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Abstract We develop the n-dimensional cosmology for
f (G) gravity, where G is the Gauss–Bonnet topological
invariant. Specifically, by the so-called Noether Symmetry
Approach, we select f (G) � Gk power-law models where k
is a real number. In particular, the case k = 1/2 for n = 4
results equivalent to General Relativity showing that we do
not need to impose the action R + f (G) to reproduce the
Einstein theory. As a further result, de Sitter solutions are
recovered in the case where f (G) is non-minimally coupled
to a scalar field. This means that issues like inflation and
dark energy can be addressed in this framework. Finally, we
develop the Hamiltonian formalism for the related minisu-
perspace and discuss the quantum cosmology for this model.

1 Introduction

Despite the successes and probes of General Relativity (GR),
it presents issues at IR and UV scales pointing out that it is
not the final theory of gravity [1,2]. Clearly there are prob-
lems with quantization of spacetime geometry (the lack of a
final Quantum Gravity Theory) and with large scale structure
(the unknown dark side to fit astrophysical and cosmological
dynamics).

In this context, modified theories of gravity (obtained by
extending or changing the Hilbert–Einstein action) could be
suitable to fix Dark Energy and Dark Matter issues emerging
along the cosmic history. Basically, the philosophy consists
in considering extended/modified gravitational Lagrangians
where extra-terms in the field equations could play the role
of the “Dark” components and explain the expansion of the
universe and the large scale structure. Dark Matter and Dark
Energy, in fact, represent a controversial problem in cosmol-
ogy and astrophysics, since they are supposed to cover almost
95% of the universe content but have never been observed at
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fundamental scales even if they manifest their effects at large
scales.

Nevertheless, extending/modifying GR allows to over-
come several other issues, see e.g. [3,4]. In particular, they
provide new polarization modes for gravitational waves [5],
are capable of describing the fundamental plane of galax-
ies [6,7], can fit Dark Energy dynamics [8–13], can address
astrophysical structures through corrections to the Newto-
nian potential [14]. From another point of view, modified
theories may better adapt to the QFT formalism for several
reasons: it is possible to extend the action in order to construct
super-renormalizable theories [15] or to build up effective
theories towards quantum gravity [16].

Among extended theories of gravity, f (R) gravity is a
straightforward extension where the hypothesis of linearity of
the Ricci scalar R into the Hilbert–Einstein action is relaxed
[17–24].

However also non-minimal couplings as in the Brans-
Dicke theory as well as higher-order curvature invariants like
f (R,�R,�2 R...�k R)or f (R, Rμν Rμν, Rμνpσ Rμνpσ ) can
be considered in this program of extending GR [12,17,21].

Another point of view approaches gravity as a theory of the
translational group where affinities play a major role [25–27].
It is the so called Teleparallel Equivalent General Relativity
where the antisymmetric part of the connection is taken into
account, the so called Weitzenböck connection, constructed
on tetrads [28–30]. In this picture, spacetime dynamics is
given by torsion instead of curvature and the Equivalence
Principle is not necessary to fix causal and geodesic structure.

Finally, also non-metricity can be considered in the debate
of define the physical variables of gravity and then curvature,
torsion and non-metricity or, alternatively, metric, tetrads and
non-metricity can give the geometric description of the grav-
itational field [31].

In this perspective, a peculiar role is played by the topo-
logical invariants which intervene in the formulation of any
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quantum field theory on curved space. Specifically, the so
called Gauss–Bonnet (GB) topological invariant has a cru-
cial role in trace anomaly and in the regularization of the
theory at least at one-loop level [32]. This invariant can have
an important role also in cosmology as pointed out in [33,34].
It emerges in gravitational actions containing second-order
curvature invariants like

S =
∫ √−g f (R, Rμν Rμν, Rμνpσ Rμνpσ )d4x , (1)

see for example [36]. Here, the curvature terms can be com-
bined as

G = R2 − 4Rμν Rμν + Rμνpσ Rμνpσ , (2)

which is the GB invariant acting as a constraint among the
second-order curvature terms. According to this considera-
tion, a theory like f (R,G) can exhaust all the degrees of free-
dom related to the second-order curvature invariants which
is dynamically equivalent to a theory with two scalar fields
[37].

However, in (3+1)-dimensions, it is well known that an
action like S = ∫ √−gG d4x is trivial, while it is not so in
(4+1)-dimensions (or more). This result is directly linked to
the GB theorem, which states that the integral of the GB term
over the manifold is the Euler characteristic of the manifold,
i.e a topological invariant.

Despite of this result, considering any function f (G) �= G
can be mathematically and physically relevant, also in 4D,
for the following reasons. In general, f (R,G) gravity is
taken into account to recover GR, in a given limit, assuming
f (R,G) = R + f (G). Observational and theoretical con-
straints have been obtained also for other forms of f (R,G)

[38,39] but pure f (G) theories are not, in general, considered
because GR seems excluded.

In this paper, we deal with actions depending only on
the topological surface term. From a mathematical point of
view, the related dynamics is simpler and often analytically
solvable.

Besides this technical point, it is worth stressing that,
in homogeneous and isotropic cosmology, terms containing
squared Ricci and Riemann tensors contribute dynamically
as the squared Ricci scalar in the GB invariant. This is par-
ticularly evident for the cosmological scale factor evolving
as exponential function or power-law functions. According

to this observation, as soon as f (G) ∼ G 1
2 holds, a GR-like

behavior is expected. This means that, by a theory contain-
ing only topological terms, GR can be, in principle, recovered
without inserting by hands the Hilbert–Einstein term in the
gravitational action. In other words, starting from a theory
regular and consistent with quantum considerations [32], one
could recover GR results at IR scales avoiding some patholo-
gies.

A detailed treatment of the GB action in spherically sym-
metric configuration is reported in [40].

As a general remark, considering theories as R + f (G)

and f (R) + f (G) is particularly useful in high energy
regimes of gravity. Specifically, the introduction of G leads
to improve the inflationary scenario, where two acceleration
phases can be led by R and G respectively giving rise to a
R-dominated phase and a G-dominated phase. Being G dom-
inant in stronger curvature regimes, its contribution, through
a non-linear function f (G), rules the universe behavior at
very early stages extending the Starobinsky model [37]. Both
f (R) and f (G) fields can cooperate to the slow rolling phase
with a behavior depending on the strength of the correspond-
ing coupling constant. In general, the contributions of f (R)

and f (G) give rise to a potential, whose minima can be sepa-
rated by a barrier, representing a double inflationary scenario
where the Gauss–Bonnet term dominates at very early epochs
and the Ricci scalar at moderate early epochs. Finally, real-
istic scenarios converge towards standard GR. On the other
hand, f (G) terms contribute to late accelerated expansion
as discussed in [33,34] and theories like f (R,G) satisfy the
Solar System constraints [35].

This work is focused on f (G) cosmology studied by
the Noether Symmetry Approach [41]. The main result is
that the existence of symmetries selects models of the form
f (G) = Gk , with k any real number. Then, for k = 1/2, GR
is recovered as one of the models allowed by symmetries.

As pointed out in [42–44], the search for symmetries in
modified theories of gravity plays a fundamental role in order
to get suitable equations of motion through a selection crite-
rion motivated by physical reasons.

In this framework, as shown in [4,18,20,25,41,45], thanks
to Lagrange multipliers, one can find the cosmological point-
like Lagrangians to develop the Noether approach. Adopt-
ing a Friedmann–Robertson–Walker (FRW) metric in 4-
dimensions, the Lagrange multiplier for f (G) results

G = 24

(
äȧ2

a3

)
. (3)

It is easy to see that it comes from a 4-divergence

√−g G = 8
d

dt
(ȧ3) , (4)

and hence, when integrated, it gives only a trivial contribu-
tion. In other words, when we consider the extension f (G),
a straightforward integration by parts of the Lagrange mul-
tiplier allows to write the non-vanishing point-like canoni-
cal Lagrangian as a function of the scale factor a, the field
G and their first derivatives. We have a configuration space
Q ≡ {a,G} equipped with tangent space TQ ≡ {a, ȧ,G, Ġ}.
This is a 2-dimensional minisuperspace which can be easily
quantized in view of quantum cosmology considerations.
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The layout of the paper is the following. In Sect. 2), we
introduce the main features of the GB gravity and cosmology
in n dimensions. Section 3 is devoted to the Noether Symme-
try Approach for f (G) cosmology. In Sect. 4, we find sym-
metries for GB cosmology, showing that we can recover GR
and find exact cosmological solutions. Secs. 5.1 and 5.2 are
respectively devoted to the coupling between modified GB
action and a scalar field, and models given by a sum of GB
functions. Quantum cosmology considerations are developed
in Sect. 6, where we find the Wave Function of the Universe
for the minisuperspace TQ ≡ {a, ȧ,G, Ġ}. Discussion and
conclusions are reported in Sect. 7.

2 Gauss–Bonnet cosmology

Let us now discuss some basic results of GB gravity and cos-
mology. First of all, we introduce the GB topological invari-
ant G. In n-dimensions, assuming gravity as a gauge theory
of the local Lorentz group on the tangent bundle, the GB term
is:

G = εa1,a2,a3...an Ra1,a2 ∧ Ra3,a4 ∧ ea5 ∧ · · · ∧ ean , (5)

being Rai ,a j the two form curvature, ek the set of zero
forms defining the basis and εa1,a2,a3...an the Levi-Civita
symbol. This GB term is part of the n-dimensional Love-
lock Lagrangian [46,47] which, in four dimensions, can be
expressed as:

L(4) = εabcd

[
α2 Rab ∧ Rcd + α1 Rab ∧ ec ∧ ed

+ α0ea ∧ ea ∧ eb ∧ ec ∧ ed
]
, (6)

where the first term is the GB invariant, the second the Ricci
scalar and the third the cosmological constant. Even though
the Gauss Bonnet term naturally emerges in the Lovelock
gravity under the gauge formalism, we will deal with the
covariant representation ofG, which is given by Eq. (2). Here,
we consider a general analytic function of G and the action

S =
∫ √−g f (G) dn x . (7)

Varying it with respect to the metric, we find the following
field equations

2R∇μ∇ν f ′(G) − 2gμν R� f ′(G) − 4Rλ
μ∇λ∇ν f ′(G)

+ 4Rμν� f ′(G) + 4gμν R pσ ∇p∇σ f ′(G)

+ 4Rμνpσ ∇ p∇σ f ′(G) + 1

2
gμν[ f (G) − G f ′(G)] = Tμν,

(8)

where � is the n-dimensional D’Alembert operator (� =
gμν∇μ∇ν) and the prime indicates the derivative with respect
to G. Tμν stands for the energy-momentum tensor of matter
and, for simplicity, we used physical units (h̄ = c = kB =
8πG = 1). In [35,48–50], one can found the generalization
of this action to the case f (R,G) in 4-dimensions.

In order to obtain the form of the GB scalar in cosmology,
we have to calculate the n-dimensional Riemann tensor, Ricci
tensor and Ricci scalar in FRW metric. We choose for the
interval

ds2 = dt2 − a(t)2δi j dxi dx j , (9)

where the index i, j label all the spatial dimensions and run
from 1 to n. We assume the spatially flat case. The non-null
curvature components are:

R = −2(n − 1)
ä

a
− (n − 2)(n − 1)

ȧ2

a2 , R00 = (n − 1)
ä

a
,

Ri j = [
(n − 2)ȧ2 + aä

]
δi j , R0i0 j = aäδi j ,

Ri jm	 = a2ȧ2δimδ j	. (10)

By properly contracting the above quantities, the n-dimensional
GB term turns out to be

G = (n − 3)(n − 2)(n − 1)
[
(n − 4)ȧ4 + 4aȧ2ä

]
a4

≡ p(n)

[
(n − 4)ȧ4 + 4aȧ2ä

]
a4 , (11)

with p(n) = (n − 1)(n − 2)(n − 3). As we can see, in less
than four dimensions it vanishes regardless of the value of the
scale factor, while in 4-dimensions, it turns into a topological
surface term of the form given in Eq. (3).

Dynamics can be derived both starting from field Eq.
(8) or from the Euler–Lagrange equations derived from
a point-like Lagrangian. Because of our further consid-
erations related to the Noether Theorem, let us construct
the point-like Lagrangian. It can be found thanks to the
Lagrange multipliers method, with constraint (11), as fol-
lows:

S =
∫ [

√−g f (G) − λ

{
G − (n − 3)(n − 2)(n − 1)

[
(n − 4)ȧ4 + 4aȧ2ä

]
a4

}
+ Lm

]
dn x, (12)
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being Lm the matter Lagrangian. Considering the cosmo-
logical volume element in n-dimensions, the action can be
written as

S = 2π2
∫ [

an−1 f (G) − λ

{
G − (n − 3)(n − 2)(n − 1)

[
(n − 4)ȧ4 + 4aȧ2ä

]
a4

}
+ Lm

]
dn x . (13)

By varying the action with respect to G, we are able to find
λ:

δS = ∂S

∂G δG = an−1 f ′(G) − λ = 0 λ = an−1 f ′(G).

(14)

Replacing in Eq. (13) and integrating out the second deriva-
tive, the Lagrangian finally takes the form:

L = 1

3
an−5

[
(4 − n)p(n)ȧ4 f ′(G) + 3a4[ f (G) − G f ′(G)]

−4ap(n)ȧ3Ġ f ′′(G)
]

+ Lm (15)

The dynamical system is given by the two Euler–Lagrange
equations coming from Lagrangian (15), with respect to the
scale factor a and the GB scalar G. The system is completed
by the Energy condition EL = (

ȧ∂ȧ + Ġ∂Ġ − 1
)L = 0.

Finally we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(n − 4)(n − 5)p(n)ȧ4 f ′(G) − (n − 1)a4[ f (G) − G f ′(G)] − 4(n − 4)p(n)aȧ2[ä f ′(G) + ȧĠ f ′(G)]+
−4a2 p(n)ȧ[2Ġä f ′′(G) + ȧG̈ f ′′(G) + ȧĠ2 f ′′′(G)] = 0

G = p(n)

[
(n−4)ȧ4+4aȧ2ä

]
a4

(4 − n)p(n)ȧ4 f ′(G) − a4[ f (G) − G f ′(G)] − 4ap(n)ȧ3Ġ f ′′(G) = 0.

(16)

It is worth noticing that the equation for G provides
exactly the cosmological constraint on the GB scalar (11).
It is impossible to solve the above equations without
selecting the form of the f (G) function. In order to
do this, we adopt the Noether Symmetry Approach by
which one can select reliable models according to the
existence of symmetries. The approach is also physically
motivated because symmetries correspond to conservation
laws.

3 The Noether symmetry approach

In this section we sketch the Noether symmetry approach
[41], that we will apply in the next section, to the previ-
ous cosmological point-like Lagrangian. Let us consider the

following transformations which leave the Euler–Lagrange
equations invariant with respect to a change of coordi-
nates:

⎧⎪⎨
⎪⎩
L(t, qi q̇i ) → L(t, qi , q̇

i
)

t = t + εξ(t, qi ) + O(ε2)

qi = qi + εηi (t, qi ) + O(ε2).

(17)

In order to find the generator of transformations, we need to
find the transformation law of the first derivative since, being

the time involved in the transformation, the quantity q̇
i

does

not trivially correspond to
dqi

dt
. For the first derivative, we

have:

q̇
i = dqi

dt
= dqi + εdηi (t, qi )

dt + εdξ(t, qi )
=

dqi

dt + ε
dηi (t,qi )

dt

1 + ε
dξ(t,qi )

dt

=
(

dqi

dt
+ ε

dηi (t, qi )

dt

) (
1 + ε

dξ(t, qi )

dt

)−1

. (18)

which, up to the first order, takes the form

q̇
i =

(
dqi

dt
+ ε

dηi (t, qi )

dt

) (
1 − ε

dξ(t, qi )

dt

)
+ O(ε2)

= dqi

dt
+ ε

[
dηi (t, qi )

dt
−dqi

dt

dξ(t, qi )

dt

]
+O(ε2) ∼ q̇ i

+ε
[
η̇i − q̇i ξ̇

]
. (19)

Let us now define ηi [1] = η̇i − q̇i ξ̇ so that we have:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

L(t, qi q̇i ) → L(t, qi , q̇
i
)

t = t + εξ(t, qi ) + O(ε2)

qi = qi + εηi (t, qi ) + O(ε2)

q̇
i = q̇i + εηi [1]

(20)

and finally the generator of transformation has the form
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X [1] = ξ
∂

∂t
+ ηi ∂

∂qi
+ ηi [1] ∂

∂q̇i
= ξ

∂

∂t
+ ηi ∂

∂qi

+ (η̇i − q̇i ξ̇ )
∂

∂q̇i
. (21)

It is called the first prolongation of Noether’s vector. We
assume that our Lagrangian is not dependent on higher order
derivatives and hence it is not necessary to calculate the trans-
formation of q̈i ; nevertheless, it is possible to further extend
the Noether vector to the n-prolongation as follows:

X [n] = ξ
∂

∂t
+ ηi ∂

∂qi
+ ηi [1] ∂

∂q̇i
+ · · · + ηi [n] ∂

∂
dnqi

dtn

(22)

here, it is

ηi [n] = dηi [n−1]

dt
− ξ̇

dnqi

dtn
. (23)

Let us show that if the coordinates transformation (20) leaves
the equations of motion invariant, then the system satisfies
the Noether identity

X [1]L + ξ̇L = ġ(t, qi ), (24)

where g is a generic function depending on coordinates and
time. In order to prove the condition (24), we recall that
the Euler–Lagrange equations are invariant if the following
condition holds:

dt

dt
L = L + ε ġ. (25)

Deriving Eq. (25) with respect to ε and then setting ε = 0,
we obtain:

dt

dt

∂L
∂ε

+ L ∂

∂ε

(
dt

dt

)
= ġ. (26)

We can observe that
dt

dt
= ∂t

∂t
+ ∂t

∂qi
q̇i = 1 + ε

∂ξ

∂qi
q̇i

that for ε = 0, it is equal to 1. Furthermore, assuming that

it is possible to swap the order of derivatives, we have that
∂

∂ε

(
dt

dt

)
= d

dt

∂t

∂ε
= ξ̇ . Replacing these results into (26)

we obtain:

ξ
∂L
∂t

+ ηi ∂L
∂qi

+ η[1] i ∂L
∂q̇

i
+ ξ̇L = ġ, (27)

which is nothing else but (24). From this, it follows that sys-
tems satisfying the condition (24) lead to the conserved quan-
tity

I (t, qi , q̇i ) = ξ

(
q̇i ∂L

∂ q̇i
− L

)
− ηi ∂L

∂ q̇i
+ g(t, qi ), (28)

which is a first integral of motion. For other techniques to
integrate dynamical systems useful for cosmology see also
[51–53].

4 Noether symmetries in N-dimensional f (G)
cosmology

Let us now apply the first prolongation of Noether vector to
the Lagrangian (15) whose generator, in our minisuperspace,
takes the form:

X = ξ(a,G, t)∂t + α(a,G, t)∂a + β(a,G, t)∂G . (29)

In order to find symmetries, we apply the Noether identity
and set terms with derivative powers of a and G equal to
zero. Therefore, the application of (21) to (15) gives a sys-
tem of four differential equations plus the constraints on the
infinitesimal generators α, β, ξ . It reads:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(n − 1)a2α( f − G f ′) − 4p(n)ȧ2Ġ f ′′∂tα − a3 [
β f ′′ − ( f − G f ′)∂tξ

] = 0

(n − 4)
[

f ′∂tα + a f ′′∂tβ
] = 0

(n − 4)α f ′′ + aβ f ′′′ + a f ′′ (3∂aα + ∂Gβ − 3∂tξ
) = 0

(n − 4)(n − 5)α f ′ + (n − 4)aβ f ′′ − (n − 4)a f ′ (3∂tξ − 4∂aα) + 4a2 f ′′∂aβ = 0 ,

(30)

with ξ = ξ(t) , α = α(a, t) , g = g0 . Here, we neglect a
priori the possibility p(n) = 0. Only three solutions satisfy
the whole system; all of them provides the same dependence
of the infinitesimal generator on the variables, namely

α = α0a , β = β0G , ξ = ξ0t + ξ1, (31)
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but with different values of the constants α0, β0, ξ0. The
final solutions with the corresponding infinitesimal genera-
tors are:

1) : α = α0a , β = β0G , ξ = α0

(
n − 1

3

)
t + ξ1 , f (G) = f0G

2) : α = α0a , β = −4ξ0G , ξ = ξ0t + ξ1 , f (G) = 4 f0ξ0

α0(n − 1) + ξ0
G

α0(n−1)+ξ0
4ξ0

3) : α = 0 , β = β0G , ξ = 0 , f (G) = f0G + f1, (32)

where the exponent of the second function must be dif-
ferent from 1. The first and the third solution are non-trivial
only in more than 4 dimensions, while the second provides
contributions to the equations of motion even for n = 4.
Without loss of generality, in order to find the dynamics of
the scale factor, we choose the function f (G) = f0Gk , where
we define

α0(n − 1) + ξ0

4ξ0
= k (33)

and we incorporated the coefficient ofGk into f0. Here k ∈ R.
In this way, the point-like Lagrangian can be written as

L = −1

3
an−5Gk−2

[
3(k − 1)a4G2 + k(n − 4)G p(n)ȧ4

+ 4k(k − 1)ap(n)ȧ3Ġ
]
. (34)

The Euler–Lagrange Eq. (16) can now be exactly solved pro-
viding the following solutions:

a(t) = a0eqt , G(t) = np(n) q4 , k = n

4

a(t) = a0t−4 (k−1)(4k−1)
4k−n ,

G(t) = 256 [(k − 1) (4k − 1)]3 [4 + n(4k − 5)] p(n)

(nt − 4kt)4 ,

(35)

with q constant. It is worth noticing that the de-Sitter-like
expansion only holds in more that 4 dimensions, unlike the
power-law solutions which is valid even for n = 4. However,
the n = 4 case deserves a separate treatment. In next sections
we will focus on 4-dimensions in presence of matter. It is

interesting to observe that the function containing a linear
GB term leads to a solution with several free parameters
which should be fixed out by experimental observations. It
provides a vacuum exponential acceleration.

5 f (G) cosmology in 4-dimensions

Let us now discuss specifically the four-dimensional case;
in particular, we will derive the Noether symmetries coming
from the 4-dimensional Lagrangian and the related cosmo-
logical solutions in presence of matter. After, we will also
consider the case of GB term non-minimally coupled with a
scalar field. We introduce the matter Lagrangian through the
choice Lm = ρ0a−3w, where w represents the ratio between
pressure and density p = w ρ, that is the Equation of State of
a perfect fluid. For w = 0, we have dust matter, for w = 1

3 ,
we have radiation. The case w = −1, in turn, corresponds to
the cosmological constant. Therefore, being p(4) = 6, the
Lagrangian (15), in 4-dimensions, is

L(4) = a3[ f (G) − G f ′(G)] − 8ȧ3 f ′′(G)Ġ + ρ0a−3w. (36)

The Euler–Lagrange equations of the above Lagrangian read
as:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d

dt

∂L
∂Ġ = ∂L

∂G → G = 24
ȧ2ä

a3

d

dt

∂L
∂ ȧ

= ∂L
∂a

→ a2[ f (G) − G f ′(G)] + 16ȧäĠ f ′′(G) + 8ȧ2[ f ′′(G)G̈ + f ′′′(G)Ġ2] + 3ρ0wa−3w−1.

(37)

The first equation is the Lagrange multiplier in 4-
dimensions. Finally we have to take into account the energy
condition

EL = ȧ
∂L
∂ ȧ

+ Ġ ∂L
∂Ġ − L = 0, (38)

which gives

a3[ f (G) − G f ′(G)] + 24ȧ3 f ′′(G)Ġ + ρ0a−3w = 0. (39)

Applying the Noether condition (24) to the Lagrangian (36),
we get a system of two differential equations, since the second
equation appearing into (30) canceled out for n = 4 and the
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fourth trivially reduces to ∂aβ = 0. The system takes the
form:

⎧⎪⎨
⎪⎩

3αa2[ f (G) − G f ′(G) − wρ0a−3(w+1)] − βa3G f ′′(G) + ∂tξa3[ f (G) − G f ′(G)] = 0

3∂aα f ′′(G) + β f ′′′(G) − 3∂tξ f ′′(G) + ∂Gβ f ′′(G) = 0

ξ = ξ(t) , α = α(a) , β = β(G) g = g0.

(40)

The presence of the matter Lagrangian does not cause any
changes in the system resolution, so that the function and the
infinitesimal generator turn out to be the n = 4 case of (32)
assigning the Noether vector, namely

⎧⎨
⎩

α = α0a , ξ0t + ξ1 , β = −4ξ0G , g = g0

f (G) = f0Gk

k
, k �= 1.

(41)

By using the above solutions and incorporating the constant
k into f0, we can rewrite the point-like Lagrangian as

L = − f0(k − 1)Gka3 − 8 f0k(k − 1)Gk−2ȧ3Ġ − ρ0a−3w. (42)

Euler–Lagrange equations and energy condition coming
from (42) lead to the system

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

G = 24
ȧ2ä

a3

−8 f0k(k − 1)(k − 2)ȧ2Gk−3Ġ2 − 8 f0k(k − 1)ȧGk−2 (
2äĠ + ȧG̈) + f0(k − 1)a2Gk − ρ0wa−3w−1 = 0

−24 f0k(k − 1)ȧ3Gk−2Ġ + f0(k − 1)a3Gk + ρ0a−3w = 0.

(43)

There are two kinds of solutions of the above system; the first
can be obtained neglecting the matter Lagrangian. In this
case, when geometric contributions are greater than matter
ones, the only solution reads

a(t) = a0t1−4k G(t) = −96k(1 − 4k)3t−4 ≡ G0t−4,

(44)

which is a power-law expansion and, as expected, it is con-
tained into (35). Without neglecting Lm , we find another set
of solutions, namely:

⎧⎪⎨
⎪⎩

a(t) = a0t1−4k G(t) = −96k(1 − 4k)3t−4 ≡ G0t−4 w = 0

a(t) = ent G(t) = 24m4 w = −1.

(45)

The former is the solution for dust matter, while in the latter
the matter plays the role of cosmological constant. Neverthe-
less, from Eq. (44), we can distinguish the cosmological eras
depending on the geometrical contributions even in vacuum:

k = 1

8
→ a(t) ∼ t

1
2 G = −3

2
t−4 → Radiation

k = 1

6
→ a(t) ∼ t

1
3 G = −16

27
t−4 → Stiff matter

k = 1

12
→ a(t) ∼ t

2
3 G = −64

27
t−4 → Dust matter.

(46)

Cosmological solutions (44) are, therefore, in agreement with
the FRW solutions of GR but are recovered without impos-
ing the Ricci scalar in the gravitational action. It is worth
noticing that in all cases the Gauss–Bonnet term turns out
to be negative, so that the function f (G) = f0Gk may lead
to some problems for fractional even values of k. To avoid
these kind of singularities, we want to stress that the function
f (G) is still a solution of Noether’s system even including the
modulus of theThe Gauss–Bonnet term, i.e. f (G) = f0|G|k .

same happens in several other modified theories; for example,
in f (R) gravity, the Noether approach provides the solution
f (R) ∼ R3/2 [54], whose time power-law solution a(t) ∼ t p

leads to a complex function for p < 0 and p > 1/2. Hence,
without loss of generality and in agreement with Noether’s
approach, we can always require the function into the action
to be positive. However, as shown in [55] for f (R) ∼ |R|3/2,
some exact solutions can imply transitions from deceler-
ated/accelerated behaviors, that is dust/dark energy behav-
iors according to the values of solution parameters. In the
present case, however, we are discussing only exact solu-
tions emerging from Noether’s symmetries where there is no
change of concavity in the evolution of the scale factor and
then no transitions from decelerated to accelerated behaviors
and viceversa.

5.1 Brans–Dicke coupling

Dynamics can be improved by coupling the GB function
coming from the existence of Noether symmetries with a
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scalar field φ. In such a way the scalar-tensor action reads:

S =
∫ √−g

[
φGk + ω(φ)

φ
∂μφ∂μφ + V (φ)

]
d4x . (47)

In this perspective, we can consider the simplest form of
scalar-tensor theories, with zero potential and ω(φ) ≡ ω,
that is a Brans-Dicke theory coupled with GB geometry. The
action becomes:

S =
∫ √−g

[
φGk + ω

φ
∂μφ∂μφ

]
d4x . (48)

In this case, the field equations can be written as:

2k R∇μ∇νGk−1 − 2kgμν R�Gk−1 − 4k Rλ
μ∇λ∇νGk−1 + 4k Rμν�Gk−1

+4kgμν R pσ ∇p∇σGk−1 + 4k Rμνpσ ∇ p∇σGk−1 + 1

2
(1 − k)gμν [Gk ] +

− ω

φ2 (∂μφ∂νφ − 1

2
gμν∂pφ∂ pφ) − 1

φ
(∇μ∇νφ − gμν�φ) = 0. (49)

As above, the corresponding point-like Lagrangian is

L = k(1 − k)φ(t)ȧ(t)3G(t)k−2G ′(t) − kȧ(t)3G(t)k−1φ̇(t)

+ (1 − k)a(t)3φ(t)G(t)k − ωa(t)3φ̇(t)2

φ(t)
. (50)

Euler–Lagrange equations and the energy condition for (50)
are

d

dt

∂L
∂ ȧ

= ∂L
∂a

→ 6ωa2ȧφ̇

φ
+ 3kȧ2äGk−1

+ a3

[
(k − 1)Gk − ω

(
φ̇2 − 2φ p̈

)
φ2

]
= 0

d

dt

∂L
∂φ̇

= ∂L
∂φ

→ 3a2
[
(k − 1)φ2Gk + ωφ̇2

]
φ

− 3kȧGk−3 {G [
2Gäφ̇ + ȧ

(
2(k − 1)Ġφ̇ + Gφ̈

)] +
(k − 1)φ

[
2GäĠ + ȧ

(
GG̈ + (k − 2)Ġ2

)]}
= 0

d

dt

∂L
∂Ġ = ∂L

∂G → G = ȧ2ä

a3

q̇i ∂L
∂q̇i

− L = 0 → a3
[
(k − 1)φ2Gk − ωφ̇2

]
φ

− kȧ3Gk−2 [
2(k − 1)φĠ + 3Gφ̇

] = 0

and can be easily solved giving the de Sitter solution

a(t) = a0ent , φ(t) = exp

{[
n2k

√
ω(k − 1)

ω

]
t

}
,

G(t) = 24n4. (51)

By coupling the scalar field to GB term, accelerated expan-
sion is recovered even if the scalar-field self-interaction
potential V (φ) is not present. Einstein’s gravity, even in
this case, is recovered for k = 1

2 ; contributions to GB

term coming from Riem2 and Ricci2, in some cosmo-
logical context, are comparable to R2, so that

√G =√
R2 − 4Ricci2 + Riem2 ∼ √

R2. It means that, in some
epochs, R2 and G are dynamically equivalent up to a con-
stant term. In fact, considering power-law solutions of the
form a(t) ∼ t p, we have

G = 24
äȧ2

a3 = 24p3(p − 1)

t4

R = −6

(
ä

a
+ ȧ2

a2

)
= 6p(2p − 1)

t2 (52)

so that it is clear that G ∼ R2 being p a number. The same
holds for exponential solutions, where both R and G are con-
stants and independent of time. Therefore, G and R2 can
be considered dynamically equivalent on the solutions (up
to a constant factor) if homogeneity and isotropy hold. A
more general case is the one concerning the sum of different
powers of G that can be easily reduced to to R + f (G) or
f (R) + f (G).

5.2 The case Gn + Gk

In this section we deal with the case of a function made
of a sum of powers of the GB term, in 4-dimensions. Even
though it is not directly a solution of the Noether system
and it does not contain symmetries in this metric, it could be
very relevant for several reasons. We mainly want to stress
that in cosmology, in some epochs, GR is recovered with
the choice f (G) = √G. In spherical symmetry, something
similar happens for different k, as shown in [40], where the
Noether approach is applied to a pure spherically symmetric
GB theory. A function like

f (G) = f0G
1
2 + f1Gn, (53)

can easily be compared to the case f (R,G) = R + f (G),
often discussed in literature in view to recover GR in suitable
limits [33,34].

We generalize the concept by considering the function
f (G) = f0Gn + f1Gk ; the Lagrangian is a particular case of
(36) and it reads:

L = −a3
[

f0(n − 1)Gn + f1(k − 1)Gk
]

− 8
[

f0n(n − 1)Gn−2 + f1k(k − 1)Gk−2
]

ȧ3Ġ. (54)

The Euler–Lagrange equations and the energy condition are:

123



Eur. Phys. J. C (2020) 80 :704 Page 9 of 12 704

d

dt

∂L
∂Ġ = ∂L

∂G → G = 24
ȧ2ä

a3

d

dt

∂L
∂ ȧ

= ∂L
∂a

→ 3a2
[

f0(n − 1)Gn + f1(k − 1)Gk
]

− 24ȧ
[

f0n
(

n2 − 3n + 2
)

ȧGn−3Ġ2+
+ f1k

(
k2 − 3k + 2

)
ȧGk−3Ġ2 + f0n(n − 1)Gn−2 (

2äĠ + ȧG̈
) +

+ f1k(k − 1)Gk−2 (
2äĠ + ȧG̈

)]

ȧ
∂L
∂ ȧ

+ Ġ ∂L
∂Ġ − L = 0 → a3

[
f0(n − 1)Gn + f1(k − 1)Gk

]
− 24ȧ3Ġ

[
f0n(n − 1)Gn−2 + f1k(k − 1)Gk−2

]
.

(55)

The system admits the following de Sitter solution:

a(t) = a0emt G(t) = 24m4 with m =
[
−24n−k f0

f1

(
n − 1

k − 1

)] 1
4(k−n)

.

(56)

This means that dark energy [33] and inflation [37] can be
easily recovered in this framework.

6 Quantum cosmology and the wave function of the
universe

The above considerations allow to develop also quantum cos-
mology for the minisuperspace TQ ≡ {a, ȧ,G, Ġ}. Starting
from Lagrangian (42) we can calculate the related Hamilto-
nian as a function of momenta:

H = f0

k
Gka3 + πa

(
− πG

8 f0
G2−k

) 1
3

, (57)

where πa = ∂L
∂ ȧ and πG = ∂L

∂Ġ according to the Legendre
transformations.

Thanks to the Noether symmetries, we can insert into (57),
a cyclic variable which allows to fully quantize the theory.

From Eq. (44), it is easy to see that the quantity
ȧ

Gk
is a

constant of motion. Immediately, it is

ȧ3

G3k
= �0, (58)

and then we can rewrite πG as

πG = −8 f0�0G4k−2. (59)

Replacing this result into (57), we can write the Hamiltonian
in the simpler form:

H = f0

k
Gka3 + πa

(
�0G3k

) 1
3
. (60)

Now, thanks to the quantization rules coming from the
Arnowitt–Deser–Misner (ADM) formalism [56,57], we can
define the operators

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

πG = −i
∂

∂G

πa = −i
∂

∂a

Hψ = 0.

(61)

The third equation is the so-called Wheeler-de Witt Equation
and ψ is the Wave Function of the Universe [56–60].

From the first equations, being πG = −8 f0�0G4k−2, the
quantity πGG2−4k is a constant of motion. More precisely the
quantized equation of momentum can be written as:

i
∂

∂Gψ(a,G) = 8 f0�0G4k−2ψ(a,G), (62)

so that we get the system
⎧⎪⎨
⎪⎩

πGψ = −i ∂
∂G ψ → ψ(a,G) = A(a) exp

{
i

8 f0�0G4k−1

1 − 4k

}

Hψ = 0 → f0

k
(�0)

− 1
3 a3 A(a) − i

∂ A(a)

∂a
= 0.

(63)

The latter equation has the solution:

A(a) = A0 exp

{
− i

4

f0

k
(�0)

− 1
3 a4

}
(64)

and hence finally the Wave Function of the Universe is

ψ(a,G) = ψ0 exp

{
i

[
− f0

4k
(�0)

− 1
3 a4 + 8 f0�0G4k−1

1 − 4k

]}
.

(65)

According to the Hartle criterion [61,62], an oscillating Wave
Function means correlations among variables and then the
possibility to find classical trajectories (i.e. observable uni-
verses). In fact, considering the WKB approximation, it is
ψ(a,G) ∼ ei S (where S is the action), we have, from (65),

S = − f0

4k
(�0)

− 1
3 a4 + 8 f0�0

1 − 4k
G4k−1 (66)

and, after some trivial calculations, we notice that Hamilton–
Jacobi equation with respect to the scale factor provides the
third equations of motion in (43):
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∂S

∂a
= πa → Gka3 = 24Gk−2ȧ3Ġ. (67)

The second Hamilton–Jacobi equation

(
∂S

∂G = πG
)

instead,

is nothing but the identity πG = �0 which can be recast into
the second equation of motion of (43). In this sense, classical
trajectories, and then observable universes, are recovered. As
reported in [20,63], oscillatory behaviors of the Wave Func-
tion of the Universe are related to conserved quantities com-
ing from Noether symmetries. If the number of symmetries is
equal to the variables of minisuperspace, the dynamical sys-
tem is fully integrable and the Wave Function fully oscillat-
ing. As a consequence, we can state that Noether symmetries
select observable universes.

7 Discussion and conclusions

In this paper, we discussed f (G) cosmology via the Noether
Symmetry Approach. The main results are that the existence
of symmetries selects a power-law form of f (G) = f0Gk and,
in 4-dimensions, with the further constraint k �= 1, we can
obtain interesting dynamics. Furthermore, we can observe
that the case k = 1 is not allowed, in agreement with the fact

that S =
∫
M

Gd4x = χ(M), being χ(M) the Euler char-

acteristic. Moreover, taking into account the definition of the
Gauss Bonnet invariant G and considering that, in FRW cos-
mology Rμν Rμν , Rμνpσ Rμνpσ � R2, for k = 1/2 we can
recover Einstein’s gravity. In other words, GR can be seen as
a particular case of f (G) theory without asking for the cor-
rected theory R + f (G). In this framework, it is possible to
obtain both exponential and power-law cosmological solu-
tions also in presence of standard matter. The former can be
recovered only in 5-dimensions or more, while the latter can
be found even in 4-dimensions. In 4-dimensions, de Sitter
solutions are possible only adding an extra term Lm ∼ e−3w

with w = −1. Nevertheless, coupling Gk to a scalar field φ,
de Sitter exponential law is immediately recovered also in in
vacuum.

Furthermore, we analyzed the sum f (G) = f0Gn + f1Gk

which, according to the above considerations, naturally can
give f (R,G) = R + f (G). Also in this case, we found exact
solutions.

Finally, we discussed the quantum cosmology for the min-
isuperspace related to the variables a andG. Also in this case,
symmetries have a key role for the interpretation of the Wave
Function of the Universe. They allow to find out oscillatory
behaviors and then the possibility to apply the Hartle crite-
rion, which states that oscillations mean correlations between
variables and then the possibility to achieve classical trajec-
tories, that is observables universes.

As a concluding remark, considering extended Gauss–
Bonnet cosmology can result useful from several points of

view, in particular, for avoiding ghost modes [5] and other
pathologies present in GR and in other modified gravity the-
ories. Beside this fact, it seems a natural approach towards
quantum fields in curved spaces and, finally, towards quan-
tum gravity [64].
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