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Abstract

We have searched for tt production in multi-jet final states in pp collisions at
a center-of-momentum energy of 1.8 TeV. Each of the top quarks in these states
decays predominantly to a bottom quark and a W boson, with the W's decaying
into lighter quark-antiquark pairs. Although 44 % of all #¢ production involves
such multi-jet final states, the background from Quantum Chromodynamic (QCD)
processes is an overwhelming factor of 1000 larger, making it difficult to extract
evidence for a signal.

Our study was performed using the D@ detector at the Tevatron pp collider at
Fermilab, with a data set corresponding to 95.3 events/pb. After imposing selec-
tion criteria to enhance the signal relative to background, three different analysis
techniques provided evidence for a tt signal. However, the observed excess is not
significant enough to establish the unambiguous presence of a signal in the multi-
jet channel. However, the yield of 7.9 & 7.1 pb (at m; = 160 GeV/c?) is consistent
with expectation based on other ¢ channels. Assuming that the observed excess
of events is due to ¢t production, we also attempted to extract the mass of the top
quark. Due to similarities in the shape of mass spectra for background and signal,
and the low signal to background ratio, we were only able to extract a value of
the top mass with a large uncertainty. We obtain 148 4+ 52 GeV/c? as our best
estimate of the mass of the top quark, a value that is consistent with measurements

in cleaner channels.
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Foreword

The D@ experiment is a large collaborative effort, in which more than 450
physicists and students from 48 institutions are currently participating. The Uni-
versity of Rochester group is active in monitoring of liquid-argon purity, in data
acquisition and reconstruction efforts, and in analysis of data in the areas of QCD,
top-quark physics, and new phenomena. The group is also participating in devel-
opment and construction projects for a scintillating-fiber tracking chamber to be
included in the upgrade of the D@ detector.

I have been involved in work in several of these areas. I participated in early
research and development projects for the scintillating fiber tracker by developing
quality control procedures for photodetector chips, helping to develop techniques
for the construction of ribbons of scintillating fibers, by performing studies of pho-
todetector characteristics, by participating in studies of optical connectors, and by
participating in studies of temperature controllers for the photodetector test. In
addition, I participated in setting up electronics for the cosmic-ray test of a proto-
type scintillating fiber tracker. During the 1994-96 running period of the Tevatron,
I also participated in operating the offline processor farm that reconstructed events
from the detector signals, and have had primary responsibility for maintaining and
improving the control processes and monitoring processes that handle communi-
cation between the server and worker nodes on the farm. My analysis project has

been studies of top quark production in multi-jet final states.



Chapter 1

Introduction

This dissertation is devoted to an experimental search for the top quark and a
measurement of its mass in multi-jet final states of proton-antiproton collisions.

All phenomena in our world appear to be explainable by four basic forces:
strong, electromagnetic, weak and gravitational, and great progress has been made
in elementary particle physics over the past three decades, both experimentally
and theoretically, in unifying the first three forces. The “Standard Model” is the
mathematical formulation of the current status of particle interactions, and in this
chapter we will describe it briefly, with emphasis on the physics of the top quark
in the context of the Standard Model.

1.1 Standard Model

The Standard Model is a gauge field theory based on vector fields associated with
the group SU(3) ® SU(2) ® U(1), on fermions representing quarks and leptons,
and on at least one scalar Higgs multiplet that is needed to give vector bosons

and fermions their finite masses[1, 2]. The simplest possibility has a single Higgs



doublet, and is frequently referred to as the minimal Standard Model[3]. This is
what we will refer to as the Standard Model. The SU(3) gauge interactions are
the strong “color” forces associated with quantum chromodynamics (QCD), while
the SU(2) ® U(1) interactions describe the electroweak isospin and hypercharge of
the Glashow-Weinberg-Salam Model[4]. Electroweak interactions are described by
an SU(2) weak field W and a U(1) hypercharge field B,,, together with a complex
Higgs field ¢ that transforms as a doublet under SU(2). Neglecting fermions and

color forces, the electroweak Lagrangian can be written as:

1 1.
L = = BL = Wi +Dug'D"é - V(e), (1.1)
where
B,, =0,B, — 0,B,, (1.2)
W;u = aNWIf - aVW; + gZEach,l;W,f, (13)

g2 is a (arbitrary) strength of the coupling to the weak isospin current, €u. is
the structure constant of the group SU(2), and 0, is the four-gradient defined as
0, = (0/0t, V). Quite generally, the covariant derivative is defined as

1
D* = (9u — §’LnguY — ’L.QQW;TG, (]_4:)

where Y is the hypercharge generator, g; is a (arbitrary) strength of the coupling
to the weak hypercharge current, and T is the SU(2) generator appropriate to
the field on which the derivative is acting.

For the Higgs doublet, the hypercharge Y;is + 1 and 7% = 1/2 0%, where o are
the standard Pauli matrices. The potential for the Higgs field (¢) can be written



as:

V($) = A($'9)* — 124, (1.5)

where A is the self-coupling and p is a mass parameter. The mass term enters with
the “wrong” sign, triggering “spontaneous symmetry breaking”[5] so that in the

ground state,

86 = 07, (L6)

where in tree level approximation v? = p?/X. Now, in a gauge where ¢ =
1/2(0,v)T, the mass matrix for the vector bosons is, to first approximation,

associated with the following quadratic terms in the Lagrangian[6],
1
1(91Bu + g Wio®) (g1 B + g.W™5") . (1.7)

In terms of the weak mixing angle, defined by tan §,, = g1/g-, the above Lagrangian

can be expressed in terms of rotated fields[6]:

A, cosf, sindb, B,
Z, —sinf, cosf, WS’

b

W, = \J1/2(W} +iW?). (1.8)

In the rotation, electromagnetic field A, remains massless, and couples with strength

9192

Vi + g5

Using the rotated fields, the preceding expression (1.7) becomes|[6]:

e = gy cos O,,. (1.9)

1
My WIW*H + §M§Z3, (1.10)



where Mj, = 1gjv* and M} = My, /cos’fy. (The relationship between the
mixing angle and the masses of the physical vector boson is not true beyond tree
level approximation[6].) The mass of the W boson is known to an accuracy of better
than 0.3% from observations of leptonic decays of W's produced in pp collisions at
CERN][7] and Fermilab[8]. My has been determined to an accuracy better than
0.1% from detailed fits to the Z° resonance peak in e~ e™ annihilation at SLC[9]
and LEP[10]. The existence of the vector bosons, and their observed mass ratio,
strongly supports the Standard Model. The mass of the Higgs boson is unknown
and is a free parameter in the theory.

The fundamental fermions, the leptons and the quarks, are grouped into three
“families” or “generations”. The three generations of leptons, associated with the

electron, the muon, and the tau, are:

Ve Vu Vr
en; LR; TR,

e L, 7 L, T L,
where the subscripts L and R stand for left and right-chiral objects, respectively.
All neutrinos are massless in the Standard Model, and consequently no right-
handed v fields are required[6]. The right-handed leptons are therefore singlets of
weak isospin. Assuming standard decays, measurements of the width of the Z°[9,
10] exclude the existence of other than the three known generations of massless
neutrinos.

Similarly, the three generations of quarks in their weak eigenstates of the un-

broken gauge theory can be represented as

U C
UR, dR; CRy SR; tr,br.

d) I, s ) L, b ) I,



Here, in order to assign quark mass terms for both “up-type” and “down-type”
quarks, one needs not only the doublet Higgs ¢ with Y = 1, but also the conjugate
multiplet ¢ = i02¢*, which transforms as a doublet with ¥ = —1. Having this
possibility in the Lagrangian, provides a mixing among the quarks, with their

charged weak currents given by:

d

g L.
Jri, (u c t)L 7wV | s
b

This mixing matrix V, known as Cabibbo-Kobayashi-Maskawa matrix[11] ( CKM )
describes the relative strengths of the mixing of quarks in electroweak interactions.

Unlike the leptons, the quarks interact strongly, and carry a color index. All
the quark fields transform as fundamental triplets under color SU(3). The gluon

field G}, which mediates this strong interaction, adds to the Lagrangian £ a term

1 a
_ZG“i (1.11)

where G}, = 0,G; — 3,G}, + g3fachZG,C,, with g3 being the QCD coupling con-

stant and fu. the SU(3) structure constants. Measurement of hadron production

in ete” interactions, and in particular the value of R, defined as R = o(e" et —

hadrons)/o(ete” — p~p't), confirmed that there are indeed three colors for

quarks[11].

1.2 Top Quark Production and Decay

The production cross section of top-antitop pairs in hadron collisions can be

written in the Born approximation as follows[12]:



A=y [ " derdey PO (2,) P (g)600) ( dm” ) , (1.12)
4,J=49,39:99
where m is the mass of the top quark, and s is the square of the total center-
of-momentum energy. The function F(*) are the parton (partons refer to both
quarks and gluons) densities for parton k in hadron 7, and are evaluated at a scale
p of the order of the heavy quark mass m. At this lowest order, the two partonic
subprocesses are quark-antiquark annihilation and gluon-gluon fusion as shown in
Fig. 1.1. These subprocesses are of order o in the strong coupling strength. The
calculated top production cross section depends on these subprocess cross sections
(604)) and on the parton densities that specify the probability of having quarks,
antiquarks, and gluons, of any specified momentum fraction z, in the incident

proton and antiproton.

Both the order a?

CRl

3

2, contributions have been

and the next-to-leading order
calculated by several groups[13, 14, 15]. One interesting result is that the size
of the O(a3) terms is particularly large near the tf production threshold. This,
of course, raises questions about the reliability of the perturbative calculation.
Because of the large mass of the top quark, this region of phase space is important
for top quark production at the Tevatron. These effects have been included in the
calculation of the ¢ total cross section using the so called resummation technique,
that resums leading log terms to provide a better estimate of the threshold effect.

The resulting cross section can be fitted adequately in the range of m; = 160 to

190 GeV/c? by the expression[15]:

o(tf) = e 35 (4757088 pb. (1.13)
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Figure 1.1: Leading order processes for ¢ production.



Table 1.1: Branching fractions for ¢£ decay channels.

wt -
¢ etve pty, T,

(6/9) (1/9) (1/9) (1/9)

W~ > qq (6/9)|36/81 6/81 6/81 6/81

e 7. (1/9)| 6/81 1/81 1/81 1/81

p~o, (1/9)] 6/81 1/81 1/81 1/81

o, (1/9)| 6/81 1/81 1/81 1/81

Figure 1.2 shows the predicted ¢ total cross section as a function of mass of the
top quark, where the dashed curves represent the theoretical uncertainty due to
unknown higher-order effects and imprecise knowledge of the physical parameters
such as a;.

In the Standard Model, the top quark decays almost exclusively to an on-shell
W boson and a b quark ( for m; > mw + my)[17, 18]. The W can decay either
semileptonically, for example, W — e+ v, or hadronically, W — g+ ¢/, while the b
quark forms a “jet”. Due to the fact that the mass of the W is much greater than
that of its decay products, to a good approximation, each allowed decay mode of
the W boson is equally probable, except that the hadronic modes are three times
more likely because of the color factor. This results in the predictions of Table 1.1
for different ¢ branching fractions.

In this dissertation, we will focus on the extraction of the signal for the top
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Figure 1.2: The top-antitop production cross section as a function of top mass for /()
= 1.8 TeV[15]. The solid line shows the central value for the prediction, and the dashed
lines show the theoretical uncertainty. The Martin-Roberts-Stirling set A’ ( MRSA’ )[16]
parton distribution was used in the calculation.
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quark, and the reconstruction of its mass, in states where the W bosons from top
and antitop quarks decay only into hadronic jets. This channel, the “all-jets” final
state, has an advantage of having the largest branching fraction (4/9 ). Apart from
the largest branching ratio, the measurement of the mass of the top quark in the six-
jet topology has another important advantage over measuring the mass in leptonic
decays. In leptonic events, one neutrino for every semi-leptonic decay escapes
the detector without being measured directly. This complicates the procedure of
extracting the mass in this channel and can degrade the measurement. However,
the background to ¢t production in multi-jet events with 6 or more jets in the final
state, which has its origin in the quantum chromodynamic (QCD) production of
partonic jets, has a cross section of the order of 100 nb[19, 20]. The ratio of top
quark events to the QCD background is approximately 5 pb / 100 nb ~ 1 / 20,000,
and it is therefore quite challenging to extract the top-quark signal, to measure the
tt total cross section, and to measure the mass of the top quark in this channel.
One difference between top quark events and the QCD background, however, is
that the b-quark and quarks from W decay are produced with higher transverse
momentum (pr) values than partons in typical QCD processes. Figure 1.3 (a)
shows the transverse energy (Er) distributions of b-quarks and light quarks from
W decay in top quark production at the Tevatron. (We will usually assume that
the mass of the light quarks can be neglected, and that the mass of the b-quark is 5
GeV/c?, and define the transverse energy Er as \/p%meg) For comparison, the
Er distribution for partons from background QCD processes is also shown in the
plot. On the average, quarks from top quark decay have higher E; values. Also,
the pseudorapidity () distributions of quarks from top quark decay and partons
from QCD background are significantly different, as is shown in Fig. 1.3 (b). Such
differences will be utilized in our analysis.

In addition to quarks expected from the leading-order processes in tt produc-
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Figure 1.3: Kinematic properties of quarks from top-quark decay and from standard
QCD process. For the calculation of E7 and 7 of the partons, we used the HERWIG
program. Solid lines are for the b quark, and dashed lines for quarks from W decay in
tt events. The dotted lines are for QCD background processes. (a) E7 distributions of
partons, (b) 7 distributions of partons.
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Figure 1.4: Seven Feynman diagrams that dominate {f production involving extra
gluons[21].
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tion, extra partons can be produced, for example, as gluons emitted from the
incoming partons, from the top quarks before they decay, or from the b quarks
in the final state. There have been several studies of the production of extra jets
in tt final states, and there is now available a complete calculation of the exact
matrix element for the process, including contributions from gluons emitted dur-
ing production and decay and the interference between these at the tree-level[21].
Figure 1.4 shows seven diagrams that dominate gg — tf production at Tevatron
energies. (Because of gluon density suppression in the proton at high z, gqg an-
nihilation cross section is almost an order of magnitude larger than that for gg
fusion for m; ~ 175 GeV/c?.) The presence of extra gluons affects not only the
determination of the mass of the top quark by worsening the resolution on the Wb
invariant mass, but also by increasing the combinatoric backgrounds in selecting
the correct set of jets to form the top mass. This issue will be addressed later in

this dissertation.

1.3 Hadronization

Colored quarks and gluons can be regarded as essentially free during a hard
collision, but color forces subsequently force them into colorless hadrons. This is
called hadronization or fragmentation[22, 23]. This fragmentation of partons into
bundles of hadrons that form jets is a non-perturbative phenomena and cannot at
present be calculated from first principle. The process must therefore be described
phenomenologically, guided by general principles and physical ideas.

A simple mathematical model due to R.P. Feynman and R.D. Field[24] can be
used to parametrize the non-perturbative aspects of quark and gluon jets. This
so-called Feynman Field fragmentation model, assumes that jets can be analyzed

on the basis of a recursive principle. The ansatz is based on the idea that the
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fragmenting quark is combined with an antiquark, originating from a qg pair cre-
ated out of the vacuum, to give a “first-generation” meson with a parton energy
fraction z. The leftover quark, with energy fraction (1 — z), is fragmented in the
same way, and so on, until the leftover energy falls below some arbitrary cutoff.
For gluon fragmentation, the gluon is first split into a quark-antiquark pair. Then
by assigning with equal probability all of the gluon’s momentum to one or the
other quark, the gluon behaves in effect as a quark of random flavor. This is the
basic way that fragmentation occurs in the event generator, ISAJET[25].

However, when a color-neutral gg pair is produced, a color-force field is created
between the quarks. It fact, for a confining theory such as QCD, the color lines
of force should be mostly concentrated in a narrow tube connecting the ¢ and
g, thereby acting like a string with constant tension. This is the picture used in
another event generator, HERWIG (Hadron Emission Reactions With Interfering
Gluons)[26].

These two different models for fragmentation in top quark production will be
used in our analysis of the data. Our results often depend on details of those
models, and, in some cases, the two models can provide significantly different

results. Such differences will limit the systematic uncertainty of our measurements.

1.4 Outline of Dissertation

In Chapter 2, we describe the Tevatron collider and the D@ detector. Particle
identification is discussed in Chapter 3, and selection of the data samples used in
our search in Chapter 4. Chapter 5 is devoted to the techniques used to distinguish
a signal for ¢t production in the all-jets channel from backgrounds. In Chapter 6,
techniques used to extract the mass of the top quark are presented. Conclusions

are drawn in Chapter 7.



15

Chapter 2

The Experiment

2.1 The Accelerator Facilities

The Fermi National Accelerator Laboratory produces currently the world’s
highest-energy proton-antiproton colliding beams. The accelerator, which provides
the protons and antiprotons, consists of a series of seven components: a preacceler-
ator, a linear accelerator, a rapid-cycling synchrotron, a debuncher, an antiproton
source, the Main Ring, and the Tevatron. Figure 2.1 shows these components, and

the following sections give brief descriptions of some of their functions[27].

2.1.1 The Preaccelerator

The Preaccelerator is where the eventual proton beam starts out as a pulsed
10 keV mA negative hydrogen-ion beam. Hydrogen gas is injected into a mag-
netron to a pressure of several hundred millitorr and energized with a few hundred
volts[28]. Hydrogen gas is ionized inside the magnetron and then negative ions are
created by positive ions striking the cathode. Figure 2.2 shows a schematic view

of the magnetron source. After formation, some of the negative hydrogen ions
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Figure 2.1: Layout of the collider facility at Fermilab (not to scale).
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Figure 2.2: The basic configuration of a magnetron source. Cesium is introduced into the
source to increase the negative ion production by lowering the surface work function[28].

are extracted through the anode aperature, are accelerated through the extraction

plate to 750 keV, and transported to the Linac.

2.1.2 The Linac

The Linac is a two-stage linear accelerator that produces a pulsed beam of 400
MeV negative hydrogen ions for injection into the Booster. The first stage of the
Linac, a drift-tube accelerator, accelerates the ions to 116 MeV. A new side-coupled
linac has replaced a portion of the drift-tube linac and currently accelerates the

beam to an energy of 400 MeV.

2.1.3 The Booster

The Booster[29] is an 8 GeV fast-cycling proton synchrotron, which serves

as an injector for the Main Ring. It accelerates 400 MeV protons obtained from
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Figure 2.3: A simplified view of the Fermilab Booster injection for H~ multiturn charge-
exchange injection (ORBMP refers to ORbital BuMP magnet).

the Linac via multiturn charge-exchange injection at a rate of 15 Hz. Negative
hydrogen ions are brought into a parallel path with a closed orbit for protons
in a straight section of the booster. The two beams are merged by passing both
through two adjacent dipole magnets of opposite polarity, and then passes through
a carbon foil, which strips electrons from the negative hydrogen ions, as shown
schematically in Fig. 2.3. The booster operates in two modes for colliding-beam
operations. When the Booster is accelerating protons for eventual injection into
the Tevatron, only 11, 13, or 15 bunches are injected into the Main Ring for final
coalescing into one bunch. The remaining buckets are directed to a beam dump.
While antiprotons are being collected, the Booster delivers one full turn of protons

to the Main Ring approximately every 2.4 sec.



19

2.1.4 The Main Ring

The Main Ring[30] is a 400 GeV proton synchrotron with a radius of 1000 m.
Since the commissioning of the modified Tevatron in July, 1993, the Main Ring
has served as a 150 GeV injector of protons and antiprotons for the Tevatron, as
well as a source of 120 GeV protons used for producing antiprotons. The layout of
the Main Ring was given in the Fig. 2.1, where the labels denote sections used for
injection and extraction lines, and locations of colliding-beam experiments. Two
major deviations from a circular orbit in the Main Ring are the vertical excursions
out of the plane of the circle at BO and D@. The design of the Tevatron was
restricted by the requirement that it should be installed within the existing Main-
Ring tunnel. The exceptions to this are the two overpasses of the Main Ring at
the B@® and D@ interaction regions, where the Main-Ring beamline is separated
vertically from that of the Tevatron ring. The overpasses were envisioned to allow
collider experiments located in these two regions to operate without interference
with the detectors. The overpass built at BO does, in fact, bypass the CDF detector
at a vertical separation of approximately 19 feet. However, the vertical overpass at
D® passes through the forward muon chambers and the outer calorimeter modules.

The beam is accelerated to the Tevatron injection energy of 150 GeV, the Main
Ring and the Tevatron RF systems are synchronized, and then finally the beams

are injected to the Tevatron.

2.1.5 The Antiproton Source

The Antiproton Source[27] is comprised of a target station, a Debuncher ring
and an Accumulator ring, and the transport lines associated with these devices.
The accumulation of antiprotons involves extracting protons from the Main Ring,

directing them onto a target, collecting negative-charged secondary particles, and
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cooling the antiprotons so that they can be stored in the Tevatron. (Cooling means
reducing the phase space occupied by the beam, and thereby fitting the beam into
the smaller aperture of the Accumulator, with an accompanying reduction of the
spread in the momentum) Finally, the Main-Ring RF system is synchronized to
the accumulator RF system (53 MHz) and the synchronous transfer of antiprotons

into the Main Ring occurs.

2.1.6 The Tevatron

The Tevatron is a proton-antiproton colliding beam synchrotron accelerator,
operating at a center-of-momentum energy of 1.8 TeV. It is currently the highest
energy collider in existence. All of the dipoles, quadrupoles, and correction mag-
nets making up the basic lattice of the machine are superconducting and are cooled
by liquid helium to a temperature 4.6 K. At the beginning of each store, proton
bunches from the Main Ring are injected individually into the Tevatron followed
by antiproton bunches. Once injected, they are ramped together to the current
operating energy of 900 GeV per beam. Special superconducting quadrapoles, lo-
cated on either side of the two luminous regions, squeeze the beams. This decreases
the size of the beam spot to o, , ~ 40 pm, which increases the luminosity (this is
the reason that BO and D@ are referred to as luminous regions). Table 2.1 lists
several parameters of the Tevatron Run in 1992. More detailed information can

be found elsewhere[27].

2.2 The Detector

The D@ detector[33] was constructed to study proton-antiproton collisions in

the Fermilab Tevatron collider. The prime physics goals are the study of high-
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Table 2.1: Tevatron parameters.

Accelerator radius 1000 m
Maximum beam energy 900 GeV
Injection energy 150 GeV

Peak luminosity ~ 10 x 103 em=2 57!
Number of bunches 6p,6p
Intensity per bunch ~ 100 x 10%p, ~ 50 x 10°p
Crossing angle 0°

Bunch length 50 cm
Transverse beam radius 43 pm
Fractional Energy spread 0.15 x1073

RF frequency 53 MHz

p stacking rate ~ 3.5 x 10'° /hour
Pp crossing frequency 290 kHz
Period between pp crossings 3.5 us

pr phenomena, which includes top-quark physics, heavy-boson physics, perturba-
tive QCD, b-quark production and any unexpected phenomena. The D@ detector
consists of three major parts: the tracking system, the calorimeter system, and the
muon system. An isometric view of the D@ detector shows these major compo-
nents in Fig. 2.4. A supporting platform (not shown) serves as the transporter for
the detector to and from the D@ interaction region. Much of the front-end elec-
tronics also rests on the platform. The elevation view of the detector is given in
Fig. 2.5, and shows the detector system and, in addition, the supporting platform
that contains the electronics, cable connections, and service modules for power, gas
and cryogens. The Tevatron beam pipe is centered on the D@ detector, while the
Main Ring passes through the forward muon chambers and the outer calorimetry,
as shown.

We adopt a right-handed coordinate system, in which the positive z-direction
is along the incident proton beam and the y-axis is upward. The angles ¢ and 6

are respectively the azimuthal and polar angles (6 = 0° along the proton beam
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Figure 2.4: Isometric view of the D@ detector.
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Figure 2.5: Elevation view of the D@ detector. The scales are in meters.

direction). The r-coordinate denotes the perpendicular distance from the beam
axis. The pseudo-rapidity, n = —log (tan (6/2)), approximates the true rapidity
y = 1/2log ((E + p.)/(E — p.)) in the limit that (m/E) — 0, which is a useful
coordinate because y (and 7 only approximately) is additive under Lorentz trans-

formations along the collision axis.

2.3 Central Detectors

The D@ central detector (CD) system is composed of four subsystems: The
vertex drift chamber (VTX), the transition radiation detector (TRD), the central
drift chamber (CDC), and two forward drift chambers (FDC). As shown in Fig. 2.6,
the VTX, TRD, and CDC are effectively three concentric cylinders that are coaxial
to the beam pipe. The FDCs are oriented perpendicular to the beams so as to

cover the forward region. The CD detectors extend to » = 78 cm and z = + 135
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Figure 2.6: Arrangement of the D@ central detectors.

cm.

The prime considerations in the design of the D@ tracking detectors[34] were
to have good two-track resolving power and high efficiency, rather than measuring
momenta of charged particles. Thus, the detector has no central magnetic field.

The TRD was included to help distinguish electrons from pions.

2.3.1 Vertex Drift Chamber

The passage of ionizing radiation through the gas in a cell of a chamber leaves
a trail of electrons and positive ions. A drift chamber[35, 36] is a tracking device
that uses the drift time of ionization-electrons in a gas to measure the spatial
position of a particle that produced the ionization. Knowing the drift velocity of
the electrons for a specifically chosen gas mixture, allows one to locate the position

of the charged particle in the chamber, typically to an spatial accuracy of ~ 100

pm.
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Coarse Field
Fine Field

Figure 2.7: r-¢ view of a quadrant of the VIX chamber showing the arrangement of
the sense wires, grid wires and cathode field shaping electrodes.

The VTX chamber is the innermost tracking detector in D@, with an inner
radius (r) of 3.7 cm, and an outer active radius of » = 16.2 cm. There are three
concentric layers of cells in the VIX chamber: innermost layer (VTXO0, 16 cells
in azimuth) and two outer layers (VIX1 and VTX2, 32 cells in azimuth). Wire
sizes, composition, and other parameters of the VIX can be found in Table 2.2.
As indicated in Fig. 2.7, the cells of the three layers are not aligned along the =
direction. This is done to aid pattern recognition and to facilitate calibration. The
sense wires also provide a measure of the z-coordinate, from the amplitudes of the
signals at both ends (a method referred to as charge division)[37]. Overall, the
VTX has a resolution in 7 — ¢ of 60 pm and in z of 1.5 cm[38].

2.3.2 Transition Radiation Detector

Transition radiation[39] is a type of radiation emitted when a charged particle

passes between media of different dielectric or magnetic properties. (The moving



Table 2.2: VTX chamber parameters.

Length of active volume

Radius

Radial wire interval
Number of cells/cell
Number of sense wires
Sense wire

Sense wire potential
Guard wire

Layer 1 = 96.6 cm
Layer 2 = 106.6 cm
Layer 3 = 116.8 cm
3.7em < r < 16.2 cm
4.57 mm
8
640
25 pm NiCoTin, 1.8 kQ2/m 80 g tension
+2.5 kV
152 pm Au-plated Al
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Gas mixture

CO04(95%)-ethane(5%) at 1 atm

Gas gain 4 x 10*
Drift Field 1.0-1.6 kV/cm
Drift velocity 7.3 pm/ns.

fields of the charged particle induce a time-dependent polarization in the medium,
and this polarization emits radiation). At high energy, transition radiation is
primarily emitted in the form of X-rays. These X-rays have an energy distribution
that peaks at about 8 keV, and is mainly below 30 keV.

The TRDI[41] is located between VIX and CDC, providing electron identifi-
cation independent of that given by the calorimeters. The TRD consists of three
separate units, each containing a radiator and an X-ray detection chamber. Radi-
ators consist of 393 foils of 18 um thick polypropylene, in a volume of dry nitrogen
gas. The X-rays are detected in a radial-drift proportional wire chamber (PWC)
mounted after the radiator, as shown in Fig. 2.8. Because of the contributions
from transition radiation and the relativistic rise of the specific ionization[33], the
amount of energy deposited in the TRD by electrons should be about twice the
amount deposited by pions. Table 2.3 lists some parameters[40] of the TRD.
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Figure 2.8: Schematic view of a TRD.

Table 2.3: TRD parameters.

Length of active volume
Radius

X-ray detector gas
Radiation length
Interaction length

Gas mixture

166.6 cm
175 cm < 1t < 49.0 cm
Xe(gl%), CH4(7%),C2H6(2%)
0.0813 X,
0.0357 A,

xenon-CHy

27
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Figure 2.9: Schematic view of a CDC.

2.3.3 Central Drift Chambers

The central drift chambers provide tracking of charged particles, and their energy
loss (dE/dz) for the pseudo-rapidity region |n| < 1. The CDC is a cylindrical shell
of chambers 184 cm in length, with layers between of 49.5 and 74.5 cm (outside
of the TRD). Figure 2.9 shows an end view of the CDC. Four different concentric
rings contain 32 azimuthal cells per ring, and each cell contains seven 30 pm gold-
plated tungsten sense wires. The CDC has a resolution in z,y of 180 gm and in z of

3.5 mm[37, 38]. Wire sizes, composition, and other details are given in Table 2.4.

2.3.4 Forward Drift Chambers

Forward drift chambers extend coverage for tracking of charged particles down
to 8 =~ 5°. The FDC occupies each end of the concentric barrels of the VITX, TRD,
and CDC. As shown in Fig. 2.10, each FDC consists of separate chambers. ® and

¢ chambers measure § and ¢ coordinates, respectively. Each & chamber is a single
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Table 2.4: CDC parameters.

Length of active volume 179.4 cm

Radius 5l.8 cm < r < 71.9 cm
Number of Layers 4

Radial wire interval 6.0 mm

Number of sense wires/cell 7

Number of sense wires 896

Number of delay lines 256

Gas mixture Ar(93%)-CH4(4%)-C04(3%)-H,0 at 1 atm
Drift Field 620 V/cm

Drift velocity 34 mum/ns

Gas gain 2,6 x 10%

Sense wire Au-plated W , diameter = 30 pm

chamber, containing 36 sectors over the full range of ®. Each ® chamber consists
of four mechanically separate quadrants, each containing six rectangular cells at

increasing radii.

2.3.5 Readout of the Central Detectors

The electronics for all CD devices consist of three stages of signal processing:
Preamplifiers mounted directly on the chambers, the signal shaping electronics
on the detector platform, and flash-ADC digitizers in the moving counting house
(MCH). (The preamplifier output signals are carried out to the shaping circuits
through 15 m long coaxial cables.) The full CD, including TRD detectors consist

of 6080 separate channels.

2.4 Calorimeters

The energy of elementary particles can be measured with instruments that

are generally called calorimeters[42, 43, 44]. A calorimeter is a block of matter in
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Figure 2.10: Schematic view of a FDC.

which the particle to be measured interacts and transforms part of its energy into
a measurable quantity. D@ calorimetry is based on liquid argon for the sensitive
region, and mainly uranium for the uninstrumented absorber.

The quantum of the electromagnetic field, the photon, interacts with matter
via three different processes: the photoelectric effect, Compton scattering, and
electron-positron pair production. Electromagnetic energy loss occurs through all
three of these processes. A charged particle (e.g., an electron produced by an initial
photon) can ionize the medium that it traverses, or it can radiate energy in the
Coulomb field of a nucleus (Bremsstrahlung). If the incident photon’s energy is
large, then an electromagnetic shower develops in the medium. This is primarily
characterized by the electron density in the absorber. To a certain extent, it is
possible to describe shower characteristics in a material-independent way. For

the longitudinal development, the so-called radiation length (X,) characterizes the
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shower size. The radiation length is defined as the distance over which a high
energy electron loses on average 63.2 % (or 1 — 1/e ) of its initial energy. The
Moliere radius is defined by the ratio of X, to €., where €. is the energy at which the
loss through radiation and ionization are the same (for an electron in the shower).
This radius describes the transverse development of the shower.

When a high energy hadron penetrates a block of matter, it will at some point
interact with one of its nuclei. In this process, mesons are usually produced (,
K, etc). Often, some fraction of the initial particle energy is lost in breaking the
nucleus apart. If the nucleus is large, it can fission after absorbing very little energy,
and emit nucleons and low energy photons. The higher-energy particles produced
in the initial collision (mesons, nucleons, photons) can, in turn, interact again, or
lose their kinetic energy by ionization. These processes also produce a shower.
Such a hadronic shower is characterized by the nature of nuclear interactions, and
the shower dimensions are governed by the nuclear interaction length, A;,;, which
scales only approximately as the nuclear radius and more like ~ 50 x A'/* (g/cm?).

In any given calorimeter, the energy deposited by monoenergetic pions has a
wider distribution than for electrons of the same energy. This is due to the fact
that hadron showers suffer from larger fluctuations in their interactions. This is
true for both the fraction of the total energy carried by ionizing particles as well as
for losses to nuclear binding, which can consume up to 40% of the incident energy.
The ratio of the electromagnetic (e) to hadronic (h) response of the calorimeter,
e/h, should be close to unity, because otherwise the energy resolution for a complex
shower (e.g., parton induced jet) is degraded.

The energy resolution of sampling calorimeters is usually dominated by the
fact that the shower is sampled only periodically. The nature of such sampling
fluctuations is purely statistical and, therefore, they contribute as \/EE') to the final

energy resolution. An energy-independent noise term (electronics and radiation
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from uranium), and a term proportional to the energy (e.g., from gain variations
in amplifiers), also contribute to the energy resolution of the calorimeter system.

The D@ calorimeter provides the energy measurement of electrons, photons and
jets, without the presence of a central magnetic field. In addition, it provides much
of the information needed for identifying electrons, photons, jets, and muons, and
plays an essential role in the determination of the transverse momentum balance in
an event. Liquid argon was chosen as the active medium to sample the ionization
produced in electromagnetic and hadronic showers. This choice was motivated by
the desire of having a gain of unity (ionization chamber), by the relative simplicity
of calibration and monitoring, by the good radiation hardness, and the low unit
cost for readout electronics. However, liquid argon does have a complication, in
that it must be operated in a cryogenic environment. Three cryogenic vessels
were made to provide some degree of access to the central detectors within the
calorimeter cavity (Fig. 2.11). The Central calorimeter (CC) covers roughly |n| <
1, and a pair of end calorimeters (ECN (north) and ECS (south)) extend the
coverage out to || ~ 4. An electromagnetic section (EM) with relatively thin
uranium absorber plates, a fine-hadronic (FH) section with thicker uranium plates
and a coarse-hadronic (CH) section with thick copper or stainless steel plates are
the three distinct types of modules in both the CC and ECs.

A typical calorimeter cell is shown in Fig. 2.12. This generic unit cell consists
of alternating layers of absorber and readout boards immersed in liquid argon.
The readout board is a copper sheet (pads) sandwiched between two thin pieces of
(G10, which are covered with a resistive epoxy coating. The shower particles cross
the liquid-argon gaps and ionize the argon atoms. The ionization electrons drift
toward the resistive anode and induce a pulse on the copper readout pads.

The transverse sizes of the cells were chosen to be comparable to the transverse

sizes of showers: ~ 1-2 cm for EM showers and ~ 10 cm for hadronic showers. The
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Figure 2.11: Isometric view showing the central and two end calorimeters.
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Figure 2.12: Schematic view of the absorber, liquid argon gaps, and signal board in a
single calorimetric unit cell.
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Figure 2.13: Schematic view of a portion of the D@ calorimeter showing the transverse
and longitudinal segmentation pattern. Also shown are “massless” gaps at the end of
the CC and the ICD in the region between the CC and EC cryostats.

readout boards are ganged together in a “pseudo”-projective geometry. Fig. 2.13
shows a portion of the segmentation pattern for the D@ calorimeter. There are
four separate longitudinal layers for the EM in the CC and the ECs. The first two
layers are about 2 X, thick, and are used to gauge the longitudinal development of
the shower, and thereby attempt to distinguish photons from 7°s (in a statistical
manner). The FH modules are segmented into three or four layers, and the CH

modules are single or ganged into three layers. Typical transverse sizes of towers

in both EM and hadronic modules correspond to Ay = 0.1 and A¢ = 27/64 ~
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Table 2.5: Central-calorimeter parameters.

EM FH CH
Rapidity coverage +1.2 +1.0 +0.6
Number of modules 32 16 16
Absorber Uranium Uranium  Copper
Absorber thickness (inches) 0.118 0.236 1.625
Argon gap (inches) 0.09 0.09 0.09
Number of cells/module 21 50 9
Number of readout layers 4 3 1
Cells per readout layer 2,2,7,10  20,16,14 9
Total Radiation lengths 20.5 96.0 32.9
Radiation length/cell 0.975 1.92 3.29
Sampling fraction (%) 11.79 6.79 1.45
Segmentation® (A¢ x An ) 0.1 x 0.1 0.1x0.1 0.1x0.1
Total number of readout cells 10386 3000 1224

¢ Third layer of EM has 0.05 x 0.05 segmentation

0.1. The third section in EM modules are twice as finely segmented in both 5 and

¢ to allow more precise location of centroids of EM shower|[45].

2.4.1 Central Calorimeter

The central calorimeter covers the pseudo rapidity range of |g| < 1.2, as is
shown in Fig. 2.13. It contains three concentric cylindrical shells of EM, FH, and
CH modules. The CCEM modules have four longitudinal layers of approximately
2.0, 2.0, 6.8 and 9.8 X,. A total of 32 modules along the ¢ direction in CCEM
provide about 10400 channels, spanning 24 towers of Anp = 0.1 along the 260 cm
length. The CCEM modules provide a precise energy and position measurement
for electrons and photons in the central region. The CCFH modules have three
longitudinal layers. and the CCCH modules contain just one segment. Table 2.5

shows some of the design parameters for the central calorimeters[37].
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2.4.2 End Calorimeters

The end calorimeters cover the approximate region 1.1 < || < 4.5. Each
contains four types of modules. There is only a single EM and a single inner
hadronic (IH) module, and no azimuthal cracks. Outside the EM and IH, there
are concentric rings of 16 middle and outer hadronic (MH and OH) modules. The
azimuthal boundaries of the MH and OH modules are offset to minimize particle
penetration through cracks. The ECEM modules contain four readout sections of
0.3, 2.6, 7.9 and 9.3 X,, with outer radii varying between 84 and 104 cm, and an
inner radius of 5.7 cm. The two ECIH modules have inner and outer radii of 3.92

and 86.4 cm and have a cylindrical structure.

2.4.3 Intercryostat and Massless Gaps Detectors

A necessary but unfortunate design feature of the D detector is a large
amount of uninstrumented material, in the form of cryostat walls, in the region
of 0.8 < || < 1.4, as indicated in Fig. 2.13. To correct for energy deposited
in the uninstrumented walls, two scintillation counter arrays called intercryostat
detectors (ICD) were mounted on the front surface of the ECs. Each ICD consist of
384 scintillator tiles of size A = A¢ = 0.1. These are aligned with respect to the
calorimeter, as indicated in Fig. 2.13. In addition, separate single-cell structures,
called massless gaps, were installed inside both CC and EC calorimeters. One ring,
of standard segmentation, was mounted on each of the end plates of the CCFH
modules, and additional rings were mounted on the front plates of both the ECMH
and the ECOH modules. The ICD and massless gaps provide sampling information

in addition to that given by the standard D@ calorimetric sampling of showers.
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2.4.4 Readout and Performance of the Calorimeter

Calorimetric signals are channelled to multilayer printed-circuit boards, and re-
ordered from a module-oriented to 7-¢ oriented form, appropriate for subsequent
analysis. The outputs are then brought to the preamplifiers, and are transported
on 30 m twisted-pair cables to baseline subtracter shaping and sampling circuits.
Input signals are integrated and differentiated. The main signals are sampled
just before a beam-crossing and 2.2 us after, and the difference is attributed to
the collected charge. Subsequently, 24-channel 12-bit ADC circuits in the MCH
digitize the sampled signals.

The observed energy resolution for electrons and pions has been parametrized

as

2 52 N2
(ol-?_E) :CZ—I_E—I_ﬁ (2.1)

where C,S5, and N represent the calibration errors, sampling fluctuations and noise

contributions respectively. For electrons, the measured resolutions are[32]:
C =0.003 +0.002,5 = 0.157 + 0.005v GeV, N ~ 0.140 GeV (2.2)
and for pions,

C =0.032 +0.004,5 = 0.41 £ 0.04vGeV, N ~ 1.28 GeV. (2.3)

2.5 Muon Detectors

Muons usually provide one of the cleanest signals in the collider environ-
ment. Because muons are approximately 200 times heavier than electrons, for

energies below about 500 GeV, they only rarely produce electromagnetic showers
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Toroids Central End(each) SAMUS(each)
Z interval (cm) +378.5 447.0-599.4 447.0-599.4
Inner distance (cm) +317.5 +91.4 +25.4
Outer distance (cm) +426.1 +416.6 +85.1
WAMUS

Total no. of chambers 164

Maximum length 579 cm

Maximum width 254 cm

Total no. of cells 11386

Total no. of wires 11386

SAMUS

No. of planes/station 3

Total no. of planes
Size of planes

No. of wires per plane
Total no. of channels

2x3xXYU = 18
330 cmx 330 cm
256(X,Y), 360(U)
5376

Resolution o= 0.2mm
Gas mixture ArCO; or ArCFy
Drift time 200 ns ( Ar + 10% CO2 )

160 ns ( Ar + 10% CF, )

(Bremsstrahlung will occasionally initiate an EM shower). Muons also do not have
strong interactions. Consequently, they leave minimum-ionizing tracks, and can
be identified even in the middle of hadron jets.

The D® muon detection system[46] consists of solid-iron toroidal magnets,
together with sets of proportional drift tube chambers (PDTs) that measure the
track coordinate and its momentum down to 3°. Figure 2.14 shows an elevation
view of the D@ detector with the five toroids and their associated PDT layers
indicated. The central toroid (historically, the central toroid has been called CF,
referring to central fero-) covers the region |5| < 1.0, and the two end toroids (EF)
cover 1 < |g| < 2.5. The Small angle muon system (SAMUS) toroids fit in the
central hole of the EF toroids, and cover 2.5 < |5| < 3.6.
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Figure 2.14: Elevation view of the D@ detector showing the five toroids and the ap-
proximate dispositions of the A,B, and C layers of proportional drift tubes.
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2.5.1 Muon Toroids

The CF toroids have twenty coils of 10 turns each, and carry currents of 2500
A. This provides an inner magnetic field of 1.9 T. The two EF toroids are located
at 447 < |z| < 600 cm. The EFs comprise a 183 cm square. Eight coils of eight
turns each also carry 2500 A, thereby providing fields of about 2 T.

2.5.2 Muon Chambers

The wide-angle muon system (WAMUS) PDTs are constructed from aluminum
cells, as shown in Fig. 2.15. The “A” layer, before the iron toroids, has four cells,
and the “B” and “C” layers after the magnets, each have only three layers of cells.
Cathode-pad strips are located at the top and bottom of each cell, and an anode
wire (marked x) is held near the center of the cell. The coordinate (¢) along
the wire direction is measured through a combination of cathode pad signals and
timing information from the anode wires. The ¢ resolution is approximately 4 3
mm.

The A layer of the SAMUS system is located before the SAMUS toroid; the B
and C layers are between the toroid and the beginning of the low-beta quadrapole
for the D@ insertion. The SAMUS PDTs consist of 3 cm external diameter stainless
steel tubes with individual end plugs for gas and electrical connections. There are
a total of 5308 tubes in the SAMUS system. A list of muon-system specifications
can be found in Table 2.6.

2.5.3 Readout and Performance of Muon Chambers

Much of the signal-processing electronics for the PDTs resides on the chamber
modules, digitizers, and trigger electronics reside in the MCH. Signals from each

cell of WAMUS are brought to a charge-sensitive preamplifier that is similar to the
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Figure 2.15: Extruded aluminum section from which the B and C layers of PDT cham-
bers are constructed. The A layer extrusions are similar, but have four cells instead of
three. The X signifies positions of anode wires. Cathode strips are inserted at the top
and bottom of each cell.

one used in the calorimeter. Digitization of the signals from the chamber cathode
pads and determination of timing information is performed in the MCH using a
12-bit ADC circuit.

PDT drift-coordinate resolution is about + 0.53 mm. Studies of the chamber
efficiency as a function of position within the unit cell showed nearly full efficiency.

Cosmic ray studies were also showed that the resolution for the ¢ coordinate is +

3 mm.

2.6 Triggering and Data Acquisition

The D@ trigger and data acquisition systems[47] selects the few interesting
events to be recorded from typically 5 x 10° pp interactions/sec. The trigger

systems have four distinct levels: Level 0, which is formed by coincidences of
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elements of scintillator hodoscopes on either side of the interaction region; Level 1,
comprised of muon and calorimeter triggers; Level 1.5, having only the TRD and
several components of the muon trigger as inputs, and, Level 2, which is based
on a large number of parallel microprocessors that analyze individual events. For
Levels 0 and 1, the trigger is deadtime-less, as decisions are made in the time
between successive bunch crossings so that no events go unexamined. This is no
longer true for Level 1.5, which needs tens of microseconds for its analysis, thereby
exceeding the time between beam crossings, even with only six bunches of protons

and antiprotons in the Tevatron.

2.6.1 Level 0 Trigger

The Level 0 system[48] is designed to register the presence of an inelastic
collision, to provide a fast estimate of the location of the event vertex, and to
serve as the luminosity monitor for the experiment. It consists of two separate
hodoscopes of scintillation counters located at each end of the central detector
between the FDC and the EC. The signals are read out with photomultipliers.
The rapidity coverage is partial for the range 1.9 < || < 4.3 and nearly full for
the range 2.3 < || < 3.9. A coincidence of both Level 0 detectors is estimated
to be about 99% efficient in detecting non-diffractive inelastic collisions[48]. The
z coordinate of the primary collision vertex is provided by comparing the arrival
times of the signals from the two scintillator arrays. Time resolution of each of
the Level 0 counters is in the range of 100 - 150 ps which provides the vertex
position to about + 2 cm[48]. At an instantaneous luminosity of 5 x 10°° events
cm™% 57! there are on average of 0.75 interactions per crossing, and for the case of

multiple interactions, the Level 0 system sets a flag that is used in the subsequent

trigger levels. The Tevatron luminosity is monitored by measuring the rate for
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non-diffractive inelastic collisions, and this information is sent back to accelerator

operations for use as a feedback mechanism[48].

2.6.2 Calorimeter Trigger for Level 1

At its readout level, the D@ calorimeter consists of pseudo-projective towers with
segmentation of 0.1 in both ¢ and 5, with seven or eight subdivisions in depth. For
the trigger, the readout towers are added laterally 2 by 2 to form trigger towers
with transverse dimensions of A¢ = 0.2, An = 0.2. In depth, all the EM sections
are added to form an EM trigger tower, and the corresponding hadronic trigger
tower contains the remaining section except the last one. The very last or coarse
hadronic sector is excluded because it generally contributes more noise than signal
to the various sums.

There are two broad categories of triggers that can be constructed using energies
deposited in individual calorimeter towers: “Global” triggers that use quantities
such as the transverse momentum (or energy) deposited in the EM sectors, or in
the hadronic sectors, or in the full towers. The other major category of triggers, or
“cluster triggers”, are derived from considering the “transverse energy” deposited
in individual EM and in the sum of EM and hadronic towers. The number of trigger
towers with deposited transverse energy in excess of any of four preset thresholds
is counted, and the resulting counts are then compared to as many as four limits

for each energy threshold, and used to generate input terms for AND-OR network.

2.6.3 Level 1 Muon Triggers

The Level 1 muon trigger modules[49] consist of VME-based cards designed
to find track segments in individual chambers, and then match each other. Each

of the muon triggers generate bit patterns corresponding to hit centroids for the
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Figure 2.16: A diagram of the D@ trigger indicating individual trigger components and
their interconnections.

Level 1 and 1.5 trigger electronics. Comparison of bit patterns in A,B and C layers

determines a good Level 1 muon trigger.

2.6.4 Level 1 Framework

The heart of the D@ trigger system is the Framework. As shown in Fig. 2.16,
the Framework accepts inputs from various devices that contribute to the trigger
decision and, chooses events of interest for further processing. In addition, it coor-
dinates the various vetos that can inhibit triggers, provides a prescaling function
for each trigger, manages the communication tasks with the front-end elements
and with the Trigger Control Computer (TCC), correlates trigger and readout
functions, and is the repository of the large number of scalers that are essential for

tracking such quantities as trigger rates and deadtimes.

e Main Ring Veto
As is described in the previous section, the Main Ring passes through the
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hadronic section of the D@ calorimeter and through the EF muon chambers.
Because of this, any losses from the Main Ring can produce backgrounds in
the detector and must be removed. The injection of the beam in the Main
Ring, and the “transition” after 0.3 seconds after injection, cause major
losses[32]. These losses are vetoed with the help of a trigger component
MRBS_LOSS (MRBS referring to Main Ring Beam Synchronous Clock)[51].
This introduces a veto during a 0.4 seconds window of the injection time of
beam into the Main Ring. This causes a dead time of about 0.4/2.4, or ~
17 %[51]. (The Main Ring cycle is 2.4 seconds.) There is also a possible loss
when a bunch in the Main Ring passes through the detector. Due to this,
an additional trigger component, the MICRO_BLANK, is implemented. This
veto is set for any beam crossing when a Main-Ring bunch is present in the
detector within + 800 ns to the experiment of the crossing. Imposing this

option, this term adds an additional ~ 8 % deadtime[52].

Both of the above vetos were active for the first part of the data taking (RUN
IA), and a more efficient scheme was developed[52] for the rest of the data

taking (RUN IB) and increased the live time about 8 %[52].

2.7 Data Acquisition

About 1 ms after receipt of a valid Level 1 or 1.5 trigger, fully digitized
data appear in the output buffers of the approximately 80 VME crates containing
the calorimeter and muon chamber ADCs and the tracking and TRD chamber
flash ADCs. Each crate of primary digitized data contains a 512 kBytes memory
module with two data buffers. The buffer outputs for each particular sector of the

detector are connected sequentially to a high speed data cable. The data cables



46

circulate to each of the 50 Level 2 processor nodes that lead directly into the
desired unprocessed data with ZEBRA[50] structure.

2.7.1 Level 2 Filter

Event-filtering in the 50 Level 2 nodes reduce the approximately 100 Hz of input
rate to 2 Hz, which can be logged for offline analysis. The filtering process in each
node is build around a series of software tools. Each tool has a specific function
related to identification of particles or event characteristics, such as the presence
of jets, muons, EM clusters, tracks associated with a calorimeter cluster, > Er,
and missing E7. The Level 2 nodes are coordinated through the host computer,
and have access to current distributions of parameters and statistics on recent

processing history characteristics.

2.7.2 Host Computers

The host cluster consists of a VAX 6620, VAX 6410 and VAX 8810 processors,
and a set of shared disks, together with VAX stations connected by an Ether-
net/FDDI network. The 6620 is the primary data collection engine, receiving
events from the Level 2 output data-cable. The 6410 is the primary machine re-
sponsible for spooling events from the staging disk to 8 mm tape. The 8810 is
devoted primarily to monitoring hardware. The host computer also produces the
primary human interface to the detector systems, and is responsible for high-level
control of the data-taking system, downloading of all settable parameters, spec-
ifying hardware monitoring activities, and the recording and displaying of data

obtained with the detector.
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Chapter 3

Reconstruction

3.1 Offline Data Processing

The unprocessed data taken by the online system of the D@ detector (com-
monly called “raw” data) and the detector constants are used as input to the offline
D@ event reconstruction program (DORECO), which identifies the vertex position,
trajectories of charged particles, energy deposition by electromagnetically interact-
ing objects and by hadronic jets, and transverse momentum balance in events. The
reconstruction at D@ is performed on a farm of 74 Silicon Graphics Indigo (SGI
4D/420) nodes and 24 IBM 220 nodes operating in a UNIX environment. Dur-
ing reconstruction, groups of data describing an object or characteristics of given
event, or banks, are created, linked, and either passed on or dropped. Selected
events are written out to two types of files: the standard output (STA) and the
data summary tapes (DST). The STA files contain all the information that is nec-
essary for event re-reconstruction, including HITS bank (signals collected from all
detectors). The DST files are compressed version of the STA files containing only

processed information, and, in particular, no information from the HITS bank.
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Figure 3.1: A block diagram showing the data flow in offline processing.

After DST files are finally transferred to the D@ file server (D@FS), more infor-
mation is dropped and compressed to fit on the storage disk. The latter is called
compressed-micro DST. Figure 3.1 shows the overall flow of the data stream for
the entire offline data processing. The entire process, starting with the reading of
unprocessed data from tape, to the writing of micro DST files to DOFS, is quite

complex and requires substantial human intervention.

3.1.1 Farm Hardware

The D@ farm consists of UNIX workstations and servers, configured logically
into two different sets. Most of the workstations (nearly 100 nodes) are used as
“worker nodes” that perform the reconstruction of unprocessed data: each consists
of a UNIX workstation with 24-32 MBytes of memory and a local system disk, with
ethernet and power connections. These workstations are a mixture of 6 SGI 4D /35,
68 SGI R3000 Indigo, and 24 IBM 220s. The combined CPU power is comparable
to approximately 3000 MIPS (million instructions per second). The other set
of workstations are “servers”, that is, designated as I/O servers that supply the

unprocessed data to worker nodes, and spools input (output) files to local disks (8
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mm tapes). DO uses four SGI 4D /420 I/O servers.

The balance between I/O servers and worker nodes must be tuned to maximize
the available computing power. The average ratio of worker nodes to an I/O node is
approximately 16 - the ratio used for any given application is determined primarily
from experience and the CPU and I/O needs of a problem[53]. To avoid saturating
ethernet segments, the worker nodes are divided into subnets attached to routers,
with each subnet consisting of between 8 and 10 workstations. Figure 3.2 shows
the configurations of worker nodes and servers. The fnsfxxx are the hostnames
for SGI Indigo worker nodes, and fnckxxx are the names for IBM 220 worker
nodes (with xxx representing numbers in Fig. 3.2). Worker nodes are grouped into
four “farmlets”. Each farmlet consists of an I/O node (SGI 4D/420, denoted as
fnsfb, fnsfd, fnsfe,and fnsff) with 3 ethernet interfaces and 24 worker nodes.
(This is the definition of a farmlet used by Fermilab farm group [53]. However,
D® uses this word to describe any group of worker nodes communicating with a
given 1/O server, such as those grouped inside of the boxes in Fig 3.2). The size
of the executable DORECO program constrains each worker node to at least 24
MBytes of real memory (some, such as fnsf159 - fnsf166 and all IBM worker
nodes, have 32 MBytes). Groups of 8 or 10 worker nodes (in Fig. 3.2) reconstruct
D@ events with the given executable, and read (write) input (output) files from
(to) a common spool disk. A parallel server process running on an I/O node is
called a “virtual machine” (VM), which corresponds to a logical machine that
controls the group of 8 or 10 worker nodes. The generic name fnsfX_Y is used to
identify a specific virtual machine. Capital X is one of b, d, e, f and Y is one
of 0, 1, 2. Although VMs do not exist physically, it is common to designate the
worker nodes associated with an I/O server in terms of their VM. Each I/O server
has 7 tape drives for reading (writing) unprocessed (reconstructed) data from (to)

8 mm tapes. Failures with tape drives (SCSI reset, tape stuck in the drive, and
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Figure 3.2: A block diagram showing the configuration for the

farm hardware.
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bad tapes) are one of the major reasons for downtime on the D@ farm.

3.1.2 Farm Software

Farm software controls the data flow at each step of event reconstruction. It
requests tape mounts to operators, spools the unprocessed data, distributes events
to worker nodes, writes the reconstructed data to spooling disks, merges output
files when necessary, writes output data to tapes, transfers DST files to DOFS,
and monitors all individual processes. The software is written in a combination of
c-shell scripts, PERL (Practical Extraction and Report Language) scripts, FOR-
TRAN, and C language. A block diagram of the software components is given in
Fig. 3.3.

Primary (unprocessed) data tapes written by the D@ online system are trans-
ferred to the Fermilab Computing Center (FCC), and are stored for eventual re-
construction. A process running on each farmlet, the inspooler[54], checks the
space on spooling disks, clears up leftovers from the latest failure, identifies the
next primary data tape, and finally submits a data tape mount request to the
operators at FCC. The inspooler contains a manager package written mainly in
PERL scripts. The part that requests tape mounts is written in FORTRAN and
uses OCS[55] (operator communications software) for management of tape drives.
A tape mount involves a use of RBIO[56] (Raw Buffered I/0) for reading VMS
labeled tapes. Once a data tape is mounted, the inspooler spools data to the
spool disk (for example, /spool00/dzero/fnsff 0/inspool/), each specified for
different VMs. This inspooling process is performed on each I/O server, without
the participation of worker nodes. Log files from the inspooler indicate that the
spooling speed is on the order of ~ 300 Bytes/s, where the time spent waiting for

tape mounts or waiting for free disk space is not included.
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dOreco _prl initiates transmission of events to and from worker nodes. When
dOreco_prl recognizes the presence of unprocessed data in the spool disk, it starts
wrkshell that executes the DORECO program on worker nodes. Output files
(STA and DST files) are spooled to the disk on I/O servers. Figure 3.4 shows the
data flow between dOreco prl and wrkshell. Typically, the sizes of files are ~
180 MBytes/file for STA and ~ 30 MBytes/file for DST. On each worker node, a
process called inreader receives events from the server node and stores them in
a shared memory location, where they can be accessed by the DORECO program
and by the outwriter for transfer of events back to the outsrv process after
reconstruction.

Next, merge produces RCP (Run Control Parameter) files for DST and STA
files. Only for the case of the DO FIX project[58] are DST files truly merged, (10
files to 1 file). Once the merge process produces RCPs, outspooler starts spooling
STA files to 8 mm tapes, using techniques similar to those used in the inspooler

process. If outspooler finishes the outspooling of a tape, then the mvdst process
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moves DST files and corresponding RCP to a buffer area. On the average, ~ 20 -
40 STA files are written per tape. Finally, RCP_move moves STA-RCPs to DOFS,
and copy_buffer transfers DST files with their corresponding RCP files to DOFS.

The continuous operation of the farm requires access to types of 8500 and 8505
tape drives. Because the aging of tape drives leads to failures, it is important to
keep track of files that are not successfully completed on a first attempt. For this
reason, a database is maintained on the progress of files through various stages of
the system, which provides the possibility for resubmission of missed partitions on
a weekly basis.

Monitoring of processes on the farm is an independent operation from the
existing parallel processes. mon disp displays the current status of the utilization

of the farm, and helps identify the presence of any problems.

3.1.3 DO File Server

D@FS consists of four DEC 3000 AXPs and several DEC VA Xstations, operating
under VMS. The AXPs serve as disk file servers and have 300 GBytes of SCSI based
disks attached to them. The VAXstations are employed as tape-server nodes, and
are equipped with 130 GBytes disks and 31 of 8 mm tape drives. Based on the RCP
files transported from the farm, STA and DST files are catalogued and distributed
using the File and Tape Management (FATMEN) system[57] developed at CERN.
The FATMEN package provides access to file catalogue information and the file

itself, without requiring prior knowledge of the location of the file.
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3.2 Reconstruction of Objects

The reconstruction of particle trajectories and other such objects is performed by
the DORECO program. The DORECO program consists of hooks (an interface or
logical function that performs an individual task) that reconstruct a primary ver-
tex, charged tracks, jets, photons, electrons, muons and the transverse momentum

imbalance, etc. We will now review some of these tasks.

3.2.1 Vertex Determination

Before executing DORECO, the (z,y) position of the interaction point is deter-
mined by an online program called CD-EXAMINE[59]. Consequently, DORECO
is used to determine only the z-coordinate of the interaction point(s). This is done
using mainly tracks in the CDC. All CDC tracks are extrapolated to the z axis, and
the intersection in z for each track is stored. A cluster-finding algorithm is used
to determine the number of clusters associated with any given z position. Once
this is done, a constrained fit is performed to yield a precise measurement of the
z vertex. For an event with multiple interactions, up to three possible candidate

vertexes can be defined.

3.2.2 Identification of Jets

The first thing that is done to reconstruct jets (or for any other tasks requiring
calorimeter information) is to convert the ADC values of each cell in the calorimeter

to an equivalent energy. The conversion formula is:

E(e,p,1) = A(d) x W(e,l) x C(e,p,1) x G(e,p,1) x ADC(e, p,!) (3.1)
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where e is the detector 7-index (-37 < e < 37), p is the detector ¢-index (1 < p <
64), I is the detector depth index (1 < I < 17), d is the type of module (CC
for central, EC for end cap, ICD, CCMG, or ECMG), A is an overall calibration
constant (different for each d), W are sampling-fraction weights (determined from
test-beam data), C is a run-independent correction (for absorber thickness or for
signal in the ICD), G are run-dependent gain corrections, ADC is the ADC count
observed in any given cell of the calorimeter. Once this conversion is done, then
jet algorithms can be applied to the signal.

Roughly speaking, a jet is a localized cluster of energy deposited in the calorime-
ter, and that originated from scattered partons in collisions of protons and antipro-
tons. However, because of color confinement and gluon radiation from partons, the
exact definition of a jet often depends on the physics process one wants to study.
For this reason, D uses more than one jet definition. A fixed cone algorithm[60]
has been the primary choice for defining jets in D@. This choice has the advantage
of straightforward applicability in theoretical calculations, in Monte Carlo simu-
lations, and to data. A secondary choice for defining jets is a nearest-neighbor
algorithm[61], in which neighboring cells are joined to form jet clusters, depend-
ing on their relative proximity and energy. This procedure is based on a local

equivalence principle[61].

e Cone Algorithm
The energy vector E; associated with a calorimeter cell ¢ is defined as the
scalar energy E; directed from the interaction point to the center of cell z.
The tower vector E{*"* is defined as the vector sum of the E; over a semi-
projective tower k. The transverse energy of the tower, EX°**" is then given

as:

\/(EiOWET)Z + (E;jowew")Z
\/(EiOWET)Z + (E;jowew")Z + (Eéowew‘)Z

tower __ tower
Elover — E

(3.2)
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Jet finding in D@ is based on these tower Er values. The algorithm is
implemented in a three-step process. The first step involves preclustering of
towers with E7 greater than some threshold value. Second, a jet energy and
a jet axis are calculated from the sum of preclusters within a cone of some
radius R in (7, @) space. The jet axis is recalculated using these towers, and
the process is iterated until the jet axis moves a distance less than 0.01 in
(1, ) space between two final iterations. Finally, based on the closeness of

two jets in (7, @), splitting and merging of jets can be performed.

The final kinematic quantities defining a jet are:

E, = Y El (3.3)

towers k

Er = Y Ej,

towers k

¢ = arctan(E,/E,),

= arccos(E,//E2 + EZ + E2),

n = —Intan(6/2),

3.4

o
&34

o
D

(3.4)
(3.5)
(3.6)
(3.7)

where 7 represents the four components of the four-momentum vector. Note
that Er (just as E) is the scalar sum of the transverse energies of the in-
dividual towers, and not the magnitude of their vector sum. Thus large
Er corresponds to the release of a large amount of energy in the collision,

independent of the questioning of balance of transverse momentum.

Nearest-Neighbor Algorithm

The clustering logic used for this algorithm is identical to that used for elec-
trons and photons, except that the parameters are optimized for jet finding.
As before, the clustering starts with the calorimeter towers. For each tower,

the neighborhood in 7-¢ (defined by the 24 towers surrounding the origi-
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nal tower) is searched for the tower with the highest Ep. This Ey tower is
connected to the original tower if its F7 exceeds a given threshold. The con-
nection is performed until no towers remain unconnected. Such connections

are final, and neither splitting or merging is subsequently allowed.

The performance of the jet-finding algorithms is measured primarily by the
fraction of partonic jets that are reconstructed successfully (or jet reconstruction
efficiency, referred as €). Figure 3.5 shows reconstruction efficiencies of various jet-
finding algorithms for HERWIG ¢t events (only multi-jet final states). The definition
of a quark in the figure includes any final-state radiation added back to the quark
momentum. The matching of reconstructed jets to quarks relies on using combi-
nations that minimize the distance in R between them. A jet is considered to be
matched only if AR < 0.5, and the energy of the jet is within a factor of two of the
quark energy. No jet with reconstructed E7 < 10 GeV is considered. Figures 3.5
(a) and (b) show how the reconstruction efficiency depends on quark Er and on
quark 5 for the nearest neighbor algorithm (), and for the R=0.3 (dashed line),
R=0.5 (dotted), and R=0.7 (dot-dash) cone algorithms. The nearest-neighbor
and 0.3 cone algorithm show similar level of jet reconstruction efficiency, but the
0.5 and 0.7 cone algorithms are less efficient. (The nearest neighbor and 0.3 cone
algorithms provide an efficiency of ~ 95%, but the 0.5 cone is about 92%, and the
0.7 cone is about 84% efficient at || ~ 0.) Cone algorithms for large cones are less
efficient in a multi-jet environment (¢¢ production usually provides five or more
jets in || < 2 for multi-jet final states). Figure 3.5 (c¢) shows the correspondence
between parton and jet energies found for various algorithms, using the D@ jet-
energy correction package, CAFIX version 5.0 (see later in this section). For the
case of cone algorithms, only linear fits to the correlation are shown in the figure.

The overall efficiency, or event reconstruction efficiency, for finding ¢t events
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with 6 jets scales, of course, as €®. Figure 3.5 (d) shows the three-jet invariant
mass for the correct combinations of jets matching top and antitop quarks. The
area for the mass distribution reflects the ¢ event reconstruction efficiency for dif-
ferent algorithms. The nearest neighbor algorithm gives the highest efficiency, and
the efficiency decreases as the cone size increases (44% for the nearest neighbor
algorithm, 38% for R=0.3, 31% for R=0.5, and 18% for R=0.7 cone algorithms).
The shift of reconstructed mass from the input mass of the top quark (160 GeV/c?)
shows that the energy scales used for each of the jet algorithms are not equivalent.
The R=0.3 cone scale corresponds to a shift 13% in three-jet mass, R=0.5 corre-
sponds to 9%, R=0.7 corresponds to 7%, and the nearest neighbor corresponds to
2%. The RMS values of the mass distributions are not affected very much for the
different algorithms, providing ~ 10% as an overall spread in reconstructed mass.
The ability to resolve separate jets is important, not only in the search for a signal,
but also for mass measurement. The jet algorithm is the fundamental tool in these
analyses, and either the nearest-neighbor algorithm or the R=0.3 cone algorithm
appear to be preferred for resolving multi-jet events. However, due to the relatively
large uncertainties in the jet energy scale of both the 0.3 cone algorithm and the
nearest-neighbor algorithm, we chose to use the 0.5 cone algorithm as the primary

algorithm to analyze multi-jet events in this dissertation.

3.2.3 Corrections to Jet Energies

For a variety of reasons, such as inefficiency of reconstruction algorithms, de-
tector imperfections, overlap with energy from fragmentation of spectator partons,
etc., the energies of reconstructed jets can be biased. To correct for this, D@ de-
veloped a procedure, referred to as the CAFIX package[62, 63]. The underlying

assumption in the correction is that the true energy of a jet (Eye) can be ob-
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Figure 3.5: Jet finding efficiency for ¢f events (m; = 160 GeV/c?) with various algo-
rithms: nearest neighbor=(e), cone algorithms of R=0.3 (dashed line), R=0.5 (dotted),
and R=0.7 (dot-dashed). Jets are corrected by cAFIX 5.0. (a) Jet finding efficiency vs.
quark E7. (b) Jet finding efficiency vs. quark 7. (c) Jet energy scale linearity with
quark E. (d) Reconstructed mass of the top quark from correct jet combinations. The
area reflects the overall efficiencies.
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tained from the measured energy (Ecqs) as follows:

Epeas = Rpad(E,m,BMS, 4) X Etpye X (1 4+ C(E,n))+ U+ N + Z, (3.8)

where Rjpqq is the overall hadronic response (or hadronic scale), which depends on
the energy, 7, and the width (RMS) of the jet; C is a correction for the fraction
of unclustered energy that the jet algorithm applied either incorrectly, left out, or
pulled into the jet. There are three additive offsets, U for the energy from un-
derlying events, N for the noise, and Z for the zero-suppressed portion of the jet
energy. U is defined as the amount of uncorrected energy that enters the jet and
originates from the spectator-part of the interaction (forward fragmentation). N
is defined as the amount of uncorrected energy that enters the jet, and originates
from electronic or uranium noise. Z is defined as the amount of the uncorrected
jet energy lost because the calorimeter is zero suppressed (not read out if signal
is within some window). The hadronic scale is derived using the “missing pr pro-
jection fraction” technique (MPF), developed initially by CDF[64]. It uses the
idea that any component of £, along the photon direction is due to mismeasure-
ment of the jet energy in “photon”+jets events. (In fact, the events used are not
truly photon + jets events, but correspond to events with large electromagnetic
energy deposition in a restricted region of the calorimeter and jets balancing these
“photons”.) Parametrizing this MPF effect as a function of the 7 (needed mainly
due to the imperfections in the ICD region), the jet width (due to the nonlinear
correlation between jet width and the jet response in the detector), and the jet Er,
provides the overall correction factor for jet energy. As a final step, corrections
are determined for energy lost outside of the cone of the jet (denoted as C, and
algorithm dependent).

As already demonstrated in Figs. 3.5 (c¢) and (d), the CAFIX correction is not
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entirely sufficient for retrieving the energy of the parton-level. This is not so crucial
in searching for a signal, but its effect can even be minimized in the mass analysis

through imposition of proper additional corrections.

3.2.4 Missing Transverse Energy

If a weakly interacting particle (such as a neutrino) were produced with high
pr, the negative of the vector sum of the momenta of the detected particles would
have the same momentum vector as the undetected particle. Since the center
of momentum frame of the partonic interactions is not generally at rest in the
laboratory frame, only the transverse component of the missing particle’s four-
momentum can be reconstructed (this is referred as [, or missing transverse
energy).

The calculation of E is based upon energy deposition in the individual cells

of the calorimeters. The vector £, is defined as follows:

Br, = — ). En, (3.9)

cells 1

By, = — Y Erp. (3.10)

cells 1

The sums are over all cells in the calorimeter. The missing transverse energy,
E; is the magnitude of this vector. Once CAFIX is applied, this missing transverse

energy is recalculated and stored for subsequent analysis.

3.2.5 Electrons and Photons

Electrons and photons[65] are reconstructed as clusters of energy in the EM
section of the calorimeter. The cluster algorithm used to find EM clusters is

identical to the nearest neighbor algorithm, described in Sect. 3.2.2, but optimized
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for EM objects. As in the case of the jet algorithm, energies in the towers of the
EM section of the calorimeter are used as inputs to the clustering algorithm. An
EM cluster is required to have at least 90% of its energy in the electromagnetic
section of the calorimeter, and at least 40% of the energy must be contained in
a single tower. The reconstruction program searches for a track from the central
detector that points from the interaction vertex to the EM cluster within a window
of Ap=+0.1, A¢p==40.1. If such a track is found, the cluster is identified as an

electron, otherwise it is identified as a photon.

3.2.6 Muons

Muons are identified as tracks in the muon chambers[66]. Analogous to the
reconstruction in the calorimeter, muon reconstruction begins with conversion of
hits and time information into three-dimensional points, and then finding combi-
nations of hits pointing towards the interaction vertex. Due to the presence of the
magnetic field between layers, reconstruction is handled separately for segments
before and after the field. At the end, muon tracks are obtained through a global

fit[66] that combines tracks in the central detector and the interaction point.
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Chapter 4

Data and Simulated ¢ Samples

This chapter describes the data and the simulated events of tt signal used in
our analysis. In addition, we study various kinematic parameters that will be used

to differentiate between signal and background.

4.1 Data Sample

4.1.1 Multi-jet Trigger

The data samples were selected by imposing an online-trigger and an offline-filter
requirements, known, respectively, as the JET_MULTI trigger and filter[67, 68]. The
JET_MULTI trigger requires the presence of at least four calorimeter trigger towers
(0.2 in An by 0.2 in A¢) with Er > 5 GeV for RUN IA (data taken during 1992-
1993, where the “run-numbers” range from 50000 to 70000), and at least three large
tiles[69] (0.8 in Ay and 1.6 in A¢) with Ey > 15 GeV for RUN IB (data taken during
1993-1995, where the run-numbers range from 70000 to 93115). During RUN IB,

additional requirements were imposed of having at least four trigger towers with
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Table 4.1: Initial criteria for data selection. Level 1 trigger requirements varied during
the RUN 1A /1B periods, but the efficiency remained in the range of 95-98 %.
‘ Generic Sample ‘

Effective Efficiency
General Sequential Cross for m;=180
Conditions Requirements section (nb) GeV/c?
Level 1 trigger JET_MULTI
Three large tiles
Er > 15 GeV 0.4 £0.1ub ~ 1.00
Level 2 filter JET_MULTI
Five R=0.3 L2 jets
In| < 2.5, Er > 10 GeV 20 + 5 nb 0.93
Five jets R=0.3 jet cones
Five jets in DORECO
In| < 2.5, Er > 10 GeV 20 + 5 nb 0.92
Bad data BAD _RUN.RCP - -
Cleanup (see next section) - -
Generic Hr Hy > 115 GeV
R=0.5 jet cones
in DORECO 5.3 + 1.3 nb 0.87
‘ Search Sample
No isolated e Er® <20 GeV,
or u prt <15 GeV/c
Six jets Er> 10 GeV CAFIX
In| <2 4.7+ 1.2 nb 0.64
Hp>150 GeV || jet |p| <2.0, Er> 15 GeV | 1.8 + 0.5 nb 0.53
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Er > 7 GeV, in order to reduce the triggering rate (to fit into the bandwidth of
the trigger system) at high luminosities ( > 10*' events cm™2 s™!). No vetos were
imposed on the Main Ring related triggers. The JET_MULTI filter required five
R=0.3 jets at Level 2, with these jets being restricted to |n| < 2.5 and Ey > 10
GeV. Again, during RUN IB, another condition was added requiring the sum of
the Ep of jets (defined as Hr) to be greater than 110 GeV, in order to reduce the
data rate at high luminosities. The effects of these changes on the acceptance for
top-quark events were studied using Monte Carlo simulations and were found to
be negligible[68]. Table 4.1 shows the list of trigger and filter requirements, with
the calculated efficiencies for ¢£ production for m; = 180 GeV/c?, used to define

“generic” and “search” data samples (see next section).

4.1.2 “Generic” and “Search” Samples

In addition to imposing JET_MULTI trigger and filter requirements, a set of offline
selection criteria were used to reduce the data sample to manageable size, without
affecting acceptance for tf signal. First, the sum of the transverse jet energies for
the 5 jets was required to be greater than 115 GeV, where the sum included jets
only with |p| < 2.5. Also, the following requirements were imposed to eliminate
events with spurious jets due to spray from the Main Ring and from any hot cells

in the calorimeter[68, 70]:

e Bad Runs
Runs identified as having problems with failure of detector components or

the readout system were rejected. This reduced the data sample by ~ 4 %.

e Main-Ring Veto
We simply rejected any events that had the MICRO_BLANK or MRBS_LOSS

flags set. This reduced the data sample by ~ 13 %. Figures 4.1 (a) and
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(b) show the missing Er vs. ¢ of the jet, before and after the rejection of
Main-Ring events, respectively. Our criterion removed the spurious cluster
of jets in the region where the Main Ring pierces the D@ detector (1.6 < ¢ <
1.8).

e Unphysical Events
Events with more than 4 TeV energy in the calorimeter, and events with the
scalar Eg sum (Hy) for cells in the calorimeter, ICD, and MG, with Hy > 1

TeV were also removed. These restrictions removed ~ 2% of all events.

o CH and Hot-Cell fractions
Events that had any jet for which the CH fraction of the calorimetric energy
was more than 70%, were rejected as spurious (due to noise in the calorimeter
electronics or due to fluctuations from radioactivity in the uranium absorber).
Events containing a hot-cell fraction (HCF) of more than 0.5 were rejected.
The HCF routine identifies cells with the largest(cell 1) and second largest
(cell 2) Er in a jet, and defines the HCF as Ep(cell 1)/ Er(cell 2). Together,

these criteria removed ~ 1% of the remaining data.

® Trms

An energy-weighted RMS deviation of the jets in %:

(4.1)

2 _
nTms -

2
Ejets 772ET . (Ejets WET)
Ejets ET Ejets ET

was required to be greater than 0.1 in order to reject events due to noise

from grounding failures that led to spurious signals in cells in the outermost

ring (|n|=1.4) of the ECEM calorimeters. This removed < 1% of the data.

The above criteria defined our “generic” sample of data. Table 4.1 lists these

selection criteria. In this chapter we will assume that the generic sample repre-
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Figure 4.1: The effect of imposing the Main-Ring veto. A scatter plot of missing E7 vs
¢ for jets before (a), and after (b) imposing Main-Ring Veto.

sents the background. Because the fraction of the generic sample that is expected
to originate from ¢¢ production is small (~ 0.001), such an assumption is quite
reasonable.

The “search” sample is defined by imposing additional criteria. First, events
containing isolated electrons or isolated muons (ES < 20 GeV, pf < 15 GeV/c)
are removed. This is done in order to reject events that are already analyzed in
other #¢ channels, such as in lepton+jets final states. Next, Hp is recalculated
using CAFIX corrections to jets for || < 2.0 and Er > 15 GeV, and the threshold
for Hr is increased to 150 GeV, in order to further reduce the size of the data set,
but still maintain high efficiency for the ¢t signal. Also 6 jets with Er greater than
15 GeV are required. After these restrictions, the efficiency for ISAJET ¢ Monte

Carlo for m; = 180 GeV/c? production in the all-jets channel is 53 %.
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4.1.3 Total Integrated Luminosity

Data obtained during the collider-run period of 1992-1995 (RUN I) are ana-
lyzed in this dissertation. Integrated luminosities were calculated using the rou-
tine GET_FILT_LUM|71], one of the standard D@ utilities. When GET_FILT_LUM
returned an unphysical value of luminosity, then a nominal cross section of 7.5 nb
was assumed for the JET_MULTI trigger which was corrected on the basis of the
number of accepted events. After correction, RUN I data correspond to a total

integrated luminosity of 95.3 events/pb with a fractional uncertainty of 5.4%.

4.2 Estimation of Background

The branching fraction of a b-quark into g + anything is known as about
10.7 4+ 0.5%[11]. However, when all contributions from decays of b quarks and
¢ quarks are considered in tf — all-jets mode, approximately 50 % of events are
expected to yield at least one muon. Therefore one expects to detect muon(s)
originated from b-quark decay in ¢f events about 50% of the event (assuming a
perfect detection efficiency). On the other hand, muons from QCD background
process arise mainly from gluon splitting in ¢¢ or bb pairs which make up a small
fraction of the background[72]. We will require the presence of at least one muon
near a jet in every event (that is, “muon tagging”) to enhance the t¢ signal, and
will therefore also need a way to estimate the background in a given data sample.
Because b-quarks from top decay have higher momenta than quarks from QCD
events, we expect a factor of about ten improvement in signal to background ratio

from requiring such muon tags within jets[72].
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4.2.1 Muon Tagging of Jets

Procedures for muon tagging were defined initially after extensive Monte-Carlo
studies of tf production in the lepton+jets final states[73]. The requirements used

to select such muon tags are:

e The presence of a fully reconstructed muon track in the central quadrants of
the muon system (CF). This restriction does not have much impact on the
acceptance of b-quark jets from ¢ decay because these b-quarks tend to be

produced mainly at central rapidities (See Fig. 1.3).

o The track must be flagged as a high-quality muon. This quality is based on
the fit x% to the track in both the bend and non-bend views of the muon

system[74].

e The response of the calorimeter in the road defined by the track must be
consistent with the passage of a minimum ionizing particle. Response is
measured by energy deposited in the calorimeter towers nearest the track,
and is required to be at least 1.5 times the energy expected for a minimum-

ionizing particle.

e The muon energy must be greater than about 4 GeV in order to penetrate
the material of the calorimeter and the iron toroids at 90° (7=0). Because
the pr spectrum of muons from 7m and K decays is softer than from heavy
quarks|73], an overall p; > 4 GeV/c cutoff is imposed to enhance the signal

from heavy quarks.

e The muon must be reconstructed near a jet with |g| <1.0 and Er > 10
GeV, specifically, AR(p,jet) < 0.5. This selects preferentially muons from

heavy-quark semi-leptonic decays.
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Figure 4.2: Characteristics of muons used for tagging jets in data of RUN I. (a) muon
pr , (b) muon 7, and (c) the distance between the tag muon and the tagged jet in 7-¢.

If a muon satisfies the above conditions, the jet associated with the muon is defined
as a muon-tagged jet, and muon is called a tag. Figure 4.2 shows prand 75 distri-
butions for tag muons, and the distance between the tag muon and the tagged jet
in 7-¢. The pr spectrum appears to have an excess near ~ 40 GeV/c that can be

attributed to contamination from a random overlap of W — uv decays and jets.
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Figure 4.3: Pseudo rapidity distribution of tag muons before (a) and after (b) cleaning
of muon chambers. The cleaning involved passing high currents through the wires|76].

4.2.2 Muon Tagging Rates

It is consistent with observation[72] that the probability of tagging general (back-
ground) events containing several jets is just the sum of the probabilities of tagging
individual jets. Therefore, the muon tagging rate is defined in terms of probability
per jet rather than per event. Initially[18, 72|, the tagging rate was modeled only
as a function of jet Er[18, 72]. However, it was observed subsequently[75] that
the  dependence of tag muons depended on run. This was traced to the fact that
chambers experienced radiation damage during the run, and wires in some of the
CF chambers had to be cleaned during the run[76]. Figure 4.3 shows the 7 dis-
tribution of muons for two different ranges of runs. Figure 4.3 (a) corresponds to
the time before the cleaning and (b) to that after the cleaning (Runs > 89000). It
is clear that without taking this difference into account, one would lead to wrong
estimates of tagging rates.

To address this problem, the tag-rate function for background Ptag(E%Et ,,Run),
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Table 4.2: Parameters from fits of Eq. (4.3) to the muon tag rates for different ranges
of runs.

D1 D2
Runs<70000 —-0.013 £ 0.002 | 0.0061 £+ 0.0006
70000<Runs<84000 | —0.013 £+ 0.001 | 0.0055 + 0.0005
84000<Runs<89000 | —0.010 £+ 0.002 | 0.0046 + 0.0005
Runs>89000 —0.010 £ 0.001 | 0.0045 £+ 0.0005

was made a function of E'%Et, 7 and the run-number, and assumed to factorize[75,
78]:
Ptag(E%Et,n, Run) = f(E%Et, Run) - g(n, Run), (4.2)

where f(E%Et, Run) is the probability that a jet has a muon tag in the very central
region (|n| <0.3), and g(7, Run) is the measured chamber efficiency. Figures 4.4
(a), (b), (c), and (d) show f(E%Et,Run) for different ranges of Run Numbers (re-
spectively, for Runs < 70000, 70000 < Runs < 84000, 84000 < Runs < 89000,
Runs > 89000). Besides the differences in tag rates caused by the cleaning of
wires, there were also changes in the gas mixtures used in the muon chambers be-
tween RUN 1A and RUN 1B, and changes in the high voltage settings implemented
near Run 84000, which required the two additional separations of runs shown in
Fig. 4.4[77]. Although statistics are poor, the change in the central tag-rate is
substantial between RUN IA and RUN IB. The dependence of the muon tag rate

on jet Er in Fig. 4.4 is parametrized by a logarithmic form:
f(E%Et, Run) = p1 + p2log(Er). (4.3)

The parameters p; and p, were obtained from fits to the different ranges of runs,
and are listed in Table 4.2. The ratios of 5 distributions of tagged to untagged jets,

representing an approximation to the relative chamber efficiencies g(n, run) for the
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Figure 4.4: The muon tag rate (probability) for generic jets with |5| <0.3, as a function

of E%Et, for different ranges of runs.

Curves represent the results of a fit to the data

of (a) Runs<70000, (b) 70000<Runs<84000, (c) 84000<Runs<89000, (d) Runs>89000.
For comparison, the fits from (a), (b), and (c) are also shown in (d).
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separations given in Fig. 4.4, are shown in Fig. 4.5. The crosses represent the ratio
of observed tagged to non-tagged jets as a function of . The curves are results of
polynomial fit to the points. There seems to be a small asymmetry in the chamber
efficiency in Fig. 4.5 (a) and (d). As a check, we ignored the asymmetry in Fig. 4.5
(a) and (d), and repeated fits to symmetric polynomials. That increased x? by a
factor of 4 in both cases.

The number of predicted tagged events from background can be written as:

Nt = 37 5T Piog(E3 n, Run). (4.4)

events jets

Assuming that the heavy quark content is not significantly affected by the selec-
tion criteria, we expect the number of observed muon-tagged events to exceed the
number predicted from background, and become more significant as we apply se-
lection criteria to enrich the fraction of ¢t events. The reliability of estimating the
number of tagged events expected from background can be evaluated by compar-
ing the estimate to the results obtained in event samples that are dominated by
background.

Figure 4.6 shows the distribution for the number of jets, E7 for the jets with
fifth and sixth highest jet- E7 values, and the sum of all six jet transverse energies
(Hy) for tagged 6-jet events (in black boxes). The predicted rate (in Eq. (4.4))
in all four distributions (in dashed lines) consistently matches the observed num-
ber of tagged events within a systematic uncertainty of ~ 5%. It is hoped that,
with an optimized combination of selection criteria, there may be regions of phase
space where the contribution from ¢ production become especially significant, and

produce a departure from expectations based on relation (4.4).
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4.3 Simulations of Signal Events

Simulating tf events in the D@ detector is a difficult matter because of the
ambiguities in the understanding of the production process and hadronization. In
addition, there are still open questions regarding the modeling of the detector re-
sponse, specially to low-energy particles, modeling of the underlying events, and
modeling of the noise in the calorimeter. Different next-to-leading order (NLO)
calculations appear to be consistent at the level of < 20 %[13, 14, 15], giving
confidence in the gross nature of ¢£ production. In our analysis, we use primar-
ily the ISAJET (VERSION 7.0) program to model and HERWIG (VERSION 5.7) to
check such details. Although the two generators contain very different perspec-
tives on hadronization, the efficiencies for detecting the tf signal, and the effect of
imposition of a selection criteria needed to extract the mass of the top quark are
in agreement, and the observed difference reflects systematic uncertainties of the

analysis.

4.4 Kinematic Parameters

Extracting a signal from data dominated by background requires the study of
kinematic parameters that can differentiate between features of the ¢t signal and
the background. The most effective of these parameters will be studied in this

section.

4.4.1 Aplanarity and Sphericity

The direction and shape of the momentum flow of jets in ¢¢ production is
different from that in QCD background. These differences can be quantified by

defining certain event-shape parameters[5, 79]. For each event, we can define the
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AT

(13,1/3,1/3)

Figure 4.7: The allowed range of eigenvalues in the space spanned by @Q;s.

normalized momentum tensor M,:

My, = Zp(i)ap(i)b/ ZP%Z') (4.5)

where a and b run over the z,y,z components (index of the tensor), p(;) is the
momentum of a given jet 7, and ¢ runs over the number of jets in an event. As is
clear from its definition, My, is a symmetric matrix that is always diagonalizable,

and has positive-definite eigenvalues (Q1, @2, Q3) satisfying the conditions[5, 79]:

Q1 +Q:+ Qs =1, 0< @1 <Q:<Qs. (4.6)

The equation @, + @2 + @3 = 1 is a plane in a space spanned by @)1, @2, and @3,
and the inequality in the above equation restricts the range of each eigenvalue in

a way that is clear from Fig. 4.7:

(4.7)

W =
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The magnitude of any (), represents the portion of momentum flow in the direction

of axis 1. Therefore, the event shape can be specified as follows:
o Linear: ;1 =@, =0and Q3 =1
e Planar: @; =0and @, = Q3 = 1/2
e Spherical : @1 = Q> = Q3 =1/3.

The aplanarity (A) and sphericity (S) parameters that we will use are defined as
follows:

A=2Q;, with 0< A<0.5 (4.8)

N | o

S = ;(Q1 +Q,), with 0<S<10. (4.9)

Top-quark (¢t) events tend to have higher aplanarity and sphericity than back-
ground events. Although the actual values of the aplanarity and the sphericity
are calculated in the center-of-momentum frame of the colliding partons, in terms
of discrimination relative to QCD background, little difference was observed when
A and S were calculated in the pp collision frame.

Figure 4.8 shows the distributions of these two parameters in three different
ways. First, (a) and (b), show the distributions normalized to the production
cross section, while (c) and (d) show both the distributions normalized to unity

(densities). Finally (e) and (f) show the log of the probability ratios of the signal
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to the background, log(R), with the ratio of integrated probabilities defined as:

/’ maszig dml
R(@wmn) = (4.10)
Pokg dz/!

Zthr

where p(z) are the normalized densities for signal (sig) and background (bkg) for
the parameter z, and z;,, and @,,,, are the thresholds and upper limits for the
parameter . The degree to which log(R) changes as z;, increases, corresponds
to the effectiveness of that parameter in discriminating against background events.
Both A and S provide some degree of rejection of the background. The log(R) val-
ues change by a factor of ~ 10 within the allowed range of the parameters, and are
not very sensitive to the specific value of the input top-quark mass. Aplanarity ap-
pears to provide slightly better rejection. Naturally, greater discrimination comes

at the loss of signal, and a compromise has to be struck where to place any cutoffs.

4.4.2 Mass Sensitive Parameters

Any parameter that depends on the energy scale of jets is in principle also
sensitive to the mass of the top quark. These “mass sensitive” parameters usually
provide better discrimination against QCD background than parameters such as
aplanarity and sphericity. This is because the characteristic energy scale (com-
monly called @?) of the QCD background is much lower than for the case of top
quark production. That is, the QCD background is basically a 2 to 2 parton pro-
cess that contains additional radiated gluons. Four mass-sensitive parameters will

be defined and examined in this dissertation:

o Hr

A sum of the transverse energies of jets in a given event characterizes the
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Figure 4.8: The aplanarity and sphericity distributions for data from RUN I (black
boxes), and are from ISAJET ¢t events with a top-quark mass of, 140 (dashed), 160
(dotted), 180 GeV/c? (dot-dashed). (a) Aplanarity distributions normalized to their
respective cross sections, (b) sphericity distributions normalized to their respective cross
sections, (c) aplanarity distributions normalized to unity, (d) sphericity distributions nor-
malized to unity, (e) log of the probability ratios for aplanarity, (f) log of the probability
ratios for sphericity.
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transverse energy flow, and is defined as before:

jets

Hy =} B (4.11)

J

where E7(;) is the transverse energy of the jth jet. The average value of Hr

has an relation with the mass of the top quark (m;) as, m, ~< Hy > /2.

HY
HY is defined as[80]:

H%j = HT — ET(l) — ET(Z) (4.12)

where E7(;) and Er(y) are the transverse energies of the first two leading jets
(highest Er). The reason for subtracting the Ep of the two leading jets is
that QCD background consists of two hard-scattered partons with four soft
gluons. Consequently, removing the two leading jets from the event should
enhance the discrimination power. Figure 4.9 shows the distributions in Hr
and H:?}j in the same manner as given in the previous plot of A and S. Both
distributions are clearly sensitive to the mass of the top quark. The log R
for Hy changes by a factor of ~ 30, which indicates that it is a stronger
discriminator than A or §. The log R for H:?}j is even stronger than Hr, and
changes by a factor of ~ 300 in its range. The distributions of Hy and H:?}j
for tt production are very strongly correlated with the top-quark mass, as is

clear in the plots of log R.

NA

gets

Another way of looking at the transverse energy flow in an event is to relate

the energy flow to the number of jets observed. Tkachov[81] has recently
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explored kinematic properties of events without defining their jets. Inspired

by this work, an average jet-count parameter, N

fets) Was developed by C.
Stewart[70, 75]:

/EéthN(Eéth) dEéth
Ny = , (4.13)
/E%hr‘ dEéth

where N(E") is the number of jets in a given event for |p| < 2.0 and
E7r > E'". Thus, this parameter is the number of jets averaged over a range
of Er thresholds (typically from 15 to 45 GeV), and weighted by the Er
threshold. This parameter corresponds to the number of jets, but is more
sensitive to jets of higher Er than just a jet count above some given threshold
would be. The integration in the above equation is performed analytically

using the following observation[75].

Suppose that Er(w) and Erign) are the lower and upper limits of integra-
tion. Let n be the jet ranking order, where E7(,) is the closest in value to,
but less than, E7ign). Then, for the n jets between Er (o) and Erpign), we

can write (assuming no jets have Ey less than E7(1ow) and the number of jets

is N):

Er(hig
/ T(high) EtThTN(EtThT)dEtThT (4.14)

ET(low)

. /’ET(l) EthTNdEthT _I_ ET(Z) EthT(N — ]_)dEthT —I_
_ i u T T
ET(low)

Erq)

Erhig
+ / T b (N — p)d B
Eq(n)
N -1
2 ( low)) + T(E%(z) - E:2r(1)) T+
N —
t— 5 (E:ZF(high) — Ef(,)

1 N
= 9 ZET n)E:ZF(high) - ?E%(low)'
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Therefore, N2

s can be calculated analytically using the following equation:

ZE:ZF(Z') + (N = 1) EZhighy — N EF (10w
N4 = =l : (4.15)
7t E%(high) - E%(low)

o E; of the fifth jet
The Er of the fifth jet, E7(s), is also a useful parameter that discriminates
QCD background from ¢t events.

Figure 4.10 shows distributions for N4

Lot and Er(s), again in the form used in

Fig. 4.8. Both parameters can be used to reject background in an efficient way.

In the case of N4

its> the signal to background ratio can be increased to ~ 1/10, as

shown in Fig. 4.10 (a), but at a great cost of loss in statistics for the signal. Log R
plots show that N2

10 18 typically about twice as powerful as Er(5) in discriminating

against background. Both parameters are also strongly correlated with the top-

quark mass.

4.4.3 Other Parameters

o Hy/+/5 and Centrality
Two parameters that depend weakly on the mass of the top quark can be

defined, as follows. Centrality, or C:

C=2> Bri/ 2 B (4.16)

where the sums include all jets in the event with || < 2.0 and E; > 15 GeV.
This parameter is similar to Hy and also characterizes the transverse flow of

energy in events, but is normalized in such a way that it depends weakly on
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Figure 4.10: The N}, and Er(s) distributions for data from RUN I (black boxes),
and ISAJET ¢ events with a top-quark mass of 140 (dashed), 160 (dotted), 180 GeV/c?
(dot-dashed). (a) N;i,, distributions normalized to their respective cross sections, (b)
E7(5) distributions normalized to their respective cross sections, (c) NjAets
normalized to unity, (d) E7(5) distributions normalized to unity, (e) log of the probability

: A
ratios for N, ,

distributions

(f) log of the probability ratios for Ez(s).
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the mass of the top quark. Second, we define a related quantity:
Hr/V3 (4.17)

where /5 is the invariant mass of the colliding parton system. This is similar

to the centrality.

Figure 4.11 shows distributions of Hy/+/5 and Centrality in the format of Fig. 4.8.
Both parameters are weak in rejecting background, but are almost totally uncor-

related with the top-quark mass.

4.4.4 Correlations Between Parameters

Not surprisingly, the parameters we have introduced are correlated with each
other. To quantify the degree of correlation, we introduce an experimental linear-

correlation coefficient, r defined as[82]:

N zyi— >z Yy
[Ny 22— (D)) P INTy? — (D)

r (4.18)
The value of r ranges from 0, when there is no correlation, to + 1, when there
is complete correlation. Table 4.3 shows the correlations among the 8 parameters
defined in the previous section. NﬁtS-HT/\/E and A-Hy are the least correlated
pairs. Also, as expected, H:?}j—ET(5) and H:?}j—NA

i4s are very strongly correlated

pairs. (The statistical uncertainties on the values of » are quite small.)

We will use H:?}j as one of our choice of parameters because of its high rejection

power (N#, is dropped because of the spikes at every integral values in Fig. 4.10

gets

(a)). Second, we take C as opposed to Hy/4/s because it provides less correlation
with H:?}j. We take A as opposed to S because it provides higher rejection power.
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Figure 4.11: The Hr/+/4 and centrality distributions for data from rRuN I (black boxes),
and ISAJET it events with a top-quark mass of 140 (dashed), 160 (dotted), 180 GeV /c?
(dot-dashed). (a) Hr/+v/é distributions normalized to their respective cross sections,
(b) centrality distributions normalized to their respective cross sections, (¢) Hr/+/3
distributions normalized to unity, (d) centrality distributions normalized to unity, (e)
log of the probability ratios for Hr/+/3, (f) log of the probability ratios for centrality.
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Table 4.3: Correlations among kinematic parameters[70] for RUN I data.

A S Hr HY N, Ers Hr/ys C

A 1 059 0.06 038 023 0.29 0.06 0.24
S 1 0.06 024 0.18 0.19 0.11 0.39
Hy 1 0.69 074 028 -0.10 0.16
HY 1 080 0.61 -0.16 0.01
Nt 1 0.42 0.14 0.03
Er(s) 1 0.08 0.02
Hr/\/s 1 0.37
C 1

Finally we will use Hr and Er(s) in our analysis. The following chapter will
describe how selection criteria on A, C, H:?}j, E7(5) and Hr can be used to enhance

the signal relative to background in the data.



91

Chapter 5

Search for #¢ Signal

In this chapter, we will focus on various techniques used to enhance and measure

the contribution from ¢¢ production in the data.

5.1 Importance-Sampled Grid Search

Separating signal from background (or, more generally, event classification) by
applying some set of restrictions has been a conventional way to enrich the signal
in a given mixture of signal and background events. Let us assume that an event
can be characterized by an n-tuple X=(z4,...,2,) of parameters, (often referred
to as a feature vector) and consider (zi,...,2,) as a set of cutoffs on the z;. In
order to obtain an optimal set of cutoffs, a technique was developed to search
for these cutoffs over a grid of points in a space spanned by (z1,...,2,)[83]. An
efficient way to perform such a search is by using the distribution of the points
X=(@1,...,z,) from some appropriate subset of the data as a set of cutoffs. Because
the distribution of data points corresponds to relevant physics processes, in this

way one does not waste computer time in exploring uninteresting parts of phase
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space. The set of such cutoffs forms a grid with some arbitrary spacing between
neighboring grid lines. This can be termed an importance-sampled grid. The
algorithm then scans all the points X=(z1,...,z,) provided by both the signal
and the background sample, and calculates the number of signal and background
events satisfying the condition z1 < zq, 3 < 29, ..., 5, < 2y, for each (21, 23,...,25)
set of cutoffs. The choice of cutoff values can now be decided based on what one
wishes to optimize. In this dissertation, we will attempt to optimize the signal to

background ratio in the data.

5.1.1 Training

To find the optimal selection criteria, we sampled the space of cutoff points
using a combination of background and signal events. For background, we selected
7219 events at random (10 % of total) from the search sample (this comprises our
“background training sample”). For the signal, we used ISAJET Monte Carlo events
with an input top quark mass of 180 GeV/c? and assumed the total cross section of
4.7 pb. As described in the previous chapter, each of the events in the background
sample has a well-defined probability of having one or more tagged jets, and that
tagging probability is used to weight the background events. The signal sample
consists of 8000 events, for which we assume a constant muon-tagging probability
of 0.20 for each event, independent of kinematics. In order to have reasonable
statistics, we do not, in fact, require muon tagging at this stage in either sample,
but use the a priori tagging probabilities for weighting the events.

Based on the arguments presented in the previous chapter, the grid search was
performed using the parameters H:?}j, A,C, Er(s), and Hy. The values of the cutoffs
(thresholds) were chosen from each of the above 8000 signal and 7219 background

events for the importance-sampled grid in five-parameter space. Figure 5.1 (a)
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Figure 5.1: Results of the importance-sampled Grid Search in five-parameter space.
Signal is modeled with 1SAJET, using m; = 180 GeV/c?, and background is randomly
selected from RUN I data. (a) Expected ¢t signal vs. expected background events for
p tagged jets, (b) significance (N,;//Nokg) as a function of the expected background
events, for the full sample of ~ 65,000 events (~ 72,000 - 7219 events).

shows the expected number of muon-tagged events (NV,;) vs. the expected number
of muon-tagged background events ( Ny, ) for each set of 15,219 chosen thresholds,
and Fig. 5.1 (b) shows the expected “significance” (Nt;/M) as a function of
Npig. The number of signal and background events is scaled to the number ex-
pected to be in the search sample (excluding the 7219 events used for training)
in Fig. 5.1. It is interesting to note that the grid search defines an upper edge in
Fig. 5.1 (a) that corresponds to a family of parameter-threshold values that are
optimal (optimal boundary). Our significance varies between 1 - 2, as can be seen
in the upper points of Fig. 5.1 (b). To obtain the highest signal to background
ratio for a given expected number of background events, we can choose any of the
selection criteria defined by the points along this optimal boundary.

To check the need for using five (correlated) parameters, and to check any pos-

sible degradation of the signal to background ratio due to correlations between
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Table 5.1: Threshold values for three points on the optimal boundary of the grid.

Selection H:?}J Ers) A C Hy
Criteria | (GeV) | (GeV) (GeV)
1 134 25 | 0.031 | 0.55 299

2 163 34 | 0.090 | 0.59 324

3 198 35| 0.042 | 0.69 349

parameters, the grid search was performed again with only the three parameters,
H:?}j, A, and C. We found that using these three parameters yields a 5 % smaller
signal to background ratio than using five parameters, for the case when one ex-
pects ~ 100 background events. Therefore, we will use the 5-parameter grid as our

principal method in the search for signal.

5.1.2 Results

Assuming that the grid search extracts the best threshold values for any given
number of expected background events, we chose three arbitrary points along the
optimal boundary for our study. Figure 5.2 shows the chosen points. The three
points are labeled as “set 17, “set 2”, and “set 3”. Table 5.1 lists the threshold
values of H:?}j, A, C, Er(5), and Hy that correspond to the three points.

In order to maintain statistical independence of the background-training and
the search samples, we apply each of the three sets of thresholds to the search
sample, excluding the data used for the training of the grid algorithm (7219 events).
Table 5.2 lists the number of accepted events in RUN I (without muon tag), the
number of predicted background events (with tag), the observed number of tagged
events, and number of expected tf events with tags (for m;=180 GeV/c?, and
assuming a total cross section of 4.7 pb), for the three grid points. The number of

observed tagged events slightly exceeds the number of expected background events,
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Figure 5.2: Region of the optimal boundary and three sets of cutoff points selected
from the importance-sampled Grid Search of five-parameter space spanned by H. :?}J , A, C,
Er(5), and Hr. Signal is modeled with ISAJET, using m; = 180 GeV/c?, and background
is randomly selected data from RUN I. Three different symbols represent the three sets
of cutoff to be used for extracting the size of the ¢ signal in the data.
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Table 5.2: The number of untagged and tagged events in the search sample, the expected
number of background events, and the tf signal expected from the grid search. The
number of #f events also includes the contribution from other than all-jets channels
which pass the selection criteria.

cut RUN I events | expected Ny, | observed | expected Ny
set | (tag not required) (tagged) | (tagged) (tagged)
1 2991 90.2 97 13.1
2 431 15.1 20 5.9
3 177 7.1 8 4.1

and this excess can be attributed to ¢Z production. We will discuss the significance

of the excess and the systematic uncertainties later in this chapter.

5.2 Analysis Based on the Covariance Matrix

The inverse of a covariance matrix C (a multi-dimensional generalization of
the variance) can be used to reduce the dimensionality of an event-classification
problem[84]. This reduction has two advantages: 1) it simplifies the optimization of
selection criteria because there are fewer parameters to deal with, and 2) it tends to
increase the efficiency with which events can be selected because it exploits linear
correlations among the parameters[84]. The quadratic form (z-(z))TC~!(z-(z))
can be used as a tool for discriminating some specific class of n-tuple X from any
other (where X refers to the same type of n-tuple we introduced in the beginning
of our discussion of the grid search). It was shown that[84] the optimal way to
separate any two overlapping distributions is to rely on a function f that is based

on a common covariance matrix C' that provides means (X)g and (X)g:

F=>0%-x%), (5.1)

N | —
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where
x5 = (X = (X)) C7H(X — (X)5), (5.2)
x5 = (X = (X)s)" 07 (X - (X)s), (5.3)
Cli) = %kZ(wE“ — (@)@ — (), (5.4)

N is the number of events used in the construction of the covariance matrix, and the
function, f is called the Fisher's linear discriminant function. It is certainly true
that the quantities x% and x% are not useful if the parameter z; has non-Gaussian
nature in its distribution because that could mismodel C and consequently x*. For
the application to our analysis, two covariance matrices, Cs and Cp, separately

for the signal and the background were constructed as follows[84].

Osin = 37 2l — le)(elf — fe:) (55)
Coe = 7 201~ ) — ()

where the summation runs over events in each sample (M events for signal and N
events for background), ¢ and j represent elements of the covariance matrices, and z
and y are the parameters representing signal and background sample, respectively.
Using Eq. (5.5), x% and x% are redefined with their corresponding covariance
matrices. We will use the Fisher’s discriminant f to attempt to enhance the signal
events from the ¢t production relative to background.

Before constructing covariance matrices, we first make the distributions more

Gaussian by performing the following transformations[85]:

z; — b (5.6)
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where p is a real number that is chosen in such a way that the distribution of
z” has no third moment (i.e., ((z¥ — (z¥))’) = 0), and o is the RMS width of
the distribution z}. Figure 5.3 shows the results of such symmetrizations. To
compare the changes in shapes, scales on the horizontal and the vertical axes
are chosen arbitrarily (differently for distributions before and after applying the
transformation). In Fig. 5.3 (a), we compare the H:?}j distribution from the search
sample before and after the transformation. The shaded histogram is the initial H:?}j
that is asymmetric with a long tail at its higher end. The transformed histogram is
clearly non-Gaussian, but far less so than the input spectrum. The symmetrization
is more effective for the aplanarity distribution of the search sample, as is shown in
Fig. 5.3 (b). Figure. 5.3 (c¢) and (d) demonstrate the fact that the transformation

also makes the distributions in Hy and C for the ¢f sample (ISAJET m; = 180

GeV/c?) closer to Gaussian in form.

5.2.1 Training

In order to determine the two covariance matrices Cs and Cpg, we used the
identical training sets of events that were used in the importance-sampled grid
search (t¢ Monte Carlo for Cg, and background events for Cg). We did not require
muon tagging in either sample, and in fact, ignored the tag probability in the
construction of the covariance matrices. The same five parameters, H:?}j, A, C,
E7(5),and Hr, were used again in the analysis. Here, the presence of the correlation
among parameters is less serious in the analysis, because the covariance matrix
technique already takes proper account of any linear correlations.

Figure 5.4 shows the correlation between x% and x% for both background
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Hij (search sample) Aplanarity (search sample)

(©) (d)

H; (ttbar sample) Centrality (ttbar sample)

Figure 5.3: The result of symmetrizing kinematic parameters. Shaded histograms rep-
resent the original distributions, and the normal histograms represent the transformed
distributions. Scales on axes are arbitrary, and chosen only to compare the shapes of
the distributions. 1SATET m, = 180 GeV/c? is used for # sample. (a) H,’ distributions
from the search sample, (b) A distribution from the search sample, (¢) Hr distribution
for tt sample, (d) C distribution for ¢t sample.
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(shaded circles) and signal samples (crossed bars, representing ISAJET tt events
at m; of 180 GeV/c?). We see a clear difference in the population of background
and signal events in the (x5, x%) space, demonstrating the possible utility of the
covariance matrix technique for distinguishing signal and background. Figures 5.5
(a) and (b) show the distributions for x% and x%, respectively, using background
and tt signal samples. The signal is normalized to the number of events expected
in the search sample after imposing muon tagging (and excluding the 7219 training
events). As expected, the background sample has smaller x% values than the signal
sample, and selecting x% can increase the signal to background ratio to ~ 1/5. The
signal sample also has smaller x% values than the background (Fig. 5.5 (b)), but
X% is not as strong a discriminator as x%. Figure 5.5 (c) shows the distributions in
the Fisher’s discriminant function for the ¢t signal (shaded histograms) and for the
background (black circles). Using Fisher’s discriminant function, one can reach a
signal to background ratio of ~ 1/2 in the region where one expects to observe
< 10 events in the search sample. We will use Fisher’s discriminant function as

selection criteria for the search in the next section.

5.2.2 Results

We used an arbitrary set of integral values between 2 and 8 as thresholds for
the Fisher’s discriminant function, and simply counted the number of events that
passed these thresholds, both for background and t¢ Monte Carlo. When applying
the thresholds, we again excluded the data used for the training of the covariance
matrices, in order to ensure the statistical independence of the training samples
and the events used in the final analysis. Table 5.3 lists the threshold values, the
number of events observed in RUN I for those thresholds (without tag), the number

of expected background events (with muon tags), the number of observed tagged
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Table 5.3: The f dependence of the number of untagged events of RUN I, the expected
tagged background, the observed number of tagged events, and tagged tt, based on the
covariance matrix techinique. (The number of ¢¢ events includes a small contribution
from other than all-jets channels that pass the selection criteria.)

f> events in RUN I | expected Ny, | observed | expected N,;

set (tag not required) | (muon tagged) | (tagged) (tagged)
a 2 4379 134.1 149 14.6
b 3 2279 74.6 81 11.4
c 4 1196 41.3 43 8.6
d 5 649 23.6 28 6.3
e 6 357 13.3 15 4.4
f 7 212 8.2 14 3.1
g 8 128 5.0 7 2.1

events, and number of tagged tf events expected for m;=180 GeV/c*, assuming
a total cross section for ¢f production of 4.7 pb. It should be recognized that
the number of observed events for increasing f-thresholds are not statistically
independent, but are, in fact, subsets of one another. There is a small excess that
can be attributed to signal above background, that will be discussed later in this
chapter.

Figure 5.6 displays scatter plots of 2(x% — Xx%) against 1(x% + x%) for tagged
data for RUN I, background (search sample), and ¢t signal, only for events with
f > 2. The data in Fig. 5.6 (a) suggest the presence of a mixture of background,
as given in Fig. 5.6 (b) and ¢t signal, as given in Fig. 5.6 (c). We will investigate
in Appendix A the effect on kinematics of selecting different cutoffs for Fisher’s

variable.
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5.3 Artificial Neural Networks Analysis

Artificial neural networks[86, 87] constitute a powerful nonlinear extension of
conventional methods of multi-dimensional data analysis. The goal is to have a
set of 7 outputs F; = Fi(zy,zs,...z,) of networks that provide different values for
signal and for background. The goal is therefore identical to that of the grid search
and of the approach using the covariance matrix. The word “network” refers to the
weighted connections among internal parameters in F; (commonly called nodes),
and “feed-forward” means that the feature parameters (z;) are used in only one

direction, namely forward. The following form is often chosen for the F;:

1 (1
=Y wijgl=> W',kmk+0')‘|‘0i
T £ J T - J J

J

Fi(z1,29,...,2,) =g (5.7)

which corresponds to the configuration of Fig. 5.7 (a). The “weights” w;; and
wjr are parameters to be fitted using some input distribution. (Note that w; ;
and w;j, are independent parameters. w,; are weights connecting input to hidden
nodes, and w; ; are weights connecting hidden to output nodes.) The functions in
Eq. (5.7) are functions of their entire brackets. They are non-linear (“transfer” or

“activation”) functions, and typically of the form that we use[86]:
1
g(z) = 5[1 + tanh z|. (5.8)

This construction is, in fact, based on the structure of biological neurons[86], and
that is why this technique is called “artificial neural” network analysis. The term
0, is a threshold, corresponding to the membrane potential in a biological neuron,
and is a parameter that also must be obtained from a fit. The parameter T' (called

“temperature”) controls the steepness of the function g, as sketched in Fig. 5.7
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(b) o

X

Figure 5.7: Neural basics. (a) A one hidden node layer feed-forward network architec-
ture, (b) an example of non-linear neuron activation function.

(b). Depending on the values of the weights and thresholds, the contributions
from each z; to each output F; will be different. The presence of the form g[g(z)]
(the “hidden layer”* in Fig. 5.7 (a) and the presence of w; ;) in Eq. (5.7) provides
for non-linear modeling of the input.

Practically, the goal is now to reduce the “error” between the desired response
and the network’s actual response. A commonly used error function is the mean

square error F, averaged over the sample:

AL

o, 2 L (FD 47y (5.9)

P p=1:=1

E =

where ¢, is the desired target value (the numerical choice for a particular class of
events) for F;, N, is the number of patterns (number of events in the sample),
and N is the number of network outputs. By performing the minimization of the
function E, one can obtain the F; that discriminate signal from background.

Many algorithms for the minimization (commonly called learning or training) of

*Input feature parameters (#;) are mapped to another set of internal parameters, y; =
9> pwirzr + 6;), as in Eq. (5.7). This set of parameters y; is commonly called the “hid-
den layer” that ultimately determines the network outputs (F;). Also, the necessity of only one
hidden layer for a given event classification problem is guaranteed by a mathematical theorem[87].
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the error function exist[88]. Back propagation is the most widely used learning al-
gorithm since it is simple to implement and it often outperforms other methods|[88].
It contains a gradient descent minimization method[88] that amounts to updating
the weights and thresholds according to the back-propagation learning rule[88].
(The back-propagation learning rule will be explained in Appendix B.) During the

minimization, weights and thresholds are updated as:

Wit = Wy + Awt (510)
where
OF
Aw, = —na—wt. (5.11)

Here w refers to the vector of weights and thresholds used in a given network, and ¢
and t+1 refer to the previous and the current updating, respectively. The quantity
7 is called the learning-rate parameter that controls the rate of the learning[87]. A
typical values of the learning-rate are in the range [0.01,1]. A “momentum” term
is often added[87]:

Awiyg = —n% + aAuw;. (5.12)

where a is called the momentum parameter. Introducing this extra term can
speed up convergence[87]. Figure 5.8 displays the effect of the momentum term
qualitatively. All the parameters, a, 3, and 7 should be chosen carefully in order to
prevent networks from staying at a local minimum and to optimize the networks.
We will investigate this matter later.

Recently, there has been a greater development of understanding of the inter-
pretation of feed-forward neural networks[83, 89]. It appears that the output of
a feed-forward neural network provides a direct approximation to the probability

that a given feature vector X belongs to the signal class, under certain assump-
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Figure 5.8: The addition of a momentum term during the training procedure.

tions. Because of the importance of this statement, we present the proof of this

statement in the next section.

5.3.1 Probability and Neural Networks

Given a mixture of signal and background events, what is needed for the

classification of an event is the optimal decision boundary in the parameter space.

A possible way to construct such a decision boundary is to form a ratio of P(S5|X)

to P(B|X):

_ P(51X)
" T PBX)
P(X|S)P(S)
~ P(X|B)P(B)’ (5.13)
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where 7 is called the discriminant function, P(S|X) is the probability that any
event characterized by X is a signal event, P(X|S) is the probability that a signal
event has characteristics X (this is usually termed the likelihood function), and
P(S) is the a priori probability of an event being a signal event. In our case,
P(S)/P(B) is proportional to the ratio of the production and background cross
sections, with the constraint that P(S) + P(B) = 1. A selection on r can, in
principle, provide an optimal way to classify the event. It is often more convenient
(and is analogous to the technique needed in covariance matrix analysis) to define

the quantity:

f = logr
= log P(X|S) —log P(X|B) + log [P(S)/ P(B)]. (5.14)

Now assuming that the likelihood functions can be represented as n-dimensional

Gaussians, one can show that[90, 91]:

fo= G- ()0 (X - (X))

— X (X0) 05 (X~ (X))

+ g (Gace)
+ log (%) (5.15)

where det(C) is the determinant of the matrix C. The function f is identical

to Fisher’s linear discriminant function introduced in the previous section, except
for the last two terms. Therefore, it appears that Fisher’s linear discriminant
function is different from logr and does not contain the relative difference in a

priori probabilities of the signal and the background.
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Now, we turn to the connection between probability and an artificial neural
network that has only a single output (F = F;). One can separate the mean

square error function into two parts[90]:

Ng 1 &
F—s)Y?+ 2 — F — b)? 1
( S) —I_ Np NB ( ) I (5 6)

N5 1 3

E(F)_FNS
p

where N, = Ng + Np, Ng is the number of signal events, Ng is the number of
background events, and target values for signal and for background are s and b,
respectively. If we consider the limit of N, — oo, then the fractions Ng/N, and

Ng/N, go over to P(S) and P(B), respectively, and sums go over integrals as:
E(F)= P(S)/dXP(X|S)(F —5)’ + P(B)/dXP(X|B)(F — b2 (5.17)

where P(X|S) and P(X|B) appeared as a priori distributions of X for signal and
background, respectively. Therefore, in the limit N, — oo, one can regard the
mean square error function F, as integrals of probabilities. Using the relations on

conditional probabilities[91], namely:

P(S|X) = P(X|S)P(S)/P(X)
P(B|X) = P(X|B)P(B)/P(X)
P(X) = P(X|S)P(S)+ P(X|B)P(B), (5.18)

we can rewrite the mean square error function as

E(F) = / dXP(X) [F* — 2FG(X, a,b)]

+ /dXP(X) [s>P(5|X) + ¥*P(B|X)] , (5.19)
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where the function G(X,a,b) is defined as
G(X,a,b) = sP(S|X) + bP(B|X). (5.20)

By factorizing the square term in E(F') and rearranging the remaining terms we

end up with the the following formula:
E(F) = / dXP(X)(F — G)* + / dXP(X)(s — G)(G — b). (5.21)

Because our goal was to minimize E(F') by adjusting w and 6, and the second term
has no dependence on F', the part relevant to the neural network must be the first
term in the above equation. If a function F' can be found to satisfy F' = G, then

the network output can be interpreted as:
F =sP(S|X)+bP(B|X). (5.22)

The existence of such a function is always guaranteed because of a mathemati-
cal theorem[92]. The importance of a feed-forward neural network is that it is
an example of such a function that minimizes E(F') through a back-propagation
technique[89]. Now, using the relation P(S|X)+ P(B|X) = 1, one can derive the

following relations:

Py = S,
P(B|X) = (s =C) (5.23)
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Figure 5.9: Relative significance of the signal from a mixture of 5000 signal and 5000
background events. The network outputs were required to be larger than 0.7. (a)
Relative significance (signal/background) as a function of the number of hidden nodes,
(b) relative significance as a function of the momentum parameter.

and find that the discriminant function r is given by:

r(Q) = 2. (5.24)

Therefore, classification based on the discriminant function can be approximated

by using artificial neural networks. If one sets s to be unity and b to be zero, then

F = P(S|X), (5.25)

which means that the network output is the probability of obtaining a signal, for
some specified feature vector (or event). In fact, in the following sections, we will
set s to unity and b to be zero in order to have a direct interpretation of the

network output as the probability, P(S|X).
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5.3.2 Stability of Results from the Network

In order to make sure that the networks do not have any local minima in
the network parameter space, we explored different regions of parameter space
and different configurations of the networks (see below). We chose the feature

parameters to be H:?}j, A, C, Er(5), and Hr, and the following setting as defaults.

e network architecture: 5-8-1, namely, 5 input patterns, a layer of 8 hidden

nodes, and a single output.
e momentum parameter a: set to 0.9 unless specified to the contrary.
e temperature (T): set to unity unless specified to the contrary.
o learning rate 7: set to 0.01, unless specified to the contrary.

e number of patterns per update: this is the number of input patterns (feature
vectors) to sum over prior to updating of the weights in the training of a

given network, and is set to 10, unless specified to the contrary.

e number of training cycles: in the training procedure, many sets of event
patterns are presented to the networks. This defines the number of training

cycles, and is set to 2000 unless specified to the contrary.

The data sets used for training were identical to those used in training both the
grid search and the covariance-matrix analysis. Networks were set to have one
hidden layer, with s (target value for signal) defined to be unity, b (target value
for background) to be zero, and to provide a single output. After the training,
we tested 5000 signal events and 5000 background events, requiring the network
output to be larger than 0.7, and investigated any changes in relative significance,
defined by the number of surviving signal events divided by the number of surviving

background events.
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Before deciding on the parameters of the network, we varied the number of
hidden nodes between three and nine. Figure 5.9 (a) shows the variations in the
relative significance as a function of the number of hidden nodes defined in the
network. The bars indicating statistical uncertainties. Within statistical uncer-
tainty, the significance does not change with the number of nodes, indicating the
stability of the network output against the number of hidden nodes. The greatest
significance of the signal was obtained using the 5-8-1 configuration.

The momentum parameter a was varied from 0.0 to 0.9 in steps of 0.1. No
indication of failures in training was observed, as shown in Fig. 5.9 (b). The
largest significance was observed for a = 0.9.

The inverse of the temperature 8 (8=1/T) was varied from 0.2 to 1.2 in steps of
0.1. Again, no indication of failures in training was observed, as shown in Fig. 5.10
(a). The largest significance was found for 8 = 1.0.

The effect of the learning-rate on the network performance was studied by
setting its values from 0.01 to 0.1 in 10 uniform steps on a logarithmic scale.
Figure 5.10 (b) shows the significance as a function of 7. Although the largest
significance was found for = 0.1, a smaller value of # is preferred due to the
fact that the setting did not allow the distribution of signal outputs to peak at 1.0
(assuming that we will cut the network output of the search sample close to unity
later).

The effects of changing the number of event patterns per update, and of the
total number of training cycle were investigated and are shown in Fig. 5.10 (c)
and (d), respectively. Again, no indication of failure in training was detected.
The training sample we used (finite number of patterns) may contain misleading
regularities due to sampling. After a certain number of cycles the network can
start to see these patterns to decrease the mean square error function[87]. This

causes the overfitting of the network (known also as overtraining), and the decrease
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of the significance in Fig. 5.10 (d) may be explained by this.
Considering the significance, as well as the distribution of the network output
for the tt signal near 1.0, we chose the above default parameter values for our

analysis.

5.3.3 Training

We used the default settings discussed in the previous section as values of
parameters for the final training of the networks. It is our hope that the network
method takes greater advantage of any correlations among parameters than for the
case of our previous techniques.

Figure 5.11 (a) shows the distributions of network outputs for the signal (shaded
area) and the background (black circles). The two distributions were normalized
to the same area in order to compare their shapes. As we have argued, we can
interpret the network output F' as the probability of any given event being signal,
P(S]X). The signal populates the F' values near unity, as opposed to background,
which peaks near zero. As shown in Fig. 5.11 (b), if we consider the signal to
background ratio prior to the muon-tagging, we are still at the level of 1/10, even
for the very highest network output. (The two distributions in Fig. 5.11 (b) are
scaled by the number of events expected in the search sample, excluding 7219
training events.) When the two distributions are weighted by their respective tag-
rates (for signal and for background), we see in Fig. 5.11 (c) that at the very
highest network output we expect to have a signal to background ratio close to ~
1. This is comparable to the result obtained using covariance-matrix analysis (see
Fig. 5.5). We will compare the performance of networks to other techniques later

in this chapter. In Appendix A, we provide the result of the training process.
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Figure 5.11: Results of the training of networks. (a) Distributions of network out-
puts using background (black circles) and signal (shaded area), normalized to the same
area. (b) Distributions of network outputs, weighted by their respective production cross
section. (c) Same as (b), but weighted further by the respective tag-rates.
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Table 5.4: Dependence of results on the threshold used in the output of the neural
network.

network events in RUN I | expected Ny, | observed | expected N;

set | output > | (tag not required) (tagged) | (tagged) (tagged)
i 0.9 1248 44.4 58 10.9

ii 0.95 616 23.0 31 8.0
iii 0.96 480 18.2 24 7.2
iv 0.97 357 13.7 18 6.2
v 0.98 219 8.6 12 4.8
vi 0.99 90 3.8 4 2.8

5.3.4 Results

We used the network outputs of 0.9, 0.95, 0.96, 0.97, 0.98, and 0.99 as arbitrary
choices of threshold values, and counted the number of background and signal
events passing these thresholds. Again, we excluded the data used for training
the networks in order to maintain the statistical independence of the final search
sample. Table 5.4 lists the 6 threshold values used for network outputs, the number
of untagged events in RUN I passing the cutoffs, the number of expected tagged
background events, the number of observed tagged events, and the number of
tagged tt events expected. Clearly, set vi is contained in set v, etc., and the
observed numbers are not statistically independent. There is again a small excess
of signal over the background, that will be discussed later in this chapter. More

on the effect of selecting on network output will be given in Appendix A.
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5.4 Comparison of Grid, Covariance Matrix, and
Neural Network Analyses

Independent of the ¢t content of the search sample, we wish to compare the
performance of the three different techniques. For the Grid method, the number
of signal versus background events expected in the search sample was taken from
Fig 5.2. For the covariance matrix analysis, we scanned the values of the Fisher’s
discriminant fuction from 2.2 to 8.6 in 30 steps, and counted the expected number
of signal and background events. For the neural network analysis, we scanned
values of the network output from 0.75 to 0.99 in 30 steps and also counted the
expected number of signal and background events at each cutoffs. All results
are shown in Fig. 5.12. The results from the covariance matrix analysis (dashed
curve) are consistently below the optimal boundary defined by the grid search.
We attribute this under-performance of the covariance matrix analysis relative to
the grid search as due to: 1) the incompleteness of the symmetrization of the
parameters and/or 2) non-linear correlations that are ignored and yield incorrect
covariance matrices.

The results from the neural networks are given by the full curve in Fig. 5.12. In
the region where one expects ~ 80 background events, the neural network provides
the best discrimination of signal to background, and ~ 7 % better than the grid

search.

5.5 Systematic Uncertainties

The following items comprise the major sources of systematic uncertainty that
affect either the background estimate or the signal efficiency, and are common to

all three techniques.
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Figure 5.12: Comparison of signal /background response of the grid, covariance matrix,
and neural network analyses.
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e Because of the increase of multiple interactions with the instantaneous lu-
minosity, the kinematic selection of events and the background estimation
can depend on instantaneous luminosity. We estimated the uncertainty due
to the increase of the multiple interactions by examining the muon tag-rate
as a function of instantaneous luminosity and of the status of the multiple-
interaction tool[93].* Figures 5.13 (a) and (b) show the tag-rate as a function
of the instantaneous luminosity, and of the status of the multiple-interaction
tool, for the Set 1 cutoffs in the grid search (Table 5.1). Although statistics
are poor, we observe no clear indication of any change of tag-rate of “back-
ground” (i.e., data) with increasing luminosity (A linear fit to Fig. 5.13 (a)
produced a slope of 0.00987 + 0.00949.) The same is true, for example, for
the Set ¢ cutoffs in the covariance matrix analysis (see Table 5.3). This is
shown in Figs. 5.13 (c) and (d). (A linear fit to Fig.5.13 (c) produced a slope
of 0.00302 + 0.0182.) Similarly, the output threshold of 0.9 in the neural-
network analysis (shown in Figs. 5.13 (e) and (f)) shows no clear dependence
on luminosity. (A linear fit to Fig. 5.13 (e) produced a slope of 0.000998 +
0.00199.) We estimate < 16 % uncertainty in the predicted background from
dependence on luminosity for the grid, the covariance matrix, and the neural

network analysis based on the one-sigma change of the result of the linear

fit.

*Based on the probability of there being a single interaction, as determined through Level
0, calorimeter and the central detector (CD) information, this tool returns a value of -1 to 5.
A value of 0 means that there was no interaction, -1 indicates that the CD did not find any
vertices, but that other information points to a multiple interaction tool value of one; 1 means
that there was “most likely” a single interaction; 2 means that it is “likely” that there was a
single interaction; 3 means that it is “likely” that there was a multiple interaction; 4 means that
it is “most likely” that there was a multiple interaction; and 5 means that it is “likely” that there
were three or more interactions.
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Figure 5.13: Studies of systematic uncertainties due to multiple interactions. (a) Muon

tag-rate as a function of instantaneous luminosity (in units of 10°° events cm

-2

s71) for

the Grid method. (b) Muon tag-rate as a function of multiple interaction tool, for the
Grid method, (c) same as (a) but for the covariance-matrix analysis, (d) same as (b) but

for the covariance-matrix analysis, (e) same as (c) but for the neural network analysis,
(f) same as (d) but for the neural network analysis.
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o Leakage of hadrons from high momentum jets into the muon chambers may
result in a false muon tag despite the thickness of the calorimeter (typically
greater than 7 pion nuclear interaction lengths). High momentum hadrons
or their hadronic spray into muon planes can be identified as muons, and
we characterize them with unusually large energy deposits in the CH or
ICD+MG sections of the calorimeter. Muons from m and K decays in the
tracking region and in the calorimeter are included in the simulation of the
background tagging rate and are not considered as leakage. From the depen-
dence of the tag-rate on energy deposition in later parts of the calorimeter,
we estimate a < 2 % uncertainty in the predicted background due to the
hadronic punch-through, assuming the leakage itself is not present in our

data.

e The uncertainty in the parametrization of the tagging rate results in a 10
% uncertainty in the predicted number of background events. This was
estimated by changing fit parameters in the tag-rate function (see Chapter

4) according to the one-sigma uncertainty of the result of fits.

o The b-quark content in QCD background can be affected by our kinematic
selections. This can cause the background estimate to be inaccurate in re-
gions where there is substantial signal. At present, we estimate a < 10 %
uncertainty in the predicted background from the effect of a variation of

b-quark content with changes in our selection criteria[67].

o Events with a muon-tag are less likely to satisfy some fixed kinematic selec-
tion requirement because part of the energy of the tagged jet is taken by the
muon and a neutrino. This can cause an error in the background estimate

and in the signal efficiency. We estimate a 1 % uncertainty in the predicted
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background and in the ¢¢ efficiency due to this possible bias[67].

Any difference in the relative energy scale between data and Monte Carlo af-
fects the efficiency for signal events. Varying the energy scale in the t£ Monte
Carlo by 4+ 5 % changes the efficiency for observing signal events by + 10 %

(for our standard selection criteria).

The difference in the turn-on of trigger efficiency for JET_MULTI and for
tt signal can affect the signal efficiency. The difference can originate from
the modeling of electronic noise, or from the simulation of underlying events.

We estimate < 5% uncertainty in signal efficiency from such sources[94].

Uncertainty in parton fragmentation causes the major systematic uncertainty
in signal efficiency. The uncertainty is estimated by comparing ¢t predictions
from ISAJET and HERWIG generators. Figures 5.14 (a), (b), (c), and (d)
show the fractional differences of efficiencies ((€sammr - €nmrwic )/ €samr) for A,
H:?}j, Er(5), and C, respectively (again, for m; = 180 GeV/c?). The largest
difference is observed in the distributions of H:?}j. Based on that, we estimate

20% uncertainty in the overall signal efficiency.

The constant tag-rate of 0.20 used for the signal assumes that the perfor-
mance of all detector components was stable during the run. The changes in
the muon tag-rate for background during the run (~ 20%) and the differences
between ¢t Monte Carlo and data in the ICD and CH regions response have
less then a 10 % effect[67] on the ¢ efficiency. We estimate a 20% uncertainty

in the tt efficiency from any such changes in the muon-tag rate.

The presence of ¢t events in the data sample used for estimating background

must be taken into account. Calling the total number of events in the data
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Table 5.5: Summary of systematic uncertainties.

source size of effect affects
instantaneous luminosity 16 % | background estimation
leakage of hadrons to muon chambers 2 % | background estimation
fits to muon-tag rate 10 % | background estimation
b-quark content 10 % | background estimation
b-tag muons affect selection criteria 1 % | background estimation
1% signal efficiency
jet energy scale 10 % signal efficiency
trigger turn-on 5 % signal efficiency
parton fragmentation 20 % signal efficiency
constant tag-rate for signal 20 % signal efficiency
Nypkg(corr) 10 % | background estimation

(given some set of selection criteria) prior to requiring a muon-tag Nyuq, We

can define the fraction of signal events in the data (fs,) sample as:

Nobs - kag

s1g — 5.26
f I 0-2Ndata ( )

where the 0.2 corrects muon-tagged to untagged signal. The corrected back-

ground estimation therefore becomes:

kag(CO’l"’l") == kag(l — fsig) (527)

This correction introduces a systematic uncertainty in the background esti-

mate ~ 10 %[67].

The size of the above effects are summarized in Table 5.5. Among the sources
that affect the background estimate, the uncertainty due to the multiple inter-
actions is largest. The uncertainty in the assumption of a constant tag-rate for

tt signal, independent of rapidity or Er of the b-quark and uncertainty in parton
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fragmentation have the greatest effect on tf efficiency.

5.6 Production Cross Sections

5.6.1 Significance and Standard Procedure for Cross Sec-

tions

We estimated the significance of any excess of tf signal relative to expected
background for all sets of criteria developed in previous sections. We defined the
probability (P) of seeing at least the number of observed events (N,s), when
only background is expected[32, 95]. The significance of any ¢ signal can be
characterized by the likelihood of P being due to a fluctuation. If the distribution
for the expected number of background events is assumed to be a Gaussian with

mean b and the systematic uncertainty o, then P can be calculated as:

> o0 e_“,u" 1 2 2
P — / d o~ (u=b)? /202
n:%:obs 0 ll/ n! 27r0-b
o0 ]\'fobs_1 —H 1
e 11 —(u—b)2 /202
= du(1l — e~ (n=b)*/20; 5.28
| dul Y T (5.28)

The results of the calculation are listed in Tables 5.6, 5.7, and 5.8. Overall, the
neural network provides greater significance than the grid or the covariance matrix
technique, which provide similar results. Nevertheless, even for neural networks,
the significance is too small to establish the existence of a ¢t signal in multi-jet
final states.

Assuming that the excess of observed events is from ¢ production, we calcu-
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Table 5.6: Cross sections for ¢ obtained from the importance-sampled Grid Search.

‘ Importance Sampled Grid Search ‘

Nobs | Npgg(corr) Signal efficiency P(background) | Cross Section
set || (tagged) | (tagged) x BR (%) Significance(tt) (pb)
€(160) = 2.72 £+ 0.83 0.370 3.8 £ 11.2
1 97 | 89.2 + 21.2 6(180) = 3.64 + 1.11 0.3 (S.d.) 2.8 + 8.4
€(200) = 4.36 + 1.33 2.3+ 7.0
¢(160) = 1.10 * 0.33 0.148 6.9 £ 7.0
2 20| 14.2 + 3.4 6( ) = 1.65 + 0.50 1.0 (S.d.) 4.6 £+ 4.6
€(200) = 2.10 + 0.64 3.6 + 3.7
€(160) = 0.76 + 0.23 0.392 1.9 £ 5.7
3 8| 6.9+ 1.6 | ¢(180)=1.14 +0.35 | 0.3 (s.d.) 1.2 + 3.8
€(200) = 1.61 + 0.49 0.9 £ 2.7

lated the cross section for the process using the following conventional formula:

Nops — Npg(corr)
- = 5.29
7i ex BRx L (5:29)

where € X BR is the branching ratio (BR) times the efficiency of the given a set of
selection criteria for selecting ¢t events, and L is the total integrated luminosity.
Because of the rejection of events with Main Ring activity and of the background-
training sample (7219 events) from the search sample, the effective total integrated
luminosity is 76.6 events/pb.

Table 5.6 lists the observed number of tagged events, the number expected from
background, efficiency times branching ratios for three different input top mass
values (denoted as €(160),€(180)and €(200), where numbers represent the input
mass values in GeV/c?), the values of P and the significances of any tf excess
(in terms of standard deviations), and ¢t cross sections for three sets of selection

criteria used in the grid-search technique. Uncertainties in the cross sections are
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Table 5.7: Cross sections for ¢ obtained from the Covariance Matrix Analysis.

Covariance Matrix Analysis

Nops | Nogg(corr) Signal efficiency P(background) | Cross Section
set || (tagged) | (tagged) x BR (%) Significance(tt) (pb)
¢(160) = 3.08 = 0.94 0.370 T2+ 144
a 149 | 131.9 +£31.3 6(180) =4.05 + 1.23 0.3 (S.d.) 5.5 + 11.0
6(200) =490 + 1.49 4.5 +£ 9.1
€(160) = 2.29 £ 0.70 0.354 42 £ 11.2
b 81 | 73.6 £ 17.4 6(180) =3.17 £ 0.97 0.4 (S.d.) 3.1 £8.1
6(200) =4.08 + 1.24 2.4 + 6.3
€(160) = 1.63 + 0.50 0.43b5 1.6 £ 9.4
c 43 | 41.0 £ 9.7 6(180) = 2.38 + 0.72 0.2 (S.d.) 1.1 + 6.4
€(200) = 3.25 + 0.99 0.8 + 4.7
¢(160) = 1.13 £ 0.34 0.249 6.0 £ 9.0
d 28 | 22.8 £ 5.4 6(180) = 1.75 + 0.53 0.7 (S.d.) 3.9 £ 5.8
€(200) = 2.46 + 0.75 2.8 + 4.1
€(160) = 0.79 + 0.24 0.35b 3.4 4+ 8.3
e 15| 13.0 £ 3.1 6(180) =1.23 + 0.38 0.4 (S.d.) 2.1 £ 5.3
€(200) = 1.86 + 0.57 1.4 £+ 3.5
€(160) = 0.51 & 0.16 0.0322 17.6 £ 11.8
f 14 7.1 + 1.7 6(180) = 0.86 + 0.26 1.8 (S.d.) 10.5 £ 7.0
€(200) = 1.34 £+ 0.41 6.7 + 4.5
¢(160) = 0.32 £ 0.10 0.203 9.8 £ 12.2
g 7| 46+1.1 |¢(180) =059+ 0.18 | 0.8 (s.d.) 5.3 £ 6.6
¢(200) = 0.96 + 0.29 3.2 £ 4.0

estimated by adding statistical and systematic uncertainties in quadrature. The

uncertainties in the cross sections are always greater than 90 % of the values of the

cross section. The changes in efficiencies as a function of input top mass reflect

the sensitivity of the selection criteria to the input mass value m;.

Table 5.7 and 5.8 lists the analogous results that appeared in Table 5.6, but,

respectively, for the covariance-matrix and the neural-network analyses. Uncer-

tainties in the cross sections are treated in the same way as in the grid search.

As is demonstrated in the results of three independent analyses, we observe a
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Table 5.8: Cross sections for ¢t obtained from the Neural Network Analysis.

Neural Network Analysis

Nops | Npkg(corr) Signal efficiency P(background) | Cross Section

set || (tagged) | (tagged) x BR (%) Significance(tt) (pb)
6(160) = 2.24 + 0.78 0.119 9.4 + 8.4
1 58 | 42.0+ 11.2 6(180) = 3.03 + 1.06 1.2 (S.d.) 6.9 + 6.2
€(200) = 3.76 + 1.32 5.6 £ 5.0
€(160) = 1.57 £+ 0.55 0.116 79+ 7.1
i1 31 21.5+5.7 6(180) = 2.22 + 0.78 1.2 (S.d.) 5.5 £ 5.0
¢(200) = 2.86 + 1.00 4.3 £ 3.9
€(160) = 1.38 + 0.48 0.150 6.5 £ 6.7
1l 24 | 17.1+4.6 6(180) =1.99 + 0.70 1.0 (S.d.) 4.5 + 4.6
€(200) = 2.58 + 0.90 3.5+ 3.6
€(160) = 1.16 £ 0.41 0.180 5.8 L 6.4
v 18 13.0£3.5 6(180) = 1.72 + 0.60 0.9 (S.d.) 3.9+ 4.3
€(200) = 2.21 + 0.77 3.0 £ 3.4
€(160) = 0.87 £+ 0.30 0.153 6.1 £ 6.4
v 12| 7.9 +£ 2.1 6(180) = 1.32 + 0.46 1.0 (S.d.) 4.0 £+ 4.2
€(200) = 1.76 + 0.62 3.0 £ 3.2
€(160) = 0.45 + 0.16 0.510 0.7 £ 6.5
vi 4| 3.8+1.0 |€(180) = 0.77 + 0.27 . 0.4 + 3.8
€(200) = 1.10 + 0.38 0.3 + 2.7
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small but consistent excess of ¢¢ signal in the multi-jet final states, and cross section

values consistent with previous measurements in other modes of ¢ decay[18].

5.6.2 Cross Sections using Bayesian Theory

We also calculated the t£ production cross section in an alternative way, basing
it on Bayesian probability theory[96, 97]. The procedure is similar to that used
in recent applications in other fields[98, 99, 100, 101] as well as in high energy
physics[102, 103, 104, 105].

The total expected number of events (u) is related to the production cross
section (o,;), the efficiency for observing the signal (including the branching ratio,
€), the integrated luminosity (£), and the number of expected background events
(b), as follows:

p = Leoz + b. (5.30)

The probability of observing n events, given an expectation value of u, is assumed

to be Poisson-distributed:

.
P(nlp,I) = =+ (5.31)
mn.
or
—(,Cea't?—l—b) L _ INK
P(nlog, £,€,b,1) = - (Leog +0) (5.32)

n!
where I indicates all the information used to construct p, as well as the assump-
tion that n follows the Poisson distribution[106]. Note that, given a model for
tt production, this probability can be used as a likelihood function for extract-
ing parameters from the data. (P(n|oy;, L,¢€,b,1) is often called the likelihood for
the data.) Maximizing this likelihood is yet another way of the calculating cross
section, that is, in fact, what was done in Reference [107]. However, one should

recognize that the above likelihood is the probability of observing n events, given
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i, not a probability of u being correct, given n. Therefore, what is, in fact, needed
is the inverse of the likelihood, that is, P(oy;, L,€,b|n,I).

The inverse of the likelihood (or a posteriori probability) can be obtained
using a basic theorem in probability theory, or Bayes’ theorem[108] (also called
the Principle of Inverse Probability), that relates the a posteriori probability to
the likelihood and to the prior knowledge of the parameters (known as a prior:
probabilities). For our case, Bayes’ theorem states that:

6_(£6Gt?+b)(£60'tf T b)n

n!

P(o, L,€,bln,I) P(og;, L, e b|I), (5.33)

where the constant of proportionality is determined by the fact that the right hand
side of the above equation is a probability density function that must integrate to
unity:

oo 1 oo oo
/ dc / de / do; / dbP(0 5, L, e, bln, 1) = 1. (5.34)
0 0 0 0

Since we are not interested in probability distributions of £, €, or b, we can remove

them. This is done naturally using a sum rule of probability theory[97]:

oo 1 oo
P(at;|n,I):/0 dc/o de/o dbP(o;, L, e bln, I). (5.35)

The a priori probability P(o;, L,¢€,b|I) represents any available information
regardless of the outcome n (such as knowledge of the integrated luminosity within
some estimated uncertainty, or the background within some uncertainty, etc.). For
the calculation of the a priori probabilities in this analysis, we assume that all,
except for o; (L, €, and b), are uncorrelated, Gaussian distributed, and have
uncertainties that can be obtained from studies of systematic uncertainties, as was
done in the previous section. (It should be stressed that all the a priori probabilities

must not reflect any information extracted from the data.)
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Figure 5.15: The a posteriori probability density function for o,;, based on the result
of cut set 2 of Grid Search.
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Table 5.9: Cross sections for ¢ production using Bayesian theory, assuming m; = 180

GeV/c%
‘ Importance Sampled Grid Search ‘
Most probable Mean Median | 95 % CL
set value (pb) | value (pb) | value (pb) | limit (pb)
1 20-2.0+ 53| 98+ 17.7 7.9 25.9
2 54-4.34+ 52| 8.0+ 6.5 6.7 21.1
3 1.7-1.7+ 30| 58 +55 4.1 15.6
‘ Covariance Matrix Analysis
al 53-5347.6]126+09.1 10.7 30.9
b 3.0-3.0+ 55| 9.7+ 7.8 7.8 25.7
c 1.0-1.0+ 38| 7.5 +6.6 5.8 21.0
d|| 38-38+4 48| 85+ 6.8 6.9 22.5
e 1.9-19+39| 74+64 5.7 20.3
f| 10.3-8.4+4 7.5 | 14.4 + 8.3 12.9 31.0
g| 50-5.0+6.1]10.7+ 8.0 8.8 27.3
‘ Neural Network Analysis
il 63-63+5.9 106+ 175 9.0 25.8
ii|| 54-54+50| 9.0+6.8 7.5 22.6
iii || 47-454+ 46| 80+6.4 6.5 20.7
iv| 41-41+4+43| 7.3+6.0 5.9 19.1
vi| 39-394+41| 7.6+ 6.0 6.1 19.5
vi|| 0.8-0.8+ 5.0 10.8+9.5 7.8 31.5

As an example, we consider the results of Set 2 from the Grid Search for m; =

180 GeV/c?. The calculated a posteriori probability as a function of the cross sec-

tion P(o|n,I),is shown in Fig 5.15. The peak of the probability density function

corresponds to the most probable cross section of 5.4 pb. The probability density

function is asymmetric, and consequently the mean value of the distribution (8.0

pb) may not be a good estimator of o,;. Integrating P(o;;|n,I) to the value of

0.95, we can set a 95 % upper confidence level (CL) limit for o,; of 21.1 pb. This

procedure was repeated for all measurements assuming m; = 180 GeV/c?, and the

results are summarized in Table 5.9. The a posteriori probability we used here is,
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in fact, identical to the exztended likelihood function[109] that one normally finds
in the literature. Quoting the most probable value of the a posteriori probability
distribution may therefore equivalent to applying the maximum likelihood tech-
nique. One difference, however, is that we integrated out parameters that are not
of direct interest (L, €, and b) using the sum-rule of the probability theory, rather

than extracting single values of L, €, and b that minimize the likelihood function.
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Chapter 6

Extraction of the Mass of the Top
Quark

The procedures used for extracting the mass of the top quark from the search
sample can be divided into two parts. The first step involves the calculation of
the mass value in each event, based on some kinematic fit or on any kinematic
parameters that are correlated with the mass of the top quark. The second part
involves performing a likelihood fit (or any other equivalent procedure) to all the
data in order to extract the mass of the top quark. This chapter will describe these

procedures.

6.1 Kinematic Fitting

As we discussed in Chapter 1, in multi-jet final states of ¢ production, one

expects at least six jets in each event:
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p+p— t + t + X
! !
W+ + b W= + b
! ! ! !
2 jets jet 2 jets jet

where X represents the objects not directly involved in the ¢ production mech-
anism (commonly called spectator jets). There may also be additional jets from
gluon radiation that we ignore at this stage. Once the jets in an event are identi-
fied, an invariant mass of three jets from the decay products of the top and antitop
quarks can provide an estimate of the mass of the top quark. However, because
of energy resolution and the fact that jets carry little information other than their
energy, the challenge is to reduce background from wrong assignment of jets to
the ¢t decay hypothesis. For the case of only six jets in an event, there are in to-
tal 90 different combinations that can, in principle, satisfy the ¢ production and
decay hypothesis. In the presence of more than six jets in an event (from gluon
radiation), the number of combinations is given by:

6!

72 X2 %92 Xn 06 (61)

number of combinations for n jets =

where n is the number of jets and ,,Cs the binomial coeflicient. We see that, as
n increases, the number of combinations increases rapidly (90, 630, 2520, ... for
n = 6,7,8 ...), and the probability for correlating the correct jets with their parent

sources must decrease.
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6.1.1 Constrained Fitting

The kinematic fitting procedure used in our study consists of constructing a ?
based on the tf production and decay hypothesis, and minimizing the x?%, subject

to kinematic constraints (see below). The x”* can be written schematically as[110]
x? = (x —m)TG(x — m), (6.2)

where x and m denote vectors for the fitted variables and measured variables,
respectively, and G denotes the inverse of the square of the error matrix. The
fitting procedure allows measured variables to be pulled, subject to their uncer-
tainties and to the kinematic constraints (introduced in Eq. (6.2) via LaGrange
multipliers[110]) until the x? reaches a minimum. The kinematic constraints,
through the full error matrix, improve the resolution as a result of the fitting
process. Because there are many successful fits for any given event, there is often
no clear-cut way to select the best solution. We choose the combination of jets
that gives the smallest fit x?. This frequently provides wrong assignment of jets,
which broadens the experimental resolution of the mass of the top quark.

The constraints on energy-momentum conservation yield four equations:

E,, = ZE(l) + EX (63)
i=1
6
i=1

where the index 7 refers to jets in an event and X refers to the spectator jets. The
invariant mass of two jets assigned as the decay products of W+ (and W~) boson

is constrained to the known W-boson mass (m):
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my; = (E(a) + E(b))2 - (ﬁ(a) + 15(1)))2 (6.5)

where a and b refer to the jets from the decay of two W bosons. This provides
two additional constraints. The three-jet invariant mass from ¢ should equal the

three-jet mass from ¢, which is one more constraint,

3 2 3 2 6 2 6 2
(Z E(c>) - (Zﬁ@)) = (Z E(c>) - (Zﬁ@)) : (6.6)

c=1 c=1 c=4 c=4
where jets with indices ¢=1,2,3 are from the top quark and with indices ¢=4,5,6 are
from the antitop quark. There are therefore a total of seven equations of constraint
(C) with four unknown quantities (four-momentum of X), which overconstrains
the fit (to 3C). One can choose to ignore constraints (Eq. 6.5) to the W boson
mass, and replace it with the constraint that the two of two-jet invariant masses
corresponding to the jets from the W be equal. This would reduce the fit to 2C.
Also, if the transverse momenta P{ and Py are assumed to be known (from the
values of missing transverse energy in the calorimeter), the problem becomes a 5C
fit.

SQUAW[110], a general-purpose kinematic fitting program that incorporates
multi-vertex topology is used for the analysis. The key element in SQUAW is the
linearization of the problem in the minimization of the x?[111]. We parametrized
the four-momentum of a jet in SQUAW in terms of its azimuthal angle (¢), its polar
angle 6 (using tan (7/2 — ) as the variable in the fit), its energy (F), and its mass
(m).

Unless stated otherwise, the uncertainties (standard deviations) assigned to our
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reconstructed jets were as follows[59, 75, 112]:

56 = 0.035 (6.7)
Stan(wr/2—6) = 0.040/sin 6
§E = 12VE

dm/m = 0.5.

The relatively large sampling term (120 %) in the jet-energy resolution is a result
of jet reconstruction and faulty association of jets with their parent partons in
the multi-jet environments[59, 75]. Also, regardless of parton flavor, jet masses in
ISAJET (after the full detector simulation) are found to be distributed between 5
and 18 GeV/c?, where the RMS width of the jet mass distribution is approximately
half of its mean value. This is the reason for assigning §m/m = 0.5. We studied
the case that the mass of the light quark (u,c,d and s) is set to zero and the mass
of the b-quark is set to 5 GeV/c? and found marginal degradation in resolution of
the fitted mass distribution.

In order to minimize wrong combinations of jets in the fits, we required that
the two-jet invariant mass corresponding to the W-boson be within 40 GeV/c? of
myy, and the three-jet masses corresponding to the two top quarks be within 100

GeV/c? of each other, prior to the fit.

6.1.2 Parton-level Study

The performance of the kinematic fitting algorithm was first tested using events
generated with ISAJET and HERWIG Monte Carlo programs at an input top quark
mass of 200 GeV/c?, for the case of just six quarks from ¢ decay (without allowing
gluons to be radiated).
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Figure 6.1: Mass and x? distributions (x* < 30) for all fits (dashed), for solutions with
the best-x? (full lines), the subset of best-x? solutions where jets are assigned correctly
(shaded). (a) and (b) are calculated using ISAJET ¢t events, (c) and (d) are calculated
using HERWIG tt events, both sets are for m;=200 GeV/c?, without presence of gluon

radiation.
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Subsequent to the fit, we required that the x* for any fit to be less than 30 in
order to be acceptable. We will refer “best-x? solution” as the permutation of jets
(or partons) that provides the minimum fit x? in any event, and refer to the “correct
combination” as the combination of jets (or partons) that corresponds to the right
assignment of objects in the tt topology. Figure 6.1 shows the distributions in top-
mass (m/") obtained in the fits, and the corresponding x?* distributions, for ISAJET
and HERWIG tf events. The y? distributions peak at zero, indicating that the
tt hypotheses are indeed frequently satisfied. Full lines correspond to distributions
when only best-x? solutions are chosen, the shaded histograms are the ones when
the best-x? solution yields correctly assigned jets, and the dashed histograms are
for all fits. The peaks in the fitted mass occur near the input mass value, 200
GeV/c?, with an RMS of 3.9 + 0.039 GeV/c? (full lines). HERWIG provides slightly
a narrower (by ~ 0.5 GeV/c?) distribution in fitted mass (full lines).

We define fitting efficiencies € as (all of numerators require x* < 30):

# of events with best — y?combination
total # of events
# of events with correct combination
total # of events
# of events with best — x? and correct comb.
total # of events

e(best x*) =

€(corr. comb.)

e(best and corr.)

(6.8)

The values of the efficiencies are listed in Table 6.1, along with the mean values
and RMS widths of the distributions in fitted mass. Efficiencies from HERWIG are
somewhat higher than for ISAJET. At the parton level, both generators provide
very promising results.

We define the pull quantities for the kinematic variables as[110]:

(z; —m;)

(627 — 6m?))

(6.9)
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Figure 6.2: Distributions in pull quantities for HERWIG ¢f events with m;=200 GeV/c.
The histograms are for the best-x? solutions, shaded are the subsets where the best-x?
solutions have correctly assigned jets. Pull distributions are for (a) ¢, (b) tan (7 /2 — 6),
(c) E, and (d) m.



Table 6.1: Results of ¢ fits at parton level, without gluon radiation.
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ISAJET HERWIG

best x* 200.0 £ 0.056 | 199.8 £+ 0.049

(mfit) corr. comb. 200.1 + 0.058 | 200.0 & 0.052
(GeV/c?) best x? and corr. comb. | 200.2 + 0.044 | 200.0 & 0.038
best x* 3.9 + 0.039 3.4 £ 0.035

Width (s.d.) | corr. comb. 4.0 £ 0.040 3.7 £ 0.037
(GeV/c?) best x? and corr. comb. 2.8 +£ 0.031 2.5 + 0.027
e(best x?) 99.7 £ 2.0 99.7 £+ 2.0

Efficiency €(corr. comb.) 97.4 £ 2.0 98.2 £+ 2.0
(%) e(best and corr.) 80.1 £ 1.7 83.2 £ 1.7

where m; and ém; are their values and uncertainties from the measurement, and z;
and dz; are their values and uncertainties from the fit. If the input measurements
and uncertainties are correctly assigned, and our hypothesis holds, then the pull
quantities should have a mean of zero and a width of unity. Such pull quantities
are therefore useful for checking the fitting procedure. Figures 6.2 (a), (b), (c),
and (d) show pull distributions in ¢, tan (7/2 — §), E, and m, respectively, using
the HERWIG tf sample for m; = 200 GeV/c?>. Here, again, best-x? solutions are
shown as the normal histograms, and best-x? solutions that also have correct
combinations are shown shaded. No biases are apparent in all the distributions.
The widths of the distributions clearly do not equal unity, and are due to our using

the incorrect (large) input uncertainties of Eq. (6.7) at the parton level.

6.1.3 Corrections to Jet Energy

As discussed in Chapter 3, the energy of a jet observed in the calorimeter
is corrected using standard D@ procedures (CAFIX). This is based on balancing
momentum in photon-jet and di-jet events, as well as on studies of minimum-bias

jets for characterizing the underlying event. In addition, data from the test beam



145

are used to parametrize noise and showering characteristics of calorimeters[62].
However, CAFIX is not optimized for jet spectroscopy and reconstruction of masses
from jets in a multi-jet environment. In particular, the reconstructed mass of a
top quark is sensitive to gluon radiation, particle showerings (fragmentation), and
showering in the calorimeter outside of a fixed cone of a jet. Consequently, an
extra jet-energy correction (out of cone correction, or OOC) that is specific to
the mass analysis of the top-quark was developed at D@ [113]. This correction
is extracted from a linear fit of the parton energy versus the corresponding jet
energy in HERWIG ¢t events with input top-quark masses ranging between 160 to
210 GeV/c?, in steps of 10 GeV/c?. The original studies were restricted to events
that had one of the W-bosons decaying semi-leptonically, and jets satisfying Er >
15 GeV. The correction is parametrized as a function of E; and 75 of jets that
are already CAFIX-corrected (reconstructed using full detector simulation). We
applied the same correction to our HERWIG ¢ all-jets sample of m;=200 GeV/c?
(all Ws decaying via quark pairs). Figure 6.3 shows the jet energy versus matched
parton energy before (a) and after (b) applying this correction. The straight lines
correspond to a 1:1 perfect energy scale. It is clear that the extra correction brings
the jet energy closer to that of its initiating parton.

Figure 6.4 (a) and (b) show the reconstructed mass of the W boson and the
mass of the top quark, respectively, for ISAJET ¢f events with m;=200 GeV/c?,
using full detector simulation and jet reconstruction (but not kinematic fitting).
Shaded, are distributions where jets are corrected just using CAFIX, and the normal
histograms are distributions when both CAFIX and OOC corrections are applied.
After the OOC corrections, the peaks of the distributions get closer to the input
W mass (80.22 GeV/c?) and the input top-quark mass (200 GeV/c?), demonstrat-
ing the need for this extra correction after the CAFIX. Unfortunately, the OOC

correction does not affect the fractional width of the distribution, as can be seen
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Figure 6.3: Comparisons of reconstructed jet energies (vertical axis) to those of their
matched partons (horizontal axis), for HERWIG t¢ Monte Carlo, where (a) jets are CAFIX-
corrected, (b) jets are caFIx and OOC corrected.

from Table 6.2. This implies that the correction may not have great impact on
mass resolution. Figures 6.4 (c) and (d) show the analogous distributions, but
for HERWIG ¢t events. Table 6.2 indicates that the peaks of the mass distributions
get somewhat closer to their input values, after the OOC corrections, but the frac-
tional widths again remain unchanged. Similar conclusions were reached for checks

performed at other input masses.

6.1.4 Jet-level Study

We repeated the test of the ¢f fitting algorithm using jet reconstruction in the
fully simulated D@ detector environment, applying both CAFIX and OOC packages.
Figures 6.5 (a) and (b) show the distributions in top-mass and the correspond-
ing x? distributions, respectively, for fitted ISAJET ¢ events with m;=200 GeV/c.
The regular histograms are the distributions for best-x? solutions, and the shaded

histograms are the subset of best-x? solutions where jets are correctly assigned.
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Figure 6.4: Reconstructed W and top-quark mass distributions. Shaded histograms
correspond to distributions for jets that have had only CAFIX corrections, and the normal
histograms to jets with both carix and OOC corrections. (a) and (b) are for ISAJET
tt events, and (c) and (d) are for HERWIG ¢{ events, both samples for m;=200 GeV/c%.
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Figure 6.5: Mass and x? distributions for all fits with x? < 30 (dashed, normalized to
have same areas as normal histograms), for solutions with the best-x* (full lines), the
subset of best-x? solutions where jets are assigned correctly (shaded). (a) and (b) are
calculated using ISAJET ¢t events, (c) and (d) are calculated using HERWIG t¢ events,
both sets are for m;=200 GeV/c?.
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Table 6.2: Means and widths of the reconstructed jet masses of the W and of the top
quark for ISAJET and HERWIG it events.

ISAJET HERWIG

(mirue - (m,,))/ | CAFIX only 6.0 £ 0.38 | 4.1 + 0.25
mirue (%) | caFix+00C | 0.0 £+ 0.41 | -2.0 + 0.27

Omy /(Mw) | CAFIX only 20.7 £ 0.30 | 17.7 £+ 0.19

(%) caF1x+00C | 20.7 £ 0.30 | 17.7 + 0.19
(miue - (myop))/ | CAFIX only 10.5 £ 0.28 | 9.5 + 0.19
mie¢ (%) | carix+00C | 4.2+ 0.20 | 3.1 £0.21
Omiop/ {Miop) | CAFIX only 15.7 £ 0.22 | 14.4 £+ 0.15
(%) cAFIXx+00C | 15.7 £ 0.22 | 14.5 + 0.16

The dashed histograms correspond to all solutions with x? < 30, normalized to
have same area as the regular histograms. For the best-x? combinations, the mean
value of the fitted mass is lower than the input mass, by 5.4 & 0.84 GeV/c?, and
has an RMS width of 37.7 &= 0.59 GeV/c?. When jets are assigned correctly, the
mean value is also smaller by 9.0 &= 0.61 GeV/c?, and has an RMS width of 17.6 &
0.43 GeV/c?. It appears, therefore, that a major contribution to the large width
is the low efficiency of obtaining the correct combinations for the solutions with
best-x?. The fraction of correct combinations in solutions having best x? is only
12.9 £ 0.94 % for ISAJET, as indicated by the areas of the respective histograms.
Nevertheless, the x? distribution peaks near zero, indicating that the uncertainties
are not unreasonable and that the fitted hypotheses are well satisfied. Figures 6.5
(c) and (d) show the analogous distributions for HERWIG t¢ events with m,;=200
GeV/c?. The HERWIG results are somewhat narrower in the fitted mass, with the
solutions with with best-x? combination having a mean of 192.0 + 0.59 GeV/c?
and an RMS width of 34.9 & 0.42 GeV/c?. The distribution for the correct com-
bination has a mean of 190.3 + 0.35 GeV/c? and an RMS width of 15.8 + 0.25
GeV/c%
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Figure 6.6: Mass distributions before (shaded) and after (normal) kinematic fitting, for
ISAJET (a) and HERWIG (b) samples, both for m; = 200 GeV /c?.

The mean values and widths of the distributions of the fitted masses are listed
in Table 6.3. By comparing the values of oy,,,,/(mop) for the case of the correct
combination in Table 6.3 and in Table 6.2, we see that kinematic fitting, in fact,
reduces the fractional width of the mass distribution by ~ 40 %, in both ISAJET
and HERWIG samples.

We also compared the 3-jet invariant mass distribution before and after the
fitting, using for both cases the jet assignments chosen by the best-x? solution.
Figures 6.6 (a) and (b) show the 3-jet invariant mass distribution before (shaded
histograms) and after the fit (normal histograms). In the case of the ISAJET sample,
the RMS width of the distributions changes from 40.7 + 0.91 (before the fit) to
37.7 £ 0.84 GeV/c? (after the fit). For HERWIG, the width changes from 38.0 +
0.64 to 34.9 &+ 0.59 GeV/c?, as indicated in Fig. 6.6 (b). Because the statistical
uncertainties in the widths are < 1 GeV/c?, these appear to be significant changes,

and suggest that fitting is beneficial for improving mass resolution.

Figures 6.7 (a), (b), (c), and (d) show pull distributions for ¢, tan (w/2 — 6),



Table 6.3: Results of fits with fully reconstructed jets.

ISAJET HERWIG

best x* 194.6 + 0.84 | 192.0 £+ 0.59

(mfi) corr. comb. 191.0 + 0.61 | 190.3 £ 0.35
(GeV/c?) best x* and corr. comb. | 197.6 + 0.84 | 195.0 + 0.53
best x* 37.7 £ 0.59 | 34.9 £+ 0.42

Width (s.d.) of m/* | corr. comb. 17.6 £ 0.43 | 15.8 +£ 0.25
(GeV/c?) best x? and corr. comb. 134+ 1.9 13.3+ 1.9
best x? 2.7 + 0.42 4.0 + 0.29

(milue - (mf*"))/ | corr. comb. 4.5 + 0.31 4.9 + 0.22
miru® (%) | best x* and corr. comb. 1.2 £ 0.42 2.5+ 0.26

best x* 19.4 + 0.32 | 18.2 £ 0.22

T/ (M) corr. comb. 9.2 + 0.23 8.3 + 0.13
(%) | best x* and corr. comb. 6.8 - 0.98 6.8 + 0.99

e(best x?) 98.7 + 3.1 99.0 + 2.4

Efficiency €(corr. comb.) 40.6 + 1.7 574 + 1.6
(%) e(best and corr. comb.) | 12.7 + 0.84 | 17.9 £+ 0.77
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E, and m, respectively, using HERWIG ¢t events with m; = 200 GeV/c?. Again,
best-x? solutions are shown in the normal histograms, and best-x? solutions with
correct combinations are shown shaded. The curves show the result of Gaussian
fits to the pulls. Although qualitatively the distributions are acceptable, the pulls
in energy and mass of jets have means of —0.7 indicating a bias in the energy and
mass scale of jets. The jet energies appear to be shifted to too low values as a result
of the fitting process. This is not unexpected, considering the large uncertainties
on the variables, and the assumption on linearity in the minimization procedure.
Because the data and Monte Carlo are treated in same fashion, any shifts in mass
can be recovered through the use of correct templates that map input to output
mass. We attempted to correct the jet energy scale based on the pull distributions,
but found no improvement in the resolution. Therefore, we decided to use the same

correction adapted for lepton+jets analysis in D@[113].
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Figure 6.7: Distributions of pull quantities for HERWIG ¢ events with m;=200 GeV/c.
Histograms are for the solutions with best-x?, shaded areas refer to the subset of best-
x? solutions where jets are correctly assigned. The pull distributions are: (a) ¢, (b)

tan (w/2 — 6), (c) E, and (d) m.



£ 104
2 g
3 ISAJET
c r e
(@) 3L
o 10° (@
LL F e
102? [ —
10 = —
l7\\\\‘\\\\‘\\\\‘\\\\‘\\\\
5 6 7 8 9 10
jet multiplicity
o -
Qo1 &
B 014 ISAJET
E T F ()
= -
5012 [
< o1 -
0.08 &
0.06
0.04 |-
0.02 |
0:\\\\ \\\‘\\\\
0 200 300 400

Fitted mass (GeV#

Events/bin

Normalized

153

10%¢
A HERWIG
103 (b)
102;
g —
10 3 !
l7\\\\‘\\\\‘\\\\‘\\\\‘\\\\
5 6 7 8 9 10
jet multiplicity
0.18 [
016 | HERWIG
0.14 % (d)
0.12 [~
01 [
0.08
0.06
0.04
002 F
0 E | Lol ‘ L1
0 100 200 300 400

Fitted mass (GeV#

Figure 6.8: Jet multiplicity and mass distributions. Black squares in (a) and (b) are
distributions for the parent samples (best-x?). Shaded histograms in (a) and (b) are
the distributions when the solution with best -x? also yields the correct combinations of
jets. The normal histograms in (c) and (d) are distributions with events that have only
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6.1.5 Effects of Extra Jets

For the case when there are more than 6 jets in an event, as we discussed
previously, there are at least 630 possible combinations for the fit. Other studies
have shown[32] that including these extra jets has very little impact on the mass
resolution of the top quark. We therefore chose to use only the first six jets in our
fits (where the jets are ordered in descending order in Ey). Figures 6.8 (a) and
(b) show the jet multiplicity distributions for ISAJET and HERWIG ¢t events with
m; = 200 GeV/c?. The black square points correspond to the multiplicities for
the samples with best-x?, and the shaded histograms show the jet multiplicity for
the solutions with best-x? that have correct combinations of jets. The efficiency of
finding the correct combination does not depend strongly on the jet multiplicity,
indicating that our decision to use only the top 6 jets may have merit. Figures 6.8
(c) and (d) show the fitted mass distributions for a total of six (normal histograms)
and seven jets (shaded), for ISAJET and HERWIG samples, respectively. The dis-
tributions have been normalized to the same area. For both generators, the RMS
widths of the distributions get only little wider for the case of 7 jets (0.4 + 1.5
GeV/c? for ISAJET and 1.3 4 1.1 GeV/c? for HERWIG).

In order to explore the possibility of obtaining better performance from the
fitting algorithm from merging extra jets in an event, we tested two such merging
algorithms. First, the pair of jets with the smallest relative transverse momentum
kr (calculated from the projection of the two jet momentum vectors) were added
together (“kr-merging”). Figures 6.9 (a) and (b) show the fitted mass distributions
using this kr-merging (shaded histograms), together with the standard procedure
(normal histograms) for ISAJET and HERWIG events, respectively. Unfortunately,
kr merging widens the RMS width of the distribution by 8 + 2.1 % and 13 + 1.9

% for ISAJET and HERWIG, respectively. The second algorithm involved merging
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of two jets when they were closer than a certain distance (AR = 1.6 was chosen
for our studies) in 7-¢ space. The adding of four-momenta of such jets (“AR-
merging”), also produced 9.7 + 2.2 % and 8.4 + 1.8 % degradation in the fitted
mass resolution for ISAJET and HERWIG, respectively. This is shown in Figs. 6.9
(c) and (d). Since the merging of jets did not improve the mass resolution, in what
follows we consider only the six leading jets and no merging.

Plotting the relation between the mean fitted mass and the input mass of the
top quark, prior to applying any additional selection criteria beyond the x? and the
standard offline selections (selection criteria amount to search sample, see Chapter
4), one finds that the relationship is linear, with a slope 0.72 4 0.014 and an offset of
49 4+ 2.7 GeV/c? . This is shown in Fig. 6.10, where the black points were obtained
for event samples with m; = 120, 140, 160, 180, 200, and 220 GeV/c?, using the
ISAJET event generator. The dashed line is a result of a linear fit to the black
circles, and the dotted line drawn along the diagonal (reflecting perfect response)
is for comparison. The slope represents the effective sensitivity, or degradation in
the extraction of the mass of the top quark in this analysis. The reasons that the
slope does not equal unity are believed to be partially due to the H; requirement
in the offline selection, partially to the uncertainty in the energy scale, but mainly
to the fitting algorithm itself, which often yields the wrong combination of jets
for the best-fit x%. It is, of course, important to have selection criteria that do
not degrade the slope, and also provide a good signal to background ratio. This
will yield a smaller uncertainty on the extracted mass of the top quark from a

likelihood fit that will be discussed in the following section.
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6.2 Approach using Likelihood Method

Once we specify a distribution that is sensitive to the mass of the top quark,
and we have a model for the signal as a function of input mass, and a background
available (in our case from data), we can perform a likelihood fit to extract the mass
of the top quark. The procedure is described in references [32, 107, 114, 115], and
uses the following “unbinned” likelihood function that is maximized with respect

to its three parameters:

L(m¢,ng,np)

l 1 e_(”b_Nb)Z/Zazl [(ns + nb)Ne_(”s+nb)l
N!

2ro

" L:ﬁl nsfs(mt;:lzij;bnbfb(di)l (6.10)
where N, denotes the expected number of background events, N is the total num-
ber of observed events, o is the systematic uncertainty in the estimate of the
background, f; and f, are, respectively, the probability density functions for sig-
nal and background, and d; are any kinematic parameters sensitive to the mass
of the top quark (e.g., fitted mass, scalar sum of the transverse momenta of the
6 jets, etc.). The parameters m;,n,, and n, denote, respectively, the mass of the
top quark, the expected number of top-quark events, and the expected number of
background events.

Because the uncertainty on the mass of the top quark is related directly to the
sharpness of the log of the likelihood function near the maximum, it is important to
choose selection criteria that provide as narrow a log-likelihood function as possible

near that point. Taking the negative log of the likelihood function, we can write:

l(mtansanb) = - 10g (‘C(mtansanb))
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= log (v2mo) + (ny — Ny)?/20° — Nlog (n, + np) + (n, + np)

N sJs dz dz
+ logN!—Zlognf(mt’ )+ mofold:) (6.11)
1=1

ns + M

Assuming that the negative of the log-likelihood function I(m;,ns,ns) has a local
minimum at (m™", n™" n™") and that it is approximately symmetric about the
m¢,n, and n; axes at the minimum point, one could investigate the dependence

on a change in the top mass by calculating the following quantity:

ol = l(mt + 5mtan;nman£nm) o l(mtan;nmanznm)
Ol(my, n™" i)
~ J omy. 6.12
amt my ( )
Near the minimum, the quantity al("g’in?:’m’)(?mt can be rewritten as follows:
al(mtan;nin’nznin) — g: _m]‘ln i afs(mt’di)‘ (613)
Om, = fs(my, &) + np [nin fiy(dy)  Omy

Consequently, the dependence on the mass of the top quark (and thereby its un-
certainty) can be changed by changing n,,n, and the probability density function
for signal fs(m¢,d;). One can therefore draw the following conclusions from Eq.

(6.13):

e Because the quantity 0l(m¢,ns,n)/0m; is large for a narrow log-likelihood
function, to reach the smallest uncertainty on the mass of the top quark one
should keep Ol(m¢,n,,np)/Om; as large as possible by adjusting the kine-

matic acceptance criteria.

e Also, to reduce the uncertainty on the extracted mass, one should maximize

the signal to background ratio to take advantage of the multiplicative term
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1/(fs+nb/nsfb)‘

e To minimize the uncertainty on the extracted mass, one should use the d;
and should find a kinematic acceptance criteria that provide a signal prob-

ability function f,(m,d;) that is as sensitive as possible to the input mass m;.

e Because n, and n; are constrained by the Poisson term in the likelihood
function, f, must be correlated with f,. The impact of this correlation was

studied previously [117] and discussed later in this chapter.

An important matter is therefore how to establish optimal selection criteria for

the extraction of mass of the top quark that satisfy the above requirements.

6.2.1 Optimization

In order to minimize the statistical uncertainty on the mass of the top quark,
an extension of the grid-search technique was used to establish selection criteria
satisfying the requirements listed in the previous section. The specific procedure
is described below.

After finding the optimal boundary that maximizes the signal to background,
one calculates the difference between the average Hy values for the signal and for
background at any given point on that boundary (A Hr) and uses that to improve
mass extraction, as follows. Figure 6.11 (a) shows the optimal boundary that
results from the full grid search. The grid points were sampled using the same
data sets defined in the grid search described in the previous chapter. However,
the grid search was performed using only H:?}j, C, and A in order to minimize

degradation of the sensitivity on the input mass of the top quark.
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The difference in mean Hp between signal and background is examined in
Figs. 6.11 (b), (c) and (d). With the goal of obtaining selection criteria that would
favor a signal probability density function fs(m:,d) that is as different as possible
from the background, we chose the points shown in Figs. 6.11 (b) and (c). This
provided large A Hr, with a signal to background ratio that would still leave enough
events to perform a mass analysis. Also, the selection favored a signal probability
density function f, that would be as sensitive as possible to the input top mass
m; by choosing a small H:?}j, as in Fig. 6.11 (d). Ideally, one would calculate &1
at every point in Fig. 6.11 (a) and then select the point that provides the largest
8l. However, considering the available computing resources, that would indeed be
a very challenging task to perform! In fact, what was done is that the H:?}j cutoff
was chosen to be as small as possible in order not to restrict unduly the range of

allowed mass values. To summarize, the optimization procedure involved:

e Obtaining on the optimal boundary so as to make n;/n, to be small.

¢ Requiring H:?}j to be small so as to make 0 f;(m;,d;)/Om, large. (The evidence
that this is a correct assessment, and that minimal requirements on H:?}j

provide greater sensitivity to mass, will be given in the next section.)

o Requiring AH7 large so as to make f, differ as much as possible from f.

Arrows in Figs. 6.11 (a), (b), (c), and (d) show the operating point based on
our qualitative optimization procedure, and Table 6.4 lists the selection criteria
defined by the chosen point. Our strategy tends to reduce the uncertainty on the

measurement of the mass of the top quark.
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Figure 6.11: Results of the “mass-sensitive” Grid Search. Arrows and the dark circles
indicate the point chosen for the mass optimization procedure. (a) Expected ¢t signal vs.

background from previous grid search, with points shown only at the optimal boundary.
(b) Difference between average H7 for signal and the background (AH7) vs. expected
background, (c) AH7 vs. expected signal, (d) H;? vs. AHp.
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Table 6.4: Threshold selection criteria based on our “mass-sensitive” Grid Search.

variable || Centrality | Aplanarity H:?}J (GeV)
cutoff > 0.68 > 0.061 > 149.0

6.2.2 Sensitivity

We repeated our investigation of the correlation between the mean fitted mass
and the input mass, after applying the mass-sensitive selection criteria of Table 6.4.
The relationship remains approximately linear (at the input mass points m, = 120
and 140, statistics are poor), but the slope changes to 0.44 + 0.017, and the offset
to 110 £ 3.0 GeV/c?, as shown in Fig. 6.12. The points were obtained using
tt 1SAJET for m; = 120, 140, 160, 180, 200, and 220 GeV/c?’. The dot-dashed
line is the result of a linear fit to the points, and the dotted line is along a 45°
diagonal (reflecting perfect response). Also plotted (dashed line) is the result from
Fig. 6.10, prior to imposing the additional cutoffs of Table 6.4. The increase in
the offset value represents the impact of the mass sensitive selection criteria on the
fitted mass. The slope, representing the effective sensitivity to the mass of the top
quark, is degraded from 0.72 + 0.014 to 0.44 + 0.017.

Once we choose an operating point, the signal and background probability
density functions, fs(m,d) and f,(d), can be constructed, and an estimate of
the uncertainty expected on the value of the extracted mass can be made. The
latter is obtained by generating an ensemble of t¢ events of some assumed mass,
and defining an ensemble of background events. The value of the mass of the
top quark is then extracted via the maximum likelihood fit, and the dispersion in
these mass values, obtained from an ensemble of such “experiments”, provides an
estimate of the uncertainty in the extracted mass.

For the present study, as the mass sensitive discriminator (d), we chose the
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fitted mass (m/"), based on the kinematics of the ¢f decay, as discussed in previous
sections. The main advantage of doing a mass analysis with the fitted mass, as
opposed to other parameters, is that m?" should be the sharpest variable for
extracting the mass of the top quark since, in principle, m/* is the parameter that
is most strongly correlated with the top mass. Using, for example, Hy for such
analysis[118] is more likely to yield an incorrect mass of the top quark, particularly
if t¢ production has a non-negligible contribution from non-standard sources (e.g.,
heavy tt resonances, as suggested by Hill and Parke[119], etc.).

Prior to performing the kinematic fitting, the standard D@ jet-energy correc-
tion package (CAFIX) as well as the OOC-correction were applied to jets in the
search and the t¢ Monte Carlo samples. Then, a function with a multiplicative ex-
ponential decay term was adopted as the form to model the probability density for
background and signal. In particular, the probability function used to characterize

the signal was:

fs(my,d) = NG((d — Pl)/Pz)e_pad (6.14)
where
pr = ai+asmy + az(my)’ (6.15)
P2 = a4+ asm;+ a6(mt)2
pP3 = a7+ agmy
d = mf”,

N is a normalization constant, a, are free parameters in the fit, and G(z) is the

frequency function, defined as

d—p, 1 T 10
G = - / 5 g 6.16
=2 [ (6.16)

I
@Q
—
8
SN
|
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the selection criteria of Table 6.4. (a) Signal probability density functions are for a top-
quark mass of 100 to 240 GeV/c? in mass intervals of Am;=20 GeV/c?. (b) Probability
density function (histogram) for the background (same as Fig. 6.13 (d)).
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The probability density function for the background uses the same functional form
where d is some mass parameter, but there are no m;-dependent terms in the p;.
Therefore, the probability function used to characterize the background became

also:

fo(d) = NG((d — p1)/p2)e™™" (6.17)

Figures 6.13 (a), (b), and (c) show the distributions in fitted mass for three fixed
input masses as the result of a two-dimensional fit. The signal probability functions
were generated using ISAJET. Figure 6.13 (d) shows the results of the fit to
background. The fit to background was very poor and was not improved by using
other functional form probably because of the peculiar shape of the distribution
near the peak. Therefore, in what follows, we will use the histogram itself (points
in Figs. 6.13 (d)) as our primary choice of the probability density function for
background. The quality of the fits to signal will be discussed later when we
turn to systematic uncertainties. Figure 6.14 (a) shows the probability density
function f,(m;, m/") for different input top masses in 20 GeV/c? intervals, and
(b) shows, for comparison, the background probability density function fy(m/')
given in Fig. 6.13 (d). The background shape is similar to the signal for an input
top-quark mass of m; ~ 140 GeV/c%.

Because the background was taken as the data from RUN I, we expect it to
contain some contribution from top production, which can may bias the shape
of the background. To minimize the effect of this bias, we defined the following

corrected background function:

1
fo = ﬁ(fb - Cfs) (6.18)

where C is the fraction of events in the background sample that can be attributed
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Table 6.5: Relationship between the signal to background ratio and the expected un-
certainty in extracted mass, as obtained from ensemble tests.

signal / background || rRMS (GeV/c?) Expectation from
V1, scaling (GeV/c?)

100/0 8.0 £ 0.13 8.0

70/30 11.1 + 0.18 9.5

50/50 17.1 £ 0.27 11.3

30/70 30.1 £+ 0.48 14.6

to signal (¢¢ production) at any given mass m;. The value of C' was estimated
from the value of n, that is iterated during the likelihood fit procedure.

The effect of the signal to background ratio on the uncertainty in the mass
was discussed in the previous section. To study this in more detail, we generated
ensembles of 100 events, assuming different signal to background ratios, for an
input top-quark mass of m; = 180 GeV/c?. In order to quantify directly the
dependence of the uncertainty on the signal to background ratio, we do not allow
the total number of observed events to fluctuate. Figures 6.15 (a), (b), (c), and
(d) show the distributions of the maximum likelihood mass estimates for different
signal to background ratios: 100/0, 70/30, 50/50, and 30/70, respectively. These
plots confirm that our entire maximum likelihood procedure is sound. Table 6.5
lists the standard deviations (RMS) for the four sets of distributions together with
expectations from the 4/n, scaling rule. It is clear from these results that the
uncertainty on the top quark mass is larger for smaller values of the signal to
background ratio, beyond that expected just from the 4/n, scaling rule.

To estimate the uncertainty in the extracted mass for the selection criteria given
in Table 6.4, we generated ensembles of events assuming the expected number of
signal and background events. (The procedure for choosing the number of signal

and background events will be discussed shortly.) We allow the total number of
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Table 6.6: Relationship between mass of the top quark and the expected uncertainty in
the extracted mass, from simulations of ensembles that have event samples comparable
to the data from rRUN L.

input m; (GeV/c?) || RMs (GeV/c?)
140 29.6 £+ 0.63
160 29.2 £+ 0.57
180 27.7 £ 0.50
200 24.4 £+ 0.52

observed events to fluctuate according to Poisson statistics, which provides a more
realistic estimate of the uncertainty in the mass of the top quark. Figures 6.16
(a), (b), (c) and (d) show the distribution of extracted mass values that minimize
the negative log-likelihood function for ensembles of 5000 events, generated with
ISAJET for input top-quark masses of m; = 140, 160, 180, and 200 GeV/c?, respec-
tively. The background events were chosen at random from data (search sample)
of RUN I. All events were required to pass the kinematic criteria given in Table 6.4.
The RMS values of the Gaussian fits to distributions, which are given in Table 6.6
as a function of the assumed top quark mass, reflect the expected uncertainty in

the extracted mass values.

6.2.3 Likelihood Fit with Data

The search sample that excluded the 7219 events discussed in the previous
chapter is again used for mass extraction. A total of 2087 events remain after
imposing the selection criteria and kinematic fitting, and 83 events after imposing
b-jet tagging. The remaining background, corrected using the prescription given
in the previous chapter (Eq. (5.27)), was estimated as 61.3 events. Table 6.7
summarizes these numbers. An “unbinned” likelihood fit was performed on the

resulting data sample, which gave a top quark mass estimate of m; = 153.6 GeV/c?.
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Figure 6.16: Results of likelihood fits to event samples consisting of N,;,,=83 and
Nipry=61 events, for ¢t 1SAIET for (a) m,;=140, (b) m;=160, (c) m;=180, and (d) m;=200
GeV/c2.

Table 6.7: Result of the imposition of criteria of Table 6.4 on data from rRUN I.

Selection criteria || Number of events

Kinematic criteria 2087
Above, with muon tagging 83
Expected background 61.3

Systematic uncertainty in background 7.4
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An approximation to the standard deviation on the mass can be obtained from
the likelihood curve from a change in the value of —log(£) by 0.5 unit. This
procedure yields a statistical uncertainty of T3> GeV/c?. From Table 6.6, the
standard deviation expected on the basis of ensemble studies is ~ 29 GeV/c%.
Because getting the uncertainty from the likelihood curve can be unreliable, we
chose to use the uncertainty obtained from the ensemble tests that is less subject
to fluctuations.

Figure 6.17 (a) shows contours of —log(£) = 0.25, 0.5, and 1.0 as a function
of ny, and mass, indicating some correlation between the two parameters. Fig-
ure 6.17 (b) shows the same contours in n; vs. mass space, again showing some
correlation. Figure 6.17 (c) shows the minimum value of —log(£) vs. mass (n,
and ny are allowed to vary to find a minimum at each mass value. This is equiv-
alent to performing MINOS minimization in MINUIT[116]). Figure 6.17 (d) shows
the distributions in fitted mass (black points), with the dark-shaded area repre-
senting the signal and light-shaded area representing the background (histogram),
obtained from the likelihood fit. Table 6.8 summarizes the values of the param-
eters obtained in the likelihood fit, where the quoted uncertainties correspond to
change of 0.5 in —log(L£). The large uncertainty on n, indicates that the current
analysis does not provide a significant excess of signal to support the presence of
a tt contribution to multi-jet final states.

As a check of our procedure, the likelihood fit was redone without the Gaussian
constraint on ny. The value of n, obtained from this fit is then a background
estimate that is less dependent on results obtained in the previous chapter, but
dependent more on the shape of the mass distributions. The likelihood fit gave
a mass of 149.2 512 GeV/c?, n, = 36.6 7237, and ny = 46.4 T35, This again

suggests that there is no strong evidence for t¢ signal in the data.
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Table 6.8: Result of the likelihood fit to data from ruN L.

fit result
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Figure 6.17: Results from the likelihood fit to the data. (a) Contours of -log(L) = 0.25,
0.5, and 1.0 as a function of n, and mass, (b) contours of —log(£) = 0.25, 0.5, and 1.0,

as a function of n, and mass, (c) -log(L) as a function of mass, (d) distribution of m

fit

1

for our sample of 83 events (points), with the dark-shaded area representing the fitted
signal, and light-shaded histogram representing the background.
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Table 6.9: Relation between the input top-quark mass and the expected shift due to a
bias in the analysis procedure.

input m; (GeV/c?) || observed shift (GeV/c?)
140 + 9.6 + 0.52
160 + 1.1+ 0.51
180 - 4.8+ 0.51
200 - 5.7+ 0.51

6.2.4 Systematic Uncertainties

The following comprise the major sources of systematic uncertainty that affect

the extraction of the mass of the top quark in this analysis.

1. Shift of extracted mass from the input top mass due to a bias in the proce-
dure: Figure 6.16 shows a shift in the extracted mass that depends on the
input mass. The systematic shift is defined as the difference between the
input masses and the average of the values obtained in the likelihood fits.
Table 6.9 gives this shift as a function of the input mass. Of course, this
dependence can be used to correct the final result, but the uncertainty in the

shift contributes to the overall uncertainty in the extracted mass.

2. Jet energy scale: Uncertainty on the mass of the top quark due to the uncer-
tainty on the jet energy scale was estimated as follows. Assuming the current
uncertainty on energy of & 5 %, ensembles of events were reprocessed using
jet energies scaled up by 1.05 and down by 0.95. The resulting fitted mass
distributions for the signal and background are shown in Fig. 6.18. We see
that the + 5 % change in jet energy scale changes the mean fitted mass by
approximately + 7.5 GeV/c?, regardless of input mass. A similar shift ( +
6.7 GeV/c?) was found for the background distribution. Figures 6.19 (a),
(b), (c), and (d) show the mass distributions resulting from the likelihood
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Figure 6.18: Results from fitting of ¢f signal and background events when jet energies
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Table 6.10: Relation between the input top-quark mass and the expected uncertainty
due to a = 5 % uncertainty in the jet-energy scale.

input m; (GeV/c?) 140 160 180 200
(+) uncertainty (GeV/c?) || +48.6 | +37.1 | +25.7 | +18.3
(-) uncertainty (GeV/c?) | —25.4 | -38.8 | —-47.0 | -52.3

fit for different input masses. The systematic uncertainty in the mass is
taken as the mean of the offsets between the result of the input mass and the
energy-shifted distributions. Table 6.10 gives the uncertainty as a function

of the input top-quark mass.

3. Models of parton fragmentation : In this analysis, we used primarily the
ISAJET event generator. By repeating the fitting with HERWIG samples of m;
= 160, 180, and 200 GeV/c?, we set an expected upper limit on changes in
mean values of fitted mass distribution as — 6 GeV/c? (HERWIG preferred the
lower value of the fitted mass). Based on Fig. 6.12, we estimated an approx-
imation to the uncertainty due to different models of parton fragmentation

as -13.0 GeV/c?.

Adding the systematic uncertainties in quadrature (for an input top-quark mass
150 GeV/c?), we obtain a corrected mass of the top quark of 148429 (statistical)
T35 (systematic) GeV/c2.

6.3 Approach using Bayesian Theory

We also attempted an alternative way to estimate the mass of the top quark
using Bayesian probability theory[117]. In the top-quark mass analysis, the desired
quantity is not the likelihood P(D|my,I), but rather the a posteriori probability
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P(m|D,I), that is, the a posteriori probability of the top-quark mass being m;,
given D, the observations or experimental facts and I, any a priori assumptions.

In case n, and n; are also of interest, Bayes’ theorem provides:

P(D|\m,ng,np, I)P(m,ng,np|I)
/dmtdn dnyP(D|my,ng,np, I ) P(my,ng,np|I)

P(m¢,ns,np| D, I) (6.19)

and the a posteriori probability P(m.|D,I) is obtained by simply marginalizing
Eq. (6.19) with respect to n, and n, that is, by performing integrations over n,

and ny, as we discussed in the previous chapter.
CHOICE OF THE LIKELIHOOD

For our likelihood we can use the following:

N _—n_N;

e "n
P(D|m¢,ns,mp, I) = 1:[1 A (6.20)
where
n(me,ng,np) = nsf;(mt) + nbfg, (6.21)

N; is the number of events in the ith bin, N is the total number of bins, f! and
fi are the values of signal and background probability density functions at the ith
bin, respectively, and n, and n; are the number of signal and background expected,
respectively. Thus, Eq. (6.20) is, in fact, a standard binned likelihood function.

Another choice for the likelihood can be one similar to that used earlier (see Section

6.2):

N _—(ns+nyp)
P(D|mt,ns,nb,f) _ l(ns+nb) e l

N!

y [ﬁ s fo(m, di) + nbfb(di)l ' (6.22)

i} ns + M
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But, in general, such an unbinned likelihood function always has a term that is not
a function of m;. This can cause divergences for integration of P(m.|D,I)[120].
That is, it is possible to have the constant term sizable enough that the integral

J dmimP(m,|D,I) (mean estimate on m,) becomes not well defined.
CHOICE OF THE A PRIORI PROBABILITY

The a priori probability P(m¢,n,,np|]) must, somehow, express total ignorance
of the values of m;,n,, and n;. Whether this is possible, or how best to do that,

is an unresolved issue. One choice is the uniform a priori probability:
P(m,ns,np|I) X dmidnsdny = constant x dmidndn,. (6.23)

The problem with a uniform prior is that it leads a logical inconsistency that (1=2)
<n > =mn + 1 for Poisson distributions[104]. Another choice is Jeffrey’s prior[97],

which for the mass of the top quark can be written as:

1
P(my,ng,np|I) = —. (6.24)

my

The number of background events N, and the uncertainty o on N, can be taken

as a priori knowledge of n;:

]_ 2 2
P(my,ng,np|I) = 5 e~ (o= No)*/207 (6.25)
o

It has been argued, however, that there may be no such thing as a non-
informative a priori probability[104, 120]. In that case, the Bayesian approach
will not provide the notion of an absolutely “objective” method of analysis. Nev-
ertheless, what really matters, in the Bayesian approach, is how one makes best

inferences on parameters based on what is actually observed (data) and on what
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one knows regardless of the actual observation (a priori information).

6.3.1 Monte Carlo Tests

To compare the Bayesian and traditional likelihood methods, the selection cri-
teria of Table 6.4 were also used in this analysis. However, a signal to background
ratio of 50 to 50 was chosen to test the efficacy of the Bayesian formulation. Using
the unbinned likelihood given in Eq. (6.22), with an m;-independent (uniform)
prior for m;, and with a Gaussian prior for n;, we calculated the a posteriori prob-
abilities. After the imposition of the selection criteria of Table 6.4, a sample of
fifty background events and fifty signal were retained from data of RUN I and from
ISAJET tt production at m;=180 GeV/c?, respectively. Figure 6.20 (a) shows the
a posteriori probability, P(m,n,|D,I), as a function of the number of top events,
and of the mass of the top quark, indicating the expected signal. Figure 6.20 (b)
shows contours of equal probability. The distributions show a peak near the input
values of m; and n,, demonstrating the clear signal in (n,, m;) space. Figure 6.20
(c) shows the a posteriori probability distribution P(m;|D,I). The mean estimate
for m; is 184.9 GeV/c?, and, more importantly, the RMS uncertainty on m; is 18.7
GeV/c?, which can be compared with the result from the likelihood fit of 17.1
GeV/c? in Fig. 6.15 (c) (or in Table 6.5). It can be argued that because the uncer-
tainty from the likelihood fit was based on fits to each ensemble of many pseudo
experiments, it is not fair to compare the two numbers. However, a fundamental
notion in Bayesian statistics is that inferences should be based on what is actually
observed, and not on what we could have observed. Therefore, regardless of the
fairness of the comparison, the sampling distribution of Bayesian estimates cannot
alter the inferences based on some given data set. This is because the a posteriori

probability, by construction, incorporates the likelihood (and therefore the actually
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observed data) and the assumed a priori probability, and, necessarily, describes all
that we know about the hypothesis being tested. This is, precisely the importance
of Bayes’ theorem.

Since P(my|D,I) is symmetric, and its shape is approximately Gaussian, one
expects that the square root of the variance and the 68.3% confidence interval
estimate will provide similar answers (as should the mean and the median estimates
in this case). In general, however, these uncertainty measures can be different.

For our second choice of the likelihood, we used the binned likelihood function
given in Eq. (6.20). The same signal to background ratio of 50 to 50 was used again
for our study. We again assumed a Gaussian prior for n, and an m;-independent
(uniform) prior for m,, and obtained a mean estimate on m; of 182.7 GeV/c? and
an RMS uncertainty on m; of 19.1 GeV/c?, close to the result using an unbinned
likelihood. Figures 6.21 (a), (b), and (c) show the a posteriori probabilities for the
binned likelihoods, which are quite similar to those in Fig. 6.20.

When we assume a 1/m; form for the prior on the mass of the top quark,
and Gaussian prior for n,, with the unbinned likelihood, the mean and the RMS
uncertainty on the top-quark mass become 183.0 GeV/c? and 18.8 GeV/c?, respec-
tively, and with the binned likelihood the mean and the RMS uncertainty are 180.7
GeV/c? and 19.1 GeV/c?, respectively.

As expected, when 1/m; is assumed for the a priori probability and flat a priori
probability for n;, the mean value of m; becomes lower than for the case of a
uniform prior, because 1/m; favors lower values of top-quark mass. However, for a
uniform prior on ny, the procedure deteriorates badly. Figure 6.22 (a) and (b) show
the posterior probabilities with unbinned and binned likelihoods, respectively. In
both cases, the a posteriori probabilities have peaks at zero which may be due to
the correlation between the 1/m; prior on m; and what is used for n;. Clearly, the

most probable values for the uniform priors on n, and the 1/m; priors on m,, reflect
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Figure 6.20: A posteriori probability distributions using an unbinned likelihood, a uni-
form prior for m; and a Gaussian prior for ny. A total of 50 signal events were chosen
from tf ISAJET at m; = 180 GeV/c?, and 50 background events from data of rRUN L. (a)
P(m¢,ny|D,I) as a function of m; and ns. (b) Contours of equal probabilities (0.016,
0.011, 0.006, and 0.001) for (a). (c) P(my|D,I) as a function of m;.
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Figure 6.22: A posteriori probability distributions using 1/m; as a priori for m;, and a
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m, using unbinned likelihood, (b) P(m,|D,I) as a function of m; using binned likelihood.

the input mass much better than do the means of the a posteriori probabilities.
Table 6.11 summarized the results using different combinations of likelihoods and
a priori probabilities.

We performed the same analysis for an input mass of 140 GeV/c?. For the
unbinned likelihood, we obtained a mean estimate of 133.7 GeV/c? and the RMS
uncertainty of 21.8 GeV/c?. With the binned likelihood, we obtained the mean
estimate as 135.5 GeV/c? and the uncertainty of 24.5 GeV/c?. In both cases, we
assumed Gaussian a priori probability for n, and a flat prior for m;.

Our results indicate that imposing 1/m; and an uniform prior for n; can in-
troduce a bias in the measurement. However, it should be recognized, again, that
the concept of “bias” is not critical to Bayesian inference, because what matters
is that the Bayesian estimate be “consistent”, that is, converge to the true value

of mass as more data are accumulated.
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Table 6.11: The mean, RMS, mode, and uncertainty on the top mass for different
combinations of likelihoods and priors. An input mass of 180 GeV/c? and a signal
to background ratio of 50/50 were assumed in these Monte Carlo studies of the Bayesian

approach.

mean + RMS (GeV/c?)

mode + one s.d. (GeV/c?)

unbinned P(D|my, ng, np, I)
uniform in ny
uniform in my;

181.1 £+ 30.9

175.0 + 12.2

unbinned P(D|my, ng, np, I)
Gaussian in ng
uniform in my;

184.9 £+ 18.7

182.0 + 14.4

unbinned P(D|my, ng, np, I)
uniform in ny
1/my in my,

162.8 + 54.6

174.2 + 12.1

unbinned P(D|my, ng, np, I)
Gaussian in ng
1/my in my,

183.0 + 18.8

180.8 + 14.3

binned P(D|my, ng, np, I)
uniform in ny
uniform in my;

177.1 + 23.9

171.7 + 13.6

binned P(D|my, ng, np, I)
Gaussian in ng
uniform in my;

182.7 +£ 19.1

179.5 + 15.1

binned P(D|my, ng, np, I)
uniform in ny
1/my in my,

168.9 + 37.3

170.3 £ 13.8

binned P(D|my, ng, np, I)
Gaussian in ng
1/my in my,

180.7 £ 19.1

178.4 + 15.2
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6.3.2 Extraction of the Mass of the Top Quark using Bayesian
Theory

Data used in the likelihood-fit analysis were used again to obtain a Bayesian
estimate of the mass of the top quark. All the event selection criteria, includ-
ing jet energy corrections, were done in exactly the same way as in the previous
likelihood-fit analysis. Consequently, the results given in Table 6.7 are still valid
for this analysis. To compare directly with the results of the likelihood fit, we
take an unbinned likelihood, uniform prior for m;, and a Gaussian prior for n;.
The resultant a posteriori probability P(m¢,ns|D,I) is shown in the Figs. 6.23
(a) and (b). There is a small rise of the probability at very high m,, near 400
GeV/c?, where n, is near zero. We should note that above m; = 220 GeV/c? the
signal probability density function f, is extrapolated from a two-dimensional fit,
and it may therefore not be valid for masses beyond m; = 220 GeV/c*. There is
another, more significant rise centered near m; ~ 150 GeV/c? that is correlated
with the value of n, that can possibly be explained by the small excess of events
near m/" ~ 180 GeV/c? observed in Fig. 6.17 (d). Figure 6.23 (c) shows the
a posteriori probability, P(n,|D,I) as a function of the expected signal, n,. The
mean estimate of n, and its RMS uncertainty is 19.3 £+ 11.0, which is comparable
to the values obtained in the likelihood-fit analysis, which is 23.1 *}15. Figure 6.23
(d) shows the a posteriori probability P(m;|D,I) as a function of m;. A peak in
the distribution is observed at 149.2, with an one standard deviation uncertainty
(from a Gaussian fit to the peak) of 37.3 GeV/c®. This is also comparable with the
result from the likelihood-fit analysis, which is 153.6 *3--2 GeV/c?. One philosoph-
ical difference between the present treatment and the standard approach should
be noted, and that is that here the parameters n;, and n, have been integrated out,

min
8 b

min

whereas in the likelihood fit only one value of n; and n,, namely ny*" and n
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were considered in the extraction of the central value of m,.

6.3.3 Systematic Uncertainty

The jet energy scale appears to be a primary source of systematic uncertainty
in the extraction of the mass of the top-quark. In what follows, we treat this un-
certainty as one more piece of a priori information that is provided to us. Suppose

that the fractional uncertainty on the fitted mass is ¢,* we can then write:

where m/*(q) denotes the rescaled fitted mass and mf,fzasumd the original fitted

mass, respectively. Because rescaling the fitted mass changes the shape of signal
and background as well as the distribution of events, f, and f, must therefore also

depend on g¢:

fo(my, di) — fo(my,di(q))
fb(di) - fb(di(Q))

The a posteriori probability that takes proper account of the uncertainty in the jet

energy scale is given by the following integral:

P(m|D,I) = /q'”"’h dgP(m,|D, 1)

Qlow
1 Qhigh
= ¥ dqP(D|my,q,I)P(q|I)P(miI), (6.27)
Qlow
*Ideally, one should assume Ej;c(q) = (1 + q) Ef;fgasumd, and repeat the kinematic fitting

procedure, rather than rescale the fitted mass values directly. However, repeating the fitting
in each steps of the integration in order to obtain probability density functions is too time
consuming, and we will therefore assume a uniform uncertainty on the fitted mass as 7.5 % due
to the jet-scale uncertainty, based on our earlier study (see Section 6.2.4).
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a function of n,, and (d) P(m|D,I) as a function of m;.
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where

]_ 2 2
P(qll) = ———e "%, (6.28)

V27a,

N is a normalization constant that can be calculated using the definition of a
probability density function, and o, is the estimated uncertainty on the jet energy
scale. While trivial in principle, this integral is nontrivial in practice because
one has to rebuild f; and f; at every step of the numerical integration over gq.
We generated two sets of 100,000 different values of ¢’s (g1 and g2, to assign jet
energy scales to f; and f, in a random manner), assuming o, to be 7.5 %, and
restricting fluctuation in g to within + one o, of ¢g=0. In each step of the integration
over q, fs(mt,mlﬁt(ql)) and fb(mlfit(q2)) were recalculated by repeating the fitting
procedure explained in the Section 6.2.2. (For the background, rescaled histograms
are used as f,.) We scanned the results of the fits, and confirmed that x* was
always less than 1.2, demonstrating the stability of results of the fit. Results for
g-dependent f, were also checked, and no evidence found for problems with the
procedure.

The a posteriori probability for our data P(m¢,ns|D,I) is shown in Figs. 6.24
(a) and (b). There is no significant change from introducing the g-dependent a
priori probability. Figure 6.24 (c) shows the a posteriori probability P(n,|D,I) as
a function of the expected signal, n,. The mean estimate of n, and its RMS uncer-
tainty becomes 19.6 + 11.0 which is very similar to the result with g-independent
prior. The a posteriori probability, P(m,|D,I) is shown in Fig. 6.24 (d) as a solid
histogram. The dashed histogram is the same plot, but for the case when we do not
consider the uncertainty in the jet energy scale (equivalent to P(q|I) = §(q — 0)),
namely Fig. 6.23 (d). The mean value of m; from a Gaussian fit to the peak (148.2
GeV/c?) is shifted down by 1 GeV/c?, and the standard deviation for the Gaussian
fit is increased from 37.3 to 43.3 GeV/c? for the g-dependent formulation.
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Figure 6.24: A posteriori probability distributions using an unbinned likelihood, a uni-
form prior for m;, a Gaussian prior for n}, and a Gaussian prior on the jet-energy scale.
The standard 83 events from RUN I data were used in the analysis. (a) P(m¢,ns|D,I)

as a function of m; and n,. (b) Contours of equal probability in (a), (c)

P(ns|D,I)asa

function of ny, and (d) P(m,|D,I) as a function of m; and solid line shows P(m,|D,I) as

a function of m; for the analysis including the dependence on scale (¢), and the dashed
line corresponds to the result of Fig. 6.23 (d).
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Chapter 7

Conclusions

We performed a measurement of the production cross section of the top quark
and of the mass of the top quark in the multi-jet final states. As described in
Chapter 5, we observed a consistent excess of ¢t signal events using three different
analyses, and found a cross section consistent with measurements reported by
CDF [17] and D@ [18]. Nevertheless, the level of significance of the signal is not
strong enough to establish the existence of the top quark in multi-jet final states.
Based on the small excess of observed events above background, we pursued the
measurement of the mass of the top quark. The lack of a significant excess of
the signal events prevented us from estimating the mass of the top quark with
precision.

We addressed our event classification problem by introducing three different
techniques. The important-sampled grid search, the covariance matrix analysis,
and the neural network analysis were discussed and compared. It was observed
that, consistent with expectation, the neural network analysis provided the best
performance. The tf production cross sections from individual analyses were con-

sistent with measurements from other modes of ¢ production, but with rather
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large uncertainties. We also addressed an alternative way of calculating the ¢f pro-
duction cross section based on Bayesian probability theory. An upper limit (95
% confidence level) on ¢t production cross section at the top quark mass for 180
GeV/c? was estimated to be approximately < 30 pb for most sets of selection
criteria.

Finally, we attempted to measure the mass of the top quark assuming that the
small excess of events corresponded to ¢ production. An optimization procedure
was developed in order to minimize the size of the statistical uncertainty of the
measurement. However, due to a poor level of signal to background, as well as
similarities in shape of background and signal in their fitted mass spectra, we were
only able to estimate the mass of the top quark within relatively large uncertainties.
We also addressed an alternative way of calculating mass of the top quark using
Bayesian probability theory.

To summarize, out best estimate of the cross section for ¢£ production, based
on the all-jets channel, is 7.9 4+ 7.1 pb (at m; = 160 GeV/c?). Our best estimate of
the mass of the top quark is 148 & 52 GeV/c?. These results are limited primarily
by the statistics of the signal, following the analysis needed to increase the ¢t signal
relative to the QCD background in the all-jets channel.

The upgrade of the D@ detector and of the Fermilab accelerator complex are in
progress for the next collider run (RUN II, scheduled to begin 1999). We expect to
have approximately 10 times higher luminosity than the luminosity in RUN I and
to be able to identify b-quarks by observing secondary vertices in the upgraded svx
detector. With these improvements to the detector and the accelerator, we should
be able to identify a few hundred ¢f events that produce multi-jet final states, and
thereby test the predictions of the Standard Model for the branching ratio of the

top quark into all-jets, and the mass of the top quark.
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Appendix A

Fisher’s Variable and Neural

Networks

A.1 Effects on Kinematic Parameters of Select-
ing on Fisher’s Variable and Network Out-
put

In order to examine the impact of Fisher’s variable defined in Eq. (5.1) and
of network output on kinematic parameters, we compared the distributions of
parameters before and after imposing these criteria.

Figures A.1 (a), (b), (¢), and (d) show the distributions of A, H:?}j, Er(s), and
C, respectively, for tf ISAJET events with m; = 180 GeV/c?®. The points have no
selection on Fisher’s variable, the light-shaded histograms require Fisher’s variable
to be greater than 0.3, and dark-shaded histograms require Fisher’s variable to
be greater than 0.6. Although cutting on Fisher’s variable removes preferentially

events that have small values of A, the cut also removes also a substantial fraction
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of events with higher values of A. However, for distributions in H:?}j , and E7(s),
only events with low values are removed by selecting on Fisher’s variable, as shown
in Figs. A.1 (b) and (c). Similar behavior is observed in the distributions of C.

Next, we performed the same exercise with the search sample, and the results
are shown in Figs. A.2 (a), (b), (c), and (d). One distinctive feature with the
search sample is that there are shoulders at the low values of H:?}j and Er(s), as can
be seen in Figs. A.2 (b) and (c). This may be the reason for the under-performance
of the covariance matrix analysis relative to the grid analysis.

Similar studies were performed for selections on the output of the neural net-
work. Figures A.3 and Figs. A.4 show distributions of kinematic parameters using
tt ISAJET events of m; = 180 GeV/c? and the search sample, respectively. Here,
the selections on output at 0.7 and at 0.96 do not leave any excess of events at low

values of H:?}j or Ers).

A.2 Details on Neural Networks

We rewrite the explicit analytic expression for F' (Eq. (5.7)) for the network
training described in Chapter 5:

F(zq,...,z5)=g

138 138
T ZWLJ‘Q (T Z wikxy + Hj) + 0,

7=1 k=1

where
A HT
L9 A
3 = C

Zs ET(5)
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Figure A.1: Effect of Fisher’s variable on the signal sample. (ISAJET of m; = 180
GeV/c?) Points show distributions with no selection on Fisher’s variable, shaded his-
tograms are Fisher’s variable greater than 0.3, and dark-shaded histograms Fisher’s
variable greater than 0.6.
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Figure A.3: Effect of the network output on the signal sample.
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180 GeV/c?) Points show distributions with no selection on network output, shaded
histograms are network output greater than 0.7, and dark-shaded histograms network
output greater than 0.96.
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with no selection on network output, shaded histograms are network output greater than
0.7, and dark-shaded histograms network output greater than 0.96.
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The numerical results of the training, given in Chapter 5, were:

+0.207 +0.342 —0.025 —0.263 +0.193
—2.992 +0.514 +2.036 —0.598 — 0.875
+2.917 —5.573 —2.074 —2.871 —0.827
| -5.354 +0.562 +0.487 +3.263 — 0.472
T L0198 £0.992 +0.714 — 0.082 4 0.673
_0.204 +2.348 +2.609 —0.450 + 0.496

+1.602 +0.900 +1.316 4 0.014 + 2.312

—-1.169 —0.247 +0.743 -—1.097 — 0.447

+0.204 -1.414 —-1.711 - 2.533
w17-] =
+0.391 +1.801 +41.926 —0.771

-1.001 +1.313 4+ 1.171 4 1.346
-1.363 —-0.716 —3.835 4 0.932

and
8, = —0.577.

To visualize the variations in the size of weights, we sketched the 5-8-1 archi-
tecture, with lines whose widths are proportional to the absolute magnitude of
their weights. Figure A.5 shows the results. The sizes of the gray circles for the
hidden nodes are proportional to the absolute magnitude of threshold values, 6,.
It is clear that Hr, A, C, and E7(5) appear to provide greater weights to the hidden

nodes that have greatest impact on the network output.
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Network Output

7/

H, A C H Ers)

Figure A.5: Relative size of weights among networks. The absolute values of weights
are proportional to width of lines between nodes, and the sizes of circles for the hidden
nodes are proportional to the absolute magnitude of threshold values 8;.
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Appendix B

Back-Propagation Learning

As was pointed out in Chapter 5, the minimization of the mean square error
function E is achieved by updating of weights and thresholds using the method of

gradient descent[86]:
OF

Aw="ng,

(B.1)

here 7 is the learning rate parameter (0 < # < 1) and the w is the parameter
contains implicitly all the weights and thresholds. Because 7 is a positive quantity,
the gradient descent method finds a minimum value of E.

In what follows, we discuss how the back-propagation is accomplished. In order
to keep the calculation simple, we assume that the weights w;; include threshold
values, T = 1, and we suppress the 1/N, Y, in Eq. (5.9). Also, we replace F; with
0; in order to emphasize that the network is not yet trained. Therefore, the mean

square error function in Eq. (5.9) and the network output o, can be rewritten as:
1 2
E = EZ(O’ — ti) 5 (B2)

o = g l;wz',jg (Ek:%kmk)] :
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With the chain-rule of differentiation, one gets for the weights “connecting” output-

to-hidden nodes:

where §; = (t; —

Awm-

B OF
nawm
(901

] Z(Ol - tl)aw ]
2.7

l

n Z (t — o)
U] Z tr —o1)g'(
n(ti — 0i)g'(1)g(7)

n6:9(J)

& [

Z 5il5jmg m

(B.3)

")

0;)9'(2), the 7 in g(z) denotes the relevant index in the function g

(as opposed to the dummy index), and the symbol §;; denotes the Kronecker delta

(64 = 1if i=j, otherwise §; = 0).

nodes, the rule of gradient descent gives:

ijyk

1725 szl

OF
8wj7k

(9wj

For the weights connecting hidden-to-input

[Zw Zwmwml
l (3 wimm) ]

One should note that w;; in the above equations are the weights and thresholds

connecting output to hidden nodes, and w;; are hidden to input nodes. That was

used in the last step in Eq. (B.4). Now, using the fact that

8% k

2 oS etnan)| = d0

m 8wj7k

awl,m

(B.5)

Lm



= g’(l) Z 5jl5kmmm,

one finally obtains:

Awjp = 1Y 8y wiug' ()Y 8itbkmzm
) { m
= D (ti — 0))g'(3)wi jg' (7).

Therefore, updating via gradient descent becomes:

Aw;, = 7725iwi,j9,(j)mk

= nbzg
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(B.7)

where §; = ¢'(j) ¥, wi j6;. The information at the output to hidden layers (the

term §;) is consequently “back-propagated” through the network (§,)[87]. Using

Eq. (B.3) and (B.7), one can implement the back-propagation algorithm[88].





