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Kernel methods have a wide spectrum of applications in machine learning. Recently, a link between quantum computing and
kernel theory has been formally established, opening up opportunities for quantum techniques to enhance various existing
machine-learning methods. We present a distance-based quantum classifier whose kernel is based on the quantum state fidelity
between training and test data. The quantum kernel can be tailored systematically with a quantum circuit to raise the kernel to an
arbitrary power and to assign arbitrary weights to each training data. Given a specific input state, our protocol calculates the
weighted power sum of fidelities of quantum data in quantum parallel via a swap-test circuit followed by two single-qubit
measurements, requiring only a constant number of repetitions regardless of the number of data. We also show that our classifier is
equivalent to measuring the expectation value of a Helstrom operator, from which the well-known optimal quantum state
discrimination can be derived. We demonstrate the performance of our classifier via classical simulations with a realistic noise
model and proof-of-principle experiments using the IBM quantum cloud platform.
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INTRODUCTION

Advances in quantum information science and machine learning
have led to the natural emergence of quantum machine learning,
a field that bridges the two, aiming to revolutionize information
technology'™. The core of its interest lies in either taking
advantage of quantum effects to achieve machine learning that
surpasses the classical pendant in terms of computational
complexity or to entirely be able to apply such techniques on
quantum data. A prominent application of machine learning is
classification for predicting a category of an input data by learning
from labeled data, an example of pattern recognition in big data
analysis. As most techniques in classical supervised machine
learning are aimed to getting the best result while using a
polynomial amount of computational resources at most, an exact
solution to the problem is usually out of reach. Therefore many
such learning protocols have empirical scores instead of
analytically calculated bounds. Even with this lack of rigorous
mathematics they have been applied with great success in science
and industry. In pattern analysis, the use of a kernel, i.e. a similarity
measure of data that corresponds to an inner product in higher-
dimensional feature space, is vital®’. However, classical classifiers
that rely on kernel methods are limited when the feature space is
large and the kernel functions are computationally expensive to
evaluate. Recently, a link between the kernel method with feature
maps and quantum computation was formally established by
proposing to use quantum Hilbert spaces as feature spaces for
data®. The ability of a quantum computer to efficiently access and
manipulate data in the quantum feature space offers potential
quantum speedups in machine learning®.

Recent work in ref. '® showed a minimal quantum interference
circuit for realizing a distance-based supervised binary classifier.
The goal of this task is, given a labelled dataset
D= {(X1,%1); .., O, yy)} € CVx{0,1}, to classify an unseen
datapoint x € C" as best as possible. Conventional machine-
learning problems usually deal with real-valued data points, which
is, however, not the natural choice for quantum information

problems. In particular, having quantum feature maps in mind, we
generalize the dataset to be complex valued. The quantum
interference circuit introduced in ref. ' implements a distance-
based classifier through a kernel based on the real part of the
transition probability amplitude (state overlap) between training
and test data. Once the set of classical data is encoded as a
quantum state in a specific format, the classifier can be
implemented by interfering the training and test data via a
Hadamard gate and gathering the projective measurement
statistics on a post-selected state, which has been projected to a
particular subspace. For brevity, we refer to this classifier as
Hadamard classifier. Since a Hadamard classifier only takes the real
part of the state overlap into account it does not work for an
arbitrary quantum state, which can represent classical data via a
quantum feature map or be an intrinsic quantum data. Thus,
designing quantum classifiers that work for an arbitrary quantum
state is of fundamental importance for further developments of
quantum methods for supervised learning.

In this work, we propose a distance-based quantum classifier
whose kernel is based on the quantum state fidelity, thereby
enabling the use of a quantum feature map to the full extent. We
present a simple and systematic construction of a quantum circuit
for realizing an arbitrary weighted power sum of quantum state
fidelities between the training and test data as the distance
measure. The argument for the introduction of non-uniform
weights can also be applied to the Hadamard classifier of ref. '°.
The classifier is realized by applying a swap-test'' to a quantum
state that encodes the training and test data in a specific format.
The quantum state fidelity can be raised to the power of n at the
cost of using n copies of training and test data. We also show that
the post-selection can be avoided by measuring an expectation
value of a two-qubit observable. The swap-test classifier can be
implemented without relying on the specific initial state by using
a method based on quantum forking'®'* at the cost of increasing
the number of qubits. In this case, the training data, correspond-
ing labels, and the test data are provided on separate registers as
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a product state. This approach is especially useful for a number of
situations: intrinsic—possibly unknown—quantum data, parallel
state preparation and gate intensive routines, such as quantum
feature maps. Furthermore, we show that the swap-test classifier is
equivalent to measuring the expectation value of a Helstrom
operator, from which the optimal projectors for the quantum state
discrimination is constructed'®. This motivates further investiga-
tions on the fundamental connection between the distance-based
quantum classification and the Helstrom measurement. To
demonstrate the feasibility of the classifier with near-term
quantum devices, we perform simulations on a classical computer
with a realistic error model, and realize a proof-of-principle
experiment on a five-qubit quantum computer in the cloud
provided by IBM'>.

RESULTS
Classification without post-selection

The Hadamard classifier requires the training and test data to be
prepared in a quantum state as

[9) = 5> V(10 t) + D5yl 0

where the data are encoded into the state representation
[Xm) = Z,L Xmili), |X) = Z,{L Xili), the binary label is encoded
in ¥y, € {0, 1}, and all inputs x,, and X have unit length'®. The
superscript h indicates that the state is for the Hadamard classifier.
The first and the last qubits are an ancilla qubit used for interfering
training and test data and index qubits for training data,
respectively. In ref. '° each subspace has an equal probability
amplitude, i.e. w,, =1/M V m, resulting in a uniformly weighted
kernel. Here we introduce an arbitrary probability amplitude /wy,,
where ¥,,w,, =1, to show that a non-uniformly weighted kernel
can also be generated. The goal of the classifier is to assign a new
label y to the test data, which predicts the true class of x denoted
by c(x) with high probability. The classifier is implemented by a
quantum interference circuit consisting of a Hadamard gate and
two single-qubit measurements. The state after the Hadamard
gate applied to the ancilla qubit is

M
HWY) =35 Vm(0)10.) + [116-)) ) m) @

with |¢.) = [xm) £ |X). Measuring the ancilla qubit in the
computational basis and post-selecting the state |a), a € {0, 1},
yield the state

1M
why — Wmla m 3
|¥a) 2\/p_amz:;x/_ml Wa)lym)m), (3)
where p, = Zg:1 Win(1+ (—=1)"Re(4y, |Wx))/2 is the probability
to post-select a =0 or 1, and Yo1) = Y. (). The Hadamard classifier
in ref. 1° selects the measurement outcome a =0 and proceeds
with a measurement of the label register in the computational
basis, resulting in the measurement probability of

P(y = bla=0) =tr[(17 @ |b) (b] @ 1) [Wh)(Wh]

R .
= Wi (1 + Re(x|xm)), 4
Po miy,=b

where b € {0, 1}. The test data are classified as y that is obtained
with a higher probability. Since the success probability of the
classification depends on pq, in ref. '°, a dataset is to be pre-
processed in a way that the post-selection succeeds with a
probability of around 1/2. This is done by standardizing all data x,
such that they have mean 0 and standard deviation 1 and applying
the transformation to the test datum x too. Now we show that the
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classifier can be realized without the post-selection, thereby reducing
the number of experiments by about a factor of two, and avoiding
the pre-processing (see Supplementary Information).

If the classifier protocol proceeds with the ancilla qubit
measurement outcome of 1, the probability to measure b on
the label qubit is

P =bla=1)=t[(17a b)(b|  1)|¥})(¥]]]

1M
= Wm(1 — Re(X|Xm)).

5 (5)
2p1 mly,m=b

Thus, when the ancilla qubit measurement outputs 1, y should be
assigned to the label with a lower probability. This result shows
that both branches of the ancilla state can be used for
classification. The difference in the post-selected branch only
results in different post-processing of the measurement outcomes.

The measurement and the post-processing procedure can be
described more succinctly with an expectation value of a two-

qubit observable, <o§“>o§”>, where the superscript a (/) indicates

that the operator is acting on the ancilla (label) qubit. The
expectation value is

(0 @olly = tr<o§")o§’>H}W"><w" |H)

- ﬁ 10,10 (0] @ [9,) (0, | © G lyom) Yl
(o 1)1 © [9) (0] © Oalym) i)

W
4

[tr(lo) (e ]) = tr(lw- ) (- D]tr(ozlym) Yiml)

M= M=

(=1 wpRe(X|Xm). (6)
1

3
I

The last expression is obtained by using tr(jg,){p.|) =
2+ 2Re(X|Xy), and tr(o;ly,)(Ym|) =1 for y,=0 and —1 for

¥m = 1. The test data are classified as 0 if <0§”)0§’)

if negative:

)7:%<1 fsgn<(o£">o§’))>>. )

A quantum circuit for implementing a Hadamard classifier is
depicted in Fig. 1.

) is positive, and 1

Quantum kernel based on state fidelity

In order to take the full advantage of the quantum feature maps®®
in the full range of machine-learning applications, it is desirable to
construct a kernel based on the quantum state fidelity, rather than
considering only a real part of the quantum state overlap as done
in ref. '°. We propose a quantum classifier based on the quantum
state fidelity by using a different initial state than described in
ref. '° and replacing the Hadamard classification with a swap-test.

The state preparation requires the training data with labels to
be encoded as a specific format in the index, data and label
registers. In parallel, a state preparation of the test data is done
on a separate input register. Unlike in the Hadamard classifier, the
ancilla qubit is not in the part of the state preparation, and it is
only used in the measurement step as the control qubit for the
swap-test. The controlled-swap gate exchanges the training data
and the test data, and the classification is completed with the
expectation value measurement of a two-qubit observable on the
ancilla and the label qubits. For brevity, we refer to this classifier
as swap-test classifier.

With multiple copies of training and test data, polynomial
kernels can be designed'®'”. With any n € N, a swap-test on n
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Fig. 1 The Hadamard classifier. The first register is the ancilla qubit
(a), the second is the data qubit (d), the third is the label qubit (/),
and the last one corresponds to the index qubits (m). An operator
Un(D) creates the input state necessary for the classification
protocol. The Hadamard gate and the two-qubit measurement
statistics yield the classification outcome.

state preparation classification
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Fig. 2 The swap-test classifier. The first register is the ancilla qubit
(a), the second contains n copies of the test datum (x), the third are
the data qubits (d), the fourth is the label qubit (/) and the final
register corresponds to the index qubits (m). An operator Us(D)
creates the input state necessary for the classification protocol. The
swap-test and the two-qubit measurement statistics yield the
classification outcome.

copies of training and test data that are entangled in a specific
form results in

u S\ ®n n Ha Ha s
SV 0)%) " )y o P
m=1
M
Z )+ (D16 ) lym) m), ®)

where |, ) = %)% %) " £ %) ©"[X)®", and the superscript s
indicates that the state is for the swap-test classifier. Using

% I
(| W ) (Wns]) = 2 2/ (X[X) | o)
for this state is given as

, the expectation value of oﬁ"

M
o ) = el ©
m=1
The swap-test classifier also assigns a label to the test data
according to Eq. (7). A quantum circuit for implementing a swap-
test classifier with a kernel based on the nth power of the
quantum state fidelity is depicted in Fig. 2.
Note that if the projective measurement in the computational
basis followed by post-selection is performed as in ref. '°, the
probability of classification can be obtained as

P = bla) = 3 w1 (1)) ), (10)
C’m\y =b
where p, = M wn(1 4 (=1)%(X[xn)|*") /2. Since p, here is a

function of the quantum state fidelity, which is non-negative, p, >
p1 and po=1/2. As a result, the data pre-processing used in the
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Hadamard classifier for ensuring a high success probability of the
post-selection is not strictly required for the swap-test classifier.

We demonstrate the performance of the swap-test classifier
using a simple example dataset that only consists of two training
data and one test data as

- 0 .. 6
|x(0)) = c055\0> f/smim,

(@) =%(1 = sgn(|(xxi)|? = [(x]x2)[%)), g = 2. (1n

For simplicity, we omit the parameter 8 and write X = x(8) when
the meaning is clear. The classification for this trivial example
requires quantum state fidelity rather than the real component of
the inner product as the distance measure, verifying the
advantage of the proposed method. Since the classification relies
on the distance between the training and test data in the
quantum feature space, we also choose ¢ as to compare the
distance between the test datum and training data of each class.
The inner  products are  (X|x;) =isin(¢+Z), and
(X|xz) = lcos( ) According to Eq. (9) the expectation value is

(0170))) = wn|(pxr) [ — wal (Xxa)

5[0 7 0 m
= wssin §+Z — w5cos? 2+4 (12)

Thus the swap-test classifier outputs y that coincides with
c(x(6)) VO. Note that although we have chosen g=2 in this
example, the swap-test classifier can correctly assign a new label
y¥q>0. In contrast, the Hadamard classifier will have the
classification expectation value (see Eq. (6))

(0190)y = wiRe(X|x;) — wyRe(X|x;) = 0. (13)

Thus in this example, for any test data parameterized by 6, the
Hadamard classifier cannot find the new label y. This dataset will
be used throughout the paper for demonstrating all subsequent
results. Moreover, since the non-uniform weights merely create a
systematic shift of the expectation value (see Methods), without
loss of generality, we use w; = w,=1/2 in all examples
throughout the manuscript. Using the above example dataset,
we illustrate the sharpening of the classification as n increases in
Fig. 3.

There are several interesting remarks on the result described by
Eq. (9). First, since the cross-terms of the index qubit cancel out,
dephasing noise acting on the index qubit does not alter the final
result. The same argument also holds for the label qubit.
Moreover, the same result can be obtained with the index and
label  qubits initialized in  the classical state as
> mWmlYm) Vml ® Im){(m|, where 3,wn=1. In fact, since the
classification is based on measuring the o, operator on ancilla and
label qubits, our algorithm is robust to any error that effectively
appears as Pauli error on the final state of them. It is
straightforward to see that any Pauli error that commutes with

o( oz does not affect the measurement outcome. When a Pauli

error does not commute with the measurement operator, such as
a single-qubit bit flip error on the ancilla or the label qubit, the

measurement outcome becomes (1 — 2p) (o 9ol ), where p is the
error rate. This result is due to the fact that Pauli operators either
commute or anti-commute with each other. This error can be
easily circumvented since the classification only depends on the
sign of the measurement outcome as shown in Eq. (7), as long as
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Fig. 3 Effect of identical copies of data. Theoretical results of the
swap-test classifier for the example given in Eq. (11), for n=1, 10

and 100 copies of training and test data. The test data are classified
as 0 (1) if the expectation value, (aﬁ")og)), is positive (negative). The
comparison of the results for various n illustrates the polynomial
sharpening which will eventually result into a Dirac 6 if the number

of copies approaches to the limit of e,

p < 1/2. The same level of the classification accuracy as that of
the noiseless case can be achieved by repeating the measure-
ment O(1/(1 —2p)®) times. Also, any error that effectively
appears at the end of the circuit on any other qubits does not
affect the classification result. Second, as the number of copies
of training and test data approaches a large number, we find the
limit,

limp_o (0 (=1 Wb (X — Xp). (14)

M
o) =3
m

Therefore, as the number of data copies reaches a large number,
the classifier assigns a label to the test data approximately by
counting the number of training data to which the test data
exactly match.

Kernel construction from a product state
The classifiers discussed thus far require the preparation of a
specific initial state structure. Full state preparation algorithms are
able to produce the desired state'*'®2°, However, all such
approaches implicitly assume knowledge of the training and
testing data before preparation, and some of the procedures need
classical calculation during a pre-processing step. In this section,
we present the implementation of the swap-test classifier when
training and test data are encoded in different qubits and
provided as a product state. In this case, the classifier does not
require knowledge of either training and test data. The input can
be intrinsically quantum, or can be prepared from the classical
data by encoding training and test data on a separate register. The
label qubits can be prepared with an X’» gate applied to |0).
Given the initial product state, the quantum state required for
the swap-test classification can be prepared systematically via a
series of controlled-swap gates controlled by the index qubits,
which is also provided on a separate register, initially uncorrelated
with the reset of the system. The underlying idea is to adapt
quantum forking introduced in refs. '*'3 to create an entangled
state such that each subspace labeled by a basis state of the index
qubits encodes a different training dataset. For brevity, we denote
the controlled-swap operator by c-swap(a, b|c) to indicate that a
and b are swapped if the control is ¢. With this notation, the
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classification

quantum forking

Fig. 4 Quantum forking and data in product state. The swap-test
classifier with quantum forking for state preparation when the test
data, the training data, and the labels are given as a product state.

classification can be expressed with the following equations.

Z\/WEIO [%)°710)"[0),m) 1) “"[y1)[x2) “"[y5) ... [%u1) " [yas)

[Ln<—swap(l, Y| m) - c—swap(d, Xm|m)
M
———————————————————————————— =32 VWl0)l3) )57l ) )

Fla- - smap(dXa) e\ gy = 13 (10} )+ 1)) ) m)ljunk).

(15)

where |junk,,) is some normalized product state. Other than being
entangled with the junk state, |®;) in Eq. (15) is the same as |¥5)
derived in Eq. (8). Since tr(|junk,,)(junk,|) = 1, the expectation

value of an observable oﬁa)oy) is the same as the result shown in
Eqg. (9). A quantum circuit for implementing the swap-test classifier
with the input data encoded as a product state is depicted in Fig. 4.

The entire quantum circuit can be implemented with Toffoli,
controlled-NOT, X and Hadamard gates with additional qubits for
applying multi-qubit controlled operations. Here we assume that
the gate cost is dominated by Toffoli and controlled-NOT gates and
focus on counting them using the gate decomposition given in
ref. 3°. Note that a Toffoli gate can be further decomposed to one
and two-qubit gates with six controlled-NOT gates. In total, n(M +
2)[log,(N)] + 2[log ,(M)] +M + 1 qubits, n(M+ 1)[log,(N)] +
M(2[log ,(M)] — 1) Toffoli gates, and 2(n(M + 1)[log,(N)] + M)
controlled-NOT gates are needed. More details on the qubit and
gate count can be found in Supplementary Note Il. Due to the
linear dependence on M and logarithmic dependence on N in the
number of gates and qubits, we expect our algorithm to be
practically useful for machine-learning problems that involve a
small number of training data but large feature space. As an
example, for n =1, the number of qubits, Toffoli and controlled-
NOT gates needed for 16 training data with eight features are 79,
163 and 134. For 16 training data with 16 features, these numbers
increase to 97, 180, and 168. For 32 training data with eight
features, these numbers become 145, 387 and 262. These numbers
suggest that a quantum device with an order of 100 qubits and
with an error rate of a Toffoli or a controlled-NOT gate to an
arbitrary set of qubits being less than about 10> can implement
interesting quantum binary classification tasks. Due to the
aforementioned robustness to some errors that effectively appear
on the final state, we expect the requirement on the gate fidelity to
be relaxed. To our best knowledge, currently available quantum
devices do not satisfy the above technical requirement.
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Nevertheless, with an encouragingly fast pace of improvement in
quantum hardware®'??, we expect interesting machine-learning
tasks can be performed using our algorithm in the near future.

The connection to the Helstrom measurement

The swap-test classifier turns out to be an adaptation of the
measurement of a Helstrom operator, which leads to the optimal
detection strategy for deciding which of two density operators p,
or p; describes a system. The quantum kernel shown in Eq. (9) is
equivalent to measuring the expectation value of an observable,

A= D7 W) Ok )" =3 W i) ()", (16)

mly,=0 mly,=1
on n copies of |X). This can be easily verified as follows:
(A) = tr(Ax) (x*")

M
=t Z (=1 Wi (%) (X | - [3) (X]) "
m
M
Z (=1 W (X[ ) [*". (17)
=1

The above observable can also be written as a Helstrom operator
PoPo — P1P1, Where p; represents a hypothesis under a test with
the prior probability p; in the context of quantum state
discrimination, by defining p; = Zm‘ymz,—(wm/p,-)\xm>(xm\®",
where Zm‘y _Wm/p; =1 and py+ p1 = 1. In this case, measuring

the expectation value of A is equivalent to measuring the
expectation value of a Helstrom operator with respect to the test
data. The ability to implement the swap-test classifier without
knowing the training data via quantum forking leads to a
remarkable result that the measurement of a Helstrom operator
can also be performed without a priori information of target
states.

Experimental and simulation results

To demonstrate the proof-of-principle, we applied the swap-test
classifier to solve the toy problem of Eq. (11) using the IBM Q 5
Ourense (ibmg ourense)'® quantum processor. Since n=1 in
this example, five superconducting qubits are used in the
quantum circuit. The number of elementary quantum gates
required for realizing the example classification is 27: 14 single-
qubit gates and 13 controlled-NOT gates (see Supplementary Fig.
6), which is small enough for currently available noisy-
intermediate scale quantum (NISQ) devices.

The experimental results®® are presented with triangle symbols,
and compared to the theoretical values indicated by solid and
dotted lines in Fig. 5. Albeit having an amplitude reduction of a
factor of about 0.65 and a small phase shift in 6 of about 2°, the
experimental result qualitatively agrees well with the theory. We
performed simulations of the experiment using the IBM quantum
information science kit (qiskit)** with realistic device para-
meters and a noise model in which single- and two-qubit
depolarizing noise, thermal relaxation errors, and measurement
errors are taken into account. The noise model provided by
giskit is detailed in Supplementary Note lll. The relevant
parameters used in simulations are typical data for ibmg our-
ense, and are listed in Supplementary Table I. The simulation
results are shown as blue squares in Fig. 5 and we find amplitude
reduction of a factor of about 0.82 with a negligible phase shift.
The difference between simulation and experimental results can
be attributed to time-dependent noise, various cross-talk effects>”
and non-Markovian noise.

Despite imperfections, the experiment demonstrates that the
swap-test classifier predicts the correct class for most of the input
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Fig. 5 Classification of the toy problem outlined in Eqgs. (11) and
(12) for various test data parametrized by 6. The test data are
classified as 0 (1) if the expectation value, (o, ol oz)>, is positive
(negative). The experimental result (red triangles) is compared to
simulation with a noise model relevant to currently available
quantum devices (blue squares) and to the theoretical values
(black line).

X (about 97% of the points sampled in this experiment) in this toy
problem. Supplementary information reports experimental and
simulation results obtained from various cloud quantum compu-
ters provided by IBM, repeated several times over months. In
summary, all results agree qualitatively well with the theory and
manifest successful classification with high probabilities.

DISCUSSION

We presented a quantum algorithm for constructing a kernelized
binary classifier with a quantum circuit as a weighted power sum
of the quantum state fidelity of training and test data. The
underlying idea of the classifier is to perform a swap-test on a
quantum state that encodes data in a specific form. The quantum
data subject to classification can be intrinsically quantum or
classical information that is transformed to a quantum feature
space. We also proposed a two-qubit measurement scheme for
the classifier to avoid the classical pre-processing of data, which is
necessary for the method proposed in ref. '°. Since our
measurement uses the expectation value of a two-qubit
observable for classification, it opens up a possibility to apply
error mitigation techniques®**” to improve the accuracy in the
presence of noise without relying on quantum error correcting
codes. We also showed an implementation of the swap-test
classifier with training and test data encoded in separate registers
as a product state by using the idea of quantum forking. This
approach bypasses the requirement of the specific state prepara-
tion and the prior knowledge of data at the cost of increasing the
number of qubits linearly with the size of the data. The downside
of this approach, which may limit its applicability, is the use of
many qubits which must be able to interact with each other. The
exponential function of the fidelity approaches to the Dirac delta
function as the number of data copies, and hence the exponent,
increases to a large number. In this limit, the test data are assigned
to a class, which contains a greater number of training data that is
identical to the test data. An intriguing question that stems from
this observation is whether such behaviour of the classifier with
respect to the number of copies of quantum information is related
to a consequence of the classical limit of quantum mechanics.
Our results are imperative for applications of quantum feature
maps such as those discussed in refs. #°. In this setting, data will
be mapped into the Hilbert space of a quantum system, i.e.
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test data

Fig. 6 Toy problem quantum circuit implementation. The circuit
implementing the swap-test classifier on the example dataset given
in Eq. (11).

®: RY — H. Then our classifier can be applied to construct a
feature vector kernel as [(®(%)|®(xn))[*" := K(X,Xn). Given the
broad applicability of kernel methods in machine learning, the
swap-test classifier developed in this work paves the way for
further developments of quantum machine-learning protocols
that outperform existing methods. While the Hadamard classifier
developed in ref. ' also has the ability to mimic the classical
kernel efficiently, only the real part of quantum states are
considered. This may limit the full exploitation of the Hilbert
space as the feature space. Furthermore, quantum feature maps
are suggested as a candidate for demonstrating the quantum
advantage over classical counterparts. It is conjectured that
kernels of certain quantum feature maps are hard to estimate
up to a polynomial error classically®. If this is true, then the ability
to construct a quantum kernel via quantum forking and the swap-
test can be a valuable tool for solving classically hard machine-
learning problems.

We also showed that the swap-test classification is equivalent to
measuring the expectation value of a Helstrom operator.
According to the construction of the swap-test classifier based
on quantum forking, this measurement can be performed without
knowing the target states under hypothesis in the original state
discrimination problem by Helstrom'®. The derivation of the
measurement of a Helstrom operator from the swap-test classifier
motivates future work to find the fundamental connection
between the kernel-based quantum supervised machine learning
and the well-known Helstrom measurement for quantum state
discrimination. Another interesting open problem is whether the
Helstrom measurement is also the optimal strategy for classifica-
tion problems.

During the preparation of this manuscript, we became aware of
the independent work by Sergoli et al.'’, in which a quantum-
inspired classical binary classifier motivated by the Helstrom
measurement was introduced and was verified to solve a number
of standard problems with promising accuracy. They also
independently found an effect of using copies of the data and
reported an improved classification performance by doing so. This
again advocates the potential impact of the swap-test classifier
with a kernel based on the power summation of quantum state
fidelities for machine-learning problems.

Other future works include the extension of our results to
constructing other types of kernels, the application to quantum
support vector machines'®, and designing a protocol to enhance
the classification by utilizing non-uniform weights in the kernel.

METHODS

The quantum circuit implementing the problem of Eq. (11) is shown by Fig. 6
where a denotes the angle to prepare the index qubit to accommodate the
weights w; and w,, and 6 is the parameter of the test datum. The experiment
applied 6 from 0 to 2m in increments of 0.1. The experiment for each 6 is
executed with 8129 shots to collect measurement statistics. All experiments
are performed using a publicly available IBM quantum device consisting of
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five superconducting qubits, and we used the IBM quantum information
science kit (qiskit) framework®® for circuit design and processing.

Superconducting quantum computing devices that are currently
available via the cloud service, such as those used in this work, have
limited coupling between qubits. The challenge of rewriting the quantum
circuit to match device constraints can be easily addressed for a small
number of qubits and gates. The quantum circuit layout with physical
qubits of the device is shown in Supplementary information. A minor
challenge to be addressed is that each quantum operation of an algorithm
must be decomposed into native gates that can be realized with the IBM
guantum device. This step is done by the pre-processing library of
giskit. The final circuit that is executed on the device consists of 14
single-qubit gates and 13 controlled-NOT gates and is shown in
Supplementary Fig. 6. The measurement statistics are gathered by repeating
the two-qubit projective measurement in the o, basis. The expectation value
is calculated by (o@oﬁ”) = #(Coo — Co1 — C10 + C11), Where ¢, denotes
the count of measurement when the ancilla is a and the label is /.

The noise model that we use for classical simulation of the experiment is
provided as the basic model in giskit and is explained in detail in
Supplementary information. In brief, the device calibration data and
parameters, such as T; and T, relaxation times, qubit frequencies, average
gate error rate, read-out error rate, have been extracted from the API for
ibmg ourense with the calibration date 2019-09-29 11:48:14 UTC. The
simulation also requires the gate times, which can be extracted from the
device data. As mentioned above, the basic error model does not include
various cross-talk effects, drift and non-Markovian noise. Supplementary
information details how the device data and parameters are used in the
simulation, and lists the values.

The versions—as defined by PyPi version numbers—we used for this
work were 0.7.0-0.10.0.
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