L and, according to
their �avour, lepton �avour numbers (Le, Lµ, Lτ ). The leptons have the assigned value +1 whereas
the antileptons have −1 (see Table 1.3). These numbers are conserved.
The quarks as well are grouped into three �avours. Unlike the leptons, they carry fractional electric
charge. In each group are two particles which di�er in one unit of electric charge. The quan-
tum numbers for the up and down quarks are the isospin itself and the third component of the
isospin (isospin symmetry). All other quarks have a quantum number according to their name, eg.
strangeness S for the s quark (see Table 1.4).
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Particle L Le Lµ Lτ

e− +1 +1 0 0
νe +1 +1 0 0
e+ −1 −1 0 0
νe −1 −1 0 0
µ− +1 0 +1 0
νµ +1 0 +1 0
µ+ −1 0 −1 0
νµ −1 0 −1 0
τ− +1 0 0 +1
ντ +1 0 0 +1
τ+ −1 0 0 −1
ντ −1 0 0 −1

Table 1.3: Lepton number conservation [1]

Flavour I I3 S C B? T Q/e

u 1/2 1/2 0 0 0 0 +2/3
d 1/2 −1/2 0 0 0 0 −1/3
s 0 0 -1 0 0 0 −1/3
c 0 0 0 +1 0 0 +2/3
b 0 0 0 0 -1 0 −1/3
t 0 0 0 0 0 +1 +2/3

Table 1.4: Quark quantum numbers [1]

Then again each �avour of the quarks occurs in three colours (red, blue, green). Colour is just
another quantum number which allows us to distinguish between the single quarks. The strong
forces between the quarks cause an e�ect called quark con�nement. Two or three quarks stick
together to form particles with net colour zero. Within this particle the quarks behave as they were
free. As soon as the distance between them grows, the strong forces increase as well. So quarks
cannot be found individually but only in combinations. The particles formed out of three quarks
are called baryons (qqq), the one made out of two quarks are the mesons (qq). The baryons have
half-integer spin, whereas the mesons have integer spin. All particles built with quarks belong to
the group of hadrons. For some examples see Table 1.5.

Baryons Mesons

Particle Quarks
Mass

Spin Particle Quarks
Mass

Spin
MeV MeV

p+ proton uud 938 1/2 π+ pion ud 140 0
n0 neutron udd 940 1/2 K+ kaon us 494 0
Λ0 lambda uds 1116 1/2 ρ− rho du 776 1
Ω− omega sss 1672 3/2 η0

c eta-c cc 2980 0

Table 1.5: Some Hadrons [23]

The baryon number B is the conserved quantum number of the baryons. The baryon number is the
same for all quarks: B = 1

3 . We then get the following relation between electric charge Q, third
component of isospin I3, and baryon number B:

Q

e
= I3 +

1
2
(B + C + S + B? + T ) (1.1)

As mentioned before, the Standard Model not only describes the particles but also their interactions.
Two fermions interact with each other exchanging a particle. This particle belongs to the group
of bosons which have integral spin and obey the Bose-Einstein statistics. There are four types of
interactions:
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� Strong

The boson belonging to the strong interaction is the massless gluon. It acts on the colour
charge and causes the binding of the quarks inside a particle as well as the neutrons and
protons within nuclei.

� Electromagnetic

The particles participating in this interaction are the electrically charged ones. The exchanged
boson is the massless photon, acting on the electric charge. Among others, this interaction is
responsible for the binding of the electron to the nucleus, forming atoms.

� Weak

The weak interaction has three bosons, the W+, W−, and the Z0. The �rst two are responsible
for charged currents while the Z0 is for the neutral currents. So the particles experiencing
weak interaction are the quarks and the leptons. In comparison to the interactions mentioned
above, these bosons not only own mass but are quite heavy particles: MW = 80.2GeV and
MZ = 91.2GeV . They act on the �avour or weak charge.

� Gravitational

The gravitation acts on the mass and therefore on all particles. The corresponding boson is
supposed to be the graviton with spin 2, although it is so far not detected. This interaction
is the weakest of all and is not included in the SM.

For a good overview see Table 1.6 [1].

Interaction Mediator
relative mass

source
particles typical

range GeV experiencing lifetime

strong gluon g 1 0 colour charge quarks, gluons 10−23s

electromagnetic photon γ 10−2 0 electric charge electrically charged 10−20s

weak
W±

10−7 80.2 �avour quarks,
10−10s

Z0 91.2 (weak charge) leptons

gravity graviton G 10−39 0 mass all -

Table 1.6: Interactions (Gravity added just for completeness.) [1]

The SM includes the weak, electromagnetic, and strong force, as well as local symmetries. Thus it
is based on the gauge group SU(3)C × SU(2)L × U(1)Y

9. As we are interested in the neutrinos,
we now concentrate on the weak force. So we do not need the SU(3)C group describing the strong
force [24].
Before sorting our particles into these groups, we need to discuss another property of the fermions,
that is, the helicity and handedness, also known as chirality. Helicity is the projection of the intrinsic
spin onto the momentum vector:

H =
s · p
|s| · |p|

= ±1 (1.2)

The two possible values (±1) represent the two helicity states, which are right helicity (spin parallel
to the direction of motion, H = +1) and left helicity (spin antiparallel to the direction of motion,
H = −1). According to this the helicity state depends on the reference frame of which one is looking
at the particle. A massive particle now cannot have a de�nite helicity state as it is possible to �nd a

9Y is the hypercharge.
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system where one overtakes the particle which therefore changes helicity. So only massless particles
own a de�nite helicity state, as they go with the speed of light.
Handedness on the other hand is an intrinsic quantum number. It describes the states of the spin
in a relativistical invariant way. As for helicity there are two handedness states - left L and right R.
These states are independent of the reference frame, but they can change while travelling through
space without changing helicity.
Now for a particle, e.g. the electron, exist two helicity and two handedness states. The same is true
for the antiparticle. Each handedness state can be expressed through a linear combination of helicity
states, as the lines in Figure 1.1 show. We also see that for massless particles the helicity is the
same as handedness. To describe the properties of the weak force one better uses the handedness,
as it is relativistically invariant.

Figure 1.1: The black arrow represents the momentum, the red one the spin.
The lines show that handedness is a linear combination of helicity states. For
massless particles handedness is the same as helicity. [25]

The weak force is left-handed, meaning that it acts on left-handed particles and right-handed an-
tiparticles. The particle states are arranged in weak isospin doublets and singlets. The left-handed
electron and electron-neutrino form a weak isospin doublet. Whereas the right-handed electron in-
deed exists, it is not interacting weakly. Therefore it is a weak isospin singlet. For the antiparticles
the same is true, although with opposite handedness. For an overview see Table 1.7 [25].

Handedness doublets handedness singlets

L
(

eL

νL

)
R eR

L L νR

R
(

eR

νR

)
R eL

R L νL

Table 1.7: Weak isospin doublets. The RH neutrino and the LH antineu-
trino are not included in the SM. [25]



10 CHAPTER 1. NEUTRINO PHYSICS

To detect neutrinos one needs nucleons and nuclei with which they can react weakly. There are two
reactions they can undergo, that is the charged current, CC, and the neutral current, NC.
In the charged current weak interaction, neutrinos react with nucleons which are at rest. So the
two possible reactions of a neutrino of �avour l look as follows:

νl + n → p + l− (1.3)

νl + p → n + l+ (1.4)

These are quasi-elastic reactions, where l stands for e, µ, and τ . For nuclei it looks the same:

νl + (Z,A) → (Z + 1, A) + l− (1.5)

νl + (Z,A) → (Z − 1, A) + l+ (1.6)

These reactions depend on the mass of the �nal lepton, ml, as well as on the di�erence of the
masses of the nuclear target (e.g. mn − mp = 1.294 MeV ). These masses make up a threshold
for the reactions. For example, if we insert the electron antineutrino and the muon antineutrino,
respecitvely, in Eq.(1.4), we get

ETe = (0.511 + 1.294) MeV = 1.805 MeV (1.7)

ETµ = (105.658 + 1.294) MeV = 106.952 MeV (1.8)

Reactions with nuclei are more complicated as the target nucleons are bound. Also the momentum
distribution of nucleons and the possibility that the �nal nucleus can be in an excited state make
these reactions more di�cult.
For high energies occur some side e�ects such as the excitation of the nucleons or nuclei and the
production of additional particles, e.g. pions. If the energy is even higher, the reactions are no
longer elastic, on the contrary they turn out to be deep inelastic collisions

ν + N → l + X (1.9)

ν + N → l + X (1.10)

where X is highly excited hadronic matter and N is a nucleon [26].
Neutrino scattering is another example of weak interaction. The scattering of the neutrinos by
charged leptons is considered to be pointlike. The CC scattering takes place between the neutrino
and its lepton, exchanging a W±. There is also a NC scattering which takes place between a neutrino
and any lepton, exchanging a Z0 (see Fig.1.2) [1].

Figure 1.2: NC and CC neutrino scattering [24]
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Also of great importance are symmetries. There is the parity operation P which inverses spatial
coordinates (x, y, z → −x,−y,−z). So parity transforms a left-handed system into a right-handed
and vice versa. For example let the parity act on the vectors of position and momentum:

P (r) = −r (1.11)

P (p) = −p (1.12)

Parity holds for the strong and electromagnetic interactions, but is violated by the weak force10:

P |νR〉 → �
��|νL〉 (1.13)

The left-handed antineutrino does not exist in nature.
Another symmetry is charge conjugation C. As the name already says, it reverses the sign of the
charge and the magnetic moment, and changes the sign of all internal quantum numbers (lepton
and baryon numbers, strangeness, charm, ...) as well.

C(Q) = −Q (1.14)

As the electric and magnetic �elds are linear in the electric charge, they transform as follows:

C(E) = −E (1.15)

C(B) = −B (1.16)

So the charge conjugation transforms particles into antiparticles:

C|Ψ(Q, r, t)〉 → |Ψ(−Q, r, t)〉 (1.17)

e.g. C|π+〉 → |π−〉 (1.18)

As for the parity, the charge conjugation is invariant for strong and electromagnetic interactions
and is violated by the weak force, again shown by the non-existing left-handed antineutrino:

C|νL〉 → ���|νL〉 (1.19)

The combination of parity and charge conjugation though is invariant not only for the strong and
the electromagnetic interactions but as well for the weak force:

CP |νR〉 → |νL〉 (1.20)

Both the right-handed antineutrino and the left-handed neutrino exist [28].
There is a third important symmetry operation to take into account, namely the time reversal T .
We take a particle collision and reverse all the momenta in direction and all angular momenta. As
these quantities are derivatives with respect to time, we would get the same if we just change the
sign of the time. This means that two processes with opposite signs in all momenta and angular
momenta are invariant under time reversal if they have the same rates [29].

10Parity was thought to be invariant under all interactions till Madame Wu showed the opposite in an experiment.
Using an external magnetic �eld she forced the spins of 60Co nuclei at low temperature (∼ 10mK) to look in one
direction. The β-decay of 60Co into 60Ni sends out an electron and an electron-antineutrino:

60Co →60 Ni + e− + νe

Observing the emitted electrons, one found that they preferred the direction opposite to the orientation of the
magnetic �eld. This is only possible if right-handed and left-handed systems are not equivalent. Therefore the weak
force violates parity [27].
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The combination of all three operations mentioned above leads to the so called CPT theorem,
which states that all interactions are invariant under these three operations, independend of the
order in which they take place. This theorem results in the properties of particles and antiparticles.
Therefore they have the same mass, the same lifetime, and the same electric charges and magnetic
moments, although the last two with opposit signs.
It is to mention that CP holds for most weak processes, but not for all. There is CP violation for
the neutral kaon K0. It normally decays into three pions, where CP is conserved. But there is a
small probability that the K0 decays only into two pions, and this process violates CP 11 [1].
Knowing that the CPT theorem holds for all processes, there is only one consequence left: The
time reversal invariance is broken for the same processes which violate the CP symmetry [29].

1.3 Beyond the Standard Model

The SM is not complete. We now look at one topic that lies beyond it. As discussed in Chapter 1.1,
there is great evidence that neutrinos are not massless. For massive neutrinos exist two concepts,
from Dirac and Majorana, concerning particles and antiparticles. The �rst one states that a Dirac
particle is distinct from its antiparticle. If a particle is identical to its antiparticle, then it is a
Majorana particle. The di�erence between a Dirac and Majorana particle depends on the particle's
transformation properties, i.e. C, P , T , and its combinations, as well as on the helicity states.
For a better understanding let us take a massive left-handed neutrino, νL. We assume CPT to be
invariant. Therefore the mirror image of νL exists, which is the right-handed antineutrino νR. If
we take into account that our neutrino is massive, hencefort is travelling slower than the speed of
light, a frame can be found in which one can overtake the νL which then becomes right-handed, νR.
Assuming that νR is not the same as νR, it then has its own CPT mirror image, νL. These four
states have all the same mass and are called a Dirac neutrino νD (see Fig.1.3a).
In the other case, the νR from the Lorentz transformation is the same particle as the CPT mirror
image of νL (νR ≡ νR). These two states with identical mass form the Majorana neutrino (see
Fig.1.3b).

Figure 1.3: a) The four states of a Dirac neutrino, b) the two states of a
Majorana neutrino [26]

11for a more detailed description see [1]
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It is obvious that the distinction between Majorana and Dirac neutrinos only makes sense for mas-
sive neutrinos. Would they actually be massless, one could not overtake a neutrino and therefore
helicity could not be changed. So the only two relevant states would be νL and νR, as neutrinos
only undergo weak left-handed interactions. The other two states, νR and νL, do not even need to
exist. As there are only two relevant states, it does not make sense to distinguish between Dirac
and Majorana.
The disappearance of the distinction is actually a continuous process. With decreasing mass/energy
it gets more and more di�cult to decide to which sort of neutrino the two observed states belong [26].

The neutrinos νe, νµ, and ντ are the so called �avour eigenstates, or the weak states, respectively.
These states are superpositions of the mass eigenstates ν1, ν2, and ν3. The weak states propagate
through space with di�erent frequencies because of their di�erent masses. After travelling for some
distance, they develop di�erent phases. This corresponds to a change in the neutrino �avour, i.e.
neutrino oscillation [1].

|να〉 =
∑

i

Uαi|νi〉 (1.21)

where α = e, µ, τ , i = 1, 2, 3, and U is the unitary mixing matrix. U is also known as the PMNS
(Pontecorvo-Maki-Nakagawa-Sakata) matrix.
If there are only two mass and weak states, the mixing matrix looks as follows (with the mixing
angle θ):

U =
(

cosθ sinθ
−sinθ cosθ

)
(1.22)

whereas for three neutrinos it is:

U =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 (1.23)

with cij = cosθij and sij = sinθij , the CP violating phase δ, and the three mixing angles θij [30].
The PMNS matrix is a rotation. According to present data the neutrino mixing matrix is a rotation
with angle θ = 56°. See Fig.1.4 [31].

Figure 1.4: Rotation between mass and weak states. They enclose an angle
of θ = 56°. [31].
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1.3.1 Sources for neutrinos

As seen before, atmospheric and solar neutrinos undergo oscillation. Solar neutrinos are produced
during nuclear fusion in stars (see Fig.1.5). The �ux of solar neutrinos arriving at the Earth is
around 7× 1010 ν s−1cm−2 [32].

Figure 1.5: The proton-proton cycle within a star, producing neutrinos.
[33]

The source for atmospheric neutrinos are cosmic rays colliding with nuclei, generating hadronic
showers. The νe and νµ are produced mainly by

π+ → µ+ + νµ (1.24)

π− → µ− + νµ (1.25)

µ+ → e+ + νµ + νe (1.26)

µ− → e− + νµ + νe (1.27)

The energy and zenith angle distributions (see Fig.1.6) give direct information for neutrino oscilla-
tions, which therefore would solve the atmospheric neutrino problem12 [34].
Other natural sources for neutrinos are supernovae and the background radiation of the Earth, not
discussed further here.
There are neutrinos produced arti�cially, mainly through nuclear reactors, though nuclear bombs
as well generate large amounts of neutrinos. Particle accelerators can be used to produce neutrino
beams. For more information see Chapter 2.2, discussing the CNGS beam.

1.3.2 Two �avour neutrino oscillation in vacuum

First we assume that there are only two neutrinos oscillating into each other. Now let us have a
look at the neutrino να of Eq.(1.21) and how it evolves in time. For this we apply Schrödinger's
equation to νi and get

|νi(τi)〉 = e−imiτi |νi(0)〉 (1.28)

12see Chaper 1.1
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Figure 1.6: Distribution of the zenith angle for sub-GeV and multi-GeV µ-
like and e-like events. The hatched region shows the Monte Carlo expectation
if there is no oscillation, where the line shows the expectation for νµ ↔ ντ

oscillation [34].

where mi is the mass of νi, and τi is the time (in νi's frame). The phase factor in Eq.(1.28) is
Lorentz invariant and can be written as

e−imiτi = e−i(Eit−piL) (1.29)

where t is the time, L the position, Ei and pi the energy and momentum of νi in the laboratory
frame. Our neutrino is extremely relativistic, i.e. we use t ≈ L in Eq.(1.29) and get

e−i(Ei−pi)L (1.30)

We assume that our να has a de�nite momentum p, from which follows that all mass eigenstates
have the same momentum. Together with the assumption that all the neutrino masses mi are small
compared to p (mi � p), this leads to

Ei =
√

p2 + m2
i = p

√
1 +

m2
i

p2
≈ p

(
1 +

1
2

m2
i

p2
+ . . .

)
≈ p +

m2
i

2p
(1.31)

and therefore the phase factor becomes

e
−i

m2
i

2p
L

(1.32)

The combination of Eq.(1.21) and Eq.(1.32) results in the formula describing the state vector of a
neutrino να after the propagation length L:

|να(L)〉 ≈
∑

i

U †
αie

−i
m2

i
2

L
E |νi〉 (1.33)
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with E ≈ p [30]. Out of this we get the probability of a neutrino to change from one �avour into
another13:

P (να → νβ) = sin22θsin2

(
1.274m2

ij

[
eV 2

] L [km]
E [GeV ]

)
(1.34)

with α 6= β and 4m2
ij ≡ |m2

i −m2
j | is the mass squared di�erence. Notice the dependency on L/E.

The Super-Kamiokande analysis of atmospheric data limits the value of 4m2
23 to 2.0× 10−3÷ 2.7×

10−3eV 2 and sin22θ23 to be greater than 0.93. The most probable solution is4m2
23 = 2.4×10−3eV 2

and sin22θ23 = 1.0 [35]. The latter is the amplitude in Eq.(1.34). An amplitude of 1.0 means full
mixing.
According to Eq.(1.34) the distance a neutrino of �avour α has to traverse in order to be in the
same state as in the beginning (α) is the oscillation length Losc

14 [36]:

Losc[km] = 2.48
E [GeV ]
4m2

ij [eV 2]
(1.35)

The oscillation length therefore increases as the mass of the two neutrinos get closer.
So Eq.(1.34) shows that the neutrino �avour oscillates with the distance travelled by the neutrino
or with time, respectively. Fig.1.7 shows the time evolution of a muon neutrino produced at the
time t = 0 as a mixture of the mass eigenstates ν1 and ν2.

νµ = −sinθν1 + cosθν2 (1.36)

The frequency of the oscillation of each mass state is determined by its energy. As the two states
have di�erent masses, they therefore got also di�erent energies, resulting in di�erent phases.
We get a pure muon neutrino each time the two mass states have the same phases as at the time

Figure 1.7: At the time t = 0 a muon neutrino was produced. It is a linear
mixture of the mass states ν1 and ν2: νµ = −sinθν1 + cosθν2. The phases of
the two states evolve in time. If the phases are the same as at t = 0, we �nd
a pure muon neutrino, otherwise it is a mixture of the two �avour states νµ

and νe. [25]

t = 0. At all other times our neutrino is a mixture of the two �avour states νµ and νe.
As we assume that there are only two families, the probability of �nding a νµ and the probability
for a νe always sum up to 1.

P (νµ → νe) + P (νµ → νµ) = 1 (1.37)

In Fig.1.8 we have the purple part representing the probability to �nd a muon neutrino, where green
stands for the probability to �nd an electron neutrino instead [25].

13P (να → νβ) = |〈νβ(0)|να(L)〉|2. See Chapter A
14see Chapter A
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Figure 1.8: At the beginning is a νµ. Purple is the probability of �nding
a muon neutrino and green the one of �nding an electron neutrino. They
oscillate with distance and sum up to 1. Indicated are the oscillation length
(λosc) and sin22θ. [25]

1.3.3 Three �avour neutrino oscillation in vacuum

If there are more than two neutrinos oscillating into each other, the calculation of the probability
is more complex. The neutrino mixing in the case of three neutrinos looks as follows: ν1

ν2

ν3

 = U

 ei
α1
2 νe

ei
α2
2 νµ

ντ

 (1.38)

where U is de�ned in Eq.(1.23) and α1 and α2 are two CP violating phases, called Majorana phases.
They have no in�uence on neutrino oscillation per se, whether neutrinos are Majorana particles or
not. These two Majorana phases have only physical consequences if neutrinos actually are Majorana
particles. If so, these phases have for example an in�uence on neutrinoless double beta decay15 [30].
The probability for a neutrino of �avour α to turn in one of �avour β is now

P (να → νβ) =

∣∣∣∣∣∑
i

UαiU
†
βie

−i
m2

i
2

L
E

∣∣∣∣∣
2

(1.39)

=
∑

i

|UαiU
†
βi|

2 + <
∑

i

∑
j 6=i

UαiU
†
βiU

†
αjUβje

i
4m2

ij
2

L
E

Eq.(1.39) is independent of the Majorana phases, and therefore is identical for Dirac and Majorana
particles. As expected, it violates the �avour lepton numbers, though the total lepton number is
conserved.

Various experiments on neutrino oscillation were performed providing measurements for the mass
squared di�erences and for the mixing angles. For the actual experimental limits see Table 1.8.
Favoured or excluded regions of neutrino parameter space are shown in Fig.1.9.

150νββ: This is the process (Z, A) → (Z + 2, A) + 2e−. In this process two neutrinos decay into two protons by
emitting two electrons. It violates L conservation and therefore is suppressed. However, there is still a chance to
observe it.
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Figure 1.9: Regions of mass squared di�erence and mixing angle which are
favoured or excluded by various experiments (two neutrino mixing scheme
assumed). [37]
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4m2
21 =

(
8.0+0.4

−0.3

)
× 10−5eV 2

|4m2
32| = (1.9÷ 3.0)× 10−3eV 2

sin2(2θ12) = 0.86+0.03
−0.04

sin2(2θ23) > 0.92
sin2(2θ13) < 0.19

Table 1.8: Experimental limits for the neutrino mass squared di�erences

and the mixing angles with CL = 90%. At the time being the sign of 4m2
32

is not known. [23]

The data taken by oscillation experiments is only sensitive to mass squared di�erences. By con-
vention one associates the mixing angle θ12 with solar neutrino oscillations, and m3 is separated
from m1 and m2 by a greater interval, 4m2

atm, than the one between m1 and m2, 4m2
sol. Another

assumption is that m1 < m2. This allows to arrange the mass levels in three di�erent ways [38, 36]:

� Normal hierarchy

In the normal hierarchy the mass m3 is heavier than the other two: m1 � m2 � m3. In this
case the solar neutrino oscillation takes place between the two lighter levels.

� Inverted hierarchy

Opposite to the normal hierarchy the mass m3 is supposed to be lighter than m1 and m2:
m3 � m1 ' m2. So the solar neutrino oscillation involves the two heavier levels.

� Degenerate neutrinos This is the case if all neutrinos are around the same mass: m1 '
m2 ' m3.

The cases of normal and inverted hierarchy are shown in Fig.1.10. For now we concentrate on
atmospheric neutrinos.

Figure 1.10: Neutrino mass hierarchy - left: normal hierarchy, right: in-
verted hierarchy. Indicated is also neutrino mixing. [38]
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We now calculate the probabilities for a muon neutrino to oscillate into a tau neutrino and an
electron neutrino, respectively. We can simplify Eq.(1.39) using the fact that 4m2

atm � 4m2
sol.

This and distances comparable to the atmospheric neutrino oscillation length (∼ 1000km) allow us
to take only three parameters into account (in zeroth order), i.e. the angles θ23 and θ13, as well
as 4atm = 4m2

atm
L

4Eν
. One should also consider some �rst order corrections in 4sol = 4m2

sol
L

4Eν
.

Because sin2(2θ13) is small16, some terms with 4sol are reduced:

P (νµ → ντ ) ' cos4(θ13)sin2(2θ23)sin24atm (1.40)

− 4solcos
2θ13sin

2(2θ23)(cos2θ12 − sin2θ13sin
2θ12)sin(24atm) (1.41)

− 1
2
4solcosδcosθ13sin(2θ12)sin(2θ13)sin(2θ23)cos(2θ23)sin(24atm)

+ 4solsinδcosθ13sin(2θ12)sin(2θ13)sin(2θ23)sin24atm

P (νµ → νe) ' sin2(2θ13)sin2(2θ23)sin24atm

− trianglesolsin
2θ23sin

2θ12sin
2(2θ13)sin(24atm) (1.42)

+
1
2
4solcosδcosθ13sin(2θ13)sin(2θ23)sin(2θ12)sin(24atm)

− 4solsinδcosθ13sin(2θ12)sin(2θ13)sin(2θ23)sin24atm

P (νµ → νµ) = 1− P (νµ → νe)− P (νµ → ντ )

where δ is the CP violating phase of Eq.(1.38) or Eq.(1.23), respectively. The �rst order corrections
in 4sol depend on the sign of 4atm and hence on the hierarchy [36].

To give an impression for the oscillation lengths, lets have a look at Fig.1.11. What is shown are
the oscillation patterns for an initial muon neutrino oscillating into an electron neutrino (black),
a muon neutrino (blue), and a tau neutrino (red). In a) one sees nicely the slow solar oscillation.
If one zooms in, the solar oscillation becomes negligible and one can observe the fast atmospheric
oscillation. The parameters used for these �ts are sin2θ13 = 0.08, sin2θ23 = 0.95, sin2θ12 = 0.86,
and δ = 0, along with 4m2

12 = 8× 10−5eV 2 and 4m2
23 ≈ ∆m2

13 = 2.4× 10−3eV 2 [39].

1.3.4 Neutrino oscillation in matter

Another important factor to include is matter. As we have seen in Chapter 1.3.2, neutrino oscillation
depends on the phase. If the neutrino propagates through matter, the phase will no longer solely
depend on the mass state.
All neutrino types interact with quarks and electrons by the exchange of a Z (NC), but only the
electron neutrino can interact with electrons by exchanging a W (CC). These two e�ects have the
following corresponding e�ective potentials:

VCC(νe) =
√

2GF Ne , VCC(νe) = −
√

2GF Ne (1.43)

VNC(νe) = − 1√
2
GF Nn (1.44)

where Ne is the electron number density and GF the Fermi constant17. There are no analogies for
the µ and τ leptons, as they do not exist in normal matter.

16see Table 1.8
17GF = 1.16637(1)× 10−5GeV −2 [23]
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Figure 1.11: The probability for an initial muon neutrino to oscillate into
a νe (black), a ντ (red), and to stay a νµ (blue). The axis of abscissae shows
L/E in km/GeV . a) Over a very long range one can observe the slow solar
oscillation. This gets negligibly small if one zooms in to observe the fast
atmospheric oscillation, b). [39]
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The e�ective potential causes an additional phase. Therefore we get

νe(L) = νe(0)e−i
√

2GF NeL (1.45)

for an electron neutrino travelling the distance L through matter, which has a constant density Ne.
This leads to the oscillation length in matter:

L0 =
2π√

2GF Ne

(1.46)

In practical units, the e�ective potential looks like

VCC = 7.6 Ye
ρ

1014[g/cm3]
[eV ] , Ye =

Ne

Np + Nn
(1.47)

so the oscillation length becomes

L0 '
1.7× 107[m]
ρ[g/cm3] Ye

(1.48)

We compare this result wih the oscillation length obtained in vacuum, Eq.(1.35). As one can see
immediately, the main di�erence is that the oscillation length in matter, L0, is independent of the
neutrino energy.
According to Eq.(1.48), the oscillation length in rock is L0 ≈ 104km and the one in the centre of
the Sun is L0 ≈ 200km.

We again assume only two mass eigenstates ν1 and ν2 and two �avour eigenstates νe and να,
respectively, together with the oscillation angle θ. The Schrödinger equation then looks like

i
d

dt

(
ν1

ν2

)
=

(
m2

1
2E + VCCc2 VCCsc

VCCsc
m2

2
2E + VCCs2

)(
ν1

ν2

)
(1.49)

where c = cosθ and s = sinθ. We use the following transformation to diagonalise the matrix

ν1m = νecosθm − ναsinθm (1.50)

ν2m = νesinθm + ναcosθm (1.51)

θm is the new mixing angle, depending on the vacuum mixing angle θ and on the oscillation lengths
Losc (Eq.(1.35)) and L0 (Eq.(1.48)), respectively:

tan2θm = tan2θ

(
1− Losc

L0cos2θ

)−1

(1.52)

This leads to the e�ective oscillation length in matter

Lm = Losc
sin2θm

sin2θ
= Losc

[
1 +

(
Losc

L0

)2

− 2Losc

L0
cos2θ

]−1/2

(1.53)

and to the probability to detect a νe at a distance L from the νe source

P (Eν , L, θ,4m2) = 1− sin22θmsin2 πL

Lm
(1.54)

It has the usual form, though θ and Losc are replaced by θm and Lm [36].



Chapter 2

The OPERA experiment

OPERA stands for Oscillation Project with Emulsion tRacking Apparatus. It is a long baseline
neutrino oscillation project and its goal is to prove that νµ → ντ is the dominant reaction explaining
the oscillation of atmospheric neutrinos. It is an appearance experiment, meaning that it searches
for ντ appearance in the high energy, almost pure νµ CNGS beam1. To detect ντ interactions one
needs a huge target mass with a high resolution. The OPERA detector consists of a 1.8kton target
made of lead plates and nuclear emulsion �lms assembled in bricks. The emulsion �lms provide
a high resolution but no time indication. For this we need electronic detectors which we use to
reconstruct an event. Their resolution is good enough to locate the brick holding the primary
vertex with high probability. A pair of extra emulsion �lms is attached outside of each brick. Before
scanning the whole brick, we have a look at these two emulsions to make sure that we chose the
right brick.
The OPERA detector is a hybrid apparatus as it consists of active and passive subdetectors. It is
installed in the INFN-LNGS2 underground laboratory in Gran Sasso, Italy, 732km away from the
neutrino source located at CERN (see Fig.2.1). So OPERA is optimised to detect muons and taus,
but it is also able to study the subdominant νµ → νe oscillation channel [40].
As already mentioned, the distance between CERN and Gran Sasso is 732km, with an azimuth of
122.5° (w.r.t. geographic north) and a slope of −5.6% (w.r.t. the horizontal plane) [41].

Figure 2.1: Neutrino beam trajectory [42]

1CERN Neutrino Beam to Gran Sasso (see Chapter 2.2)
2Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Gran Sasso

23
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The L/E ratio of OPERA is

L[km]
E[GeV ]

=
732km

18.5GeV
≈ 40km/GeV (2.1)

If one compares this value with the diagram of Fig.1.11b, one sees that the solar oscillation is neg-
ligibly small and that the atmospheric oscillation is still far from its maximum.

2.1 Expected physics performance

OPERA searches for ντ appearance by looking for τ− events generated through CC interactions
in the target lead. The mean life time of a τ is 290.6 × 10−15s [23]. It is extremely short-lived
and decays almost immediately after its production. The Lorentz boost, however, still allows its
detection provided that the detector has very high space resolution (. 1mm track length). The
observable tau decay modes and their branching ratios are listed in Table 2.1. See also Fig.2.2

decay channel BR

τ− → e−νeντ 18%
τ− → µ−νµντ 18%
τ− → h−ντ (nπ0) 50%
τ− → 3πντ (nπ0) 14%

Table 2.1: τ decay channels observed by OPERA and their branching ratios.
[43]

2.1.1 Signal detection e�ciency

As already mentioned, OPERA investigates the e, µ, and hadron as the tau decay channels. They
are sorted into two categories, the long and short decays. Short decays only apply for the electron
and muon channels. In these cases the tau decays in the same lead plate where the neutrino inter-
action occurred. The impact parameter of the tau daughter track with respect to the interaction
vertex (IP > 5 ÷ 20µm) helps selecting tau candidates. On the other hand, the long tau decays
apply to all channels. Here the tau is not decaying in the same plate where it was produced and can
be reconstructed in one emulsion �lm. The selection of the tau candidates is due to the existence
of a kink angle between the tau and the daughter tracks (θkink > 20mrad).
One applies a kinematical analysis to the tau candidates found out of the above procedures in order
to improve the signal to the background. For short decays the background mainly comes from charm
production. Therefore we need a cut on the invariant mass of the hadronic system. It reduces the
background immensely.
For long decays one has to consider the leptonic and hadronic decays separately. In the leptonic
case one applies a cut on the daughter momentum in order to avoid particle misidenti�cation and
to suppress the beam related background. To reduce the background at a reasonable level, one also
has to impose a cut on the measured transverse momentum at the decay vertex.
The kinematical analysis is more complicated for the long hadronic decay. The main background
comes from the reinteraction of primary hadrons without any visible recoil at the interaction vertex.
To keep this background low, one applies cuts at the decay and primary vertex. For the kinematical
analysis at the primary vertex one uses the missing transverse momentum at the primary vertex
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Figure 2.2: Top: Quasi elastic events. Only long decays visible. Bottom:
Deep inelastic events. Both short and long decays visible. Grey symbolises
the lead plate, yellow the emulsion �lm.

and the angle in the transverse plane between the parent track and the direction of the shower. In
NC interactions the missing transverse momentum is supposed to be large due to the unobserved
outgoing neutrino. Then again it is expected to be small in CC interactions.
The applied cuts increase the tau detection e�ciency at a constant background [40].

2.1.2 Expected background

There are the following main background sources for the observation of a τ coming from the oscil-
lation models:

� Prompt ντ production in the primary proton target and in the hadron stopper (see Fig.2.4).

� Background from π0 and prompt electrons.

� One-prong decay of charmed particles.

� Large angle muon scattering.

� Hadronic reinteractions.

Where the �rst two backgrounds are very small, the three others likewise contribute to the overall
expected background. Fig.2.3 shows a schematic view of the di�erent sources. For now we solely
concentrate on the last two.

Large angle muon scattering

In a νµ CC event, a muon is produced which then undergoes a scattering in the lead plate directly
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following the vertex plate. This can be mistaken as a muonic tau decay. To determine this back-
ground experimentally, one measures large angle scattering of 9GeV muons in lead plates. For a
transverse momentum higher than 250MeV and 2mm lead, the measured rate is 0.6+0.7

−0.6 × 10−5.
Compared with the analytical calculation which predicted a rate of 0.2× 10−5, the background was
assumed to be of rate 1× 10−5.

Hadronic reinteractions

Hadrons produced in νµ NC and νµ CC events can reinteract without any visible activity at the
interaction vertex. Therefore this constitutes an important background source for both the muonic
and hadronic channels. If hadronic reinteractions occur in a νµ NC event or in a νµ CC event
with the muon not identi�ed as such, then they are background to the hadronic channel. The
expected background rate in the hadronic channel due to hadronic reinteractions is of about 4×10−6.
Hadronic reinteractions are background of the muonic channel if either in a νµ NC event a hadron
is misidenti�ed as a muon or if a muon (identi�ed in the electronic detector) is mismatched to a
hadron track in the emulsions. For the muonic channel, there is no kinematical analysis at the
primary vertex and pT is set to be larger than 250MeV at the decay vertex. Hence the expected
background rate from hadronic reinteractions for the muonic channel is of about 7× 10−6 [40].

Figure 2.3: νµ interactions mimicing ντ events. Grey symbolises the lead
plate, yellow the emulsion �lm.

2.1.3 Sensitivity to νµ → ντ oscillations

Now we have a look at the expected τ events and their background. Table 2.2 shows the summarised
performance of OPERA after a running time of 5 years with the nominal CNGS beam intensity
(status year 2008). For two di�erent values of 4m2 at full mixing, which is preferred from atmo-
spheric data (see Chapter 1.3.2), the number of expected signal events from νµ → ντ is given as a
function of the particular decay channels. The main background sources are the decay of charmed
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particles, large angle muon scattering, and hadronic reinteractions.
On the basis of the expected background, the probability to detect a given number of events within
a 4σ signi�cance leads to the sensitivity of an oscillation experiment.

channel signal for 4m2(eV 2) background

2.5× 10−3 3.0× 10−3

τ → e 3.5 5.0 0.17
τ → µ 2.9 4.2 0.17
τ → h 3.1 4.4 0.24
τ → 3h 0.9 1.3 0.17
Total 10.4 15.0 0.76

Table 2.2: Summary of expected numbers of tau events in 5 years with
nominal CNGS beam intensity

2.2 The CNGS neutrino beam

The OPERA experiment is based on a νµ beam which is as pure as possible. The CNGS neutrino
beam was designed and optimised in order to deliver an intense and almost pure νµ beam for the
study of νµ → ντ oscillations. 400GeV protons get extracted from the CERN SPS in short pulses
of 10.5µs with design intensity of 2.4× 1013pot (proton on target) per pulse. The protons then hit
a graphite target. The target is made out of rods with a diameter of 4mm and has a length of 2m.
The protons hitting the target produce secondary pions and kaons of positive charge, which are
focussed into a parallel beam via a system of two magnetic coaxial lenses, called horn and re�ector.
In order to reduce the interaction probability for secondary hadrons, helium bags are placed in the
free spaces of the target chamber. A �rst one between the horn and the re�ector, a second one
between the re�ector and the decay tunnel. This decay tunnel is 1000m long and allows the pions
and kaons to decay into muon-neutrinos and muons (π : > 99.9%; K : > 63%). The long decay
tunnel is justi�ed by the decay length of the pion, typically 2.2km at 40GeV . Due to the angular
distribution of the parent mesons, the diameter of the tunnel must increase with a longer decay
tunnel. For a length of 1000m a diameter of 2.45m was chosen. At the exit of the decay tunnel was
placed a massive iron hadron stopper which absorbs the remaining hadrons (protons, pions, kaons,
...). Downstream of the hadron stopper are two sets of muon spectrometers who monitor the muons
and measure their intensity, the beam pro�le, and its centre. The muons then get absorbed in the
rock while the neutrinos continue travelling towards Gran Sasso. For the layout see Fig.2.4.
The CNGS beam intensity is assumed to be 4.5× 1019pot/yr. A run over �ve years would induce
about 31000 CC and NC events. For sin22θ23 = 1 and 4m2

23 = 2×10−3eV 2, 95 ντ CC interactions
out of the 31000 would be expected, respectively 214 ντ CC interactions for a 4m2

23 = 3×10−3eV 2.
The experiment has already run in 2006-2007 with reduced beam intensity and target mass. The
integrated intensity of the autumn 2007 run is 8.24× 1017pot [44, 45].
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Figure 2.4: CNGS beam layout. 400GeV protons hit a graphite target
producing secondary pions and kaons. The horn and the re�ector focus them
into a parallel beam. Then they enter the decay tunnel which allows them
to decay into µ and νµ. All remaining hadrons get absorbed in the hadron
stopper. The two muon detectors monitor the muons. Afterwards the muons
and neutrinos enter the rock, where the muons get absorbed on the way to
Gran Sasso. [42]

2.3 The OPERA detector

The OPERA detector consists of two identical units, called supermodules. Each one has a target
section and a magnetic spectrometer. Additionally a veto system3 is put in front of the whole
detector. The veto has the purpose of tagging interactions occuring in the material upstream of the
detector target. Fig.2.5 shows an artistic view of the detector.

(a) (b)

Figure 2.5: a) Artistic view of the OPERA detector, b) photo [44]

3see Chapter 2.3.4
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2.3.1 Emulsion target

A neutrino experiment needs a huge target mass in order to be able to detect neutrinos. In OPERA
we achieve this with an emulsion target containing a large amount of lead. The experiment is based
on the Emulsion Cloud Chambers (ECC) technique. This detector is of a modular structure and
it is built by alternating plates of a passive material and of nuclear emulsion �lms. A set of 57
thin emulsion �lms (125.10 × 99.80 × 0.29mm3) and 56 lead plates (125.50 × 100.00 × 1.00mm3)
form a brick (see Fig.2.6). Each emulsion �lm consists of a 200µm thick plastic base which has
emulsion layers (50µm thick) on both sides. The emulsion �lm in front of the �rst lead plate helps
in connecting tracks from the upstream wall. This pile is vacuum wrapped and is called ECC. Its
dimension is about 128×103×81mm3 for a total weight of about 8.5kg. The thickness corresponds
to 10 X0 which allows to reconstruct electron showers and to measure the momentum by multiple
scattering. Additionaly to each brick there are two emulsion �lms which are attached in a seperate
sleeve, called the changeable sheet doublet (CSD). It can be easily detached and analysed, and it is
used to con�rm tracks in the brick before opening it.

Figure 2.6: ECC brick consisting of 57 emulsion �lms and 56 lead plates,
plus two extra emulsion �lms forming the changeable sheet doublet. [45]

The total emulsion target consists of 154750 bricks, which are assembled in 62 vertical walls, 31 per
supermodule (see Fig.2.7). The walls are placed with a pitch of 124mm along beam direction. The
thickness of the wall structure is 85.6mm, so the distance between the walls is 38.4mm. This space
then is �lled with the electronic target tracker biplanes, each one coupled to an adjacent target
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wall4. The target walls are approximately square and each one contains 52 bricks horizontally and
64 bricks vertically. Though not all of the walls will be �lled. The target �lling strategy at the
moment is to use 29 walls instead of 31 and �ll only 51 rows instead of 64. Hence this amounts to a
total of 2652 bricks and a total weight of about 23ton. The structure is made out of stainless steel to
keep it light (about 0.4 the target) in order to limit as much as possible neutrino interactions in the
target area outside the bricks themselves and to enable a small spatial separation between the bricks
in all directions. The nominal size of the target area (inclusive clearances) is 6664.6× 6739.2mm2.
The bricks are positioned with the �lm plane perpendicular to the beam and with the long side of
the �lm along the horizontal direction. The mechanical accuracy in brick positioning is of around
1mm [40, 45].

Figure 2.7: Target brick wall with target tracker planes

After a neutrino event takes place, electronic detectors show which brick holds the event. Then the
selected brick gets extracted from the detector and will be exposed to cosmic rays for alignment
reasons. The brick will be disassembled and the emulsion �lms developed and sent to the readout
facilities. The event information gets extracted via scanning stations (automatic microscopes, see
Fig.2.8).

Figure 2.8: Picture of one of the automatic microscopes needed to scan the
events in the emulsion �lms.

4see Chapter 2.3.2
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2.3.2 The Target Tracker

The Target Tracker (TT) is placed between the target walls housing the bricks and covers a surface
of about 3000m2. Its main role is to locate the brick in which a neutrino interaction occurred: A
particle crossing a TT plane induces an electric signal. These signals are used to reconstruct the
event (see Chapter 3.1). Knowing this we can locate the brick which holds the primary vertex of
the neutrino interaction.
The brick �nding e�ciency is required to be high, therefore the TT's spatial resolution needs to be
high as well. It is also needed that the TT shows long term stability and reliability, as it is extremely
di�cult to replace faulty elements and that in the case of problems the brick �nding e�ciency of
not only the bricks in front but also on several walls upstream would be a�ected.
The TT is made up of plastic scintillator strips wich are 6.86m in length, 26.3mm in width, and
10.6mm thick. They are read using Wave Length Shifting (WLS) �bres and photodetectors (PMT),
placed at both ends of the �bres. The detection principle for a crossing particle is shown in Fig.2.9.
The track �nding resolution is determined by the width of the scintillator strips and is therefore
26.3mm. This detector is very reliable because the elements used are robust, and the more delicate
elements, such as the electronics and the PMTs, are placed in accessible places.
A TT wall consists of two planes (6.7× 6.7m2) with four modules each, one with vertical and one

Figure 2.9: Particle detection principle. The crossing particle produces a
'blue' photon which the WLS �bre changes to a 'green' one on its way to the
PMT.

with horizontal strips, providing x-y information (see Fig.2.10a). A module has 64 strips which are
read out by WLS �bres coupled to two 64-pixel photodetectors (see Fig.2.10b). The quantities for
some TT detector components are given in Table 2.3.

Number of detector components per plane per wall for the full detector

Scintillator modules 4 8 496

Scintillator planes 1 2 124

Scintillator strips 256 512 31744

PMTs 8 16 992

Table 2.3: Summary of the main numbers for the TT.

For several scintillator strip samples Fig.2.11 shows the number of photoelectrons (pe) versus the
distance from the two PMTs. The worst case we get if the particle crosses the strip in the middle
(4.5m distance from both PMTs). Still the number of pe is well above 4 inducing a particle detection
e�ciency higher than 98% [40].
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Figure 2.10: a) TT wall consisting of two planes. Each plane is made
up of four modules, one plane with vertical scintillator strips, the other one
with horizontal strips, providing x-y-information. The signals are read out
using Wave Length Shifting (WLS) �bres and photomultipliers (PMT). b)
Schematic view of the WLS �bres and the PMT.

Figure 2.11: Number of pe vs the distance from the PMTs for some scin-
tillator strip samples.
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2.3.3 The muon spectrometers

Next to the ECC bricks and the TT, which build the target section, each supermodule includes
a muon spectrometer. The spectrometers consist of a warm dipolar magnet and active detectors
(RPC5, XPC6, and Drift Tubes). The magnet's shape is rectangular. It is made up of two vertical
walls, each lining twelve iron layers of 5cm thickness, and of a top and bottom �ux return path (see
Fig.2.12). Between the iron layers are air gaps of 2cm, allocated for RPCs. Each of these iron layers
consists of seven slabs with dimension 50 × 1250 × 8200mm3. The overall weight of the magnet is
990ton. The magnetisation of the dipole is done by two coils. Each coil is made up of 20 turns,
where the ones in the upper return yoke are connected in series to the 20 turns in the bottom yoke.
The nominal current �owing in these coils is 1600A. This corresponds to an overall magnetomotive
force of 6400A × turns. The average B �eld expected along the walls is 1.57 T . The uniformity
along the height is better than 5%. Horizontally the uniformity strongly depends on the size of
the air gaps as well as on the magnetic properties of the slab steel. The magnets are magnetically
decoupled from the rest of the detector using stainless steel supports.
In measurements, the magnetic �ux shows a systematic de�cit smaller than 3%. This is due to the
non-ideal mechanical contact and steel machining. Accounting for these corrections the average �eld
is expected in the range 1.54÷ 1.57 T . However, during data taking the magnetic �ux is measured
in situ by the �eld monitoring system with a precision of a few per cent.

Figure 2.12: One of the OPERA spectrometer magnets

The Precision Tracker (PT) comprises the dipole magnets and the drift tubes. Its aim is not only
to measure the muon momentum but as well to determine their sign. This is important in order to
reject the background in the muonic tau decay channel. For this the e�ciency should be 99% and
the spatial resolution 300µm. The detector has to cover the large area of 8× 8 m2. To achieve this
the detector wall was built out of thin walled aluminium tubes with an outer diameter of 38mm
and a length of 7.9m. Tube chambers with such long tubes have not been used so far which marked
a challenge. The PT then was designed with special emphasis on

� mechanical robustness:
for a reliable operation of the detector it was essential to have a high mechanical stability and
a minimal number of parts.

5Resistive Plate Chamber
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� chamber gas:
to reduce possible sources of leakages one avoided to connect gas pipes to the individual tubes.
Also the gas volume had to be free of glue in order to retain a high gas quality.

� wire positions:
the wire positions have been made independent of the tube positions so as to avoid a pile up
of inaccuracies. The tolerance on wire alignment should be less than 100µm.

� signal quality:
at the end of the tubes is a complete Faraday cage. All ground connections are quali�ed for
high frequency.

The PT is composed of 9216 aluminium drift tubes, each with a central sense wire of 45µm diameter.
The spectrometers are equipped with six fourfold layers of tubes each, grouped into 16 modules.
Each module consists of 48 tubes with an outer diameter of 38mm and a wall thickness of 850µm.
The tubes are grouped in two by two rows, having an equal wire distance of 42mm in each row.
In order to minimise the left/right ambiguities and to achieve an optimal geometrical acceptance,
the layers are staggered. The tubes in a module are glued into nine aluminium sheets to obtain
mechanical stability and exact positioning. A module is covered with plates at both ends which
provide gas distribution and gas seal. These cover plates are also needed to position the wires with
high precision.
The momentum resolution depends on the spatial resolution of the modules and on multiple scat-
tering. The spatial resolution of one tube is 300µm. A mean momentum of 6.482GeV entails a
momentum resolution of dp/p = 0.203. The accuracy of the alignment over the whole module length
is 100µm.

The Inner Tracker is made up of Resistive Plate Chambers (RPC). The aim of the RPC system is
to reconstruct tracks inside the magnet, identify penetrating muons, and measure their charge and
momentum. All this independent of the PT. The high mass due to the iron of the magnet allows
also beam monitoring. Ambiguities in the spatial track reconstruction are resolved by an RPC plane
which completes each of the two drift tube planes of the PT upstream of the dipole magnet. These
RPC planes are called XPCs and provide a precise timing signal to the PT as well.
Both the Inner Tracker and the XPCs are made of RPCs (see Fig.2.13). They have a high intrinsic
and geometrical e�ciency, are robust and �exible. The active area is �lled with an argon-based gas
mixture at atmospheric pressure. When a charged particle crosses the chamber, a spark is produced
which induces signals on external pickup electrodes. Induced pulses are collected on two pickup strip
planes. The strips of the Inner Trackers run in two orthogonal directions. Therefore they provide
two-dimensional information. The vertical strips got a pitch of 26mm with 2mm separation, the
horizontal ones a pitch of 35mm with a 2mm separation6. In the case of the XPCs, the strips are
inclined of 43° with respect to the �oor, the pitch is 26mm, and the separation is 2mm.
The induced charge is of the order of 100pC. The pulse has a rise time of 2ns and a duration
between 10ns and 20ns 7.
The active area of a dipole has the dimensions of 8m in height and 8.75m in width. We got two
spectrometers with 22 gaps each. Therefore the total detector area is 3080m2. One gap is �lled
with seven RPCs in height and three RPCs in width. So in total there are 21 modules per gap
(four di�erent types, all of them have the dimensions 1.134m× 2.91m). Then the total number of
RPC modules needed for both spectrometers is 924. As mentioned before there are two XPC planes

6Vertical and horizontal with respect to the �oor where the detector is built.
7for a gas mixture composed of Ar/C2H2F4/i− C4H10 = 48/48/4 and for a voltage di�erence of 7.8kV
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Figure 2.13: Resistive Plate Chamber

installed upstream of each dipole magnet. One directly attached on the magnet, the second one is
placed with a distance of about 1m from the magnet. Each of the XPC walls needs 21 RPC modules
(three di�erent types, two with dimensions 1.134m × 2.91m, one with 1.134m × 1.68), hence the
total number mounts up to 84.
There is one digital channel per strip, so the total amount is of about 25000 (see Table 2.4). The
horizontal strips have 224 channels. The numbering is from bottom to top (channel number one is
the lowest one). Vertically there are 336 channels, and the numbering is from right to left, seen in
beam direction (see Fig.2.14) [40].

Horizontal Vertical

Number of strips (single plane) 224 336
Number of strips (sub-detector) 4928 7392

Total Number of strips 9856 14784

Table 2.4: Muon spectrometer readout channels

2.3.4 The veto system

CNGS neutrinos will not just interact with the detector but also with the rock and concrete sur-
rounding the apparatus. Secondary particles produced in these interactions then will enter the
detector and may induce signals which may lead to a large amount of erroneous brick extractions
and needless scanning. To reduce these false signals, a VETO system has been installed in front of
the detector. The VETO system consists of two walls of glass Resistive Plate Chambers (GRPC).
A layer is composed of 8 horizontal rows, each one made of 4 chambers. Three of the chambers
are 2.60m long and 1.14m wide, while the fourth is 2.20m × 1.14m. So the overall sensitive area
from all 64 chambers is almost 200m2 - the VETO is the largest GRPC based detector. A picture
is shown in Fig.2.15 [46, 47].



36 CHAPTER 2. THE OPERA EXPERIMENT

Figure 2.14: Spectrometer RPC plane, seen in beam direction.

Figure 2.15: VETO system in front of the detector made of GRPCs. [47]
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2.3.5 Data acquisition system (DAQ)

The data rate coming from neutrino interactions is low. Per day there are 46.45 νµ events in the
whole detector, see Table 2.5. They are well localised in time correlated with the CNGS beam

Event type number

NC 10.96
CC-DIS 31.42
CC-QE+RES 4.07

total 46.45

Table 2.5: νµ events per day [48]

spill. The synchronisation with the CNGS beam is done o�ine by using the GPS. The detector
even remains sensitive if there is no beam, though the DAQ system runs without a trigger. The
events detected in a beamless time (mainly cosmic muons, background from radioactivity out of the
proximity, dark counts) are used for monitoring of the detector.
The low data rate allows to sort the data through Ethernet at the earliest stage of each sub-detector.
The global DAQ network (see Fig.2.16) is divided into two parts:

� The Ethernet network from the Event Building WorkStation (EBWS) to each Ethernet Con-
troller (TT module, RPC plane, PT station). It is used for the detector con�guration, moni-
toring and slow control8, and data transfer.

� The clock distribution system from the Central Clock Unit synchronised on the GPS to each
sensor.

In order to synchronise all the nodes of the distributed system a global clock is required. Bi-
directionality is a characteristic feature of the system. It allows to control the reception of the
signal and to measure the propagation time with an acknowledge signal. The clock distribution
system starts with the GPS control unit. A 20MHz clock is synchronised using the GPS signal.
The clock and encoded commands are sent via an optical �bre. Then the signal is converted into an
electrical format and distributed to the Clock Master Cards. The Clock Master Cards deserialise
the clock and the commands and distribute them to the clock unit of the controller boards.
Each time a particle produces a hit in one of the detectors, the time is automatically allocated to
the hit in form of a timestamp. The timestamp is crucial to build an event. The event building sorts
all in an acquisition cycle recorded hits in time and looks for time coincidence in a time window
of typically 100ns. An acquisition cycle is recorded in the form of a UTC (Universal Time Cycle)
on the GPS control unit. The same procedure applies on the controller board, though a time delay
appears. It depends on the actual position of the node in the detector and is due to the propagation
delay from the control unit to the master card and from the master card to the node. A fast counter
delays the cycle increment command according to the last measured value of time delay for the
di�erent nodes. So all the nodes begin their new acquisition cycle at the same absolute time with
an accuracy of 10ns. If a signal reaches the controller board, the value of the fast counter is put in
a bu�er, producing the timestamp. So all signals get their individual timestamp. Then the absolute
time of an event is reconstructed by Tevent = TUTC + Tfastcounter.
All hits of an acquisition cycle now are time ordered for each node. To reconstruct an event, the
lists of the recorded hits are gathered from all controller boards by the event building station and

8allows to view and change the status of the detector
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Figure 2.16: Global DAQ scheme.

sorted in time. In the next step the DAQ looks for time coincidences (time window around 100ns)
between the hits in a TT bi-plane and an RPC plane. For the TT it gets 62 hit lists and 44 for the
spectrometer. All the remaining data are discarded. These hit lists then are searched for time co-
incidences between events in two di�erent lists. All other sorts of cuts can be applied afterwards [40].



Chapter 3

Analysis methods

The sample of events we will use for our measurement are νµ CC interactions where a muon is
produced plus other particles. First an event is just a package of hits which belong together. A hit
is the electrical response of a particle crossing a detector. In order to give physical meaning to these
hits, we pool them in tracks, each one coming from a single particle. The track �nding problem
is nicely solved by a Kalman Filter whose details will be described in the next paragraph. The �t
evolving from this procedure is determined by �ve parameters: two spatial coordinates, two angles,
and the ratio charge over momentum. The latter then leads to the energy of the muon.
Computer simulations of such events by means of Monte Carlo technique provide us with the infor-
mation about the probability for a muon to have a certain energy given the energy of the interacting
neutrino. Knowing this we can reverse it and so get the probability that a muon with a de�ned
energy is found to be generated by a neutrino of a speci�c energy. This method is based on Bayes'
Theorem that we will show in details in the next paragraphs. In the end we want to measure the
neutrino �ux that has generated the measured νµ CC events.
Our interest in measuring the neutrino �ux is due to the fact that it is the main ingredient of any
oscillation analysis. So the better we know the neutrino �ux the better will be the estimate of the
OPERA detector performance.

3.1 Kalman �ltering

What we measure is the muon crossing the detector. The data which we are collecting is discrete.
Now we want to estimate a �t of the muon track with its parameters. For this linear �ltering prob-
lem for discrete data exists a recursive solution, the Kalman Filter. This is a set of mathematical
equations which provides an e�cient computational way to obtain the parameters of the �t of the
muon track. The strength of this �lter lies in the ability to support estimations of past, present,
and future parameter states. This is even possible when the system, which is modelled, is not very
well known.
In OPERA the tracking of muons takes place in heterogeneous structures (emulsions, RPCs, scin-
tillators, drift tubes, ...). So the tracking method has to take into account the di�erent types of
detector measurements, moreover the local multiple scattering, energy losses, and magnetic �eld
intensity. In the case of stopping muons one has to take care of the energy loss which strongly af-
fects the kinetic energy and therefore the local curvature of the track (even more near the stopping
point).
We got n measurements of the transverse spatial coordinates (xi, yi), i = 1...n, provided by some

39
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detectors along the z-axis. Each measurement then is allocated a weight (wxi , wyi) which is the in-
verse of the spatial resolution squared. These points then can be either real or virtual measurement
in case of simulated events. In a virtual measurement all the weights are set to 0. They are quite
useful as being for example dummy steps which are needed to compute the energy loss and the local
magnetic �eld intensity between two real measurements.
The �t of the muon track then is determined by 5 parameters:

x, y, a =
px

pz
, b =

py

pz
, d =

q

p
(3.1)

where x and y are the coordinates, a and b are angles, px, py, pz are the components of the muon
momentum −→p , d is the curvature, and q is the charge. This set of parameters is referred to as P.
In order to compute these parameters we start at the end of the muon track. From this last point
n we know all the parameters P from the initialisation, which we will show in details in a later
paragraph. Knowing this, we start to estimate the parameters of the second last point and so on.
So at the step i we take into account all information from the points from n to i into account to get
the set of parameters for the next backward point i− 1.
For this backward and progressive method we use all available information given by real measure-
ments and by the knowledge of the characteristics of each of the di�erent materials the muon crossed
for data, and only the information given by the latter for simulations.

Matter e�ects such as energy loss and multiple scattering are decoupled from geometrical extrapo-
lation. Multiple scattering is supposed to be an unbiased process, meaning that it does not a�ect
the previous mean values Pi. Energy loss on the other hand changes the parameter di into d∗i

d∗i =
qi√

E∗
i (E∗

i + 2mµ)
(3.2)

where E∗
i = Ei +4Ei−1,i(E∗

i ) is the kinetic energy of the muon before passing through the material
between zi and zi−1. 4Ei−1,i(E∗

i ) has to be computed iteratively because of its E∗
i dependency.

In practice GEANT1 routines are used to compute energy losses. The convergence to get 4Ei−1,i

is reached with an accuracy of 10−4GeV in 10 iterations for a sub-GeV muon crossing 1cm iron.

We now assume a homogeneous magnetic �eld. For the geometrical extrapolation of the coordinates
we use Taylor expansions:

xe
i−1 = xi + ai4zi−1 +

1
2
Ai4z2

i−1 + ...

ye
i−1 = yi + bi4zi−1 +

1
2
Bi4z2

i−1 + ... (3.3)

and for the cosine directions

ae
i−1 = ai + Ai4zi−1 + ...

be
i−1 = bi + Bi4zi−1 + ... (3.4)

1http://geant4.web.cern.ch/geant4/. GEANT is a tool which simulates the passage of particles through matter.
It already includes a complete range of functionality such as tracking, geometry, physics models, and hits. The physics
processes cover electromagnetic, hadronic, weak, and optical processes. It provides a lot of elements and materials
for the particles to cross and interact within and covers a wide energy range from 250eV up to TeV . [50]
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with 4zi−1 = zi − zi−1. Ai and Bi are calculated as follows:

Ai =
1

cosθi
di

[
biBz + aibiBx − (1 + a2

i )By

]
Bi =

1
cosθi

di

[
−aiBz − aibiBy + (1 + b2

i )Bx

]
(3.5)

where cosθi = (1 + a2
i + b2

i )
−1/2 and

−→
B is the magnetic �eld. The curvature is conserved.

de
i−1 = d∗i (3.6)

The set of extrapolated parameters (Eq.(3.3), (3.4), (3.6)) can be written as

Pe
i−1 = F (Pi) (3.7)

The error matrix of P is V = W−1. If there is no multiple scattering and no error on the energy
loss determination, the weight matrix We

i−1 can be computed via the error propagation theorem:

We
i−1 =

(
D−1

i−1,i

)T
WiD

−1
i−1,i (3.8)

with

Di−1,i ≡
(

∂Pe
i−1

∂Pi

)
5×5

(3.9)

If we take into account the multiple scattering and the energy loss �uctuations, Wi in Eq.(3.8) has
to be changed into

Wi →
[
W−1

i + Qi−1,i

]−1
(3.10)

with

Qi−1,i =


0 0 0 0 0
0 0 0 0 0
0 0 Qaa Qab 0
0 0 Qab Qbb 0
0 0 0 0 Qdd

 (3.11)

The di�erent factors stand for

Qaa = δα2
MS(1 + a2

i + b2
i )(1 + a2

i )
Qbb = δα2

MS(1 + a2
i + b2

i )(1 + b2
i )

Qab = δα2
MS(1 + a2

i + b2
i )aibi)

Qdd =
(

∂d∗i
∂E∗

i

)2

σ2(4Ei−1,i) (3.12)

δα2
MS is the variance of the scattering angles and can be taken directly from GEANT. The con-

tribution of σ2(4Ei−1,i) to Qdd is due to the variance of the path length and the variance of the
dE/dx �uctuation. The latter usually dominates by a factor of around 10 and can be obtained using
GEANT to simulate muons passing through di�erent materials.

The above procedure iteratively yielded in the next point, i − 1. Now we only have to add it,
performing the so called Kalman �ltering method:
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Wi−1Pi−1 = We
i−1P

e
i−1 + wi−1pi−1

Wi−1 = We
i−1 + wi−1 (3.13)

where wi−1 = diag(wxi−1 , wyi−1 , 0, 0, 0) and pi−1 = (xi−1, yi−1, 0, 0, 0).

Now we managed to integrate backwards di�erent kinds of information along the muon track.
What is still missing is the initialisation of this process, which is a delicate issue. The initialisation
is di�erent for stopping and outgoing muons. For outgoing muons we start the process at the end
of the track. We use a minimal set of measurements to perform a geometrical �t. We assume that
there is a constant magnetic �eld Bx in iron plates of width hi. We alternately measure in X and
Y scintillator bars of width hs. In order to determine a straight line in the X-Z plane we need
to measure two points. Three points are necessary for a parabola in the Y-Z plane. The mean

magnetic �eld, Bx ·
(

hi
hi+hs

)2
, provides us the correspondence factor between the curvature and the

parameter d. The sub-weight matrices are computed for both �ts and the combination gives the
weight matrix. So at the z position of the last measurement we now de�ned the parameters Pini

and the weight matrix Wini.
In the case of stopping muons we already bene�t of having a point where the kinetic energy vanishes.
We perform two straight line �ts, one in the X-Z plane and one in the Y-Z plane. Out of these �ts we
get the �rst four parameters and their weight matrices. Using the di�erent dE/dx estimations along
the short track de�ned by the previous �t, we get a backward estimation for the kinetic energy. A
rough global analysis of the track yields in the charge initialisation. In case of a constant magnetic
�eld we use a straight line extrapolation from the beginning till the end of the track. For the initial
value of the parameter d we get:

dini =
qini√

Eini(Eini + 2mµ)
(3.14)

with the weight

Wdini
=
[(

∂dini

∂Eini

)
σEini

]2

(3.15)

where σEini comes from dE/dx �uctuation parametrisation [49].

3.2 Monte Carlo samples

In addition to the data events with their track information we need simulated events. The simu-
lations are done using Monte Carlo methods. Here we used GEANT2, a tool which simulates the
passage of particles through matter.
For our purpose we need samples of neutrinos stopping in the magnet iron walls in the OPERA
detector, in all the other iron, in the surrounding rock, in the shield made out of concrete, and in
the various media of BOREXino3 (water and pseudocumene).
We not only need samples of muon neutrino events in di�erent materials but also of the various

2http://geant4.web.cern.ch/geant4/. See footnote 1 on page 40
3a solar neutrino detector in front of the OPERA detector
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kinds of interactions (charged current, neutral current, quasi-elastic, and resonances). The naming
convention of the MC �les is:

numuXX_Y Y Y Y_NN_reco.root

where numu stands for muon neutrinos, reco means that the events are reconstructed (the hits are
sorted into events and tracks), and the replacement characters

� XX stand for the sort of interaction taking place,

� Y Y Y Y stand for the material where the interaction takes place,

� NN stand for the number of simulated events.

See Table 3.1. The �les are of the type root. ROOT4 is an object-oriented data analysis framework
provided by CERN.

XX standing Y Y Y Y material mass [kton]
cc CC - DIS BORD BOREXino: pseudocumene 0.589704

qe CC - QE BORU BOREXino: pseudocumene 0.589704

res CC - RES BOWD BOREXino: water 1.6094

nc NC BOWU BOREXino: water 0.84855

CTFW BOREXino: water 0.9408

CTPC BOREXino: pseudocumene 0.00367

FOOT rock 175.946633

ROCK rock 208.8959

ROCS rock 3128.7907

WALL rock 33.81568

WALR rock 33.819568

BASL rock 7.273024

SHIELD concrete 18.70966

SLPL magnet iron walls 1.355

noSLPL iron (but not in SLPL) 0.84

Table 3.1: Meaning of the replacement characters XX and Y Y Y Y in the
names of MC �les. The sort of material is speci�ed, together with the mass.

These samples then have to be weighted according to the number of simulated and expected events
and to the beam luminosity. We assume that all the materials are isoscalar (Z = N) except for
iron. The cross-section for the CC deep inelastic scattering (DIS) is:

σDIS(E) = σ0 × E[GeV ] = 0.677× 10−38cm2 × E[GeV ] (3.16)

The total DIS cross-section then is the integral of the �ux φ(E) times the cross-section over the
integral of the �ux:

σDIS
tot =

∫
φ(E)σDIS(E)dE∫

φ(E)dE
=
∫

φ(E)σ0EdE∫
φ(E)dE

= σ0

∫
φ(E)EdE∫
φ(E)dE

= σ0〈E〉 (3.17)

4http://root.cern.ch/
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therefore σDIS
tot is

σDIS
tot = 0.677× 10−38cm2 × 〈E[GeV ]〉 (3.18)

For all the other interactions the cross-sections are considered to be constant for energies above
1GeV . The quasi-elastic (QE) interaction νµ + n → µ− + p has the cross-section

σQE = 0.891× 10−38cm2 (3.19)

For resonances (RES) we have three interactions with di�erent cross-sections:

νµ + n → µ− + p + π0, σRES
n,π0 = 0.537× 10−38cm2 (3.20)

νµ + n → µ− + n + π+, σRES
n,π+ = 0.276× 10−38cm2 (3.21)

νµ + p → µ− + p + π+, σRES
p = 0.330× 10−38cm2 (3.22)

The total cross-section for an isoscalar material is the sum of the cross-section σDIS
tot , which acts on

both protons and neutrons, and of half of all the others as they act either on the proton or on the
neutron:

σtot
iso = σDIS

tot +
σQE

2
+

σRES
n + σRES

p

2
(3.23)

where σRES
n = σRES

n,π0 + σRES
n,π+ .

We now calculate the fraction for each process relative to σtot
iso.

fDIS =
σDIS

tot

σtot
iso

(3.24)

fQE =
σQE/2
σtot

iso

(3.25)

fRES =
(σRES

n + σRES
p )/2

σtot
iso

(3.26)

fNC = 0.3 (3.27)

In the case of iron we have a non-isoscalar material. Therefore we need a correction for the cross-
section and the fraction. Z is the proton number and N the neutron number. The atomic weight is
about A = Z + N . The correction factors for QE and RES are the neutron or proton number over
the number of nucleons, depending on whether the νµ interacts with a neutron or a proton.

for neutrons:
N

A
; for protons:

Z

A
(3.28)

For the DIS the correction factor is a bit more complex:

σnN + σpZ

σisoA
(3.29)

where σn is the cross-section of the νµ CC interaction on a neutron, σp on a proton, and σiso the
cross-section on an isoscalar nucleus divided by the number of nucleons:

σiso =
σn + σp

2
(3.30)

The ratio of the νµ cross-section on the neutron over the one on the proton is called R:

R =
σn

σp
(3.31)
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Therefore: (
σn
σp

N + Z
)

σp

σiso
σp

σpA
=

σn
σp

N + Z

1
2

(
σn
σp

+ 1
)

A
=

RN + Z

0.5(R + 1)A
(3.32)

with R = 2.04, calculated by the NOMAD collaboration5. So the cross-sections for a non-isoscalar
material look as follows:

σDIS
noniso = σDIS

tot

RN + Z

0.5(R + 1)A
(3.33)

σQE
noniso = σQE N

A
(3.34)

σRES
noniso = σRES

n

N

A
+ σRES

p

Z

A
(3.35)

The total cross-section for iron is the sum of the three single cross-sections:

σtot
noniso = σDIS

noniso + σQE
noniso + σRES

noniso (3.36)

Again we calculate the fractions relative to the total cross-section σtot
noniso:

fDIS
noniso =

σDIS
noniso

σtot
noniso

(3.37)

fQE
noniso =

σQE
noniso

σtot
noniso

(3.38)

fRES
noniso =

σRES
noniso

σtot
noniso

(3.39)

We also need to take into account the various masses of the di�erent volumes. They are listed in
Table 3.1. The event rate is

rate = 604 events/(kton× 1019pot) (3.40)

Now we can calculate the number of expected events:

n° of expected events = mass of material × rate× f (3.41)

Together with the number of simulated events and the beam luminosity we get the weight for each
�le:

weight = n° of expected events× Npot

n° of simulated events
(3.42)

The numbers of simulated events are speci�ed in Table 3.2. They total in 4103300 events. The
beam luminosity, respectively the number of pot, for the run in autumn 2007 is

Npot = 0.0824× 1019pot (3.43)

5Neutrino Oscillation MAgnetic Detector. Neutrino oscillation experiment at CERN from 1995-1998.



46 CHAPTER 3. ANALYSIS METHODS

volume cc qe res nc

BORD 10k 10k 10k

BORU 10k 10k 10k

BOWD 50k 10k 10k

BOWU 10k 10k 10k

CTFW 1k 1k 1k

CTPC 100 100 100

FOOT 300k 100k 100k

ROCK 300k 100k 100k

ROCS 2M 100k 100k

WALL 100k 50k 50k

WALR 100k 50k 50k

BASL 100k 10k 10k

SHIELD 50k 25k 25k 25k

SLPL 15k 10k 10k 10k

noSLPL 20k 10k 10k 10k

Table 3.2: Number of simulated events in diverse volumes for di�erent
interactions. Total number of simulated events: 4103300

3.3 Producing histogramms

In order to analyse the data and MC event samples we extract all the information we are interested
in and �ll them in histogramms. For this we use the program MyAna, a software package of OPERA,
based on ROOT6. MyAna allows us to read the data and MC �les and to extract all the physical
information about the 3-dimensional tracks. Within ROOT one can easily build histogramms.

We need to be careful with events holding more than one 3-dimensional track in order to avoid
that these events produce more than one entry in the histogram. Therefore we only select the �rst
and longest 3d track (per de�nitionem the muon track of the primary vertex). In the data �les
we also need to select the ontime events. Ontime means that the event happened during the time
the CNGS beam was turned on and delivering neutrinos, therefore the event is not from a cosmic
particle. This we know as every event got timestamped.

In the end we want to know the neutrino �ux φ(E) whose derivative is connected to the interacting
neutrinos via the cross-section:

dN

dE
=

dφ

dE
σ(E) (3.44)

Thus the only physical variable we are interested in is the energy. So as to acquire the information
about the energy we �rst extract the 3-dimensional tracks. As we are only interested in νµ CC
events which produce a muon, we check each event if it holds a muon track. If so we read out the
�fth parameter (d = q/p, see Chapter 3.1 about Kalman �ltering). Then the energy of this muon
is given by

Eµ =
1
|d|

(3.45)

6http://root .cern.ch/



3.4. UNFOLDING METHOD BASED ON BAYES' THEOREM 47

The absolute value of d implies independence of the sign of the charge. The extraction of the muon
energy is identical for data and the muons 'measured' in the MC. But the MC �le not only provides
us with the muon energy, it also holds the MC true information about the energy of the interacting
neutrinos, Eν .
Now we know the energy of the muons both for data and MC as well as the simulated neutrino
energy. We arrange all this in three histogramms:

� the muon energy distribution from real neutrino events, Eµontime

� the energy distribution of the interacting neutrinos from the simulated events, Eν

� a 2-dimensional histogram of the neutrino energy with respect to the muon energy from the
simulated events, Eν vs. Eµ

We used many MC �les and therefore got just as many histogramms. What we need to do now
is to merge the histogramms into a single one. In the previous section (Chapter 3.2) we showed
how to calculate the weights for the di�erent �les. The average energy we get from the 2005 CNGS
beam simulation7. Now we calculate the weights with 〈E〉 = 18.4GeV and apply them on the
histogramms. We add up the histogramms and get three single ones holding all the information
needed for further studies.

3.4 Unfolding method based on Bayes' Theorem

Bayes' Theorem provides a way to get the best estimation of the real distribution by unfolding
experimental distributions. As already mentioned in the introduction, this unfolding method allows
us to get the information about the energies of the interacting neutrinos given the measured energy
of the muons produced in neutrino interactions.
The only weak point of this method may be the fact that we need knowledge of the initial distri-
bution. If necessary, this can be overcome by an iterative procedure. A strength of this method is
that it does not use continuous variables but discrete cells in multi-dimensional histogramms, both
of the true and measured quantities. The distributions of the true and measured observables are
di�erent due to physics and detector e�ects. So we need a good knowledge of the e�ect of all the
distortions on the true physical quantity. The aim is to unfold the observed distribution from all
the distortions in order to extract the true distribution.
The main advantages of this method compared to others are:

� it is theoretically sound

� it can be used to solve multidimensional problems

� it can take di�erent sources of background into account (simply add it to the possible causes,
see below)

� no matrix inversion, which is a problem present in unfolding procedures not based on Bayes'
Theorem

� with a realistic guess of the distribution of the true values it yields best results, but even
satisfactory results can be obtained starting from a uniform distribution

7available at http://www.mi.infn.it/∼psala/Icarus/cngs.html
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� it provides the correlation matrix of the results

We now state Bayes' Theorem through several independent causes Ci, i = 1...nC , which can produce
one e�ect E. We further assume that we know the initial probability of the causes P (Ci) as well as
the conditional probability P (E|Ci) that the i-th cause produces the e�ect. Then Bayes' formula
looks like

P (Ci|E) =
P (E|Ci)P (Ci)∑nC
l=1 P (E|Cl)P (Cl)

(3.46)

In words: In the case that we observe the e�ect E, the probability that it happened due to the
i-th cause is proportional to the probability of the cause itself times the probability of the cause to
produce this e�ect.
The P (Ci|E) depends on the initial probability of the causes. The Bayes formula has also the
ability to increase the knowledge of P (Ci) with the increasing number of observations. If we have
no knowledge of P (Ci) at all, the process can be started with a uniform distribution. P (Ci|E) also
depends on P (E|Ci) which have to be calculated or estimated, respectively, by MC methods. Unlike
the P (Ci), these probabilities do not get updated by the observations.

We now observe n(E) events with the e�ect E. n̂(Ci) is the expected number of events assigned to
each cause.

n̂(Ci) = n(E)P (Ci|E) (3.47)

In a real measurement we usually have more than just one possible e�ect. For a given cause Ci

we now have several possible e�ects Ej , j = 1...nE , and for all of them Bayes' formula holds, and
therefore we get

P (Ci|Ej) =
P (Ej |Ci)P0(Ci)∑nC
l=1 P (Ej |Cl)P0(Cl)

(3.48)

where P0(Ci) is the initial probability of the causes. These conditional probabilities P (Ci|Ej) are
referred to as smearing matrix S. We remind of the following:

�
∑nC

i=1 P0(Ci) = 1
This means, if the initial probability of a cause is 0 it cannot be changed, in other words, a
cause who does not exist cannot be invented.

�
∑nC

i=1 P (Ci|Ej) = 1
This means that each e�ect has to come from one or more of the causes. So if there is a
non-negligible amount of background contained in the observables, one has to include this in
the causes.

� 0 ≤ εi ≡
∑nE

j=1 P (Ej |Ci) ≤ 1
εi is the e�ciency to detect the cause Ci in any of the possible e�ects. This means that there
is no need for each cause to generate even one of the considered e�ects.

We take Nobs experimental observations and attain a distribution of frequencies

n(E) ≡ {n(E1), n(E2), ..., n(EnE )} (3.49)

Applying Eq.(3.47) to each of the e�ects results in the expected number of events assigned to each
of the causes due to observed events:

n̂(Ci)|obs =
nE∑
j=1

n(Ej)P (Ci|Ej) (3.50)
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We take into account the ine�ciency and get the best estimation of the true number of events.

n̂(Ci) =
1
εi

nE∑
j=1

n(Ej)P (Ci|Ej) (3.51)

where εi 6= 0. If εi = 0, then we set n̂(Ci) to 0 because the experiment is not sensitive to the cause
Ci. From these unfolded events we derive the true total number of events, the �nal probabilities of
the causes and the overall e�ciency:

N̂true =
nC∑
i=1

n̂(Ci)

P̂ (Ci) ≡ P (Ci|n(E)) =
n̂(Ci)
N̂true

(3.52)

ε̂ =
Nobs

N̂true

ε̂ may be di�erent from the e�ciency ε0 calculated from the reconstructed and generated MC events.

ε0 =
Nrec

N̂gen

=
∑nC

i=1 εiP0(Ci)∑nC
i=1 P0(Ci)

(3.53)

Is the initial distribution P0(C) not consistent with the data, then it will not agree with the �nal
distribution P̂(C). Therefore the closer the initial distribution is to the true one, the better is the
agreement.
The distribution P̂(C) is between P0(C) and the true distribution. This implies to use an iterative
procedure.

Once we obtained the unfolded distribution n̂(C) and want to evaluate the uncertainties. To see
all the sources of uncertainties we �rst rewrite Eq.(3.51) using Eq.(3.48) and the fact that εi =∑nE

j=1 P (Ej |Ci):

n̂(Ci) =
nE∑
j=1

Mijn(Ej) (3.54)

with

Mij =
P (Ci|Ej)

εi
=

P (Ej |Ci)P0(Ci)[∑nE
l=1 P (El|Ci)

]
·
[∑nC

l=1 P (Ej |Cl)P0(Cl)
] (3.55)

Mij is the unfolding matrix M. The covariance matrix V of the unfolded numbers n̂(Ci) is the sum
of various contributions:

� P0(Ci)
The initial probabilities are assumed to be without statistical errors because they solely in�u-
ence the results systematically.

� n(Ej)
The true number of events is estimated by N̂true. The data sample is distributed multinomially
with the parameter n which is de�ned by the true number of events. The n(E) contribution
to V is

Vkl(n(E)) =
nE∑
j=1

MkjMljn(Ej)
(

1− n(Ej)
N̂true

)
−

nE∑
i,j=1
i6=j

MkiMlj
n(Ei)n(Ej)

N̂true

(3.56)
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� P (Ej |Ci)
These probabilities are estimated via Monte Carlo and show statistical and systematical errors.
The systematic errors are due to assumptions made in the simulation. The statistical errors
come from the limited number of simulated events and induce correlations between the results.
If a cause Ci is observed only in a few e�ect-cells Ej and the number of generated events is
not very large, we cannot neglect the covariance between P (Ej1 |Ci) and P (Ej2 |Ci). However,
we can neglect it between terms with di�erent causes. Then the contribution to V is

Vkl(M) =
nE∑

i,j=1

n(Ei)n(Ej)Cov(Mki,Mlj) (3.57)

where

Cov(Mki,Mlj) =
∑

{ru},{su}

∂Mki

∂P (Er|Cu)
· ∂Mij

∂P (Es|Cu)
· Cov [P (Er|Cu), P (Es|Cu)] (3.58)

and

∂Mki

∂P (Er|Cu)
= Mki

[
δkuδri

P (Er|Cu)
− δku

εu
− δriMuiεu

P (Ei|Cu)

]
(3.59)

Cov [P (Er|Cu), P (Es|Cu)] =

{
1

nu
P (Er|Cu) · [1− P (Er|Cu)] (r = s)

− 1
nu

P (Er|Cu)P (Es|Cu) (r 6= s)
(3.60)

nu is the number of events generated in the cell Cu.

The covariance matrix of the unfolded numbers is the sum of the two contributions due to n(Ej)
and P (Ej |Ci):

Vkl = Vkl(n(E)) + Vkl(M) (3.61)

The use of Bayes' Theorem in a recursive way is a promising method which is able to unfold mul-
tidimensional distributions. It also provides the covariance matrix of the result. A Monte Carlo
study has shown that this method does not bias the results [51].



Chapter 4

Physical results

The aim of this procedure is to unfold the CNGS neutrino �ux φ. According to Eq.(3.44) we divide
the �ux of the interacting neutrinos dN

dE by the cross-section σ(E). The �ux of the interacting
neutrinos we get using the unfolding method described in Chapter 3.4. The expected number of
events assigned to each cause is given by Eq.(3.54) with C standing for the neutrino energy Eν and
E for the muon energy Eµ:

n̂(Eνi) =
nEµ∑
j=1

Mijn(Eµj ) (4.1)

where M is the unfolding matrix and n is the number of events. Now we �rst produce the three
histogramms mentioned before:

� HEmuot is the muon energy distribution from real neutrino events

� HEnu is the energy distribution of the interacting neutrinos from the simulated events

� HEmuEnu is the 2-dimensional histogram of the neutrino energy with respect to the muon
energy from the simulated events

See Fig.4.1. They all need to have the same normalisation. We chose 60 bins and an energy range
from 0 to 180 GeV. This results in 3 GeV per bin.
In Eq.(4.1), n(Eµ) is the number of events in the real data. So this information is stored in the

histogram HEmuot: n(Eµj ) is the number of entries in the j-th bin.
The unfolding matrix element Mij is the probability that the measured muon j of energy Eµj was
generated by the neutrino Eνi divided by the e�ciency:

Mij =
P (Eνi |Eµj )

εi
(4.2)

The numerator is given by Eq.(3.48):

P (Eνi |Eµj ) =
P (Eµj |Eνi)P0(Eνi)∑nEν

l=1 P (Eµj |Eνl
)P0(Eνl

)
(4.3)

We get the initial probability P0(Eνi) from the histogram HEnu:

P0(Eνi) =
n° of entries in bin i

total n° of entries
(4.4)

51
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Figure 4.1: top: muon energy distribution from CNGS neutrino events;
middle: energy distribution of the interacting neutrinos from the simulated
MC events; bottom: neutrino energy distribution (Enu) with respect to the
muon energy distribution (Emu) from the simulated MC events
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The probability that a muon j has a certain energy given the energy of the interacting neutrino
i, P (Eµj |Eνi), is the fraction of the probability of the intersection of Eµj and Eνi divided by the
probability that the neutrino has the energy Eνi .

P (Eµj |Eνi) =
P (Eµj ∩ Eνi)

P0(Eνi)
(4.5)

P (Eµj ∩ Eνi) we get from the histogram HEmuEnu.
The e�ciency in Eq.(4.2) is

εi =
nEµ∑
j=1

P (Eµj |Eνi) (4.6)

Now we have everything we need in order to calculate the �ux of the interacting neutrinos. We �ll
the histogram unfolded0, see Fig.4.2.

Figure 4.2: Unfolded �ux of the interacting neutrinos, dN
dE

According to Eq.(3.44) the �ux of interacting neutrinos, dN
dE , needs to be divided by the cross-section

σ(E) in order to get the neutrino �ux dφ
dE . The cross-section depends on the energy and is calculated

the same way as in Eq.(3.23). For E[GeV ] we put the average energy of each bin.

σ(E) = 0.677× 10−38cm2 × E[GeV ] + 1.017× 10−38cm2 (4.7)

So we divide the histogram unfolded0 bin-by-bin by the corresponding σ(E). We store the unfolded
neutrino �ux in the histogram unfoldedw. See the red curve in Fig.4.3.

In OPERA the sensitivity is optimised to the atmospheric neutrino oscillation signal measured by
Super-Kamiokande. This means we use4m2

23 = 2.4×10−3 eV 2 at full mixing in νµ ↔ ντ oscillations
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Figure 4.3: Comparison of the unfolded CNGS neutrino �ux (red, average
energy 23.25 GeV) with the CNGS neutrino �ux simulation of the year 2005
(blue, average energy 18.4 GeV).

(sin22θ23 = 1.0) [35]. We calculate the oscillation probability according to Eq.(1.34):

P (νµ → ντ ) = sin22θ23sin
2

(
1.274m2

23

[
eV 2

] L [km]
E [GeV ]

)
(4.8)

The distance is L = 732km. The average energy of the unfolded neutrino �ux distribution is
23.25 GeV . For this energy we get

P (νµ → ντ ) = 0.0092 ≈ 1% (4.9)

In our distribution we did not include the oscillation probability as it has a negligibly small in�uence
on the outcome.

Now we want to compare our unfolded neutrino �ux with the neutrino beam simulation from the
year 20051. We normalise it according to the histogram unfoldedw. For this we multiply the
content of the bin by the total number of entries of the histogram showing the unfolded neutrino
�ux, unfoldedw, and divide it by the total number of entries of the histogram with the simulated
neutrino �ux. We compare the histogram showing the simulated neutrino �ux with the one showing
the unfolded neutrino �ux, see Fig.4.3.

This is the �rst attempt to measure the CNGS neutrino �ux. From the measured muon momentum
we obtain the neutrino energy distribution by using the unfolding method based on Bayes' Theorem.
The unfolded distribution has its peak in the same bin as expected from the beam simulation. We

1available at http://www.mi.infn.it/∼psala/Icarus/cngs.html
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are quite satis�ed of this result even if there is a clear disagreement in the shape.

We make a χ2-test in order to estimate our �t. We calculate it as follows:

χ2 =
Nsim∑
i=1

(nunfi
− nsimi)

2

nunfi
+ nsimi

(4.10)

where nunfi
is the content of the i-th bin of unfoldedw and nsimi is the content of the i-th bin of

the simulated neutrino �ux. We obtain a value of 225 and the degree of freedom is n = 60. With
such a high degree of freedom the distribution becomes a Gaussian. Then the mean value is n and
the variance is σ2 = 2n. Therefore the standard deviation is σ =

√
2n = 10.95. Our χ2 is the mean

value plus 15σ. This large χ2 indicates that the disagreement is not just from statistical �uctuations
but actually is evidence for a di�erent shape.

For this disagreement, there are several possible explanations which stand to reason:

� Though the e�ciency of the detector is included in the correlation matrix, the simulation of
the detector may not be perfect, as low energetic muons are not e�ciently reconstructed.

� Sine we are merging various samples of simulated neutrino interaction events in di�erent
materials for our statistics, some of these may be simulated wrongly. Hence MC simulations
need to be further investigated.

� Even worse than the last point would be �les missing completely. This would badly a�ect the
statistics.

� Assuming the MC event samples to be correct and complete, there would still be the risk to
weigh them in a non-optimal way while merging. Though a material speci�c cross-section was
used for the production of the samples, for the merging we calculated the weights by using
just one cross-section for all the di�erent materials.

� Another contribution to this disagreement might come frome the not perfect simulation of the
beam. It suggests itself that the beam simulation needs further investigation.
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Conclusion

The OPERA detector is especially designed to search for the appearance of ντ within an almost pure
νµ beam of the CERN to Gran Sasso facility (CNGS). This would be the �rst detection of the direct
appearance of a ντ coming from νµ oscillation and thus the �nal con�rmation that neutrinos oscillate
and that they are therefore massive particles. The performance of the experiment strongly depends
on the neutrino �ux and on its knowledge. In this study, a neutrino �ux determination of the CNGS
was undertaken by exploiting a �rst set of data collected in the OPERA run of 2007. This is the
�rst attempt to measure the CNGS neutrino �ux. For this purpose we measure the momentum of
muons produced in νµ charged current interactions. From the measured muon momentum we ob-
tain the initial neutrino energy distribution by using an unfolding method based on Bayes' Theorem.

All the analysis done here relies on the comparison between data and simulated Monte Carlo (MC)
events. As already mentioned, we only selected events coming from νµ charged current interactions
which produce a muon. What we measure are the induced hits of the muon crossing the electronic
detectors of the experimet. In order to give physical meaning to this set of hits, we pool them
in tracks, each one coming from a single particle. This we do by means of a Kalman Filter al-
gorithm. The Kalman Filter is a recursive solution to a linear �ltering problem for discrete data
providing an e�cient computational way to obtain the parameters of the �t of the muon track which
is determined by �ve parameters: two spatial coordinates, two angles, and the ratio charge over
momentum. The latter then leads to the energy of the muon. Then we extract the muon energy
for all the events, data and simulated ones. The MC simulations not only provide us the muon
energy, they also hold the MC true information about the energy of the interacting neutrinos. The
energy distributions of the muons from real events and of the interacting neutrinos from simulated
events, and the correlation of the neutrino energy and muon energy of the simulated events, provide
histogramms needed in order to unfold the neutrino �ux by means of the unfolding method based
on Bayes' Theorem.

Bayes' Theorem provides a way to obtain the best estimation of the real distribution by unfolding
experimental distributions. This unfolding method allows us to get the information about the en-
ergies of the interacting neutrinos given the measured energy of the muons produced in neutrino
interactions. The two-dimensional histogram of the neutrino energy with respect to the muon en-
ergy (from the simulated events) together with the energy distribution of the interacting neutrinos
provide us the probability that a muon has a certain energy given the energy of the interacting
neutrino, P (Eµ|Eν). This probability and the knowledge of the initial probability of the energy of
the neutrinos gives the knowledge of the probability that a muon with a de�ned energy is found to
be generated by a neutrino of a speci�c energy, P (Eν |Eµ). With this knowledge we can unfold the
�ux of the interacting neutrinos, that, divided by the cross-section, yields the actual neutrino �ux.
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The present Diploma Thesis is organised in four chapters:

� The �rst chapter gives general information on particle physics and of neutrino physics, with
emphasis on the physics of oscillating neutrinos.

� A detailed description of the OPERA experiment can be found in the second chapter. Elec-
tronic detectors, which were important for this work, are described in detail as well as the
CNGS neutrino beam.

� In the third chapter we describe methods used for the analysis such us Kalman Filtering and
the unfolding method based on Bayes' Theorem. There are also details listed about the MC
event samples.

� In the �nal chapter the performed analysis is shown and the results presented.

The unfolded neutrino �ux spectrum shows the behaviour expected from the simulations. The
agreement is satisfactory in particular as far as the peak neutrino energy is concerned. This �rst
attempt will open the way to more detailed studies that will be performed when a higher statistics
will be available from the experiment data taking.



Appendix A

Two �avour neutrino oscillation in

vacuum

Eq.(A.1) is the probability of a neutrino of �avour α to change into a neutrino of �avour β (β 6= α) after
propagating over the length L.

P (να → νβ) = |〈νβ(0)|να(L)〉|2 (A.1)
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We de�ne4m2
ij ≡ m2

i−m2
j and apply

1
2

(
e−ix + e+ix

)
= cos(x) on Eq.(A.2) in order to get Eq.(A.3).

On the latter equation we use 4sin2(α) · cos2(α) = sin2(2α).
So as to get to Eq.(A.5) from Eq.(A.6), we need to apply 1−cos(α)

2 = sin2 α
2 .

To get a more convenient formula, one uses natural units:

c = ~ = ε0 = 1 (A.7)

This entails

~c = 197.3MeV · fm=̂1 (A.8)

1m = 1015 1
197.3

MeV −1 = 5.068 · 1015GeV −1 (A.9)

For the mass we use the unit eV :

E = mc2 (A.10)

[m] = eV (A.11)

So we use these units for the variables in Eq.(A.6)[
4m2

ij

]
= eV 2 (A.12)

[L] = km (A.13)

[E] = GeV (A.14)

and get [
4m2

ij

[
eV 2

]
4

L [km]
E [GeV ]

]
=

eV 2

4
5.068 · 1018GeV −1

GeV
≈ 1.27 (A.15)

Then Eq.(A.6) becomes

P (να → νβ) = sin22θsin2

(
1.274m2

ij

[
eV 2

] L [km]
E [GeV ]

)
(A.16)

Notice the proportionality to L
E [30].

The oscillation length Losc is the length a neutrino of �avour α has to traverse in order to be in the
same state as in the beginning (α). In vacuum we get it while setting the second part of Eq.(A.16)
to zero:

sin2

(
1.274m2

ij

[
eV 2

] Losc [km]
E [GeV ]

)
= 0 (A.17)

and therefor

1.274m2
ij

[
eV 2

] Losc [km]
E [GeV ]

= π (A.18)

which results in [36]:

Losc [km] = 2.48
E [GeV ]
4m2

ij [eV 2]
(A.19)
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