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Chapter

Introduction

Conserved quantities are quantities that remain constant during the evolution of a physical system.
They are central in this thesis. Conserved quantities form the defining feature of the systems studied, the
integrable models, and are precisely used in the techniques we develop here to solve these models, the
quantum separation of variables.

It has been a very long and difficult progress to understand there were invariants in the physical
processes of Nature, and that these conserved quantities were essential tools in their description. Humans
have proved to have a very developed ability to identify constant and recurring features in their changing
surroundings. This immutable traits and periodic events allow for predictions, giving humans some
control over nature, some sense of mastery or a first form of knowledge.

Astronomy was a universal practice among the antique civilizations. They identified that stars appear
fixed on a celestial sphere, organized in everlasting constellations, slowly rotating during the year around
the fixed Pole Star in Ursa Minor. Periodic astronomical events, from the sunset to solstices, played a key
role in lives of ancient men, from agricultural planning to religious life. There has been strong motivation
to find an explanation for those. At first, scientific and religious arguments mixed up in the proposed
explanations. Gods of ancients Greeks and Romans manifest in the sky as the planets, who move freely in
the cosmos because of their divine status. Yet, some are entitled to constant behaviors, such as Helios
driving his chariot every day, or Atlas lifting the Earth still in the cosmos for eternity.

Later, the schism between science and religion became more and more inevitable. With the emergence
of physics as the science of the behavior of material reality, the search for constant values and conservation
laws in physical processes guided the experimental and theoretical approaches. We will illustrate this
with the slow elaboration of the concepts of momentum, angular momentum and energy. That led to the
foundation of modern physics.

There was already some intuition of a conserved quantity when studying the transmission of motion,
from one objects to another, which later led to the concept of inertia, and the conservation of momentum.
Galileo observed the velocity of a body do not vary in the absence of an exterior force [1, 2], and put an
end to centuries of Aristotelian understating of motion, according to which constant velocity requires a
continuous propelling. With some metaphysical justification, Descartes therefore wrote that God, through
the law of natures he prescribed, “‘conserve maintenant en I'Univers, par son concours ordinaire, autant
de mouvement et de repos qu’il y en a mis en le créant. [... ] une certaine quantité qui n’augmente ni
ne diminue jamais, encore qu’il y en ait tantot plus et tant6t moins en quelques-unes de ses parties.””
([3], article 36) While disciples of Galileo formulated many statements on the idea of the conservation of
movement [4], it is Newton who stated first the modern form of the principle of inertia in its Philosophiz
Naturalis Principia Mathematica: “Every body perseveres in its state, of rest or of uniform motion in a right
line, unless it is compelled to change that state by forces impressed thereon” [5]. The conservation of
the total vectorial momentum Y, m;V; was then recognized by Huygens in isolated systems [6]: despite
internal interactions in the system which reallocate momentum from parts to parts, the whole exhibits an
invariant quantity, a conserved total momentum.

The study of the motion of planets in the solar systems also led very early to the identification of
fundamental conservation laws of mechanics. Danish astronomer Tycho Brahe gathered a large amount of

7



8 Chapter 1 — Introduction

precise observational data. They allowed his assistant Johannes Kepler to later state in the 1610s his three
laws of planetary motion in the solar system [7, 8]. The second law notably states the steadiness of the
areal velocity along the orbit of planets around the sun. This conservation of the areal velocity in planetary
motion is an early understanding of conservation of the angular momentum, the rotational equivalent
of (linear) momentum. If Bernoulli already talked of a “moment of rotational motion” [9] in 1744, the
work of Poinsot may be considered as a real understanding of this object [ 10]; he represented rotations
as a line segment perpendicular to the rotation place and introduced the concept of “conservation of
moments” in his Mémoires sur la composition des moments et des aires [11].

During his experiments on elastic shocks, Huygens observed the conservation of the scalar quantity
> m;V? [6]. It enabled the concept of the conservation of vis viva (lively force) by Leibniz [12], aside of
the inertia principle, which then led to the concept of energy in mechanics and its conservation. The first
well-formed idea of energy emerged from the study of mechanical systems as the one of kinetic energy.
Indeed, Lagrange proved in his Mécanique analytique [13] the vis viva theorem, which is better known as
the theorem of kinetic energy today: during a non-dissipative process, the work received by each mass
point of mass m and velocity ¥ is equal to half the increase in its lively force mv?. Isolated systems therefore
show constant energy over time, and energy joined momentum and angular momentum as a first class
concept of mechanics. In its celebrated translation of Newton’s Principia Mathematica, Emilie du Chatelet,
with great knowledge of both Newton’s and Leibniz’s scientific works, also postulated the existence of
a law of a conservation of a total energy, of which the kinetic one mv? is just a possible form [14]. It
remained to understand that conservative forces are derived from potential functions of the position
variables, and that their work identifies with the decrease of this function along the trajectory of the
motion. This function was named potential energy by Rankine [15], and it was then possible to recognize
the sum of the kinetic and potential energies as a conserved quantity called the mechanical energy. While
mechanics was the first field to grasp the concept, the considerable developments of thermodynamic,
started as the field of physics devoted to heat and its propagation, would put energy at the center of the
stage.

Conversion of heat into mechanical work was made possible by the heat machines, invented by
Newcomen and Savery and perfected by Watt [ 16]. This propelled humanity in a new paradigm, just like
science. Careful studies by Carnot [17] on the engine cycles of these machines contributed greatly to the
early developments of thermodynamics and most importantly to the discovery of its famous second law.

Thermodynamic highlighted the equivalence between the quantity of heat produced and the amount
of work given to the machine. It allowed to consider these quantities as two forms of the same under-
lying entity, the energy. The experiments of Joule in the 1840s were decisive [ 18] in the proof of this
correspondence. In these experiments, a falling mass induces the rotation of a paddle wheel immersed in
the water of a calorimeter, whose temperature is observed to increase. It gave a clear demonstration of
the conversion of potential energy in heat. This idea is also found in the works of von Mayer [19] on the
human metabolism and photosynthesis, enlarging the circle of possible energy form to food and light.

These observations were encapsulated formally with the full statement of the first principle of
thermodynamic, which came in 1850 from Clausius [20]: “In all cases in which work is produced by the
agency of heat, a quantity of heat is consumed which is proportional to the work done; and conversely,
by the expenditure of an equal quantity of work an equal quantity of heat is produced.” [20]. He also
introduces, necessarily, the internal energy function: “In a thermodynamic process involving a closed
system, the increment in the internal energy is equal to the difference between the heat accumulated by
the system and the work done by it.” [20]

In parallel, the kinetic theory of gases developed and was formalized by Maxwell [21, 22] and
Boltzmann [23]. This progress allowed to interpret the macroscopic internal energy of a material as the
sum of the mechanical microscopic energies of its constituents, namely the sum of their kinetic energy and
the potential energy of their interactions. It enabled the understanding that non-conservative mechanical
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processes were in fact conservative when one accounts for the possibility of microscopic degrees of
freedom to bear mechanical energy, whose macroscopic expression is heat. Energy is therefore not lost in
non-conservative mechanical processes, but rather dissipated among the constituent of materials.

As we can see, energy has been a very difficult concept to grasp. Quite early, it has been identified as
a universal scalar quantity that is invariant during the conservative evolution of the system at hand. But
because it can take many forms, it has been very easy to lose track of some parts when computing the
balance along the evolution of a system. All along the history of modern science, the energy has been
found conserved, except in some experimental settings showing it was not in non-conservative settings,
only to be found conserved again when accounting for hidden degrees of freedom, novel forms of energy
and new ways to exchange it.

Feynman has, as always, a clever analogy to introduce energy to students in its Physics Lectures [24];
the one of a newborn playing with 28 indestructible blocks. No matter what he does with the blocks,
his mother always finds a quantity to be computed that equals to 28: weighting a box, calculating the
displacement of the level of water, or accounting for the presence of visitors bringing or grabbing some
blocks. It is not the concept of blocks that matter here, as it’s rather misleading for the classical meaning
of energy (though it is more accurate in the quantum point of view). It is really the idea that a quantity
remains equal to the same amount while being distributed in a system in very diverse ways, which a
priori are very distinguishable objects, systems, concepts. In other words, a conserved quantity may be
scattered in different forms and in different parts of a system, but its collected sum is a constant over
time. This idea of a unified energy quantity was introduced in all generality by von Helmoltz in 1847 in
his book On the conservation of Force' [25]. He postulated an underlying relationship between mechanics,
heat, light, electricity and magnetism by treating them as manifestations of a single energy, unifying
concepts from very diverse areas of physics.

As of today, modern science has identified energy under numerous forms: kinetic energy, potential
energy deriving from a force field, electrical energy disposable from a difference of charge density,
chemical energy bore by the various types of chemicals bonds, nuclear energy contained inside the
nucleus and releasable by the fission and fusion processes, etc. Energy is exchanged between its different
forms by various processes: contact mechanical interactions, thermal exchange, motion of massive
or charged bodies trough space, radiation of light, excitation by electrical and magnetic fields, etc.
Thanks to the modern developments on gravity, massive matter was found to also be a form of energy,
which is encompassed by the celebrated E = mc? equation of Einstein’s general relativity [26-28]. This
equivalence is best illustrated by the disintegration of radioactive elements for example, where part of
the mass “evaporates” in an electromagnetic radiation [29]. Numerous experiments have verified it, from
the simple idea of “weighing photons” in a varying gravitational field [30], to modern and accurate
measurements of atomic-mass difference compared to the wavelength of atoms spectra [31]. Or even
more strikingly, but tragically, by explosions of atomic bombs. In the end, all these different form of energy
and exchange processes have been unified as manifestations in different contexts and space scales of the
four fundamental interactions that are the electromagnetic, weak, strong and gravitational interactions,
which are mediated by their own gauge bosons [32, 33]. But depending on the context, some forms of
energy and energy transfers are more suited to the description of the physical processes.

The conservation of energy for an isolated system is a foundational concept of physics that is shown
satisfied in any experiments, from astrophysics to nuclear physics scale, in relativistic regimes, or quantum
processes. In fact, one could say most of the research efforts in modern physics were made in the way of
identifying quantities that can be conserved under certain conditions, the ways they change when they
are not, and how they are exchanged between systems.

Conserved quantities are defining traits of a physical system and therefore are of great usefulness in

'Here the word "force" has to be understood as the proto concept of energy.



10 Chapter 1 — Introduction

the study of their evolution. Indeed, conservation of a quantity during the system’s evolution may be
viewed as a constraint that has to be satisfied, limiting the size of the available phase space.

This can be illustrated with the Kepler problem. Consider two mass points in interaction by a central
force deriving from a potential in 1/r. It is well known this can be reduced to the study of an equivalent
one-body problem, so that the system really as 6 dynamical variables, the components of the position
and momentum vectors, with unknown dynamics one wants to compute. The conservation of the angular
momentum (vector) enforces the flatness of the motion, reducing this number to 4 and already producing
a great simplification in the description of the possible trajectories, and the possibility to use polar
coordinates in place of spherical ones. Using the other conserved quantities, it is a classic exercise to
compute the time evolution of the system in terms of quadrature by computing the first integrals [34].
All the parameters defining the orbit are expressed in terms of the conserved quantities of the Kepler
problem, their exact values being determined by the initial conditions.

Note that one can exhibit additional conserved quantities, such as the Laplace-Runge-Lenz vector [34,
35], which can be leveraged in other methods of resolution to obtain information on the trajectory,
or perform perturbative calculation around the 1/r potential as it is done for the computation of the
precession of Mercure’s perihelion [36].

The central role played by conserved quantities is better understood in the Hamiltonian formalism of
classical mechanics [34, 37]. There, the configuration of a mechanical system is given by the knowledge
of n generalized coordinates q;, specifying a point on the n-dimensional real manifold configuration space.
The additional knowledge of the conjugated momenta p; complete the description of the mechanical
system’s state, and specifies a point on the phase space M. The phase space is a 2n-dimensional symplectic
manifold, with canonical Poisson brackets between the canonical variables (g;, p;). The time evolution
of the canonical variables is given by the flow of the Hamiltonian function H : M — R, which gives the
Hamilton equations of the motion

dg; OJH dp; JH

e 1 2= =22
viellnl, 37 =% @ = g

In this picture, conserved quantities are functions F; of the dynamical variables (g;, p;) whose image
remains constant along the physical trajectory in the phase space. In general,

dF; OF;

j j

—2=—L4{F, H},

dt Jt {F;,H}
but looking among the functions that do not depend explicitly on time, conserved quantities are functions
in involution with the Hamiltonian

dF;
T {F,H}=0.

The numerical fixed values of conserved quantities—fixed by the initial values of the constants of
the motion—therefore defines the level submanifold of the phase space, i.e. the subspace fixed by the
equations F;(m) = f; = cste € R for m € M on which the physical motion is constrained. Each additional
independent conserved quantity identified thus simplifies further the resolution of the equations of the
motion by narrowing down the portion of the phase space reachable during the motion. Great efforts are
thus made to identify the conserved quantities systematically, and, if possible, from first principles.

The role of symmetries is central in this search. Any symmetries of the Hamiltonian is indeed associated
to a conserved quantity. The most obvious ones are cyclic coordinates, namely coordinates that do not
appear explicitly in the Hamiltonian—which is thus invariant under translations along these coordinates.
The conjugated momenta of cyclic coordinates are seen conserved easily by the Hamilton equations, and
are therefore conserved quantities. The powerful Noether’s theorem clarify the picture in the case of
continuous system: for every differentiable symmetry of a conservative system, there is a corresponding
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conservation law [38]. From this point of view, invariance under space translations corresponds to
conservation of momentum, invariance under space rotations corresponds to conservation of angular
momentum, and time invariance is associated with the conservation energy.

Symmetries in physics are best understood using groups and their representations [39-44]. For
differential symmetries involving Lie groups, it is often beneficial to consider the corresponding Lie
algebra [45, 46]. The study of the underlying symmetry group or algebra, and their representations on
the space of physical states, is a mandatory step to identify conserved quantities in a systematic way.

o+
®

The possibility to exactly solve analytically and in closed form the equations of motion of mechanical
systems is very appealing. An obvious reason is that exact formulas of the evolution of a system should
contain all the results a physicist is looking for. Moreover, while numerical calculations or computer
simulations are more and more common, the computational cost remains prohibitive for many systems,
despite their simplicity. Besides, a system may not be exactly solvable in general, but actually is for some
specific values of its parameters. Perturbation theory can then be applied to obtained substantial results
in the vicinity of these solvable points in the parameter space.

The importance of conserved quantities in exact methods has been acknowledged with the concept of
integrable system. Integrability is the notion of total and exact solvability made possible by the presence of
enough conserved quantities, and the different methods to obtain the closed form solutions. Concerning
Hamiltonian systems, there exists a precise definition of this concept called Liouville integrability [47].
For a phase space of dimension 2n, a system is Liouville integrable if there exists a set of n independent
Poisson commuting conserved quantities. This property ensures that the system is solvable in closed form,
thanks to the Liouville-Arnol’d theorem [48]*. For Liouville integrable systems, it states the existence of
canonical coordinates whose conjugated momenta are constants of the motion, so that the time evolution
of the system in these canonical coordinates is obtained by trivial independent integrations. Rearranging
the conserved quantities properly, the canonical action—angle variables are obtained from the canonical
coordinates aforementioned, and in the compact case proved to be the adapted coordinates for the
topology of the level submanifold of integrable systems: it is diffeomorphic to a n-dimensional torus [37,
48, 49]. This produces a foliation of the phase space by n-tori parametrized by the value of the conserved
quantities.

The identification and construction of conserved quantities remains a difficult problem in general,
as the symmetries of the Hamiltonian may be convoluted or not obvious. As we shall see, the Lax
formalism [50] provides a framework to describe mechanical systems such that conserved quantities are
easily obtained.

With great success in the study of mechanical systems with a finite number of degrees of freedom,
the search for exact methods and an extension of the notion of integrability continued in close areas
of physics. Two categories of system had a particularly lively developments of the integrability ideas:
continuous systems, such as hydrodynamics or classical field theory, and statistical models on lattices.

In mechanics of continuous systems, the Korteweg—de Vries (KdV) equation introduced by Boussi-
nesq [51, 52], which aims to describe waves in shallow waters, is a prototypical example of an exactly
solvable model. It provided a satisfactory explanation of an intriguing phenomenon observed by Scott
Russel [53]: the solitary wave. The KdV equation admits soliton solutions, which are waves with an
invariant shape and constant velocity. The interaction of two solitons is reduced to a temporal shift in
their propagation while shapes remain invariant. Infinitely many conserved quantities are associated to
this conservation of the shape and velocity, and were identified in the works of Gardner, Green, Kruskal

2Some discussion over the topology of the phase space are also necessary.
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and Miura [54] and Lax [50]. The Lax formalism proved especially useful in the study of integrable
models. Its idea is to repack the equations of the motion in the form of a matrix commutator with the
help of two matrices (L, V), the Lax pair, over an auxiliary space V:

dL

One of them, the Lax matrix L, then contains conserved quantities as its spectral invariants
. d k
Vke[0,dimV], — tr(LK) = 0.

The Lax pair framework was later extended to the continuous case by Zakharov and Shabat [55, 56] in
the form of a zero-curvature equation between two differential operators generalizing the Lax pair of
matrices. The possibility to study an auxiliary problem in the form of a linear system

9,9 =A,p with F,,=[d,—A,,3,—A,]=0

rather than the equation of evolution of the field itself led to the development of the Classical Inverse
Scattering Method (CISM). Faddeev and Zakharov gave a Hamiltonian interpretation of this scheme [57].
The solution ¢ (x, t) of the auxiliary problem on the real line R, and its associated scattering data,
have relatively simple evolution equations, which allows constructing from them classical field theory
equivalents of the action-angle variables. Obtaining the initial fields from the scattering data is called the
inverse problem, and its resolution solve the dynamics and give solutions to the equations of motion.
Methods to do so were developed by Gel’fand, Levitan and Marchenko [58, 59], among other ideas such
as the reduction to a Riemann-Hilbert problem [49, 60, 61] and algebraic factorization methods [49].
This enabled the study of other classical field theory systems as the classical sine-Gordon equation [60] or
the non-linear Schrodinger equation [55] for example. In general, solitons solutions have been extensively
studied in classical and then quantum field theories [62, 63].

Another category of models that played an important role in the development of modern integrability
is the one of statistical models on lattices. These models aim to provide a microscopic explanation
to statistical physics phenomena like phase transition, for example the ferromagnetic-paramagnetic
transition of iron. A well known one is the Ising model, introduced by Lenz and solved exactly in the
one-dimensional case by its student Ising [64, 65]. In one dimension, it does not exhibit any phase
transition. This was a disappointing result, and motivated Heisenberg to propose a quantum version
in one dimension, as we shall see soon. The two-dimensional classical Ising model on the rectangular
lattice proved to be a much more difficult problem, and was exactly solved by Onsager and Kaufman
in the 1940s [66-68], who showed this time there was a phase transition in the two-dimensional case.
The resolution, using the Onsager and Clifford algebra, is prototypical to the current philosophy behind
integrability: embedding the system in a rich algebraic structure that provides the tools for its resolution.

In the meantime, the quantum theory has been developed, and a quantum version of the one-
dimensional Ising model was introduced by Heisenberg, with the hope to exhibit phase transition,
contrary to the classical one-dimensional model: the Heisenberg XXX spin chain [69]. It consists in a
chain of usual quantum 1/2-spins, interacting with their two nearest neighbors in an isotropic manner.
Bethe obtained the spectrum of the Hamiltonian for periodic boundary condition in 1931 [70], with
a method that now bears his name: the coordinate Bethe Ansatz (CBA). The main idea of the CBA is
to write an ansatz (a trial answer) for the eigenstates as a sum of planes waves. By enforcing that it
is an eigenstate, the Bethe equations on the rapidities of the plane waves are obtained. The works of
Orbach [71] and Walker [72] allowed to apply this ansatz to generalizations of the Heisenberg model,
like the XXZ chain, where an anisotropy in the interaction between spins is introduced in one direction.
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The energy of the fundamental state of this model was computed by Yang and Yang [73-75], which
exhibited the link with the vertex models found in statistical physics imagined originally to describe the
microscopic configurations of ice crystals [76-79].

The study of lattice models owes a lot to the works of Baxter. He introduced a new approach relying
on the Q operator and a “Baxter equation” for 6-vertex and 8-vertex models [80]. This proved especially
powerful for the 8-vertex models, leading to new results [81-83]. The 8-vertex model contains the
6-vertex model and the Ising model as particular case, so that this method was thought very general.
Baxter also produced key exact results for the eight-vertex model [80, 81, 84], such as the computation
of the partition function. He showed that the transfer matrices form a one-parameter commuting family,
thanks to the existence of relations for the Boltzmann weights [80, 85]. These results were derived from
the star-triangle relations obtained for the 8-vertex weights and their matrix rewriting. The same type of
equations were obtained by Yang in the context of factorizable scattering processes [86]. These equations
now goes under the celebrated name of the Yang—Baxter equation, as named by Faddeev and collaborators,
and write

Ri12(u, v)R13(u, w)R33(v,w) = Ry (v, w)Ry3(u, w)R1o(u, v).

The R-matrix R(u, v) is interpreted as the matrix gathering the Boltzmann weights of a 2D lattice vertex
model, or, as found by C. N. Yang, are related to the two-body S-matrix for a factorizable scattering of
quantum particles moving on the real line, with rapidities u and v [87, 88]. The associated Yang-Baxter
algebra is generated by the elements M;;(u) of a monodromy matrix M (u), with relations

Ryo(u, vIM; (u)My(v) = My(v)M; (u)R15(u, v),

where M;(u) = M(u)® 1, My(u) = 1 ® M(u). The quantum R-matrix intertwines two copies of the same
monodromy operators. The trace of the monodromy matrix gives the transfer matrix

T(u) = tr M(u).

The commutativity of the family of transfer matrices (T (u)),, is given by the Yang—Baxter algebra relations,
provided R(u) is invertible. If the Hamiltonian is found to be a function of these matrices, then one gets a
whole family of conserved quantities of the system at hand.

The knowledge of conserved charges is not sufficient to claim integrability. For a classical system, as
we said above, it is also necessary to prove there are in sufficient number, independent and in involution
to claim that the system is Liouville integrable. To do so, one need to compute systematically the Poisson
brackets between the entries of the Lax matrix. Just like the R-matrix gave the commutators between
the entries of the monodromy; is it possible to pack the Poisson brackets of the Lax matrix entries in a
compact, similar form? Remarkably, these Poisson brackets can be written in a commutator with the help
of a classical r-matrix [49, 89-91], for example

{L1(w), Ly(v)} = [r12(w, v), Ly (w) + Ly(v)].

Historically, this object was identified after its quantum counterpart, the R-matrix introduced above, and
the classical limit of the quantum R-matrix indeed gives a classical r-matrix.

Using techniques derived from the CBA, Lieb and Liniger computed the energies of a one-dimensional
gas of bosons in delta interaction, corresponding to a non-linear quantum Schrédinger equation [92, 93].
On the other hand, solutions of the non-linear (classical) Schrédinger equation were obtained, thanks the
CISM [54]. This raised the question of the existence of a quantum version of the CISM method, which
was elucidated with the developments of the Quantum Inverse Scattering Method (QISM) [90, 94-97].
The main idea is the construction of a monodromy matrix for the problem from quantum local Lax
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operators, whose elements are auxiliary operators and quantum counterparts to the scattering data in the
CISM. As described above, a R-matrix solution to the Yang-Baxter equation prescribes the commutators
between the entries of the monodromy matrix, forming a Yang-Baxter algebra. Conserved quantities
are then obtained from the family of the transfer matrices. Besides, the Yang-Baxter algebra can also
be leverage to reconstruct the eigenstates of the conserved quantities. Indeed, the QISM serves as the
privileged framework for the definition of an algebraic version of the CBA, the Algebraic Bethe Ansatz
(ABA) [95, 98, 99]. For a review, see [ 100]. The core idea of the ABA is that the off-diagonal elements
of the monodromy matrix somehow contain creation and annihilation operators for the eigenstates of
the trace. The idea stem from the CISM, where these off-diagonal elements contain the action-angle
variables. Hence, the repeated action of an operator B(u) constructed from the off-diagonal elements
over a well-chosen reference state |0) should therefore produce an eigenstate of the form

B(uy)...B(up)|0),

under conditions on the values of the spectral parameters u;, ..., u,,, which are eventually written as the
Bethe equations. The joint development of QISM and the ABA allowed numerous results in quantum
integrable models, such as the quantum sine-Gordon model [95], the massive Thirring model [101] and
the quantum Heisenberg chains [102, 103]. We shall focus heavily on the history of the later models,
usually referred to as “spin chains”. The monograph [99] by Bogoliubov, Izergin and Korepin describe the
formalism of QISM and ABA, as well as many results obtained by these techniques.

The computation of the monodromy and transfer matrices from local Lax matrices amounts to the
“direct” problem of quantum integrability. The actual inverse problem is the computation of the dynamical
variables, say the local spin operators for a spin chain, in terms of the monodromy matrix elements,
namely the diffusion data. The effective resolution of the inverse problem was achieved only around
the year 2000, when Kitanine, Maillet and Terras [ 104—106] obtained explicit expression of the local
operators in terms of the monodromy matrix elements. Their results were extended by Gohmann and
Korepin to the supersymmetric case [107].

These developments on the quantum side had great repercussions on the theory of classical integrable
models. Sklyanin realized that the R-matrix, the Yang-Baxter equation and the Yang-Baxter algebras had
classical counterparts, which could be obtained as a classical limits of the quantum objects [89]. This led
to a program of classification of the classical integrable models by their Yang-Baxter algebra, using Lie
algebra theory [108-110]. The monograph of Bernard, Babelon and Talon [49] is a modern account of
the progress in this field during the last decades of the 20" century.

Similarly, great efforts were made to construct and classify the solutions of the quantum Yang—Baxter
equation. The works of the Kulish and Reshetikhin [111-113], Jimbo [114] and Drinfel’d [115] led to
the discovery of quantum groups, which may be introduced as deformed universal enveloping algebras of
Lie algebras and Lie groups, replacing the role played by Lie algebras in the classical case. The R-matrices
already identified were found to be representations of a universal object, the universal R-matrix, and
quantum integrable models were shown to be representations of these quantum groups. This opened a
new field of research in mathematics, the study of quantum algebras [116-118]. The tools of integrability
also proved useful for the computation of invariants in knot theory and invariants of 3-dimensional
manifolds [119-121]. This makes integrable models a nice example of the deep interleaving between
mathematics and physics, one being inspired by the other and conversely.

The underlying symmetries of quantum one-dimensional spin chains have been identified, depending
on the anisotropy of the coupling, to be prescribed by Yangians % (gl(n)), quantum affine algebras
Uq(gl(n)), and related algebras [117]. As the classification of quantum integrable models developed, the
study of higher rank models gained weight. The Heisenberg XXX chain is associated to the fundamental
representation of the Yangian #(gl(2)) of the gl(2) Lie algebra, in link with the simple Lie algebra
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A; = s5l(2), of rank 1. Keeping the Lie algebra in the same series, higher rank models are associated
to the Yangian % (gl(n)), with n > 3. The ABA proved to be useful for these models, leading to the
development of a Nested version of the Algebraic Bethe Ansatz (NABA) [122, 123], where creation
operators acting over a reference state have a non-trivial expression in terms of the off-diagonal elements
of the monodromy matrix, and involve several levels of Bethe roots. The ABA techniques have also been
extended to the supersymmetric case of % (gl(m|n)) models [124-129].

For quantum integrable model on the lattice, a longstanding goal—solved for some models by now—is
the computation of the correlation functions between operators, which are quantities of the form

tr (O™ H/ksT))
tr%(e_H/kBT ) ?

where O is an observable over the Hilbert space S of the system, H is the Hamiltonian, T the temperature
and kg the Boltzmann constant. In the limit of zero temperature, and assuming there exists only one
fundamental state |f) of the lowest energy, correlation functions are reduced to a single matrix element,
the normalized expectation value of O in the fundamental state

{(floif)

(F1f)

Usually, in lattice models, one would like to compute the above quantity for local operators, or products
of local operators. A quantum integrable model on the lattice may be considered “solved” when it is
possible to compute such correlation functions exactly.

This first requires to compute the fundamental state |f). In the QISM and ABA framework, it is
written in the form of a Bethe state. If O is some monodromy matrix elements, its action on an on-shell
Bethe state may be computed in the form of a linear combination of off-shell Bethe states, thanks to the
Yang—Baxter relations and the choice of the reference state. This leaves the correlation functions as sums
of on-shell/off-shell scalar products, which for some models have been computed as determinants in the
works of Gaudin [130], Korepin [131] and Slavnov [132]. The action of a local operator on these states
is a priori not known, but the resolution of the quantum inverse problem allows writing local operators
in terms of the matrix elements of the monodromy. This enables the computation of correlation functions
by ABA procedure and the repacking of the final formulas into determinants [ 105]. In collaboration
with Slavnov, Kozlowski and Niccoli, many results stemmed from the first ones obtained on the XXZ
chain by Kitanine, Maillet and Terras, up to the computation of the thermodynamic limit of multiple
integral representations of correlation functions [105, 133-139]. The computation of the dynamical
structure factor with the help of Caux [140, 141] allowed to successfully compare the results from
integrability with the neutron scattering experiments [ 142, 143]. Important results were obtained in the
temperature dependent case by Gohmann, Kliimper and Suzuki [ 144-147], and also by Kozlowski, Maillet
and Slavnov [ 148, 149]. For the higher rank case, many results have been obtained by Ragoucy, Slavnov,
Beillard, Pakuliak and Lyashyk, allowing to express scalar products as determinants and computing
some form factors [ 129, 150-156]. Some of these results were obtained in great generality, holding for
supersymmetric models as well [127, 129, 157-162].

At this point it worths pointing out that the tools of integrability have been extensively used by the
AdS/CFT correspondence and super Yang-Mills communities to derive exact results in quantum field
theories using the lattice as a regularization [ 163-171]. This makes integrability a topic of formidable
interaction between various branches of physics and mathematics.

However, and despite its considerable successes, the algebraic Bethe Ansatz suffers from some
limitations. The first and most obvious one is that it is an ansatz; it is necessary to verify that all the
eigenstate of the model are obtained by the ABA procedure. This counting is called the problem of the
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completeness of the Bethe Ansatz, and is a non-trivial task. Various techniques have been employed [172-
174], and the recent work of Chernyak, Leurent and Volin [175] seems to give a new understanding of
the Bethe equations completeness problem.

Furthermore, the ABA needs a reference state to be performed. For some not-so-intricate systems,
such as the antiperiodic XXZ chain [176] or the Toda chain [177], such a state simply does not exist,
which makes the ABA fails from the very start.

Finally, the nesting procedure of the NABA in the higher rank case is quite heavy [ 129]. In particular,
it would be desirable to have a representation of the eigenstates simpler than the nested one. The
look for more compact representations found some success with the conjectures of Gromov, Levkovich—
Maslyuk and Sizov on the expression of a single B(u) operator in higher rank models that led to compact
representations of the eigenstates [178, 179].

Several variants of the ABA method were proposed to overcome these difficulties, such as the off-
diagonal Bethe Ansatz [180] or the modified Bethe Ansatz [181]. But ultimately, there is room for
another approach of integrable models, partly because of the aforementioned limitations of the Bethe
ansatz techniques, but also because the definition of quantum integrability remains unsatisfactory. The
subject of this thesis is the development of new techniques of separation of variables for higher rank and
supersymmetric quantum integrable models, with the goal of finding more simple representations of the
basic objects, like the transfer matrix spectrum characterization, representations of the eigenstates, scalar
products, and ultimately make the first steps towards correlation functions.

The first occurrence of separation of variables (SOV) may be attributed to d’Alembert in its Traité
de dynamique in 1758 [182, 183], and is found in the part dedicated to the study of the wave equation
that bears its name. It has been used extensively by Fourier during the 19 century to solve various
differential equation, especially the heat equation [ 184], so that it also referred to as the “Fourier method”
in english literature. Consider the d’Alembert wave equation

o154
dx2 c20t2

With the coordinates change

_Ptgq
{pzx—ct =
@ —
g=x+ct p=4 p’
2c
the wave equation is rewritten
d%u —0
9q0p

Clearly the coordinates (p, q) are more adapted to describe the motion: solutions to the above equations
are easily computed to be of the form

u(x, t) = f(p(x,t)) +g(qlx, £)) = f(x —ct) + g(x +ct),

where f and g are C? functions of their arguments. They have a separate form, in two variables p = x —ct
and g = x + ct, with f depending only on p and g only on q. Initial conditions and conditions at the
boundary of the space-time domain considered fix the solution. This example illustrate how separate
variables can drastically simplify the resolution of the dynamic. Henceforth, it is very desirable to separate
the variables whenever it is possible. This procedure decouples the equations of the motion of the system
at hand in independent and separate problems of lower complexity.
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Separation of variables was found very useful in classical mechanics in the resolution of the Hamilton—
Jacobi equation for Hamiltonian systems [34]. In practice, Hamilton-Jacobi equations of separate forms
are among the only cases where the resolution is tractable and the action-angle variables can be computed
in closed form. In all generalities, the 2n canonical variables (x;, ;) of a 2n-dimensional Hamiltonian
system are separate if there exist n independent separate relations of the form

Fi(q;,p;i, Fy,...,Fy) =0.

Note that F; depends only on the corresponding q; and p;, and a priori also on all the conserved quantities
F;. Realizing p; as d/3dq;, one sees clearly that the above equations gives independent ordinary differential
equations for each coordinate g;.

It is Sklyanin who laid the foundations of SOV in the inverse scattering framework for classical and
quantum integrable models, with its seminal paper on the Toda chain [177] in which he acknowledges
inspiration from Gutzwiller’s results [ 185] and the help of Komarov. Sklyanin introduced SoV techniques
in the CISM context [ 186-188], and contributions for the generic gl(n) case were made by Scott [189]
and Gekhtman [190]. The idea relies on the existence of a pair of two functions (A(u), B(u)), such that
the roots x; of B and their image z; = A(x;) by A form conjugated canonical variables. The (x;,2;) are
then shown to be separate variables for the dynamical problem, because of the form of the A(u) and
B(u) functions.

Having developed SoV for classical spin chains models, Sklyanin was able to extend his construction
to gl(2) quantum spin chains [191-193], under the name of functional Bethe Ansatz®. The principles
remain the same, with the .A(u) and B(u) functions promoted to operators. This makes the definitions of
the operatorial roots x; of B(u) more subtle. The separate basis is the eigenbasis of the B(u) operator,
which should be diagonalizable with simple spectrum. The conjugate momenta g; to the x; give shifts on
the spectrum of the x; operators, and therefore on the spectrum of B(u). In the separate basis, the wave
functions of the eigenstates of the transfer matrix factorizes as a product of one-variable wave functions,
each of them satisfying an independent finite-difference equation. Hence, separation of variables in
the quantum case indeed reduces drastically the complexity of the multi-variable problem to several
one-variable ones.

Since these seminal models, SOV has been developed for a wide range of other important models.
SoV has been implemented for the rational Gaudin model by Sklyanin [191], and extended to the
quantum elliptic case with the help of Takebe [194]. He also considered the infinite volume case for the
non-linear Schrédinger model [195] and the sinh-Gordon model [196]. Furthermore, he studied the
3-particles quantum Calogero—-Sutherland model with Kuznetsov [ 197], the A, Ruijsenaars model with
Nijhoff [ 198, 199]. The non-compact XXX chain case was studied in the works of Derkachov, Korchemsky
and Manashov [200-202], while the lattice sinh-Gordon model was tackled by Bytsko and Teschner [203].
Additional contributions to the XXX spin 1/2 chain SOV were made by Frahm and collaborators [204,
205].

The SOV method for higher rank quantum integrable model was initiated by Sklyanin himself, by
quantizing his classical construction. In [206], he constructed separate variables for the gl(3) quantum
spin chain by constructing corresponding .A(u) and B(u) operators. He already acknowledged en passant
that for the scheme to be well-defined, one needs to verify a non-intersection condition between the
spectrum of the roots of B(u) and possible poles of A(u). This construction was discussed in the generic
n > 2 case by Smirnov [207].

Later, Gromov, Levkovich-Maslyuk and Sizov used exact computer-aided computations to conjecture
and verify for small length chain the form of the spectrum of B(u) operators that would yield separate

3In the considered models, the .A(u) and B(u) functions were polynomials in u or e*” for some 7 € C, making all the
manipulations rather explicit.
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variables from its operatorial roots for higher rank (and supersymmetric) models [178, 179]. They have
not considered the question of the operator A(u), though.

In the 2010s, Maillet and Niccoli, in collaboration with Grosjean and Teschner used the Sklyanin
SoV method to get great results over various quantum integrable models [176, 208-216]. For the gl(2)
models in particular, the complete SOV characterization of the transfer matrix spectrum allowed to prove
the completeness of the Bethe Ansatz characterization, and to compute the form factors of local operators
thanks to the separate representation of the eigenstates of the transfer matrix. This work has been pursued
in collaboration with Terras and Kitanine towards the computation of correlation functions [217-220],
with some very recent results in this domain [221, 222]. The open case boundary case was recently
studied with Pezelier [223, 224].

A new idea emerged recently from this line of research: the construction of separate bases from
conserved quantities [225]. A most general form of such bases is

N
eIl 1 T(y;k")),

j=1k;=1

k:
where the y§ 2 are complex numbers and T (u) is the transfer matrix generating the conserved quantities
of the model at hand [see 225, Definition 2.2]. For example, for the % (gl(n)) fundamental models, the
basis constructed from the powers of the transfer matrix evaluated in the inhomogeneity parameters &

of the models
N

1] Tr(e)",
j=1
where the h; are integers between 0 and n— 1, is shown to be separate provided weak restrictions on the
inhomogeneities of the model, and that the boundary conditions are given by a twist matrix with simple
spectrum. The possibility to construct such bases originates from the existence of cyclic vectors for simple
spectrum matrices, or non-derogatory matrices [226]. There are in general many possible choices for the
covector (S|; a useful one for quantum integrable lattice models is a tensor product form made up from
the cyclic covectors of the twist matrix at each lattice site.

This construction of separate bases from the transfer matrix itself has some advantages to Sklyanin’s
approach of SoV. First, it bypasses the need for the identification and construction of the A(u) and B(u)
operators®, and in place relies on a fundamental object of quantum integrability, the transfer matrix. This
is desirable, for it minimizes the number of different objects and the complexity of the SOV procedure,
but also because the construction of proper A(u) and B(u) operators has been identified as a blocking
point for the proper generalization of Sklyanin’s SOV to higher rank model. Furthermore, with this
construction, the knowledge of an eigenvalue fixes completely its unique associated eigenvector by its
wave functions in the separate basis—one proves the transfer matrix has simple spectrum, thanks to the
twist matrix having this property.

In this new take on quantum separation of variables, the fusion relations verified by the fused transfer
matrices play a key role [111, 112, 128, 227-231]. They originate from the decomposition in irreducible
components of the tensor products representations. First, they allow to compute the action of the transfer
matrix in the separate bases. But ultimately they also provide a characterization of the complete spectrum
of the transfer matrix, which can be put in the form of a quantum spectral curve by exhibiting the
necessary Baxter Q-functions.

This novel SOV procedure has been shown to be applicable in a wide range of cases. It was shown to
be applicable for higher spin representations [232], where Q operators are used to construct the separate

“We still need to identify their spectrum, which are the separate variables.
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basis. The open boundary case of gl(2) models was considered in [233]. Separate bases of this form
were also constructed in the general #/(gl(n)) [234] and Uq(g/[(;)) [235] cases, and used to provide a
characterization of the complete spectrum of the transfer matrix.

Article [225] triggered general progress on a SOV procedure based on conserved quantities. Ryan
and Volin [236] proved that the B(u) operator—conjectured by Gromov, Levkovich-Maslyuk, and Sizov
in [178] to be the generalization of Sklyanin’s B(u) operator in the general gl(n) case—produces in its
roots the same separated variables obtained in [225], and moreover can serve as the correct creation
operator for a Bethe Ansatz description of the eigenstates. However, construction of the A(u) operator
realizing the proper shifts in the B(u) spectrum remained unaddressed, as well as the completeness of the
spectrum. These results were obtained for a general class of representations, and rely on the construction
of the eigenbasis of the B(u) operators by deformation of the Gelfand-Tsetlin basis of %(gl(n)). This
construction was later extended in [237] where the connection with Biacklund flow was made, and a
construction of the conjugate momentum variables of the separate (coordinate) variables was proposed,
in the form of Wronksian of Q-functions. In collaboration with Cavaglia, Gromov and Levkovich-Maslyuk,
some progress was also made in the direction of correlation functions, with results on the SOV measure
for higher rank models [238-240].

The work introduced in this thesis is two folds:
i) The characterization of the SOV measure in the #/(gl(3)) fundamental models, making a first step
towards the computation of correlation functions by SOV in higher rank models. This is the subject
of chapter 7.
ii) The extension of this SOV procedure to the supersymmetric integrable models, and how to tackle
the spectral problem of the transfer matrix in this framework. This is the subject of chapter 8.
We need to introduce several topics in details before discussing the original works of the thesis presented
in chapters 7 and 8. This is the role of chapters 2 to 6, which are devoted to the exposition of the necessary
techniques and ideas for the manuscript to be essentially self-contained.

We introduce classical and quantum integrable models and their description in the classical and
quantum inverse scattering formalisms in chapters 2 and 3. The Algebraic Bethe Ansatz techniques and
its nested versions are detailed in chapter 4, as well as the results towards correlation function obtained
in the gl(2) and higher rank case. Next, we describe the separation of variables procedure in general
in chapter 5. The classical and quantum SOV principles are introduced, and we discuss the Sklyanin’s
SoV construction for classical and quantum integrable models. In chapter 5, the idea of separate bases
from conserved quantities is given in details for #(gl(n)) models, laying the necessary concepts and
notations for the discussion of results of the last two chapters.

Two articles are attached to the main manuscript:

[[V1] J. M. Maillet, G. Niccoli, and L. Vignoli, “Separation of variables bases for integrable gl |, and
Hubbard models,” SciPost Phys., vol. 9, p. 60, 4 2020. DOTI:

[IV2] J. M. Maillet, G. Niccoli, and L. Vignoli, “On Scalar Products in Higher Rank Quantum Separation
of Variables,” SciPost Phys., vol. 9, p. 86, 6 2020. DOI:

They are the author’s peer-reviewed contributions to the field, and contain additional lengthy proofs and
details of the results featured in chapters 7 and 8.


https://doi.org/10.21468/SciPostPhys.9.4.060
https://doi.org/10.21468/SciPostPhys.9.6.086




Chapter

Classical integrability

There are several frameworks in which we can describe the configurations of a mechanical system
and study its dynamics. The Hamiltonian formulation [34, 37, 48] is proved most useful in the context of
integrability, as integrable models and the role of conserved quantities are best described in it, but also
because quantization of Hamiltonian systems is a customary procedure.

The role of conserved quantities in the resolution of Hamiltonian systems is emphasized, with the
introduction of Liouville integrability [47] and the Liouville-Arnol’d theorem [48]. We also discussed the
privileged role of action—angle variables in this setting [34, 49].

We introduce the Lax formalism [49, 50, 63, 241] in details for mechanical systems and classical field
theory. The benefit of the Lax formulation is to possibility to produce conserved quantities systematically
form the spectral invariants of the Lax matrix. Then, we introduce the (classical) inverse scattering
method (CISM) [49, 54, 96], whose goal is to produce action-angle variables analogs for integrable
models on continuous space or on the lattice. The direct problem is the construction of such variables
from the diffusion data, while the inverse problem consists in expressing the original dynamical variables
in terms of the diffusion data. The notion of classical r-matrix [89-91] and the associated integrable
structures are then discussed, setting the course to the quantized version of these objects.

2.1 Classical integrability

Hamiltonian formulation of classical mechanics Consider a mechanical system with N degrees of
freedom. A state of the system is described by N coordinates defining a point in the N-dimensional config-
uration space C. These are the generalized coordinates qy, .. ., qy. The phase space of the system is the 2N -
dimensional cotangent manifold M = T*C with canonical conjugate coordinates (q;,...,qn,P1,--->PN)>
that is with the following Poisson brackets

{qi)qj}=0={pi5pj} and {qi>pj}=5ij' (2.1

More precisely, to describe globally the phase space, a canonical atlas of local canonical charts is re-
quired [48]. In the following, it is implied that q;, p; are local coordinates.
M has a symplectic structure fixed by a closed and non-degenerate symplectic 2-form

N
a)z—da:qui/\dpi, (2.2)
i=1

where a = Zf\lzl p;dq; is the canonical 1-form. The Poisson brackets are defined over M by w: for
f,g € CY{(M) and Xy, X, the vector fields associated to f and g by df = w(Xy,-) and dg = w(X,,), we
have

{f,8} = (X7, X,) =X, (8) = X, (f). 2.3)

21
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In local coordinates, they write

N
_\9f 9 9g9f
{f’g}_;&liapi 9q; dp;’ ey
and N
of 9 odf @
Xf:Z—f———f— (2.5)

' 0q;0p; 9p; aq;’

and the same holds for X,. The fact that the g;, p; are canonical conjugated coordinates is seen in their
Poisson brackets: {q;,p;} = &;; and {q;,q;} =0={p;,p;}, Vi,j €[1,N].

The dynamics of the system is prescribed by a Hamiltonian function H(q, p, t) € C'(M) such that the
equations of the motion read

) J0H
qi = {qi,H} = 3p-’
' AH (2.6)
pi = 1{pi,H} =54
q;

This is the Hamiltonian formulation of classical mechanics [34, 37]. From now on, we restrict to time-
independent Hamiltonian for simplicity.

Solving (2.6) is the main goal in the study of mechanical systems; it can be a challenging task. It
is a system of 2N first-order coupled differential equations. A reformulation of the problem in a new,
appropriate set of canonical coordinates proves useful in most of the cases.

Change of coordinates  Other sets of canonical variables

Qi(q,p,t), Pi(q,p,t), (2.7)

have the property that if the equations of the motion for (q, p) are Hamilton’s canonical equations (2.6)
with some Hamiltonian H(q, p), then there exists a new Hamiltonian H’(Q, P) € C'(M) such that

. oH’
Q={Q,H'} = op;’
P (2.8)
p,={P,H'} __oH
i i aQi’

so that H serves as the Hamiltonian function in the new coordinates. Canonical coordinate transformations
are characterized by a generating function which makes the bridge between the two sets of canonical
coordinates (q, p) and (Q, P) [34, 37]. For a “type 2” generating function of the form F(q, P, t) that might
depend explicitly on time, we have
SOE g2 (2.9)
dq;” 4 9P’ '
OF

H =H+—/—. (2.10)
ot

Pi

Under such transformation (g,p) — (Q, P), the 1-form a is transform in o, that differs from a by an
exact differential, so that the 2-form «w is actually invariant.

Constants of the motion and integrability = The knowledge of constants of the motion is crucial in the
construction of canonical coordinates adapted to the dynamics of the system at hand. It is the key feature
of Liouville integrable systems to ensure their solvability from the knowledge of their conserved quantities.
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Liouville Integrability. A mechanical system with N degrees of freedom is Liouville integrable if it possesses
N independent conserved quantities F; in involution

{F.,F;} =0. (2.11)

The independence of the functions F; is defined by the linear independence of the associated vector fields
X, at each point of M.

Remark 1. There cannot be more that N independent quantities in involution otherwise the Poisson
bracket would be degenerate, so the Hamiltonian H is necessarily a function of the F;.

The integrability property is backed by the powerful

Liouville-Arnol’d theorem ([48]). The solution of the equations of the motion of a Liouville integrable
system is obtained by quadrature.

More precisely, there exists a coordinate transformation to some canonical variables (v;, F;) in which
the time evolution is linear. The generating function S(q, F) of the canonical coordinate transformation is
computed by quadrature. If the level manifold My specified by the fixed value of the constants of the motion
F; = f; is compact and connected, then it is diffeomorphic to the N-dimensional torus.

Proof. The system being isolated from external forces, its evolution takes place over the level manifold
M defined by the scalar values f; of the conserved quantities

My ={m=m(q,p)eM|Vi=1,...,N, Flqp)=Ff}. (2.12)

Suppose that we can solve for the momenta on M with p; = p;(q, f). We construct the function S(q, F)
by integrating the canonical 1-form on M; from the initial point m, to a generic point m

m q
S(q,F) 5=f a=f Zpi(qﬁf)dqi' (2.13)
mo do i

One should check this object is well-defined. Independence and involution of the F; prove that
dale:CO|Mf:O, (214)

making a a closed form [see 49, p. 9]. By Stokes theorem [242], this ensures that the value of the
integral (2.13) is unchanged by continuous deformation of the path my — m. However, in the generic
case the topology of M, is such that there are non-trivial cycles, so the function S(g,F) is a priori
multivalued (depending on the number of cycles made by the integration path). Still, S exists and is
well-defined. We will now show it is the generating function of a canonical coordinate transformation

(g,p) = (4, F). Defining

JS
== 2.15
Y, oF, (2.15)
we have
dS:—’lpldFl+pldql or p; dql :'(’llldFl'i'dS, (216)

where the summation over i is assumed, so the canonical 1-form in the two sets of coordinates coincides
up to a differential. With w = —da, because d? = 0, the symplectic 2-from w coincides in the two
coordinates systems

w= > dg; Adp;= Y dvp; AdF;. (2.17)

So the variables (v;, F;) are canonical coordinates and relations (2.9), (2.10) are satisfied. Since 8S/dt =
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0 the new Hamiltonian is simply the old one written in terms of the new coordinates

H'(yp,F)=H(q(y,F),p(yp, F)). (2.18)

By (2.8) it is clear that H” depends only on the constants of the motion F;. The constant value of the
Hamiltonian H(q, p) = H'(F) over the level manifold M 7 is the energy E of the system

H(q, D) gpmrgert, =H'(Froo-o f) =E. (2.19)

H’ has no explicit dependence in the ));; they are tagged as ignorable coordinates'. Noting
- JH
vi(F):i=;={y,H'} = Sp = const, (2.20)
i

we have the following linear time evolution for the system at hand when written in the (v, F) canonical
coordinates

Fi(t) = fi,
YPi(£) =1;(0) + v; ¢.

To obtain this solution, we had to perform a single—but curvilinear over a N-dimensional submani-

(2.21)

fold—integration to compute S, and invert the coordinate transformation to get the v; from the explicit
expression (2.18) of the Hamiltonian H in terms of the 1); and F;. Hence, we solved it by quadrature,
and some additional algebraic manipulations.

For the proof of the topology of M, under the suitable conditions, see [48]. O

Action-Angle variables  Since under suitable conditions M; is a torus, we can choose an even more
appropriate set of coordinates than (1, F) to describe the motion: the action-angle variables (6,1).

Choosing the values f; of the F; fixes the level-manifold M and thus fixes a particular torus in the
foliation in tori of M. We may choose any N independent functions I; = I;(F,, ..., Fy) such that once the
values Z; of the I; are known, then M is determined. But since the N-dimensional torus T, is isomorphic
to the product of N circles C;, we define the action variables I; as the integrals of the canonical 1-form
over the closed cycles C;

1
I = —§ o= I(F,). (2.22)
27 ¢

Using the same generating function as before, but expressed in terms of the I;

S@J)=J a, (2.23)

mo
the new canonical variables in the coordinate transformation characterized by S are the

, as
a1’

j and 6=

1<j,k<N. (2.24)

!t remains useful to characterizes their dynamic to get the ones of the original coordinates (g, p).
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By definition of 6y,
é o, = 0 ds—i Za—sdqi+a—sd1i
C;

; aIk 3Ik C : aql 311
Zp dg; +0= o (2.25)
3Ik L oI,
=2 ——2 8
ﬂfa k T

since dI; =0 on My D C;j. So the 6; are the angle variables along the cycle C; conjugated to the action
variable I;.
Same as before, the evolution’s equations in the action—angle variables write

(2.26)
61 (1) = 0,(0) + it

where the w; = wy(Z;) are the frequencies of the periodic motion along each cycle Cj of the level
manifold M.

Action-Angle variables for the harmonic oscillator

Consider the one-dimensional harmonic oscillator of mass m and natural frequency w = k/m, k being the
stiffness of the spring. It is a classical integrable system with a phase space of dimension 2 and canonical
coordinates (g, p), respectively the position and momentum of the mass. Its Hamiltonian is

2

p 1 2 2
H=—+— . 2.27
om 24 (2.27)

It is trivially Liouville integrable, since the energy E is a conserved quantity in this isolated system. Its
value fixes a curve in the phase space on which the system evolves

2
1
e —mw?q® or p==£4/2mE—m2w2q?, (2.28)

2m 2

so the level manifolds My are ellipses centered on (0,0) and foliate the phase space for E in the
range [0, +oo[. From equations (2.13) and (2.22), the only action variable of the system is obtained by
integrating the momentum over the cycle of the level manifold M

J :=§ pdg. (2.29)
Mg

With a polar parametrization of the integration path, the substitution

2E
q= > sin¢ (2.30)
J mew

27
2E OnE
J= —J cos? ¢ dp = 22 (2.31)
w 0 w

reduces the integral to

Unsurprisingly, the action variable is the rescaled energy of the system, and the Hamiltonian may be
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rewritten H = wJ /27 . Eventually, the original coordinates take the form

J
q =\ sin 6, (2.32)
Tmw

mJ w

il

which effectively solves the dynamics of the system by providing the explicit time evolutions of the
original coordinates. Also,

cos 0, (2.33)

J= i(p2 + mzwzqz), (2.34)
mw
0 = arctan (mw g), (2.35)
p

and one verifies {J, 8} = 2m, so the action—angle (canonical) variables are (J/2m ,0) (a 1/27 normal-
ization in the contour integral (2.29) would give the correct action straight away). The angle 6 evolves
linearly in times

0(t) =6y + vt given 1/:8—1;1:(»: E (2.36)
e m

One recovers the well-known formula for the pulsation of the oscillation. Here, the 6 variable finds
a direct physical interpretation as being the phase of the position, so it comes as no surprise that its
frequency matches the physical one.

Computing the coordinate transformation to canonical coordinates made from constants of the motion,
which are pre-action—angle variables, requires to compute a curvilinear integral over a curve lying on the
level manifold. This is in general a non-trivial calculation. In practice, the integral (2.13) is tractable
only when the variables are separate: it can then be reduced to a sum of one-variable independent
integrals. This substantially alleviates the computational difficulty of the problem. Hence, developping
tools to effectively separate the variables in integrable systems has been of extreme interest, and Quantum
Separation of Variables (S0V) is the core subject of this thesis. We will describe such tools in chapters 5
and 6. It requires first to develop a more algebraic understanding of classical and quantum integrable
models, that we will detail in the following sections. For now, we pursue the description of classical
integrable models and the algebraic tools developed to study them systematically.

2.2 C(Classical Lax formalism and r-matrix

As we saw with the Liouville-Arnol’d theorem, conserved quantities are at the center of the description of
integrable models. Any studies of integrable models should therefore be committed to identify clearly the
constants of the motion at the earliest stage. Modern studies of integrable mechanical systems goes along
with the Lax formalism, first developed for solving differential equations of continuous systems [50, 55,
56] and then extended to the general Hamiltonian description of classical mechanics [57, 63].

The seminal idea is to recast the equations of the motion into a commutator of two matrices, the
Lax pair (L, V). By doing so, conserved quantities of the system are found in the spectral invariants of L,
called the Lax matrix.

Lax pair. Let M be the 2N-dimensional phase space of a mechanical system whose dynamics is given by
the Hamiltonian H independent of the time. Two n x n square matrices L(m,u,t) and V(m,u,t), with
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(m,u) € M x C, form a Lax pair if they rewrite the equations of the motion as

dL
— ={L,H}=[V,L]. (2.37)
dt
L(m,u,t) is the Lax matrix. The variable u is called the spectral parameter. The space V := C", n € Z,,
on which the matrix L and V are constructed is called the auxiliary space. We often omit the time and phase

space dependency and simply write L(u), V(u).

Note that for a given system, the Lax pair—if it exists—may not be unique. The dimension of the L
and V matrices may even be different for different pairs associated to the same system. The addition of a
spectral parameter is necessary to ensure the spectral invariants contains all the conserved quantities of the
model, see the examples of tops in chapter 2 of [49]. In many integrable systems, the spectral parameter
u is a complex number. However, it could be a more sophisticated object depending on the space-time
symmetries of the system at hand. For example, it is a twistor in self-dual Yang-Mills theories [243, 244].

Set of commuting conserved quantities  The interest of the Lax construction is the easy access to the
conserved quantities of the system.
Indeed, the spectral invariants of the Lax matrix

Vi€ [L,dimVo], Fj(u):=try, (Low)), (2.38)

are integrals of the motion. The proof is done by direct computation of the flow of the F; under the
Hamiltonian. Omitting the spectral dependence in u, one has

dF, .
- ={F.H} =y, {13,H}

=1 4 .
= try, (Z Lg‘l"‘{LO,H}L{)) = jtry, (L) (Lo, H}) (2.39)

k=0
: —1
= jtry, (Lé [VO,LO]) =0,

where we used the trace identify tr(AB) = tr(BA) over the auxiliary space.
Also, note that matrices of the form

L(u, t) = g(0)L(u,0)g() ™", (2.40)
where the invertible g(t) matrix evolves by the equation

d

d—f =V(u,t)g(u,t) with g(u,0)=id, (2.41)
are solution to equation (2.37) Therefore, any function F(L(u)) invariant under the conjugation by g(t)
is a constant of the motion. Such functions are the eigenvalues of the Lax matrix L(u), so the spectrum
of L is preserved over time and L time evolution is said isospectral. The conserved charges F; obtained

above are symmetric functions of the eigenvalues of L(u), so it is no surprise that they are conserved.

r-matrix The Lax pair is a convenient way to construct constants of the motion without referring to
the Poisson structure of the phase space. But for Liouville integrability of the system, we need to have
them independent and in involution. The discussion of the involution of the integrals of the motion F; is
tied to the existence of an r-matrix, which encodes a general form of Poisson bracket between the matrix
elements of I that ensures the involution property of the conserved quantities [49, 62, 63, 89, 90, 241].
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Theorem 1 (Babelon & Viallet, see [49, 241]). The involution property of the spectral invariants of L is
equivalent to the existence of a matrix r15(u, vlm) acting on V, x V, whose matrix elements are function on
M, such that

{Ll(m: u)) LZ(m) V)} = [le(mlu, V), Ll(m, u)] - [rzl(m|V’ u); LZ(m, V)] (242)

The indices 1 and 2 in L and r label two distinct copies of the auxiliary space V.

The Poisson braket between the two Lax matrices has to be understood as the matrix whose coefficients
are the Poisson brackets between the matrix elements of L; and L,:

{Li(m,u), Ly(m,v)} = Z {Lij(m,u),Lke(m,v)}eij®ek¢. (2.43)
i,j,k,0

Most of the time, the dependence in m € M is suppressed from the notation. The proof that the involution
implies the existence of the r-matrix is done by direct construction of it, while for the converse way
the Poisson brackets of the invariants of the Lax matrices write as trace over commutators, which
vanish [49]. Integrability is then ensured once the independence of N spectral invariants of L is proven,
N < n=dimV,, which is now a model-dependent problem.

Lax pair and r-matrix of the harmonic oscillator

The Lax pair of the harmonic oscillator (2.27) with m = 1 are the 2 x 2 matrices

mw 0 —w/2
L= P 1), v= /2). (2.44)
mwq —p w/2 0
It is not necessary to introduce a spectral parameter here. One checks easily that the Lax equation

dL/dt =[V, L] is equivalent to the equations of the motion ¢ = p/m, p = —mw?q. We also observe that
the Hamiltonian can be written %m tr(Lz). The matrix

r=—( 0 e (2.45)
~ 4E\-1 0) 7 '

with E = p? / 2m + mw?q? / 2, is such that the relation (2.42) holds with the above L. For example, the
equality of the (1, 2) matrix elements in equation (2.42) specialized to the above matrices computes from
its left-hand side the Poisson bracket {p,q}, and the right-hand side is

—p(2m e +2p?) =1, (2.46)
which is the expected value of {p,q} from the equations (2.1), (2.4). Note that the r-matrix is dynamical
(it depends on the g and p variables).

Classical Yang-Baxter equation = What are the solutions (L, r) of (2.42) such that the induced Pois-
son bracket indeed defines a symplectic structure on M? This mainly amounts to the verification of
the skew-symmetry property and the Jacobi identity for the Poisson bracket [49]. Skew-symmetry is
obvious from (2.42), while the Jacobi identity may hold only after imposing some conditions on L and r.
Constraints on L and r are decoupled when restricting to r-matrices that are constant on M, i.e. which
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have scalar entries. In particular, the Jacobi identity is satisfied if a constant r-matrix satisfies

[r12(w, v), r13(u, W) + [r12(w, v), ra3(v, w) ] + [r33(w, v), r13(u, w)] = 0, (2.47)

When r is antisymmetric as rq5(u, v) = —r9;(v,u), this is called the classical Yang—Baxter equation.
Unitary antisymmetric solutions of difference type to the classical YBE are constant r-matrices
verifying

r12(u,v) = —ry(v,u),
12 21 (2.48)
ria(u,v) =rip(u—v).
They are associated to the Poisson algebra with a linear in L right-hand side
{L1(W), Lo(v)} = [ro(u—v), Ly (u) + Ly(v)], (2.49)
but also to another symplectic structure called the Skylanin’s quadratic Poisson algebra
{L1(W), LoV} = [rp(u—v), Li()Ly(v)], (2.50)

which is quadratic in L right-hand side, leading to a different class of Lax matrices and integrable models”.

The classical numeric r-matrices satisfying (2.47) have been extensively studied and classified in
families labelled by Lie algebras representation theory [ 112, 245]. A notable solution is the one associated
to the gl(n) algebra, n > 2, with its fundamental vector representation taken for the spaces V; ,

rip(u) = 57’12, ceC, (2.51)

where P is the permutation operator on V ® V; with e;; the n X n coordinate matrices, it writes

n
P = Z eij®ejl'. (252)
i,j=1

Classical Inverse Scattering This discussion extends to classical field theory with a space-dependent
Lax pair (L(u, x,t),V(u,x,t)), where x is the space coordinate. It rationalizes the Classical Inverse
Scattering Method (CISM) originally designed by Gardner, Greene, Kruksal and Miura [54] under an L
and r-matrix construction.

Considering a non-linear partial differential equation for a classical field 1(x, t) on the real line of

the form o 3
K{Y,—,— | =0, 2.53
(QP at ax) ( )

we suppose there exists a Lax pair such that it can be recast in
[6,—L,8,—V]=0, (2.54)

which is the continuous equivalent of (2.37). This allows to interpret the equations of the motion written
in the form (2.54) as the compatibility condition—or zero-curvature equation—of the linear auxiliary
system

(2.55)

ox =1Ly,
Oy =Vy.

2It is possible to rewrite this quadratic algebra in a linear form and recover Poisson bracket of the form (2.42), but the
r-matrix is then, obviously, a different one. In particular, it is non-constant.
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The study of the partial differential equation (2.53) then reduces [90, 95] to the study of the spectral
characteristics of the spatial part of the Lax pair, the linear differential operator d, — L(x,u).

Let us show in more details how this is done. Consider two points A and B of the two-dimensional
space-time (x, t). Let A, = L and A, = V. The Wilson line element between points A and B is the ordered

exponential
B

Wpa = &P f Ay dx*, (2.56)
A
with A, = A,(x,t,u). For a spacetime with trivial topology, this Wilson line is independent of the
integration path chosen between A and B, so that (2.54) is a zero-curvature equation for the A,,. Consider
now A = (x,, t) and B = (xg, t) two points on the same surface t = cste of the space-time. Wilson line
elements are multiplicative along the integration path so for two other points A’ = (x4, t’), B’ = (xp/, t’)
on another constant time surface, t’ # t, one has

WBA(tJ u) == WBB/WB/A’(tlﬂ u)WA/A. (257)

For a system periodic in the box [0, y], i.e. A,(y, t,u) = A,(0, t,u) for u = x, t, the space-time has the
geometry of a cylinder and the closed Wilson line between points A= (0, t) and B = (y, t) =Ais called

the monodromy matrix’
A

M(u,t) :=WQ = ex‘_pjg L(x,t,u)dx. (2.58)
A

Then Wy, = nggl, due to spatial periodic boundary conditions and

WBA(f, u) = WBB’WB’A’(t,’ U)WB_;, (259)
With the partial differentials
0 0
——Wga = L(xp, tg, u)Wgy, = Wga = —WpaL(xy, ta,u), (2.60)
dxp 9xy
0 0
—— Wpa = V(xp, tg, u)Wpy, = Wpa = —WpaV (x4, ta,u), (2.61)
Jdtg Oty

and t' =t +¢, ¢ = 0, from (2.59) one computes

dt

= [VA(O: t, u)’ MBA(t7 u)]) (262)
which is the Lax equation (2.37) for the monodromy matrix. Then, by a computation similar to (2.39)
d k
vkeN, — tr(M(t,u)) =0, (2.63)

that is the spectral invariants of the monodromy matrix are constants of the motion. In the case of twisted
boundary conditions
Au(y, t,u) = K(w) 71 AL (0, £, u)K (w), (2.64)

it is the twisted monodromy M%) (1) = K(u)M (u) which gets a derivative in the form of a commutator

%(K(u)M(t,u)) =[V(0,t,u), K(u)M(t,u)], (2.65)

3A monodromy studies how objects behave as they run around a singularity.
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and d
vkeN, — tr((K(w)M(t,u))k) = 0. (2.66)

Just as for point-like mechanical systems, it is possible to introduce a r-matrix to pack efficiently the
Poisson brackets of the monodromy entries in a commutator form. Linear Poisson brackets for L reads

{Ll(u, X, t): Lz(}’; v, t)} = 5()( _y) [r12(u’ V)a Ll(u5 X, t) + LZ(.ya t/’ V):l’ (267)
and leads [90] to quadratic Poisson brackets for M
{Ml(t) u): MZ(t) V)} = [r12(u> V), Ml(t) U)Mz(t, V)], (268)

with r(u, v) antisymmetric and satisfying the Yang-Baxter equation (2.47).
Then the transfer matrix
T(uw) :=trM(u) (2.69)

defines a family of conserved quantities. Indeed, thanks to (2.68), it is trivial to show that the transfer
matrix commutes with itself and generates a family of conserved quantities in involution as the coefficients
in its expansion in u. One has,

{TW), T(v)} = try {M;(u), My(v)} = tryy [r12(u, v), My (u)My(v)] = 0. (2.70)

This computation extends to the trace of higher powers of M they are all in involution. If this generates
enough conserved quantities, the system is integrable.
Consider now the 2 x 2 case and suppose V is diagonal. Noting

=[P y=(* 0 (2.71)
“\e d) ~\o B) '

e 7 e
d d
Eb—(a—[f))b, EC—(/&—(X)C.

then (2.62) gives

(2.72)

Hence, a and d are constants of the motion, while In(b) and In(c) have linear time evolution: they open the
way to obtain action—angle variables. More generally, if V is a constant matrix, the equations (2.72) give
a linear time evolution for the monodromy matrix M, which are easily solved. For example, for systems
over the real line R with specific boundary conditions at £00 such that V — cste, the computation
of the scattering data by the monodromy matrix M is a direct transformation towards action—angle
variables. Now, the main question is to obtain the inverse transformation, that is to solve explicitly the
inverse problem by computing the dynamical variables in terms of the scattering data (the monodromy
matrix entries) to obtain the solution of the original PDE (2.53). This is a non-trivial computation. It
can be obtained by solving the Gelfand-Levitan—-Marchenko linear integral equation, which requires
the knowledge of the scattering data [58, 59]. The inverse scattering problem is also reducible to a
Riemann-Hilbert factorization problem [49, 60, 246, 247].

Systems on the lattice  The CISM works similarly for discrete theories on the 1-dimensional lattice
with N sites. The discrete analogue of the Lax matrix now depends on the site index n € [1, N] rather
than the continuous space coordinate x. We note L, (u) the Lax matrix of auxiliary space V, with its
entries acting over Vy. It is instructive to see the Lax matrix Lg,(u, t) as analogous to a monodromy
matrix (2.58) calculated over a segment [x,, x, + A] where A is the lattice site spacing. Consequently,
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(2.73)

the Poisson brackets for L at site n are quadratic [90, 248]
{Lln(na u, t): LZn(m: v, t/)} = 5nm [r12(u - V)) Lln(n) u, t)LZn(m) u, t)]

Note that more general quadratic brackets can be introduced [248, 249]. The monodromy is now the
(2.74)

ordered product along the lattice sites
Mo(u, t) = LON(U, t) ce LOl(u, t),

(2.75)

and has quadratic Poisson brackets as well
{Ml(u) t)) MZ(VD t/)} = [r12(u - V), Ml(u: t)MZ(u, t)]'

Similarly, the transfer matrix construct a family of quantities in involution, which are constants of the
motion provided the Hamiltonian writes as a function of them. Should the Lax construction provides

“enough” independent conserved quantities in involution, the system will be integrable.
As we will see soon with quantum spins chains, the structure for quantum integrable lattice models is

very similar.

The classical s[(2) spin-s chain [63, 187, 250, 251]
Consider classical s(2)-spins at each site of a one-dimensional periodic lattice with N sites. Their angular

momenta are represented by the vectors
(2.76)

Sx
ST | R, 8] = (202 + (5207 + (52 = 52.

S, =
Sn
The Poisson brackets between the components are
{S,?,Sﬂ} = 5n,m£a/5ysya (2.77)
where ¢,p, is the Levi-Civita symbol. For the Hamiltonian
N 2.3 o
_ $°+ 8, Sp11
H=-2 Z ln( o , (2.78)
n=1
the equations of the motion are
d. 2S,AS 28, AS,_
—8§,={8,, H} = —2—L  — "l (2.79)
dt 52 + Sn' Si‘l+1 52 + Sn' Sn—l
They rewrite as the compatibility condition of the site n Lax pair
Lo,(uw) =u+cSpp, (2.80)
v vy
0 0
= — (2.81)

Voo (u) =
On() S+% S—E

where the Sy, matrix packs the spins components at site n in a s((2) matrix on the auxiliary space V, = C?
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of the fundamental representation of s[(2)

L. S: S*—isy Sz S
Son =S, 0¢p = :Z SO‘ (Sx ) lsy n_Si n )0 = (55_ _g‘z)o’ (2.82)
and the coefficients appearing in the V-matrix

= So Son_
v = L(u )(HM), (2.83)
n 248 .8 s s

are such that the residues at the poles *c/s cancel. Let us carry the derivation explicitly: from the

compatibility condition
dL On

dt
which is the discrete analog of (2.62), the differential equation for the time evolution of S, is obtained

= Vont+1 (@) Lo, (1) — Loy (1) Vo, (w), (2.84)

atu=20 .
On _ c + + =
¢ dr E(V0n+1 0n+1)50n SOn(VOn _VOn)' (2.85)

Since the product of Sy, matrices along the auxiliary space is given by
Soksoe = §k'§€ +i(§k/\§g)'6'0 (286)
it gives

dS,, 2i 9 = = L 2N L
= — s“+S.,-S..,+ilS,.1AS,, )0
dt 82 +Sn-Sn+1( n “n+l ( n+1 n) 0)

2i

RS (52+8,- 8,01 +i(8,A8,1)30), (2.87)

or

ds 2S,AS 28,AS

n. 6‘0 — ( n_} _11+1 n—1 ) . 6'0, (2.88)
dt s2+8,-8,.1 s2+8,-S,;
which are exactly the equations of the motion (2.79), once one identifies the coefficients of the auxiliary
space s[(2) generators ag’y s

Having a Lax pair, we now describe how to derive the constants of the motion from it. The Poisson

brackets between the S, real coefficients Sg.l), So S(n) EJO), are computed to be
(n) <(m) (n) n)
{1,800} = 16, (S5 66— 561 ), (2.89)

so that the Poisson brackets between the Lax pairs coefficients (of the same site Lax matrix, the other
vanish) admits the quadratic form

{L;w, Lke(V)}— —— (LWL (v) = Ly (). (2.90)
One can put this formula into the compact form

{Lan(u)> Lbn(V)} = [rab(u - V)’ Lan(u)Lbn(v)]: (2-91)
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with the r-matrix .
ic

rab(u - V) =
u J—

Pab- (2.92)
"

Constructing the monodromy
Mo(u) = Lon(u)... Lo (W), (2.93)

the Poisson brackets (2.90) replicates themselves for My(u) and one has

{M, (W), Mp(w)} = [rqp(u—v), Mg(W)Mp(v)]. (2.94)
The transfer matrix
T (u) = tro (Mp(w)), (2.95)
is in involution with itself
{T(u), T(v)} =0, (2.96)

which is seen easily from the r-matrix form of the brackets (2.94). Thus its N subdominant coefficients
in its u polynomial expansion forms a family in involution. The Hamiltonian H is some function of the Jj.

Because M (W)
u
- Vo), M@W), (2.97)
it is easy to check that the
Jp = trg(Mo(w)*), 1<k<N (2.98)

are N constants of the motion—in particular, T (u) is.

Generating integrable systems In the above discussion, we started from an integrable mechanical
system and formalized the description of its integrable features thanks to the idea of the Lax pair. We
constructed a Lax matrix that embed the conserved quantities and a r-matrix specifying the Poisson
brackets of its entries. The natural question is now: can we walk the converse path? More precisely, having
classified the r-matrices, can we generate integrable models upon request?

The answer is yes. Somehow, the r matrix contains the structure constants of the Poisson bracket
algebra for the monodromy matrix elements, with the Yang-Baxter equation for r ensuring the Jacobi
identify. Then finding a solution M (or L) of (2.75) is a problem of representation theory of the algebra
defined by (2.75). See [248, 252] for additional discussion about this.

In short, from the knowledge of a r-matrix and an associated monodromy matrix M, it is sufficient
to pick the Hamiltonian as some function of the spectral invariants, which have been shown to form
a commuting family in involution. Besides, the equations of the motion have a Lax form, where the V
matrix is constructed from r and M.

Let us be more specific. Consider r(u) be an antisymmetric solution of difference form of the classical
Yang-Baxter equation, and M(u) a n x n monodromy matrix solution to (2.68) on a given 2n-dimensional
phase space M and n-dimension auxiliary space V. We can define the Hamiltonians Fj(u) defined form
the spectral invariants of the monodromy matrix

Fe(u) :==tr(M(w)*) forall ke[1,n]. (2.99)

They are all in involution
Vk,t€[1,n], {F@),F()}=0. (2.100)

The associated equations of the motion of the monodromy under the flow of these Hamiltonians admit a
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Lax form d
A v, P} = [V, ), M) (2.101)
k
where
V(k)(u, v)=—k try, (Mo(u)k_1 ror(u— v)). (2.102)

Any C! function of its arguments F then defines the Hamiltonian
Hw) = F(F,(w),...,F,(w) (2.103)

of an integrable system with n conserved quantities F, k € [1,n], in involution, whose equations of the

motion have a Lax form
dM (u)

= (M@, HOY = [V v, M@, (2,104
where
_N9F W)
V(u,v)—za—Fk}(Fl(v) """" Fn(v))V (u,v). (2.105)

Starting from a r-matrix, we can solve for I defined over M in (2.49) or (2.50). The couple (r,L) is
then sufficient to construct an integrable mechanical system. Let H = )| i CiFj be the Hamiltonian of our
choice on M, with the F; of (2.38). Then the V-matrix of the Lax pair is given by the linear combination

Vo(w) = > ¢;(=jtrg (X rop)): (2.106)
j
and the equations of the motion are given by (2.37). The integrals of the motion are the spectral invariants
of L, and their independence should be checked regarding the model at hand.

In summary, the privileged objects in the theory of the classical integrable models are the r-matrix,
the Lax matrix and the Yang-Baxter algebra. Together they pack the conserved quantities and the Poisson
brackets of the system by the Yang-Baxter equation, paving the way for a systematic resolution of Liouville
integrable models. For continuous or lattice systems, the explicit resolution is achieved by the CISM. In
the following section 3.2, we will investigate the quantum counterparts of the Lax formalism, as well as a
quantum version of the Inverse Scattering Method for lattice quantum systems.






Chapter

Quantum integrability

We begin this chapter with a broad discussion on the nature of quantum integrability, which, contrary
to its classical counterpart, is not a definitive and established concept [see 253, 254, for example].

After that, we present the quantum version of the inverse scattering method (QISM), with the notion
of quantum R-matrix, and Lax, monodromy and transfer matrices [90, 97, 99, 100, 103, 193].

We then introduce in details the model that are studied in this thesis: quantum spin chains, which are
one-dimensional integrable models on the lattice first introduce by Heisenberg and heavily studied and
generalized along the 20" century and until today [62, 69, 97, 99, 143, 193, 255, 256]. The resolution
of the quantum inverse problem for % (gl(n)) spin chains [104-107, 257] is discussed at the end of the
chapter.

3.1 Approaching quantum integrability

In a moment we will describe the quantization of the Lax formalism and how the Quantum Inverse
Scattering Method (QISM) is a preferred framework to describe 1+1 quantum integrable models. But
first, let us linger on what quantum integrability should be.

Like in the classical case, we expect to exhibit enough independent conserved charges Q; containing
or generating the Hamiltonian that are in involution. They would play the role the F; had in the classical
case. This should be sufficient to ensure the solvability of the model by a generic method that would be a
quantum version of the Liouville-~Arnol’d theorem, specific to integrable systems. The following words
strike in the these sentences

1. enough: how many conserved quantities will ensure integrability?

2. independent: what is independence for observables?

3. in involution: what does it mean in the quantum context?

4. solvability: what are we solving for exactly?
The third observation is the easiest to answer to: quantization of Poisson brackets between functions gives
commutators between observables [258]. We are thus looking for a commutative family of observables Q;

Vi,jeZcN*, [Q.,Q;]=0, i,j=12,.... (3.1)

Questions 1 and 2 are imbricated: adding additional observables that are not independent of the former
should not add any information to the integrability—though “independent” is yet to be properly defined.
So the answer to question 1 depends mainly on how we define independence between observables. At
least, we ask for the set {Q;} to be simultaneously diagonalizable with simple spectrum, so that the Q;
label their common eigenstates uniquely, such that for two different eigenstates |A) and |u) we have

Vi, Q;IA) = q{1 IA), Qilu)= q# |u)  with qJ7.L # q;.‘ for a least one index j. (3.2)

But the answer turns out to be more subtle than expected. Indeed, the notion of independence of the
conserved quantities fails to find a direct quantum equivalent. Weigert discuss in details in [253] how
additional conserved quantities may be constructed and joined to an existing set of commuting operators

37
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with simple spectrum, such that the notion of functional independence of the constants of motion has
to be dropped when transitioning to the quantum. This is due to a fundamental theorem worked by
von Neumann [259]. This is a great annoyance in our search for a consistent definition of quantum
integrability.

Lastly, we have to define when a quantum model is said to be solved. In the classical case, this is
claimed when the whole dynamics is characterized as function in time depending on the constants of
the motion and the initial conditions. For integrable models, this is obtained by finding the coordinate
transformation to the action—angle variables, and it should require the computation of a sole integral,
as the Liouville—Arnol’d theorem specifies by “in quadrature”. From there we get x'(t)=..., p;(t) =...
and the configuration of the system is known at any time. This change of coordinate was achieved in
the direct way (q, p) — M(u) by the construction of the monodromy operator, and in the inverse way
M(u) — (g, p) by the reconstruction of the initial dynamical variables in terms of the action-angles ones,
the diffusion data contained in the monodromy matrix elements. In the quantum case, we solve the
dynamics by diagonalizing the Hamiltonian: eigenstates |¢,,) of H evolve over time only by a phase fixed
by their energy

l@n()) = e MEat [, (0)), (3.3)

so the evolution of generic states is obtained by decomposing them on the eigenbasis of the Hamiltonian
and let each vector of the latter evolve

() = D e lpalt)) = D cae™ 0t ,(0)). (3.4)

n n

A mandatory step to call the system solved is therefore the diagonalization of the Hamiltonian. But it is
not sufficient. Contrary to the configurations of a classical system, quantum states are difficult to access
directly. Most likely, we would like to access to macroscopic quantities from the microscopic, quantum
description of a material, such as critical exponents, magnetic susceptibilities, scattering cross-sections
and angles, dynamical structure factors. ... These quantities are way more accessible experimentally,
and computing them allows to confront the theoretical predictions coming from a theory of quantum
integrability to experimental results.

Hence, we have to add many more objects to the collection of the desirable quantities, rather than
limiting us to the spectrum of H. In summary, we would like to compute

* the spectrum of the Hamiltonian

* its eigenstates

* the norm of the constructed eigenstates

* scalar products of generic state with eigenstates

* action of “physical” operators on the left and right eigenbasis

* their matrix elements in the basis, i.e. the form factors

* correlation functions

* and higher-level quantities depending on the previous quantities
The first points are directly related to (3.4). Correlation functions for an observable O € End ¢ are
quantities of the form

it (O H/aT)
tr (e—H/kBT) ’

where T is the temperature and kp the Boltzmann constant. The operator O is usually a product of local

(3.5)

one-site operators, but may be a more intricate object. In the limit of null temperature, the contribution
of the ground state [y,) of the Hamiltonian is the only one to survive — because it has the smallest
eigenvalue under the action of H'. So correlation functions are reduced to the expectation value of © in

If ground state is not unique, i.e. if they are several state with the lowest energy, there are multiple contributions of the
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the ground state
(e|Of)
(Vele)
From all the above discussion, let us throw a tentative definition of the quantum version of Liouville
integrability

(3.6)

Tentative quantum LI. A quantum system with Hilbert space 5 and Hamiltonian H is said integrable if
there exist a family of mutually commuting observables {Q;};c7 € End(#), T C N, that are diagonalizable
with simple spectrum and generate the Hamiltonian H = f(Q;).

Similarly to the classical case, a quantum version of the inverse scattering method has been developed:
the quantum inverse scattering method (QISM). In the classical case, the Lax matrix L(u) gathered the
constants of the motion in its spectral invariants; we may find a similar situation in the quantum case.
The monodromy M (u) is then construct from the local Lax matrices, and its spectral invariants, such
as its trace, the transfer matrix T(u), generate conserved quantities. Anticipating on the notation, we
incorporate the spectral parameter by a rephrasing of the above definition around the transfer matrix.

Tentative quantum LI (one-parameter family version). A quantum system with Hilbert space 7 and
Hamiltonian H is said integrable if there is a one-parameter family of operators T (u) € End(s#), u € C,
such that

1. [Tw), T(v)]=0
2. for some complex number ug, H = F(T (u))ly=y,
3. T(u) is diagonalizable and has simple spectrum: Y A(u), w(u) € Sp(T (u)), A(u) # u(u).

As anticipated, these definitions cannot be seen as completely satisfactory. The crucial notion of
independence is lacking and does not constrain enough the choice of the conserved charges that would
claim the integrability of the model. Moreover, the definition of classical Liouville integrability is backed
by the Liouville-Arnol’d theorem. It ensures that the conserved quantities can be recast in action variables,
and that the coordinate transformation to the action—angle variables is obtained by quadrature. The
above definitions are orphan of such a theorem, making these definitions of quantum integrability a
purely descriptive feature.

Somehow, what is missing is a property leading to solvability, i.e. a property, an object or a tool that
allows the computation of the spectrum by means of quadratures or some analogous procedure. As we
will see, the Yang-Baxter algebra provides at least for a class of models a framework in which a such
procedure can be performed.

It is puzzling that no definitive definition of what a quantum integrable model is exists to this day.
Still, the study of quantum integrable models is vivid and plethoric, and in fact not really embarrassed by
the absence of a precise definition. For recent reviews of what quantum integrability should be, see for
example [79], and [254] with citations 1-4 therein.

However, there is a clearer picture of quantum integrability in the context of separation of variables.
We will describe in great details the classical and quantum SOV method in chapter 5 and 6.

Being fair with History

As stated in the introduction of this thesis, the quantum Yang-Baxter structures have been found and
studied before their classical counterparts.The classical construction has been linked naturally to the

form (3.5).
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existing framework of classical integrable models, while the quantum one has not found at the time an
already existing extensive groundwork to rely on.

That is why introductions to quantum integrable systems often start from the R matrix and the YBE,
and go down the algebraic ladder until reaching an actual physical system. In the next section, we describe
this process and the algebraic framework in which quantum integrable systems are best understood: the
quantum inverse scattering method.

3.2 Quantum inverse scattering method

Quantum Yang-Baxter equation Since there are no quantum version available of the Liouville
integrability property and its Liouville-Arnol’d sidekick, a most common way to define quantum integrable
models is to construct systems with a quantum version of the Lax formalism and Yang-Baxter structures.

Hcl ¢ Lcl ¢ r
T classical limit

«— R

H, — L

q q

Starting from R matrices satisfying a quantum version of the YBE, it is easy to produce non-trivial
quantum systems, with “enough” conserved charges, for which we can solve in closed form numerous
quantities. The Quantum Inverse Scattering Method framework gives a generic way to produce such
quantities. It all start with a quantum equivalent of the classical Yang-Baxter equation for a quantum
R matrix, and a quantum Lax matrix. Let us introduce for the quantum case the “R—>L > M —» T —
H and conserved quantities” chain that we have already described for the classical case.

Being simplistic, quantization mainly amounts to the transformation of functions over the phase
space M in linear operators over a Hilbert space 5, mapping the Poisson brackets to the commutator
{,}—=iul[,].

The (quantum) Yang-Baxter equation [ 100, 260] writes
R15(u, V)Ry3(u, w)Ry3(v, W) = Ros(v, W)Rq3(u, w)R15(u, v), 3.7)

where R,;,(u,v) is an n x n square matrix acting non trivially over V, ® V;, only, with V; 5 3 ~V ~ C".
For a R matrix of difference form, one simplifies the notation by writing R(u) := R(u,0) and the YBE
becomes

Ri5(u—V)Ry3(V)Ry3(V) = Ry3(V)Ro3(VIR o (u—v). (3.8)

From the semi-classical expansion
R(u) =1+ ifir(u) + O(h?), (3.9

the classical Yang-Baxter equation (2.47) for r is recovered from (3.7). Note that the Yang-Baxter
equation is homogeneous, so that it still holds after R(u) — f (u)R(u) where f is any function of the
spectral parameter.

In the gl(n)-invariant case (2.51), the quantum R-matrix is

Rw) =1+2p, n=ihe, (3.10)
u

where P is the permutation operator. One indeed verifies that [R(u),A® 1+ 1 ®A] =0 for any A € gl(n).
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It is common to multiply it by u and use the non-singular solution
Ru)=u+nP. (3.11)

The classical r matrix encoded the behavior under the Poisson bracket of the Lax matrix. Similarly, the
quantum R matrix characterized the commutator between the coefficient of the Lax matrix.

Quantum Lax matrix and the monodromy matrix [90, 100]  For a fixed R-matrix and a given Hilbert
space 4, one can look for solutions L of the quantum counterpart of the quadratic algebra (2.50)

Rlz(u, V)LlQ(u)LzQ(V) = LZQ(V)LlQ(u)Rlz(u, V). (312)

Loq(u) is the quantum Lax matrix, it is a n x n square matrix in the auxiliary space V, ~ C" whose
entries are operators on the Hilbert space 5, symbolized here by the index Q. The indices 1 and 2
label two copies of the auxiliary matrix spaces V, >~ C". Identifying the matrix entries from the left and
right-hand sides of (3.12), one gets n? algebraic relations between the Lax matrix entries often referred
to as the Fundamental Commutation Relations (FCR). This forms a Yang—Baxter algebra associated to
the R-matrix. The generators are the Lax matrix entries, which are represented as operators over the
space s, and the structure constants are given in terms of the R-matrix coefficients. We describe in
greater details the mathematical structure of these algebras, and especially the Yangians of classical Lie
algebras, in appendix A. It is worth noting that the classical limit of (3.12) gives the quadratic Sklyanin
bracket (2.50).

Quantum inverse scattering method (QISM) Let us now consider a quantum system on a one-
dimensional lattice of length N with Hilbert space 5 = ®£’:1Vk. A quantum counterpart to the classical
inverse scattering method exists and is unsurprisingly called the quantum inverse scattering method. Let
46, and Ly (u) be respectively the Hilbert space and the Lax matrix at sites k € [1, N], where the Lax
matrices share the same auxiliary space V ~ C" and verify (3.7) with the same fixed numeric R-matrix
R(u). A nice feature of (3.7) is that it behaves well under tensorization of multiples copies of L. It is similar
to the property of composition satisfied by Wilson lines in the continuous case. Indeed, as operators
actingon Vo ® V3 ®V,. 0V,

Rop(w, v)Low (W) Log (W)L (v)Lg (v) = Rop(wt, V) Lor (1) Ly (V) Log () L (v)
= Log(v)Log (w)Rop (1, v) Loy (1) Ly (v) = L (v) Lo (1) Lgg (v) Log ()R (u, v) (3.13)
= Lox(V)Lge (V) Lok (1) Log (u)Rog (1, v).

This can be shown as a consequence of the Hopf algebra structure of the Yang—Baxter algebra. So from a
solution Ly;(u) € End (V, ® V;) of (3.12), one can construct the monodromy operator

MO(U) = LON(U) e LOl(u) € End (VO ® %), (3.14)
in a way similar to the classical construction (2.74), which verifies
Rlz(u - V)Ml (U.)Mz(V) = Mz(V)Ml(u)Rlz(u - V). (315)

The n? relations defining the algebra between the monodromy entries M; j(u) are obtained by identify-
ing the left and right-hand sides of (3.15). For the usual gl(n)-invariant R-matrix, these fundamental
commutation relations write

Vi, j ke € [1,n], [My(u), Me()] = unTv(Mkj(v)Mw(u) — My ()M (v)). (3.16)
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Conserved quantities are constructed from the quantum Lax matrix through the transfer matrix, which
is the trace of (3.14) on the auxiliary space

T(U) = tro Mo(u) (S End %, (317)

with o = ®£’:1%k. Thanks to the Yang-Baxter equation, with R invertible, the one-parameter family of
transfer matrices {T(u)}|,ec is commutative [80, 85, 100, 102, 103]

[T(w), T(v)]=0, (3.18)

so that transfer matrix coefficients in its u expansion are a set of mutually commuting operators. When
the Hamiltonian is a function of them, this defines a family of conserved charges, which can be leveraged
to diagonalize the Hamiltonian: they are all diagonalizable in the same basis.

The interest of this construction truly reveals in chapter 4, where the monodromy entries and theirs
algebraic relations are used to generate the eigenvectors of the T (u) family. This constitutes the direct
problem part of the QISM, namely the construction of commuting integrals of motion and generators
of the Yang-Baxter algebra that surround them. To solve the dynamics, one also has to deal with the
resolution of the quantum inverse problem, namely the reconstruction of local quantum operators in
terms of the monodromy matrix entries M;;(u), i.e. the scattering data. The explicit resolution for gl(n)
models will be given in section 3.3.3 below. Before this, we consider fundamental models that can be
described in the QISM framework and are at the center of this thesis.

3.3 Spin chains

Spin chains are 141 discrete quantum models on the lattice. Their studies have thrived in the integrable
world, and they are at the center of this thesis. Note that we already presented a chain of classical spins
in 2.2. The quantum XXX 1/2 spin chain is a simple yet non-trivial 2V-dimensional quantum model that is
fundamental in the study of integrable models.

3.3.1 The XXX Heisenberg 1/2 spin chain

Most simple examples of non-trivial spin chains are the s[(2)-invariant ones, with usual 1/2 spins at each
site that are linear combination of up |T) and down ||) states. They have been introduced by Heisenberg
in [69], and are nowadays called after his name.

The model and its Hamiltonian  Consider a one dimensional lattice with N sites equipped with 1/2
spins. We represent them over C? with |1) = ((1)) and |]) = ((1)), and note S} =1/207, with a € {x, y,z},
the spin operators at site k. The operators o}’ € End(C?) are the usual Pauli matrices

01 0 —i 1 0
X = Y = S
o (1 O)’ o (i 0 ), o (O _1). (3.19)

The Hilbert space V. at each site is the s[(2) fundamental representation space V, = C2, so that the total
Hilbert space is 7 = ®_ V; = (C*)®N of complex dimension 2.

Each spin interacts with its two nearest neighbors by a spin—spin interaction, and the chain closed on
itself with periodic boundary conditions by identifying site N + 1 with site 1 such that Sy, =S . The
Hamiltonian has therefore the following form

N N
H=C+J ) 881 =C+J ). > SIS, (3.20)
k=1

k=1a=x,y,z
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The constant C shifts the overall spectrum and may be chosen at convenience. The constant J quantifies
the spin—spin interaction. Whether it is positive or negative, it favors anti-aligned or aligned adjacent spins,
changing the energy ordering of the eigenstates of H and its fundamental statement. All the coefficients
in front of the S;'S{, | are equal (to J), hence the name XXX for this model. The total spin operator is
defined in component as

Va=x,y,z, S%=)> L (3.21)

The components S* are representations of the Pauli generators of the s[(2) Lie algebra over the Hilbert
space # = (C2)®N, up to a 1/2 coefficient. The model is sl(2)-invariant since

Ya=x,y,z, [H,S*]=0. (3.22)

QISM description Let V, = C2 be the auxiliary space, the same as the one on each site. The Lax
matrix at site k is

Lo (u) = u+nPo, (3.23)
where Py, = sz 1 1(;)) ® e(k) is the permutation operator on V, ® V. Note that since
P:1(1+ Z G“®a“> (3.24)
2 £ ’ ’
aA=X,Y,%
one has :
u+-5+S; ns,
L = ( +- ) + Sio 2 Tk k ) 3.25
o) ={u | Z ( ns; utD+S (3.25)
a=x,y,z 0

where Sif =S¥ +iS) = 3(o¥ + 07 ) = 0. This is the basic building block of the integrable structure of
the XXX chain.
Writing

Loe = L3)el), (3.26)

with e ) the elementary matrices of V, the commutators between the Lax matrix entries L(k) are
[P, 0] = = (ef e - £)wePm)), (3.27)

while [Ll(.;), ng};)] = 0 for n # m. They are written in the compact Yang-Baxter form
Rap(u—=v)Lan(@)Lpn(v) = Lpp(v)Lan(WRap(u—v), (3.28)
using the gl(2)-invariant quantum R-matrix
R(u) =u+nP. (3.29)

The matrix representation of R in V® V ~ C* is

u+n 0 O 0
0
R(u) = v (3.30)
n u 0
0 0 0 u+n

Immediately, one remarks that Lg,(u) = Ry, (u), so that (3.28) is nothing but a rewriting of the Yang—
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Baxter equation (3.8) verified by the R-matrix.
The monodromy of the periodic N-site XXX chain is constructed by taking the ordered product along
the auxiliary space of the Lax matrices

M(u) = LON(“)---L01(U)- (331)
The Yang-Baxter equation (3.28) replicates to the monodromy, and one has
Rab(u - V)Ma(u)Mb(V) = Mb(V)Ma(u)Rab(u - V)) (3.32)
with M,(u) = M) ® 1 and M,(u) =1® M(u) in V,®V, ~V,®V,~C* or in components
n
[ M;; (W), Mgy ] = uTv(Mkj(V)Mie(u) — MM (v)), (3.33)
with the decomposition on the auxiliary space
O\
M(u) = M;;(u) e (3.34)

Since the monodromy is a 2-by-2 matrix in the auxiliary space, it is customary and useful to write it as
the following matrix in the auxiliary space

_(A@) B(u)
M) = (C(u) D(u))o. (3.35)
The transfer matrix
T(u) =trg M(u) = A(u) + D(u) (3.36)
commutes with itself
[T(w),T(v)]=0, (3.37)

by virtue of (3.32). Expanding T in u by
T(u)=F; +Fyu+---+Fyu" 1 +uV, (3.38)

the F; forms a commutative family of N operators.
Eventually, we should find the XXX Hamiltonian as a function of the F; to justify this whole construction.
It appears to be constructed by F,, but let us first compute F; = T(0). One has

T(0)=n"Py...Py_iy=:m"U with USZ=S U, (3.39)

so NN Q, = U € End(+#) is the right-shift operator in the number of sites. By definition, the momentum
operator P produces an infinitesimal shift along the chain, therefore

U=e?, (3.40)
and
P=—iln(n™NT(0)). (3.41)
Now,
d N N
Fy= ET(M) =" Zplz o+ Pk Pyoan = n_lT(O)ZPkk+1, (3.42)

k=1 k=1
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where by the use of (3.24), we identify the Hamiltonian and write

F, = %?(N +4J71(H - 0)). (3.43)

One finally expresses the Hamiltonian (3.20) in terms of the transfer matrix with

JYH-C)= gdd—u InT(w)|,_,— %. (3.44)

Using the QISM formalism, one has constructed N commutative conserved charges of the XXX model,

collected in one operator, the transfer matrix (3.36), which profit of a rich surrounding Yang-Baxter

algebraic structure given by (3.32)—(3.33) that can be leveraged to solve the system. In chapter 4, we

will diagonalize the T (u) family (3.36) using the Algebraic Bethe Ansatz, obtaining the spectrum and
eigenstates of the XXX model.

Physical realization of the Heisenberg spin chain

The KCuF; crystal has a fully three-dimensional structure, but displays magnetic properties characteristic
to one-dimensional antiferromagnetic magnets. It appears that the Cu?>* octahedral orbitals are deformed
by the Jahn-Teller effect, resulting in strong magnetic interactions along one axis of the crystal, while
magnetic interactions in the perpendicular directions are very weak due to a poor overlap of the orbitals.
The magnetic behavior of the KCuF; crystal is therefore effectively one-dimensional: the ratio between
the longitudinal and orthogonal interaction constants is close to 0.027 [261]. Moreover, the Cu®* ions
are effective 1/2 spins, in interaction mostly with their nearest neighbors along the chain axis.

Hence, the description of the magnetic property of the KCuF5 compound is well achieved by a long
Heisenberg XXZ chain embedded in a uniform external magnetic field h= hé, with Hamiltonian

N

H e = ~h8: + 24 (05071 + 007, + A(030t,, — 1)), (3.45)
k=1

where A quantifies the anisotropy of the spin coupling in the z direction. It is very close from 1, so the

XXX Hamiltonian (3.20) is a very good approximation of (3.45).

Ideally, studying the finite chain and then taking the large chain limit N — + o0 should extract the
physical magnetic properties of KCuF5; from a microscopic model [143]. It is sufficient to take a very
long but finite chain—for example N ~ 500—to get a good approximation converging in 1/N of the
dynamical structure factor.

The #(gl(2)) As we see from the above construction, the QISM promotes the use of the monodromy
entries over the local spin operators for the study of the XXX chain, so it is worth describing their algebra
in greater details.

Here we deal with a representation of this algebra over ¢, described by the 4 generators M;;(u) €
End(2#) and the 16 relations (3.33) obtained by identifying matrix elements by matrix elements the
two sides of the Yang-Baxter equation (3.32). We identified this to be a representation of a Yangian
algebra [117], and more precisely the Yangian subalgebra % (sl(2)) c % (gl(2)) associated to the gl(2)
Lie algebra. Appendix A provides a summary of Yangians and their properties.

Note that the one-site Lax matrix Lg;(u) already defines a representation of #(gl(2))—over V; ~
C?—thanks to equation (3.28). In fact, it is only because the Lax operator (3.23) verifies the YBE that
the monodromy satisfies it as well. This is well explained by the Hopf algebra structure of #(gl(2)): the
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comultiplication A : %(gl(2)) — #(gl(2))® ¥ (gl(2)) is an algebra automorphism. Using the fundamental
evaluation representation pfz over C? and starting from the one-site YBE (3.28), (psz_1 ® psz) oA
applied on the generators of #(gl(2)) implies that (3.28) also holds with the substitution Lg;(u) —
Loj(u;j)Lgj—1(uj—1). This construction repeats until one obtains the monodromy corresponding to the
chain of length N, and with u; = u— &; we recover the inhomogeneous system.

The Yang-Baxter equation is ultimately what provides quantum integrability to the system: it allows
the construction of a commuting family of operators. Now that we have identified the algebra behind it,
we can take a constructive point of view. Starting from Yangian algebras #%/(A), with A a given algebra, or
other similar algebras whose relations between generators packs in a Yang-Baxter form, a representation
of % (gl(A)) over a Hilbert space 5# shall grant a quantum integrable model. We elaborate on this in a
forthcoming section, with the gl(2) chain with spin s > 1 and gl(n) spin chains.

XXZ and XYZ models A generalization of (3.20) is achieved by allowing different coupling constant
J, along the a = x, y, z directions of the spins

N
H=C+), > J, 5S¢ (3.46)

k+1°
k=10a=X,y,2
The generic case J, # J,, # J, is the XYZ model, and two equal constants J, = J,, # J, give the XXZ
model.

The R and Lax matrix associated to these models are of gl(2)-type, but differ a bit. The 6-vertex
R-matrix solution of the YBE is associated to the XXX and XXZ models and is of the form

pu+n) O 0 0
0 o) ¢(n) 0
R(u = s (3.47)
) 0 e(n) ¢u) 0
0 0 0 ou+n)
the ¢ function being
u for the XXX model,
pu)=+ (3.48)
sinh(u) for the XXZ model,

where sinh(u) is the hyperbolic sinus function. The XXX and XXZ R-matrices are respectively of rational
and trigonometric form. Identifying the spin 1/2 operators in each 2 x 2 block of the R-matrix, the one-site
Lax matrix of the fundamental model is

2 —
Lox(u) = (‘P(u Tp "(77; )25;; nS;) o .:_P;T/’)ZSE nSi)) . (3.49)
The 8-vertex R-matrix associated to the XYZ model has the form
a(u) O 0 o)
R(w) = 0 b(u) c¢(wy O (3.50)

0 c¢w bw o |
o(u) O 0 a(u)

where the a, b, ¢, 0 are rational expressions of Jacobi theta functions 6;(ulkw), j € [1,4], k =1,2 with
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quasi-periods 7 and kmew [262]

_ 204(n|2w)0; (u +n[2w)04(ul2w) _ 20,(M]2w) 0 (u|2w)04(u + n|2w)

() 600020 W OE0R) o
) = 2200200 0f20) 26, (012006 + 2600, (ul26) '
B 6,(0]c)6,(0]2w) ’ B 6,(0]w)6,(0[2w)

It is called an elliptic model.
From a quantum group point of view, the XXX model is associated to the Yangian algebra #/(gl(2)),
the XXZ model is associated to the quantum affine algebra U,(gl(2)), and the XYZ model to the elliptic

quantum algebra Uq’p(g/l(\Z)) [263, 264].

3.3.2 Inhomogeneous twisted gl(n) spin chains

As we see from the QISM illustrated on the common XXX spin chain, the fundamental objects of quantum
integrable models are the R-matrix and the monodromy matrix who verify the Yang-Baxter equation,
and the underlying algebra structure is a Yangian one.

The construction can be extended to a wide class of R-matrix and monodromy matrix, while keeping
the Yang-Baxter equation verified, ensuring the integrability of the one-dimensional quantum system
defined by the transfer matrix.

Starting from the XXX model, this is done in several ways, such as i) adding inhomogeneities at the
sites of the chain ii) imposing other boundary conditions at the edges of the chain iii) having different
quantum objects at each site along the chain iv) allowing other symmetry algebras than % (gl(2)).

i) Inhomogeneities The Yang-Baxter equation (3.8) with site-dependent inhomogeneities along the
chain. Indeed, the following equation holds

Ryp(u, v)Ryj(u, E)Ryj(v, &) = Ry;(v, §j)R1j (1, Ej)R12(u, v), (3.52)
at any site j € [1, N]. Therefore, one can choose a different & ; in the Lax matrix at each site,

Lox(u) =Roi(u, &x), &r €C, (3.53)

(which manifest as a shift in the spectral parameter for R-matrix of difference form) while keeping (3.28)
verified, so the inhomogenous monodromy

M(u) = Loy(w)...Ly; (w) (3.54)

still verifies (3.15), and the transfer matrix still defines an integrable model.

The &; are called the inhomogeneities parameters; they may be kept in generic position. In the
1 — 0 limit, the inhomogeneous XXX spin chain gives the Gaudin model [130, 265, 266], where the
inhomogeneities & are interpreted as the particles’ positions [ 191]. The possibility to add an extra degree
of freedom at each site may prove useful in some calculation, where the analytic dependence in the &;
provides insights in the mathematical structure of the quantity at hand. This comes at the price of an
additional step to recover a meaningful physical model in the end: performing the homogeneous limit
E1,..., &y — &, with £ =0 for example, in the final formulas.

ii) Boundary conditions For the above XXX chain, periodic boundary conditions have been imposed
by identifying the quantum space at site N + 1 with the one at site 1, but other boundary conditions that
keep the integrability may be specified. Rather that making the plain identification, one may identify the
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spaces Vy,; and V; up to an isomorphism V; ~ Vy_; making the chain quasi-periodic. This is encoded
by a twist matrix K € End(V), detK # 0, and the Hamiltonian then becomes

N—-1 N—-1
H=C+J > 881 +J8y Sys1 =C+J D 8- 8y +J8y- (K 8,1k, (3.55)
k=1 k=1

The monodromy is twisted as well by
MK(U) =K0L0N(u)...L01(u), (356)

so that the transfer matrix TX (u) = try MX(u) gives the proper Hamiltonian (3.55) by (3.44). Note that
since K € GL(2),

[R(u),K ® K] =0 or written differently R;5(u)K;Ky = K5K 1R15(1), (3.57)

so the Yang-Baxter equation (3.32) indeed holds for MX(u) as well, and the whole scheme is preserved
for the twisted XXX chain. K is interpreted as a Lax matrix with a trivial quantum representation, or
simply as an element of the group under which the R-matrix is invariant, here GL(2).

In this thesis, the discussion focuses solely on quasi-periodic models, but other boundary conditions
may be imposed while keeping the system integrable. The reflection algebra [267] allows for instance
the construction of open spin chains—spin chains that are not closed on themselves and have non-trivial
magnetic fields applied on the boundary sites. See for example the thesis [268] as a resource for SOV
techniques in quantum integrable models with open boundary conditions.

iii) Representations on the quantum sites Let the representations (p, V;) at each site be the s[(2)
spin s ones, with s, € Z- /2, and V; a space of dimension 2s; + 1. The s, may be different from each
others. The sl(2) generators

[h,x*]=#+x*, [xT,x"]=2h, (3.58)

are represented over V = C*+*1 explicitly as

Sk 0 Jn(]-)
Sk—].
pi(h) = _ P =pp(x7) = _ : (3.59)
- jn(zsn)
Sk 0

where j,(a) = v/a(2s, + 1 —a). Keeping the auxiliary space V, to C2, the Lax operators is then written

2
Log(w) =u+n D ei @ prle;) = (3.60)

i,j=1

(u+§+pk(h) npr(x7) )
nek(xt)  ut+g—pe(h));

and verifies (3.28) with the 4-by-4 R-matrix (3.30). The construction of the monodromy and transfer
matrix is the same as above, exhibiting form T(u) a commuting family of N operators acting on 3¢ =
N,V ®£’:1(C25k+1. Any Hamiltonian chosen as a function of these N quantities makes the model
integrable.

Remark that the auxiliary space has been hold to the fundamental representation C2 here. It is possible
to make this construction with a different representation (pg, V) of s[(2) for the auxiliary space, because
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the Yang-Baxter equation R;5,R3R93 = Ro3R 3R, holds at the virtual algebra level for

2
Ru)=ul®1l+n Z eij ®ejj, (3.61)
i,j=1

where the e;; are the unrepresented elementary generators of the gl(2) algebra.

When all the quantum spaces are equipped with the same representation (o, V) with dimV = 2s +1,
one gets the spin s chain. Taking the same representation on the auxiliary space is then beneficial, since
we recover the desirable feature that Lax matrices degenerate to the permutation operator on V® V

dimV

Lap(E;) =Rap(0) =1 Y, ple;;) ® ple;i) = nP'®". (3.62)
i,j=1

It is also possible to put representations of different spin values at each site while keeping the model
integrable.

iv) Other symmetry algebra Two equations are at the core of the description of quantum integrable
system by the quantum inverse scattering method

RioM My = MyMqRy, (3.63)
R12R13R23 = Ry3Ri3R 5. (3.64)

On page 45, we identified that the XXX spin chain of length N is obtained as the N-fold tensor product
of fundamental evaluation representations of the Yangian #(gl(2)). The two RRR and RM M equations
originated naturally from this underlying algebraic structure.

Starting from similar algebras, different integrable models are constructed. In appendix A, we review
the mathematical structure of Yangian algebras % (gl(n)), and show how spin chain models are obtained
as representations of these algebras.

3.3.3 Reconstruction of local spin operators

The QISM formalism puts the monodromy entries at the center of the stage with their rich algebraic
structure. But they are highly non-local quantities, being a sum of products of the local spin operators
along all the sites of the chain. A quick induction shows that they are a sum of 2V~! terms, where each
term is a product of N local one-site operators.

Can one express the local one-site spin operators S]:.t, S]Z.' , in terms of the monodromy entries A, B, C,
D? This is actual the inverse problem. In the classical case, this solves the dynamics by expressing the
initial dynamical variables in terms of the action—angle variables of the system.

The solution was obtained by Maillet, Kitanine and Terras, first using the Drindfel’d twist and the
F-basis [104] for the XXX and XXZ chains. This was extended to a large class of chains in [106], where
formulas are obtained in a more direct way which bypass the use of the F-basis. These results have been
generalized to the supersymmetric case in [107].

The reconstruction of local operators of fundamental gl(n) chains is surprinsigly simple: local spin
operators at site n are equal to a corresponding monodromy entry dressed by a product of transfer
matrices. Specializing in the gl(2) case, the proof is rather short. Let us consider the operator S = o7
Then, by (3.31),

tro ()M (0)) = eV U = 07 T(0), (3.65)
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while using the matrix representation (3.35) the trace gives

© U L
tro ()M (0)) =t (* B 0)) = B(0). (3.66)

The spin operator on the first site of the chain is therefore simply
S, =B(0O)T(0)™. (3.67)

The expression at an arbitrary site n is obtained by shifting the chain using the U operator constructed
in (3.39)
S =T(0)" 'B(0)T(0) ™" (3.68)

This computation extends to the XXZ and XYZ chains and also to twisted inhomogeneous gl(n) models
with n > 2, making this powerful result very general

n—1 n -1
ef?) = (l_[ TK(fk)) tr, (eﬁ?)MK(En)) (l_[ TK(Ek)) . (3.69)

k=1 k=1

Formulas for gl(n) models, higher spin chains and gl(m|n) supersymmetric models are similar [ 106, 107],
since this computation relies mostly on the existence of a point u, such that L, (ug) o< Pyp.

Like in the classical case, the quantum inverse problem allows for computing the dynamics, namely
form factors and correlation functions of these spin chains [257]. We will review the results enabled by
its resolution in the next chapter.



Chapter

Algebraic Bethe ansatz tech-
niques

In this chapter, we describe the techniques of the Algebraic Bethe Ansatz (ABA) for the gl(2) mod-
els [100], as well as its Nested version (NABA) for higher rank models [129]. The ABA idea is to extract
creation and annihilation operators from the off-diagonal elements of the monodromy matrix, and create
the eigenstates of the transfer matrix by action of these creation operators on a pseudo-vacuum reference
state. This gives an ansatz form for the eigenstates, namely we search for eigenstates of the form of Bethe
vectors. The action of the transfer matrix on Bethe vectors can be computed by using the Yang-Baxter
algebra of the monodromy entries [99]. Unwanted terms arise, and are cancelled by requiring the spectral
parameters in which the operators are evaluated satisfy a set of tightly coupled equations, the Bethe
equations. This line of research has proven extremely successful and rich of results in the past decades.
We close the chapter with a review of the ABA results towards the computation of correlation functions,
but also highlight the limitations of this framework justifying the developments of other techniques for
the study of quantum integrable models.

4.1 The gl(2) model: from the spectrum...

We make use of the notations introduced in Section 3.3.1.

Fundamental commutation relations  First, let us explicit the FCR (3.33) of the gl(2) Yang—Baxter
algebra in terms of the monodromy matrix elements A, B, C, D introduced in (3.35).

[A(w),A(v)] =0, (Y.
[B(u),B(v)] =0, (Y.2)
[Cw,c()]=0, (Y.3)
[D(w),D(v)] =0, (Y.4)
AW)B(v) = f(v,u) B(WA(u) + g(u, v) B(wA(v), (Y.5)
Aw)C(v) = f(u,v) C(V)A(u) + g(v,u) C(u)A(v), (Y.6)
B(wA(W) = f(v,u)A(v)B(u) + g(u, v) A(u)B(v), (Y.7)
B(w)D(v) = f(u,v) D(v)B(u) + g(v,u) D(u)B(v), (Y.8)
C(WAW) = f(u,v)AW)C(u) + g(v,u) A(u)C(v), (Y.9)
C(w)D(v) = f(v,u)D(v)C(u) + g(u,v) D(u)C(v), (Y.10)
D(w)B(v) = f(u,v)B(v)D(u) + g(v,u) B(u)D(v), (.11
D(w)C(v) = f(v,u) C(v)D(u) + g(u,v) C(u)D(v), (Y.12)

51
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[A(w), D(v)] = g(u,v) (C(v)B() — C(u)B(V)), (Y.13)
[B(w), C(v)] = g(u,v) (D(V)A(W) — D(wAM)), (Y.14)
[C(w),B()] = g(u,v) (A()D(w) —AW)D()), (Y.15)
[D(W),AW)] = g(u,v) (BOD)C(W) = BW)C(»)). (Y.16)
with
fly= 2UZYED oy 2D @1
eu—v) ou—v)

The ¢ function depends on the model at hand as in (3.48).

The main idea of the Bethe Ansatz in its algebraic form is to generate the eigenstates of T as the
descendants of a reference state |0) by the successive action of some creation operators, yet to be defined,
but available somewhere in the Yang—Baxter algebra. In a way, this is a generalization of the harmonic
oscillator treatment where the eigenstates a'...a"|0) of the particle number operator N = a’a are
created by the successive action of creation operators on a pseudo-vacuum state |0), with the algebra

-

[a,a"t|= 1, [N,a]l=—a, [N,aT]=a’, (4.2)

and
alo) =0, a'|0)#o. (4.3)

Since the underlying Yang-Baxter algebra of the model has a richer structure, the setting is more involved,
and the actual computation of the eigenstates require more work.

A toy example

Let (J;, 0;) be the action-angle variables of a classical integrable mechanical system. We have {J;, 6;} = &
Under quantization, the Poisson bracket becomes a commutator

[Ji, Ok] = lh6lk (44)

Let us note Ay :=J; and By, := e!P% b, e C, for a fixed k. Since [V, 671 = aih@lf_l, we have

+O<>a

[Ax, Bl = Z pr [Jk’ 6¢ ]

a=0

; 4.5)
:_bkhz 1)'961 !

= _bkth'
Let | ) be an eigenstate of A; of eigenvalue A. The action of By on |¢) generates a new eigenstate of Ay
AB @) = BrAr |p) —hbiBy [¢) = (A — b)) By [o), (4.6)

of shifted eigenvalue A — bih, provided that By |¢) # 0. By thus realizes a shift operation on the A
spectrum, meaning that the choice of the parameter b; defining By, is a rather subtle issue.
Consider now two operators A(u) and B(u) satisfying an exchange algebra

AW)B(v) = B(u,v)B(v)A(u), 4.7)
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for some u,v. Then for |¢) an eigenstate of A of eigenvalue A(u), the action of B generates a new
eigenstate
AWBO) l¢) = pu, IAWBG) l¢), (4.8)

whose eigenvalue is obtained from the original A(u) one by a multiplicative coefficient (u,v). One
should check that (4.8) is a non-zero vector, though.

This motivates the use of the off-diagonal elements of the monodromy matrix to generate the eigen-
vectors of the transfer matrix from a first known eigenstate |0). Indeed, we know from the quantization
procedure that they should contain in some form the quantum counterparts to the angle variables, which
in classical gl(n) models are generated by off-diagonal elements of the monodromy matrix, see page 31.

Bethe states and ABA calculation Let us go back to the gl(2) model with periodic boundary conditions.
Let |0) € S be a reference state verifying

A)|0) =a(w)|0),  D(u)|0) =d(u)|0),

(4.9)
B(u)|0) # 0, C(w)[0) =0,
and consider a Bethe state of level m
B(uy)...B(y,,)|0), (4.10)
where uy,...,u, are m complex numbers. The state |0) is therefore an eigenstate of T(u) = A(u) + D(u)

and shall play the role of the highest weight state, such that its descendants (4.10) by the creation operators
B(uy) are eigenstates.

The action of A(u) over this state is easily computed thanks to the above FCR’s. Shifting A(u) to the
right by making it pass through all the B’s to finally act on its eigenvector |0) produces 2™ terms, that
re-sum in only m + 1 different contribution thanks to the commutation of the B’s

AWB(uy). .. B(uy)10) = AgB(uy)... B(up) [0) + > AgBaB(wy)... B(ug)...Bun)[0),  (4.11)
k=1

where the hat — means the concerned term is omitted. The A coefficients is given by following only
the direct term in the FCR (Y.5) until A(u) acts on |0), and therefore is

Ao =a()] | f,w. (4.12)
(=1

A, is obtained by using the first indirect term once and then only the direct terms to push A(u;) to the
right and make it act on |0), so

Ay = a(uy)guy) | [feu). (4.13)
(=2

Because the B’s commute, the A; coefficients are obtained simply by substituting u; — uy, and eventually

AW)B(uy)...B(uy,)0) = a(u)l_[f(ue,u)B(uﬂ.--B(um) |0)

(=1

+ > a(u)guw,u) | £ e u) Ba)Bwy)... Bluy). .. Bluy)10).
k=1

=1
(#k

4.14)
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The action of D(u) is computed similarly

D(u)B(uy)...B(u,)|0) = d(u)l_[f(u, ug)B(wy)...B(uy,)|0)

(=1
(4.15)
- Z d(uk)g(uk,u)ﬂf(uk,uz)B(u)B(ul) B(ug)...B(uy) 0),
l;ék
and the action of T(u) on (4.10) is therefore
T(w)B(uy)...B(uy) |0) = (a(u) [ Tf@wup)+dw ]_[f(u Uz)) B(w,)...B(uy) [0)
(4.16)
+ Z a(u)g(u, uy) l_[f(uz, ug) + d () g (ug, u) l_[f(uk, up)
f;ék l;ék
x B(u)B(u;).. .B(uk) ...B(u,,)|0).
It is clear that if (4.10) is a non-zero vector, it is an eigenstate of T (u) of eigenvalue
m m
t@)=a@] [fuew)+dw] [fwu, (4.17)
e=1 (=1
as soon as the m unwanted contributions in (4.16) vanish, which is the case if the u;, ..., u,, verify the m
Bethe equations
a(u) 7oy f (e, u) 4.18)

dw) 1 fweu)

£k
Note that these condition for (4.10) to be an eigenstate of T (u), u € C, are independent of u (whenever
g(u,v) =—g(v,u)). This is good agreement with the fact that the (T (u)),ec family is commutative, and
thus diagonalizable in the same basis. Bethe vectors (4.10) whose parameters satisfy the Bethe equations
are called on-shell, in opposition with off-shell Bethe vectors if the u’s are arbitrary complex numbers.
Specializing to the inhomogeneous model, the Bethe equations and the eigenvalue associated to the
Bethe state (4.10) write explicitly

ﬁ Q,D(le g_} + 7]) go(uk—ug + ’I’))’ (419)
o Plwe—¢)) oy Pluk—ug—m)
0+£k
o(u— ou—up+mn)
t(u)—l_[w(u €]+n)]_[ (u u) +]_[so( u—¢&;) ]_[ o ”ue) : (4.20)

Note that (4.17) is then an analytic function in u, since the m apparent poles at the u, are cancelled out
by the Bethe equations. An analytic way to recover the Bethe equations is thus to require the analiticity
of the eigenvalue of generic Bethe states on the complex plane.

For Bethe state of level 1, there is only one Bethe root u; constrained only by a unique Bethe
equation (4.19). For Bethe state of level 2, the two Bethe roots u; and u, have to satisfy the coupled
system of two equations (4.19), and already the resolution is more intricate. One may try the naive
solution u; = &; — for some j between 1 and N, cancelling the LHS of the first Bethe equation, but this
imposes that ¢(uy; —u; +n) =0 or uy = &;. The corresponding Bethe state B(&;)B(&; —n) |0) vanishes,
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since B(&;)B(&; —n) = 0 in the gl(2) case’, so this solution of the Bethe equations is not admissible, in
the sense that it does not correspond to an eigenvector.

Choice of the reference state  The reference state |0) may be constructed in a tensor product form one-
site similar states. At site k, the action of the Lax matrix on the vector |0); = ((1)) becomes upper-triangular
in the auxiliary space

plutn) =
Lot (1) ]0); = ( ) 0, . (4.21)
0k )k 0 Lp(u) . )k
Hence, the action of the monodromy matrix on
N 1 1
|0) =®;_;10), = 0 ® - ® o) (4.22)
is easily computed by multiplication of scalar upper-triangular matrices
[Tezy pu—Ex+m) . Aw0) BwW)Io)
M(u)|0) = ( k=1 0) = . (4.23)
o 0 [T, e-£0), 7 =\cwioy pwioy),
The state |0) indeed verifies (4.9) by identification.
Left Bethe covectors Performing the same calculation with Bethe covectors
(0]C(vy)...C(v,), (4.24)
with (0| such that
(0]C(u)#0 and (0|B(u)=0, (4.25)

one proves they are eigenvectors of T (u) if the v; verify the same Bethe equations (4.19). The computation
of the scalar products between Bethe co-vectors and vectors

o Jeop [ [B@o10), (4.26)
j=1 k=1

is of prime interest for the computation of correlation functions. We elaborate on this in the next section.

Energy and momentum of the eigenstates  The physical characteristics of the eigenstates are deduced
from equations (3.41) and (3.44) in the homogeneous limit &; — 0. Noting

B(@) := B(u;)...B(u,,)|0), 4.27)
we have
PB= 3 po(us) B polw) =i 22D, azg)
/ m 2
J 1 (H — C)B(l_l) = —N#B(ﬁ) + é Eo(uk)B(l_l), SO(U) = % (4.29)

IThis can be proved by using the fact that (o7)? = 0, and using the reconstruction of o by the quantum inverse problem
which can be done in two ways: from B(&;) and from B(&; —n) [104].
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Hence the Bethe roots sums independently in individual contributions to the momentum and energy
of the eigenstate, justifying a quasiparticle interpretation: each B(u;) is a creation operator spawning
a quasiparticle of momentum py(u;) and energy £,(u;) out of the pseudo-vacuum |0). Energy and

momentum are linked through
¢(n) dpo w
2 du "

where the spectral parameter u plays the role of the quasiparticle rapidity”.

go(u) =1i (4.30)

The fundamental state [v), is the lowest energy state. It is not necessarily the reference state |0) as
one can see from (4.29).

Limitations of the ABA  The Bethe equations are a system of m fully coupled polynomial equations in
the uy; their resolution is far from trivial. Counting the solutions of the Bethe equations which provide
non-zero Bethe eigenstate of the transfer matrix is a difficult task. Moreover, the completeness of the Bethe
equations has to be verified: since we impose the form of the eigenstates by ansatz, there is no guarantee
we obtain all the eigenstates of T in this way. Completeness of the Bethe equations was investigated
in[172-174, 212, 217, 269], and in particular was proved for the XXX chain in [ 174]. It remains an open
problem in the general case, though recent work from Chernyak, Leurent and Volin seems to provide new
insights [175]. Another problem is the existence of a reference state |0) from which the eigenstates are
constructed. For not so complicated models such as the antiperiodic XXZ chain, such a state does not
exist, so the ABA fails straight from the beginning.

4.2 ...to the correlations functions

The Bethe Ansatz has given access to the spectrum and the left and right eigenstates of the model. But
we would like to extract more information and compute all meaningful physical quantities from the
integrable structure of the model, namely compute the form factors and correlation functions of the local
spin operators S%, a € {x, y,z}, ke {1,...,N}.

Eventually, the building blocks of these quantities are scalar products between off-shell and on-shell
Bethe states. We will describe their computation first.

Scalar products (Slavnov’s overlaps) Scalar products between on-shell/off-shell Bethe states have
been characterized extensively in the literature. Let

Sulush, () = O] Jew) [ [BAp10), (4.31)

j=1 k=1

with {14, } solutions to the Bethe equations. For the gl(2) case, the computation (4.31) amounts to make
the C operators from the Bethe covector pass through the B operators of the Bethe vector until they
hit the reference state |0), on which their action vanishes. Many additional terms arise in this process
because of the form (Y.15) of the commutator [C(u), B(v)]. It appears that the final result is expressed
concisely using determinants. A first step was obtained by Slavnov [132] who derived the following
determinant formula

det H({;}, {A})

So({ui}, ) = , 4.32

(s} (i) [Tet—un ] Tes—2a) (*:32
j>k a<f

ZFor the XXX model with n =i, one gets py(u) =—iln (u+mn)/u =....
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where H is the m x m matrix of elements

_ o) _ _ -
ab—(p(la_ub)(a(ub)gtp(kk up +1n) d(ub)gwkk m n))- (4.33)

His demonstration also proved the symmetry in the Bethe roots of the scalar products: we have S, ({u;}, {A}) =
Sm({Ax}, {u;}), where the A, verifies the Bethe equations.

This result had been refined ten years later by Maillet, Kitanine and Terras [ 104, 105], when they
obtained (4.32) in another manner, and identified that it could be rewritten in a ratio of two determinants

det T({u;}, {Ax})

Sm({ui}, {A}) = , (4.34)
il V30 = Geev (g, ()
where 7 and V are the m x m matrices
1
Tap = t(uy, {A and V, =—1—. (4.35)
b= 3 (wp, {Ax}) b= =2

The function t(u, {A;}) is the eigenvalue of the transfer matrix T (u) on the on-shell Bethe state ]_[km:1 B(2;) |0).
Remark that on-shell Bethe states with a different number of excitations, i.e. a different number of Bethe
roots, are orthogonal (for periodic boundary conditions).

A key ingredient in their derivation was the use of the F-basis [270]. In the F-basis, the monodromy
entries B(u) and C(u) write as a sum of only N local, one-site terms, dressed by a tensor product of
diagonal operators acting on the other sites [104]. This is a huge combinatorial simplification to the
2N _term expression of B(u) and C(u) in the original spin basis |17 ... 1),...,|l{ ... |), where each term is
a product of N spin operators along the chain.

Note that the formula (4.34) is nothing but the product of a Jacobian of the transfer matrix eigenvalue
and a normalization factor. The recent article [271] gives some understanding of why scalar products have
this determinant form. It shows that the scalar products satisfy a homogeneous system of linear equations,
hence the determinant form, while the Jacobian arises from a particular property of the eigenvalue t(u)
— namely its linear and symmetric dependence in the Bethe roots, up to a symmetric normalization factor.
Still, it would be of great interest to understand why it is a Jacobian.

Norm of on-shell Bethe vectors — the Gaudin formula When the A; verify the Bethe equations,
Sn{AD) =S, ({Ak}, {A«}) is simply the squared norm of the Bethe vector (4.27). The formula (4.34) is
then reducible and can be written as a unique determinant, already conjectured by Gaudin [272] and
later argued by Korepin [131]

Sm({A}) = w(n)”‘(]_[ a(lk)d(lk)) (]_[ ﬁ) det G({Ai}), (4.36)
k=1 p#q P> q

where G is the m x m Gaudin matrix of elements

N O 1 f (as M)

— n
ax'b d(la) k=1 f()'kxla)
k#a

(4.37)

Equation (4.34) gives a direct proof of this result by taking the limits u; — A; for j=1,...,m.

Form factors The gl(2) Yang-Baxter algebra (Y.1)-(Y.16) allows to determine the actions of the
A, B, C, D operators on the left and right Bethe states. On the other hand, the action of the local operators
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Sy on the Bethe state is not immediate. Thankfully, they are reconstructed rather easily from the A, B, C, D,
see page 49.

A tedious but straightforward induction computation give the actions of A, B and D on generic Bethe
covectors [99, 257]

m
m+1 l_[(P(ul — Uk +T)) m+1

O] Jew) Ane) =Y alw) = o] [, (4.38)
= = l_[ e —uw) Ik
l;ék
_— H@(Uk—ul+ﬂ) _—
1] Tt Dltmy) = S day = o] Tew), (4.39)
= = [Te@-uw) &
%ii
mt1 l_[(P(uk w +n)
(ol ]_[c:(u ) Blttan) = Y d(ug) S (4.40)
= = l_[ e (ux —uy)
l;ék
m+1
[ Jo(u—uctn)
m+1 p=1 m+1
a(ug)  p#K
x>’ Ty (o] ]_! C(u;). (4.41)
K=1 M i
K/ #k l_[ ‘P(”p —uk) j;Jék,k’
=1
pik,k’

The action of C(u,,,) is simply absorbed in the Bethe vector and increase its rank by one. Similar relations
are obtained for the action of A, C and D on the Bethe vectors, so the computation of form factors may be
done by keeping on-shell states at the left or the right of the scalar products and using the scalar product
formula (4.32).

The action of the monodromy entries over on-shell Bethe states gives a sum of off-shell Bethe states.
Therefore, the computation of form factors reduces to a sum of scalar products between on-shell and
off-shell Bethe states. While the formula (4.32) for scalar products have been obtained decades ago, it
was the resolution of the quantum inverse problem, namely reconstruction of local operators in terms of
the monodromy matrix elements obtained in [104] and [106], that enabled the systematic computation
of the form factors. For periodic boundary conditions, since scalar products of states with a different
number of Bethe roots vanish, only the following form factors are non-zero

m+1 m+1

0|1_[cm])s+]_[B(Ak)|o 0|1_[cm,)s ]_[B(Akno

=1 (4.42)

<0|r[cm])sz l_[B(Akno

j=1
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For example, explicitly,

m+1 m+1
(ol ﬂ Clw)) S, ]—[B(Ak) 10} = (0| H C()) ]—[ T(£,) B(E,) H T(E)™ l_[B(Ak) 0)
j=
— ¢n—1({lk}) l_[k=1 ('D(A’k — gn + T’) (4.43)

B (D) [T, o(uj—&,+m)
detH_("-: {nu’]}: {A’k})
[Tisk k=) [ Tpsa ¢ (g —2a)’

with ¢,({A}) = 1—[;1:1 [Ti, f(Ak, &;) and H™ is the modified m x m matrix H from (4.35)

X

Hy(n, {usd {4} = Hop ({p}, {2k ) for b<m, (4.44)

) (1)
d A} =

For the detail computations and the exact expressions of the form factors, see Proposition 5.1 and 5.2
of [104].

otherwise. (4.45)

Correlation functions Let e( )

k, with ay, B = 1, 2. Recalling frorn Section 3.1, we are interested in the computation of correlation

be the elementary quantum operators acting at the quantum site

function at zero temperature of the form, the elementary blocks

<¢g|n?=1 efxi),/}k |¢g>
(welwe)

Thanks to (3.69), the local operators are reconstructed as

Fal{aw Bl vg) = (4.46)

-1

k—1 k
€ = (l_[ T(ga)) Mg, o, (E10) (l_[ T(Ea)) , (4.47)
a=1 a=1

while the fundamental state writes as an on-shell Bethe vector

=] [Bw)i0) and (y,|=coI] Jew), (4.48)
j=1 j=1

where the u j

n adjacent local operators

are solutions to the Bethe equations (4.19). So the following n-point correlation function of

(OITTIL, CCup) [Ty s, Ty Buy) o)

fn {a ’/j }: {u} = m m ) (449)
(ta B ) (OITT, Cw) T, Blu) o)
is the expectation value of a product of monodromy entries in the ground state 1—[;_11:1 B(u;)|0)
(OITTiZ, C(up) TTec Mpy e (&) TTiL, Bw;)10)
o Bl 13) =y A0 S0 Hi Mo (80 1,2, Be10) (4.50)

(] l_[}n:l C(u;) l_[;nzl B(u;)|0)

where

wn({uj})—]_[( 3 ]_[f o ) (4.51)

J:
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is a scalar coefficient given by the action of the dressing product of transfer matrices in (4.47), namely
the eigenvalue of the product (l_[2=1 T(E a))_l corresponding to the Bethe eigenstate l_[;'l:1 B(u;)|0).

From there, formula (4.50) may be computed explicitly in terms of the Bethe roots [ 105]: one makes
the monodromy entries act on the left Bethe state and produce a sum of off-shell/on-shell scalar products
of the form (4.31). This produces n sums over the Bethe parameters of the left Bethe state. In the
thermodynamic limit N — 400, these n sums become n integrals over Bethe roots that are continuous
parameters, over fixed ranges and with certain densities for the Bethe roots. The reader can refer to [105]
for explicit formula of the emptiness formation probability and more general correlation functions. Further
important objects are the physical 2-point functions <010' +1> and their arguments for m — +00 with
m/N — 0, see [105, 133, 134, 273-276].

This closes the study of the gl(2) model from the algebraic Bethe ansatz view-point. We will now
describe how it extends to higher rank models

4.3 Higher rank models

The Algebraic Bethe Ansatz method generalizes to higher rank gl(n) models where n > 3. As usual the
first step is the most difficult: most of the results have been obtained first by adapting the proofs to the
gl(3) model, before being extended to the general case.

As we will see, with the ABA for higher rank spin chains, the eigenstates are given by cumbersome
formulas. This makes without surprises the results on scalar products and correlation functions just as
intricate, despite considerable recent progress [129, 271].

The nested ABA  The above Bethe Ansatz scheme generalizes to the higher rank model: a reference state
|0) serves as a starter to create other eigenstates using creation operators derived from the monodromy
M(u).

While in the gl(2) model there was only one raising operator B(u) = M;,(u) for the Bethe states, there
are now n(n—1)/2 operators M;;(u), 1 <i < j < n, that can create excitations from a pseudo-vacuum
state |0), and n— 1 sets of Bethe roots {u(J) ..,ug)} where j=1,2,...n—1and a; € Z,.

The bar notations introduced in [158] are useful to write formulas of the NABA concisely (see
also [129]). They are as follows:

* the overhead bar denotes a set of elements: @ := {uy,..., Uy}

* individual elements of a set have a latin subscript

* cardinality is noted by a hash: #it =m

* subsets of elements are denoted by roman indices: i, i

* a overhead bar with a single latin subscript denotes a subset of cardinality #i — 1, for example
Uy =1\ uy

« therefore the set of level j Bethe roots is a) = {u(lj ), Y )} and the set of all Bethe roots is
a={am,...,a"V}

* when a quantity takes a set as an argument, the product over the elements of the set is implied:

:s
3

J

f(za") = l_[f(z,u(” fza) = fud),
' 1 (4.52)
fapa) =[] ] fow).

wel; w’Elly

.

Il
-
~

Il

Generic Bethe vectors and covectors, associated to the Bethe roots ii, are also denoted with the bar
notation as B(it) and C(ii) respectively’. Their form is now non-trivial, since the monodromy entries
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above the diagonal are not independent creation operators for the Bethe states. Moreover, the M;;(u),
with i < j, do not commute together, so in order to properly count the different Bethe states, one should
agree on an ordering in the M;; (which is not specified in the B(&) notation).

Let us be specific with the gl(3) fundamental model, the first higher rank spin chain. Noting i :=
{u(ll), e, ugll)} and v := {u(lz), e, ugzz)} the Bethe roots of order 1 and 2, respectively, Bethe vectors write

B(a,v) = Z C(dy, ty, p, V) M2 (dg)My3(d) M3 (V) [0) (4.53)
{ay, iy}
{v v}
where the sum is taken over 2-partitions of the sets of Bethe roots, with @i; Ll iiy = @ and v; U vy = V.
C(iy g, v p) is a convoluted coefficient in the Bethe roots [see 129].
Like in the gl(2) case, acting with the transfer matrix on the state B(i1) produces many unwanted
terms. These contributions cancel each other for certain values of the i parameters. Returning to the
general %(gl(n)) case, a Bethe vector B(@1) is an eigenvector of T(z)

T(2)B(i) = t(z;u)B(i1) (4.54)
of eigenvalue
t(z:0) = ) ai(2)f (2,1 )f (@D, 2) (4.55)
i=1

provided the Bethe roots @ satisfy the coupled system of n— 1 Bethe equations

a@”  f@’a) fatn,a)

Vi=1,...,n—1, — = —— —— ,
aa@@f’)  f@p.a) @, ai-n)

(4.56)

with the convention a(® = ¢ = a(. Bethe covectors C(&, 7) have a similar expression [129] and are
eigencovectors of same eigenvalue (4.55) when on-shell.
Equation (4.53) is an explicit formula among the known characterizations of the gl(n) Bethe vectors:

* the trace formula — Bethe vectors are obtained as a trace over a big auxiliary space, whose
dimension is the number of Bethe roots

* the recursion formula — Bethe vectors are expressed in terms of the ones with a smaller number of
Bethe roots

* the current presentation formula — from the current realization of the algebra, Bethe vectors are
obtained by a projection method

* the explicit formula — Bethe vectors write explicitly as a linear combination of the different possible

ordered combinations of the M;;, 1 <i<j<n.

j?
These are all equivalent presentations of generic Bethe vectors [129]. Some are more convenient to
manipulate depending on what one wants to achieve, but they all account for the underlying complexity
inherent to generic Bethe vectors — that is the correctly weighted combination of the M;;, 1 < i <
j < N supplemented by the deep coupling between Bethe roots at all level. We have not discussed the
normalization of Bethe vectors here, but note that imposing a particular coefficient for the “main term”
in the Bethe vectors is a key ingredient in the derivations of above and upcoming formulas.

Scalar products Because of the form of the Bethe vectors, computation of off-shell/on-shell scalar
products is already a really difficult task. An analog of the determinant formula (4.31) for higher rank

3We deviate from the notation B, (i1) of [129] to ease the formulas. Since the cardinality of the i) sets is fixed to m ;at
definition, it is not crucial to remind it in the Bethe vector notation — at least for our usage of them.
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algebras is not known as today, though it has been obtained in some particular cases [129, 150, 151,
277].

However, there exists a sum formula, first found for gl(2) in [131] and then generalized to the higher
rank case in [160-162]. The scalar product of two Bethe vectors is written

CEB(E) = Y, (51, ) Wpare G, 51l ), (4.57)
Lo

where c(3y, tp) is a scalar coefficient depending on the representation, and W, is computed from the
highest coefficients of the Bethe vectors.

The squared norm of on-shell Bethe vectors enjoys a Gaudin formula similar to (4.36), where the
Gaudin matrix is a block matrix consisting of n — 1 square blocks, each of them being of size m; x m; the
number of Bethe roots at level j [129].

Form factors and correlation functions Form factors

and correlation functions .
C(@) ]_[eg‘k{ 5 B(P) (4.59)
k=1

may be computed in the same fashion as in the gl(2) model. Because of the form of Bethe vectors and
scalar products, this turns out to be a tremendous task which requires the use of tricks and subtler
approaches than plain, brute force calculations. We will not linger on these and refer to article [129]
which presents a detailed summary of these techniques.

However, let us note that it could be sufficient to compute just one form factors, as the other ones can
be obtained from the form factor of a diagonal matrix element in special limits of the Bethe parameters
by the zero mode method [278].

4.4 Summary

The Algebraic Bethe Ansatz technique is a powerful method to generate eigenstates of a quantum integrable
model as Bethe vectors, using creation operators on a pseudo-vacuum state called the reference state.
While the family of conserved quantities is constructed from the diagonal elements of the monodromy,
equivalent of creation/annihilation operators are constructed from the off-diagonal ones at special points.
These points, the Bethe roots, are tightly constrained all together by the Bethe equations, which arise
from the cancellation of the unwanted terms in the action of the transfer matrix over Bethe vectors, as
in (4.16). From the Bethe vector description of the eigenstate, important results for scalar products, form
factors and correlation functions of gl(n) models have been obtained.

However, the above review pointed out the fundamental requirements necessary to implement the
ABA procedure. The first one is the necessity of a reference state, whose existence is not guaranteed
as we already highlighted. This is a great restriction that can make the ABA fail from the very start.
Moreover, being an ansatz, one should ensure that all the eigenvectors of the transfer matrix are indeed
obtained by this procedure. In particular, this requires to check that the constructed vector are non-zero.
Finally, one can mention the intricacy of the nested procedure for higher rank models, which impact the
calculations that rely on them this description of the eigenstates. Scalar products and form factors are
therefore difficult to handle in their NABA form, and this as early as the first higher rank case of the
g[(3) models. This motivates alternative approaches, such as the quantum separation of variables which
is at the center of this thesis.
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Why separation of variables seems such a promising tool for quantum integrable models? A first
strong argument for the SOV method is that it is already a canonical method for treating classical
integrable models. Besides, SOV already proved most useful at the quantum level for gl(2) models, in
particular when tackling non-trivial boundary conditions, all the more so as the ABA does not work in
some of these settings—see references [ 176, 214, 215] for antiperiodic gl(2) chains for example—even
though there are some variants such as the modified ABA that allow to tackle these models [181, 279].
Moreover, observations based mainly on numerics for small chains [ 178, 280] indicated that more compact
descriptions of eigenstates (than with ABA) could be obtained by SOV in gl(n) models, n > 3. * In the
next chapters, we present quantum SOV in details, from the classical case to the quantum higher rank
and supersymmetric chains.

4As we will see, this is indeed achieved by the SOV framework developed by Maillet and Niccoli in [225], which give the
whole spectrum. Ryan and Volin then proved that this SOV construction is equivalent to the one relying on the eigenbasis
the B(u) operator [236, 237], so that the transfer matrix eigenstate have a non-nested and compact form using a single B(u)
operator.






Chapter

Fundamentals of separation of
variables

In this chapter, we introduce the separation of variables procedure in generality for classical [34]
and quantum Hamiltonian systems [281]. We begin by a description of separation of variables as a tool
to solve the differential equations that characterize the motion in classical and quantum Hamiltonian
systems. Then, we focus on Sklyanin construction of separate variables in classical integrable models in
details [ 186-190], and show how to quantize this construction to produce a quantum SOV procedure [177,
188, 192, 193, 206]. Some limitations of the quantization procedure for higher rank #/(gl(n)) quantum
integrable models are discussed [206], and a review of SOV results of the last decades closes the chapter.

5.1 SoV in classical systems

5.1.1 Classical SoV

For a classical Liouville integrable system, we outlined in Chapter 2 that the Liouville-~Arnol’d theorem
ensures the existence of desirable canonical coordinate transformation'(q, p) — (v, F) computable by
quadrature. “By quadrature” simply means there is a sole integral to perform to compute the generating
function S(g, F) of the canonical coordinate transformation, which is the curvilinear integral (2.13)

m q
S(q,F) = f o= J > pi(a.f)dg; (5.1)
mo do i

on the curve my(qo, pg) = m(q, p) laying on the level submanifold M specified by the values f; of the
constants of the motion F;. To compute S, one should first get the actual parametrization p;(q, f) of the
canonical momenta by the g;’s over M. Since S defines a canonical transformation, these are simply the
partial differential of S with respect to the g;’s we already stated in (2.9)

as
pi(g, f) =7 (5.2)
Plugging these in (2.19) it gives
H(q g as as )—E 5.3)
1,-.., n,aql,...,aqn . .

This is known as the Hamilton-Jacobi equation — and more precisely as the restricted Hamilton—Jacobi
equation, for systems where the Hamiltonian does not involve time explicitly. It is a partial differential
equation of order 1 in n variables qy,...,q, for the generating function S(qy,...,q,, F1,...,F,). Solving
it for S provides the desired coordinate transformation and solves the mechanical system, but it is a priori
a hard task. In practice, this equation is tractable only when the variables are separable.

Separable coordinate in the H-J equation

IThat is to canonical variables where the time evolution is linear.

65
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Definition. A coordinate q is said to be separable in the H-J equation if the generating function S(q, F) can
be split in two additive terms S,(qy,F) and S*(qs, - . ., q,, F )—one depending only on q; and one independent
of g;—and the H-J equation can be split in two independent H-J equations: one for S; and one for S°.

Motivation. Say q; is a separable variable as explained above. Then

S=Sl(ql’Fl)"'JFn)+S.(q2J"’ani‘Fl)"‘JFn)i (5.4)
so (5.3) becomes
(. L s
qlqulqu)"';qn) aqzﬁ"'i aqn - L .

In practice the H-J equation is separable in two when the contribution of q; and p; = dS/Jdq; can be
“segregated” in the Hamiltonian?, such that the above equation can be rewritten

ds, as* s
H — —...,— | | =E. 5.6
(ql) dql)f(qZJ >qn> 8q2> > aqn)) ( )

The function f is some helper function that repacks the dependence of H in the 2n variables g;, p; in a
dependence in three variables q;, p; and the function f of the remaining canonical variables q;5, p;>»-
Note that f(qs,..-,95,P2,---,Pn) is then necessarily a constant of the motion:

_OHOf Oof oH ~~OHOf Of 0H (5.7)

© 9p1dqy 9p1dqy &40p;dq; Opidq;

L )

of
In principle (5.6) can be inverted by the implicit function theorem: there exists a function g such that
aS8°* as* ds; )
Gy — s, — | = ,—L E ). 5.8
.f(qz " 50 aqn) g(ql a0, (5.8)

The two sides of this formula are equal but depends on independent variables, respectively q;~, and q;.
They have to be equal to the same constant, the separation constant a7, which is the value of the constant
function f and is some function of the f;. With the notation H®* := f and H; := g, we have

ds
H1(CI1,_1,E) =ay, 5.9)
dq;
. as*® as°®
H (‘h:---:qn:_,---,_):ap (510)
9q1 94y
and it is clear that the H-J equation has been separate in two independent H-J equations. O

If all the coordinates q; are separable, the system is said completely separable. By iterating the above
procedure on the residual term H®, the generating function is fully separate as a sum of n terms with a
mutually exclusive dependence in one ¢g;, while the Hamilton—Jacobi equation is split in n differential

2Quote from [34].
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equations of order one in one variable for the function S

S(ql""’qn:F) :Sl(quF)+"'+Sn(qn:F): (511)
a8

Hl-(qi,a—l,F):ai for i=1,...,n. (5.12)
q;

Note that the separation constants a; are some function of the values f; of the conserved quantities F; on
the level manifold Mg, so we can write

~ aS;

Hi(qi,—,Fl,...,Fn):O (5.13)
2q;

in place of (5.12), where H; = H; — a;.

The generating function S(q, F) is now constrained by its n independent partial derivatives, for which
we do have closed equations. Solving these n differential equations in one variable gives (by (2.9)) the
parametrization p;(q;, F) over M; of the original canonical momenta — which in fact depend solely
on their associated coordinate g;, a feature of the separate variables. The generating function S of
the coordinate transformation (q,p) — (¥, F) that linearizes the dynamics is then constructed by n
independent quadratures in an additive separate form (5.11) which explicitly is

n qi(m)
S(q1:~~')qn:Fl:"';Fn):ZJ pi(qi,Fl,-n,Fn)dqi- (514)
i=1 v q;(mo)

Remark 1 (Ignorable coordinates). Coordinates that do not appear explicitly in the Hamiltonian are
called ignorable or cyclic. They are easily separable. The conjugate momentum p; of a cyclic variable g, is
constant since p; = {p;,H} =— dH/dq; = 0. Coordinate q; is also immediately separable: with S in
the form (5.4), equation (5.5) involves only S°® and S; is solution of the equation

pi=a1=2—, (5.15)
where a; is some (separation) constant.

Separate variables in Liouville integrable systems Essentially, what is done on the H-J equation is
merely the extraction of a conserved quantity from the expression of the Hamiltonian. When working
with a Liouville integrable system, we already have some knowledge of conserved quantities. Therefore,
we can define separate canonical variables in the following way.

Definition (Classical separate variables). Consider a Liouville integrable system with a phase space M and
Hamiltonian H, and N independent constants of the motion Fy,...,Fy in involution

Vi,j=1,...,N, {F,F;}=0 and {H,F;}=0. (5.16)
Let (x;,2;) be 2N canonical variables
{xi,xj}Z{zi,zj}ZO, {xi,zj}:5ij. (5.17)
The x; are separate coordinates if there exists independent separate relations
Filxi,2, F1,y .. Fy) =0, (5.18)

where the F; are C* functions and 0F;/8z; # 0. The system is thus fully separate.
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Change of variables  Usually the original canonical coordinates (q;, p;) do not enable the separation
of the system, and it is necessary to perform a first coordinate transformation to new canonical variables,
say (x;,z;), that are separable

1 CT to 2" CT to
(@,p) —————— (x,2) , — (Y, F). (5.19)
separate variables pre-action—-angle variables

It is now the generating function S(x, F) that we solve for. Usually, the coordinate transformation to
the separate variables is hinted by the symmetries and invariances of the system and other physically
meaningful statement made on it.

Central force problem by separation of variables

Let T be the position of a particle of mass m, with Cartesian coordinates ¥ = (x, y,z) in its configuration
space R3. The phase space of the system is the 6-dimensional Poisson manifold with original canonical
variables (x, y,2, Py, Py, P;), where the p;’s are the conjugated canonical momenta to the x, y,z coordi-
nates. The particle evolves in the potential V() of some central force F(¥) parallel to the position vector
¥ from the origin, r = 1/x2 + y2 + 22; the dynamics is thus prescribed by a Hamiltonian of the form

13112 L [P
H=——+V(r) using p= 857 |lo (5.20)

2m .

b4

It is well-known that the motion of this isolated system is planar and has constant areal velocity, reducing
the number of effective degrees of freedom of the particle. Precisely,

* because the force derives from a potential, it is conservative and the energy E is conserved,

. df./ dt =% x F = 0 given that F || ¥, so the norm and direction of the angular momentum L are
conserved, hence ||f.|| and the projection L of the angular momentum on some axis O; orthogonal
to the plane of the motion (usually set to be O,) are constants of the motion.

This gives three constants of the motion F; = E, F, = ||f.“ and F3 = L;. One can prove they are
independent and in involution with additional calculations, making this system Liouville integrable.
This knowledge acquired from the conserved quantities can be leveraged to simplify the description
of problem (like using polar coordinates in the plane of motion), but let us look for separate variables
straight away. Because of the spherical symmetry of V(r), the spherical coordinates (r, 8, ¢) are the
adapted way to describe this system. With V = (8/3r ,r18/00 ,(rsinf)™ 3/8(,0) the gradient in
spherical coordinates, the Hamiltonian becomes

2 2
1 P p
H= —(pf+—9+—“")+\/(r). (5.21)

2m 2 r2gin%0

This system is completely separable in these canonical variables as we shall see. Let us pick the generating
function S(%, F) of the coordinate transformation (,p) — (1,3, F) in a separate form in the spherical
coordinates

SEF) =S,(r,F) +54(0,F) + S, (¢, F). (5.22)

The coordinate ¢ is ignorable, so we can introduce the constant a, with 35, / dp = a,. The H-J
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equation (5.3) is written

asr)z 1 (ase )2 ( 23, )2

— | +=|| == ) +|{— ) |+2mV(r) =2mE. 5.23
(ar r2[\ 26 sin 6 mV(r)=2m ! )
The 6-dependent part is “segregated”, so following (5.6) this is separate in two equations with the
introduction of the constant ag

2

9Sg )2 %y 2
-2 + = a2, 5.24
(ae 2 o 24
2 g2
(asr) + -2 +2mV(r) = 2mE. (5.25)
or r2
Together with
S,
W = CI(p, (526)

this makes the system entirely separate, and integrating these three equations provide a formal solution to
the H-J equations of the system, solving its dynamics. Obviously the resolution is a bit intricate, because
we have not accounted for the planar motion in the description of the system, so both the angle 8 and ¢
parametrize the trajectory’. Nevertheless, the separation constants have a clear physical interpretation:

* ay = E is the energy of the system,
* a, = p, is the constant value of the projection of the angular momentum L =¥ x p along the polar
axis 0,,",

P} . >
* ag =1 pg + ﬁ is the constant norm HL” of the angular momentum.

We identify easily F; = E = ag and F3 = ||i|| = ag, while a,, is a projection of the L vector, also constant
since E)f./ dt =0, but a priori O,, is not the axis orthogonal to the plane of the motion. Nonetheless, it is
uniquely defined by the constants F; by some function a,(F, Fy, F3).

In summary, separation of variables (SOV) in a Liouville integrable classical system is a procedure
that identifies or constructs canonical variables in which the Hamilton—Jacobi equation becomes tractable,
thanks to the newly obtained separate form. In essence, it performs a reduction from a coupled n variable
problems to n independent problems in one variable. It is a primer to the full resolution of the system:
solving the Hamilton-Jacobi equation characterizes a coordinate transformation to momenta that are
constants of the motions, effectively solving the dynamics.

In the context of the inverse scattering method, Sklyanin has introduced an approach to define
separation of variables for integrable models. We expose the classical and quantum cases in the next
sections.

5.1.2 Classical SoV for integrable systems in the CISM framework

The classical spin 1/2 chain of length N is a Liouville integrable system: thanks to the CISM, one can
construct N independent constants of the motion in involution. Characterizing the coordinate transform

3The description of the system in polar coordinates is recovered by taking the initial condition 6(t = 0) = 7/2 and
¢(t =0) =0, fixing 6 = /2 so that the motion is described only with the (polar) coordinates (r, ¢).

4p, is the canonical momentum conjugated to the coordinate 6, and hence the component of L along the 0, axis. It is not
the component of the momentum vector P = m¥ along the &, unit vector of the local spherical frame.
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to the constants of the motion solves the system. Can we use separation of variables to do so? Is the
system fully separable? What are the separate variables? In the framework of the CISM, these questions
about SOV were pioneered by Sklyanin see [186, 187] and the review [188]. We need to introduce some
objects in order to describe the SOV method.

Spectral curve & Baker-Akhiezer function Consider the classical gl(n) spin chains introduced in
Chapter 2. Let y,,(u,z) be the characteristic polynomial of the n x n monodromy matrix M (u)

xm(u,z) :=det (zl — M(u)), (5.27)

where the determinant is taken on the auxiliary space V. The spectral curve is the locus of the eigenvalues
z(u) of the monodromy matrix at point u for the spectral parameter. It is an algebraic curve in C2 defined
by the equation

xm(u,2) =0. (5.28)

It implicitly defines the eigenvalue z(u) of M(u) as a n-multivalued function on C. The eigenfunction
Q(u) associated to an eigenvalue z(u)

M(@W)Q(u) = z(u)Q(u) (5.29)

is called the Baker—Akhiezer function [188, 282, 283]. The normalization of the Q(u) vector will play a
specific role, so we fix it by the use of some coefficients a;(u) and the linear constraint on the components
of Q(u)

n
> awew) =1. (5.30)
i=1
Relation between the spectral invariants The determinant in (5.27) may be expanded as

am(,2) =D (1" KTy (w), (5.31)
k=0

where the spectral invariants T;(u) are defined as

k
T (w) =tr /\M(u). (5.32)

In particular, To(u) = 1 and T,(u) = det M (u). For a point (a, b) € C? on the spectral curve, (5.31) gives
a non-trivial relation between the spectral invariants of M (u).

Sklyanin “magic recipe” From the B-A function, Sklyanin gives a way to construct separate variables

“Take the poles of the properly normalized Baker—Akhiezer function and the corresponding eigenvalues of the
monodromy [Lax ] operator and you obtain a SOV.” — Sklyanin in [188, p. 41].

The exact statement is the following

Theorem 2 (SoV in the CISM framework). Consider the classical gl(n) spin chain of length N. There exist
two functions A(u) and B(u) such that

* A(u) is a rational function of the monodromy entries M;;(u)

* B(u) is a polynomial of degree N n(n—1)/2 in the M;;(u)
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Then the variables x; and z; defined by

B(x;)=0 and gz :=A(x;), (5.33)
have Poisson brackets
{xi,Xj}:O:{Zi,Zj}, {Ziixj}:(SijZi’ (534)
and verify by the separate relations
det(z; —M(x;)) = 0. (5.35)

If there are n(n—1)/2 such pairs, the (x;,*Inz;) form canonical separate variables (for the quadratic
Sklyanin’s Poisson brackets (2.68)).

This was investigated by Sklyanin himself for the gl(2) and gl(3) case [187, 192, 193], and later ex-
panded for a wider range of gl(n) classical systems by Scott [189] and Gekhtman [190], see also for a
synthesis [188].

The above theorem does not explicitly mention the “poles of the Baker—Akhiezer function”, but is
simple to feel why they can be separate coordinates, and motivate that it is the primer of the A and B
functions.

Let x; be a pole of Q(u) and z; := z(x;). The point (x;,2;) € C? lies on the spectral curve, therefore

xm(2i,x;) =0, which rewrite (5.36)
n
> (k2 *T(x) =0, (5.37)
k=0

This equation is of the form (5.18)
]:(Xi)zi)Fla"':FN):O: (538)

therefore the couples (x;, ™ Ing;) are separate variables for the chain once it is verified that there are N
independent such couples which are conjugated canonical variables, that is

Vi,je[[].,NII, {Xi,Xj}:{Zi,Zj}:O and {xi,zj}:5ij. (539)
Let Q0 (1) := Res(Q(w); x;). Equations (5.29) and (5.30) evaluated in each couple x;, z; give
. . n .
M(x)0® =500, > a(x)o’ =o. (5.40)
k=1

This is a n-dimensional linear problem for the (residue) vector QW There exists a non-zero solution if
rankM = n— 1, where M is the (n + 1) x n matrix

aq(x;) a,(x;)
. a(x;) _ My (x;)—z ... M;y,(x;)
M := (M(xi)—zil) = : : (5.41)
Mnl(xi) see Mnn(xi)_zi

If it is the case, any two minors of order n of M vanish and form a system with roots (x;, 2;), which allow
in principles to count the number of pairs (x;, 2;) and compute their Poisson brackets. The choice of the
normalization of the Baker—Akhiezer function reveals crucial in these discussions. For the gl(n) case, it
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turns out that any constant numeric normalization vector d(u) € C" produces SOV. A simplest choice”is

a;(u)=1 and ay(u)=---=a,(u)=0. (5.42)

gl(2) case  Specializing to the gl(2) case, we can take the vanishing minors of order n = 2 to be

1 0 1 0
= =0. (5.43)
My1(x;) — 2 Myp(x;) My1(x;)  Mao(x;) —2;
Using the A, B, C, D notation, this gives immediately
B(Xi) = O, (544)
D(Xi) =z;. (545)

In the end, the separate variables are simply the zeroes of the B(u) polynomial, and the 2;’s are defined
equally simply as the images by D of the x,’s°. We identify immediately A(u) = D(u) and B(u) = B(uw).
In u = x; the monodromy becomes triangular

(5.46)

M(x) = (A("") 0),

Clx;)

so it is no surprise its eigenvalue z; = z(x;) is given by the diagonal element D(x;). The explicit separate
relations for the (x;,2;) are
detM(xi)—ziT(xi)+zi2 =0. (5.47)

It remains to compute the Poisson brackets between the x;’s and z;’s. This can be achieved by the
knowledge of the quadratic Poisson brackets between the monodromy matrix elements (2.75). The r-
matrix that gives the Poisson bracket is r(u) = P, where P is the permutation operator. Taking particular
indices in (2.75), one obtains

{B(w),B(v)} =0, (5.48)
{D(u),D(v)} =0, (5.49)
{D(w),B(v)} = uCTv(B(u)D(V)—B(V)D(u))- (5.50)

The involution of the B’s entrain immediately that {x;,x;} =0, for all i, j. Now, for any function F over

the phase space,

J

dB
0= {EB(x))} = {F,B@himy, + 3|y, {F X (5.51)
u 12
>Note that historic literature [ 188, for example] usually takes a; = --- = a,_; = 0 and a,, = 1, which produces an equivalent

discussion.
6Sklyanin’s is used to take A(u) = A(u) [187], which is essentially the same thing.
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Therefore,

{zl’x]} {D(U.) xl}u X; du u= xl{xl’xJ}

= +0
el (5.52)

dv|%

= (B(x;)D(x;)—B(x;)D(x})).

Xi— J)dvl

This indeed gives O for i # j, while for the case i = j the LU'Hépital rule gives {z;,x;} o< §;;. A similar
calculation gives the Poisson brackets {z;,z;}, which are computed to be zero, and the (x;, z;) are conjugate
canonical variables.

Higher rank case In the gl(n) case, the functions A(u) and B(u) may be constructed similarly by
eliminating x; and z; (respectively) from a system of two vanishing minors of order n — but their
expressions are a bit more intricate [ 187, 188, 193]. For n = 3, eventually one computes

_ Myp(u) Mys(u) Mip(u) Myz(u)
Blu) = Myp(u) Myy(u) Mays(u) + Mia(u) Mjy(u) Maz(w)|’ (5-23)
and there are two choices for A(u)
_ _1 | Mya(u) Mys(u) _ _1 |Mya(u) Mys(u)
Alw) = Miz(u) Msy(u) Msz(w) Alw) = =Mas(u) Myy(u) Mys(u)|” >4

From there, one can do the same program as above and get separate relations similar to (5.47) [187,
188, 193].

5.2 Quantum SoV

As we observed in Section (3.1), the notion of integrability could not be enlarged to the quantum world
as it is, because of the ambiguity in defining the number of independent conserved charges. Fortunately
the situation is better for the separation of variables.

Quantum separate variables

Definition (Quantum separate variables). Consider a quantum system over a Hilbert space 3¢ with some
Hamiltonian H, and N conserved quantities H; such that

Vi,k=1,...,N, [H;,H]=0 and [H,H;]=0. (5.55)

Let (X}, Z;) be N couples of operators over some Hilbert space ¢, with canonical commutation relations
[X;. X ]=[2;,2] =0, (5.56)
[2;,X,] = —6ih, (5.57)

and X ;’s are diagonalizable with simple spectrum. The X;’s are quantum separate variables for the spectral
problem of H if there exists N separate relations of the form

FilX;

»Zj,Hy, ..., Hy) =0 (5.58)
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for j=1,...,N, where some order between the non-commutative operators X;, Z; and the commutative
{H;} family has to be prescribed. The basis of common eigenvectors of the X;’s is the separate basis. Each
vector is labelled uniquely by its eigenvalues x; under the action of the X ;

X) = [x1,...,xy) and X;[X) =x;[X). (5.59)

Let
Y(xq,. 5 xy) 1= {xq, . Xy [YP) (5.60)
be the wavefunction of a stationary state |¢) of the system, where (X| = (x;,...,xy]| is the (separate)

Hilbert basis of eigencovectors associated to the separate coordinates X;. Then the relations (5.58)
suggests a factorized form of the wave function

N
lp(xlru,XN):l_[wj(xj)- (5.61)

Jj=1

For a continuous system with an infinite-dimensional Hilbert space, it is handy to realize quantum
states as functions and work in the x-representation of the operators to picture the implications of the
above definition. Operators X ; are the multiplication operators by the j-th coordinate x;, and Z; = 0 / 0X;.
Then, acting on 1(X) with the j-th relation (5.58), one can restrict the equation to the 1 ;(x;) term

d
‘F](X]’a_’hl”hN) l,l)](x])ZO, (562)
%

where the h; are the scalar value of the conserved quantities operators on the 1 (X) eigenstate. These
are separate differential equations in one variable; the original spectral problem has been decoupled in
independent simpler ones.

For a finite-dimensional Hilbert space, the “wavefunctions” (5.60) we consider are simply the co-
efficients of the linear decomposition of an eigenstate in the separate basis. The Z; dependence in the
separate relations (5.58) should be realized as a shift in the spectrum of X;. Noting

(hy)

Sj J

the d; eigenvalues of X, this yields independent separate finite difference equations for the v;(x;) factor
of the form

(hy) (h)
A2 D bt () =0, (5.64)
where D].i are the shift operators in the spectrum of X;
+ DY _ (hj£1)
Dy (2" ) = ("), (5.65)

This shows how the original spectral problem separates in N independent ones of smaller dimension d;
on the Hilbert space ¢}, with

N N
#=Q) A and | ]d;=dime. (5.66)
j=1 j=1
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Link with classical SOV We can illustrate the classical limit with the simple case of the particle in N
dimensions in some potential V(X). The Hamiltonian of this continuous system is of the form

hZ
H=——A+V({X). (5.67)
2m

Writing the spatial wavefunction of the state |¢)) in the form of a stationary phase
PE) =1hoe M (and P& 1) =yp@e T, (5.68)

and taking the classical limit in the (time independent) Schrédinger equation, we obtain

_(VS®)° _ ih (Vs®)*

E —ASX)+VEX) — +V(X), (5.69)
2m -0 2m

2m

which is the classical reduced Hamilton—Jacobi equation with a given energy E and Hamilton characteristic
function S(x) for the corresponding classical system — see equations (5.1) and (5.3) with H = p? / 2m +
V(X). Now for a separate problem with a factorized wavefunction

N
P(E) =po [ Je M0, (5.70)

j=1

one recovers the equations (5.11) and (5.12).

In the classical case, the separate relations are used to solve the equations of the motion, constructing
by additive separate quadratures the generating function of the coordinate change to the constants of the
motion which linearize the time evolution. In the quantum case, the separate relations are used to solve
the spectral problem for the Hamiltonian, constructing the wavefunction of eigenstates by multiplicative
separate wavefunctions responding to their own spectral problems of smaller dimension.

The hydrogen atom

Consider the Hamiltonian describing the motion of an electron in the potential of proton at the origin,

1—52 62
H=—+V(¥) with V(¥ =— , (5.71)
2m 4regr

where ¥ is the position vector, r = ||¥||, and p the momentum. The electron state is described by vectors
|¥) of the Hilbert space s ~ L?(R®). The time-independent Schrédinger equation for the wave function
U(F) = (F|¥) is, with p = —iAV,

h? 2
—Z—A\IJ +V@EWY=E, with V(E)=-—
m

, 5.72
4megr ¢ )

for some energy E € R. Because of the central nature of the force—namely the potential V(r) depends
only on the radial distance r—the three components L, L, and L, of the orbital angular momentum
L = —ih¥x V are operators that commute with the Hamiltonian. This can be shown using the fundamental
commutation relations [r;, p;] = ih6;;. Therefore,

[H,1*]=[H,L,]=[I*L,]=0. (5.73)

Any eigenstate of the Hamiltonian is thus also a shared eigenstate of the L? and L, operators, so one can
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search for the eigenstate of H in the set of common eigenstates of the commuting family (H,I?,L,).
Because of the rotational invariance of the system, the spherical coordinates (r, 6, ¢) are well suited
to describe it. The wavefunction of the state |¥)

U(r,0,9)=(r,0,p|¥) (5.74)

are function of L2(R,. x [0, [ %[0, 27[, r?sin ¢ dr dO dy), and the H, I, L, operators are represented as

A—li(rzi)+ - i(sinei)+;a—2 (5.75)

r29r\" or r2sinf 90 26 r2sinZ 0 92’ ’

- 1 2 0 1 22

2= 1 _(- e_)+ ) 5.76
(sineae 1750 )" sin2o 892 (5.76)

L, =it 2. (5.77)
e

Defining the three operators

2 . 2 3 2 1 . e2
Fi|r,—,H,1?|:=— — 2—)+ L2— —H 5.78
1(r’8r’ ’ ) 2mr28r(r or 2mr2 4megr ’ (5.78)
9 - 1 0 i L2 .
F| 6, — T2 L )::— —( 9—)——Z+h_2L2, 5.
2( 20" " sinf 00\ 90) H2sin2(0) (5.79)
Ao L)mmn o, o0

one can verify that their action vanishes on wavefunctions ¥() of eigenstate of the commuting family
(H,I%L,)
Vae[1,3], F,¥(r,0,¢)=0. (5.81)

This gives relations of the form (5.58), so the spherical coordinates (r, 8, @) are thus separate coordinates
for this system.
Consider ¥(r, 8, ) an eigenfunction of the commuting family (H, L L,), i.e.

HY = E¥, (5.82)
20 = h,V, (5.83)
L,V = h3V, (5.84)

with E, hy, h; € R. The vanishing action of F5 of ¥ gives the simple enough differential equation

h
18 +=0(r,0,9) =0, (5.85)
de ih

with only derivatives in ¢, so that we can solve it, giving
U(r,0,¢) =A(r, 0)e™ 3%, (5.86)

with A(r, 6) some function of the r and 6 variables. Acting further with F, on ¥, one gets a differential
equation for A(r, 0) with only derivatives in 6, so that it further separates the resolution in r and 6.



5.3. Quantum SoV for integrable systems in the QISM framework 77

Eventually, the wavefunction can can be written in a factorized form
¥(r,0,¢) =R(r)0(6)2(v), (5.87)

where each factor verifies independent and separate differential equations.
The definitive form of the solution (5.87) is obtained by multiplying solutions of the three differential
equations
F[R=0, F,0=0, F&=0, (5.88)

and selecting the ¥ = RO® that indeed verify the Schrédinger equation (5.72) on the whole space R and
have a finite norm. The result is well-known: the discrete spectrum of the Hamiltonian is enumerated by
the quantum numbers (n, £, m)

2

E=E,=—> with neN* and £=—"% _ ~136eV, (5.89)
it 2(4mey)2h
h, =0 +1)r with £€[0,n—1], (5.90)
hs = mh with me [, (], (5.91)
and the wavefunctions are of the form
W, (7> 0, 9) = Ry (P)Fy 1 (0)e™?, (5.92)

where the angular part are the so-called spherical harmonics [284]

Ye,m(60, ), (5.93)
and the radial part are generalized Laguerre polynomials [see 281, appendix B]

Ro(r) = L2t (r). (5.94)

Note that solutions with infinite norm are obtained for E > 0 and describe non-bound states corresponding
to the continuous spectrum of the Hydrogen atom.

5.3 Quantum SoV for integrable systems in the QISM framework

5.3.1 SoV in the QISM description of quantum integrable models

For a quantum integrable model generated by some transfer matrix T (u), the above definition of separate
variables holds similarly, except that it is more convenient to express the separate relations (5.18) using
the transfer matrix which packs the conserved quantities

F(X;,2;,T(X)))=0 (5.95)
In the QISM context, the core idea of Sklyanin’s “magic recipe” is still the same: there should exist an

operator B(u) whose properly defined operatorial roots are separate variables. Here, the roots X are
operators over the Hilbert space, and they should commute together in order to write unambiguously

N
Bu) =5, [(u—x)). (5.96)
j=1
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Like in the classical case, conjugated variables Z; are obtained by evaluating an operator A(u) in the
operatorial roots X, see (5.33). It is necessary to define how one substitutes an operator in place of the
scalar parameter in A(u). We can choose the left ordering of the argument in the polynomial expansion
of A
AX;) = ZXJ].{.A;{ given A(u)= Z uk A, forall uecC. (5.97)
k k

In fact, a former name of the quantum separation of variables was the Functional Bethe Ansatz (FBA) [192,
193, 204, 205], whose name is a syncretism of the known way to solve quantum integrable systems
and the necessity to introduce spaces of functions to rigorously describe the zeroes of operator-valued
polynomials. One should also ensure that the spectrum of the X; and the poles of A(u) do not intersect.

The separate relations shall be provided by some quantized version of (5.28), the quantum spectral
curve, that we do not explicit for the moment. The common eigenbasis |X) = |x;,...,X,) of the X
operators, labelled by their eigenvalues, is also the eigenbasis of the B(u) operator. Hence, the separate
basis may be constructed by the direct diagonalization of the B(u) operator.

5.3.2 The gl(2) case

Let us show how to obtain separate variables a la Sklyanin for gl(2) models associated to the 6-vertex
algebra. The classical case hints us to look at B(u) = M;5(u) and D(u) = M, (u) for the B(u) and A(u)
operators, respectively. Let us consider a twisted monodromy M (u) = M¥X(u), and suppose the twist
matrix K is such that M;,(u) is diagonalizable with simple spectrum (note that for K = Id, this is not the

case). Having
[B(w),B(v)]=0 (5.98)

is already good news: we can define the commuting root operators X; and write (5.96) as

N
Bu)=B,[ [(u—x)). (5.99)

j=1
Since B(u) = B(u) is diagonalizable with simple spectrum, then its operatorial roots X are simultane-

ously diagonalizable with simple spectrum: following (5.63) we note

xWec for 1<h<d, (5.100)

the d; eigenvalues of the X; operator. We have
N
[ d; = dimse, (5.101)

j=1

and the eigenvectors of B(u) consists in the d; ...dy vectors

)= ‘xg’“), x) (5.102)
of eigenvalue
N
h.
bﬁ(u):Bol_[Lp(u—x](. J)). (5.103)
j=1
To ease the heavy notation (5.102), we will make use of the shorthand notation |X) = |x1,...,xy) in the

following to denote a generic vector of the separate basis.
What is the action of the conjugated D(x;) operators on the separate basis? By equation (Y.8) one
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computes
<p(u — xj + T))
‘P(u—xj)

Hence, unless D(x;) [X) is zero, D(x;) |X) is an eigenvector of eigenvalue

B(u)D(x;) %) = by (u)D(x;) %) . (5.104)

N
Boo(u—(;—m) [ Jo(u—x). (5.105)
k#i

Therefore, D(x;) is the shift operator by —n in the spectrum S; of X;, and the eigenvalues can be labelled
and ordered by successive shifts of the 1) parameter

(@ @)\ _ (.0 0 (0)
Sj—(xj ,...,xj’)—(xj X =M, X —(dj—l)n), (5.106)
for some x;o) € C, such that
h.
x§ D = x4 (h;— 1. (5.107)

Similarly, the action of A(x;) = M;;(x;) performs the opposite shift x; — x; + n on the eigenvectors of
the separate basis, so we have

A(x;) %) o< |x1,...,xj+n,...,xN>, (5.108)
D(x;)[X) o< |x1,...,xj—n,...,xN>. (5.109)

Using the notation X+ a&; := (xq,...,x; +a,..., xy), this gives

J

A(x;) [X) o< |>*<+ néj% (5.110)
D(x,) %) o< [£—n8;). |

On covectors of the left separate basis, A(x;) and D(x;) shift the spectrum in the opposite way:

5

- N N (5.111)
(X| D(x;) o< (x + nej| .
Using the quantum determinant (A.17), whose explicit expression in this case is
N
g-det M (u) = detKa(u)d(u—mn) =detK l_[(u —&i+nu—¢&;—n), (5.112)

j=1

where d(u) = l_[?’:l(u —&;) = a(u—mn) are the eigenvalue of the untwisted diagonal matrix elements of
the untwisted monodromy on the highest weight state, we compute

(X|A(x;)D(x; —n) = q-det M(x;) (X|. (5.113)
Hence, with a proper choice in the normalization, we may put

5

&IA(x)) = a(x;) (X—ng;

5.114
(R D(x;) = d(x;) (% +né (5.114)

il

Spectral problem We can now describe the spectral problem of the model using the separate basis
constructed above. Let |t) be an eigenvector of eigenvalue t(u) for the transfer matrix T (u) = A(u) + D(u).
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Ultimately we want to solve the spectral equation T (u)|t) = t(u)]|t). To do so, we can make good use of
the above left separate basis by computing

X T(x;) ) (5.115)

in two different ways: i) by making T acts to the right on its eigenvector and ii) by making T =A+ D
acts to the left on the separate basis. It yields the following equation

VRES) x xSy,  t(x;) (Xlt) = alx;)(X—ne

£)+d(x;) (X +ngj|t). (5.116)
Reintroducing the exact notation for the spectrum, the wavefunctions of eigenstate |t)

wt(xghl),...,xgl”))=<x§h1),...,xgw) t> for (x?l,...,va"“)esl><.-~><3N, (5.117)

which are the 2V components of the eigenstate in the separate basis, obey the following second order
finite difference equation

t(x];hj))wt(xghl),__',XJ(VhN)) _ a(xjghj))wt(xghl),._"x](hj+1)’___’xl(vsz))

(h}) h (h;—1) h
+d(xj ! )lpt(xg 1),...,xj ! ,...,x](v”)). (5.118)

Using a factorized form (5.61) of the wavefunction 1), these form N separate equations of the form (5.58).
They manifest as finite difference equations, because we deal with a Hilbert space of finite dimension. It
is enough to solve this system of finite-difference equation to solve the spectral problem of the twisted
XXX chain, offering an alternate picture from the one of the ABA.

How does the quantum spectral curve arise in this discussion? In the classical case, it was the object
which provides the separate relations from the help of an eigenvector of the monodromy matrix, the
Baker—Akhiezer function. In the above discussion, we obtained the separate relations straight from the
ad-hoc constructed separate basis without referring to the spectral curve once. But there is a way to
recover it from the quantum determinant: from the expression q-det M (u) = A(u)D(u—n)—B(u)C(u—n),
the following equation holds

AWA(u—n)—A(u)T(u—mn)+qg-det M(u) + B(u)C(u—n) =0. (5.119)

Sandwiching this equation by a covector of the separate basis at the left and an eigenvector of the transfer
. . . hj) .
matrix at the right and putting u « xj(. ! ), it produces the quantum analog of the spectral curve (5.31)

- X;

(hy) (h;+1) (hy) (h;+1) (hy)
—a(xj ! )t(xj ! )wt(xl ! see X Xy )

(h)) (hj+1) h (hj+2) h
a(xj ! )a(xj ! )wt(x§ 1),.. x;’ ,...,xl(\,N))
h:
—q-detM(xj)ml)t(xghl),...,xJ(. ]), . ..,x](\?”)) =0, (5.120)

C . h; .
which is exactly (5.118) after one factors out the common a(x](. ])) factor, and rescale h j in h i— 1L

Necessity of the twist The attentive reader should have notice that for an untwisted gl(2) model, say
the XXX gl(2) fundamental models with periodic boundary conditions, the B(u) = M;,(u) operator is
nilpotent, which is incompatible with the above construction. However, it is possible circumvent to this
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issue by adding a non-trivial twist to the chain. For the XXX chain, taking K = ((1) ﬁ‘), we have
BX(u) = B(u) + aD(u), (5.121)

in terms of the elements of the untwisted monodromy, which is now a diagonalizable operator, being a
sum of a nilpotent and a diagonalizable one. The simplicity of the BX spectrum is then ensured by taking
an inhomogeneous chain up to some constraints. For the XXZ chain, non-trivial linear combinations
K = a((l) (1)) + ﬂ(? &) of the o* and ¢ Pauli matrices give a diagonalizable BX(u) operator. We can
therefore state the following theorem for the 6-vertex Yang-Baxter algebra:

Theorem 3. Consider the twisted inhomogeneous XXX chain of length N, with a twist matrix K that is not
proportional to the identity, so that it can always be brought to the form

K:(k1 a) with a#0 (5.122)

by an isomorphism’, and monodromy
MX (W) = KoRony(u—Ex) ... Roy (u— &), (5.123)

with the inhomogeneities &; satisfying
Va,be€[1,N],a#b, Vr=-1,0,1, &E,#&E,+rn. (5.124)

The left separate basis is the basis of eigenvectors of the 2N covectors BX(u) = Bg ]_[]J.Vzl cp(u —X j) operators,
which are the

N
l_[AK(gj Vi for h;efo,1}, (5.125)
of eigenvalue
N
b~(u)=al_[ Lp(u—(ij—hjn)). (5.126)
=1

The spectrum of the operatorial roots X is therefore

S;={&;,&;—n} (5.127)

which is indeed of the form (5.106) and is simple thanks to conditions (5.124). The above separate basis
allows to re-express the spectral problem for the transfer matrix TX(u) = tr MX(u) as a system of discrete
equations (5.120) with

N
q-detM(u)=det(K)l_[<p(u—€j+n)<,a(u—§j+n) (5.128)
j=1
and a(u) being replaced by
N
a®(w) = kja(w) = kyd(w+n) =k, l_[(u—£j+n). (5.129)
j=1

Proof. These results are obtained by specializing the above discussions on the eigenstate of B(u) = BX(u)
and the spectral problem of the transfer matrix to the fundamental representation of gl(2), and not

7See [225], section 3.2.
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forgetting to take the twist into account.

The operator BX(u) = k,B(u) + aD(u) is diagonalizable since D(u) is and a # 0. The family (5.125)
is proved to be the eigenbasis of BX(u) by induction.

Any eigenstate |t) of TX(u) has its eigenvalue t(u) and wavefunctions in the separate basis 1, (X)
satisfy the system of equations (5.120), with the correct replacement for a(u) and g-det M (u). O

The above computations generalize to many gl(2) models. A most interesting case is the one of the
antiperiodic XXZ chain, because the ABA cannot be applied in this case for the lack of a reference state.

Example: SoV for the XXZ antiperiodic chain [176]

Consider the inhomogeneous XXZ spin 1/2 model of length N with the antiperiodic twist K = ¢* = ((1’ ok
The explicitly twisted monodromy of this system is

M¥(u) =KRoy(u—Ey)...Ro1(u—&;) = (Z((Z)) ggg) (5.130)

From the above analysis, we define
A(u) := MX,(u) = B(w), (5.131)
B(u) := Mfz(u) = D(u). (5.132)

The B(u) = D(u) operator is diagonalizable with simple spectrum, as desired. For generic inhomogeneities
satisfying the condition (5.124), the left and right eigenbasis of D(u) are the covectors and vectors

N (g] hj
(B| := 0|]_[ W& —m) (5.133)

(B )
_l_[(a(gj) 0), (5.134)

j=1

labelled by vectors h = (hy, ..., hy) € {0, 1}V, with |0) = ®;V:1((1)) and (0| = ®§.\’:1(1, 0)°. The eigenvalue
associated to |h> and <h| under the left and right action of D(u), respectively, is

N
d; (u) =l_[ 1nh u—EJ—h ) (5.135)

j=1

These are clearly of the form (5.125) and (5.126). Proof is made by direct calculation using the FCR
of the trigonometric 6-vertex algebra. Similar calculations show that the action of the B(u) and C(u)
operators over (5.133) and (5.133) is a non-local shift in the h;—but the action of the B(&;) and C(&;)
are. The SOV measure is diagonal with

(h|k) o< 655 (5.136)

From there, one may prove that the spectrum of the transfer matrix TX(u) = tr MX(u) = B(u) + C(u)
are the functions t(u) solutions of the N discrete equations

t(EDL(E;—n) = g-det M (&) = —a(&;)d(E; —n), (5.137)

within a certain set of Laurent polynomials of degree N — 1 constrained by the length of the chain. This is
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good agreement with (5.128). The eigenstates have a separate form
N
) =2 [ [@d&; —rm[R), (5.138)
h J=1

and similarly for the left eigenstates, so the wavefunctions (ﬁl t) are indeed factorized. Details can be
found in [176], where the analysis is pursued until form factors of local operators.

5.3.3 SoV for the gl(3) model

The SoV description for the quantum gl(3) chain was first made by Sklyanin himself [206], based on his
work for the classical gl(3) case [187]°. Recall that the quantum-determinant is a central element of the
Yangian algebra, which here for %/(gl(3)) is explicitly written as

g-det M(u) = try3 (Ppas M1 (WM, (u + n)Ms(u + 21)), (5.139)

where P/, = 1/6 ), sen, sign(o) P, is the antisymmetrizer over three copies of the auxiliary space. The
matrix
U(w) := (3 trys PLaMay(W)Ms(u + )", (5.140)

is a quasi-inverse of the monodromy matrix, as by direct computation one proves
g-det(M(u)) = (M@)"U(u+n), (5.141)
where T denotes the matrix transposition. Note that T,(u) = tr U(u). Let
B(u) := Ma3(w)Usy (u — 1) — M13(w)Usy(u—n), (5.142)
which mirrors the expression (5.53) of the classical case, up to the 7 shifts. Direct calculation shows that

[B(u), B(v)] = 0, so it is meaningful to write

3N
B(u)=Bo | Ju—x), (5.143)
k=1
and [X;,X;] = 0. Similarly, the operator .A(u) is defined as a deformation of the classical case as
A(u) == —Moz(u—n)""Usy(u—n) = —Usy(u— )Moz (u—n) 7", (5.144)
with [A(u), A(v)] = 0. Sklyanin proved [206] that

(u—v)AWBW) = (u—v—nm)BW)A(u) + B(w)é(u,v), (5.145)

where
Ew,v) = AW)(Mas(u— n)Mzs(U))_les(V —M)Mszy(v). (5.146)

It is then tempting to define Z; := A(u)|,—x, as the conjugated variable, as it seems to produce the desired
shift in the spectrum of X;. However,

8The notation in [176] is multiplicative, but it is easy to make the connection with A = exp(u), ¢ = exp(n) and n; = exp(£ j),
and a factor 2 in the R-matrix.
Extension to the generic gl(n) case was also discussed in [207].
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“the condition that
(Ufﬁl Sp(X j)) Npoles(A(u)) =90 (5.147)

should be checked for any specific representation of the [gl(3) Yang-Baxter] algebra,”

as Sklyanin points out very appropriately in [206], before saying that “here[for the unspecified repre-
sentation at hand] we assume it to be satisfied”. Indeed, in case the intersection (5.147) is non-empty,
the right-hand side of (5.145) do not vanish for all u = x; € Sp(X;). However, it can be checked that for
fundamental gl(3) chains with generic twist of length N < 3, the condition (5.147) do not hold: some
zeros of B(u) ares poles of A(u) and thus £(u, v) is indeterminate of the form 0/0 when the left-hand
side vanishes. This jeopardizes the SOV program as described above, since the Z; := A(X;) operator fails
to deliver the desired shift

Z Xy, = (X —n61)Z;, (5.148)

in the spectrum of X ;. Details and proofs of such an argument are found in appendix A of [225]. It is a
natural conjecture to expect the issue does not solve by itself for longer chains. While other representations
might not have this issue, the case of the fundamental one is already bothering. This forms a strong
obstacle for Sklyanin quantum SOV method in higher rank algebra.

This objection has been made only fairly recently by Maillet and Niccoli—publication [225] appeared
in 2018—together with a new SOV approach bypassing this problem. Let us add that for specific boundary
conditions of the gl(2) model, the B(u) operator already fails to provide a separation of variables. These
are enough argument to look for other method to produce separate variables in quantum integrable
models. Chapter 6 is entirely devoted to the description of the novel SOV method introduced in [225]
which do not rely on Sklyanin’s B(u) and .A(u) operators.

5.4 Recent developments

Still, there has been many developments of Sklyanin’s SOV in the last decades, mostly in the gl(2) case
though. The next section is devoted to a brief review of the recent literature and its results.

5.4.1 SoV for gl(2) models

Sklyanin’s SOV allows to tackle the spectral problem associated to the 6-vertex Yang—Baxter algebra in a
different way from the one of the ABA. It is natural to either i) compute scalar products, form factors
and correlation functions using SOV and try to reproduce some known results of the ABA, which was
done fairly quickly [188, 193, 206], or ii) use SOV to compute the spectrum in gl(2) models known for
the failure of the ABA. We showed an example of the latter with the antiperiodic XXZ chain on page 82.

The models associated to the 6-vertex algebra with non-trivial periodic boundary conditions are
natural candidates for SOV. In the case of the inhomogeneous antiperiodic XXX and XXZ chains, for which
no reference vector is available for the ABA, the spectrum, eigenstates and form factors were computed
for spin 1/2 representations [ 176, 215, 285]. The results were extended to higher spin representations
by [215, 222]. A rewriting of the formulas for the XXX spin 1/2 chain was achieved in [218] and made
them suitable for the homogeneous and thermodynamic limits. Correlation functions at zero temperature
were later obtained in [221]. The spectrum, eigenvectors and the SOV measure of the antiperiodic
dynamical 6-vertex Yang-Baxter algebra were characterized in [214], and form factors were studied
in [286]. Similar results have been obtained in the open case for XXX and XXZ spin 1/2 chain [211, 217,
219, 220, 287] and for the cyclic representations of the 6-vertex algebra [223, 224].



5.4. Recent developments 85

5.4.2 SoV for gl(n) models

Relying on the pioneer work of Sklyanin, the form of the B(u) operators for the SOV of gl(n), n > 3,
models was proposed by Gromov, Levkovich-Maslyuk, and Sizov in [ 178 ]—and [288] for supersymmetric
chains. The B(u) diagonalizability and its spectrum were conjectured and verified numerically for small
length chain, and it was conjectured that the B(u) operator was able to produce eigenstate in an ABA-like
form B(u;)...B(u,,)|0). This was proved by Slavnov and Liashyk for the gl(3) symmetric representations
case [289]—see also [290].

From there, progresses on the gl(n) case benefited from the novel SOV construction from conserved
quantities developed by Maillet and Niccoli in [225] that we will describe in the next chapters. Thanks to
it, Ryan and Volin proved the diagonalizability and compute the spectrum of the B(u) [236]. Once it is
shown that the new SoV basis [225] coincides with the eigenbasis of the B(u) operator, the ABA form in
B(u) of the transfer matrix eigenvectors follows. We address the recent bibliography on this subject in
more details in the next chapter.






Chapter

Separation of variables from
transfer matrices

The seminal ideas of SOV are found in Sklyanin’s methods, but we already discussed how the extension
to the gl(3) case does not work out of the box: the identification and construction of the proper A(u) and
B(u) operators is not easy, i.e. the quantization of the classical counterparts is not immediate.

The central idea of this chapter, which originates from the seminal publication [225] from J. M. Maillet
and G. Niccoli, is to construct a separate basis from conserved charges themselves, by acting on some
reference vector. Conserved quantities are the core features of integrable models, and it is natural to
leverage them to solve their own spectral problem. Besides, the very form of the basis presented here
allows a separation of variables straightforwardly. The key computation relies on algebraic property
specific to non-derogatory matrices, thus we begin by some linear algebra results on this family of matrices
that will serve the following discussion. Then, we show for #/(gl(n)) rational fundamental models how the
repeated action of transfer matrices evaluated in the inhomogeneities on certain seed states (S| generates
a separate basis as soon as the twist matrix K is non-derogatory. This SOV basis is exploited to solve the
spectral problem for the gl(2) case in details, while elements of the proofs for higher representations,
higher rank, other boundary conditions or different quantum groups are summarized from the related
references [225, 232-235]. We will also show the precise link with Sklyanin’s original SOV for the gl(2)
case.

The ideas behind this new construction of a separate basis unlatched recent progress on quantum
SoV, allowing the construction of the eigenbasis of the B(u) operators in higher rank models [236],
which effectively factorizes the wavefunctions of eigenstates. The results were refined in [237], where
the authors propose an explicit realization as Wronskians of the conjugate momenta that realize the shift
in the separate basis.

6.1 Foreword: non-derogatory matrices

Definition. A square matrix is non-derogatory if its characteristic polynomial and minimal polynomial
coincide.

This is equivalent to say the matrix has simple spectrum, i.e. each distinct eigenvalue has only one
eigenvector: for a non-derogatory matrix X € Mat(C%),

YaespX), Av,ecd Xv,=Av,. (6.1)

It means that each eigenvalue has geometric multiplicity one, despite possibly being a multiple root in
the characteristic polynomial. In terms of Jordan block, every Jordan block has an eigenvalue different
from the other ones, see proposition 2. Such matrices are also called cyclic, see next paragraph.

Non-derogatory matrices have the property to be similar to the companion matrix of their characteristic
polynomial. Let X be such a matrix and

d—1
xx (W) =det(uid —X) = ul + Z akuk (6.2)
k=0

87
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be the characteristic polynomial of X. There exists an invertible matrix Vy such that

00 ... 0 —ag
1 0 ... 0 —aq

Cx:i=[0 1 ... 0 —ap |=wxvlh (6.3)
00 ... 1 —ag,

One can also bring X to the transpose of the above companion matrix C; with an invertible matrix Vy.

6.1.1 Cyclic vectors and basis

Proposition 1. Let X € Mat(C?) be a non-derogatory matrix. There exists a vector s € C? such that
(s,Xs,Xzs, - ,Xd_ls) (6.4)

forms a basis of C2. The vector s is a cyclic vector associated to X. Similarly, there exist a covector s’ €
(CY* ~ C? such that
(s’,s’X,s’Xz, ... ,s’Xd_l) (6.5)

is a basis of covector of C.

Proof. Let o € C¢ such that 0, # 0 and o4 = 0. Then, for Cy from (6.3), noting e; the canonical vectors
of C4,
Vne[0,d—1], Cyo=o0e,,;+ae;, where a€C. (6.6)

It is clear that {0, Cxo0,... C}‘;_la} forms a basis of CZ. Its image by the isomorphism Vi ! is a basis, so
with s := Vy o the family (6.4) is a basis.
It is possible to put X in the transpose companion form C; through another isomorphism

Cp = WyXW, 1. (6.7)

With a similar computation, a covector s’ with 5’1 # 0 and 5:1 = 0 is cyclic for X and (6.5) forms a basis. []

In fact, lots of vectors are cyclic for a given non-derogatory matrix. An alternate proof that (6.4)
and (6.5) are bases using the Jordan canonical form highlight this.

Proposition 2. Let X € Mat(C?) be a non-derogatory matrix, with therefore simple spectrum SpX =
{A1,..., A}, a <d, so that
Vi,je[l,a], i#j, A#A; (6.8)

There exists an invertible matrix Vx that puts X in its Jordan normal form

J(A1,my)
J(Ay,m5)
Jy 1= S = VXV, (6.9)
Jo(Agsmg)

where m; is the algebraic multiplicity of the eigenvalue A;, Z?Zl m; =d, and J(A,m) is the m x m Jordan
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block
A1 0 0
0 A1 0
JA,m)y=1|: + . | (6.10)
0 00 A 1

Let S be a covector in (C1)* and note

SVy = (sgl),...,sgl),...,sga),...,sggg). (6.11)
If
a .
[ [ #o, (6.12)

then the family (S ,8X,...,8X d_l) is a basis of covectors.

Proof. Noting & := Vy'e; the image of the canonical basis by V!, the family (S,5X,...,SX% 1) is a
basis if there exists an invertible bijective maping with another basis, for example the canonical one. This
is the case if the determinant of the d x d matrix M, defined by its coefficients

M;; = SX'tg), (6.13)

is non-zero. Thanks to the block diagonal form, this determinant is the product of the determinant in
each Jordan block J(A;, m;). Using standard linear algebra techniques [see 225, proposition 2.2], one

eventually computes
a
detM = l_[ (sgl))ml l_[ (Aj =AM, (6.14)
i=1

1<i<j<a

proving the desired result. O

The above proposition also holds for cyclic bases of vectors, but we anticipate on the integrable model
case, where we will mainly use a basis of covectors similar to this one.

Remark 1 (Centralizer of X). Let
Cx = {M e Mat(C?) | [M,X]=0} (6.15)

be the centralizer of a non-derogatory matrix X. Because the minimal polynomial of X coincides with its
characteristic polynomial, Cx has dimension d and consists in the set of matrices which are polynomials
in X with coefficients in C [226]. Hence, the family (1,X,...,X%1) is a basis of the vector space Cy.
Products of two powers of X re-decompose as a linear combination of powers smaller than d — 1. For
X -X% 1 =Xx4 this is computed explicitly from the minimal/characteristic polynomial, see (6.21).

6.1.2 Spectrum and eigenvectors

The cyclic basis is useful in the study of the eigenvectors of X : for a given eigenvalue, the unique associated
eigenvector is fully determined by its coefficients in the cyclic basis, which are easily computed to be
powers of the eigenvalue. From now on we will use braket notation.

Proposition 3. Let X € Mat(C?) be a non-derogatory matrix. Let (S| := s’ and (f,| := (S| X""1. A vector
|A) € C" is an eigenvector of X of eigenvalue A if and only if

Vne[Ld], (fA)=A""1(S|A). (6.16)
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Proof. Suppose |A) # 0 is an eigenvector of X with eigenvalue A. Then (6.16) is verified immediately,
but one should check that (S|A) # 0. Because the (f,,| form a basis of C", the dual vectors

fa) o= (" = (XT) ()T (6.17)
form a basis of C". Since |A) # 0 and
d d _
{fal2) At
- ) = (S|A) ; (6.18)
M= 2 iz Ve = ) 2 s ).

necessarily (S|A) # 0 and (6.16) indeed holds.
Consider now a vector |v) € C¢ such that (S|v) # 0 and for an eigenvalue A € Sp(X), it holds

Vne[1,d], (f,lv)=A"1(S|v). (6.19)
Is |v) the eigenvector of X of eigenvalue A? For n < d,
(falXIv) = (SIX™ V) = (fr1lv) = A (fulV), (6.20)

which puts us on good track. For n = d, the vector {f;|X = (S|X? is no longer a vector of the (f,|
basis. However, the power X? can be rewritten thanks to the characteristic polynomial of X: by the
Cayley-Hamilton theorem, X satisfies its characteristic equation

X)) =0=X+a; X'+ +a,X +ay. (6.21)

This effectively decomposes the right action of X on (f4] over the (f,,| basis

d— d— d—1
(41X |v) = Z (S|X"|v) = Z (fraalv) =—(SIv) > a,A", (6.22)
n=0 n=0 n=0

Because A € Sp(X), ¥x(A) = 0 so we reconstruct A? in the above equation. Therefore,
(falX1v) = 24 (S} = A {falv) . (6.23)

Eventually, this proves that |v) is the eigenvector of X of eigenvalue A — and may be noted |A) :=|v). O

This discussion on non-derogatory matrices shows that a basis may be constructed by repeated action
on a cyclic vector. This basis is especially useful for their spectral problem, because the eigenvectors’
decomposition in the |f,) = (f,|" basis is entirely determined by powers of corresponding eigenvalue, up
to an overall normalization fixed by (S|A). Hence, in such a basis, we can construct explicitly the unique
eigenvector (up to a non-zero normalization) as soon as we know the eigenvalue. This is a very handy
result, as it is often possible, and easier, to compute only the eigenvalues.

“Constructing a basis that facilitates the spectral problem” is clearly of prime interest for quantum
integrable models. In the context of quantum integrability, can one construct a separate basis with similar
properties as the ones of non-derogatory matrices? We investigate this in the next section.
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6.2 Separate basis from conserved quantities

6.2.1 Basis from conserved quantities

While Sklyanin’s SOV sounds a promising tool which could supersede ABA techniques, the identification
of the A(u) and B(u) operators are in general not trivial. All the more so as it is also required to prove
non-immediate properties, such as the diagonalizability of B(u), then characterize its spectrum and prove
its simplicity, and ensure the A(u) operator evaluated in the spectrum of B(u) indeed perform shifts on
the B(u) spectrum.

Even for the rank one gl(2) case, there are models for which such a program cannot be completed,
for example the XXZ chain with a diagonal twist. Working with a greater algebra make the picture more
involved. In the gl(3) case, we already investigated how the expression of A(u) given by Sklyanin cannot
perform the desired shift over the full spectrum of B(u). This is essentially because it is not anymore a
polynomial in the monodromy matrix entries.

These observations provide strong motivation to look for a more universal construction of SOV in
quantum integrable models. Integrability leverages the conserved quantities to ensure solvability. Could
they be used to developing a separation of variables as well?

It appears they can: repeated action of the transfer matrix evaluated in the inhomogeneities on a
certain covector produce a basis, which is immediately separate for the spectral problem of the transfer
matrix itself. The key point in this construction is that it relies on the very object we ought to diagonalize.
This overcomes entirely the identification of the A(u) and B(u) operator families and the proofs of their
required properties. Besides, this SOV construction applies for a larger class of models. It generalizes to
higher rank rather trivially, though the details of the use of the basis to solve the spectral problem are
much more tedious than in the gl(2). We discuss them in section 6.2.5.

Consider the #(gl(n)) chain of length N with the commuting family of transfer matrices (T (u)),cc,
Yu,v € C, [T(u), T(v)] =0, and Hilbert space 5#. Suppose one can construct dim 5# matrices from T (u)
gathered in N sets

(rs,..., T(Z’ll}, (6.24)

with a € [1,N], and l_[ d, = dim 5¢. Some functional f, (@) of the (T (u))yec family are such that these
matrices are obtained from the transfer matrix T : C — End(% )

T = £9[T] (6.25)

For any N-tuple in Z = [0,d; — 1] x --- x [0,dy — 1], we note
N
T;=[ [\ (6.26)
=1

the dim 5 possible products made by picking one operator in each set. Because the T( ) are functions of
the (T (u)),ec family, they commute together and with T (u) for any u € C, and so do the T;;,. We note
Cr:={X €End(#)|VYueC, [X,T(u)]=0}. (6.27)

Suppose there exists (S| € ##* such that the dim ./# covectors

(h| := (S| T (6.28)
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form a basis of 5#*. Let
(s :={(s|T; | hez} (6.29)

Proposition 4. If G((S|) is a basis of 5*, then the family T (u) has simple spectrum. Moreover, the family
(T;;)fe7 is a complete set of commuting matrices, i.e. it has simple common spectrum.

Proof. Let [t), |t’) € 7 be two non-zero eigenvectors of the T(u), u € C, associated to the same
eigenvalue t(u) € Fun(C,C). Because T; € Cr, |t) and [t’) are also eigenvectors of T;. We note tj,
the associated eigenvalue, which is the same for |t) and |t’) and is determined from the eigenvalue
t : u— t(u) by the knowledge of the functionals (6.25):

N N
g=]]c"=]] fH:)[t] forall hef. (6.30)

We abuse the notation tl%a) to also refer to the functionals from Fun(C, C) to C derived from (6.25). The

wavefunctions of |t) in the basis G((S]) are
(ht) = (S|t)t; and (h|t") = (S|t') t;; (6.31)

Because |t) # 0, (S|t) # 0, and the same holds for |t’). With a renormalization of |t’), one can put
(S|t’) = (S|t) in all generality. Then,

Vhez, (hl(|t)—It'))= (hlt)— (ht") = (Slt) (¢ —t5) =O. (6.32)

The image of |t) — |t’) under the basis of linear forms (l_il is zero, so this vector is zero. Henceforth, the
common spectrum of (T (u)),ec family is simple

Moreover, the Ty commute together, as functions of T(u), and share the same eigenvectors with
T(u). For |t), |t) € # two eigenvectors of the family (T )i, with the same eigenvalues t;, the above
discussion holds starting from (6.31), so that |[t) = |t’), and |t) is defined by its wavefunctions in G({S|).
Therefore, the family (T});; is a complete set of commuting matrices, namely it has simple common
spectrum. O

Proposition 5. If G({(S|) is a basis of #*, then the Ty, form a basis of the centralizer Cr of (T (u)),ec-

Proof. Suppose there exist a linear relation between the Tj, i.e. there exist coefficients A;; € C, not all
zero, such that

> 25T =0. (6.33)
heZ

Then, acting on (S| by the right,
> 2 (Bl =0, (6.34)
heZ

so this would imply that G((S|) is not a basis. By contraposition, if G({(S|) is a basis of #*, the T;, are
necessarily a free family. Besides, the family (T (u)),ec has simple spectrum by proposition 4, so its
minimal polynomial coincide with its characteristic polynomial and its centralizer C; has dimension
dim . The family (Tj);.; is a free family in C; of cardinal dim 5, and therefore is a basis of the
matrices that commute with the (T (u)),cc family. O

By proposition 5, for T(u) € Cy at generic value u € C, it can be decomposed as a linear combination
on the T;, family, which is a basis of Cy. Therefore, there exists functions Ci;(u) such that

T(u)= Y CGywT; forall uecC. (6.35)
hez
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The product of two matrices Ty, Tj is in Cr as well, so the T, are dim(5¢) generators of an associative
abelian algebra with relations 3
— [

Ty Ti= 2L CigT (6.36)

fez

The C}f; p are numerical coefficients that satisfy the associativity and commutativity constraints, namely

i _ Al
Cﬁ’f( = CR,B’ (6.37)
ct.cil.=>» cP.cd . (6.38)

hk pf £ ki hp
pET PET
Relations (6.36) also holds at the eigenvalue level
ty -ty = Zcﬁ (6.39)
fez

The functions C;;(u) and the constant numbers C}Zi ; are fixed by the model at hand and the choice of the

T}Ea) operators. With the decomposition of the transfer matrix over the Tj;, one also has
a

T(u) Tp=> G Ty Tg= Y, Ciw) i Tpe (6.40)

hez h,ifez

The relations (6.39) can serve as a characterization of the transfer matrix spectrum. Let

VE,REI, XH'XK:ZCERXZ and EIEEI, xB#O} (6.41)
fer

Zim { (ks

be the set of dim s#-tuples of complex numbers solutions to the (dim#)(dims# +1)/2 quadratic
equations (6.39).

Theorem 4. If G((S|) is a basis of #*, then every eigenvalue in Sp(T (u)) is characterized uniquely by a
tuple of 3. Namely, there is a bijection between Sp(T (u)) and 3.

Proof. Suppose G((S]) is a basis. Then the transfer matrix has simple spectrum, and the unique eigenvector
|t) associated to t(u) € Sp(T(u)) is an eigenvector of the T;, as well, with eigenvalues t;; defined in (6.30).
Obviously the tuple (th)h 7 is in Z—this is seen easily by computing the action of the Tj, - Tj; over t).

Consider now (xh)h , € T different from the zero tuple. We construct the non-zero vector |x) by
fixing its images under the basis of linear forms (h|

vhez, (hx)= X, (6.42)
One has

(BIT@)lx) = (SIT; - T(Wlx) = (SIT;; Y, Ge(w) Tlx)

kez
= 2. GG (SITilx) = 3] GClpx  (dentifying (7lx)) (6.43)
R,ZGI k[GI

=Xj- Z Ci(uw)x; (using relations (6.41)).
keT
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Hence, defining the function

() = Gplu)xg, (6.44)
ke
one has that
VheZ, (hITWIx)= (hlx)7,(w). (6.45)

Therefore, |x) is an eigenvector of T(u) with eigenvalue 7, (u). Two different tuples of ¥ cannot yield the
same eigenvalue: let (x);, (V)i € =, ()5 # (55, such that Tx§u) = 7, (u). Then the two states |x)
and |y), having different images under the basis of linear form (h|, are different eigenvectors of T (u),
yet with the same eigenvalue. This is not possible, since T(u) has simple spectrum.

Hence, every eigenvalue t(u) of T(u) is associated to a unique tuple (tﬁ)ﬁ <7 in %, and any tuple of &
defines an eigenvalue of T (u). Therefore, #3 = # Sp(T(u)), and the two sets are in bijection. One way
is realized by the fh (@) functions, and the other by the linear combination (6.44) with the coefficients
Cﬁ(u) [

Hence, whenever a basis of the form G((S|) can be constructed, the spectrum of the transfer matrix
has a characterization in terms of solutions of a system of quadratic equations given by the relations
between the generators of the centralizer of T(u) that constructs the basis.

However, the number of relations (6.39) is a priori dim s#(dim s# + 1)/2, which in case of quantum
lattice models is exponential in the number of sites, since dim ¢ = l_[ j=1M;, where m; is the dimension of
the representation of gl(n) at site j € [1, N]. For quantum models constructed from a Yang—Baxter algebra,
one observes a drastic reduction of the number of relations necessary to characterize the spectrum. This
is the hallmark of integrability. Thanks to the fusion relations holding between the transfer matrices of
these models, the number of relations implying the full relations (6.39) becomes in such case polynomial
in the number of sites. Such a reduction from an exponential to a polynomial dependency in the number
of sites N happens due to the possible careful choice of the set of the Tj, in integrable models. We will
give several examples of such reduction in the remaining of this thesis. For now, let us give here a toy
example of this phenomenon.

A toy situation is the one where the relations remain local in the indices of the N-tuples h. Within our
notation, the wavefunctions of eigenstates are already factorized

(h)t) = (S|¢) ]_[ r_(“) (6.46)

Suppose the actions are moreover local in the indices h, of the N-tuples of Z, that is

dg

@ . (@) _ (@),k m(a)

YT, =) ¢i" T, (6.47)
k=1

with some fixed numerical coefficients c .. The knowledge of the c coefficients completely fixes the
relations (6.36), by

N d,

N
- T=[ |11 =] [ DS cinler® = Z ClLTy. (6.48)

a=1 a=1{,=1 fez

Rather than the system of equations given in (6.41), it is now simpler to consider N systems. For all
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a € [1,N], let

’d j ij k

dy
,k .
g = {(xga), . (a) ‘\7’1 jel1,d,], xl.(a)x(.a) =) ¢ @DR@ and Ije[1,d,], xj(a) #0
k=1

(6.49)
be the set of d,-tuples of complex numbers solutions to the d,(d, + 1)/2 quadratic equations (6.47).

Proposition 6. If G((S|) is a basis of #*, and if the Tl.(a) multiply locally as in (6.47), then every eigenvalue
in Sp(T(u)) is characterized uniquely by N tuples picked from %,...,Xy. Namely, there is a bijection
between Sp(T(u)) and Xq X - -+ X Zy.

Proof. Let |t) be an eigenvector of T(u) of eigenvalue t(u). It is also an eigenvector of the T(a), with

(a) ey (a)) are d,-tuples of complex numbers in %7, and this for

eigenvalues t( 9 It is clear that the (t]
every a € [1, N ]

Consider now (x(a)

..,x(?)) € %, for every a € [1,N]. We construct the vector |x) € 5 from its

image by the linear form (ﬁl:

N
vhez, (hlx)=] [« (6.50)
a=1 ¢
Then, by a proof similar to the one of Theorem 4, one proves that |x) is an eigenvector of T(u) of
eigenvalue
(W) = Y Cylu) ]_[ xf. (6.51)
kez
0

With such local actions for the T }E:), the discrete characterization of the spectrum by the set of solutions
3 is separate in a product of N sets %q,...,Xy. The system of equations (6.41) has been decoupled
in the N independent systems (6.49), each of rank d,(d, +1)/2. This is a great simplification of the
spectrum characterization. Moreover, eigenvectors are obtained from their corresponding eigenvalue
with the knowledge of their image under the basis of linear forms (B|, which now has a factorized form.
In the following, we will give several example of quantum integrable models where a similar simplifi-
cation can be made, although they are more intricate than the above toy model. In particular, in the next
section where we take
T =T(E)*, with h,€[0,n—1], (6.52)

we will see that we observe a drastic simplification of most of the above relations (6.47) and (6.48). The
different cases have been treated in a series of articles, covering the gl(2) case with fundamental [225]
and higher spin representations [232], gl(3) and gl(n) models [234, 235], and supersymmetric gl(n|m)
models [ILV1].

6.2.2 Bases from the powers of the transfer matrix

Following the case of non-derogatory matrices, we can define a family of vectors of the form (6.28) with
powers of the transfer matrix evaluated in the inhomogeneities, and they will form a basis under some
weak conditions on the twist and the inhomogeneities.

Theorem 5 ([225]). Consider the Yangian @/(g[(n)) R-matrix R(u) = ¢(w)id + ¢(n)P € End(C" ® C").
The fundamental inhomogeneous twisted chain of length N, with Hilbert space ¢ = ®§.V:1(C“, corresponds to
the monodromy matrix

M(u) =KoRony(u—&y)...Ro1(u—2&1), (6.53)
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and its transfer matrix T (u) = try M (u). If the twist matrix K is non-derogatory, the n covectors
N
(Bl = (sI] [, (6.54)
j=1

labelled by the N-tuples he [1, n]]N, form a basis of #* for generic inhomogeneities & ; when (S| is of the
form
(S|=(sl®---®sl, (6.55)

where (s| is a cyclic vector of the twist matrix K.

Proof. Let |e j >, jell, nV ], be the canonical basis of 5, constructed by tensorization of vectors the local
canonical bases at each site. We define the square matrix M of size n" by its elements

M;; = (h(D)le;), (6.56)
where ﬁ(i) is uniquely defined by
N
=1+ h(i)a™. (6.57)
a=1
The (h| form a basis of s#* if
det(M) # 0. (6.58)

The above determinant is a polynomial in the twist matrix entries, the inhomogeneities £; and the
coefficients (S |e j>. It is sufficient to prove (6.58) in some limit in this parameter to prove it for almost all
values of them. Let us impose inhomogeneities that are scaled from a single value relatively to the site
they are attached

EeC, Vje[L,N], & =j¢. (6.59)

Because

T(ga) = Raa—l(ga - Ea—l) X 'Ral(ga - gl)KaRaN(ga - <Z:N) .. 'Raa+1(£a - <Ea+1): (6.60)

T(&,) is a polynomial in & of degree N — 1 and is of the form

T(E,) =co&V K, +0O(EN2) given ¢, =(—1)V"%(a—1)I(N —a)!. (6.61)
Therefore,
- N N h; il h; N
(B| = gV DLl « (]_[ca’) < (sI] [k +o (g OIERN), (6.62)
j=1 j=1

The determinant of M is now a polynomial in £ as well, of degree (N — 1) Zi] Z;V:l h;(i) and dominant

coefficient y
n’ N .
[T1Ter der(in), (6.63)

i=1 j=1

where M is the matrix with coefficients

N
Mg = (8| Jxh@e;). (6.64)
a=1
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Taking the covector (S| in a tensor form of covector local in the site
(S| = ®§V:1 (S,j| where (S,jleV?, (6.65)

the above determinant is factorized as a product of N determinants over square matrices of size n

N
det(f) =] [det(rh,), (6.66)
a=1
where, using |e;) = ®)_, |e;(a)), .
(ma)ij = <S:a|K:1_1~€j(a)>- (6.67)

Because K is a non-derogatory matrix, there exists a covector (S, a| € V, such that det(rh,) # 0, thanks
to proposition 1. Even better, proposition 2 gives explicit form of cyclic covector (S, a| such that (6.54)
forms a basis. Hence, there exists (S| € 2#* such that det(M) # O for almost all values of the parameters
it depends on. O

The above theorem is a specialization of the discussion of the previous section, with

N
Ti=[ [rE)h with hefo,N—1]". (6.68)
j=1

These operators are now proven to form a basis of the Bethe algebra of the model. Thanks to the power
form of the basis, the relations (6.36) are not too complicated for many generators. If

VjelL,N], hj+k;<N-1, (6.69)

then we simply have
Th- Te = Thake (6.70)

If there is only one j € [1,N] such that h j*+k; = N, then it is necessary to compute the linear decomposition
of a higher power on the ones smaller than N — 1. The characteristic polynomial is here of no help, since
it is a polynomial of degree n"V. However, the fusion relations can be used to compute this decomposition.
Indeed, evaluated in the inhomogeneities, the fusion relations links products of transfer matrices to
fused transfer matrix. The interesting point is that the one corresponding to the totally antisymmetric
representation, namely T‘El)(u), coincide with the quantum determinant which is a central element. This
is seen easily in the gl(2) case: the relevant fusion relation is written in the inhomogeneities as

T(&)T(E;—n)=q-detM(&)). (6.71)

While we do not have directly T (& j)z = g-det M (&), it is clear that this relation provides a reduction in
the power of the transfer matrix, which is 2 in the left-hand side and 0 in the right-hand side. To resolve
the inconvenience of having one transfer matrix shifted by 7, it is possible to interpolate T(u) in the
correct points to make use of the fusion relation to compute the decomposition of Ty, - T(u) over the Tj,.
This is done in the proof of proposition 7.

The gl(n) case is more involved, because the successive use of the tower of n — 1 fusion relations to
requires to interpolate once again between each step. We explain the procedure to compute Ty, - T (u) in
this manner in section 6.2.5, where we give elements of the proof of the spectral problem of gl(n).

Note that the possibility to construct the basis (6.54) ensures that the transfer matrix T (u) itself is
non-derogatory. In fact, we have the following stronger result.
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Lemma 1. If the matrix K has simple spectrum, then the transfer matrix has simple spectrum. Moreover; if
K is diagonalizable with simple spectrum, then T (u) itself is diagonalizable with simple spectrum.

Proof. Suppose K has simple spectrum, and let t(u) be an eigenvalue of T(u) and |t) an eigenvector
associated to t(u). Then,

(h)t) ]_[ t(g ) (Sle) 6.72)

so |t) is uniquely defined, up to an overall normalization, by the eigenvalue t(u). All eigenvalues have
geometric multiplicity of one, so T(u) is non-derogatory.
Let us now restrict to the case of K diagonalizable with simple spectrum. Noting

Sp(K): {klﬁﬁkn}) (673)
we label the eigenvectors by their corresponding eigenvalue

(k,

;| and  |k;), je[1,n]. (6.74)

The left and right eigenvectors of K form a basis of (C")* and C" respectively. Tensoring N-times, we
construct bases for ##* and #

(K, h|:= (k| K, h) =@ IKp,) - (6.75)

Taking the inhomogeneities as in (6.59), the above bases are eigenbases of the leading coefficient of the
transfer matrix polynomial expansion in & (6.61) of the T(&;). Thus, for some left eigenvector (t| of
T (), there exists a unique N-tuple h € [1,n]" such that

. 1 _ n

for some proper normalization N;~(&). Reconstructing T (u) by Lagrange interpolation in the &; = j& and
subtracting the dominant term, one can find that

N
(el (T@) = EV (DN K) = (DY ek, ]_[ — (KB (6.77)

a=1 b7éN

lim
g|>+o00 EN- p

The left-hand side of the above limit, once rewritten using Lagrange interpolation, has the same form as
the right-hand side. By the above limits, it has to hold

lim 1
gl=+o0 N§(&)

(t|= (K,hl, |t) = |K,h) (6.78)

lim
lgl>+00 N7 (&)
with the proper normalizations N (&) and N;”(&) are fixed. Eventually, this implies that

(t|t)

In a non-trivial Jordan block, left and right eigenvectors are orthogonal. Here, (t|t) # 0, so the Jordan
block associated to the eigenvalue t(u) must be trivial, i.e. of size 1. Eventually, this makes the transfer
matrix diagonalizable with simple spectrum. O
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6.2.3 Separate property

The basis (6.54) is immediately seen to have the first features of a separate basis. Let |t) be an eigenvector
of T(u) of eigenvalue t(u). Then, the wavefunction in the basis (6.54)

v(R) = (hlt) ]_[ (€Y (Sl0), (6.80)

j=1

is factorized, with each factor depending on only one coordinate h;.
Can we find some separate relations of the form (5.58)? The fusion relation (A.61) for gl(2), specialized
in the inhomogeneities, are

T(E))T(E; —n) = g-det M(E)). (6.81)

This clearly has the desired form; in the next section we show how it is used in the resolution of the
spectral problem for the gl(2) case. For higher rank cases, the fusion relations shall provide separate
relations as well, but in a more intricate way, see section 6.2.5.

6.2.4 Spectral problem for gl/(2) models

Consider the inhomogeneous XXX spin 1/2 chain with twisted boundary conditions. As anticipated, the
separate relations constraining the spectrum in this case are the fusion relations particularized in the
inhomogeneities. These N relations form a system which select eigenvalues among a certain family of
functions determined by the analytic properties of the transfer matrix.

Proposition 7. The eigenvalues of T(u) are the polynomials t(u) in u of degree N and dominant coefficient
trK, verifying the N relations

where the quantum determinant is the scalar

N
g-det M (u) = detK l_[(u—gj +n)(u—¢&;—eta), (6.83)
j=1

which fix the N remaining coefficients. Explicitly, they are the polynomials

N N N
t(w) = trk ]_[(u—gj)+Z]_[ (6.84)
j=1 a=1b=1>a gb
b#a
where the N-tuple {x,...,xy} is a solution to the linear system of N quadratic equations

N
X, trKl_[(x —n— €J)+Zl_[ - gbxa =q-detM(&,) for ne[1,N]. (6.85)
j=1 a=1b=1
b#a

The unique eigenvector associated to the above eigenvalue is characterized by the factorized wavefunction in
the left SOV Basis

(hlt) = ]_[ t(EM, (6.86)

with the normalization (S|t) = 1.
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Proof. It is immediate that any eigenvalue t(u) and associated unique eigenvector are of the above form,
so one just needs to check the converse way. Consider the polynomial f (u) of degree N defined by its
values in the inhomogeneities x, := f(&,), such that

Vae[LN], f(E)f(Ea—mn)=g-detM(E,). (6.87)

By Lagrange interpolation, f(u) can be written

f(w) = (K)u® +Z]‘[ u 51’ (6.88)

a=1 b= 1
b#a

and then (6.87) is explicitly a system of N equations in the x,. We define the vector |v) by imposing its
coordinates in the left SOV basis

h|v X; J. (6.89)

:|z

j=1

Consider (h| such that h, = 0 for some a € [1,N]. Then,

N

RITEDW) = (e, hyle) = FED ] [FEN = £ (o) (RIV). (6.90)
j=1
Jj#a

Now, if h, =1,

N
(ﬁlT(ga - TI)|V) = q'detM(ga) (hb LR O, s )hN|t> = f(ga)f(ga - 77) l_[f(ga)hj
j=1
ja (6.91)

N
= FEa—m] [ = F(E—n) (BIv),

j=1

thanks to (6.87). Given a fixed N-tuple h, and noting &) = & —h.n, the transfer matrix and the function
f (u) are written by Lagrange interpolation similarly

N N g(hb)
_ R,
T(u) = tr(K) u 21:]_[ i g(hb) T(E()) (6.92)
N N _ g(hb)
_ R,
f (W) = o(®)u" ;H i 5(hb)f(ez ), (6.93)
b#a
therefore
VueC, (R|IT@Wv)=7fw) hlv). (6.94)
This holds for any (ﬁl of (6.54). Because it is a basis,
YueC, T@)|v)=f)|v), (6.95)

so |v) is an eigenvector with eigenvalue f(u) of the transfer matrix. It is unique since T(u) is non-
derogatory.
Note that for any eigenstates |t) one has (S|t) # O since |t) # 0, otherwise the right-hand side
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in (6.89) always vanishes, which would contradict the fact that the (ﬁl are a basis. O

While the above proposition 7 gives a characterization of the spectrum through a quadratic system, it
is possible to give a functional characterization as well by what is called the quantum spectral curve.

Proposition 8. Under the same assumptions as above, a polynomial t(u) is an eigenvalue of T (u) if and
only if there exists a unique polynomial Q(u) of degree M < N with no & for its roots such that the couple
(t(u),Q.(u)) lies on the quantum spectral curve

Ka@d@Q,(u—21) — kja@)t(u—n)Q,(u—mn) +g-det M(w)Q, () = 0. (6.96)
Furthermore, the unique eigenvector |t) associated to t(u) has the following wavefunctions in the SOV basis
N N
"k
hie) = k2" [ QuE). 6.97)
j=1

Proof. Let (t(u),Q.(u)) be a couple lying on the spectral curve. We note k, the second eigenvalue of K —
which might be equal to k;. Because Vj € [1,N], g-detM(u)(&; +n) = 0, equation (6.96) evaluated in
points u = &; and u = &; + 7 produces the 2N equations for 1 < j <N

t(&;—mQ (& —m) —kod(&; —1)Q.(E;) =0,

(6.98)
kia(&;)Q (&;—n)—t(&;)Q(E;)=0
Since Q(&;) # 0 by hypothesis, multiplying the two equations gives
Vie[LN], t(ENHE —n)=det(K) a(€;)d(E; —n) = g-det M(E)), 6.99)

where one identify the quantum determinant in the right-hand side. This is exactly the spectrum charac-
terization obtained in proposition 7, so t(u) is an eigenvalue of the transfer matrix. The wavefunctions
are recovered from (6.86) after an overall normalization.

Conversely, let t(u) be an eigenvalue of T(u). Let Q,(u) be a polynomial of degree M < N, and
consider

P(u) = ka(u)d(@)Q,(u—21) — kya(w)t(u —1)Q.(u—n) + g-det M (1)Q, (w). (6.100)

The polynomial P(u) is easily proved to be of maximum degree 3N — 1, as the leading contribution in
u?N*M vanishes. It is zero for all £ j — 1, because the scalar coefficients of the three terms are zero in
these points. The condition P(§;) = 0 = P(&; + n) is equivalent to the systems (6.98) which reduces to

the N following equations thanks to the fusion relations (6.82)

Viell,N], t(&;)Q(&;)=kia(€;)Q.(&;—n). (6.101)

On can prove such a polynomial Q,(u) satisfying these conditions exists and is unique, as it is done
in [218]". The form of the unique eigenvector associated to t(u) then follows from (6.86) and the above
equation. O

6.2.5 Spectral problem for fundamental gl(n) models

Like in the gl(2) case, the characterization of the spectrum using the SOV basis (6.54) requires a subset
of the fusion equations. Noting T,(u) the fused transfer matrices obtained from the antisymmetric repre-

!The form of the transfer matrix eigenvalues in terms of Q-functions is already accessible from the ABA.
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sentations with a € [1,n], we recall that the relevant fusion relations are written in the inhomogeneities
as

Vae[l,n—1], T(&)T,(E;—n)= Tp41(&)), (6.102)

with the identifications T;(u) = T(u) and T,(u) = q-det M (u).
Let us defined a handler quantity which will be useful to write interpolation formula concisely. For all
integers a € [1,n] and p € [1,N], we define

@ ﬁ u—¢&, N a—1 1
g, (u) = | | — (6.103)
q#p

with 5 ) — = &; —kn. Then the fused transfer matrix T,(u) can be written by Lagrange interpolation in the
1nhomogene1t1es as

[uey

a—

N
To(u) =l_[ (u—&;—kn) a(K)]_[(u—£])+Zg(“)(u)T(§p)Ta_1(§p—n), (6.104)

j=1 1

»
Il

where 0,(K) =tr; _,(P; _K;...K,)is the a-th elementary symmetric polynomial in the eigenvalues of
the twist K.
The following results was obtained in [234].

Theorem 6. Suppose the family (6.54) is a basis of covectors of €™ under some conditions we suppose verified,
as stated by Theorem 5. Let {x1,...,xy} € CN define the following polynomial by Lagrange interpolation in
the inhomogeneities

t(u)=trK l_[(u —&)+ Z gc(ll)(u)x (6.105)
j=1

We can further define the n — 2 polynomials of degree aN for 2<a<n—1

N a-1 n N
@ =] ][ [(w=¢&—kn) | 0] =&+ el @t tnEp—m) | (6.106)
Jj=1k=1 j=1 p=1
If {x1,...,xy} is a solution of the system of N equations of order n in the x;

X]tn—l(gj_n):q'detM(gj) fOT' jeﬂl,N]], (6107)

then the polynomial t(u) defined above is an eigenvalue of the transfer matrix T(u) — and the t,(u) are
eigenvalues of the T,(u), respectively. Furthermore, the spectrum of T(u) is simple: the eigenvector |t)
associated to a given eigenvalue t(u) is unique and is defined by its wavefunctions in the separate basis up to
an overall normalization as

N
vheo,n—1]", (Ble) =] JeE. (6.108)

j=1

Proof. The proof follows the same line as the one for the gl(2) case. Since the successive functions t,(u)
are constructed by the interpolation formulas originated from the fusion relations between the transfer
matrices, it is immediate that any eigenvalue of T (u) has its values in the inhomogeneities x; = t(&;)
verify the system (6.107).

Conversely, let {x{,...,xy} be a solution of (6.107) and f(u), fo(u),..., f,(u) be the polynomials
defined recursively by Lagrange interpolations as in the statement of the theorem. Let |v) € s be the
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vector with wavefunctions

vhelo,n—1]", (Bp)=] [Nf@h. (6.109)
j=1

Then one can show after lengthy calculation leveraging the fusion relations for the transfer matrices and
the one verified by the f polynomials that

Vhe [o,n—1]", <B|T(u)|v> = f(u) (ﬁ|v>. (6.110)

Hence, |v) is an eigenstate of eigenvalue f (u), and we may note |t) := |v) and t(u) := f (u). The exact
computations of (6.110) in the case of a N-tuple h with at least one entry equal to n—1 follows the
lines given in (6.43), where the coefficients Cll: are obtained indirectly by the successive use of the fusion
relations. Subtleties of the calculations are found in appendix A of reference [234]. O

A functional characterization is also known for gl(n) thanks to the spectral curve.

Proposition 9. Let t(u) be a polynomial of degree N. We construct the polynomials t,(u), 2<a <n—1
from t(u) as in (6.106). Under the same assumptions as above, t(u) is an eigenvalue of T (u) if and only
if there exists a unique polynomial Q,(u) of degree M < N with no &; for its roots such that the couple
(t(u),Q.(u)) lies on the quantum spectral curve of equation

1 3a(Qu—an)ty o(u—an) =0. (6.111)
a=0

We make the identifications
to)=1, t1(w)=t(w), t,(u)=q-detM(u), (6.112)

and the coefficients a,(u) are defined as

a—1

Vae[on], a,w=(-1)*"%k] [du—bn), (6.113)
b=0

where k; is an eigenvalue of the twist matrix K. Moreover, the unique eigenvector |t) associated to t(u) is
defined by its wavefunctions in the SOV basis up to an overall normalization as

N
vhe[o,n—1]", (Blr) =] [(er(ENQclE;—m) “Qu(g " (6.114)
j=1

Proof. The proof is very similar to the gl(2) case.
For a couple (t(u),Q.(u)), evaluating (6.111) in the (n—1)N points &; + kn, k € [1,n—1], one can
prove that it holds

Vje€[1,N], Vae[ln—1], t(E)t(E—n)=te41(&5), (6.115)

such that by Theorem 6 t(u) is an eigenvalue of T(u), and the form of the wavefunction of |t) follows.
Conversely, if t(u) is an eigenvalue of T'(u) and Q,(u) is some polynomial of degree M < N. Con-
straining Q,(u) by imposing

Vie[L,N], ,a1(&)Q:(&;—n) =t(E;Q.(E)), (6.116)
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which is equivalent to place (t(u),Q,(u)) on the quantum spectral curve, one can prove Q,(u) exists and
is unique. Details can be found in the appendix B of reference [234]. The form of the wavefunctions of
the eigenvector |t) follows easily. O

6.3 Link with Sklyanin SoV in the gl(2) case

In the gl(2) case, for a certain choice of the covector (S|, the basis (5.59) made from the power of the
transfer matrix coincide with the Sklyanin’s original SOV basis, namely the eigenbasis of the B(u) = My, (u)
entry of the monodromy.

Proposition 10. Let

K
(b5 = 0|]_[( ((;J), with he{0,1}V, 6.117)
]

which are the vectors defined in (5.125) up to a scalar factor. For (S| = (0| = ®§.V:1(1, 0),
(bl = (n|*". (6.118)
Proof. The proof is made by induction. For h= (0,...,0), then obviously
(0] = (s| = (0] = (0]°, (6.119)

and (6.118) is verified.

Take ¢ € [1,N] and suppose that for any h € {0,1}" such that Z = {, equality (6.118) is

j=1 J
verified. Let h € {0, 1}" be the specific N-tuple with
1 for1<j<{,
= . (6.120)
0 otherwise.
We have
e 1Skl : A(gj)
(BID(E, 1) = (™D )=l ] ] oy | PEs: (6.121)
j=1 "\%J

and using (Y.16) one time, it gives

. LA(E;
(hID(E,+1) = (0| (l_[ ail';)[D(ge+1)A(€z)—g(§e+1: EN(BENC(Er1) —BEn1)CED) ] (6.122)
j=1"\>J

The covector (0| (]_[ =1 A(E;) / a(& j)) is an eigencovector of B(u), whose eigenvalue vanishes in the &},
j <L (see (5.126)). Therefore, the two contributions in B are zeros, and everything happens as the A
and D have commuted together. Iterating on this, one can bring D(&,,) all to the left of the product of
A(&;) operators. Since (0] D(&j) = (0] d(&;) = 0, it means that the action (6.121) is zero. Hence, noting
€; the N-tuple with 1 at the j-th position and 0 everywhere else,

(h+&| = (B T(Ep) = (MI™MAE ) = (h+8 5. (6.123)

From every N-tuple of sum £, we can rearrange the indices by a permutation and perform the above
computation. Hence, we have just proven equality (6.118) for N-tuples of sum £ + 1.
Eventually, this proves (6.118) by induction over £. O
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In gl(n) models, it is more tedious to verify that the basis (5.59) is the eigenbasis of the B(u) operator.
Some results for gl(3) chains of small length were presented in the Appendix A of [225] — along comments
on the limitations of this SOV picture. The full proof has been obtained later in reference [236].

It is also possible to make the link with the ABA description of the eigenstates, see section IV.D
of [225] for example.

6.4 Recent results on SOV

The results presented here are mostly a concise version of [225]. A series of publications from the same
authors extended the methods to higher rank algebra, other representations and different boundary
conditions. The higher rank spectral problem for % (gl(n)) was solved by SOV method in [234], while the
trigonometric U, (gl(n)) models were treated in [235]. Higher spin representations we tackled by [232]
in the gl(2) case. In the open case, a SOV basis for #(gl(n)) models is constructed, and used to solve
the spectral problem for n = 2,3 in [233]. Extension to the supersymmetric gl(m|n) spin chains was
considered in [IV1]; this will be developed in chapter 8.

Thanks to the insights provided by [225], the B(u) operator proposed in [178, 179] was diagonalized
for gl(n) rectangular representations [236], with results refined in [237]. The authors obtain a basis as a
deformation of the Gelfand-Tsetlin one, and prove that it is the eigenbasis of some B(u) operator which
produces separates variables.

Efforts have been made towards correlation functions with progresses in the computation of scalar
products of separate states. Publications [238, 291] argue about the characterization of the SOV measure
in higher rank models, with article [240] being a great review of these results. We have contributed
ourselves to the determination of the SOV measure in the gl(3) case with article [[V2], which is the
subject of the next chapter.






Chapter

Towards the dynamics in
higher rank: scalar products
for gl(3) in SOV

This chapter is devoted to the results obtained in the article [IV2]. As we have shown in the previous
chapter, one can construct left and right separate bases (ﬁl, |ﬁ) for the fundamental #/(gl(n)) model in
particular, using powers of the transfer matrix in the inhomogeneities for example. Eigenstates are then
characterized by their factorized wavefunctions in the left separate basis. One would like to compute
scalar products of these eigenstates, paving the way towards form factors and correlation functions.

In the first section of this chapter, we introduce the bases p(ﬁl and |ﬁ)p orthogonal to the left and
right separate bases, and the SOV measure M that computes scalar product of separate states.

We then consider the gl(2) fundamental chain case, and show that the left and right separate bases
obtained earlier for these models are orthogonal with respect to the canonical scalar product of the
Hilbert space. More precisely, |ﬁ)p = |ﬁ> and p(ﬁl = (ﬁl. This makes the computation of the SOV measure
relatively easy, and we compute it exactly.

The higher rank case of the gl(3) fundamental chain is more intricate. Using bases of the form (6.28),
we have been are able to construct only pseudo-orthogonal left and right SOV bases at best. That is,
though one has equality for a certain amount of tuples h, one has |f1)p # |f1) in general. In the third
section, we give pseudo-orthogonal separate bases for the gl(3) fundamental model, and characterize
completely their pseudo-orthogonality in terms of the diagonal coupling (ﬁlﬁ) of the separate bases; This
allows us to give the form of SOV measure, once again in terms of the diagonal couplings, by computing
the decomposition of a generic |f1)p vector as a linear decomposition over the separate basis of the |ﬁ).

Comparing with the gl(2) case, the picture for non-orthogonal separate bases gets so more complex
that it is desirable to construct orthogonal left and right separate bases for the gl(3) case as well. In the
fourth and last section of this chapter, we remark that orthogonality of the separate bases is achieved in
the limit of non-invertible twist (with simple spectrum), and compute scalar product of separate states in
this case. We then proceed to describe the existence and properties of an operator T(u), defined by its
eigenvalues and eigenvectors and commuting with the transfer matrices, that can be substituted to the
transfer matrix to construct left and right separate bases that are indeed orthogonal.

7.1 Generalities on scalar products of separate states and SOV measure

7.1.1 Dual states of SOV left and right bases

Consider the #(gl(n)) twisted inhomogeneous fundamental model. We note (:,) , the scalar product of
the Hilbert space # = C"V of the model. We may take it to be the dot product for the canonical basis:
noting e; the vectors of the canonical basis of 5, it simply gives

Vi,je [[1,1’1N:|], (ei,ej)%a=5ij. (71)

The induced norm is ||a|| ,» := (a, a) . A similar notation is used for the scalar product on the dual space
with (-, ) s+ and ||| -

107
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Consider now the left and right SOV bases made from the powers of the transfer matrices

N
(Bl = (l] Jrem, (7.2)
j=1
- N ]
h) =] (&))" IR). (7.3)
j=1

A very important point is that a priori (EI is not the dual of Ifl) by the canonical conjugation S ~ ™.
Indeed, the adjoint of a vector of the right SOV basis decomposes as a non-trivial linear combination on
the left SOV basis yet to characterize

[B)" = "c5 (Bl (7.4)

p

and similarly for (ﬁlT. The notation could therefore be misleading, so we will clarify it. It is misleading
in the sense that for |y)) € 7, the corresponding bra is usually by definition the unique linear form on
# obtained by taking the adjoint, as in (1| := |4), and then the braket is used to denote the scalar
product involving the corresponding ket: (y|¢) = (|3), |¢)) 5. Here, for the notations (7.2) and (7.3),
this is not the case. The left and right states (ﬁl and Iﬁ) are just notations attached to the covectors and

vectors defined in (7.2) and (7.3). In this sense, the braket
(hlk) (7.5)

is the action of the linear form (ﬁ| in #* on a vector |E) of #, with no relation a priori induced by
the natural isomorphism ##* ~ # . The only common point is that they are both labelled by N-tuple
in 7 := [0,n—1]". We can thus refer to the above brakets as a mere coupling between covectors and
vectors. Let us stress again that in this notation,

Vhkez, (hk #(Ih)',K),. (7.6)
Orthogonal states  We introduce the 2 x n" orthogonal states
lh), e # and ,(h " (7.7)
defined as the unique states such that'

Viez, ,(hk)=5;; (hlh)= (klh),. (7.8)

We note
Ng = (h|h). (7.9)

Since { Iﬁ)} and { Iﬁ)p} are Hilbert space bases, we have the closure relations

5 0 ofB] < [B), (R
Id,, = Z N T Z N (7.10)
hez hez
The closure relation gives the linear decomposition of the orthogonal states on the left and right SoV
bases
» (klh), . ) (BIK),
[h), = Z p—NR “|k) and (h|= Z If (K[, 7.11)
keZ keZ

IThis is the notation introduced in article [[V2] at section 3.3. The index p is a shorthand for perpendicular.
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which are a more explicit rewriting of (7.4), and the SoV left and right states decompose similarly on
the states (7.7)

. K|R) . . AN
[B)=2 ( ,\!*> [k), and (B|=)] < N| >p(k|- (7.12)
kez K ier K

7.1.2 Scalar products of separate states

Solving the spectral problem of these models in the previous chapter, we saw that the eigenstates |t) of
T(u) had factorized wavefunctions of the form

N
(Bley =] Jecg)h. (7.13)

j=1

The same computation can be done for eigencovector (t| at the left of the transfer matrix T (u) using the
right SOV basis, so that

(t[h) = ]_[ (&) (7.14)

as well. Therefore, the left and right eigenstate are rewritten as

N |h)
Z(l_[ t(gl)h )F (7.15)
-1 h

hezZ
p, |0l
(=2 ]_[ (&) | 5= (7.16)
hez h
This gives a natural definition of separate states as
|h .
) =>az L, ag=] [a;k) (7.17)
hez h j=1
AB] .
Bl=D B Bi= l_[ﬁ(h ) (7.18)
hez h =1

(Bla) = Zﬂh Mg i o (7.19)

(hlk)
Mg =22 (7.20)
’ NiNg
We have the closure relation
d= > Mgz YK (7.21)
hkez

Consider now the matrix A/ whose elements are defined by the coupling between the left and right SOV
bases
Mg = (h|k). (7.22)
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We have N; = A; ;.. Then, for all ﬁ,f) €7,

(hlk), . . {hIp)
keZ keZ

thanks to the closure relation (7.10) and the definition of p(ﬁ|, and similarly

D Nig Mg =6 (7.24)
kez
Hence, the matrices M and N are mutual inverse, so the SOV measure is obtained by inverting the

matrix of the coupling between left and right SOV bases. They are also the matrices of the change of
basis from the SOV basis to the adjoint of the opposite side basis (up to some normalization), namely

. (K|
(Bl =D Mg (7.25)
kez k
(| "
p — - -
= 2 Mg (K, (7.26)
keZ

and similar relations hold for vectors |[h) and |ﬁ)p of #.

7.2 The gl(2) case: orthogonal SOV bases

Let us show how SOV bases constructed from conserved charges can be shown to be orthogonal in the
gl(2) case.

7.2.1 Left and right separate bases

Let Z = {0, 1}V. We already know from Theorem 5 that the family of covectors

N
@l =] |1(5)" for hez (7.27)
j=1
is a separate left basis for almost any choice of (L|.
Let us note
V(xy,...,xy) = l_[ (xp—x4) (7.28)
1<a<b<N

the Vandermonde determinant. We define a slightly different family of vectors in 52
X 1—h
B):=[ [r(g;—n) " IR) for hexz, (7.29)
j=1
where |R) € 52 is chosen to be the unique vector satisfying
N
V(€ En)  VI(Eq,-En)

In fact, the basis (7.29) is also a separate basis, as it is a rewriting of the basis constructed from the

VheZ, (hR)= (7.30)
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power of the transfer matrix acting on the state

N
]_[ i—n)R), (7.31)

which actually is proportional to (L|". Using the fusion relations, for all h €7, one has

ﬁ hjl(—j _ﬁ T(gj) th( _ )lR
L qdetM(§] =1 qaemey ) TR

j=1
oy [ardetM(g)) 1, (7.32)
]S e -y
= |h).

This holds for g-det M (&) # 0, i.e. detK # 0. If detK # 0, it is still possible to prove by direct computation
that (7.29) is a separate basis, as it has been done earlier for (7.27). The use of the form (7.29) in the
above is just a matter of convenience for the practical computations of the couplings <f1|12)

7.2.2 Orthogonality of the separate bases

We claim the following proposition.

Proposition 11. The family of vectors (7.29) is dual to the left separate basis (7.27), for it holds

Vhkez, ()= —— M
v(e™,. .. e)

Proof. Let us first prove that all non-diagonal terms of (7.33) are zero. The proof is done by induction
over the (decreasing) number of coefficients equal to 1 in the right vector |l_E) of formula (7.33).
Let k = 1, so that |k) = |1) = |R). By definition,

(7.33)

Vhez, h#k (hlk) = (hR) =0. (7.34)

This proves the base case.
Now for the induction step. Fix m € [1, N]. Suppose that for all tuples k € 7 such that Z k; > m,

g kj =
formula (7.33) holds for h # k, namely that

N
VkeZ, > k;>m, Vhez, h#k (hlk)=o0. (7.35)
=1

This is our induction hypothesis. Considering a fixed h € 7, we now pick P € Z such that p # h and
Z;V:l pj = m—1. We will prove that (h|p) = 0. There exists at least one index a € [1,N] such that p, = 0.
Let p + &, be the N-tuple of Z defined in coefficients by

(P+&);=pj+0jq (7.36)
We have
(h[B) = (h|T(,—n)|B+8&.)- (7.37)

We now distinguish two cases depending on the value of h,.
If h, = 1, then we can extract a T(§,) from <f1|, and by the virtue of the fusion relation (6.82) we



112 Chapter 7 — Towards the dynamics in higher rank: scalar products for gl(3) in SOV

have

(hlp) = (h— )T(E—n)|B+&,)=q-detM(E,) (h—&,[p+8,). (7.38)
Because p # h, it implies P + &, # h—&,. Since 21:1(1’ +&,);=m, <ﬁ— é, |f) +é ) = 0 by the induction
hypothesis, so that (h|p) = 0.

If h, = 0, we cannot extract T(,) to absorb the T(§, —n) in a quantum determinant, so we have to

- h.
make T(&, —mn) act on (h|. Using Lagrange interpolation in the points 55. ! ), this gives

N

N
(i, —m) =k [(2a—n—&" ) (B + D
j=1

r=1s=1

#

£ — (h)
(1
E(h) (h)

:Iz

(h+ (—1)%n18 (7.39)

“
=

For r = a, h, = 0 so the corresponding N-tuple in the right-hand side is h+ é,, which cannot be equal
to p+ &, since p # h. For r # a, the a-th coordinate of h of the corresponding term is left untouched
ie. (ﬁ + (—1)5hr:1ér)a = 1. Because (p + &,), = 1, we have h+ (—1)%mra® £ P+ é,. Therefore, putting
|p + &,) at the right of the above equation, all the terms cancel by the induction hypothesis.

This proves (7.37) for all p € Z different from h and such that Z?[:l pj = m— 1. By induction, this
proves (7.33) for all, hkeZ,h # K, so that the left and right separate bases are indeed orthogonal.

Let us now compute (ﬁlﬁ) Any h € T can be constructed from 1 by flipping the required coefficients
from 1 to 0, so it is sufficient to characterize the ratios

i (P|13) (7.40)
(P—&,[p—&,)’
for p € Z with p, = 1. We have
§ SP|£’) o (BIP) _ 7.41)
<p_ea|p_ea> (p_ealT(ga_an)
and interpolating T (&, —n) in the quj), d=p—é,, gives
. N (pb)
€.—¢&
B U a2
<p_ea|p_ea) b=1 ga—’r’—gbb
b#a
A quick induction starting from (1|1) =V(&,,...,Ey) " proves that
. - -1
vher, (alh)=v(™,. . &) . (7.43)
This complete the proof of (7.33). O

A very similar proof can be found in the appendix B of [292], with some minor differences in the
notations and the induction reasoning.

7.2.3 SoV measure

The above result states that the dual vector of the left separate basis (7.27) are, up to a normalization,
the vectors of the right separate basis (7.29), where the clever choice of indexation in the latter allows
for a satisfying 5 Indeed from (7.12) we have

|h), = [h), (7.44)
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and by (7.10) the closure relation is written in terms of the left and right separate bases (7.27) and (7.29)
as
1y = » v(e!, .. i) |h)h|. (7.45)
heZ
We recognize the SOV measure (7.21) in the above formula: the matrix N of the coupling (ﬁIﬁ) is
diagonal and is inverted trivially to give

Mz =655 v(EM,....g0"). (7.46)

Hence, the left and right SOV bases (7.27) and (7.29) are orthogonal, though not orthonormal in the
current choice of normalization. Scalar products of separate states, such as the eigenstates of the transfer
matrix, can be computed by (7.19) with the diagonal measure M calculated above.

7.3 The gl(3) case: pseudo-orthogonal SOV bases

7.3.1 Left and right separate bases

Let Z = {0, 1, 2}. The family of covectors

N

(8 := (2] [ 1a(g;—n)""°1(g;)"™* for hez (7.47)
i=1

is a separate basis of ™.
For detK # 0, g-det M (u) # 0 and we can rewrite the vectors (7.47) as vectors known to form a basis.
Indeed, choosing the vector (| = <i| of the form

(2l= (L] [(g), (7.48)
j=1

for some (L| as specified in Theorem 5, the family (7.47) coincide with the basis (6.54) up to a non-zero
normalization factor involving the quantum determinant. Precisely,

N N
(b = (]_[ q-detM(gj)ghi’o) < (L] ] T(g;) a0t (7.49)

Jj=1 Jj=1

and 6, o — 0y o+ 1=h;forallh; €Z.
j» j»
We now define the 3V vectors

N
h) = [ a(c)) " (&)™ 1), (7.50)
j=1

where |#) = |0) is the unique vector such that

-

Vhez, (h#)=5y;. (7.51)

The family (7.50) can be proven to be a separate basis by a proof along the way of the one of Theorem 5.
If we happen to take <i| in a tensor product form, the vector |2) is proven to be of tensor product form
as well, whose explicit expression can be computed in terms of the one of (£|. This is done in proposition
3.1 of [IV2], see equations (3.8)—(3.10) there.
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All of this holds for detK # 0. Still, even if detK = 0, it is possible to prove by direct computation
that (7.47) is a separate basis, following the usual proof given earlier.

7.3.2 Pseudo-orthogonality

In this higher rank case, the left and right separate bases defined above are not orthogonal, but they
are pseudo-orthogonal. By “pseudo” we mean that the coupling matrix Nh P = (h|k) is mainly diagonal,

meaning that (ﬁll_i) is zero for “many” indexes h # k € Z, but has a few non-zero off-diagonal entries.
More precisely, the coupling is characterized by the following theorem

Theorem 7 (Theorem 3.1 of [1V2]). For any k= (ki,...,ky) €Z, and a, B, two disjoint subsets of [1,N],
we define the corresponding modified N-tuple

122?}52) = (ki(a,B),...,ky(a,B)) where (7.52)
0 forjea,
Vi€[1,N], kj(a,p)=12 forjep, (7.53)

ki forj¢{aup}.
Let _1}( :={j €[1,N] | kj = 1} be the indexes of the ones of k, and
L) :={(aB)la,pcI; anf=0 and #a=r=#B}, (7.54)

the set of couples of non-intersecting subsets of cardinal r of il;. With the above notations, the coupling
matrix N between the left and right SOV basis (7.47)—(7.50) has coefficients

Nz = (h[k) = (k[k) 5ﬁf<+c Z(detK)rZ %ii02 | (7.55)

r=1 (a,B)en(g;r)

where the coefficients C}ll‘ are non-gero coefficients independent of detK, and

1 N
ng = {5;5,(1,1‘, (7.56)

where | x | denotes the integer part of a real number x. The diagonal coefficients explicitly read as quotient of
Vandermonde determinants

Dy N d(gj—ﬂ) V(gl""’gN)z
<h|h> - l] (1+5hj}1+5hj,2) (5h1,1+5h1,2) (8hy,1+0ny,2) (5h1,1) (8y.1) .

The proof of this theorem is rather convoluted. It is given explicitly in great details in appendix C
of [[V2]. We first prove the pseudo-orthogonality and obtain the Kronecker deltas involved in (7.55). Then
we characterize the form of the non-diagonal elements in terms of the diagonal ones. The coefficients
Clll‘ are characterized completely though implicitly by a heavy recursion. Finally, we derive the explicit
expression (7.57) of the diagonal elements.

Let us stress here that all the off-diagonal elements are proportional to a strictly positive power of
detK. There is even a grading showing that the power (detK)" increases as one goes away from the
diagonal. Anticipating on the next section, this indicates that we should get a diagonal SOV measure for

(7.57)
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non-invertible simple spectrum twist matrix K.

In the following, we outline the proof and recall the notations necessary to understand it. The general
idea to prove (7.55) is to distinguish between cases for both k and ﬁ, and proceed by induction over
the number of indexes in k equal to a certain value. The usual procedure in the induction is to extract a
transfer matrix from the vector |fc> and make it act on the other side over (q ,
indexes equal to a certain value in k, allowing us to apply the induction hypothesis. Usually this requires

to rewrite the extracted transfer matrix as a sum of transfer matrices in points where the action over
(ﬁl is known, and this is done by Lagrange interpolation. While this proof is in the same way as the one
of proposition 11 for the gl(2) case, the overall procedure is now much heavier; first because there are
many cases to distinguish, and secondly because the coupling (7.55) is only pseudo-orthogonal.

We use several notations to make formulas more compact throughout appendix C of [IV2].

* Many Lagrange interpolations are required in the proof. To ease the notation, appendix C make
heavy usage of the symbol

= (7.58)
UpC

which is interpreted as equality of two objects up to the non-zero numerical coefficients before
each term. Hence, we have the handy notation

T() = trK+Z ( *; )) (7.59)

where we use the symbol T to put emphasis on missing coefficients. In particular the dependence in
u is not explicit in the right-hand side of the above equations.

* We perform lots of manlpulatlons which shift from one vector |k> to another |q), where g is a N-tuple
constructed primarily from K. We thus make great benefit of the compact notations similar to (7.52)—
(7.53). In general, for a vector k= (ky,...,ky) €, a subset of indices a = (a1,...,a,,) C [1,N]
with #a = m and a vector of values p = (py,...,p,) € {0,1,2}™, we note

k(p) (kl(a P),---,kn(a, 13)) (7.60)

the N-tuple whose coefficients marked by a are replaced by those specified by p, which more
precisely are

(7.61)

k.

. p; for j € awith £ € [1,m] such that a, = j,
ki(a,p) =
j

for j ¢ a.
Sometimes the notation is used to recall explicitly the value of some coefficients in the N-tuple at
hand, as in (C.67) of [LV2].

* Equation (C.45) defines the notation

h # k (7.62)
(C.45)

It means that k cannot be brought into h by substitutions of the form (1,1) — (0, 2), i.e. for any
couples of disjoint subsets (a, ) of if( with the same cardinality #a = r = #f < ng, it must hold

2, 7(0,2)
K. (7.63)

This defines the non-zero coefficients in (7.55): N; B is zero if and only if h 7é(c 45) k. This is the
condition of pseudo-orthogonality for the left and right separate bases.



116 Chapter 7 — Towards the dynamics in higher rank: scalar products for gl(3) in SOV

Another way to state this is to define an equivalence class over Z as follows
vkez, [k]:={k’P|a,pen(yr) for 1<r<ng}. (7.64)

Then h being different from k in the sense of (C.45) simply means it does not belong to the
equivalence class of k
h # k & h¢[k] (7.65)
(C.45)

As an example, if k= (1,1,p) € Z with p € {0, 2}¥2, the three N-tuples
(1,1,8), (0,2,p), (2,0,p), (7.66)

are in the equivalence class of k and are not different from Kk in the (C.45) sense: the corresponding
(h| bras have non-zero coupling with [k), i.e. (h|k) # 0 as we will demonstrate. The six other
N-tuples of the form (a, b, p) are different from Kk in the (C.45) sense, and have a vanishing coupling.
Fork =(1,1,1,4) € Z with g € {0,2}"~3, the 7 bras (h| corresponding to the N-tuples

(1) 15 1) (_i)) (07 2) 17 a)) (25 07 1, q)’ (O) 112) (_i)y (27 1) 07 a))

o o (7.67)
(1)05 2)q)’ (1525 05 q))

have non-zero coupling, while the 20 others N-tuples of the form (a, b, c,q) have a vanishing
coupling with |K).

Let us prove the orthogonality. This is done in details in section C.1 of [[V2], and amounts to prove
that
vkeZ, Vh # k (hk)=0, (7.68)
(C.45)
which is obtained by retaining only the Kronecker deltas dependence of (7.55). First, note that (7.68) is
verified with |k) = |0) for all (h| by the definition of |0) = |%). Next, we want to prove that

vke{0,2}V, Vhez, h#k (hk) =o0. (7.69)

This is done by induction over the number of 2’s in K in section C.1.1. The base case with one 2 is treated
in paragraph i), and the induction step is carried in paragraph ii). Suppose (7.69) holds for all k having
at most m 2’s. Let Kk have its first m coefficients equal to 2, the others being 0 (up to a reordering of the
indices). We note l_é(ni)rl the modified vector where k,,,; = 2, according to notation (7.60)—(7.61). We

have <ﬁ k +1> = (H|T(§ m+1)’f(>. The k at the right has m 2’s so is within the scope of the recursion
hypothesis, and we can use the matrix element to show that the scalar product is zero. Depending on the
<h| at the rlght some cases are immediate, see equations (C.32)—(C.36). The only non-trivial one is the
one for a h with its m + 1 first coefficients equal to 2 as well. The lemma C.1 computes <h| T(& m+1)|k> in
terms of similar matrix elements with a modified h(1 D where a couple of coefficients at indexes r and s

equal to (0, 2) has been set to (1, 1) (this is done up to some condition on h regarding k stated in the
lemma). By using this recursive formula several times until there are no couples of coefficients (0, 2) in
the covector at the left, we show in corollary C.1 the matrix element is zero. It allows to perform the
induction over the number of 2’s and prove (7.69).

Next step is to incorporate some 1’s in k. We want to prove that for a fixed h, for any k different from
h up to substitutions of couples (1,1) in couples (0,2), (h|k) = 0.

In section C.1.2, we first consider a k with only one coefficient k, = 1, the others being 0 or 2. No
substitution (1,1) — (0, 2) can be done here, so we only have to consider the k at hand. Direct action (by
Lagrange interpolation) of the transfer matrix extracted from such a |R) on any (ﬁl, h #* K, gives 0, see
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equations (C.38)-(C.43).

The induction step over the increasing number of 1’s in k is carried in section C.1.3, and aims to fully
prove (7.68) by induction. Multiple substitutions (1,1) — (0, 2) are now possible in k. Suppose (7.68)
holds for any k with m coefficients equal to 1. We now fix k such that its m + 1 first coefficients are
equal to 1 as in (C.44) (up to a reordering of the indexes), and let h € 7 be outside [R] Depending
on the values of the coefficients of h, some cases are simpler than others such as h; = 0, see (C.62).
For h; # 0, we can rearrange the scalar product (E|R> in a matrix element with a |12(10)) at the right as
stated in (C.64), which has m 1’s now and is within the scope of the recursion hypothesis. Lemma C.2
takes a matrix element of this form and computes it as a sum of similar matrix elements, but with a
transformation (0,2) — (1,1) in the (ﬁl at the left. Applying this recursive formula several times until
there are no remaining (0, 2) couples allows proving matrix elements of this form vanish. This is done in
corollary C.2. Finally, performing the induction over the number of 1’s completes the proof of (7.68).
This gives the dependence in the Kronecker deltas of formula (7.55), and completes the proof of the
orthogonality.

Now we can compute the actual form (7.55) of the coupling, as well as the explicit form (7.57) of
the diagonal elements. This is done in sections C.2.1 and C.2.2 of [IV2] respectively.

Let k € 7 have, up to a reordering of the indices, its m first coefficients equal to 1 and the N —m
last ones be in {0,2}. We want to prove equation (C.67) of [IV2], namely that for any h € 7 with
re [[O, ng — 1]] such that

Vae[1,r+1], (hye_1,h5,)=1(0,2) and Vse[2r+3,m], h,=1

(7.70)
and V]EIITT['F].,N]], h]:kj,
it holds
- _ 1 E -
(hfic) = X (K[k), (7.71)
with the notation ¢ := detK for the non-zero determinant of the twist matrix.
Alternatively, K can be written in terms of h as
> (L . 5
k=h0Y o with §=(q,...,q2)=(1,...,1). (7.72)

' - > . . . 2(0,2,p)
The m first coefficients of h are explicitly recalled with the notation h1,2,3,...,2 2

alternating 0 and 2 as defined in equation (C.69) of [1V2]. Therefore,

where p is a 2r-tuple of

N #13(1,1,9)
Cﬁ(f;;” s <h hl,2,3,...,2r+2 7.73)
h or+1 (LD {13 ’ '
1,2,3,...,2r+2|71,2,3,...,2r+2

by its definition in (7.71), which is equation (C.74) of [LV2]. The numerator can be rewritten as

(R
with ¢; = q-det M(&;). Lemma C.3 of [1V2] performs the explicit computation of the above quantity as a
linear combination of matrix elements of the form

<ﬁ(1,1,ﬁg§))

£(1,1,9) _ £(1,1,9) (1 £(0,1,9)
h1,2,3,...,2r+2> =G <h1,2 T (x1 )Tl(gz)‘h1,2,3,...,2r+2> > (7.74)

1,2,3,....2r+2 T2(§2j+2)

(0,1,9)
h1,2,3,...,2r+2> . (7.75)

These matrix elements are in turn computed in lemma C.4 of [IV2] as linear combinations of matrix
elements of the same form, but with a substitution (0,2) — (1, 1) in the covector at the left, effectively
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decreasing the number of (0, 2) couples in the h-like tuples at the left. The formula (C.88) obtained there
is recursive and acts only on (0, 2) couples to transform it in (1, 1) couples. In principles, it allows the
exact computation of the Clll‘ coefficients by the repeated use of it on (7.75), though the results is very
involved.

The base case of the recursion, corresponding to r = 0, is tractable. Indeed, it corresponds to only one
matrix elements of the form (7.75), which is computable by direct calculations. From equation (C.73) of
lemma C.3 in [IV2],

€ aE-m) qdemey () (& -a)
5(1(,)52) d(E;—m)en2(&,—&5,+1) 43 (5(21) _ Egh“’z)(gl B 6(1_5;1’1’0)).

a

(7.76)

This ends the proof of form (7.71) of off-diagonal couplings. The coefficients there are determined
implicitly through explicit recursive formulas summed up in lemmas C.3 and C.4. It remains to compute
the diagonal coupling <ﬁ|ﬁ> to completely determined the SOV measure of the fundamental gl(3) model.

This calculation is usual and follows the lines of the one done for the proof of proposition 11 for the
gl(2) case. It is detailed in section C.2.2 of [LV2]. Any N-tuple of Z can be constructed from 0 by flipping
the desired coefficients with a 0 — 1 transformation, and then a 1 — 2 one if needed. One only needs to
compute the ratios o o

(g [RE”) (h"[RE")

<ﬁgl) ﬁgl)> an <ﬁ§2) B22)> (7.77)

for a generic h € 7 and a € [1,N], and one gets the relative normalization of <ﬁ|ﬁ> with respect to
<6|6> =1 as a successive product of the above ratios. One has

(RO RO) = (RO fR) 779
and the action of T,(& Ell)) on |ﬁa >(O) can be computed by Lagrange interpolation in the right points. The

same goes for the other ratios, as
(R [Be) = (A" [T(£a)[BS). (7.79)

All calculations done, we recall equations (C.121) and (C.131) to make the proof of eq. (7.57) self-
contained

(HOED) _ a(e) py =g ™)

e , (7.80)
<hgo) hgo)> d( gﬁf)) ;:2 £ gj(ahj,ﬁahj,g)

o pon o (6h~,2)

h@|h@ N &,—¢& "~

< a | a > _ a j ' (7.81)

<ﬁ£}) ﬁgl)> j=1 5(1)_6(5’%2)

j#a > J
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7.3.3 SoV measure

We can now compute the SOV measure associated to the left and right separate bases (7.47)-(7.50).
Recall that for separate states of the form

k) =)
o) :ZOLRF, af(:zl_[aj ", (7.82)
k k j=1
B »(hl L)
h h j=1
their scalar products is
(Bla)y= > (Bsl Mg zlag) (7.84)
hkez
where the SOV measure M is defined by coefficients as
(hik)
Mz = P L (7.85)
" NgNg

To get the SOV measure, it ii sufficient to compute p(ﬁlﬁ)p. Somehow, this amounts to inve_’rt_)N S
Could one han |h), = |h) hgrg? For tileqdiagonal term, this indeed gives pghlk)p = p(h/h) = (h[h),
by definition of ,(h|. But then, (k/h), = (k|h), which cannot be equal to &3 (h|h) as required by the
definition (7.8) of |ﬁ)p, since we know from Theorem 7 that there are in general several non-zero
off-diagonal couplings (k/h)—namely the ones of the form k = ﬁg?f).
|h), is therefore decomposed as sum over multiple |k) vectors. The idea to construct it is to start
from the corresponding |f1) vector and add a “correction” as a linear combination of the |ﬁff}5§ )). The

constraints (l_ilﬁ)p =0 fork # h would fix the values of the coefficients in the linear combination. This is
done explicitly in lemma 3.1 of [[V2]. There, we obtained the linear decomposition of |f1)p in the right
separate basis as

Tl}'1 .

h h (0,2

|h), = |h) + Z c Z B, g hfx,ﬁ )> , (7.86)
r=1 a,pery(13;r)

where the B wpi coefficients are defined recursively by
“h _ES)

Ba,ﬁ,ﬁ = _Cﬁ(ﬁ,i) - Z Ba’,ﬁ/,ﬁ Cﬁ 93) (7.87)

@b o' ca,p’'cp a.p

1<#a'=#p'<a

where the C coefficients are proportional to the C coefficients found in (7.55), with

¢ _ (FE)
C;= &R Cs. (7.88)
Finally, the SOV measure is written as
&
p(h|k)p = (h/h) | 653+ ) ¢ B,gh 5141 ;63 (7.89)
el a’ﬂ

This is corollary 3.1 of [IV2].
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As we can see, the complexity of the SOV measure increases strongly from the gl(2) to the higher-rank
gl(3) case. Remember that while all the formulas derived here are exact and give the general form of the
couplings and the measure, the coefficients Cflf and B, B are all defined implicitly by recursive formulas.
This makes the upcoming calculations of form factors and correlations functions more complicated. Maybe
there are local operators for which the computations turn out easy enough in a certain limit, for example
¢ — 0. Still, it would be much more convenient to have orthogonal separate bases for the gl(3) case as
well. The next section is devoted to the construction of a such bases.

7.4 Orthogonal bases and the T operator

7.4.1 The non-invertible twist matrix case

Comparing of the gl(2) and gl(3) cases, most of the complexity in the computations is already accounted
by the fusion relations. Having one more level in the fusion relations greatly increases the number of
necessary Lagrange interpolations to compute, say, the action of the transfer matrix over the left and
right separate bases.

It is thus tempting to study gl(3) models for which the hierarchy of fusion relations simplifies. This is
done easily by choosing a non-invertible twist, which forces the quantum determinant to be zero. For a
twist matrix K with simple spectrum but with one zero eigenvalue, the fusion relations for the associated

transfer matrices Tl(K)(u) and TZ(K)(u) are

T®ENTEE —n) = THE)), (7.90)
TOENTE—m =0, (7.91)
TOENTIOE - =0, (7.92)

The last relations is a consequence of the first two ones. The covectors and vectors families defined
in (7.47), (7.50) still form a left and right separate bases, respectively, since it is only required for the
twist matrix to be with simple spectrum. The statement of theorem 4.1 of [1V2] elaborates a bit on this.

The picture is strikingly simpler now: the SOV coupling between the left and right separate bases (7.47),
(7.50) is now diagonal. This follows immediately from Theorem 7, since ¢ = detK = 0 in the present
case.

It is still useful to obtain this results independently of the calculation done in the general case: since
the fusion relations are much simpler now, the computations should be less intricate, and it should be
possible to derive the orthogonality and the diagonal coupling (7.57) formula directly from the simplified
fusion relations.

) This is doneA by theorem 4.1 of [[V2]—whose proof lies from page 23 to 26. Before that, the action of
TI(K)(u) and TZ(K)(u) over the left and right separate bases are explicitly computed as linear combinations
over the separate bases by proposition 4.1. The actual computations are as usual Lagrange interpolation
in the points where the fusion relations (7.90)—-(7.92) can be applied. Because they are now simpler, it is
quicker and easier to compute the actions exactly.

The description of the eigenstates as separates states is now very direct, since the two bases are dual
to each other, up to some N-tuple-dependent normalization. This is the content of theorem 4.2, which
states that the vectors and covectors

N = N -

B, 5, 11 B, 5u.» (]

ISR ) ERGRERMCHCECRAED Y | (R CHLEINCH S LD
hez j=1 h hez j=1 h

are eigenstates if and only if the functions t; ,(u), t, ,(u) are eigenvalues of the corresponding transfer
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matrices, i.e.

10wl = @), W) = W), (7.94)
Ty (tal = 1@ (tal,  THO@W) (tal = to0(u) (2ol (7.95)

The eigenvalues and eigenvectors in this detK = 0 case can be characterized by SoV as described
in chapter 6. This is done explicitly in [IV2]. It also ensures the simplicity of the transfer matrix family
(T(u)),ec when K has simple spectrum.

7.4.2 SoV measure and scalar products of separate states

The SOV measure is the inverse of the left and right separate bases coupling matrix. The latter is diagonal,
so it is especially simple to invert. Therefore, the scalar product of left and right separate states of the

form
h| 5 )
(ol = Y, =] " (7.96)
hez J=
3 |h) RN
hez J=

is written as the following sum of products of ratios of Vandermonde determinants

N d( (1+5h 140, 2))
=3 [

hez |\ j=1

(8y1+51y,2) (B a8y .2) 1 (1) (8hy.1)
Xv(gl s Eny )v(g1 oo Epy ) 98

V(‘il:' . ')gN)z

For mixed scalar product of separate states, where the vector at the right is an eigenstate of the transfer
matrix, it is possible to repack efficiently this big sum into products of determinants. This is achieved by

theorem 4.3 of [IV2], and more precisely in equation (4.77).

For K a simple spectrum twist matrix with one zero eigenvalue and |y) = |t,,) for some n € [[1, 3N ]] an
eigenstate of the transfer matrix, the right-hand side of formula (7.98) can be simplified by accounting
for the known root pattern of the eigenvalues functions, which we recall is

V(a,b) € m,(A) x 7,(B),  t1,(Ep) =0 = t3,(Eq —M),

(7.99)
tl,n(ga) 7é 0, tz,n(gb - T’) 7é 0,
where 7, is some permutation of the set [1, N] and
=[1,M,], B=[L,N]\A=[M,+1,N] (7.100)

for some integer M,, specific to [t,). Keeping only the non-zero terms in the right-hand side of (7.98),
one can rearrange it as a product of two independent sums, specified in equations (4.85)-(4.88) of [LV2].
These sums are identified to coincide with known determinants, similar to the ones encountered in
references [211, 213], for example. Eventually, the mixed scalar product is written as the following
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product of determinants

&) M (alxatzn) (alxptiy)
N d(iEIZ)) V(gﬂ'n(l)’ .. 5 n(M )) N detN_Mn M+,N£Mn detM M MHB 1

(alty) = , (7.101)
T e dEDY V(Ery s Emmy) V(Em,maty s Emyany) VEry -5 Ermy)
where x, and xp are scalar coefficients defined in equation (4.80) of [1V2],
u—=&.+n u—=&,—n
xa(u) = l_[ ?, xg(u) = l_[ ?, (7.102)
acm,(A) a bemn,(B) b
and the explicit forms of the matrices M are
1
alx tyn h) 1 j—1
( +I\?7Vl ) Za (M, 1) A (gﬂfn(M +1)) (5 (M, +1)) (Enn(MnH)) > (7.103)
h=0
1 .
alx tin oD j-1
( Bn1 ) an NO) xB(gﬁn(l)) 1, n(gﬁ(l)) ( n (1)) 5 (7.104)
with
N _ g]
£y )= tzn(u)]_[ - (7.105)
J

They happen to be of the form of determinants similar to the gl(2) case; the fusion relation in this
degenerate case are indeed close to the ones of gl(2). The norm of an eigenstate |t,) is then obtained by
simplification from (7.101), and is written

- ( S'51)(1)"' 5( (M, ))
(tnltn) l_! v(g0 s [T tnExaEs) - [ | tiaEo) - detTh,,  (7.106)

3 217 grc 2(My )) ben,(B) aem,(A)

where 7Ty _is the M, x M,, square matrix with coefficients

! i—1
(T )ty e = 2 bGP xp(E)" (£) (7.107)
h=0

Despite working on a gl(3) model, these scalar products are similar to product of gl(2) type scalar
products.

7.4.3 Extension to the invertible twist matrix case

As we see in the above paragraph, it would be very desirable to construct the separate bases for the gl(3)
chain with a general twist K from conserved quantities that obey a set of simpler fusion relations. Luckily,
such an operator exists.

Assume K is a diagonalizable and invertible twist matrix with simple spectrum. From the results of
the previous chapter, we know that the associated transfer matrix T (u) is diagonalizable with simple
spectrum for almost all values of the inhomogeneities, and have a complete characterization of the
spectrum by SOV. Let

1ty and (¢ (7.108)

be respectively the 3" eigenvectors and 3V eigencovectors of T®)(u). Now let K denote the matrix
obtained from K by putting one of its eigenvalues to zero, while preserving its diagonalizability. It also
has simple spectrum. Using K as a twist matrix, we can construct the T (1) transfer matrix, which is
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associated to a gl(3) spin chain of same length but different boundary conditions than the one associated
to T (). The transfer matrix T (u) is diagonalizable with simple spectrum. We note

t%) and  (c®) (7.109)

its 3V eigenvectors and 3V eigencovectors, respectively, and t(K)(u) t(K)(u) the corresponding eigenvalues
defined by

18w ) = (0w ¢©), 1800 110 = (0w 115, (7.110)
T8 (O = 0w (0], 10w (19 = (Fw) (O (7.111)

We define the new two operators

(K) (K)|
(K) (K) : :
']I‘j (u) := E t; . (u ) (K)l (K)> with je{1,2}. (7.112)

It is immediate that these operators have been defined specifically to have the eigen(co)vectors of T (u),
but with the corresponding eigenvalue of the T%) (1) matrix. Because they are diagonalizable in the same
basis, the TEK)(u) and the TIEK)(u) commute

Vike{1,2}, [Tw. 1OwW]=0=[1w),1wW)]. (7.113)

But the 'IFS.K)(u) shares the same spectrum as the T].(K)(u) matrices, so they satisfy the same fusion relations:

TOENTIOE; —n) =TOE), (7.114)
TENTE —n) =0, (7.115)
TENTE; —n) =0. (7.116)

The above equations can be checked on the eigenvalues. This makes the T)(u) transfer matrix a very
interesting operator: it is a conserved quantity of the gl(3) model with the boundary conditions associated
to the K matrix, but has a much simpler structure in terms of fusion relations than the usual transfer
matrix T®)(u). Following the general philosophy introduced in [225], we can construct separate bases
starting from T (w) instead of T®)(u). Let

1__i i| l_[T(K)(g(l))éh OT(K)(€J)5/1 2’ (7117)
j=1
= N 5 5
By = [ [T50E) TiOE;) 2 6), (7.118)
j=1

be the family of 3V vectors and 3" covectors indexed by her By the proposition 3.1 of [1V2], they
are respectively left and right separate bases. But besides, the matrix of the couplings is diagonal, i.e.
these two bases are orthogonal. This is ensured by theorem 4.1 of [1V2], since it relies only on the fusion
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relations (7.90)-(7.92) to compute the couplings. Then,

(hlk) = N30 %

=

(6ny110h, 2) (8ppy 110y 2) (Onq,2) (6ny,2)
_ﬁ d(g] T’) V( 1 ! ! PR NN N )V( 1 ! sy NN ) (7119)
E (oo V(L. En)? '
]

The SOV measure associated to the left and right separate bases (7.117)—(7.118) is therefore diagonal
as well. The scalar products of separate states of the form

(a| = Za ag = ll[aghj), (7.120)

hez j=1

= (h;)
Zﬁh B=[18" (7.121)
hez j=1

therefore write just like the ones for the (co)vectors (7.96)and (7.97). In fact, the formulas obtained in
theorem 4.3 of [1V2] applies also in this case, but with the substitution |¢t,) — |tr(1K)) the eigenvector of
the transfer matrix T (w).

We have been able to determine an operator T (1) commuting with T®)(u) but with simpler fusion
rules. The separate bases constructed from it are orthogonal, so their SOV measure is diagonal. This
enables the explicit computation of scalar products of separate states in gl(3) fundamental models with
generic diagonalizable with simple spectrum invertible twist, paving the way for the computation of form
factors and correlation functions by separation of variables. This first require to reconstruct the local
operators from quantities whose actions on the separate left and right bases is computable, i.e. solving
the quantum inverse scattering problem in a way adapted to the above description of the eigenstates.

However, the T (1) has been defined in (7.112). As defined, the bases (7.117) and (7.118) lack of
a direct algebraic construction, for example as a trace of products of some Lax matrices or other objects
constructed from the represented generators of the underlying Yangian algebra. Maybe it is possible to
express it in terms of the original transfer matrices TI(K)(u), T. Z(K)(u). Another way to characterize T (u)
would be to compute the mixed couplings

(th)‘tf()> (7.122)

for all a,b € [[1,3N ]] Such a computation is made possible by the characterizations of the overlaps
computed previously, and should open the way to the practical use of the T®)(u) bases.



Chapter

Separate bases and spectrum
of gl(m|n) models

Some quantum integrable models are associated with a Z,-graded algebra, or superalgebra [107,
125,128, 229, 293, 294]. This is usually the mark of the presence of fermionic objects in the physical
systems. Most notable are the t-J model [295] and the Hubbard model [126, 255, 296].

The structure of the Lie superalgebras gl(m|n) differs a bit from the classical Lie algebra gl(n), as
the defining relations has to take the grading into account. In particular, the representation theory of
Lie superalgebras contains additional subtleties [297-299], and so do the one of the corresponding
Yangian algebras % (gl(m|n)) [117, 300]. The description of quantum integrable models associated with
superalgebras can still be done in the QISM language of R-matrix, monodromy and transfer matrices.
An important point of divergence is the structure of the fusion relations, as we will highlight in the
forthcoming material. The ABA program towards the computation of correlation functions has been
developed for the % (gl(m|n)) models with great success [124, 125, 127, 128, 157, 158, 160-162, 229,
255, 294, 295, 301].

In this chapter, we extend the construction of separate bases from transfer matrices to the supersym-
metric case by recalling the results of article [[V1]. The construction is very similar to the non-graded
case, though some extra care is required in the definition of the objects at hand to properly account of
their grading. We begin with a clear introduction of the graded objects of quantum integrability. Then,
we prove the existence of separate bases made out from conserved quantities by showing bases of the
form (6.54) are candidate separate bases for %/(gl(m|n)) models. The use of such a basis in the resolution
of the spectral problem of the transfer matrix is then discussed, in light of the particular fusion hierarchy
of the #(gl(m|n)) transfer matrices. An inner-boundary condition (IBC) is then identified to serve as
the necessary functional constraint on eigenvalue, and closure relation for the action of the transfer
matrix on the basis. It is used explicitly to solve the spectral problem of the Y (gl(1]|2)) model with some
non-invertible quasi-periodic boundary conditions. We close this chapter with the construction of separate
bases for the Hubbard model.

8.1 Graded objects

8.1.1 Super vectors spaces

We introduce the notion of Z,-grading on vector spaces [44].

Definition. A Z,-graded vector space, or super vector space, is a complex vector space with V,, V; C V such
that
V=V eV, (8.1)

and Vi and V; are stable under the addition:
Vae{0,1}, Vv,weV,, v+wevV,. (8.2)

Vectors that are elements of either one of the two subspaces V|, or V; are said homogeneous: they have
a well-defined grading, or, because it is a Z,-grading, a well-defined parity. Vectors of V}, are even and

125
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vectors of V; are odd. The grading map, or parity map, is an application that associate O or one regarding
the parity of homogeneous vectors

p:VouV; —{0,1}

0 ifvel,, (8.3)
VY —> p(y) =
1 ifve V1 .
Suppose V is of finite dimension m + n, with
dimVy=m, dimV;=n. (8.4)

It is handy to define the adapted basis (eq, ..., ey4y) With
e1,--m €Vo,  Cmalse--sCmen € V1. (8.5)
A common shorthand notation for these vectors is to define
Vie[l,m+n], i:=p(e). (8.6)

One also finds the similar notations [i] or |i| in the literature.

Consider the dual space V* of linear form over V. It is graded as well. Using the braket notation, the
grading of the covector (i| = |i)" = (e;)" is the same as the one of |i), namely p((i|]) = i.
8.1.2 Superalgebras

Useful references on superalgebras and Lie superalgebras are [44, 298, 299, 302]

Definition. A complex Z,-graded algebra, or superalgebra, is a complex algebra A over the complex field
admitting the direct sum decomposition
A == AO ®A1 (8.7)

such that its multiplication operation A x A — A verifies
Vl,] S {0,1}, AIA] QAH_j mod 2 (88)
Note that the set of even elements form the subalgebra A, while A; is not a subalgebra. The grading
map p : Ag UA; — {0, 1} is equivalently defined here, and we note x := p(x).

Definition. A Lie superalgebra g is a superalgebra whose product [-, -], called the Lie superbracket, super-
commutator or graded commutator, is skew-symmetric and satisfies the graded Jacobi identity:

Vx:y €g, [X,}’] = _(_1)507[.)/:-)(]: (89)

and
vx?.)”ZGg) (_1)22[3(5 [yaz]]-i_(_]-)y)_c[y: [Z,X]]+(—1)2y[z,[x,y]]:0. (810)

Any associative superalgebra A may be turned into a Lie superalgebra by equipping it with the graded
commutator
Vx,y €A4gUAy,  [x,y]=xy— (=17 yx, 8.11)

and extend this definition linearly to the whole superalgebra.
The space End(V') of endomorphisms over a super vector space V is a super vector space as well. It is
also a superalgebra with the multiplication given by the composition, and is a Lie superalgebra with the
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graded commutator (8.11); it is noted gl(V) as a Lie superalgebra.
We will focus a bit more on the superalgebra g[((Cm|“), where C™" is the complex super vector space of
dimension m +n whose canonical basis (e, ..., e,4,) Splits in two to generate the even and odd subspace:

(C™M)g = Vect(ey, ..., e), (C™M); = Vect(emsr, o . ). (8.12)

m+n

It is the Lie superalgebra of endomorphisms over C™". We note e{ ,1,j € [1,m+n] the elementary
operators (or matrices) defined by

Jey = 6le;. (8.13)
Their grading is
p(e{)=f+]_'mod 2. (8.14)
Because they multiply as e 5{{ef, the graded commutator is
[e{,ei] = 5;.‘ef — (—1)(i+j)(k+l)6fe]k. (8.15)

Any element is decomposed as a linear combination on the elementary operators
el. (8.16)

From now on we will often omit sums over repeated indices. It is useful to represent these endomorphisms

as block matrices of the form
a= (“Wm) a(m,“)), (8.17)
Amm)  An,n)

where the definition of the matrices ay, 1), A(m n),- - - Should be self-explanatory. The above matrices form
the matrix associative superalgebra M(m|n, C). The even and odd elements are respectively of the form

(A o) (0 B)
, . (8.18)
0 D C 0

From the above block form, it is clear that even elements are maps that preserve the parity of the vector,
while odd elements flips it. The supertrace is defined on the elementary operators by stre =(— 1)‘5] .
Using the block form, this gives

Str a = tr Ay m) — A ) (8.19)

Similarly, the superdeterminant, or Berezinian, is defined to be

Ber (’2 g) :=det(A—BD™'C)det(D ™). (8.20)

It has properties similar to the ones of the determinant in the non-graded case, see [44]

8.1.3 Tensor products of graded objects

The tensor product V ® W of two super vector spaces V and W is itself a super vector space. Indeed, we
have the following decomposition in direct sum

vew= P view, (8.21)
i,j€{0,1}
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and we can group terms in an even and an odd subspace

(Vew):= P v,ew, for k=0orl. (8.22)
i+j=k mod 2

The tensor product A® B of two associative superalgebras A, B is defined the same way.

The basic rule of signs in supersymmetric space is that a factor (—1)* appears whenever two elements
x, y are flipped. We can already see this from (8.9) and (8.11) for instance. The multiplication in A® B
of homogeneous elements also benefit from this additional sign factor

Va,c €AgUA;, Yb,d€ByUB;, (a®b)(c®d)=(—1)"ac® bd, (8.23)

and the above definition is extended linearly to A® B in its whole. The rule extends naturally to N-fold
tensor product with N > 2. For example,

(a®b®c)(d®e® f)=(—1)P*)*+qd @ bd ® cf. (8.24)
Similarly, the action of matrices of g[((len) ® g[((len) over C™" @ C™* has signs
Ya,b e g[((len), Yv,weC™ (a®@b)vew)= (—1)1_"_’av ® bw. (8.25)

A consequence of this is that the matrix representation of an operator a ® b € End(V) ® End(V) is not the
tensor product of the matrix representations of operator a and operator b. There are additional grading
signs, more on this in the following paragraph.
LetAe g[((Cm|“)®N. It can be decomposed on the canonical basis constructed by tensorization from
the local ones as
A=AVl g el (8.26)

Jio-dn 1 Iy
il"”’iN
J15e0JN
of the image of the vectore; ® -+ ®e¢; € C™" which are

It is important to not confuse the coefficients A in the above linear combination with the components

N ¢ ¢ U,
A(ejl Q- ® ejN) — (_1)Zk:1 lk(lk+1+-..+lN)Al};..v,l{\] e ® - ®e

Jioenin h Iv*

(8.27)

In the non-graded case, these two coefficients would be identical. The coefficients of the matrix represen-
tation of operators A are the ones found in (8.27).

Some authors feel necessary to stress the grading dependent behavior of the tensor product and
denote it explicitly by referring to the “super tensor product” or “graded tensor product”, accompanied
by a notation ®, or ®,. We will not make use of this notation.

Signs also appear in the definition of dual states in tensor product spaces. Let V ~ C™", We use the
braket notation for the canonical basis defined in (8.5):

and p((i]) = p(|i)) = i. Let |i}) ® --- ® |iy), i1,...,iy € [1,m+n]", be a vector of the basis of V&Y
obtained by the simple tensorization of the one-site basis. What is its dual state. We would like to recover
the usual behavior

Vit,--sJn € [[Lm"'n]]N, (|i1) ®--® |iN>)T [j1) ® <+ ® |jiy) = 8ij, -+ Oiy jy - (8.29)

It cannot be (i;| ® - - ® (iy/|, since many additional signs emerge from covectors and vectors passing
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through each others. Adding this precise sign factor in the definition of the adjoint does the trick. With
. . N
(|i1> ®|1N>) = (i) ®-- (iNl(_l)U(ll """ i) with o(iy,...,iy) = Zlk i1+ +ik—1): (8.30)
k=2
the sign compensate for the ones arising from the covectors and vectors passing through each others

(|l1 “® |iy) ) lj1) ® - ® [jy) = (—1)7in)(— 1)2" 2 kUt te-) (i11j1) - (inlin)
=0; .O;

INJN®

(8.31)

i1ji°°

Similarly, for N even operators Ay, ...,Ay € g[((th‘), where A; acts non-trivially only on the j™ space of
V¥ the matrix elements have a factorized form over the spaces

(li) ®---®liy)) A1 8- @Ay [j1) ® - ®|jx) = (i]Asli1) - (inlAnlin) - (8.32)

Indeed, the A are even i.e. p(A;) = 0 and produce no sign when passing through, say, the covectors, and
then their evenness forces i, = ji, so that the signs compensate.

Consider the permutation operator over the tensor product V ® V of two copies of the same super
vector space V. It accounts for the grading when flipping the vectors, and is defined by

Pveow)=(—-1)""wew. (8.33)

Thus, it writes o
P=(-1Ye ®e§. (8.34)

For two homogeneous operators A and B in End(V),
P(A® B)P = (—1PWrE)g A, (8.35)

The permutation operator is globally even, as an operator of the superalgebra End(V ® V).

8.1.4 Yangian of gl(m|n)

Yangians of classical Lie superalgebras are introduced in details [300]. See also [256, 303] and Molev’s
monograph [117].
Consider the operator of End(C™" @ C™™)

R(u)=u+nP. (8.36)

It is the R-matrix of the Yangian of the superalgebra gl(m|n). It is decomposed on the canonical basis of
elementary operators as

R(u) =R§12(u) e{ ® ei with le(u) = u5 5k +n(— 1)]5 (8.37)

As in the non-graded case, we write

Ryp(u) :=R¥(w)id®---®id® ¢/ ®ide---®id® ¢ ®ide- ®id, (8.38)
~—~— ~—~—
space a space b

bth

the R-matrix Ry, (1) = uid + nP,; acting non-trivially the a™ and spaces. The R-matrix is globally
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even. It satisfies the Yang—Baxter equation
Ria(u—V)R13(u)Ry3(v) = Ra3(V)R13(w)R 1 (u—v). (8.39)
This equation can be written in coordinates using the matrix representations R(u) of the operator R(u)
R(u)ej®e = R(u)j.]g(u) e; ® e,  with R(u)%(u) = u5§5éf + n(—l){’_‘525;‘. (8.40)
Then (8.39) implies

(u— V)Ra,/ (u)R (V) ( 1)[5 (@+a”) — - R (V)Ra/ ,,(U.)Ra,,ﬁ,,(u_V) ( ]-)ﬂ (a+a/) (841)

a/j/ /3// 11

This is referred to as the graded Yang-Baxter equation, since there is an explicit modification by grading
signs. The R-matrix (8.36) is invariant by the g[((C“”“) algebra

Vx € g[((le“), [R(u),x®id+id® x] =0. (8.42)
Also, if K is an even matrix of M(m|n, C) ~ g[(Cm|"), we have
R(u)(K ®id)(id® K) = (id ® K)(K ® id)R(u), (8.43)

which is the scalar version of the Yang-Baxter equation, where there is a trivial representation of the
gl(m|n) algebra on the third space. One sees that any even matrix K can serve as a twist for gl(m|n)
integrable model.

8.1.5 The #(gl(m|n)) fundamental chain

Let Vy,V,...,Vy be N copies of the super vector space C™". The space V,, will serve as the auxiliary
space, while the others will be the quantum, physical ones. We note 5 :=V; ® --- ® Vy. Let K be an
even matrix of g[(Cm|“). The % (gl(m|n)) twisted inhomogeneous fundamental model is defined by the
monodromy

M(u) =KoRoy(u—E&x)...Ryp1(u—&7). (8.44)

It is a globally even, as an operator of the superalgebras End(V, ® #¢). In coordinates, it is written

M) =M (wel @efr o ® ey
Jﬁ JNﬁaN K Jj1oq B B (8.45)
=K Rjy gy (=& Rjp (u— £) el ®ell® - ®ellN.
There are no additional sign because of the evenness of the R-matrices. Noting
M@ =e; 8 M;(w) (8.46)

the above expression shows that the monodromy elements M]lf (u) are homogeneous elements of the
superalgebra End(.#), with their grading depending solely on the coordinates i, j

p(M;(u)) =i+ jmod 2. (8.47)
The monodromy matrix verifies the Yang-Baxter equation

Ry (u—vI)M, (u)Mp(v) = Myp(v)M, (R, (u—v). (8.48)
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Fig. 8.1 The H,,,, domain for % (gl(m|n)) fusion

This expands in the (m + n)? relations
[ M (@), M{(v) ] = (~DF R (MM ) — MM (), (8.49)
where [-,-] is the graded commutator (8.9). The transfer matrix is obtained by taking the supertrace
T (u) := stry M (u). (8.50)

As a sum (and difference) of diagonal elements of the monodromy, the transfer matrix is an even operator
of End(5#). Because the super trace vanishes on the graded commutator, the family of the transfer
matrices forms is a commuting family

Yu,veC, [T(), T(v)]=0. (8.51)

8.1.6 The fused transfer matrices

Like in the non-graded case, the family of transfer matrices can be enlarged with the higher order transfer
matrices, which are obtained by taking arbitrary representations of the superalgebra gl(m|n) on the
auxiliary space. And as in the non-graded case, they can be constructed via fusion.

Tensor product of fundamental representations of gl(m|n) are decomposable in direct sum of irre-
ducible subrepresentations. Young diagrams can be used to carry out calculations, with mechanics proper
to superalgebra though very similar to the non-graded case [128, 297, 298, 304]. Finite dimensional
irreducible representations are labelled uniquely by Kac-Dynkin labels, but the correspondence between
Kac-Dynkin labels and Young diagrams is not one-to-one [304]".

Admissible Young diagrams lie inside a fat hook domain pictured in fig. 8.1, defined over the bidimen-
sional lattice

Hyjn = Zs1 X Zs1 \ Zogy X Zsy, (8.52)

with coordinates (a, b). Young diagrams expand infinitely in both directions a and b, but the points
a > n, b > m are forbidden, leading to the hook shape.

Let A be some representation of gl(m|n). The degeneracy points of the fundamental R-matrix allow to
construct the projectors P, : (C™")®" — Vv, which extracts the wanted subrepresentation A as a product
of R-matrices. Fusing on the auxiliary space from the fundamental monodromy M (u), we obtain new
monodromy operators associated to A, and then new transfer matrices one the supertrace is taken. All of
these transfer matrices commute together, since an analog Yang-Baxter equation is verified by the fused
monodromies, for the projectors are constructed from R-matrices at specific points.

'Highest weight irreducible representations are characterized uniquely by their highest weight, which can be noted on a
Kac-Dynkin diagram. When using Young diagrams, the corresponding highest weight is obtained from the length of the m first
rows and height the n first columns, see [304] for details. In the case of a Young diagram with at least m + 1 rows of length n
and n columns of height m, one can delete a length n row and add a height m row, add compute the same highest weight.
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0 |—m [-2n—3n—4n

n | 0 |—n2n—3n

2nln | 0

3n|2n| n

Fig. 8.2 The domain H,,, domain is filled with multiples of the deformation parameter 7. Starting
from 0 in box (1, 1), one adds 1 when moving down and —n when going right.

For rectangular Young diagram corresponding to the point (a, b) € Hy,, with b rows and a columns,
the corresponding monodromy matrix reads

MPwW) =P &) Mu+n(r—s)) [P (8.53)
1<5<a
1<r<b
The shifts in (8.53) are obtained by filling the fat hook H,, as in fig. 8.2. Then, reading the rectangular
domain corresponding to the Young diagram associated to A column by column, top to bottom from left
to right, and tensoring a fundamental shifted monodromy corresponding to the current box at the left of
the previous ones, one obtain (8.53). The projectors are obtained as a product of R-matrices [227, 229].
For rectangular diagrams (a, b), they are of the form

plEa) o< l_[Rij(Sj_Sl'), (8.54)
i<j

where i, j run over the boxes of the diagram of fig. 8.2 in the same way as described earlier, and the
s;, s; are the shifts in the boxes. The projectors associated to row and columns Young diagrams are the
symmetrizer and antisymmetrizer, respectively, over the V®¢ space:

P =pt =P, (8.55)
o€S,

Pl(a) =P = Z sign(o) P, (8.56)
OE€S,

where S, is the symmetric group of rank a. We have the following recursion relations for the symmetrizers
and antisymmetrizers making explicit use of the R-matrix

1
Pl = nPfa [R((a—1)n)P; _, (8.57)
_ 1 _
Py ,=— npl o R(=(a=1)n)P; , (8.58)

in agreement with (8.54).
The fused transfer matrix is obtained by taking the super trace on the representation A on the auxiliary
space. For the rectangular representation, one has

T (w) = strye M{(w), (8.59)

where V! o~ V82 All these transfer matrices commute together, as a consequence of generalized form of
the Yang-Baxter equation (8.48) being true for any irreps taken on the auxiliary spaces a and b. Hence,

¥(a,b),(c,d) € Hypo VuveC, [1{%w),T()]=0. (8.60)
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There are other ways to construct the fused transfer matrices (8.59). The nice coderivative formalism
obtain these matrices and all their characteristics and relations from the characters of the super algebra
gl(m|n) [229, 231].

Let us recall the most relevant properties of the transfer matrices T,Ea)(u) for our purposes.

Polynomial structure  The transfer matrix Tlga)(u) is a polynomial in u of degree abN, with (ab—1)N
central zeroes given by

N b a
20w =] [|w=ep T[] [(u—&;+ne-m)]|, (8.61)
j=1

{=1m=1

which therefore factorizes as
%W = TW 2 W), (8.62)

where Tlga)(u) is a polynomial of degree ab.

Fusion equations There are bilinear relations between transfer matrices associated to adjacent rectan-
gular diagrams, often called the Hirota relations

Ty —m T w) = Ty

@ w—mT® @+ 1 P -1 W), (8.63)

where in our normalization, the following boundary conditions are imposed

7©

O w=1=1"*"W. (8.64)

All the transfer matrices outside the extended fat hook Hy,, := (Zsg X Zs0) \ (Zsy X Z-.,) are identically
Zero, i.e.
¥(a,b) ¢ Hypy, T 0(w)=0. (8.65)

Inner-boundary condition Because the correspondence between Young diagram and the irreducible
representation of the superalgebra gl(m|n) is not bijective, there exists non-trivial relations linking transfer
matrices associated to distinct Young diagrams. This concerns rectangular Young diagrams saturating one
arm of the fat hook H,,|,, [128, 304, 305]. The first relation is called the inner-boundary condition (IBC)
and is written

(=1)" q-Ber(u)T]EmH)(u +n)= Téf{(u), (8.66)
where .
nrdu—k
g-Ber M (u) = sdet(K) a(u) 511;21 (u=kn) id,,, (8.67)
1= du+_€n)
with
N
au—m=dw =] [u-¢&p. (8.68)
j=1

The operator g-Ber(u) is called the quantum Berezinian, for m # n, and plays a role similar to the quantum
determinant in the non-graded case [127, 306]. This relation is explicitly verified in appendix C of [1V1]
by the use of the coderivative formalism.
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Reconstruction of fused matrices from the fundamental one  The Bazhanov-Reshetikhin determinant
formulas allow to write all the transfer matrices Tlga)(u) in terms of the row and column type ones

@e,y — 1) —(i—
T, (w) = lg’ejtsa Tb+l._j(u (i 1)77) (8.69)
_ (a+i—j) .
= lscllstgb T, (u+(i—1)n). (8.70)

We will use the simpler notations

T, (u) := Tél)(u) and T)(u) := Tl(a)(u),

N | B B (8.71)
To(w):=TOw) and Tgw) := TP ().

The asymptotics of these matrices are given solely by the corresponding symmetrization of the twist
matrix:

Tooq = lim uNT, (W) =str;_ P Ky...K.Py (8.72)
Too (a) = Jim, u N Tg(u) =stry_o Py Ki-- . KoPp . (8.73)

One recognizes that T, , and T, (4) are the characters of the completely symmetric and antisymmetric
representations, respectively, applied to the twist matrix. It is seen explicitly with a diagonalizable twist
matrix with spectrum Sp(K) = {kq,...ky4n}, for example.

In the inhomogeneities, the matrices enjoys simpler fusion relations thanks to the structure of their
central roots. We have, for all j € [1,N] and for all positive integer n,

T1(&)T,(E; +m) = Tpia (&), (8.74)
T1(E;) Ty (&5 —m) = Tnp1)(€))- (8.75)

The proof is done easily by induction, using the general bilinear Hirota fusion relations (8.63), and the
central zeroes (8.61). This is done in lemma 2.1 of [ILV1]. These row and columns transfer matrices are
reconstructed from the fundamental one by successive Lagrange interpolation in the inhomogeneities.

Remark 1 (Comparaison with other conventions). In a great part of literature, such as articles [ 128, 305],
the conventions used for the fused transfer matrices differ from ours. We make the link explicit in the
following.

1. Rectangular representations and orientation of the fat-hook
Rectangular diagrams s with a rows and s columns in [128, 305] correspond to diagrams (a,s) in
our convention. This is because the conventions chosen for the fat-hook differ: figure 1 of [128]
matches with fig. 8.1 when rotated by — 7/2.

2. R-matrix
The value of the 1) parameter, free in our discussion, is fixed at 2 in [ 128, 305]. This is inconsequential,
as it amounts to a rescaling of the spectral parameter, but change the definition of all the related
objects.

3. Definition of transfer matrices
Transfer matrices associated to rectangular representations in [128, 305] are defined up to non-
constant shifts compared to definition (8.59). We note them U(a, s, u), and they are defined as [see
305, equation (6)]

U(a,s,u) := Strya (rtf(g)T(u —s+ a)), (8.76)

where 7 (u) is the untwisted monodromy constructed from the R-matrices with n = 2, g € GL(()m|n)
a twist and 7§ the representation associated to the rectangular Young diagram s®. In our notation,
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reintroducing the 1 parameter, the link is done by
T(a) T)EZ
, (W) = Ul(a,b,u+b—a). (8.77)

4. Hirota equation
Together with the specific choice 1) = 2, the latter convention leads to a different form of the Hirota
equation. In [128, 305], it is written

U(a,s,u+1)U(a,s,u—1)=U(a,s+ 1,u)U(a,s —1,u) + U(a + 1,s,u)U(a—1,s,u). (8.78)

Compared to (8.63), each of the three terms is shifted in only one of its variables, by =1, making
it easy to remember. Introducing the constant shift u — u+s—a — 1, one obtains with = 2 the
following form

TOu—n)TOw) = T (u— )T @) + T @) T D (- ), (8.79)

which is exactly equation (8.63) for s — b.

5. Boundary conditions
The boundary conditions chosen here (see equations (8.64) and (8.65)) also differs from the ones
in [128, 305]. There, it is imposed that

T(0,s,u)=¢(u—s), T(a,0,u)=¢u+a), (8.80)

where ¢ (u) is some function fixing the input data of the problem—in this precise case it would be
o) = ]_[?Izl(u — &) for the inhomogeneous chain of length N. In our setting, the input data are

fixed by the giving of the transfer matrix T (u) = Tl(l)(u). Both choices are valid, but produce slightly
different hierarchies of fused transfer matrix: the U(a,s,u) matrices are polynomial in u of degree
N for all values of a and s, while in our case the degree in u of the Tlga)(u) transfer matrices grows
as abN, with (ab(N — 1)) central zeroes (see equation (8.61)). Consequently, the inner-boundary
conditions also differ, up to a scalar factor that happen to be the total quantum Berezinian, and
by shifts in the spectral parameter because of the different definitions of the transfer matrices
(compare equation (8.66) with equation (28) of [305]).

We have the following lemma, which is corollary 2.1 of [IV1]

Lemma 2. Under the condition

Vj,kE[[].,N]], ]#kz ga#gb mOd'r) (881)

on the inhomogeneities, the transfer matrices T, 1 (u) and T(,,1)(u) are constructed in terms of Ty (u) by the
following recursive Lagrange interpolation formulas

n N
To(w) =] [d+ rn)[Too,nH(u) + 3£ Ty (£,)T,(E, + n)}, (8.82)
r=1 a=1
n N
Ty (W) = ]_[ d(u— rn)[T oo, (n+1) (W) + Zgg”“)(“) T1(E) Ty (Eq — n)} (8.83)
r=1 a=1

where the asymptotics coefficients are

N N
Tooa() :=Toog | [w=&)) and Teo W) :=Too( | J—&), (8.84)

j=1 j=1
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and the interpolation coefficients are

u_gb \ N m—1 1
M)y .=
f@W = H I (8.85)
baéa } == ¢ b
\ N m—1
g () := - 5” 1 L (8.86)
b=1r=1 5a—§( g
b;/:a j b

with the usual shorthand notation §§.r) =& —rm.

Proof. The proof of this lemma is very direct. The T,(u) and T(,)(u) are polynomials of degree aN. We
already know (a—1)N central roots of them, so they can be reconstructed by Lagrange interpolation from
their asymptotic behavior and their values at N different points. The asymptotics are computable and
written above, and the fusion relations provide values in the inhomogeneities in terms of the previous
transfer matrices in the fusion hierarchy. O

One see easily that the general form of Tlga)(u) in terms of the fundamental transfer matrix Tl(l)(u) =
T (u) is a linear combination of the form

Tlga)(u)z Z c(w) Tw+sm)...T(u+sm), (8.87)

where thesq,...,s; are some shifts governed by the Lagrange interpolations and the shifts in the Bazhanov—
Reshetikhin formulas, with 1 < k < ab. Hence, the degree in T(u) of T lga)(u) is ab.

8.2 Separates bases

As in the non-graded case, it is possible to construct bases from conserved quantity that are separate
for the spectral problem of the transfer matrix. The basis made from powers of the transfer matrix
in Theorem 5 is constructed very similarly for the #/(gl(m|n)) fundamental model. The proof relies mainly
on the reduction of the R-matrix to the permutation in a particular point. We reproduce here the theorem
and its full proof.

Consider a (m +n) x (m+ n) square twist matrix K of g[((C“”“) which is even and non-derogatory. It is
block diagonal of the form

K, O
K= ( ) (8.88)
0 K,
For X = m,n, we note
{k1,)(, e :ka,X} =Sp(Ky) (8.89)

the m, eigenvalues of Ky of algebraic multiplicity d; y,...,dn, x, With Z;"jl = X. The spectrum of the
twist matrix is (geometrically) simple

Vl,] € [[1’ mX]] ) ki,X 7& kj,X' (890)

There exists a change of basis invertible matrix Wy € g[((C‘“'“)

Wk 0
Wy, = ’ 91
K ( 0 WK,n)’ (89 )
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even as well, that puts K in its Jordan normal form

KJm 0 -1
K; = ’ =W, KW, 8.92
J ( 0 KJ,n) K K> ( 9 )

where for X = m or n, the K y matrices write in Jordan normal form with m, Jordan blocks of the
form (6.10)
J(ky,x,d1,2)
Kjx= . (8.93)

J(ka,X’de,X)

Let 7 := [0,m +n— 1], and consider the twisted inhomogeneous fundamental model of length N of
the %(gl(m|n)) algebra. We note T (u) its transfer matrix as defined in (8.50).

Theorem 8. Let the twist matrix K be an even non-derogatory matrix of g[((C‘“l“) as above. For almost
any choice of a covector (S| € #* and of the inhomogeneities & ; under the condition (8.81), the family of
covectors

Vhez, (hl:= Sll_[T(Ej)h (8.94)

forms a covector basis of F€*.
In particular, the state (S| can be taken as follows. For a one-site |S,a) := Sl.(a) |i) in the a-th space V.

Its dual covector in V* is (S,a| = S,a)" = Sfa)* (i|. For the vector
IS):=15,1)®---®|S,N), (8.95)

constructed by tensoring N copies of the one site state |S, a), the dual state (S| = |S)" is

m+n

(sl= > s ...s% (Ip;) @@ Ipy)), (8.96)

where (|p;) ® --- ® |py))T has signs in its definition as in (8.30). Noting

-1 (@] (€Y (my) (my)
(S,aIW (xlm,... x P SHATIS . ’), (8.97)

> dy,m? >y,

(l_[x(k))( 1 xgkj) £0 (8.98)
k=1 k=1

for the family of covectors (8.94) to form a basis.

it is sufficient to take |S,a) such that

Proof. As in the non-graded case, we have
R(0)=nP and str,P,, =idy, (8.99)
so the transfer matrix in the inhomogeneities is
T€;) =Rjj1(&§;—&j-1)...Rj1(&; —E1KRjn(E; —&En) . .Rjj (& — &jt1)- (8.100)

It is now very similar to the proof of Theorem 5: it is sufficient to prove that the determinant of the matrix
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M of size (m 4+ n)", of elements
M;; = (h(D)]e;) for i,j€ [1,(m+n)], (8.101)

is non-zero. Here ﬁ(i) is the unique N-tuple labeled by i defined by
N .
=1+ hy(a, (8.102)
a=1

while the e; are the vectors of the canonical basis ¢ —constructed by tensoring the local canonical
bases—enumerated by j. For j € [[1, (m+n)V ]] , one has

lej) = |ern,(n(1) @+~ @ [ers, ()(N)) (8.103)

from (8.102), where the |e,(j)), a € [1,m+n] are the vectors of the canonical basis at site j. The
determinant det M has polynomial dependence in the inhomogeneities and the twist matrix coefficients,
so it is sufficient to prove that detM # 0 in some particular points of these parameters to have it almost
everywhere. As in the non-graded case, a sufficient criterion for det M # 0 is therefore obtained in the
large inhomogeneities limit and reads

detM # 0, (8.104)

with M the (m 4 n)N square matrix of coefficients
N .
Vije [Lm+n)], ;= (s|] [KhDle;). (8.105)
a=1

Let us compute this last matrix element precisely. From (8.96), it writes the sum

N m+n
(S]] [KtOle;)= >, s ...s% (Ip)) @ @ Ipy))’
a=1 P1s--sPN

N
X (“Kg“m) [ern, (1)) @ -+ ® [en, (y(N)). (8.106)
a=1

ha(i . . . .
Because the Ka“(l) are even, the matrix elements factorizes by (8.32) as a product over N one-site matrix
elements:

N
Vi,je [1,m+n)"], (p1)®---® |pN>)*(]_[K2a(”) |er1n, (1)) ® -+ ® |ep (V)

a=1

N
- l_[ <pa|K¢’11a(i)’el+ha(j)(a)>- (8.107)

a=1

The sum over the py, ..., py is therefore decoupled as a product of N independent sums
N .
iy = [ ](s. ki lerin, (@), (8.108)
a=1
and the same goes for the determinant:

N
detf =] [detm,, (8.109)

a=1
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where m, the m + n square matrix of coefficients
(f)i; = (Sa| K ej (@) (8.110)
Consequently, the family (8.94) is a basis if
Va€[1,N], detrh, #0. (8.111)

These determinants are explicitly computed in terms of the eigenvalues of K and the coefficients of the
covector (8.97) to be

m my

E

m My

3

detr’h — ( (Cl)) a,m ( (a)) (k kb N da mdb,n
a=1 a=1 a=1 b=1
x [ T (ke = o) ™™ T [ (kan = ko) ™", (8.112)
1<a<b<mg 1<a<b<m,

Since K has simple spectrum, all the coefficients depending on its eigenvalues in the above formula are
non-zero. Therefore, det m is non-zero under the condition (8.98). This proves the desired result. [

Proposition 12. If the twist matrix K has simple spectrum, then the transfer matrix T(u) has simple
spectrum. If moreover it is diagonalizable, then T (u) is diagonalizable as well.

Proof. Let the twist K has simple spectrum, then (8.94) is a basis by the above theorem. For an eigenvalue
t(u) of T(u), and |t) an associated eigenvector, it is immediate that

N
vhez, (Bje)=(slt)[ JeEnh. (8.113)

j=1

This determines completely the unique eigenvector associated to t(u) — up to a normalization. If moreover
K is diagonalizable, then one can prove that T(u) is diagonalizable as well with computations similar to
the proof of lemma 1, that we do not repeat here. The main idea is to show that there are no non-trivial
Jordan block, i.e. of size greater than one, by using the asymptotic form of the eigenvectors. O

8.3 About the characterization of the spectrum

Just like in the non-graded case, we would like to use this SOV basis to solve the spectral problem of
the transfer matrix. We will heavily rely on what we did on the non-graded case. As we already know,
the unique eigenvector of an eigenvalue of the transfer matrix is fully fixed by the knowledge of the
eigenvalue, thanks to the immediate computations of its coefficients in the basis (8.94):

vhez, (hlt) ]_[ t(E). (8.114)

We thus restrict to the characterization of the eigenvalues, and already have some constraints on them
from the characteristics of the transfer matrix itself. Namely, they are polynomials of degree N, with
dominant coefficient str(K) and have to satisfy the fusion relations.

For a polynomial P € Cy[X] of degree N, a diagonalizable matrix with simple spectrum K such
that the dominant coefficient of P is strK, and inhomogeneities &4, ..., &y verifying (8.81), one can
construct successively the polynomials Prgl) and Pgn) by the interpolation formulas (8.69)—-(8.70), and
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the polynomial Plga) from the determinant formulas (8.82)—(8.83). We also add the additional constraint
that all the functions for points outside the extended fat hook are identically zero.
For any vectors of (x1,...,xy) € CN, we define the following polynomial

N
t1(ul{x; 1) = Too (W) + D £D(W) xq. (8.115)

a=1

We can then define recursively the infinite family of higher polynomials
n N
tnpr (ul{x;}) := (]_[ d(u+ rn))[Too’nH(u) + Z £ 6,8+l xa], (8.116)
r=1 a=1

n N
tinrn)(Ul{x;}) == (l_[ d(u_’ﬂ))[Too,(nﬂ)(u) +ch(l”+1)(u) ty(Ea—nl{x;}) Xa:|: (8.117)
r=1 a=1

and
V(a,b) € Hypoo  t;7(ul{)) = det i (u—(i=Dnl{x;})
== . (8.118)
= det t(a+i_j)(u+(l—1)n|{xj}).

1<i,j<b

We set t821(u|{xj}) =1= tg;_)l(ul{xj}) for full consistency with the fusion relations (8.63). Let us note

FH({x;},{€;},K) := {fb(a)(u) € Clu] (8.119)

(a) z
(a) _ tb (ul{x]}) for (Cl, b) S Hm|m }
fy ) { for (a,b) ¢ Hyj,

the infinite family of polynomials obtained from a vector (xi,...,xy) € CN by the fusion hierarchy
formulas (8.115)—(8.118), where the asymptotics are prescribed by the matrix K € End(C™") and the
Lagrange interpolations are done in the inhomogeneities {&;}.

For f, g and h functions of one variable u € C, we note

IBCyyjny (f> 8, M)[u] := (—1)"h(w)f (u +n) — g(w). (8.120)
For h(u) = gq-Ber M(u), and |t) such that

T‘Em+1)(u) It) = tr(1m+1)(u) It), Té:‘i(u) |t) = tg“;)l(u) t), (8.121)

we have the inner-boundary condition at the function level

IBCryjny (£+D, 607, q-Ber M ) = 0. (8.122)

n > "n+1°

We now define the following family of polynomials

Fam, (K, (£31) i= | £ ) € Culu | 3001003 € €%, (51 20, F@) = a(ullxy),

IBConjny (£ D (ul{x}), 7 (ul{x;}), a-BerM ) =0, (8.123)

n n+1

for t(™ D (ul{x;}), tg“;)l(uuxj})eFH({xj},{gj},K)}.

In words, this is the set of all the polynomials of degree N that can be written in the form (8.115) from
some non-zero vectors (x;,...,xy) € CN and twist matrix K, whose fused higher polynomials obtained
by the fusion hierarchy (8.119) satisfy the inner-boundary condition at the function level.
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From all we said above, it is clear that
Sp(T(u)) C Fam! In(K, {€;}). (8.124)

This is another wording for the statement made by lemma 2.2 of [IV1], that we recall here

Lemma 3. Any eigenvalue t(u) of the transfer matrix T (u) admits the representation t,(u|{x;}), where
the (xq,...,XyN) # (0,...,0) are N complex numbers such that the fused polynomials téa)(ul{xj}) verify the

inner-boundary condition

(—1)" g-Ber M(w)e ™ D+ nl{x;}) = e (ul{x;}), (8.125)

and the out-boundary conditions

Vn,m>1, VuecC, t™™(w)=o. (8.126)

n+n

Are these two set equal? If no, what are the additional requirements for a polynomial of Fam(K, {£;})
to be an eigenvalue of T(u)? This is where the basis (8.94) enters the stage.
Let t(u) € Fam(K, {£;}), and |t) the associated vector of # defined by

N
Vhez, (Ble)=] Jecg)h. (8.127)
j=1

We want to prove that upon some possible additional constraints on t(u),
VheZ, VYuecC, (hTWt)="1tw)hlt). (8.128)

To do so, one has to compute (ﬁlT(u)It) and rearrange it in the left-hand side of (8.128), requiring
some assumptions on t(u) along the way if necessary. The immediate concerns is therefore, as in the
non-graded case, to know how to act on the basis of (ﬁl with T(u). As we know from section 6.2.1 for the
non-graded case, this is given by some Lagrange interpolation and the use of the algebra of the conserved
quantities, whose relations, in practice, are derived from the fusion relations. This is no different here.

Action of T(u) on (ﬁl Action of T (&) over (ﬁl is merely a shift if there is some room to increase the
power of the corresponding factor in (ﬁ|

Vje[1,N], Vh=(hy,....,hy) €L, hj<m+n—1, (h|T(E)= (h+8&]. (8.129)

The non-trivial case is when h; is at its maximal value m + n— 1. In the non-graded gl(n) case, we were
able to characterize the linear decomposition of (ﬁl T(Eg.r)) over the basis of the (ﬁl by the repeated use
of the fusion relations. Indeed, the last fusion relation eventually gives a central element, the quantum
determinant, so that any product of n transfer matrices can be recast after many Lagrange interpolations
in a linear combination of products with at most n— 1 transfer matrices.

In the graded gl(m|n) case, the picture is not as simple. Indeed, there are no representation of
dimension 1 that would yield a central fused transfer matrix, unlike in the non-graded case where the
central quantum determinant can be obtained by fusion. The closest we have from such a tool is the
inner-boundary condition (8.66). The degree in T (u) of the left-hand side of (8.66) is (m + 1)n, and the
degree of the right-hand side is m(n+ 1). With n # m, the degree in T (u) is lower on one side or the other.
This was somewhat expected with the presence of the quantum Berezinian, that gather fundamental
matrices T (u) in a rational function to produce a central element. Nonetheless, supposing m < n, it means
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1

Fig. 8.3 The H,,,, domain for the #(gl(1|2)) model

min

that a non-trivial linear combination of terms of degree mn+n in T (u) is actually recombinable in a linear
combination of terms of degree mn+m < mn+ n. This gives a very indirect way to possibly rewrite terms
of degree m+n—1 in T(u) into terms of smaller degree, effectively computing the missing relations in
the abelian algebra of conserved quantities that gives the linear decomposition

(B T(w =" ckw) (K (8.130)

kez

for h € T with at least one h; =m+n—1 for some j € [1,N].

8.4 Specializing for gl(1]|2) model

We now specialize the discussion to the gl(1]|2) model. From now on, Z = {0, 1, 2}. The fat-hook domain
is for m =1, n = 2 is pictured in fig. 8.3.

LetK € g[(((:l'z) be diagonalizable. We note k;, k, and k; its eigenvalues, and have detK; = k;,
detK, = kyks. The associated asymptotics of the column transfer matrices are explicitly

Vn>2, Toon=kl"2(k—ko)(k —ks). (8.131)
The inner-boundary condition (8.66) reads
ky TSP (u + ) = kykad (W) Ts (), (8.132)
for the fused transfer matrices, and
Kyt D (u+ 1) = kaksd (w)ts(u) (8.133)
at the level of the corresponding eigenvalues. The out-boundary condition (8.126) reads out

Ym,n>0, YueC, t2™(u)=0. (8.134)

3+m
We make the following conjecture

Conjecture 1. For the general gl(1|2)-graded Yang—Baxter twisted inhomogeneous fundamental model of
transfer matrix T (u),
Sp(T (W) = Famy, (K, {€;}). (8.135)

In others words, polynomials t1(ul{x;}) defined in (8.115) are eigenvalues of T(u) if and only if the higher
fused polynomials associated to it satisfy the inner-boundary condition (8.125) and the null out boundary
condition (8.126).
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Indeed, the inner-boundary condition is rewritten by fusion relation as
kakad () T3(w) = ky (Ty(w) Tou + ) — T5(@ Ty (u + 1)), (8.136)

which is of order 3 in the Tl(gg.”) in its left-hand side and of order 4 in its right hand-side. Let K have
simple spectrum, so that the family of covectors (8.94) is a basis, and is invertible. The highest power of
T(&;) appearing in the basis (8.94) is 2, so acting on it with T(u) produces a power of order 3, which we
do not know how to reduce into smaller ones. However, the transfer matrices T(&;) are invertible®, so
the original vectors constructing the basis (8.94) can be rewritten conveniently

N
(8| e, (sI=(8|[ [T (8.137)
j=1
Therefore,
N
vhez, (hl=(3|] [T(gph. (8.138)
j=1

The powers in T(&;) now run from 1 to 3 in this expression of the (ﬁ|; acting on it with T (u), this
produces terms of order 4, which can be in principles rewritten in terms of order 3 by (8.136).

In the article [IV1], this idea proved fruitful and allowed us to verify the above conjecture in the
simpler case where k; = 0. There, we give a characterization of the spectrum by discrete finite difference
equation, as well as by a functional quantum spectral curve. We then compare the results with the ones
of the nested Bethe ansatz, and prove its completeness as a corollary of the completeness of the quantum
spectral curve. We will only recall the results here, since the proofs are made along the lines of the
non-graded case, and are made in details in [[V1].

8.4.1 Non-invertible twist case
Let the twist matrix be
. 0 O
K= (0 K ) (8.139)
2/3x3

with K, invertible and diagonalizable with simple spectrum, so that
k]_ =0 and kz ;é k3, kz ;é 0 ;é k3. (8140)

While one eigenvalue is zero, the vectors (8.94) still form a basis of #*. The main identity needed here
is that, thanks to the inner-boundary condition (8.136),

W) =0, (8.141)
since k; = 0. The fusion equations are thus simpler:

vie[LN], TOENTRE +m)=1HE), (8.142)
TOENTOE +m) =0 (8.143)

The two following characterizations of the spectrum of the transfer matrix T 1(K)(u) hold.

Theorem 9. For almost any values of the inhomogeneities & ; satisfying the condition (8.81) and the twist

2This is shown by the reconstruction of the local operators. The transfer matrices T(& ;) are shown to coincide with the
twist matrix K; acting locally on the j-th space, dressed by products of shift operators along the chain. See [104, 106].
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matrix K of the form (8.140), the spectrum of Tl(k)(u) coincides with the set of polynomials Famllvp(K & H,
namely

N N
{ t1(w) € Clu] | I(xq,...,XN) € Sy,  t1(w) = —(ky +k3) l_[(u &)+ Zfa(l)(u) Xq }, (8.144)
j=1 a=1
with S, the set of solutions of the system of N cubic equations in the N unknowns (x,...,Xy)
N
Vae[1,N], xa|:k2k3 d(Eq+m)+ Zfr(z)(éa +n)t1(&r +1) xr] =0. (8.145)
r=1

Moreover, Tl(K)(u) is diagonalizable with simple spectrum, and for any eigenvalue t,(u) of TI(K)(u), the
associated unique eigenvector |t) is defined by its wavefunctions in a separate form as

Vhez, (hlt) ]_I t1(E;). (8.146)

Theorem 10. Under the same conditions as the previous theorem, a polynomial t;(u) is an eigenvalue of
TI(K)(u) if and only if there exist a unique polynomial of degree M < N

N
o) =] J—»), (8.147)
j=1
with
va#gj forall (azj)eﬂleH x [[].,N]], (8148)

such that the triplet (tl(u), to(ul{t1 (&)1, cpt(u)) lies on the quantum spectral curve of equation

@(u—=mta(u—mn)+ a(w)p ()t (W) + p(u)p (u+mn)=0. (8.149)

We have defined

:]2

a(u) = u 21 — 51 and B(u) =a(w)a(u+n), (8.150)

j=1

with @ = k,, or ks, a non-zero eigenvalue of the twist matrix K.
Moreover, the unique associated eigenvector |t) is defined by its wavefunctions in a separate form as

Vhez, (hlt) ]_[a(€]+n) 0 (& +m) (8,77 (8.151)
j=1

8.4.2 Comparaison with the NABA results

The spectrum of the gl(1|2) fundamental twisted model has already been characterized by NABA
techniques [ 124, 125, 293, 295]. Let

L M
Q=] Ju-2) and Q) =] J—pun) (8.152)

=1 m=1
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be two polynomials of degree L, M < N, respectively. Eigenvalues of the transfer matrix were shown to
be of the form

f1(“|{7t1sesL}> {U1<mem }) = Aq () — Ay (u) — Ag(w), (8.153)
with
M) = al(u)%, (8.154)
_ Qq(u—n)Qy(u+n)
Ay(u) = ay(w) LWL (8.155)
Aot = s 2D, (8156
and

a(u)  as(u)

k, ks

N
=dw =] Jw-¢), (8.157)

Jj=1

N
a@=kaw =k | [u—&+n) and

j=1
if the Bethe roots {A,} and {u,,} satisfy the L + M Bethe equations

a;(A¢) _ Qa(A¢ +1)
as(Ae) Qa(A¢)
k2 Ql(.u’m)QZ(.U’m - 77)

—=2 = ) 8.159
ks Qq(um —1mQa(um +m) ( )

> (8.158)

When this is the case, the apparent pole in the expression (8.153) are regularized, retrieving a polynomial
form for the eigenvalue of T;(u).

The spectral curve characterization stated in Theorem 10 allows to prove the following corollary on
the completeness of the NABA description.

Corollary 1. For inhomogeneities satisfying the condition (8.81), a polynomial t,(u) is an eigenvalue of T;(u)
if and only if there are Bethe roots {A,}, {u,,} solutions to the system of Bethe equations (8.158)—(8.159)
such that

t1(w) = t1(wl{A}, {um})- (8.160)

Moreover, the associated solution is unique, and satisfy the following conditions:

A} S &)} and {un)n{{E}ULE;+n}} =0 (8.161)

8.5 The Hubbard model case

The Hubbard model is a one-dimensional lattice model where fermionic particle of spin 1/2 hops from site
to site. One can think of it as a chain of hydrogen nuclei, which can accommodate up to two electrons
of opposite spin per site. It is of tremendous importance in condensed matter physics, as the simplest
generalization beyond the band theory description of solids which still contains enough complexity to
capture non-trivial physical behaviors, such as Mott insulators of high temperature superconductivity for
example [126, 255, 296].
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8.5.1 Preliminary notations

With periodic boundary conditions, its Hamiltonian is written

N

N
Z ( CoCi+lo T CJJ‘:+1,O'CJ.;U) +U Z CRILCNE (8.162)

j=lo=1,l j=1

where cjm

are the Fermi operators of spin o at site j, and n; , = =l i oCjo are the number operators.
The constant U is some coupling constant. The two terms are seen to correspond to a kinetic terms,
allowing the hopping of particles along the chain, and a potential term of an on-site interaction favoring
or disfavoring the presence of opposite spin particles regarding the sign of U.

It has been shown to be linked with the Yangian extension of the centrally extended superalgebra
psu(2]2) [255, 307, 308].

Its description by the quantum inverse scattering method relies on the Shastry R-matrix [see chapter

12 and 13 in 255, for details on its construction]. With n = —2iU, let

cosu 0 0 0
0 sinu 1 0
0 1 sinu 0
0 0 0 cosu

Ryp(u) := € End(V, ® V), (8.163)

where V, ~ C2 ~ V,, and

Ryg34(ulv) := Ry3(u—v)Ryg(u—v)
sm(u V)

s1n(u ) ———tanh (h(u) + h(v)) Ris(u+v) ai’ Ros(u+v) O'%/, (8.164)

where oY are the usual Pauli matrices, and

h(u) := 5 arcsmh (?n sin 2u) (8.165)
Then the Shastry R-matrix reads
Ryg34(ulv) := I15(h(u)) I34(R(v)) R1g 34(ulv) 1o (—h(u))I34(—h(v)), (8.166)
where
I;5(h) := cosh(h/2) + 0¥ o} sinh(h/2) = €192 /2, (8.167)

The Shastry R-matrix (8.166) satisfy the Yang-Baxter relation in End (V, ® V3 ® V)

Ry p(ulv)RA c(ul)Rp c(vIE) = Rp c(VIE)RA c(UlE)R 4 g (ulv), (8.168)

where the uppercase roman letters A, B, C represent couples of integers. For example, A= (1,2), B =(3,4)
and C = (5,6), and then
V=V, 0V, ~C* etc (8.169)

Properties of the Shastry matrix are summed up in section 4.1 of [IV1]. Let us recall specifically the
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following invariance: for any matrix K € End C* of the form

a 0 O 0 a 0 O 0
0B 0 O 00pB O
K(a,a,B,y)=0 +6
(aaﬁ)/) a,l 0 0 Y 0 a,2 0 ¥ 0 0
0 0 0 PBy/a 0 0 0 By/a
0 0 0 a 0 0 0 «a
0 B O 0O 0B O
+6 +06 , (8.170
“l 0 0y o0 a’40y00(7)
Py/a 0 0 O Py/a 0 0 O
where a, 3, y are generic complex number, then
RA’B(u|V)KAKB = KB KARA’B(U|V). (8.171)

This is the scalar version of the Yang-Baxter equation for the R-matrix (8.166), and matrices of this form
can be used to twist the model and change is boundary conditions. Some comments about the simplicity
of (8.170) regarding the value of a are made in [[V1].

The monodromy matrix of the twisted Hubbard model of length N of Hilbert space J# = ®§V:1 Va; is

MOW) := KyRpp, (UlEy) .. Ra, (ul€1) € End(V ® ). (8.172)
The transfer matrix is the trace over the auxiliary space V, ~ C*
TO(w) = try M (w), (8.173)

and defines a family of commuting operators thanks to (8.168).

8.5.2 Separate basis

The family of covectors (8.94) can be constructed and proved to be a basis for the Hubbard model as
well.

Theorem 11. Suppose K is diagonalizable with simple spectrum. We note Wy the invertible matrix diago-
nalizing K by

K = Wy Diag(ky, ko, ks, kg) Wi . (8.174)
For almost any choice of the twist matrix K(a, a, B,y), the transfer matrix T® ) (u) is diagonalizable with
simple spectrum, and the family of covectors

N
vhe[o,3]", (hl:=(sI] [T®E) (8.175)
j=1

forms a basis of #* for almost any choice of (S| € 5*. In particular, (S| can have the following tensor
product form

N N
{sI= ®(X’y’z’w)a Flel with Ty := ®WK,]‘, (8.176)
j=1 j=1

simply asking that xyzw # 0.
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Proof. As always, the proof relies on the identity

TH(E) =Rpa, (&j1€j-1) ... Raa, (§j1€1) Ka, Raja, (E51END - Raa,,, (§1€j41)- (8.177)

The other key points is algebraic dependency of the determinant of the matrix whose rows are elements
of the family (8.175) expressed in the canonical basis of #* in the parameters 1 and e®i. Hence, it
is sufficient to show it is non-zero in some limits of these parameters to show it is non-zero almost
everywhere. Here, it is possible to do so in the 11 = 0 point. Then,

h(u,0)=0 or % mod i7. (8.178)

This implies
tanh(h(u,0) + h(v,0)) =0, (8.179)

so that the Shastry R-matrix (8.166) reduces to the product of two XX R-matrices:
Ryp(u—v) =Ry 3(u—v)Ry4(u—v), (8.180)

where A= (1,2) and B = (2,4). Having said all of this, it is possible to make the same reasoning as in
the proof of Theorem 8 to factorize the determinant of the aforementioned matrix into product of N
determinant of 4 x 4 matrices, which are all non-zero due to K having simple spectrum.

Then, in the case 11 = 0 as well, one can prove that (t|t) # O for any eigenvector |t) of the transfer
matrix, using the same argument as in the proof of lemma 1. This implies the diagonalizability and
simplicity of the transfer matrix for almost all values of the parameters. O

Currently, we have not yet tried to use this basis to tackle the spectral problem of the Hubbard model.
Because the underlying symmetry algebra is bigger and has more structure than, say, the gl(1]|2) one,
there are some subtleties in the fusion procedure, and in particular have an intricate dependency on the
spectral parameters [309]. Henceforth, we do not have the full knowledge of the action of the transfer
matrix over the vectors (8.175)—a necessity for the full characterization of the spectral problem.

Still, with such a basis, one can construct the unique eigenvector associated to an eigenvalue obtained
by other means, say the coordinate Bethe Ansatz for example. Indeed, the construction of the eigenvectors
of the Hubbard model from the NABA procedure is intricate. First, the monodromy is a 4 x 4 matrix,
meaning the Yang-Baxter algebra of the model is generated by 16 generators, linked by 256 commutation
relations, which is not convenient. Besides, the parametrization of the R-matrix by the spectral parameters
u and v is inconvenient; in particular (8.166) is not of difference type. Moreover, hints of hidden 6-vertex
structures or link with the t-J model suggests (8.166) is not the most adapted object to perform an
algebraic description of the Hubbard model. An ABA for the Hubbard model has still been obtained by
Ramos and Martin [307, 310-312], with “an unusual recursive construction of the eigenvectors” [255].
See section 12.6 of the monograph [255] for a detailed account of the reasons for the difficulty to perform
ABA for the Hubbard model.

This SOV method provides an alternative way to construct them, which could be of great help in
selecting the solution of the NABA equations which are indeed in the spectrum of the transfer matrix.
Besides, this could already be useful for numerical methods dealing with finite chains with quite a few
sites, where direct diagonalization is out of reach.



Conclusion

The work of this thesis belongs to the studies of quantum integrable models on the one-dimensional
lattice. It focuses on the development of a new quantum separation of variables method for these particular
models.

Chapters 2 and 3 have been devoted to a detailed introduction to classical and quantum integrable
models, and the common techniques used in their studies. The Bethe Ansatz was then described in its
algebraic formulation, and the results obtained from ABA techniques, ranging from the spectrum to the
correlation functions, were reviewed in chapter 4. With chapter 5, the SOV techniques were introduced in
the classical and quantum cases, from first principles to Sklyanin contributions in the context of integrable
models. The recent take on SOV proposed in [225] was described in details in chapter 6, being the base
techniques of the contributions of the manuscript. Chapters 7 and 8 form the core of the thesis and
gather my personal contributions to quantum SoV techniques applied to respectively higher-rank g{(3)
fundamental chains and supersymmetric gl(m|n) fundamental chains.

* %

Chapter 7 sums up results of [IV2]. It introduces the gl(3) fundamental spin chains, and details how
canonical left and right SOV bases obtained following methods of chapter 6 are not orthogonal from
each others, but rather pseudo-orthogonal. More precisely, while many ket states of the right SOV basis
find their orthogonal state among the bras of the left SOV basis, many others states see their orthogonal
states being constructed as a linear combination over a well-defined subset of the left SOV basis. This
creates an additional complexity in the computation of scalar products and form factors. The main result
of this chapter is two-fold. First, non-diagonal elements of the pseudo-orthogonal SOV measure are
characterized exactly in terms of the diagonal ones through recursive formulas. The diagonal elements
are computable, and we computed them exactly. Secondly, a novel operator T(u) is introduced, defined
by the giving of its eigenvalues and eigenvectors. By construction, it is shown that the left and right SOV
bases constructed from it are orthogonal, greatly reducing the computational cost of scalar products and
form factors in the SOV context.

An obvious improvement would be the algebraic construction of the T(u) operator from the basic
blocks of the model, for example from the R matrix or the monodromy. Besides, one can hope for an
exact derivation of the non-diagonal elements of the SOV measure by solving for them their defining
recursive formulas.

As already stated in the main text, a parallel line of research has been conducted by Cavaglia, Gromov,
Levkovich-Maslyuk, Ryan and Volin since 2018 in a series of publications [236-238, 240, 291]. The most
recent one [240] is a pedagogical and almost self-contained exposition of their approach on left and right
separate bases and their SOV measure towards scalar products, form factors and correlation functions
for gl(n) models. They explicit the block diagonal form of the SOV measure and exhibit a lexicographic
ordering that makes it triangular.

Relying on an orthogonality relation in the form of an integral, they propose an interesting indirect
approach to get integral representations of scalar products of on-shell/off-shell Bethe states, as well as
some matrix elements, bypassing the explicit computation of the SOV measure from the overlaps of the
separate bases vectors.

Still, these publications do not develop the idea of separate bases whose measure is diagonal. One
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could argue that most of the complexity of these methods may be drastically reduced with the algebraic
construction of an adapted T(u) operator.

Chapter 8 focuses on the gl(m|n) fundamental chains and sums up results of [[V1]. Having introduced
the graded formalism and models, it demonstrates how separate bases can be constructed following the
same ideas as in the non-graded cases, so that separation of variables can be envisioned in the same way
for gl(m|n) models. In this SOV setting, a closure relation is necessary to enforce constraints on a family
of polynomials so that it forms the spectrum of the transfer matrix. In the non-graded case, this relation
is identified as one of the fusion relations linking altogether the hierarchy of fused transfer matrices.
The transfer matrix obtained by total antisymmetrization over the auxiliary space is actually a central
element of the operator algebra, namely the quantum determinant of the monodromy. These fusion
relations thus play the role of a functional characterization of the eigenvalues of the transfer matrix, just
as the characteristic polynomial does for a numerical matrix. In the graded case however, there is no
truncation of fusion hierarchy in either direction of fusion. However, there exists non-trivial relations
between different transfer matrices, constructed by different symmetrization procedures. The first of
these relations, the Inner Boundary Condition (IBC), is conjectured to play the role of a closure relation
for the transfer matrices in fundamental gl(m|n) models, namely it allows a functional characterization of
the spectrum of the transfer matrix. It is shown explicitly how the IBC succeeds to do so for the gl(1]2)
fundamental chain with specific quasi-periodic boundary conditions, and the results of the SOV approach
are compared with the known NABA ones.

The natural direction of research here is to pursue the likely development of a proof of conjecture 1,
and the extension of such a result to general gl(m|n) spin chains. This requires either very heavy algebraic
computations involving multiple Lagrange interpolation in the spirit of [234], or a better comprehension
of the structure of Bethe algebra so that privileged objects for a simple closure relation may be identified.
The latter is very reminiscent of the T(u) idea for the gl(3) case. Indeed, the integrability property is,
after all, all about conserved quantities. It is expected some choices of conserved quantities are much
more adapted to certain computation, like the T(u) for a diagonal SOV measure in the gl(3) case, or a
certain choice of operator for the closure relation of gl(m|n) models.

Another interesting direction of research would be to extend results from Ryan and Volin [236, 237]
to the supersymmetric gl(m|n) case. The authors have developed the construction of SOV bases, in the
vein of Maillet and Niccoli method [225], for gl(n) spin chains with different representations at each
site. The vectors of the separate basis are constructed by a recursive embedding of gl(k) to gl(k + 1) spin
chains, controlled by Gelfan’d-Tsetlin patterns, which reveals itself to have the form (6.29). They also
propose a construction of the momenta conjugated to the separate variables—namely the operator of
shift in the spectrum of SOV coordinates—in Wronksian forms. It would be nice to investigate these
operators, say for the fundamental gl(3) model, and compare them to the ones found by Sklyanin [206]
to find whether they do perform the shift on the whole spectrum [225]. More generally, the extension of
results of [236, 237] to gl(m|n) models, as well as the developments of the algebraic machinery necessary
to prove them, would be beneficial.

These developments pave the way towards the computation of correlation function in the new SoV
setting for higher rank and supersymmetric spin chains. With the growing interests in quantum separation
of variables and its surroundings [ 175, 221, 222, 313-315], we hope the theory of quantum integrable
models will benefit from the rise of more sophisticated SOV techniques. A possible and very desirable
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outcome may be a precise definition of quantum integrability founded on the existence and structure of
quantum separate variables.






Appendix

Yangians and quantum groups

The % (gl(n)) Yangian; its RTT presentation The Yangian % (gl(n)) of the Lie algebra gl(n) is an
associative algebra over C of infinite dimension [ 117, 256], generated by the countable generators

t) for i,j€[L,n] and reN, (A1)
and relations
(52,1~ 6. 657) = (06— e, 8.2
with t(o) 0;j. Using the formal series

() o= 855+ £ u T + P + Zt“) e ¥ (gi(n))[[u11], (A.3)

the above relations are rewritten as the n? equalities

(=) t;; (W), tru (V)] = 6 (Dt (W) = ti; (W e (v). (A.4)

Defining the n x n matrix I'(u) € End(C") ® #(gl(n))[[u~*]]', whose ij-entry is tij(w), i.e.

n

I'(u):= Z eij ® t;;(u) (A.5)

i,j=1
the relations (A.4) are packed nicely in the Yang-Baxter equation
R(u—v)T (W) (v) = L) (w)R(u—v), (A.6)
where
Rw)=1+Pu?, (A.7)

P the permutation operator, and I} (u) =T'(u) ® 1, T,(u) = 1 @ I'(u). This is the so-called RT T realization
of the #(gl(n)) Yangian algebra (T (u) being the usual notation in place of I'(u)). Note that there exist
two other realizations [ 117, 256], both introduced by Drinfel’d: the Drinfel’d or first realization [316]
and the Chevalley—Serre or second realization [317].

Hopf algebra structure The Yangian % (gl(n)) is a Hopf algebra [318] with comultiplication

Aty - () ® ty(w), (A.8)
k=1
antipode
S:T(w) - T '(w (A.9)

!We choose the unconventional notation I'(u), because T(u) is already used for the transfer matrix throughout the whole
manuscript.
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and counit ¢ : I'(u) — 1. The coproduct A is also given by the relation
A s T(w) = T(w)yp1y ()T (W), (A.10)

where the left-hand side is in End(C") ® @ (gl(n))[[u~*]]® #(gl(n))[[u"']], and the indexed label the
copies of End(C") and % (gl(n))[[u']]. More precisely, when working in End(C")®™® % (gl(n))[[u"*]1®",
we note .
Toppy (W) := Z 120V ge; @1°Mm ) @120V et (u) @ 180, (A.11)
ij=1
for a € [1,m], b € [1,n] and m,n > 1. The Yangian % (gl(n)) is also a Hopf algebra for the opposite

coproduct
A" T(u) = T(w) o @)T(W)p17(w), (A.12)

for the same antipode and counit as above.
Because % (gl(n)) is a Hopf algebra, the RT T relation also holds for AT'(u), namely

R(u — V) Fl[l](u)r‘l[Z](u) Fz[l](V)Fz[Z](V) = Fz[l](V)Fz[z](V) Fl[l](u)rl[z](u) R(u - V). (A.13)
Relationship with U(gl(n)) The mapping

7 ¥(gl(n)) — U(gl(n)) . (A14)
tij(u) — 05 +eju L

defines a surjective algebra homomorphism, while the assignment e;; — t;;(1) defines an embedding

U(gl(n)) — % (gl(n)). The assignment 7 is called the evaluation homomorphism. Thanks to it, any repre-

sentation of the Lie algebra gl(n) can be regarded as a representation of %/(gl(n)), and the irreducibility

property is preserved.

Center of #(gl(n)) Viewing I'(u) as a n x n matrix in the auxiliary space C", one defines quantum
minors as deformation of the matrix minor, with some shifts integer shifts. The quantum minor of maximal
rank is called unsurprisingly the quantum determinant. Taking any permutation q € S, the quantum
determinant as the expressions

g-detT'(u) =sgngq Z NP - ty1)q) (W - - - tpmy gy —n+1) (A.15)
PE6,

=sgnq Z sgnp - tq(l)’p(l)(u —n—1)... tq(n),p(n)(u)' (A.16)
pe6,

In particular these simplify for ¢ = id. The quantum determinant can also be written as

g-detT'(u) =tr;_, A,L3(w)...T,(u—n+1)

(A.17)
=1y, Fn(u —n+ 1) e Fl (u)An;

where 1
A =P = = Z sgno - P, (A.18)

‘oeB,

is the antisymmetrizer on the n copies 1,...,n of the auxiliary space C".
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For Y (gl(2)), this gives four equivalent expressions of the quantum determinant

q-detT(u) = t1q(w)ty(u—1) =t (W)tyo(u—1)
= top(Wt11(u—1) = t1o(u)ty (u—1)
= t11(u—1)tg(u) — tyo(u— 1)ty (u)
= too(u—1)t19(w) = to1(u—1)t12(u).

(A.19)

The coefficients of the formal series expansion of q-detI'(u) are shown to be central elements of the
Yangian % (gl(n)). Moreover, they are algebraically independent and generate the center of %/ (gl(n)).

Bethe subalgebras and maximal abelian subalgebras Let K be a n x n complex matrix. For any
a € [1,n] set
T (W,K):=tr] 4 AKy...K.W(w)...T,(u—a+1), (A.20)

with A, = P the antisymmetrizer on a copies of the auxiliary space. In particulat, 7, (u,id) = I'(u) and
7,(u,id) = q-detI'(u). All the coefficients of the n series 7,(u,K), ..., 7,(u,K) commute and generate a
commutative subalgebra of % (gl(n)). Similarly, the coefficients of the series

o, (u,K):=1tr_ , AJ1(W)...Ty(u—a+1)Kyyq ... K, (A.21)

also form a commutative subalgebra. They are called the Bethe subalgebras. Moreover, if K has simple
spectrum, then the coefficients in the o,(u,K) series are algebraically independent and generate a
maximal commutative subalgebra of % (gl(n)). Its image under the evaluation homomorphism is also a
maximal commutative subalgebra of U(gl(n)).

Evaluation representations A theory of highest weight representation can be constructed for the
Yangian #(gl(n)). Among the finite-dimensional highest weight representations, the evaluation representa-
tions are the ones obtained from highest weight representation of gl(n) by the evaluation homomorphism.
For any complex number &, define the generalized evaluation homomorphism as the assignment

e ..
from % (gl(n)) to U(gl(n)) that produces an additional shift in the spectral parameter.
For (p, V) a highest weight representation of gl(n) of highest weight A = (A4,...,4,), the evaluation

representation
evyr =P o7 (A.23)

is a highest weight representation of % (gl(n)) over the space V. Its highest weight is the n-tuple of formal
series in u~! (A(u)) whose components are

A =1+ ie[L]. (A24)
u—¢

The highest weight vector { of the representation (ev, ¢, V) is the same as the one of the representation
(p, V) of U(gl(n)), and one has

evy e(t;;(w)l =AW for ie[1,n],

.. (A.25)
evy e(t;;(u)l=0 for 1<i<j<n.

The quantum determinant q-detI'(u) is in the center of the Yangian, so it acts as a multiplication by a
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scalar on V, determined by
g-detT'(W)|ly =A(W)... A, (u—n+1). (A.26)

It is customary to abuse of the notation q-detI'(u) to denote this scalar quantity as well.
Consider N highest weight evaluation representations

(evawe, Vi), ke[1,N]. (A.27)
We note
N
eV = ® eVal),g, (A.28)
k=1
and
(=088, (A.29)

the vector of V; ® - - - ® Vjy constructed by tensorization of the highest weight vector of each representation.
The submodule ev; £(#(gl(n))){ of V; ®---® V), formed by the descendant states of ¢ is a highest weight
representation of % (gl(n)) as well, with highest weight vector { and highest weight (1;(u), ... Ay(w)),

with
N A(k)
Ai(w) = 1+— . A.30
w=[|\1+=% (A.30)

k=1

Spin chains as representations of Yangian algebras Highest weight evaluation representations of
Yangian #(gl(n)) over a Hilbert space define integrable models. Consider N spaces V;,...,Vy, N > 2,
each equipped with a finite irreducible highest weight representation (p,w), Vi), k € [1,N], of gl(2),
where A9 is some Young diagram A(®) = (Agk), eee, A(nk)) labelling the representation.

The evaluation representation at each site gives the local Lax matrix L, (u) which is in End(C") ® V;

Loe(u) = vy £ [TW)] = > e;;® (om0 0 g, [£;()]). (A.31)
i,j=1

The representation of the defining RT T relation impose the Yang-Baxter equation for the Lax matrix at
site k with the R-matrix (A.7)

Ryo(u—v)Lyj(u)Lo(v) = Log(v)Ly(w)R12(u—v). (A.32)

Tensoring these representations, one gets a highest weight evaluation representation of % (gl(n)) on
the whole Hilbert space 7 =V; ® - - - ® Vyy with the monodromy matrix M (u) in End(C") ® #

M(u) = evy g o(A)°N D [T(w) ]

z . (A.33)
=D @ D, (pawomglt, @l)...(paw o me, [y, ()]),

i,j=1 P15--PN-1=1

which identifies to the matrix product of Lax matrices in the auxiliary space
M(u) = Loy (u) ... Loy (w). (A.34)
M (u) verifies the Yang-Baxter equation with the R-matrix (A.7)
Ri(u—v)Myp(u)Mar (v) = Mo (V)M (WR 15 (u —v) (A.35)

as a direct consequence of the defining RT T relation (A.6) by the representation on 2.
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The conventions between this mathematical presentation and the spin chains literature differ a bit.
First we introduce the deformation parameter 7 explicitly by a rescaling of the spectral parameter (and
inhomogeneities)

u— bt and &, — i (A.36)
n n

Then we multiply the monodromy matrix by the scalar factor

N
[ Ja-c0. (A.37)
k=1

Equivalently, this amounts to a redefinition of the evaluation homomorphism 7. Now the monodromy is
polynomial of End(#)[u], and is written

M) =(u—2~&; +nlly)...(u— &y +nllyy), (A.38)
where .
HOk = Z eij ®Pl(k)[eji]- (A39)
i,j=1

It still satisfies the Yang-Baxter equation, the YBE is homogeneous. It is customary to use the R-matrix
R(u)=u+nP. (A.40)

The scalar value of the quantum determinant is now

g-detM(u) = ﬁﬁ(u—§k+n(lgk)—i+ 1)). (A.41)

i=1 k=1

The highest weight of the representation is now given by the polynomials

Vie[l,n], M;)l=2A;,m) with (A.42)
N
2w =] [(u—g+2%n). (A.43)
k=1

Taking the trace of the monodromy over the auxiliary space, this gives the transfer matrix
T(u) :=trM(u) (A.44)
which is a commuting family of operators of End(#) thanks to the YBE (A.35)
Yu,veC, [T(u), T(v)]=0. (A.45)

Note that the highest weight vector { is an eigenstate of the transfer matrix
n
T =Y ) ¢ (A.46)
i=1

gl(n) and GL(n) invariances The one-site Lax matrices are gl(n)-invariant: for all k € [1,N]

Vi,je[Ln], [Low(u),e;®1+18psmle;)],, =0. (A.47)
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This also implies a GL(n) group symmetry
VK € GL(n), [Lox(w),K® pjw(K)]z =0, (A.48)

where p,w is the induced representation of GL(n) by the representation p,x of gl(n). This invariance
extends straightforwardly to the monodromy matrix. Applying a GL(n) isomorphism to each site of the
chain is equivalent to performing the inverse transformation on the auxiliary space C".

Fusion procedure It is possible to construct gl(n)-invariant R-matrices corresponding to higher rep-
resentations of gl(n) by the fusion procedure. It was introduced by Kulish, Reshetikhin and Sklyanin
in [227], and explained in details for the gl(3) case in [111]. See also [225, 229-231, 319, 320] among
the modern literature for their used in the context of integrable system. The general idea is to construct a
product of R-matrices along the same auxiliary spaces while fusing along the other, quantum spaces. Let
A=(Aq,...,A,) be a Young diagram corresponding to an irreducible representation (p;, V;) of gl(n). We
write

Py :®L Vi— V) (A.49)

the corresponding projector on the irreducible component V,. We note
Révk(u) :=P3Roq(u+54m)...Ro1(u+51m)Py, (A.50)

where shifts s,...,s, are determined by filling each boxes (i, j) of the Young diagram by —i + j, and read
it from left to right, top to bottom. The R-matrix degenerate in two points

R(£n) =n(1£P) = £2nP*, (A.51)

where PT and P~ are respectively the symmetrizer and antisymmetrizer over V ® V. From them, it is
possible to obtain explicit expression of the projector P, as a product of shifted R-matrices [319, 321].
For instance, the symmetrizer over n copies of the V space is the ordered product

L N\D G

{=1k=(+1

From the choice of the shifts s; and the R-matrices product form of the projectors P,, one proves

Ryp(u— v)RiVA(u)Rgvl(v) = RQ‘VA(V)R%VA(u)Rlz(u —v) (A.53)

by repeated use of the YBE for the fundamental R-matrix (A.40).

Fusing along the auxiliary space, the fusion procedure allows to construct a wide family of monodromy
matrices Mf,; (u) indexed by Young diagrams A of gl(n). They are intertwined by Yang-Baxter equations
of the form

A, A,
va’f,u(u — v)M&l(u)M“;H(v) = M“,L”(V)M"}l(u)RV;f,u(u —v), (A.54)

. AU . . . . .
where A, u are two Young diagrams and RVAVM (u) is the R-matrix constructing by fusing on its two space
to the corresponding Vj, V,, representations.
The fusion procedure thus generates new transfer matrices

THw) := try, M*(w), (A.55)
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which are shown to form a commuting family by taking the trace of (A.54) over V; ® V,:
VA ueYD, VYuvecC, [T*w),T'(»)]=0, (A.56)

where YD is the set of admissible Young diagrams indexing gl(n) highest weight irreducible representations
YD={A=(A,...,A) A1 =---=A,=>20}\(0,...,0). (A.57)

Hierarchy of fused transfer matrices The transfer matrices T*(u) are not all independent, but tied
together by the fusion relations. They arise from the decomposition in irreducible components of tensor
products of highest weight representations of gl(n).
As we already know, the elements 7,(u,K) defined in (A.20) generates the Bethe algebra. Their
representations over ¢
To(u) = evy 5[ 74(u,K)] (A.58)

are the fused transfer matrices corresponding to the pure column Young diagram with a boxes (1,...,1,0,...

All transfer matrices T*(u) can be expressed in terms of the T,(u) by means or the Bazhanov—
Reshetikhin formula

A _ _ .
)=, det, Tomyrimi(u=ni=1)) (A.59)

Also, the bilinear Hirota relations holds between transfer matrices associated to rectangular Young
diagrams. Noting (a, b) the rectangular Young diagrams with a < n rows of length b?, the other being
zeros, it holds

T(a,p) (W Tq,p)(w—n) = T p—1)(W) Tig,p1)(w — 1) + T(ar1,) W T(q—1,p) (@ —m). (A.60)

The fusion hierarchy for the TéK)(u) transfer matrices is given by the relations

T®) (&, —mT®(E) = TE(E)), (A.61)

for j € [1,N] and a € [1,n], with T&(u) = q-det M®)(u). From (A.20) and (A.58), one can see the
T,(u) are polynomials in End(s#)[u] of degree aN. Their leading coefficients is easily identified as the
antisymmetric characters of the twist matrix K. Moreover, one can exhibit the (a — 1)N central zeroes

Vie[1,N], Vre[l,a—1], T,(&;+rn)=0. (A.62)

This can be shown by bringing two projectors whose product is zero in the expression (A.20) [128, 227].
Therefore, the knowledge of N fusion relations is sufficient to reconstruct the transfer matrix T,(u) form
T,—;(u) by Lagrange interpolation in the inhomogeneities.

N
To(u) = l_[

]:1 r=

a—

1 N N
w—&—m| 1] Jau—&)+> g T (E—mTi(ED |, (A.63)
1 k=1

j=1

where
TaOO == trln_a(Pl_maK]_ [N Ka) (A64)

2In chapter 8, we use similar but different notations when dealing with transfer matrices associated to rectangular Young
diagrams, because the convention chosen there for the orientation of the Young diagrams is different.
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and
(@ Yu-& 5 1
“w=]] 1T l—— (A.65)
&k (w) 2 A L] - gj —
£k

The above discussion still holds for other algebras A, such as A = U, (g/[(;)) which gives generalization

of the XXZ model, or Z,-graded algebras A = % (gl(m|n)), Uq(m) giving supersymmetric quantum
integrable models. The latter are described in more details in chapter 8.
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Abstract

We construct quantum Separation of Variables (SoV) bases for both the fundamental
inhomogeneous gl 4| , supersymmetric integrable models and for the inhomogeneous
Hubbard model both defined with quasi-periodic twisted boundary conditions given by
twist matrices having simple spectrum. The SoV bases are obtained by using the inte-
grable structure of these quantum models, i.e. the associated commuting transfer ma-
trices, following the general scheme introduced in [1]; namely, they are given by set of
states generated by the multiple actions of the transfer matrices on a generic co-vector.
The existence of such SoV bases implies that the corresponding transfer matrices have
non-degenerate spectrum and that they are diagonalizable with simple spectrum if the
twist matrices defining the quasi-periodic boundary conditions have that property. More-
over, in these SoV bases the resolution of the transfer matrix eigenvalue problem leads
to the resolution of the full spectral problem, i.e. both eigenvalues and eigenvectors.
Indeed, to any eigenvalue is associated the unique (up to a trivial overall normalization)
eigenvector whose wave-function in the SoV bases is factorized into products of the cor-
responding transfer matrix eigenvalue computed on the spectrum of the separated vari-
ables. As an application, we characterize completely the transfer matrix spectrum in our
SoV framework for the fundamental gl;, supersymmetric integrable model associated
to a special class of twist matrices. From these results we also prove the completeness
of the Bethe Ansatz for that case. The complete solution of the spectral problem for
fundamental inhomogeneous gl 4| , supersymmetric integrable models and for the in-
homogeneous Hubbard model under the general twisted boundary conditions will be
addressed in a future publication.
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1 Introduction

In this paper, we generalize the construction introduced in [1] to generate quantum separa-
tion of variables (SoV) bases for the class of integrable quantum lattice models associated to
the gl 4|4 Yang-Baxter superalgebras [2-4] and to the Hubbard model [5-10] with quasi-
periodic twisted boundary conditions given by twist matrices having simple spectrum. The
quantum version of the separation of variables and its development in the integrable frame-
work of the quantum inverse scattering method [11-19] originate in the pioneering works
of Sklyanin [20-25]. Since then, the SoV method has been successfully applied to several
quantum integrable models [26-60] .

Integrable quantum models define the natural background to look for exact non-pertur-
bative results toward the complete solution of some 141 dimensional quantum field theories
or some equivalent two-dimensional systems in statistical mechanics. They have found natu-
ral applications in the exact description of several important phenomena in condensed matter
and have provided exact results to be compared with experiments. A prominent example is the
quantum Heisenberg spin chain [61] introduced as a model to study phase transitions and crit-
ical points of magnetic systems. First exact results for the Hamiltonian’s spectrum (eigenvalues
and eigenvectors) have been obtained by Bethe for the spin 1/2 XXX chain, thanks to his fa-
mous coordinate ansatz [62]. Then it has been extended to the anisotropic spin 1/2 XXZ chain
in [63,64], while Baxter [65,66] has obtained first exact results for the Hamiltonian’s spectrum
of the fully anisotropic spin 1/2 XYZ chain. In statistical mechanics, these quantum models
correspond to the six-vertex and eight-vertex models. The ice-type (six-vertex) models [67],
accounting for the residual entropy of water ice for crystal lattices with hydrogen bonds, has
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first been described in the Bethe Ansatz framework in [68]. For the eight-vertex model [69,70]
first exact results in the two-dimensional square lattice are due to Baxter [66,71,72]. The in-
tegrable structure! of these spin chains and statistical mechanics models has been revealed
in the Baxter’s papers [65,72,78]. There, the one-parameter family of eight-vertex transfer
matrices have been shown to be commutative and the XYZ Hamiltonian to be proportional to
its logarithmic derivative, when computed at a particular value of its spectral parameter. The
subsequent development of a systematic description of quantum integrable models has been
achieved through the development of the quantum inverse scattering framework [11-19]. In
particular, the work of Faddeev, Sklyanin and Takhtajan [12] has set the basis for the classifica-
tion of the Yang-Baxter algebra representations and the natural framework for the discovering
of quantum groups [79-82]. The paper [12] has also introduced the Algebraic Bethe Ansatz
(ABA), an algebraic version of the original coordinate Bethe Ansatz.

Exact results are also available for the quantum dynamics, i.e. form factors and correlations
functions, of some integrable quantum models. This is for example the case for XXZ quantum
spin 1/2 chain under special boundary conditions whose correlation functions admit multiple
integral representations [83-95].

In this context, the form factor expansion has proven to be a very powerful tool: on the one
hand, to compute dynamical structure factors [96,97], quantities directly accessible experi-
mentally through neutron scattering [98]; on the other hand, to have access to the asymptotic
behaviour of correlation functions of these XXZ chains in the thermodynamic limit and explicit
contact with conformal field theory [90-92,99-105].

Integrable quantum models also led to non-perturbative results in the out-of-equilibrium
physics context, ranging from the relaxation behaviour of some classical stochastic processes
to quantum transport. The XXZ quantum spin chains, under general integrable boundary
conditions, appear for example both in the description of the asymmetric simple exclusion
processes [106-112] and the description of transport properties of quantum spin systems

[113,114].

The new experiments allowing ultra-cold atoms to be trapped in optical lattices have pro-
duced concrete realizations of quantum integrable lattices, like the Heisenberg spin chains but
also more sophisticated models like the Hubbard model [115,116]. They provide a further
natural context for direct comparison of exact theoretical predictions with experiments.

The Hubbard model is of fundamental importance in physics. It is a celebrated quantum
model in condensed matter theory, defining a first generalization beyond the band approach
for modelling the solid state physics. It manages to describe interacting electrons in narrow
energy bands and allows to account for important physical phenomena of different physical
systems. Relevant examples are the high temperature superconductivity, band magnetism and
the metal-insulator transitions. We refer to the book [10] for a more detailed description of its
physical applications and of the known exact results and relevant literature. Here, let us recall
that the Hubbard chain is integrable in the quantum inverse scattering framework and it has
been first analysed by Bethe Ansatz techniques in a famous paper by Lieb and Wu [117,118].
Coordinate Bethe Ansatz wave-functions for the Hubbard Hamiltonian eigenvectors have been
obtained in [119] and subsequent papers. The quantum inverse scattering formulation has
been achieved thanks to the Shastry’s derivation of the R-matrix [120-122]. From this, the
one-parameter family of commuting transfer matrices, generating the Hubbard Hamiltonian
by standard logarithmic derivative, can be introduced. The proof that this R-matrix satisfies the
Yang-Baxter equation has been given in [123]. In [124-126] a Nested Algebraic Bethe Ansatz
for the Hubbard model has been introduced while the quantum transfer matrix approach to
study the thermodynamics of the Hubbard model has been considered in [127]. Interestingly,
the Hubbard Hamiltonian is invariant under the direct sum of two Y (sl,) Yangians, as derived

1See also [68, 69, 73-77] for some previous partial understating.
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in [128-131], while the structure of the fusion relations for the Hubbard model have been
studied in [132], see also [133] for the finite temperature case. It is also relevant to remark
that under a strong coupling limit and some special choice of the remaining parameters [10],
the Hubbard Hamiltonian leads to the Hamiltonian of the t-Jgly|;-supersymmetric model,
another well known model for the description of the high-temperature superconductivity, see
[134-136] and references therein.

While integrable quantum models naturally emerge in the description of 14+1 quantum
or 2-dimensional statistical mechanics phenomena, they are not really confined to this realm.
For example, they play a fundamental role in deriving exact results also for four-dimensional
quantum field theory like the planar N = 4 Supersymmetric Yang-Mills (SYM) gauge theory,
see the review paper [137] and references therein. In this context, integrability tools have
been used to derive exact results, like characterizations of the scaling dimensions of local op-
erators for general values of the coupling constant. Notably, such results can be used also as a
test of the AdS/CFT correspondence in this planar limit. Indeed, holding for arbitrary values
of the coupling, they allow for a verification of the agreement both at weak and strong cou-
plings with the perturbative results obtained respectively in gauge and string theory contexts.
Integrability is also becoming relevant in the exact computation of observables. Interestingly,
quantum integrable higher rank spin and super-spin chains have found applications in the
computation of correlation functions in N = 4 SYM, see e.g. [138-143]. The same integrable
Hubbard model enters in the description of the planar N = 4 SYM gauge theory [137,144] in
the large volume asymptotic regime. Indeed, relevant examples are the connection between
its dilatation generator at weak coupling and the Hubbard Hamiltonian derived in [145] and
the equivalence shown? in [146,147] between the bound state S-matrix for AdSs x S° super-
string [152-154] and two copies of the Shastry’s R-matrix of the Hubbard model multiplied
by a nontrivial dressing phase. Moreover, this S-matrix enjoys the Yangian symmetry associ-
ated to the centrally extended su(2]2) superalgebra [152-155] and an Analytic Bethe Ansatz
description of the spectrum has been introduced on this basis in [146, 147, 156].

The large spectrum of applications of these higher rank quantum integrable models and
of the Hubbard model, clearly motivate our interest in their analysis by quantum separation
of variables. Let us mention that the first interesting analysis toward the SoV description of
higher rank models have been presented in [25,28], see also [57]. More recently, in [157], by
the exact analysis of quantum chains of small sizes, the spectrum of the Sklyanin’s B-operator
has been conjectured together with its diagonalizability for fundamental representations of gl;
Yang-Baxter algebra associated to some classes of twisted boundary conditions. While in [158]
the SoV basis has been constructed for non-compact representations. In [1,159-161] we have
solved the transfer matrix spectral problem? for a large class of higher rank quantum integrable
models. That is for integrable quantum models associated to the fundamental representations
of the Y(gl,) and U,(gl,) Yang-Baxter algebra and of the Y(gl,) reflection algebra. This has
been done by introducing and developing a new SoV approach relying only on the integrable
structure of the model, i.e. the commutative algebra of conserved charges. In [163,164] our
construction of SoV bases has been extended to general finite dimensional representations of
gl, Yang-Baxter algebra with twisted boundary conditions. In [1], we have proven for the
gl, representations and for small size gl; representations that our SoV bases can be made
coinciding with the Sklyanin’s ones, if Sklyanin’s construction can be applied. In [163,164]
this statement has been extended to the higher rank cases, in this way providing an SoV proof*

20ne should remark that the spin chain approaches, as those in [146,147], miss the so-called wrapping correc-
tions of the AdS/CFT spectrum while a full description for this spectral problem has been proposed in [148] and
thereafter extensively tested, see e.g. [149] and the reviews [150] and [151] for further developments.

3While in [162], we have described in detail how our approach works beyond fundamental representations for
Y(gly).

“Indeed, the first proof of this conjecture has been given in [165] in the nested Bethe Ansatz framework.
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of the non-nested Bethe Ansatz representation conjectured in [157] of the transfer matrix
eigenstates as Sklyanin’s B-operator multiple action in the zeros of a polynomial Q-function
on a given reference state.

Here, we construct the quantum Separation of Variables (SoV) bases in the representation
spaces of both the fundamental inhomogeneous gl 4, Yang-Baxter superalgebras and the
inhomogeneous Hubbard model under general quasi-periodic twisted boundary conditions
defined by twist matrices having simple spectrum. Let us mention here an interesting proposal
for a representation of the eigenvectors using a single B operator in [166] for gl 4 , models
inspired by the SoV related methods [157]. In our approach, the SoV bases are constructed by
using the known integrable structure of these quantum models, i.e. the associated commuting
transfer matrices, following our general ideas introduced in [1]. The SoV bases are generated
by the multiple actions of the transfer matrices on a generic co-vector of the Hilbert space.
The fact that we are able to prove that such sets of co-vectors indeed form bases of the space
of states implies important consequences on the spectrum of the transfer matrices. In fact,
it follows that the transfer matrices have non degenerate (simple) spectrum or that they are
diagonalizable with simple spectrum if the twist matrix respectively has simple spectrum or is
diagonalizable with simple spectrum. Moreover, in our SoV bases the resolution of the transfer
matrix eigenvalue problem is equivalent to the resolution of the full transfer matrix spectrum
(eigenvalues and eigenvectors). Indeed, our SoV bases allow us to associate uniquely to any
eigenvalue an eigenvector whose wave-function has the factorized form in terms of product
of the transfer matrix eigenvalues on the spectrum of the separated variables.

It is worth pointing out that for these classes of higher rank quantum integrable models,
fewer exact results are available when compared to those described for the best known ex-
amples of the XXZ spin 1/2 quantum integrable chains. Exact results are mainly confined to
the spectral problem and only recently some breakthrough has been achieved toward the dy-
namics in the framework of the Nested Algebraic Bethe Ansatz (NABA) [167-170], for some
higher rank spin and super-spin chains [165,171-180].

More in detail, in the supersymmetric case, the associated spectral problem has been anal-
ysed by using the transfer matrix functional relations, generated by fusion [181-183] of ir-
reducible representations in the auxiliary space of the representation. The Analytic Bethe
Ansatz [183-185] developed in this functional framework has been applied to the spectral
problem of these supersymmetric models. An important step in the systematic description
and analysis of these functional equations has been done by rewriting them in Bazhanov and
Reshetikhin’s determinant form in [186], and in a Hirota bilinear difference equation form
in [187-189]. These so-called T-systems appear both in classical and quantum integrabil-
ity. An interesting account for their relevance and different application areas can be found
in [190]. The validity of these fusion rules and of Analytic Bethe Ansatz description in the
supersymmetric case have been derived in [191-194]. In [195,196] a method has been devel-
oped and applied to the supersymmetric case based on the use of Backlund transformations on
the Hirota-type functional equations [197-199]. It allows a systematic classification of the dif-
ferent Nested Algebraic Bethe Ansatz equations and TQ-functional equations, which emerge
naturally in the supersymmetric case, due to different possible choices of the systems of simple
roots. It also allows the identification of QQ-functional equations of Hirota type for the Bax-
ter’s Q-functions, see for example [200-202]. Nested Algebraic Bethe Ansatz [136,170,203]
has been successfully used to get Bethe vectors representations for fundamental representa-

tions of Y(gl 4 ) and Uq(gTdm\Jy), see also the recent result [204], while determinant for-
mulae for Bethe eigenvector norms, scalar products and some computations of form factors
have been made accessible in [205-208] for the Y (gl;|2) and Y (gl,);) case. The completeness
of the Nested Algebraic Bethe Ansatz approach for supersymmetric Yangian representations
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has been shown in the following papers® [209, 210], respectively for the representations of
Y(glyp) and of the general Y(gl 4| 4), in the setup of the so-called QQ-Wronskian equations
introduced in [211] for the non-supersymmetric case Y(gl_,) and more recently in [204] for
the Y(gl_4| ) models.

In this paper we start to develop the quantum separation of variables method for these
supersymmetric integrable quantum models. The natural advantage of the SoV method is that
it is not an Ansatz method and then the completeness of the spectrum description is mainly a
built-in feature of it, as proven for a large class of quantum integrable models [39-41,43-59].
More in detail, no Ansatz is done on the SoV representation of transfer matrix eigenvectors.®
Indeed, their factorized wave-functions in terms of the eigenvalues of the transfer matrix, or
of the Baxter’s Q-operator [66,212-233] are just a direct consequence of the form of the SoV
basis. Moreover, these SoV representations are extremely simple and universal and should
lead to determinant formulae for scalar products.” The SoV representation of transfer matrix
eigenvectors also brings to Algebraic Bethe Ansatz rewriting of non-nested type for the eigen-
vectors,® i.e. as the action on a SoV induced "reference vector" of a single monomial of SoV
induced "B-operators" over the zeros of an associated Q-operator eigenvalue [1]. It is worth
to point out that this represents a strong simplification w.r.t. the eigenvector representation in
NABA approach, where the holding different representations [170] are equivalent to an "ex-
plicit representation" which is written in the form of a sum over partitions. This type of results
in the SoV framework is even more important in the case of the Hubbard model. Indeed, there,
algebraic approaches like NABA are mainly limited to the two particle case [124] and other
exact results are accessible only via coordinate Bethe Ansatz.”

The paper is organized as follows. In section 2, we first shortly present the graded formal-
ism for the superalgebras gl 4| , and their fundamental representations, we sum up the main
properties of the hierarchy of the fused transfer matrices and their reconstruction in terms of
the fundamental'® one. The SoV basis is then constructed in subsection 2.4 by using the inte-
grable structure of these models. In subsection 2.5, we make some general statement about
the closure and admissibility conditions to fix the transfer matrix spectrum for these quantum
integrable models. In section 3, we specialize the discussion on the gl;), model. We state our
conjecture on the corresponding closure conditions and we present some first arguments in
favour of it in subsection 3.1. Then, we treat in detail a special twisted case in subsection 3.2,
for which we prove that the entire spectrum of the transfer matrix is characterized by our con-
jecture. Then, we give a reformulation of the spectrum in terms of the solutions to a quantum
spectral curve equation. Moreover, for these representations, we show the completeness of

Both the papers [209, 210] appeared after the present paper and they are not directly related to our SoV
approach.

%In the Bethe Ansatz framework, the fact that the form of the eigenvectors is fixed by the Ansatz implies that to
prove the completeness of the spectrum description one has to define first admissibility conditions which generate
nonzero vectors and then one has to count the number of these solutions and show that it coincides with the
dimension of the representation space, in absence of Jordan blocks. This first step is for example done in the
papers [204,210,211] through the introduction of the isomorphism to the QQ-Wronskian equations.

’Indeed, our recent results on higher rank scalar products [234] show the appearance of simple determinant
formulae once the SoV basis are appropriately chosen, see also [235,236] for some interesting SoV analysis of the
higher rank scalar products.

8Note that this SoV versus ABA rewriting of transfer matrix eigenvectors was first observed in a rank 1 case
in [30,31] and it can be extended in general for polynomial Q-operators, as e.g. argued in [1]. One has to mention
that these non-nested forms were first proposed in [157, 166] together with the form of the B-operator for rank
higher than 2.

°In fact, to our knowledge, the generic N-particle transfer matrix eigenvalues are well verified guesses [10], no
Bethe vectors representation is achieved for the corresponding eigenvectors and the conjectured norm formula [10]
has to be proven yet.

10That is the transfer matrix associated to Lax operators on isomorphic auxiliary and quantum spaces, i.e. in our
fundamental representations the transfer matrices with Lax operators coinciding with the R-matrix.
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the Nested Algebraic Bethe Ansatz, by proving that any eigenvalue can be rewritten in a NABA
form using our Q-functions. In section 4, we derive an SoV basis for the Hubbard model with
general integrable twist matrix having simple spectrum. Finally, in appendix A for the gl;,
model with general integrable twist matrices, we verify that the NABA form of eigenvalues
satisfies the closure and admissibility conditions, implying its compatibility with our conjec-
ture in the SoV framework. In appendix B, we present the proof that our conjecture indeed
completely characterizes the transfer matrix spectrum for any integrable twist matrix having
simple spectrum for the model defined on two sites while we verify this property by numerical
computations for three sites. In appendix C, we give a derivation of the closure relation for
the gl 4 4 case.

2 Separation of variables for integrable gl ,| , fundamental
models

Graded structures and Lie superalgebras are treated in great details in [237,238]. The quan-
tum inverse scattering construction for graded models was introduced in [2-4], and summa-
rized in many articles, see e.g. [10,156,239]. Details on Yangians structures for Lie superal-
gebras can be found in [240, 241].

For the article to be self contained, we introduce the graded algebra gl 4| 4 and its funda-
mental Yangian model in the following, and make explicit the notations and rules for graded
computations.

2.1 Graded formalism and integrable gl ,| , fundamental models

A super vector space V is a Z,-graded vector space, ie. we have

Vectors of V; are even, while vectors of V; are odd. Objects that have a well-defined parity,
either even or odd, are called homogeneous. The parity map, defined on homogeneous objects,

writes
A€V n=i=|0 Ak 2.2
p'e'_)p()__1ifAeV1’ 22

Maps between Z,-graded objects are called even if they preserve the parity of objects, or
odd if they flip it. An associative superalgebra is a super vector space with an even multipli-
cation map that is associative and the algebra has a unit element for the multiplication. For a
superalgebra V we have V;V; €V, jimod2)- A Lie superalgebra is a super vector space g = g,9g,
equipped with an even linear map [, ] : g ® g — g that is graded antisymmetric and satisfies
the graded Jacobi identity.

The set of linear maps from V to itself is noted End V, and it is a Z,-graded vector space
as well. It is an associative superalgebra with multiplication given by the composition. It is
also a Lie superalgebra with the Lie super-bracket defined as the graded commutator between
homogeneous objects for the multiplication

[A,B]=AB —(—1)8BA, (2.3)

which extends linearly to the whole space. As a Lie superalgebra, it is denoted gI(V).
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Tensor products The tensor product of two super vector spaces V and W is the tensor prod-
uct of the underlying vectors spaces, with the Z,-grading structure given by

fork=0orl, (Vew)= & view,. (2.4)
i+j=k(mod 2)

This also defines the tensor product of associative superalgebras, being defined on the
underlying vector space structure, but then we have to define an associative multiplication
compatible with the grading. For A, B two associative superalgebras, the multiplication rule
on A® B is given by

(a; ® by)(ay ® by) = (—1)_bld2a1a2 ® by by, (2.5)

for a;,a, € A and by, b, € B homogeneous, and extends linearly to A® B.
This rule of sign also appears in the action of A B on V @ W, where V is an A-module and
W is a B-module. We have

(@a®b)-(vow)=(=1)"a-veb-w, (2.6)

foracA,beB,veVandweW.
This rule extends naturally to N-fold tensor product, N > 2. For example,

(a1 ® bl ® Cl)(az ® bz ® C2) = (_1)62(51+61)+5261a1a2 ® bl bz ® Cc1Cy. (27)

For some authors, the above construction goes explicitly by the name of super or graded
tensor product. We will stick to the name tensor product.!!

Lie superalgebra gl 4, Let V = C#1¥ be the complex vector superspace with even
part of dimension .# and odd part of dimension 4. The general linear Lie algebra
gLy = gl(C#1¥) is the Z,-graded vector space End C#1*¥ with the Lie super-bracket de-
fined by the graded commutator (2.3).

We fix a homogeneous basis {vy,...,V 4,V g41,---> Vg } Of , Where v; is even for
i < A and odd fori > .# + 1 and we assign a parity to the index themselves for convenience:
i=0fori<.#andi=1fori># +1. .

The elementary operators ef of gl 4|4 have parity p(el]. ) =i+ j(mod2). They are defined
by their action on the basis of V by

(C./ﬂL/V

elj Ve = 6]]; v;. (2.8)
Since they multiply as . .
e{e,l( = 5]k e%, (2.9)

it follows that the graded commutator is
[ej, el ] = e{e,lc — (—1)1’(4)1’(6@(3,1{6{ = 5£ ell. — (—1)(17*})(’_”1_)5% e;;. (2.10)

i

Elements of gl | 4 decompose on the elementary operators as

a= Z aj.e{ = aﬁej (2.11D)

"Note also that some authors prefer to use a matrix formalism and by “super tensor product” denote a morphism
between graded and non-graded structure, see [4], appendix A of [136] or appendix A [195]. We will not make
any extensive use of it in the following.
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where in the last term the sum over repeated indexes is omitted, as we will do in the following.

N .
Elements of (gl | W)® writes

_ Al 1 N

A _Aj1~~-jN e ®...0 €y - (2.12)

Note that due to the sign rule (2.5), the coordinates Aljlll]“’il do not coincide with the components
of the image of v; ®...® v; in the tensored basis of ven.

N-17 7 T : :
_ _ +..+ 1.1
Ay @@ v = (~1)Zien Mt AL Ny e @y

(2.13)

In the non-graded case, these two tensors would be identical.
One may use the coordinates expression to check the parity of a given operator of

(gl 1 W)®N. An operator A is homogeneous of parity p(A) if

Vit,ooey i fioee sy (1) AT — ()08 gl (2.14)

Ji-dnT

The supertrace is defined on the elementary operators as str e{ = (—1)5 5{. Elements of
gl 4|4 may write as a block matrix

A A
A:( (M, M) (//t,ﬂ)) e gl g (2.15)
Ay A,

where A4 _4) is an .4 by ./ square matrix, A4 4) an /4 by 4 square matrix, etc. Hence
we have strA = trA(_4 _»)—trA(y v). Note that the supertrace vanishes on the graded com-
mutator

str([A,B]) = 0. (2.16)

Dual space Let us denote |i) = v;. The dual basis {(j|};j—1,. s+ is defined by
The covectors are graded by p({j|) = j. The dual of a vector 1)) = 4)); |i) is

(1= [N =i (il (2.18)

V®N

where the star * stands for the complex conjugation. For , the dual basis covectors have

an additional sign in their definition

+

(i) ®...®liy) = (iy]®...® (iy] (—1)Zk=2 ilittiin) (2.19)

such that it compensates for the permutation of vectors and covectors:

- N s /7 < N .- <
(i) ®... @ lin)) (j1) ® ... ® |j)) = (—1)Zkez klirFtlin g bt (7 ) L (i L)
= 51'1]'1 o 5iNjN'
(2.20)
Similarly, for N even operators A;, .. .,Ay where each A; acts non-trivially only in the j™ space

of the tensor product V®N, the following matrix element factorizes over the tensorands

(i) ®...® lin)) Ay .. . AN (1) ® .. ® [jn)) = (11| A1 1j1) - .- (inl An Lin) - (2.21)

Indeed, through the matrix elements (i,| K, |j,) that arise from the calculation, the evenness
of K forces the grading i, and j, at site a to be equal, so the signs compensate.

9
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Permutation operator The permutation operator has to take account of the grading when
flipping vectors P- (v @ w) = (—1)""w ® v. Thus we have

— BB
= (-1l o,
P-(v;®v;)= (—1)”vj Q. (2.23)

(2.22)

Remark the additional signs in the action as discussed in (2.13). For two homogeneous oper-
ators A and B,
P(A®B)P = (—1)PWrBIg @A, (2.24)

On an N-fold tensor product V; ® ... ® Vi, with V; ~ C#¥ the permutation operator P,
between spaces V, and V}, writes

P, =(-1)1®.. 818 el ®I...0I® e ®l...8l (2.25)
~—~— N .
site a site b

where the number of identity operators is obvious by the context. The permutation operator

is globally even. We have P2, =1®", and the usual identities are verified
Py =Py, (2.26)
P1oP13 = P13Po3 = P3Py, (2.27)
P13Poq = PoylPr3,  P1oP34 = P340, (2.28)

which extend naturally to a N-fold tensor product.

The #(gl 4| 4 ) fundamental model The R matrix for the fundamental model of the Yangian
Y (gl y.x) writes

RA,u)=(A—uw)iI®l+nP €End(C” @ C#H). (2.29)
It is of difference type and decomposes on elementary operators as R(A) = le(k) e; '® e with
le(x) =26! 5K+ 1 (— 1)15 (2.30)

It generalizes to a N-fold tensor product : the matrix Ry,(1) = AI®N*D 4 P, of
End(V; ® ... ® V) who acts non trivially only on V, and Vj, writes

Rp(M)=Rf(N)Te...018 e ®l...81® e @I..8l, (2.31)
~—~— ~—~—
site a site b

using the generic notation (2.30). The R matrix is globally even and satisfies the Yang-Baxter
equation
R12(A — w)R13(A)R23(1) = Raz()R13(A)R12(A — ). (2.32)

Sometimes the Yang-Baxter equation is written in coordinates and is explicitly referred to
as a “graded” version [2,3]. By equation (2.13),

R(A)v; @ v = le(k)v ® Vi, (2.33)
with RI¥(2) = 4815} +n(—1)*5!5%. Then we have

R (RS IRGE, () (—1)P @+ = RET ()RS, (RS, (2 — m)(—1)P &+,
(2.34)

10
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One may check the gl |y invariance of the R matrix (2.29)

Vxe€gl iy [RA), x®T+I®x]=0. (2.35)

If K is an homogeneous even matrix of gl 4 4 of the form

_ (K« O
K—( 0 Kw)’ (2.36)

we have
RAKIDI®K)=(I®K)(K ®I)R(A). (2.37)

This is a scalar version of the Yang-Baxter equation (2.32), where we put a trivial representa-
tion on the third space.

For a spin chain of length N, we denote the Hilbert space by ## = V; ® ... ® V and the
auxiliary space by Vj, all the V; superspaces being isomorphic to C#1¥ | Taking an even twist
(2.36), the monodromy is an element of End(V, ® V; ® ... ® V) and writes

MIOA) = KoRon(A — &) - - - Roy (A — &1), (2.38)

where &1, ..., &y are the inhomogeneities of the chain. The monodromy is globally even as a
product and tensor product of even operators. In coordinates, using the notation Rsll‘ of (2.30),
it writes

M® () = M} B () eloclie. o (2.39)
_ i pina ja j
=K RN (A—E&N)...Rig'(A—¢&1)e] ® egi ®...® egm, (2.40)

where all the signs from the multiplication of the operators actually vanish because of the
evenness of R. We are dropping the superscript (K) from the coordinates to make the notation
less cluttered. Writing M)(1) = e{ ®M]?(A), the above expression shows that the monodromy
elements M;()L) € End(##) are homogeneous of parity p(M;(A)) =i+j.

The Yang-Baxter scheme generalizes to the monodromy thanks to the global evenness of
the R matrix and the form (2.36) of the twist, and we have

Rap(A—IMOWMI () = MEO MO R, (A — ). (2.41)

One can prove the #(gl 4| ) Yang-Baxter relations between the monodromy elements write
as

(M), M) | = (1)K (M) (Ml (1) — MIAM (), (2.42)
where [M lJ (A), Mli(u)] is the graded commutator (2.3).
The transfer matrix is obtained by taking the supertrace over the auxiliary space

TR = stry MO, (2.43)

It is an even operator of End(3#) as a sum of diagonal elements of the monodromy. Because
the supertrace vanishes on the graded commutator, one proves the commutation of the transfer
matrices

Vauec, [TOQ), T®Ww)]=o0. (2.44)

11
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2.2 The tower of fused transfer matrices

Tensor products of fundamental representations of gl 4, decompose in direct sum of irre-
ducible subrepresentations (irreps). Young diagrams are used to carry out calculations with a
mechanic proper to superalgebras, though very similar to the non graded case [195,242-244].
Finite dimensional irreducible representations are labelled in a unique way by Kac-Dynkin la-
bels, but the correspondence between Kac-Dynkin labels and Young diagrams is not one-to-
one [245].

Admissible Young diagrams lie inside a fat hook domain pictured in figure 1, defined in
the (a, b) bidimensional lattice as H 4 y = (Z»1 X Z»1) \ (Z~_4 X Z-. ). Young diagrams can
expand infinitely in both a and b directions, but the box (a = A +1,b > .# + 1) is forbidden,
leading to the hook shape.

Figure 1: The fat hook domain H_ 4 of admissible Young diagrams for the super-
algebra gl 4| . Bullet points correspond to admissible coordinates (a, b) defining
rectangular Young diagrams.

Remark 2.1. For A& = 0, the fat hook degenerates to a vertical strip, forcing a < .#. We
recover the usual Young diagram indexation of gl(.# ) irreducible representations, though the
diagrams are here displayed vertically, corresponding to the transposition of the usual gl(.#)
ones. This is consistent, for example, with the convention of [195], if one rotate the diagrams
found there by —m/2.

The tensoring procedure is called fusion in the context of the quantum inverse scattering
method [181,182]. It is used to generate higher dimensional gl _,| 4 -invariant R-matrices. The
Yang-Baxter scheme is preserved, as degeneracy points of the fundamental R-matrix allow to
construct the projectors P, : (C#!#Y)®" — v, | that extract the wanted subrepresentation A, as
a product of R-matrices. Fusing on the auxiliary space from MéK) , we obtain new monodromy
operators and thus new transfer matrices of End(s#).

For a rectangular Young tableau corresponding to the point (a, b) € H_4| 4, with b rows
and a columns, the monodromy matrix reads

Mz(,a)’(K)(A) = Plga) [® 150 MOQ+n(r _S)):| Plga)’ (2.45)
1<r<b
and the transfer matrix
HO0 ) = st M) 246
b

is obtained by taking the supertrace over the a x b auxiliary spaces V ~ C#™" with
Vb(a) =V®...®9V, ab times.

The shifts in (2.45) are given by filling the fat hook as in figure 2. We then read the
rectangular Young diagram column by column, top to bottom from left to right, and tensor the
shifted monodromy (2.38) corresponding to the current box to the left of the previous ones.
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0 |—m [-2n—3n—4n

n |0 |=nF2n—-31n

2n|{n | 0

3n|2n|n

Figure 2: The domain H_ 4 is filled with multiples of the deformation parameter
7. Starting from 0 in box (1, 1), we add 1 when moving down and — when going
right.

As said earlier, the projectors P, can be constructed as a product of R-matrices, like in the
non graded case [181,195,199]. For rectangular diagrams (a, b), we have!?

Plga) o< l_lRlJ(SJ _Si), (247)

i<j

where i, j run on the boxes of the diagram of figure 2 column by column, top to bottom from
left to right, and s;,s; are the shift contained in the boxes.
All these transfer matrices commute with each other, as consequence of the Yang-Baxter

equation (2.32) being true for any irreps taken in the spaces 1, 2, and 3
V(ab)(e.d)€H g VApeC, [0, TO0W]=0.  @48)

Let us comment that through the nice coderivative formalism [246, 247], in a different but
equivalent manner, these fused transfer matrices and the following fusion properties can be
also derived. In particular, we make use of this formalism in appendix C to verify (2.54).

Among many others, the fused transfer matrices satisfy the following important properties
[191-195]:

Polynomial structure The generic fused transfer matrix Tlga)’(K)(A) is polynomial in A of
degree abN, with (ab — 1)N central zeros given by

N b a
zoW =] [|a-e) [ ] J[a—&utnt—my]|, (2.49)
n=1 =1 m=1
and therefore factorizes as
TR) = Tz, (2.50)

where T Iga)’(K)(l) is polynomial in A of degree N.

Fusion equations There is a bilinear relation between transfer matrices associated to adja-
cent rectangular diagrams

T O =T = T — %O + T PO =T POQ), (2.51)

where in our normalization, the following boundary conditions are imposed for consistency

(0),(K) _ p(a=1),(K) _
T 2®)) = 1§ ) =1. (2.52)

2Note that in fact one has to use Cherednik regularization to extract the wanted projectors when the diagrams
are not purely of row or column type [199].

13
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All the fused transfer matrices outside the extended fat hook H_ 4, y = (Zso % Zso) / (Zs 4 X Z 4)
are identically zero, i.e.

Y@, b)¢H 40, TV =0. (2.53)

These relations come from the Jacobi identity applied on the determinant form of the trans-
fer matrices given by the Bazhanov-Reshetikhin formula (2.57), (2.58). We exclude the case
(a,b) =(0,0) from the system of the T Iga)(l), as it cannot be defined uniquely from the bound-
ary conditions.

Inner-boundary condition As the correspondence between Young diagrams and irreps is not
bijective, there exist non-trivial relations linking transfer matrices coming from distinct Young
diagrams. This is especially the case for rectangular diagrams saturating one of the branch of
the fat hook H ) [195,196,245]. We shall call the first of these relation the inner-boundary
condition, which writes

(=17 Ber(MT“ O+ 1) = THO (), (2.54)
where
2 "d(A—k
Ber(1) = detK_, a( )H (A—kn) L. (2.55)
detKy [T/, d(a+1n)
and
N
a@—m=d) =] [a-&. (2.56)
n=1

Ber(A) coincides with the central element called the quantum Berezinian, for A4 # .#, and
it plays a role similar to the quantum determinant in the non graded case [156, 240]. As
anticipated, we verify this relation in appendix C.

2.3 Reconstruction of fused transfer matrix in terms of the fundamental one

Here we want to recall that all these fused transfer matrices are completely determined in terms
of the transfer matrix Tl(K)(A) obtained in (2.43). Indeed, the Bazhanov and Reshetikhin’s

determinant formulae [186] allows us to write all the Tlga)’(K)(A) in terms of those of column
type Tr(l)’(K)(A) and row type Tl(r)’(K)(A) by:

1, 00) = det Tyl = (i = 1)) (2.57)
:1232 beaﬂ PR+ - 1)), (2.58)

then our statement is proven once we prove it for the transfer matrix of type Tr(l)’(K)(A) and

T fr)’(K)(l). Let us use in the following the simpler notations
) =TO®Q), 1EM =T00), (2.59)

and similarly
TO0) =TOM), T =T00). (2.60)

The fused transfer matrices T(K)(A) and T(K)()L) are polynomials of degree aN in A, while
T(K)(A) and T( )(A) are of degree N. We have the following properties for these matrices:

14
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Lemma 2.1. The following asymptotics hold:

— 1; —aN
T, = lim A~ T =stry_ P} KiK. Py (2.61)
© = i A-NTE (1) = - -
Too oy = Jim A~ NT () =stry (P Ky KaPy (2.62)

where, in agreement with (2.47), the projectors admit the following iterative representations in
terms of the R-matrix:

1
1) — —
PV =pf = ap;..a—lR((a =P, (2.63)
p@=p- =—Lp- R (a—1)mp; (2.64)
1 = e T T e a e, 4 .

In the inhomogeneities the following fusion relations hold:
Ty (E) = Ty EITINE +m), (2.65)
T4 (D) = TIOEIT L =), (2.66)
for any positive integer n.

Proof. The asymptotics are an easy corollary of the definition of the fused transfer matrices of
type TT(K)(A) and T((:;)(A). Let us now prove the fusion relations in the inhomogeneities, for
n =1 the identity:

T = TOEHITEE, + 1), (2.67)
T4 (o) = T{OEITIOE — ), (2.68)

are obtained by the fusion equations (2.51) just remarking that being:

ZPN) =d(a—n), ZP)=d(A+n), (2.69)
it holds
Io)(E+m) =0, T} —m)=0. (2.70)

Then we can proceed by induction to prove the identity, let us assume that it holds for n > 1
and let us prove it for n + 1, the relevant fusion identities reads:

TOE+mTE(E) =T (EITE(E, + 1)

+ TOEEN TP, + ), (2.71)
and
T (Ea—mTE(EQ) = T O —m) Ty ()
+ T((f_)l)(ga - n)T((fjl)(ga)a (272)
which being:
ZP) ocd(A—n), Z(A) o< d(A+1), 2.73)
read:
TOE, +mTE(E) =T (EITE(E, +m), (2.74)
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and
(x) (K) x) (x)
T(n) (ga - ’f))T(n) (ga) T(n 1)(5(1 - n)T(n+1)(€a)a (2.75)
which lead to our identities for n + 1 once we use the induction hypothesis for n
T{9(€,) = TYOUEITE (Eq +m), (2.76)
T = TOEITE (=), 2.77)
O

The known central zeros and asymptotic imply that the interpolation formula in the N
special points defined by the fusion equations to write T(K)(E ¢) and T(K)(£ <) completely char-
acterize these transfer matrices. Let us introduce the functions

N N m—1

A=¢E
(MY — b ) _
fmoy= 1] — [HT]— - (r), £ =¢g,—rn, (2.78)
b#a,b=1 b=1r=1 Sa
N A — g N m—1
s"w=T1 e=211l—= o 2.79)
b#a,b=1 S b=1r=1 Sa — &},
and
N
TON=TE, [ |08, TH M =T%, ]_[(A £b), (2.80)
b=1
then the following corollary holds:
Corollary 2.1. Under the following conditions on the inhomogeneity parameters &;
Va,be{1,...N},a#b, &,#&, modn, (2.81)

the transfer matrix T! +)1(7L) and T(( (A) are completely characterized in terms of T( )(k) by
the fusion equations and the followmg mterpolatlon formulae:

N
T () = ﬂ d(A+rn) [ T )+ Zf;"“)mm“(aa + n)Tf“(aa)], (2.82)
&) () = ﬂ d(A—rn) [ T ey + Z grITEE — n)TfK)(aa)} . (283)

2.4 SoV covector basis for gl ;| , Yang-Baxter superalgebra

In the next section, we construct a separation of variables basis for the integrable quantum
model associated to the fundamental representations of the gl | -graded Yang-Baxter alge-
bra. The construction follows the general ideas presented in the Proposition 2.4 of [1].

As in the non-graded case, the proof relies mainly on the reduction of the R matrix to
the permutation at a particular point, and on the centrality of the asymptotics of the transfer
matrix.

Let K be a (A +N) x (M + A) square matrix solution of the gl _, ,-graded Yang-Baxter
equation of the block form (2.36), then we use the following notation

K = WxK;Wet, (2.84)
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where K is the Jordan form of the matrix K

(K O
K;= ( 0 K ) (2.85)
where for & = # or N
(1)
Ki% 0 -+ 0
2 -
0 K .. 0
KJ,% == % 5 (2.86)
0 .
o 0 - K

and K}l;f is a d; o- X d; o upper triangular Jordan block for any i in {1, ..., m4 } with eigenvalue
ki o, where Z?fl d, o = Z. Moreover, it is interesting to point out that the invertible matrix
Wy defining the change of basis for the twist matrix is itself a (.# + A") x (A4 + A) square
matrix solution of the gl 4 4-graded Yang-Baxter equation. Indeed, it is of the same block

form (2.36):
_( Wk O
= e 0 ). oo
Then, the following similarity relation holds for the fundamental transfer matrices:
TfK)(A) = WK T]FKJ)(A)WK_]', with ’WK = WK,N ®---® WK,]’ (2.88)
i.e. they are isospectral. We can now state our main result on the form of the SoV basis:

Theorem 2.1. Let K be a (A + N) x (M + N) square matrix with simple spectrum of block
form (2.36), i.e. we assume that:

ki,% ;é kj,%'/ fOT' (l,%) ;é (], %/) V(l,]) S {1, ceey m%}x {1, ceey m%/}, %, %/ € {-%, ;/V}, (2.89)

then for almost any choice of the covector (S| and of the inhomogeneities under the condition
(2.81), the following set of covectors:

N
hﬂ
(ool = S [(TEOED)™ for any {h, .oy} €40, ooyl + 4 — 11N, (2.90)
n=1

forms a covector basis of 7. In particular, let us take a one-site state |S,a) = Sl.(a) i), Sl.(a) eC.
Its dual covector in the single space V, is (S,a| = |S,a)" = Sl.(a)* (il. When acting on it by the W,
isomorphism, it is noted in coordinates

(@ @ Yol (L 1) (my) ()
(S, alwlt = (5,89 Jwil = (xl,/ﬂ,...,xdl’/ﬂ,...,xl,j ,...,xdm;”ﬂ) evr. (2.91)

Following (2.19), we have (S| =(|S,1)...|S,N)) as

MAN

N .
(sl=" >, s s (p). . Ipy))'. (2.92)
pl,...,pN=1
Then, it is sufficient that
m_yg m
k k

[ 19, T T3, #o, (2.93)
k=1 k=1

for the family of covectors (2.90) to form a basis. Furthermore, the Tl(K)(A) transfer matrix
spectrum is simple.
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Proof. As in the non graded case, the identity:

Tl(K)(gn) = Rn,n—l(gn - gn—l) o 'Rn,l(gn - gl)Kan,N(gn - gN) e 'Rn,n+1(£n - £n+1)’ (2.94)

holds true as a direct consequence of the definition of the transfer matrix TI(K)()L) and the
properties
Ry n(0) =Py, stry P, =1. (2.95)

From this point we can essentially follow the proof of Proposition 2.4 of [1]. Indeed, the
condition that the set (2.90) form a covector basis of 5# is equivalent to

det(+.4 12 ((SI,K,{EN | # 0, (2.96)

where we have defined:
R ((SL,KAED: ; = (i (D), ..., hy(Dlej), Vi, j € {1, ..., (A + NN}, (2.97)

We are uniquely enumerating the N-tuple (h;(i), ..., in(i)) € {0, ..., 4 + N —1}*N by:

N
1+ > (D) + AV =i e {1, ., (il + 4, (2.98)

a=1

and for any j € {1,...,(# + AN}, le;) = lerin,(hH(1) ® ... ® lerinyj(N)) € H is the
corresponding element of the canonical basis in 5#, where |e,.(a)) stands for the element
re{1,.., .4 + A} of the canonical basis in the local quantum space V,. Now, being the
transfer matrix Tl(K)(A) a polynomial in the inhomogeneities {&;} and in the parameters of
the twist matrix K, the same statement holds true for the determinant on the Lh.s. of (2.96),
which is moreover a polynomial in the coefficients (S|e;) of the covector (S|.

Then it follows that the condition (2.96) holds true for almost any value of these parameters
if one can show it under the special limit of large inhomogeneities. Using this argument,
the form of the transfer matrix in the inhomogeneities (2.94) and the central asymptotics
of the gl 4 4-graded R-matrix one can show that a sufficient criterion is that the following
determinant is non-zero:

hi(i hy (i
dete ol ((SIKD - kIOl )) I £ 0. (2.99)

i,je{1,...,( A+ AN}

Let us compute this matrix element precisely: from (2.92), it decomposes as the following sum

hy(i hy (i
(sIKPO KN e;) = (2.100)
Aol NORETNG!
> s s p ) TR K e, (1) - leriny gy (VD) -
P15--PN=1

Now, the Ksa(l) being even, the matrix element factorizes by (2.21) as a product over the one
site matrix elements

R
Ip1 ---PN)rKll(l)---KNN(I) €14, (/H(1)) - -+ le1sny(Hy(N))
hi(i hn(@
= (011K Dley i,y (D) - (oI KNP ey 1 (y(ND) . (2.101)

Therefore the sum over p,,...,pNy decouples as a product of N sums, and identifying
(S,a|l = S}(f‘)* (pq4| in the expression leaves us with

hy(i hn(i i i
(SIKPO KN e;) = (5, 11K D ey () (D). AS,NIKIND ey (N)). (2.102)
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Hence, the determinant factorizes and the criterion amounts to

N
[ Tdet v sl (8, alkE e (@), s, army 1 20 (2.103)
a=1
Finally, by Proposition 2.2 of [1], it holds for the factor corresponding to site n in the above
product

m_g

( @ ) 0t l_[( @) awrﬂlﬁ(ka’/ﬂ_kbw)dwdb,ﬂ

a=1 a=1b=1

x |1 (ew=koa)™ ™ ] (ko—ko)™ ", @109

1<a<b<m, 1<a<b<my

which is clearly nonzero under the condition that the twist K has simple spectrum and that
(2.93) holds. The simplicity of the transfer matrix spectrum is then a trivial consequence
of the fact that the set of covectors (2.90) is proven to be a basis. Indeed, it implies that
given a generic eigenvalue t(A) of Tl(K)(A), the associated eigenvector |t) is unique, being
characterized uniquely (up to normalization) by the eigenvalue as

N
(hy,oplt) = [ [eh(E0), V(hy,hy) €40, sttt + 4 — 1PN (2.105)

O
Remark 2.2. Note that (S| # (S, 1]...(S,N]|.

The norm of |S) is (S|S) ]_[ a=1 Z/ﬂw‘/ |S;|? and can be set to convenience. In particular,
it may be taken to one.

Let us observe that some stronger statement can be done about the transfer matrix diago-
nalizability and spectrum simplicity according to the following

Proposition 2.1. Let the twist matrix K be diagonalizable and with simple spectrum on C#¥
then Tl(K)(A) is diagonalizable and with simple spectrum, for almost any values of the inhomo-
geneities satisfying the condition (2.81). Indeed, taken the generic eigenvalue t(A) of Tl(K)(A) it
holds:

(t|t) #0, (2.106)

where |t) and (t| are the unique eigenvector and eigencovector associated to it.

Proof. Following the proof of Proposition 2.5 of [1] the non-orthogonality condition (2.106)
can be derived. Such condition together with the simplicity of the spectrum implies that we
cannot have non-trivial Jordan blocks in the transfer matrix spectrum so that it must be diag-
onalizable and with simple spectrum. O

2.5 On closure relations and SoV spectrum characterization

In the previous two subsections, we have shown how the transfer matrix TI(K)(A) associated to
general inhomogeneous representations of the gl 4| ,-graded Yang-Baxter algebra allows to
reconstruct all the fused transfer matrices (mainly by using the known fusion relations (2.65)
and (2.66)). Moreover, we have shown that T 1(K)(7L) allows to characterize an SoV basis,
which also implies its spectrum simplicity or diagonalizability and spectrum simplicity if the
twist matrix K is, respectively, with simple spectrum or diagonalizable with simple spectrum.
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This analysis shows that the full integrable structure of the gl 4 ,-graded Yang-Baxter
algebra can be recast in its fundamental transfer matrix as well as the construction of quantum
separation of variables. However, there is still one missing information, which is a functional
equation, or a discrete system of equations, allowing the complete characterization of the
transfer matrix spectrum. As already mentioned, the fusion relations (2.51) alone only give
the characterization of higher transfer matrices in terms of the first one. Some further algebra
and representation dependent rules are required in order to complete them and extract a
closure relation on the transfer matrix.

In the case of the quantum integrable models associated to the fundamental representa-
tions of the gl , and Uq(g/l;) Yang-Baxter and reflection algebras, such a closure relation
comes from the quantum determinant [1,45,46,159-161]. Indeed, P ,isa rank 1 projec-

tor in these cases, implying that the corresponding transfer matrix T((fﬂ))(l) becomes a com-
putable central element of the Yang-Baxter algebra, namely the quantum determinant. Then,
substituting the quantum determinant in the fusion equation (2.65) for n = .# — 1 and using
the same interpolation formulae for the higher fused transfer matrix eigenvalues, we pro-
duce a discrete system of polynomial equations with N equations in N unknowns which was
proven [1,45,46,159-161] to completely characterize the transfer matrix spectrum in quan-
tum separation of variables. In the case of non-fundamental representations'® of the same
algebras the closure relation comes instead with the appearing of the first central zeros in the
fused transfer matrices of type T,SK)(A). In [162], this analysis has been developed in detail
in the case of .# = 2. There, it has been shown that imposing the central zeros of the fused
transfer matrix Tg?l(k), for a spins > 1 representation, a discrete system of polynomial equa-
tions with N equations in N unknowns is derived for the transfer matrix eigenvalues. The set
of its solutions completely characterizes the transfer matrix spectrum in quantum separation
of variables. In the nonfundamental and cyclic representations of the U, (@) Yang-Baxter
algebra for q a root of unity such closure relation comes from the so-called truncation identi-
ties. For .# = 2, it has been shown in [40] how these identities emerge and are proven in the
framework of the quantum separation of variables and how they are used to completely char-
acterize the transfer matrix spectrum. In [44] and [59, 60] these results have been extended,
respectively, to the most general cyclic representations of the Uq(gl\z) Yang-Baxter algebra and
reflection algebra.

In the case of integrable quantum lattice models associated to the fundamental repre-
sentations of the gl ,| 4-graded Yang-Baxter algebra, the natural candidate for the closure
relation is the inner-boundary condition (2.54). Indeed, once we impose it on the eigenvalues
t%ﬂ)’(m(k) and t%)l’(K)(k) of the transfer matrices TﬁVJﬂ+1)’(K)(A) and Tﬁvﬁ)l’(K)(k), we are
left with one nontrivial functional equation containing as unknowns the eigenvalues of the first

transfer matrix computed in the inhomogeneities th)(E i<n)- This is the case as the eigenvalues
t%ﬂ)’(m(k) and t%)l’(K)(A) admit the same expansion in terms of the transfer matrix eigen-

value th)(A) as those derived in subsection 2.3 for the transfer matrices Tﬁv/ﬂ+1)’(K)(A) and
T ﬁzi)l’(m()t) in terms of the transfer matrix Tl(K)(A). Moreover, the inner-boundary condition
(2.54) involved the quantum Berezinian as a central element hence playing a role similar to
the quantum determinant in the bosonic case. More precisely, we can introduce the following

polynomials:

N
(A ) = TS )+~ FD)x,, (2.107)
a=1

3Here q is not a root of unity for the quantum group case.
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and from them recursively the following higher polynomials

n N
tan(Ax D =] Jda+rn) [Tg’.f?nﬂ(x) + D LD (E, + n|{xa})xa] ., (2.108)
r=1 a=1

n N
tryAHx D =] [d(a—rn) [Ti’j}(nﬂ)(x) + > g D)t (8, — nl{xa})xa:| , (2.109)
r=1 a=1

and
(a) _ .
0 xY) = det by (= (= Dnl{x,) (2.110)
= et A+ Dnllx). (2.111)

Then the following lemma holds

Lemma 2.2. Any transfer matrix Tl(K)(A) eigenvalue'* admits the representation t;(A|{x,}),
where the {x,} are solutions of the inner-boundary condition (2.54):

(=1 Ber( VA + nl{xg)) = ¢ (Mixa)), Vrec, (2.112)

and of the null out-boundary conditions (2.53):

(S (A{x)) =0, YA€Candn,m>1. (2.113)

In the next section, we conjecture that the above system of functional equations completely
characterizes the transfer matrix spectrum in the case of the gl;,-graded Yang-Baxter algebra.
We prove this characterization for some special class of twist matrices while we only give some
first motivations of it for general representations. In appendix B we verify it for quantum chains
with two and three sites. Let us also mention that this conjecture can be checked explicitly for
the simple gl;}; case. It would be interesting in this respect to elucidate the relation of our
method with the one developed recently in [204].

3 On SoV spectrum description of gl,, Yang-Baxter superalgebra

Specialising to the gly|, case, some results have already been obtained in the context of the
NABA, see [136,205] for instance.

3.1 General statements and conjectured closure relation for general integrable
twist

We use this subsection to clarify and justify the following conjecture

Conjecture 3.1. Taken the general gly|,-graded Yang-Baxter algebra with twisted boundary con-

ditions, the polynomial t,(A|{x,}) defined above is an eigenvalue of the transfer matrix TI(K)(A)
(excluding the trivial solution x; = ... = xy = 0) iff the higher polynomials associated to it
satisfy, in addition to the fusion relations, the inner-boundary condition (2.112) and the null
out-boundary conditions (2.113) for # =1 and A = 2.

The fat hook domain for gl;, is pictured in figure 3. In the gl;|,-graded case under con-

4The trivial solution {x, ..., x5} = {0, ..., 0} has to be excluded for invertible twist matrix.
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Figure 3: Admissible domain for Young Diagrams of gly,.

sideration the inner-boundary condition (2.54) reads:
T2 OO+ mky = kokad(W) TO), (3.1)

where:
detK./ﬂzl = K//lZ] = kl and detKJyZZ = kzkg. (32)
Moreover, we have the following expressions'® for the asymptotics of the fused transfer ma-

trices
TS = ki (ki —kg)(ky —kp), Yn>2. (3.3)

Then imposing it for the corresponding eigenvalues we get
kskod(M)t3(A) = ke t2(A + 1), (3.4)
which, once we express the eigenvalues tgz)(k + n) by the use of the fusion relation (2.51):
tP A+ 1) = (At (A+ 1) — 61X+ )5 (A), (3.5)
takes the following closure relation form:
kskad(A)t3(A) = ky (62()t2(A + 1) — t3(A)t1(A + ). (3.6)

Now, using the interpolation formulae (2.107) and (2.108) for the transfer matrix eigenvalues,
we get that the closure relation is indeed a functional equation whose unknowns coincide with
the x;<y = th)(i i<n)- The transfer matrix eigenvalues have to satisfy furthermore the null
out-boundary conditions (2.53), which reads:

t2™M(A)=0, YAeCandn,m>0, (3.7)

3+m

in the gl;,-graded case under consideration.

According to our Conjecture the transfer matrix spectrum coincides with the set of solu-
tions to the functional equations (3.6) and (3.7) in the unknowns th)(g i<n)- This spectrum
characterization for general twist matrix will be proven by direct action of the transfer matri-
ces on our SoV basis in our next publication. Here we present some arguments in favour of it
while in the next subsections 3.2 we prove it for a special choice of the twist matrix.

Let us consider the case of a twist matrix K invertible with simple spectrum'®, then our
SoV basis can be written as follows:

N
— /G K h N
(e, ool = @I J(1OE D) for any {hy, ... by} € {1,2,3PN, (3.8)
n=1
15They can be computed for example by induction starting from the explicit formulae for T(()f?l and Tg’)z, by

using the fusion equations and the null out-boundary conditions.
16Indeed, the case of K non-invertible but having simple spectrum of the form (3.12) will be described in detail
in the next subsection.
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indeed in this case the transfer matrices Tl(K)(E ) are invertible!” and so we can write our
original vector (S| as it follows:

N
(sl= I [ (3.9)
n=1

If the t1(&;<N) solve the closure relation (3.6) and the null out-boundary conditions (3.7),
to prove that a vector |t) characterized by

N
(ool =] 68 ViR, oy} € {1,2,31N, (3.10)
n=1
is indeed a transfer matrix eigenvector, the main point is to be able to reduce the covectors
containing a fourth order power of Tl(K)(£ ) in those of the SoV basis, of maximal order three.
Moreover, this reduction must come from relations which are satisfied identically by both the
fused transfer matrices and the functions t.(A|{x,}) defined in (2.108), in terms of the given
solution t;(&;<y). Indeed, this is exactly what it is done by the closure relation for the transfer

matrix:
kskod(MTIIA) = k(TS T+ 1) =TT + 1)), (3.11)

and by the corresponding one (3.6) for the eigenvalues. As one can easily remark that (3.11)
and (3.6) are both of fourth order, respectively, in the Tl(K)(§ ») and t;(&,,) on the right hand
side while they are both of third order on the left hand side.

In appendix A, we will verify that Nested Algebraic and Analytic Bethe Ansatz are indeed
compatible with these requirements, i.e. the functional ansatz for the eigenvalues t;(A) in-
deed satisfies the closure relation (3.6) and the null out-boundary conditions (3.7). There, we
moreover argue the completeness of the Bethe Ansatz which is compatible with our Conjecture.

It is also worth to mention that we have verified our Conjecture on small lattices, up to three
sites. More in detail, we have solved the discrete system of N equations in the N unknowns
th)(g i<N) obtained particularizing (3.6) in N distinct values of A. Among these solutions we
have selected the solutions verifying the null out-boundary conditions (3.7) for n = m = 0.
This has produced exactly 3N distinct solutions which are proven to coincide with Tl(K)(A)
transfer matrix eigenvalues computed by direct diagonalization, see appendix B.

3.2 SoV spectrum characterization for non-invertible and simple spectrum twist
matrix

Let us study here the spectral problem for the transfer matrices associated to the fundamental
representations of the gl;,-graded Yang-Baxter algebra in the following class of non-invertible
but having simple spectrum K twist matrices:

R’:(kl:o O) ) (3.12)
0 Ky 3x3

with K, any invertible, diagonalizable and simple 2 x 2 matrix, i.e. it holds:
ko # ks, k; #£0,1=2,3. (3.13)

Despite K having a zero eigenvalue, the results of subsection 2.4 imply that the set of cov-
ectors (2.90) still forms a covector basis of 5#. Moreover, these are non-trivial fundamental

7The reconstruction of local operators, pioneered in [87,88], implies that the twisted transfer matrix computed
in the inhomogeneities coincides with the local matrix K at the site n dressed by the product of shift operators
along the chain. So, they are invertible as all these operators are invertible.
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representations of the gl;,-graded Yang-Baxter algebra for which our Conjecture is verified,
as shown in the following:

Theorem 3.1. For almost any values of the inhomogeneities {&,<N} satisfying the condition

(2.81) and the twist matrix eigenvalues satisfying (3.13), the eigenvalue spectrum of Tl(fq(k)
coincides with the following set of polynomials

N N
S = {tlm t (W) =—(ko+ka) [ J[A—E)+ D P Mx,, Vixy, ooy} € sm} :
a=1

a=1
(3.14)
where S is the set of solutions to the following system of N cubic equations:
N
Xq [kzksd(éa )+ D fO(E + (& +n)x, | =0, Yae{l,...,N}, (3.15)
r=1

in N unknown {x, ..., xy}. Moreover, Tl(K)(A) is diagonalizable and with simple spectrum. For
any t1(A) € L ), the associated and unique eigenvector |t) (up-to normalization) has the fol-
lowing wave-functions in our SoV covector basis:

N
(hy, o hle) = [ 61w, (3.16)
n=1

Proof. The main identity to be pointed out here is the following one:
M) =0, (3.17)

due to the closure relation (3.11) being k; = 0. So that the fusion equations (2.66) forn =1
and n = 2 read:

) = 1OEITOE, +1), (3.18)
0 = TOEITEE, +). (3.19)

Now it is easy to verify that the system of equations (3.15) just coincides with the above fusion
conditions once imposed to functions which have the analytic properties (polynomial form and
asymptotics) of eigenvalues. So that it is clear that any eigenvalue has to satisfy them and one
is left with the proof of the reverse statement. This proof can be done just showing that the
state |t) of the form (3.16) is indeed an eigenvector of the transfer matrix, i.e. that it holds:

(hy, s AN TR E) = £ (M) (B, o ), (3.20)

by direct action of the transfer matrix TI(K)(A) on the SoV basis. The steps of the proof are
indeed completely similar to those described in the proof of Theorem 5.1 of [1]. )
Finally, let us point out that Proposition 2.1 implies also that the transfer matrix Tl(K)(A)
is diagonalizable and with simple spectrum for general values of the inhomogeneities param-
eters. O

Remark 3.1. It is important to point out that the above theorem proves the validity of our Con-
jecture for the representations considered here, as the system of equations (3.15) is equivalent
to the conjectured characterization given by the functional equations (3.6) and (3.7) in the un-
knowns th)(g i<N)- Indeed, the system of equations (3.15) is just equivalent to the functional
equation

(A€ N =0, (3.21)
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which coincides with the closure relation (3.6) for the k; = 0 case under consideration. Then it
is easy to verify that the null out-boundary conditions (3.7) are also verified. Note for example
that the condition (3.21) together with the interpolation formula (2.108) for k; = 0 implies:

L AHEOE ) =0, Vn=>3, (3.22)

so that the interpolation formula (2.110) implies:

PO D) = (A — O E N A€ an))) — s =1 (O (E )}

x t(A{(E D) (3.23)
=0, (3.24)

i.e. the null out-boundary conditions (3.7) for n = m = 0 and similarly for the others.

Remark 3.2. Let us comment that a different proof of the above theorem can be given by
using the fact that the transfer matrix T 1(K)(7L) is diagonalizable with simple spectrum. This
in particular means that this transfer matrix admits 3\ distinct eigenvalues anyone being a
solution of the system (3.15) of N polynomial equations of order three in N unknowns. The
Theorem of Bézout'® states that the above system of polynomial equations admits 3N solutions
if the N polynomials, defining the system, have no common components.'® So, under the
condition of no common components, there are indeed exactly 3N distinct solutions to the
above system and each one is uniquely associated to a transfer matrix eigenvalue. The proof
of the condition of no common components can be done following exactly the same steps
presented in appendix B of [160].

Remark 3.3. The fact that TBEK)(A) is ideritically zero in these representations associated to non-
invertible simple spectrum twist matrix K means, in particular, that it is central so that the alge-
bra shows some strong resemblance to the twisted representations of the gl Yang-Baxter alge-
bra. In fact, taking the gl;-representation associated to the twist matrix K’ = —K and ' = —,

then the SoV characterization of the spectrum implies that the transfer matrix T(lK)(JLIn), asso-
ciated to the gl;p-representation, is isospectral to the transfer Arnatrix Tl(_K)(M —mn), associated
to the gls-representation. In the same way, we have that TZ(K)(MT;), associated to the gly,-

representation, is isospectral to T((z_)K)(}\l — 1), associated to the gl;-representation.

It is worth remarking that the same type of duality indeed holds between the gl; 4 -graded
and the gl 4,1 non-graded Yang-Baxter algebra when associated to the non-invertible but sim-
ple (A + 1) x (A + 1) twist matrix K with first eigenvalue zero. More in detail, we have
the isospectrality of the transfer matrices T,g()(AIn), associated to the gly) -representation,
with the transfer matrices T((T;f )(Al — 1), associated to the gl ,,-representation, for any
1 < m < 4. This in particular implies that we can characterize completely as well the spec-
trum of the transfer matrices of the gl; ,-graded Yang-Baxter algebra for this special class of
twist matrices just using the results of [159]. Then the results of the next two subsections can
be as well generalized to these special classes of gl ,-graded Yang-Baxter algebras.

3.2.1 The quantum spectral curve equation for non-invertible twist

The transfer matrix spectrum in our SoV basis is equivalent to the quantum spectral curve?®

functional reformulation as stated in the next theorem.

18See for example William Fulton (1974). Algebraic Curves. Mathematics Lecture Note Series. W.A. Benjamin.

Indeed, if there are common components the system admits instead an infinite number of solutions.

20To our knowledge, the quantum spectral curve terminology has been introduced by Sklyanin, see for example
[25]. It comes natural as the transfer matrices can be seen as the quantum counterpart of the spectral invariants of
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Theorem 3.2. Under the same conditions of the previous theorem, then an entire function t;(A)

isa Tl(K)(A) transfer matrix eigenvalue iff. there exists a unique polynomial:

M
e =] [(A=v)) withM <N and v, # &, V(a,n) € {1,...M} x {1,..,N},  (3.25)

a=1

such that t1(A), ta(Al{t1(E.<n)}) and ¢ (A) are solutions of the following quantum spectral
curve functional equation:

e (A=mt2(A—n) +a(Q)p (A)t1(A) + (M) ¢ (A +1) =0, (3.26)
where we have defined

N
a()=-a| [A—2n-&.), B =a(Ma(r+n), (3.27)

a=1

and @ is a nonzero solution of the characteristic equation:

=) _ 20K | =30
aTo,,—a"Toy ) + @l =0, (3.28)
ie. @ = —k, or @ = —ky is a nongero eigenvalue of the twist matrix —K. Moreover, up to a

normalization, the common transfer matrix eigenvector |t) admits the following separate repre-

sentation:>!

N
(hy, oo bylt) = [ [ (G0 +m)ere(Ea + el (). (3.29)
a=1

Proof. From the above Remark 3.3, we have that this theorem is a direct consequence of the
Theorem 5.2 of [1]. To make the comparison easier, one has just to take the quantum spectral
curve characterization of Theorem 4.1 of [159] and use it in the case n = 3, K — —K, 1 — —1)
to get the quantum spectral curve associated to the non-invertible simple spectrum twist K.

Here, t1(A) is the eigenvalue associated to the gl;,-transfer matrix T(lm(lln), isospectral to
the gls-transfer matrix T(l_K)(Al —n), and t5(A|{t1(E,<n)}) is the eigenvalue of the glq|o-

transfer matrix TZ(K)(Aln), isospectral to the gl;-transfer matrix T((Z_)K)()Ll — ). Then, just
removing the common zeros, in the three nonzero terms of the equation and making the com-
mon shift A — A —2n, we get our quantum spectral curve equation (3.26). Let us recall that

the main elements in the proof of the theorem rely on the fact that the quantum spectral curve

the monodromy matrix. In fact, in [25], these are operatorial functional equations involving just one Q-operator,
the canonical operators (i.e. the separate variable operators) and the exponential of their canonical conjugated
operators (i.e. the shift operators) and the quantum spectral invariants of the monodromy matrix. In general, we
write the quantum spectral curve in its coordinate form, i.e. our quantum spectral curve can be seen as the matrix
element of the Sklyanin’s one between a transfer matrix eigenstate and an SoV basis element, when Sklyanin’s SoV
applies, otherwise our results generalize Sklyanin’s ones. However, in general, the fact that we can prove that the
transfer matrix has simple spectrum and it is diagonalizable allows us to rewrite these quantum spectral curves at
the operator level.

ZINote that (3.29) can be seen as a rewriting of the transfer matrix eigen-wavefunctions in terms of the eigenval-
ues of a Q-operator. In fact, for k; = 0, the equation (3.54) and (3.58) imply that the functions ¢,(A) are strictly
related to the eigenvalues of the operator Q,(A). Similarly for k; 7 0, by using the NABA expression (3.45) and the
original SoV representation of the transfer matrix eigen-wavefunctions (3.16), one can argue that (3.29) should
be true with & = k; and ¢,(A) coinciding with the eigenvalues of the operator Q;(A).
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is equivalent to the following 3N conditions:

a(g, + n)% =t,(&,), forA=¢&,, Yae{l,...,N}, (3.30)
a(E, + n)%s(";)”) - tlzgfi)n), for A =&, +m, Yae{1,..,N}, (3.31)
Q&g+ Mta(Eg+m) =0, forA=&,+2n, Vae{l,..., N}, (3.32)

once the asymptotics are fixed as stated above in this theorem. It is then easy to observe
that the compatibility of this system of equations is equivalent to impose that t;(1) and
to(Al{t1(E,<n)}) satisfy the fusion equations:

t1(€)t1(Eq + 1) = 12(&q), Vae{l,..,N}, (3.33)
t1(€)t2(Eq +m) =0, Vae{l,..,N} (339

Here, the equation (3.33) is derived as compatibility conditions of (3.30) and (3.31). While,
being

alEa+m #0, ¢,(E)#0Vaedl,..,N}, (3.35)
the equation (3.34) is derived from (3.32) multiplying both sides of it for the finite nonzero
ratio a(&, + 1)/ (&,) and by using (3.30). O

3.2.2 Completeness of Bethe Ansatz solutions by SoV for non-invertible twist

As detailed in the introduction, Nested Algebraic and Analytic Bethe Ansatz have been used to
study the spectrum of the model associated to the fundamental representation of the gl ;| 4
Yang-Baxter superalgebra. For the fundamental representation of the gl;|, Yang-Baxter super-
algebra associated to a simple and diagonalizable twist matrix K, let us recall here the form of
the Bethe Ansatz equations [3,134-136]:

k1Q2(2)a(A;) = kad(2;)Q2(A; + 1), (3.36)
kaQa(uj +mQ1(uj — 1) = —ksQa(u; —mQ1(u)), (3.37)
where . y
=] Ja-1), QW =]]xr—up (3.38)
=1 m=1

and the Bethe Ansatz form of the transfer matrix eigenvalue

t1(A{A <} {unam D) = A1 (A) — Ay (A) — As(R), (3.39)
defined by
A —
M) = al(x)%, (3.40)
_ Q1(A—1)Qy(A+1n)
Ay(A) = ay(A) OO (3.41)
A —
A3(A) = as(k)%, (3.42)
where
a;(A) = kya(Q), (3.43)
) _ &) _ ), (3.4
ks ks
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It is worth to observe that being

Q:(A—n)
t1(AH{A < b it D) = kla(/l)lQTx)n —d(A) (kz

Q1 (A —1)Q2(A+1n) Tk Qz(k—ﬂ))

Q1 (M)Qy(X) Q)
(3.45)

under the following pair-wise distinct conditions

AL F Ay Wy F Ugs Pg F Am, VIFEmME{L,...,L}, p#q€{L,...,M}, (3.46)

it follows that the function t;(A[{2A;<;}, {ur<y}) has only apparent simple poles in the A</
and up<y - The regularity of t1(A[{A;<}, {un<m}) for A = A<, is implied by the Bethe equa-
tion (3.36) while the regularity of t1(A|{A;<. }, {up<m}) for A = u;<y is implied by the Bethe
equation (3.37). Hence?? t1(A{A;<}, {un<m}) is @ polynomial of degree N with the correct
asymptotic for a transfer matrix eigenvalue, i.e. it holds:

Jim 27N (A <1} nen}) = ko — (ky + k). (3.47)

So that the above ansatz is indeed consistent with the analytic properties enjoyed by the trans-
fer matrix eigenvalues. Now, we show that the Bethe ansatz solutions are complete as a corol-
lary of the completeness of the derived quantum spectral curve in the SoV framework, for the
class of representations considered in this section. More precisely it holds the next

Corollary 3.1. Let us consider the class of fundamental representations of the gly,-graded Yang-
Baxter algebra associated to non-invertible but simple spectrum K twist matrices, with eigenvalues
satisfying (3.13). Then, for almost any values of the inhomogeneities, t;(A) is an eigenvalue of

the transfer matrix T(lK)(AIn) iff. there exists a solution {{A;<;},{ur<y}} to the Bethe Ansatz
equations (3.36) and (3.37) such that t1(A) = t1(A{Aj<.}, {un<m}), ie. t1(A) has the Bethe
Ansatz form (3.45) associated to the solutions {A;<;}, {up<m}. Moreover, for any t1(A) € Ty
the associated Bethe Ansatz solution {{A;<;}, {un<m}} is unique and satisfies the admissibility
conditions:

{Aj<i} <&ty {unem} N{E U {E an + 0} = 0. (3.48)

Proof. This corollary directly follows from our previous theorem. The proof is done pointing
out the consequences of the special form of the fusion equations for these representations
associated to these non-invertible twists. In particular, from the fusion equations (3.33) and
(3.34), which have to be satisfied by all the transfer matrix eigenvalues, we derive the following
equation on the second transfer matrix eigenvalues only:

(P )P, +m)=o. (3.49)

Being by definition tgf()(l) a degree 2N polynomial in A, zero in the points £, — 7 for any
a €{1,...,,N}, it follows that a solution to (3.49) can be obtained iff for any a € {1, ..., N} there
exists a unique h, € {—1, 0} such that:

) N
(o0 (M) = koks | J(A— &, +m)(2— g0, (3.50)

a=1

So we have that the system (3.49) has exactly 2N distinct solutions associated to the 2N dis-
tinct N-uplet h = {h;<,<N} in {—1,0}N. Now for any fixed h € {—1,0}N we can define a
permutation 7, € Sy and a non-negative integer my, < N such that:

hp (=0, Yae{l,..,my} and h o)=-1, Ya€{m,+1,..,N} (3.51)

*2One should also ask for some condition like {u,<y} N{E;<n} = @ from which the Bethe equation (3.36) implies
{An<r} N{E;<n} =0 unless k, = 0.

28



Scil SciPost Phys. 9, 060 (2020)

It is easy to remark now that fixed h € {—1,0}N then (3.33), for a € {1, ...,my,}, and (3.34) are
satisfied iff it holds:

(K)(gﬂh(a)) 0, Yae{l,...my}. (3.52)

Indeed, if this is not the case for a given b € {1, ..., my }, then (3.34) implies t (5 Py ) +n) =

which is not compatible with our choice of t(K)(A) So, for any fixed h € {O,—l}N, we have
that the eigenvalues of the transfer matrix have the following form:

M,
(O =D [ =€), (3.53)
a=1

where t (A) is a degree N —my, polynomlal in A, and the function ¢, (1) associated by the

quantum spectral curve to the eigenvalue t (A) has the form:

L) =@M [A =&y — 1), (3.54)

a=1

where ¢, ,(4) is of degree M—my, < M polynomial in A. Then, simplifying common prefactors,
the quantum spectral curve rewrite as it follows:

_(R _ - _ koks - _
DaPa() = adpA—mGend+ 1)+ Z2d(Men(A =), (355
where we have defined: \
d)= [] A—&nw) (3.56)
a=mp+1
So, once we chose a@ = —k,, we get the following representation of the transfer matrix eigen-
value:
ky dp(A — A+1n)+kydy(A A—
(K)(M _ l—[()L £ ) 2 dh(A = 1)@ n(A +n) + kadn(A) P n( n) (3.57)

P, n(A)

It is now trivial to verify that this coincides with the Bethe ansatz form (3.45) for k; = 0, once

we fix:
NE9)

(K)
( “‘)(A) = dy(M), Q( “‘)(A) = G, n(A). (3.58)

(0 (0
Clearly by definition Qg 1’h)()t) and Qg 1’h)()t) are solutions of the Bethe Ansatz equations
(3.36) and (3.37) and their roots satisfy the conditions (3.48). O

Remark 3.4. Tt is worth to point out that the above set of Bethe Ansatz solutions indeed satisfies
also the pair-wise distinct conditions (3.46). Indeed, from the proof of the previous corollary,
we know that for any fixed h € {—1,0}N, there are 2N~™ eigenvalues of the transfer matrix
of the form (3.57) associated to as many polynomials ¢, ,(A) of degree M < N—my, in A. For
any fixed h € {—1,0}N, these are solutions to (3.37) which coincide with the system of Bethe
Ansatz equations associated to an inhomogeneous XXX spin 1/2 quantum chain with N —my,
quantum sites, with inhomogeneities £ ; () for a € {my,+1, ..., N} and parameter —7. Then, to
these Bethe Ansatz solutions apply the results of the paper [248] which implies the pair-wise
distinct conditions

up # g, Y p#qed{l,..,M}, (3.59)

which together with the already proven (3.48) imply in particular (3.46).
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4 Separation of variables basis for inhomogeneous Hubbard
model

4.1 The inhomogeneous Hubbard model

The 141 dimensional Hubbard model is integrable in the quantum inverse scattering approach
with respect to the Shastry’s R-matrix, which contains as a special case the Lax operator of the
Hubbard model [120-122]. In order to introduce them let us start defining the following
functions:

h(A,n) :sinh2h(A, 1) = % sin2A, A(A) = —icotg(2A) cosh(2h(A,n)), 4.1)

here, we use the notation ) = —2iU with the parameter U, the coupling of the Hubbard model,
as it plays a similar role as the parameter 7) in the XXX model from the point of view of the
Bethe equations. In the following we omit the 1 dependence in h(A,n) if not required. Then
the Shastry’s R-matrix reads:

Ryp34(Alu) = 112(h(l))-’34(h(ﬂ))ﬁ12,34(l|H)I12(—h(l))134(_h(ﬂ)): (4.2)
where
. _ sin(A — u) y y
R1534(Alu) = Ry 3(A—u)Ry 4(A—p)——————tanh(h(A) + h(u))R1 3(A+u)o; Ry 4(A+u)os,
sin(A + u)
(4.3)
and
cosA O 0 0
0 sinA 1 0
Ry p(A) = 0 1 snA 0 € End(V, ® V), (4.4)
0 0 0 cosA
where V, =V, = C2? and we have defined:
I 5(h) = coshh/2+ o) ® o) sinhh/2 = exp(c? o) h/2), (4.5)

which satisfies the Yang-Baxter equation:

Ry (AR c(AE)RE ¢ (ulE) =Rp c(UIE)RA (AIE)RA p(Alu) €EEnd(V, @ V3 ® V),  (4.6)

where we have used the capital Latin letters to represent a couple of integers, for example
A=(1,2), B=(3,4), C =(5,6), meaning that:

V=V ®V, =CH V3=V, V, =CH Vo =Vs®V, =C*. 4.7)
This R-matrix satisfies the following properties:
Ryp(AA) =Py 3P, 4, (4.8)

where P, ; are the permutation operators on the two-dimensional spaces V; = V; = C?, more-
over, it holds:

Lyp(A) Lyp(=2)
Ryp(Al0) = ——+—=, Ry3(0|A)= ——— .
A 5(4[0) coshh(A)’ A5(0[1) coshh(A)’ (4.9)
where L, (1) is the Lax operator for the homogeneous Hubbard model:
Lyg(A) = I12(h(A))Rq 3(A)Ry 4(A)I15(R(A)). (4.10)
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We have the following unitarity property:

Ry s (AR 4(I2) = cos*(A — p)(cos® (A — ) — cos®(A + ) tanh(h(A) —h(w))),  (4.11)

and crossing unitarity relations:

R (Alu) o< o] ® 03 R (A —nlu)oy ® a3, (4.12)
Ry p(Alw) o< 03 ® 03 Ry (Alu+m)oy ® 0. (4.13)

This R-matrix satisfies the following symmetry properties, i.e. scalar Yang-Baxter equation:
Ry g(Alu)KsKp = KgKuRy p(Alp) € End(V, ® V), (4.14)

where K € End (V = ((34) is any 4 x 4 matrix of the form:

a 00 0 a 00 0
B 0B O O 00pB O
K(aJ a, ﬂ: Y) - 5(1,1 0 0 y 0 + 5(1;2 0 Y 0 0
0 0 0 Brla 00 0 Brla
Py Pr (4.15)
0 00 a 0 00 a
0 B 0O 0 0B 0
o3l o 0y 0 TPl o 4 0 0 |
By/a 0 0 O By/a 0 0 O

where a, 8 and y are generic complex values. Note that K(1,a,f3,y) is simple for generic

different values of a, 3,y satisfying fy/a # a, 8, y. Being {a, By/a,/By,—+/ ﬂy} the eigen-
values of K(2,a, f3,y), then K(2, a, 8,7) is simple for generic nonzero values of a, 3,y satis-

fying By # a®. Being {ﬁ,y, VB ,—\/ﬁy} the eigenvalues of K(3,a, 3,7), then K(3,a, 3,7)

is simple for generic different and nonzero values of 3,y. The matrix K(4, a, 8, y) is instead

degenerate being {\/ By,—+/ [Sy} its eigenvalues.
We can define the following monodromy matrix:

M) = KaRap, (MEN) - Raa, (AIE1) € End(V, ® ), (4.16)
where # = ®r'>|:1 Vi, Va, = C*. Then the transfer matrix:
TOQ) = tr,MO(), (4.17)
defines a one-parameter family of commuting operators.

4.2 Our SoV covector basis

The general Proposition 2.4 and 2.5 of [1] for the construction of the SoV covector basis and
the diagonalizability and simplicity of the transfer matrix spectrum can be adapted to the
inhomogeneous Hubbard model. Let us denote with K;(a, a, 8,7) the diagonal form of the
matrix K(a, a, 8,y) and Wy the invertible matrix defining the change of basis to it:

K = WxK;Wet, (4.18)

clearly Wy is the identity for a = 1, then the following theorem holds:
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Theorem 4.1. For almost any choice of the inhomogeneities under the condition (2.81) and of the
twist matrix K(a, a, B,7), for a = 1,2, 3, the Hubbard transfer matrix T® (1) is diagonalizable
and with simple spectrum and the following set of covectors:

N
<h1> "'ath = <S| l_[(T(K)(gn))hn fOT any {hl: ey hN} € {07 1:273}®N) (419)

n=1

forms a covector basis of 5, for almost any choice of (S|. In particular, we can take the state (S|
of the following tensor product form:

N N
(SI=0x,y,2,W)aTyyt, Ty = Q) Wi, (4.20)
a=1 a=1

simply asking x y zw # 0.

Proof. We have just to remark that also in this case the following identity holds:

TYE) =Ry 4 (EnlEn1) " Ra a (EalEKs Ra 4 (EnlEN)-"Ra 4 (ElEns1). (4.21)

Let us now point out that ¢ is an algebraic function of order two in 1 and e*. Then the
determinant of the matrix whose rows are the elements of these covectors in the elementary

.....

nant is nonzero for a specific value of 1 one can prove that it is nonzero for almost any value of
7 and of the others parameters, i.e. the inhomogeneities satisfying (2.81) and the parameters
a, B,y of the twist matrix, for a = 1,2,3. We can study for example the case n = 0. In this
case h(A, n) has the following two different determinations:

h(A,m=0)=0,in/2 modir. (4.22)

Note that in both the cases, we have that it holds:
tanh(h(A,0) + h(u,0)) =0, (4.23)
so that the Shastry’s R-matrix reduces to the tensor product of two XX R-matrix, i.e. it holds:

Ra=(1,2),8=(3,4) (A =0 = R13(A — )Ry 4(A — ). (4.24)

In turn this implies that:

)L—1>i£?oo e_lARAE(l,z),BE(BA)(MU)n:O =(e"/Dy,gy,, (4.25)
so that we can repeat the same type of proof of the general Proposition 2.4 of [1] to show
that for a covector (S|, of the above tensor product form, the determinant of the full matrix
factorizes in the product of the determinants of 4 x 4 matrices which are nonzero due to the
simplicity of the spectrum of the matrix K. This already implies the w-simplicity of the transfer
matrix T®)(1) then in the case = 0 we can prove the non-orthogonality condition:

(t]t) #0, (4.26)

for any transfer matrix eigenvector by the same argument developed in general Proposition 2.5
of [1], which implies the diagonalizability and simplicity of the transfer matrix spectrum for
1 = 0 and so for almost any value of 1 and of the others parameters of the representation. [
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Let us briefly comment about the consequences of the existence of such a basis. The first
important point to stress is that whenever we have an eigenvalue for the transfer matrix, we
can write the corresponding eigenvector in the above basis. It means that if we compute a set
of solutions to the Nested Bethe Ansatz equations we can immediately write the transfer matrix
eigenvalue and hence the corresponding eigenvector; in particular it will be a true eigenvector
as soon as it is non zero. This could be of great use in practice when dealing with finite chains
with a number of sites greater than the values accessible by direct diagonalization. In partic-
ular, scalar products and form factors could become accessible, at least numerically, from this
procedure. For using the above basis on a more fundamental, analytical level, one needs to
obtain the complete set of fusion relations that lead to the full closure relations enabling to
compute the action of the transfer matrix in the SoV basis (see the discussion on this point
given in [1, 159]). This should lead to the full characterization of the spectrum. These fu-
sion relations being rather involved for the Hubbard model, due in particular to the intricate
dependence on spectral parameters [132], we will come back to this question in a future pub-
lication. Let us nevertheless anticipate that the results obtained for the gl | 4 case will be of
direct importance when dealing with the Hubbard model.
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A Compatibility of SoV and Bethe Ansatz framework

In this appendix, we verify how the results obtained in the Nested Algebraic and Analytic Bethe
Ansatz framework for the gl;|, Yang-Baxter superalgebra are compatible with the conjectured
spectrum characterization in the SoV basis. This analysis is done in the fundamental represen-
tations of the gl;, Yang-Baxter superalgebra associated to generic diagonalizable and simple
spectrum twist matrices.

A.1 Compatibility conditions for higher transfer matrix eigenvalues

Here we use the Bethe Ansatz form (3.39) of the transfer matrix eigenvalues together with the
Bethe ansatz equations (3.36) and (3.37) to describe the eigenvalues of the higher transfer
matrices in order to verify that they satisfy both the null out-boundary (3.7) and the inner-
boundary (3.4) conditions. Under these hypothesis, we get the following lemma:

Lemma A.1. The eigenvalues of the higher transfer matrices admit the following representation
in terms of the A;(A) functions:

to(A) = A (A) (ke t1(A +m) + kskyd(A))/ kg (A1)
=AMA) (A (A + 1) — Ax(A+ 1) — As(A + 1) + kskad(A) /kq), (A.2)

and
t(A) = A (D), (A+1) V> 2. (A.3)

Proof. We have already observed that due to the Corollary 2.1 the eigenvalues of the higher
transfer matrices admit the interpolation formulae (2.108) in terms of the transfer matrix
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eigenvalue t;(A). Equivalently, given t;(A) an eigenvalue of the transfer matrix then those of
the higher transfer matrices are of the form

n—1

() =] [dA+rnE,Q) Yn>2, (A.4)
r=1

where t,(A) are degree N polynomials in A, fixed uniquely by the recursive equations:

t2(€a) = tl(ga)tl(ga + n), (AS)
tn+1(€a) = tl(ga)tn(ga + 7)), (A6)

and the known asymptotics:
lim ANE(A) =T, = K2 (kg —ka) (kg —ky), Vn=2. (A7)

So to prove the above Bethe Ansatz form for the higher transfer matrix eigenvalues we have
just to verify these conditions. Concerning the asymptotic behaviour, from the r.h.s. of formula
(A.1) and (A.3) we get:

ki(ky — k3 —kg) +ksky = (k; —k3)(k; —kz) (A.8)
= ((strK)2 + (ster)) /2= Tg?z, (A.9)

and
im AN () = k2 TS, = TH) (A.10)

so they are satisfied. So we are left with the proof of the fusion properties. It is easy to remark
that by the definition of the A;(A) it follows that the t,(A) indeed factorize the coefficients
]_[':: d(A+ rn), for n > 2. Let us now show that

QA —n)
Q:(1)

is indeed a degree N polynomial in A. This is the case iff the residues of this expression in the
zeroes of Q(A) are vanishing, namely iff the following identities hold:

tH(A) = (kyt1(A + 1) + kskod(A)), (A.11)

kgk
tl(lj+n)=—%d(lj)for any je{1,..,L}, (A.12)
1

and this is the case thanks to the Bethe equation (3.36) in A; being:

Q2(2)
1y + ) = —As( + ) = —ksahy) oo (A13)
j
Similarly, we have that
~ Qi(A—mn)~
A=k ————t,_ (A + A.14
() =k T () (A14)
=k Q=) (A +(n—2)n) (A.15)

Sl A+ (n—=3))
) Q1(7L—7))
' QA+ (n—2)n)

which is a degree N polynomial in A due to the identity (3.36).

(kit;(A+ A+ (n—1)1) + kskod(A + (n—2)n)),  (A.16)
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So to show that the t,(A) satisfy the characterization of the higher eigenvalues, we have
just to verify that their values in the inhomogeneities agree with (A.5) and (A.6). Indeed, it
holds:

t5(Eq) = M (E)(ket1(Eq + M) + kskad(E4)) /Ky

=M (&)t (Eg+m) (A.17)
= tl(ga)tl(ga + T)),
where in the last line we have used the Bethe Ansatz form of t;(A) and similarly:
tn+1(ga) = Al(ga)tn(ga + T)) = tl(ga)tn(ga + 77) (A18)
O

Here we have explicitly rewritten the eigenvalues form in Bethe Ansatz approach for the

higher transfer matrix TH(K)(A), by using the fusion we can easily derive those of the others.
Now we are interested in showing that these expressions for the higher eigenvalues indeed
imply the null out-boundary (3.7) and the inner-boundary (3.4) conditions. Indeed, we have
the following lemma:

Lemma A.2. Let us take a Bethe equation solution and associate to it the t,(A) of the form
(3.45), then the higher functions tr(lm)(k) generated from t,(A) by the fusion equations, i.e. by
using (2.57), (2.58), (2.82) and (2.83), satisfy the null out-boundary condition (3.7) and the
inner-boundary (3.4).

Proof. By using the result of the previous lemma it is easy to show the following null conditions
are satisfied:

t? (M) =0, ¥n=0, (A.19)
indeed, the condition (A.3) implies:
M) =t34,(A)/ t210(A + 1), Vn=0, (A.20)
so that, in particular, it holds:
t34n(A) = (to4n(A)/t1n(A +M)(t24n(A + M), Vn=1, (A.21)
or equivalently:
t2+n(A)t2+n(A + T)) = 1534-11(1)t1+n()L + 7)), Vn = 1’ (A22)

which by the fusion equations implies the above null conditions. Similarly, we can derive all
the other null out-boundary conditions (3.7).
Let us now show the inner-boundary condition, from the formula (A.1) we can write:

to(4)
AN = , (A.23)
P () + ksked (W) Ky
and so P
t t
t3(l)= 1 2( ) 2( +TI) , (A.24)
which is equivalent to our closure relation:
(k1t1(A +m) + kskad(A))£3(A) = ki t2(A)t2(A + 1), (A.25)
and taking into account the fusion equation:
(P +n) = PSP+ ) — e+ m)elP), (A.26)
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we are led to the required identity:

kskod(W)ESV(A) = ky t P (A + ). (A.27)
O

It should be noted that all these relations can be proven in a pure algebraic way using
the general constructions of T and Q operators and the various relations they satisfy, as given
in [246, 247,249, 250]. Hence the computations presented here, although quite instructive
could be considered merely as consistency checks.

A.2 On the relation between SoV and Nested Algebraic Bethe Ansatz

Let us consider the fundamental representation of the gl;|, Yang-Baxter superalgebra associ-
ated to generic values of the inhomogeneities {£,<\}, satisfying the condition (2.81), and of
the eigenvalues k;, k, and ks of a simple and diagonalizable twist matrix K. Note that in this
case the transfer matrix is similar to the transfer matrix associated to a diagonal twist with
entries the eigenvalues k;, ky and ky of K to which Nested Algebraic Bethe Ansatz (NABA)
directly applies. Therefore, the following discussion on the connection between the SoV de-
scription and the NABA can be directly addressed in this diagonal case.

Let us recall that in the NABA framework, given a solution {{A;<;}, {ur<y}} of the Bethe
Ansatz equations (3.36) and (3.37) satisfying the pair-wise distinct conditions (3.46), then the
associated Bethe Ansatz vector |t lng},{uhSM}> is proven to satisfy the identity

(K) (NABA) _ {.(NABA) '
T NG e = 160 b ey 1A A < b At D), (A.28)
with t1(A[{A;<1}, {un<n}) defined in (3.39), so that it is a transfer matrix eigenvector as soon
as it is proven to be nonzero. Then, such a Bethe Ansatz vector has in our SoV basis the
following characterization:

N

(NABA) _ hn (NABA)

(hl’ e hN | t{AjSL}:{PLhSM}> - l_! tl (gnl{AjSL}’ {MhSM})(Slt{AjSL}’{HhSM}L (A.29)
n=

for any h,, € {0,1,2} and n € {0,...,N}. Note that also in the SoV basis the condition that
this Bethe vector is nonzero still remains to be verified. This is the case even for the special
representations considered in subsection 3.2. Indeed, we have shown that the specific set of
solutions to the Bethe Ansatz equations (3.36) and (3.37) introduced in subsection 3.2.2 is
complete and the associated eigenvalues t1(A|{A<; }, {up<p}) and eigenvectors |t(50v) )

{AjSL}s{HhSM}
have the form (3.45) and (3.29), i.e.

N

h

(ha e hnle) D =] T El <) tnud), (A.30)
a B n=1

eigenvectors known to be nonzero by the characterization of the transfer matrix eigenvalues
for which there exists at least one N-uplet hy, ..., hy leading to a nonzero value of the above
SoV wave-function. Nevertheless, this a priori does not allow us to rule out the possibility that:

(NABA) _
|t{2‘jSL}:{‘uh£M}> =0, (A.31)

(NABA)
{Ang};{“‘hSM}
Relying on some already existing results in the literature, we want to present a reasoning

that allows to argue that the completeness of the Bethe Ansatz in the SoV framework, for the

as we have still to verify that (S|t ) is nonzero.
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special representations of subsection 3.2, indeed implies the completeness for the NABA spec-
trum description. The reasoning goes as follows. In [1,159] we have shown in general that the
SoV characterization of the transfer matrix eigenvectors allows for an Algebraic Bethe Ansatz
rewriting on a well defined reference state, see for example section 5 of [159]. Adapting to the
current fundamental gl;-representation associated the twist matrix K’ = —K and n’ = —1) the
analysis of [163], it can be argued?® that the B-operator defined in our SoV basis indeed coin-
cides with the one defined by Sklyanin [25]. Then by adapting the results presented in [165],
one can deduce that these SoV eigenvectors rewritten in an Algebraic Bethe Ansatz form, in
terms of the Sklyanin B-operator, in turn coincide (up to nonzero normalization) with Nested
Algebraic Bethe Ansatz vectors, associated to the same Bethe Ansatz solutions. If implemented
with all details this reasoning shows the completeness of the Nested Algebraic Bethe Ansatz
as a consequence of the completeness of the SoV characterization derived in subsection 3.2.2
for the fundamental representations associated to non-invertible but simple spectrum K twist
matrices, with eigenvalues satisfying (3.13).

It is also worth to comment that once the NABA completeness is derived for these special
representations, it can be derived for general gl -representations by adapting to them the
proof given in [248] for the gl, fundamental representations associated to general diagonaliz-
able twist. Indeed, one of the main ideas of the proof in [248] is that for a special value of the
twist parameter, one can characterize the set of isolated Bethe Ansatz solutions that produce
nonzero Bethe vectors, and which is proven to be complete. Then, the results on the com-
pleteness of Bethe Ansatz solutions by the SoV approach, derived in subsection 3.2.2, and the
above argument on the NABA completeness for these gl;,-representations associated to the
twist matrices K can be as well the starting point for the proof of completeness by deformation
w.r.t. the twist parameters like in [248]. Finally, let us add that relations with [204] would be
interesting to explore.

B Verification of the Conjecture for the general twists up to 3 sites

Here, we make a verification of our conjecture on the form of the closure relations for the gen-
eral twisted representation of the gl ,| , Yang-Baxter superalgebra, in the case .# = 1 and
A =2 for small chain representations, i.e. for a chain having up to N = 3 sites. The verifica-
tion is done in the following way, we impose the closure relation (3.6) in N pairwise different
values?* of A to the polynomials (2.107) and (2.108) for n = 1, 2. This determines a system of
N polynomial equations of order 4 in the N unknowns which are the values of the polynomial
(2.107) in the inhomogeneities. We solve this system of equations by Mathematica and we
select the solutions which generate polynomials (2.108) which satisfy the null out-boundary
conditions 3.7. Our analysis shows that it is enough to impose 3.7 for n = m = 0 to select
the correct solutions which generate exactly the N different eigenvalues of the diagonalizable
and simple spectrum transfer matrix T (1), obtained by diagonalizing it exactly with Mathe-
matica. For N = 1, 2 the results of both the approaches are analytic and we present them here
for the interesting N = 2 case. While for N = 3 we have verified our statements for different
values of the parameters, i.e. the inhomogeneity parameters and the three eigenvalues of the
twist matrix.

We put £; = 0 without loss of generality to shorten the expressions while leaving free
all the others parameters &5, kq,ky, ks and 1. Then the solution of the system of equations
obtained by (3.6) plus the null out-boundary conditions (3.7) for n = m = 0 leads to the
following 22 distinct solutions for the values of the polynomial (2.107) respectively in A = &,

ZNote that we have proven this statement for a chain with a small number of quantum sites in [1].
2*Note that any value can be taken if different from the transfer matrix common zeros.
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and A=¢&;=0:

{kyn(n + &), kyn(n—&,)},

{kon(n—E&,),
{ksm(n—&,),

ey + k)82 — 3/ 4k kg2 + (kg —ky)2E2),

NI:

Ky + k)85 + 4/ 4k kon? + (kg —ky)2E2),

NI:

NI:

1+t k3)Er— \/4k1k3"72 + (ky — ks)zig),

k
k

L k3)Es + 4/ Ak kan? + (g — ky )2E2),

NI:

(
(
(
(
(

le

Jey + k3)E5 — o/ leakan? + (e — k3)2E2),

3

o (U +Te3)E2 — o/ Akakgm? + (e, — k3 )2E2),

L3
L3
L3
L2
L2
L2

\V]

5 (U + ka)E5 =y 4heoksn® + (ks — k€3 }
(

(B.1)
—kyn(n+&5)}, (B.2)
—ksn(n+&5)}, (B.3)

(k) + o/ kyleom? + (ks — k)73 } ,

(B.4)

5 (G + ko)Ez =4k kon® + (ky — k23 }

(B.5)

S (U + ka)Es + /4 ksm? + (ks — k283 }

(B.6)

5 (U + ka)&, = /4 ksm? + (ks — k283 }

(B.7)

(s + k) + o/ 4kokesm? + (s — ks )23 }

(B.8

B.9)

The values at the points £, and £; = 0 and the asymptotic limit allows to reconstruct
the polynomials (2.107). The polynomials constructed in this way can be directly verified to
coincide with the eigenvalues of T®)(1), whose expressions are obtained by diagonalizing

T(A) exactly with Mathematica:

(strK)A2 + (2nk; — (strK)E2 ) A + kyn(n — &), (B.10)
(strK)A? + (2nk, — (strK)E5 ) A — kon(n + &5), (B.11)
(strK)A? + (21k; — (strK) &5 ) A — kyn (1 + &5), (B.12)
(strK)A2 + ((ky + ko) — (StrR)ER)A + — ( —(ky +ky)Ey — /i kon? + (ky —k,)2E2),  (B.13)
(strK)A% + ((ky + kp)n — (strK)E,)A + ( (ky +ko)E + y/4hikon? + (ky —k;)283),  (B.14)
(strK)A? + ((ky + ks)n — (strK)E,) A + g (—ky +ks)Es — y/4kikgn? + (ks — ks 2€2),  (B.15)
(strK)A2 + ((ky + ka)n — (strK)E)A + g (—(ky + k3)E, + /4kikgn? + (ky —k3)283),  (B.16)
(strK)A? + ((ky + ks)n — (srK )&, ) A + g( (ky + kg)E5 — y/ 4kokam? + (ky —k)282),  (B.17)
(strK)A? + ((ky + ka)n — (strK)E)A + g (—Cky + ks)Es + /4kokgn? + (ky — ks )2E2). (B.18)

C

Derivation of the inner-boundary condition

One may use the coderivative formalism introduced in [246] and developed in [247] to derive
the inner-boundary condition. The coderivative formalism allows to construct the transfer
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matrices associated to a given irreducible representation on the auxiliary space by acting on
the associated character evaluated at the twist matrix. For a rectangular Young tableau (a, b),
we have in our notation

T* W) = (A& +nb)e...@ (A— &y +nb) 1, (K). (1)

Let us take g = diag(x1,...,X 4, ¥1,--.,Y.4) a diagonal twist. For k > 1, the characters of
the rectangular representations (a, b) which saturate an arm of the fat hook write [196]

£ (g (nx )nm v, 2

i=1 j=1
) N
25 = ]_[( —y;) ]_[(xl (C.3)
i=1 j=1
thus the following relation holds for all k > 1
250 (8) = (1) sdet(g) ¢ M (g), (C.4)
where sdet(g) is the superdeterminant of g defined by
X,
sdet(g) = f;l L (C.5)
i=1Yj
Acting on it with the coderivative D, we have
5} . :
D) = 1 ey o @ (sdente? g 2P )| €6)
1
5}
=(— 1)k’/‘/sdet(g)ke —® ((1 +k str(¢ - e))x(“ﬂJrk)(ed)'eg))‘ (C.7)
’a IoH ¢=0

1

= (—1)*"sdet(g)* (D;((’/Hk) + ke; % ® (str(d) e)x(%+k)(g))’¢:0) (C.8)

1

= (—1)*"sdet(g)*(k + D) (). (C.9)

Now, acting with (l— &1+ nf)) ®...® ()\— EnT+ nf)) on (C.4), and putting g = K, we thus
have

TODIO2) = (1) sdet(®)* TGO + k). (C.10)

Putting k = 1, and reintroducing the trivial zeros to recover the T;a)’(K)(A) matrices, we obtain
(2.54).
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Abstract

Using the framework of the quantum separation of variables (SoV) for higher rank
quantum integrable lattice models [1], we introduce some foundations to go beyond
the obtained complete transfer matrix spectrum description, and open the way to the
computation of matrix elements of local operators. This first amounts to obtain simple
expressions for scalar products of the so-called separate states, that are transfer matrix
eigenstates or some simple generalization of them. In the higher rank case, left and
right SoV bases are expected to be pseudo-orthogonal, that is for a given SoV co-vector
(h , there could be more than one non-vanishing overlap <1_1{1_<> with the vectors |1_<> of
the chosen right SoV basis. For simplicity, we describe our method to get these pseudo-
orthogonality overlaps in the fundamental representations of the )(gl3) lattice model
with N sites, a case of rank 2. The non-zero couplings between the co-vector and vector
SoV bases are exactly characterized. While the corresponding SoV-measure stays rea-
sonably simple and of possible practical use, we address the problem of constructing
left and right SoV bases which do satisfy standard orthogonality (by standard we mean
<h|1_<> o< 6pk)- In our approach, the SoV bases are constructed by using families of con-
served charges. This gives us a large freedom in the SoV bases construction, and allows
us to look for the choice of a family of conserved charges which leads to orthogonal
co-vector/vector SoV bases. We first define such a choice in the case of twist matri-
ces having simple spectrum and zero determinant. Then, we generalize the associated
family of conserved charges and orthogonal SoV bases to generic simple spectrum and
invertible twist matrices. Under this choice of conserved charges, and of the associated
orthogonal SoV bases, the scalar products of separate states simplify considerably and
take a form similar to the ))(gl,) rank one case.
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1 Introduction

The quantum separation of variables (SoV) has been introduced by Sklyanin [2-6] in the
framework of the quantum inverse scattering method [7-15]. It enables to analyze the transfer
matrix (and Hamiltonian) spectrum using the Yang-Baxter commutation relations. It does not
rely on any ansatz, which makes explicit its advantage w.r.t. Bethe Ansatz methods [8,16-22].
This method has been first systematically developed in the class of the rank one integrable
quantum models [23-54] proving its wide range of application. The completeness of the
transfer matrix spectrum characterization in the SoV approach for compact representations has
been clearly addressed and proven in [33-35,37-55]. In this rank one case, the SoV approach
has also been shown to lead to simple determinant formulae for scalar products of the so-called
separate states [37,39-45,48,53,54]. Those include the transfer matrix eigenstates and their
generalizations with factorized but otherwise arbitrary wave functions in the SoV basis. In
several important cases, the form factors of local or quasi-local operators have been computed
in terms of determinants, while in [50,52,56] a rewriting of the determinants giving the scalar
product formulae has been obtained paving the way for the direct analysis of form factors and
correlation functions in the homogeneous and thermodynamic limits.

Our aim is to extend these achievements to the higher rank cases. Let us comment that
scalar product formulae and matrix elements of local operators have been already computed
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in the literature [57-70] for the higher rank case in the nested algebraic Bethe ansatz (NABA)
framework [71-74] and that more recently have appeared interesting works analyzing these
problems in SoV related frameworks [75, 76].

Sklyanin has also pioneered the SoV approach in the higher rank case’, in the particu-
lar example of rank two [6]. Sklyanin’s beautiful SoV construction involves the identification
of a B-operator, whose eigenco-vector basis is meant to separate the spectral problem of the
transfer matrix. The other fundamental elements of the Sklyanin’s construction [6] are the
identification of an A-operator, whose role is that of generating the shift operator on the B-
spectrum, together with the identification of an operator quantum spectral curve equation
involving the transfer matrices, the B-operator and the A-operator. These operator equations
should separate the transfer matrix spectrum when computed in the zeroes of the B-operator.
However, in [6] the SoV construction has been developed just using the gl; Yang-Baxter com-
mutation relations without introducing any specific representations of the algebra. Only more
recently, the SoV analysis for higher rank has been revived. For the fundamental representa-
tions of gl; Yang-Baxter algebra, in [77] the spectrum of the Sklyanin’s B-operator has been
conjectured together with its diagonalizability for some classes of twisted boundary condi-
tions on the basis of an exact analysis of quantum chains of small sizes. Moreover in [77], the
Sklyanin’s B-operator has been used to conjecture a formula for the transfer matrix eigenvec-
tors bypassing the traditional nested Bethe Ansatz procedure and consistent with small chains
verification?. Then, in [79] the separation of variables approach has been initiated for non-
compact representations of the gl; Yang-Baxter algebra determining the eigenfunctions of the
Sklyanin’s B-operator. While these findings are quite interesting, the complete implementation
of the Sklyanin’s SoV program for higher rank seems more involved as, at least for fundamen-
tal representations, the proposed A-operator acts as shift only on part of the B-spectrum which
leaves unproven the separate relations in this SoV framework. This phenomenon has been al-
ready anticipated by Sklyanin in [6] and it occurs when the spectrum of the B-operator zeroes
partially coincides with that of the poles of operators appearing in the commutation relations
between A-operator and B-operator and/or in the operator quantum spectral curve equation,
see [1] for further discussions.

In [1] we have overcome these difficulties by developing a new SoV approach which relies
only on the abelian algebra of conserved charges of the given quantum integrable model. In
our SoV approach the SoV co-vectors/vectors bases are generated by the action of appropriate
sets of conserved charges on some reference co-vector/vector, hence bypassing the construc-
tion of the Sklyanin’s A and B operators.

In its most general form, our construction uses a family of commuting conserved charges
say T(A), A € C (typically the transfer matrix, its fused versions or the Baxter Q-operator in
most of the cases considered, but in principle more general situations could occur) acting on
some Hilbert space H (H* being its dual) of the considered model. Such a family is said to
be SoV bases generating if there exist a co-vector (L| € H* (resp. a vector |R) € H) and sets
of commuting conserved charges constructed from T(A), T]S) (resp. TIE:)) wherea=1,...,N

and h,,k, =0,...,d, —1 with d = ]_[2]:1 d, the dimension of the Hilbert spaces ‘H and H*,
such that the set of co-vectors,

N
(hlﬁ'-')hN|:<L|l_[T].(:): (11)
a=1

1See also [25,51] for some interesting analysis toward the SoV description of higher rank cases.
2This conjecture has been then proven in the ABA framework in [70]. These observations and conjectures have
also been extended to the super-symmetric case in [78].
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forms a basis of H* and the set of vectors,

N
ey, ok = [ TOIR) (1.2)

forms a basis of . It follows immediately, by construction, that whenever such bases exist,
any common eigenvector |t) (resp. eigenco-vector (t|) of the family T(A) with eigenvalue
t(A) is also a common eigenvector (resp. eigenco-vector) of the commuting sets of conserved
charges T}E:) (resp. T ,E:l)) with eigenvalues t,(:) (resp. El(cz))' Hence the corresponding wave
functions in the coordinates h; (resp. k;) factorize as

N
By, ) = Ry, hyle) = (LI | [ (1.3)
i=1
and similarly,
N
B, (ky, oo k) = (tlkq, oo ky —(tIRl_[ . (1.4)
i=1

This also means that the eigenvectors coordinates in such SoV bases are completely deter-
mined from the eigenvalues of the commuting conserved charges used to construct those bases.
Hence, the very existence of such bases implies the simplicity of the spectrum of the family
T(A) since the coordinates (wave function) of any eigenvector are completely determined by
the corresponding eigenvalue. This in turn implies that the above sets of conserved charges
T(a) and T( %) are both basis of the vector space Cr(y) of operators commuting with the family of
operators T(k) Hence the linear action of the operator T(A) on such bases can be computed
in a close form as for any values of hy, ..., hy (resp. ky,...,ky), the product T}Es) - T(A) (resp.

T(A)- T}ga)) is also a conserved charge commuting with T(A). Hence it is an element of Cr)

that can be decomposed linearly on the basis generated by T}ga) (resp. T,Ea)).

To make this more explicitly, let us introduce compact notations we will be using all
along this paper, namely, h = (hy,...,hy) and similarly k = (kq,...,ky), and accordingly,
Ty = [T 1T,§“), T = [T 1T,§“) and also |k, ....ky) = |k), (h1,...,hy| = (h| for the two

sets defining the right and left SoV bases® , then there exist scalar complex coefficients Nﬁ(k)

1 4,
and N1_1,1_< such that™:

Ty T(A)—Z RQOLE (1.5)

and,

~ 1
Ty - TIS:ZNI_;J_( T. (1.6)
1

3Using such compact notations it should not be forgotten that these vectors |k) and co-vectors (h| defining SoV
bases are depending respectively on the chosen sets of conserved charges T( 9 and T( ) and on the reference vector
|R) and co-vector (L|. Hence in the following such compact notations w1ll be used only after such choices have
been defined.

“Let us stress here that these complex coefficients which can be interpreted as the structure constants of the
associative and commutative algebra of the conserved charges, are depending directly on the choice of the two sets
of commuting conserved charges T(a) and T(“) Hence changing those sets, eventually in a non-linear way, as sums
of products of commuting conserved charges are still commuting conserved charges, will modify these structure
constants accordingly.
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- ) - 1 ~1
Similarly one can define two other sets of complex coefficients, namely C, , and C; , such that:

1
1

and,

1

(1.8)

=g
|

h' 'k = Z k
1

The knowledge of these relations together with the action of the complete family of conserved

charges T(A) on our SoV bases has been shown to completely characterize the common spec-

trum of all the above commuting conserved charges. Particular realizations of this situation

include the case where the T}E:) are powers of the transfer matrix evaluated in the inhomogene-

ity parameters as T(E,)", or are given as the fused transfer matrices Ty, (€ Elh“)) in some shifted

points Egh“), where h, is the level of fusion. In the higher spin gl, case, they are simply ob-
tained from the Q-operator evaluated in shifted inhomogeneities as Q(& Elh“)). In all these cases,

. 1 1
the coefficients N, (1), Nh’l_(,

h Cli,lj and C’lil_(are completely determined by the fusion relations or
the T-Q relations satisfied by the transfer matrices and the Baxter Q-operator.

The conditions on the above sets of conserved charges to indeed generate SoV bases were
identified and proven® in [1], together with the factorization of the wave functions in terms
of conserved charge eigenvalues and the proof of the completeness of the description of the
transfer matrix spectrum. The discrete separate relations were proven to be equivalent to the
quantum spectral curve equations, involving the transfer matrices and the Q-operator holding
both at the eigenvalue and operator level, due to the proven simplicity of the transfer matrix
spectrum [1]. In our approach, the separate variables relations are themselves proven to be
originated by the structure constants of the abelian algebra of conserved charges, in particular
by the transfer matrix fusion equations for the charges considered in [1]. From this perspective
our SoV approach has the potential to be universal in the realm of quantum integrable model.
Indeed, we have proven its applicability for a large class of quantum integrable models from the
fundamental representations of gl,, gl ,, and the U,(gl,,) Yang-Baxter algebras with simple
spectrum twist matrices up to the higher rank reflection algebra cases with general boundary
conditions, deriving new and complete descriptions of the transfer matrix spectrum [1,80-84]
6, Moreover, in [85, 86] our construction of SoV bases using conserved charges has been
extended to arbitrary finite dimensional rectangular representations of the gl, Yang-Baxter
algebra.

The relation of our SoV approach with the Sklyanin’s one has been first analyzed in [1].
There we have observed the coincidence of our SoV co-vector basis with the Sklyanin’s B-
operator co-vector eigenbasis for chains of arbitrary length in the gl, case. This correspon-
dence has been obtained for special choices of the reference co-vector and of the set of con-
served charges used to generate the SoV basis. The same result has been derived in [1] for
the gl case for chains of small sizes. In [85] this observation has been proven for arbitrary
finite dimensional rectangular representations of the gl, Yang-Baxter algebra and for chains
of any size. Moreover the simple spectrum of the Sklyanin’s B-operator, and its gl,, exten-
sions proposed in [77], has been obtained in [85]. This result together with the completeness
of the description of the spectrum by factorized wave functions in terms of polynomial Q-
functions [1] implies the ABA type formula of [77] for all the transfer matrix eigenvectors’.

5They mainly reduce to properties satisfied by the twist matrix and the inhomogeneities parameters.

®Note that our reference [83] describe our approach for higher spin representations for the rank one case.
While [84] also contains the SoV basis construction for the quasi-periodic Hubbard model.

’Note that it was first remarked in [26] for non-compact rank one models that the factorization of the wave-
functions in terms of polynomial Q-functions imply the ABA form of transfer matrix eigenvectors in the SoV basis
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An important feature of our new approach to the SoV bases is that it relies only on finding a
suitable set of commuting conserved charges and a corresponding reference co-vector/vector
(L| € H* and |R) € H, (the number of choices for those being in fact very large as shown in
our first paper [1]). However, any other sets build from sums of products of given commuting
conserved charges being again sets of commuting conserved charges, it results in a huge free-
dom in constructing SoV bases which was not available if one would have stick to SoV bases
identified as eigenbasis of the Sklyanin’s B-operator or its higher rank extensions.

Clearly, this is a very interesting built in aspect of our new approach to SoV that enables us
to ask a new key question in this context: what would be optimal choices of the sets of conserved
charges determining the SoV bases for the quantum integrable model at hand?

A first answer to this question, from the point of view of the determination of the spectrum,
is that an optimal SoV basis is such that the action of the transfer matrix (and hence of the
Hamiltonian of the model) on the chosen basis is as simple as possible. This could mean for
example that the action of the family of T(A) on any element of the set T}, decomposes back
on that set with only a very few non-zero coefficients, and moreover that it is given only by
local shifts of finite and lowest possible order on the coordinates h,. This amounts to have
chosen the basis Ty, of the space Cr;) in such a way that the structure constants N}ll(k) have
such a simple property; namely that the only non zero coefficients are those where handl
differ only by localized shifts in the coordinates. This is exactly what happens for SoV bases
in the gl, case that are generated directly from the Baxter Q-operator. Indeed, the Baxter
T-Q relation determines an action of the transfer matrix T(A) on the basis generated by Q(A)
which involves only two terms with a local shift +1 for each coordinate h,, to be compared to
the dimension of the Hilbert space H and of the Bethe algebra Cr(;) which is 2N for a spin-1/2
chain of length N. This is in some sense the hallmark of integrability that generate a charac-
teristic equation of degree two, hence much smaller than the dimension of the Hilbert space.

Another meaning of simplicity in the choice of our SoV bases could also be related to the
coupling between the two chosen left (1.1) and right (1.2) SoV bases. Namely, a criterion of
simplicity could be to take such two SoV covector/vector bases such that their scalar products
are calculable in terms of manageable expressions. This is certainly an important question and
criterion as it determines to what extend the chosen left (1.1) and right (1.2) SoV bases are
easy to use when computing scalar products of separate states, form factors and correlation
functions, that are our main goals.

The main purpose of the present paper is to study the important question of scalar products
from this perspective.

In the class of rank one quantum integrable models, the SoV analysis so far developed [2-
6,23-54] leads to the expectation that the transfer matrix construction of the co-vector/vector
SoV bases can be defined in such a way that these are orthogonal bases. Similarly, in the
Sklyanin’s approach, this leads to the expectation that the co-vector/vector Sklyanin’s B-operator
eigenbases (orthogonal as soon as B is diagonalizable with simple spectrum) both implement
the separation of variables for the transfer matrix spectrum. This feature has been proven to be
very useful in computing scalar products of the so-called separate states and also in obtaining

once the Sklyanin’s B-operator is proven to be diagonalizable. As we have explained in [1], this proof extends also
to the higher rank case under the same assumption as it only uses the SoV representation of the transfer matrix
eigenvectors.
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determinant formulae for the form factors of local operators. As we will see in the next, in
the higher rank quantum integrable models, this is not directly the case if the charges used to
construct the co-vector/vector SoV basis are simply the transfer matrices or their fused higher
versions, for a generic twist K.

On the one hand, the SoV vector basis is univocally fixed in terms of the co-vector one de-
fined in [1] if one requires that it is of SoV type, i.e. that it is generated by a factorized action
of conserved charges, and that it satisfies the orthogonality conditions with the co-vector basis
on one quantum site (this is obviously a necessary requirement for general orthogonality!). It
turns out that in general such SoV vector basis stays only pseudo-orthogonal to the co-vector
one for quantum chains of arbitrary length N. More precisely, the matrix of scalar products
Npx = (h|k) for the natural SoV bases introduced in [1] is in general not a diagonal matrix.

The aim of the present paper is twofold:

e Characterize the matrix of scalar products \j, x = (h|k) and the associated SoV measure
(related to the inverse of Nh’k) for the natural SoV bases introduced in [1] in the example
of the rank two gl; case in the fundamental representations.

e Determine, in the same gl; representations, two sets of commuting conserved charges,
Ty, and Ty generating a left and right SoV bases that are orthogonal to each other and
compute the corresponding SoV measure.

Given our left SoV co-vector basis, we first prove that the defined set of SoV vectors indeed
define a basis and we exactly characterize the pseudo-orthogonality conditions writing all the
non-zero non-diagonal couplings in terms of the diagonal ones, which we explicitly compute.
This set of SoV vectors has been introduced recently in [76] as the set of eigenvectors of a
C-operator which plays a similar role to the Sklyanin’s B-operator and some integral form has
been given for the coupling of the SoV co-vectors/vectors in [76]. Due to the quite different
representations, a direct comparison of the results of [76] with those that we obtained stays a
complicate task which however deserves further analysis.

Let us comment that this pseudo-orthogonality is intrinsically related to the form of fusion
relations of the transfer matrices for higher rank case when computed in the special inhomo-
geneous points. In fact the matrix of scalar products can be directly related to the structure
constants of the algebra of commuting conserved charges (1.6) that are in fact determined
completely by the fusion relations as shown in [1]. To be more precise let us illustrate this in
the following situation. Suppose we have chosen a left SoV basis of the type (1.1). Then let us
consider a right SoV basis (1.2) where we have chosen the right reference vector |R) in such
a way that it satisfies (h|R) = 51_1’1_10 for some h,. Then the corresponding matrix Nh,k of scalar

. h
products can be computed in terms of the structure constant N, | to be:

Nak =Ny - (1.9)

1L,

A very interesting question is thus if there exists an optimal choice of the left (1.1) and right
(1.2) SoV bases such that for some h,, we have NE‘I’( = 52’1_( n(h) with a calculable non-zero
coefficient n(h) whose inverse determines the SoV measure.

This naturally leads to the observation that if we want to obtain co-vector/vector SoV bases
mutually orthogonal we have to chose in general a different family of commuting conserved
charges than the simple choice taken in [1] to generate both of them (or at least look for dif-
ferent points where the transfer matrices are computed). These observations in the Sklyanin’s
SoV framework for rank two mean that while the Sklyanin’s B-operator define the co-vector
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SoV basis, its vector eigenbasis is actually only a pseudo-SoV basis, i.e. not all the wave func-
tions of transfer matrix eigenco-vectors have factorized form in terms of the transfer matrix
eigenvalues.

Despite the absence of direct orthogonality the SoV-measure that we derive in section 3
stays reasonably simple and can be used as the starting point to compute matrix elements of
local operators in this SoV framework. While, this seems a sensible line of research and we
will further analyze it in the future, we would like to further investigate the potentiality of our
new SoV approach.

In the present paper, for the rank two gl; case in the fundamental representation, we
define some new family of commuting conserved charges whose spectral problem is separated
for both a co-vector and a vector bases, which are moreover orthogonal to each other. Further,
we show that the corresponding SoV measure takes a form very similar to the rank one case.
The consequence is that w.r.t. this family of commuting conserved charges scalar products
simplify considerably and take a form very similar to the rank one case for the separate states.
Of course, in order to be able to compute matrix elements of local operators we will need to
address the problem of the representation of the local operators in these new SoV bases.

The paper is organized as follows:

Section 2 is dedicated to recall some fundamental properties satisfied by the transfer ma-
trices in the fundamental representations of the gl; Yang-Baxter algebra. In subsection 2.2,
we moreover recall the results of [1] for the construction of the SoV bases for the considered
representations, that is equations (2.23) and (2.24).

In section 3, we introduce a standard construction of co-vector/vector SoV bases (3.6)-
(3.7) using the choice of the generating charges made in [1], i.e. given by the transfer matrices
evaluated in the inhomogeneity parameters. The Theorem 3.1 characterizes completely the co-
vector/vector coupling of these two systems of SoV states. The main results of this section are
i) that the given system of SoV vectors form a basis, ii) the computation in (3.10) of the known
tensor product form (3.9) of the reference vector associated to a fixed reference co-vector in
the SoV basis, iii) the exact characterization in Theorem 3.1 of the pseudo-orthogonality re-
lations (3.14), with the description of the non-diagonal couplings in terms of the diagonal
ones, and iv) the explicit computation of the diagonal couplings in (3.20). Finally, the sub-
section 3.3 characterizes with Corollary 3.1 the SoV measure in terms of the non-zero SoV
co-vector/vector couplings.

In section 4, we use the freedom in the choice of the generating family of conserved charges
to construct orthogonal co-vector/vector SoV bases. The subsection 4.1 is dedicated to this
construction in the class of quasi-periodic boundary conditions associated to simple spectrum
but non-invertible twist matrices. The main theorem there, Theorem 4.1, states the orthog-
onality properties and the form of the diagonal SoV co-vector/vector couplings. These are
similar to the SoV co-vector/vector couplings of the rank one integrable quantum models. In
subsection 4.2, these results are used to compute scalar product formulae of separate states
(4.77) and (4.81), showing that they take a form similar to the rank one case. Finally, in sec-
tion 4.3, we introduce a new set of charges (4.93) that extends the results of subsections 4.1
and 4.2 to the general quasi-periodic boundary conditions, associated to simple spectrum and
invertible twist matrices.

We give several technical and important proofs in the three appendices. The appendix A
details the proof of the tensor product form of SoV starting co-vector/vector in our SoV con-
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struction. The appendix B details how our SoV construction holds in the gl, representations,
the aim being to establish one simple example to which compare our higher rank construction.
Finally, the appendix C is dedicated to the detailed proof of our Theorem 3.1. Subsection C.1
handles the orthogonality proof, while subsection C.2 details the description of the non-zero
SoV co-vector/vector couplings.

2 SoV bases for the fundamental representation of the gl; Yang-
Baxter algebra

2.1 Fundamental representation of the gl, Yang-Baxter algebra

We consider here the Yang-Baxter algebra associated to the rational gl; R-matrix:

a;(A) by b,
Ry p(A) = Al +MPgp = ¢ ax(A)  bs € End(V, ® V), (2.1)
C2 C3 as(A)

where V, =V, = C3 and we have defined:

aj(l)= 0 )\+n5]2 0 , Vje{1,2,3},
0 0 A+’n513

0 0O 0 0 O 0 0O
b= n 00|, b= 0 0 0 00 0 |

000 n 0 0 0 n 0

0 n 0 00 7 000
=000, =000 00 n | (2.2)

0 0 O 0 0 O 0 0 O

which satisfies the Yang-Baxter equation
Ri2(A — w)R13(A)R23() = Raz()R13(A)R12(A — ) € End(V; ® V, ® V3) (2.3)
and the scalar Yang-Baxter equation:
R13(A)K Ky = K3K R15(A) € End(V) ® V3), (2.4)
where K € End(V) is any 3 x 3 matrix. We can define the following monodromy matrix:
M{O(A) = KRoN(A—EN)++Rq1 (A2 —&1) € End(V, ® H), 2.5)

where H = ®r'>':1 Vo. M (EK)(}\) itself satisfies the Yang-Baxter equation and hence it defines an
irreducible 3N-dimensional representation of the gl; Yang-Baxter algebra for the inhomogene-
ity parameters {&, ..., EN} in generic complex positions:

Then, in the framework of the quantum inverse scattering [87-89], the following families of
commuting charges exist according to the following:
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Proposition 2.1 ([87-89]). Defined the antisymmetric projectors:

- — 2, (17 P, 2.7)

! nes,

where S, is the symmetric group of rank m, o, the signature of the permutation © and
P,.,:(Vl ®"‘®Vm) =Vr1)® O Vem), (2.8)
then the following quantum spectral invariants (the fused transfer matrices):

TOM =y [P MEOMOA =) MEOA—(m—1)m)], ¥me{1,2,3},
(2.9)
are one parameter families of mutual commuting operators. Furthermore, the quantum determi-
nant q-det M ®() = T?EK)(A) is central, i.e.
[q-det M (1), M ()] = 0. (2.10)
Moreover, the general fusion identities [87-89] imply the following

Proposition 2.2 ([87-89]). The quantum determinant has the following explicit form:

q-det M®)(A) = detK ]_[ (A— gb+n)]_[(x g, —mn) |, 2.11)

m=1

and TI(K)(JL) and TZ(K)(A) are degree N and 2N in A. Their asymptotics are central and coincides
with the corresponding two spectral invariants of the matrix K:

1% = lim A0 =K, TV = lim N0 = —(“K)ZZ_ LLSHPRE
The fusion identities hold:
I{EITIOE —m) = Ty (), Yme (1,2}, (2.13)
and Tz(K)(A) has the following N central zeroes
T, +1m)=0. (2.14)

Let us introduce the functions

( ) N A_g(hb) (m—1)N 1

m b

v = | o [ e 2.15)
e 15( B W

a(A—n) = d(x)=1_[(x—5a), EW=g,—hn, h={h,..h},  (216)

and \
h
T2 = T Ja—gg). (2.17)
b=1
The known central zeroes and asymptotic behavior imply that the transfer matrix TZ(K)(A) is
completely characterized in terms of Tl(K)(l), e.g. by the following interpolation formula

N
19(0) = d(A—n) (Tg; D+ gl ITOE, - n)T{K)(aa)), (2.18)
where h = 0 means that for all k € {1, ..., N} we have h; =0

From now on when we have an h with all the elements equal to the integer O, 1 or 2 we
use directly the bold underlined notation 0, 1 and 2.

10
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2.2 On SoV bases construction in our approach

The general Proposition 2.4 of [1] for the construction of the SoV co-vector basis applies in
particular to the fundamental representation of the gl; rational Yang-Baxter algebra. Note
that we have presented the construction for the co-vector SoV basis just to get a factorized
form of the wave-functions of the transfer matrix eigenvectors in terms of the transfer matrix
eigenvalues. Evidently, the same construction applies as well to define a vector SoV basis
in which the wave-functions of the transfer matrix eigenco-vectors have the same factorized
form. In order to clarify this, we present in the following a proposition for this gl; case. Let
K be a 3 x 3 simple spectrum matrix and let us denote with K; the Jordan form of the matrix
K and Wy the invertible matrix defining the change of basis:

ko y1 O
K=WgK;W, ' with K;=| 0 ky vy, |. (2.19)
0 0 ko

The requirement K simple spectrum implies that we can reduce ourselves to the following
three possible cases:

l) ki ;é k]: Vl:] € {0: 1>2} and Y1=Y2= 0: (220)
ll) ko = kl ;é kz, Y1 = 1, Yo = O, (221)
ll) kO = kl = kz, Y1 = 1, Yo = 1. (2.22)

Then,

Proposition 2.3. Let K be a 3 x 3 simple spectrum matrix, then for almost any choice of (L|, |R)
and of the inhomogeneities under the condition (2.6), the following set of co-vectors and vectors:

N
@] (T(K)(gn))hn for any {hy,....,hy} € {0,1,2}V, (2.23)
) n=1
l_[ (T(K)(E )) IR) for any {hy,...,hyn} € {0, 1,2N, (2.24)
n=1

forms a co-vector and vector basis of ‘H, respectively. In particular, we can take the following
tensor product forms:

N

N N
(L= x,y.2) Lyt R =@ Tw(rs, 0, Ty =X Wiq (2.25)
a=1 a=1

a=1

simply asking in the case i) x y z # 0 for the co-vector and r s t # O for the vector; in the case ii)
x z # 0 for the co-vector and st # O for the vector, in the case iii) x # 0 for the co-vector and
t # 0 for the vector.

Proof. As shown in the general Proposition 2.4 of [1], the fact that the transfer matrix in
the inhomogeneity &, reduces to the twist matrix in the local space n dressed by invertible
products of R-matrices implies that the set of co-vectors and vectors above defined form bases
of H* and H, once the following co-vectors and vectors (obtained by taking the asymptotic
limit over the &)

(. ¥, )W, (x, y, 2 )W 'K, (x, y, 2) W 'K?, (2.26)
Wi (r,s, ), KWy (r,s, t), K2 Wi (1,5, )", (2.27)
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or equivalently:

(ny,z);(X,Y:Z)KJ,(X:}’,Z)sz (2-28)
(rasy t)t)KJ(rasa t)t:Kf(r)sa t)ta (2-29)
form bases in C3, that is the next determinants are non-zero®:
—xyzV(ky, ki, ky) in the case i)
det((x,y,z)K}_lej)i,je{Lz,s} = xzz‘VZ(kO, ks) 1n the case ii) , (2.30)
x2 in the case iii)

rstV(ky, k;, ko) in the case i)
det (ef.K}_l(r,s, t))_ , = s2tV2(ko, ko) in the case ii) (2.31)
J i,j{1,2,3} 3.
t° in the case iii)

which leads to the given requirements on the components x, y, z,1,s, t € C of the three dimen-
sional co-vector and vectors. O

Note that both these choices of co-vector and vector SoV bases are perfectly fine to fix the
transfer matrix spectrum, by factorized wave functions in terms of transfer matrix eigenvalues
for both eigenvectors and eigenco-vectors. However, if we wish to go beyond the spectrum,
and compute matrix elements of local operators starting with scalar products of the so-called
separate states, we need an appropriate choice of the co-vector and vector SoV bases. In the
rank one quantum integrable models, the SoV analysis so far developed [2-6,23-54] leads to
the expectation that the transfer matrix construction of the co-vector and vector SoV bases can
be defined in such a way that these are orthogonal bases or similarly that the co-vector and
vector Sklyanin’s B-operator eigenbases both implement the separation of variables for the
transfer matrix spectrum. As we will see in the next, in the higher rank quantum integrable
models, this is not directly the case if the charges used to construct the co-vector and vector
SoV basis are simple powers, or even fusion, of the transfer matrices for general twist K.

3 Scalar products for co-vector/vector SoV bases

3.1 Another construction of co-vector/vector SoV bases

Let us first introduce a slight modification of the co-vector SoV basis w.r.t. the standard one
introduced in the previous section by changing the set of conserved charges used to construct
them. It reads’:

N
1) 13
(bl = (hy, oyl = @] 1377012, VR, €{0,1,2, GO
n=1

where (1| is some generic co-vector of H. Let us remark that for an invertible twist matrix K
using the identification:

N
(=] [1¥¢ED. (3.2)
n=1

the two sets of co-vectors defined in (2.23) and (3.1) are identical up to a non-zero normal-
ization of each co-vector; hence the two sets are related by the action of a diagonal matrix. To

8Here and in the following, we denote by V(x,,..., x,) the standard Vandermonde determinant l_[l. < j(xj —X;)-
*Throughout this section we use compact notations for the left and right SoV bases defined as in (3.1) and
3.7).

12
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be more precise, with such an identification and using the fact that for an invertible K-matrix
the operator Tz(K)(E 511)) is proportional to the inverse of Tl(K)(§ ) due to the fusion relations,
we get:

N
(bl = an (L[ [T e, wh, € (0,1,2), (3.3)

B n=1
where ay, = ]_[T':I:l(q-detM(K)(gn))ahn’O is a non-zero coefficient. Then, being 65, »—0, o+1=h,
for any h,, € {0, 1,2}, we get:

N
(bl = an(LI] [T (€ .V Ry €{0,1,2}, (3.4)

n=1

thus proving that the two sets defined in (2.23) and in (3.1) are equivalent bases up to an
invertible diagonal matrix made of the non-zero coefficients a;,. Moreover, even if K has zero
determinant, it can be proven that the two sets (3.1) and (2.23) are both SoV bases (see next
section), the linear transformation relating them being in that case more involved.

3.2 Pseudo-orthogonality conditions of these co-vector/vector SoV bases

Here, we show that for the SoV co-vector basis chosen as in (3.1), we can define a pseudo-
orthogonal vector SoV basis which is orthogonal to the left one for a large set of co-vector/vector
couples. We exactly characterize these pseudo-orthogonality conditions and the non-zero cou-
plings of these co-vector and vector SoV basis. The corresponding SoV-measure, related to the
inverse of the scalar products matrix, is completely characterized in the next subsection. It
is the starting ingredient to compute matrix elements of local operators in this SoV frame-
work. This will be further employed in forthcoming analysis in this gls case as, despite the
absence of direct orthogonality, the SoV-measure stays reasonably simple to be used in practical
computations.
Let us now introduced the vector |0) uniquely characterized by

N
kl0) =] [ 6o (3.5)
a=1

Then we have the following

Proposition 3.1. Let K be a 3 x 3 simple spectrum matrix, then for almost any choice of the
co-vector (1|, of the vector |0) and of the inhomogeneities under the condition (2.6), the set of
co-vectors (3.1)

N
(K)o (K)é
(=@l [, " EDyT, " (8, (3.6)
n=1
and the set of vectors:
N
(K)6 (K)o
=] [z, " €)1, " (ED00), (3.7)
n=1

form co-vector and vector basis of H* and H, respectively. In particular, we can take (1| of the
following tensor product form:

N N
(l' = ®(X, y:z)aFVT/la 1—‘W = ® WK,aJ (38)
a=1 a=1

13



Scil SciPost Phys. 9, 086 (2020)

simply asking x y z # 0 in the case i), x z # 0 in the case ii), x # 0 in the case iii). Then the
associated vector |0) having the property (3.5) also has tensor product form:

N
a=1
where we have defined

ka(yko — xy1)(zks + ¥y2) — (ykq + xy1)(xy1y2 + ko(zks — yy2))
0,a) = A x(xkoy1ya + ki(zk; — yy2) —kika(zks + yy2)) , (3.10)
x(ko + kq)ka(yky +xy; — yko)

a

with
A = x(yko—yki—xy1 ) (2(ko ko) (k1 —ka)+y (¥ (ko —k1)+xy1) ) a-det MO (E,~2n). (3.11)

Proof. The proof that these two sets are indeed bases of the Hilbert space and its dual can
be performed along the same lines as the one presented already in [1] and in the previous
section. Namely, using the polynomial character of all the expressions involved in the inho-
mogeneity parameters &, it is enough to prove the proposition in some point in the param-
eter space. This is achieved by scaling the inhomogeneity parameters from a single scalar,
as &, = né&, and sending the parameter & to infinity. In turn, this amounts to obtain the
asymptotic behavior of the transfer matrices in that limit. The leading term for the operator
Tl(K)(§ o) is given by EN"1K, times some constant, while for the operator Tz(K)(§ 511)) it is given
by £2(N-D(2K2 — 2K, tr(K) + tr(K)* — tr(K?)) times some other constant. Hence, it is enough
to exhibit a co-vector (u| such that the set (u|, (u|K, (u|K? is a basis of C3, which is the case as
soon as K has simple spectrum. Similarly, the asymptotic of the operator Tz(K)(f 510)) is found
proportional to the matrix EZ(N_U(KT% — K, tr(K)), leading to the same conclusion. By these
arguments, all we need to prove is that the co-vectors

(x,y,2)K;, (x,y,2),(x,y,2)K;, (3.12)

where K; is the adjoint matrix of K;, form a tridimensional basis. If we denote by M, .k, the
3 x 3 matrix which lines are given by these three co-vectors, it holds:

—xyzV(kg, k;,ky) in the case i)
detM, ,.x, = x22V?(kg, k) in the case ii) (3.13)
x® in the case iii),
so that in the case i) we take x y z # 0, in the case ii) we take x z # 0 and finally in the case iii)
the condition is x # 0. The construction of the orthogonal vector is a standard computation
in C® and the fact that it defines a vector basis by action of K and K? follows from a direct
computation. Another proof uses the characteristic equation of K. Finally, the fact that the
reference vector for the right SoV basis can be then chosen of tensor product form is proven
in the appendix A. O

Let us now compute the scalar products of these two SoV bases as follows:

Theorem 3.1. Let all the notations be the same as in Proposition 3.1, then the following pseudo-
orthogonality relations hold:

Mk
Nig = (blk) = (KIK) | Sy +C > (detK)" > 5wy |, (314
- B

r=1 aupuy=1, @
a,B,y disjoint, #a=#p=r

=
=
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k . . .
where the C}_T are non-gero and independent w.r.t. detK, ny is the integer part of (ZaNzl O,,1)/2.
We have used the further notations

K% = (ky (@, B), .. kn(a, ) € (0,1, 2}, (3.15)
1, ={ae{l,..,N} 1k, =1}, (3.16)
with
k(a,f)=0, ky(a,f)=2, Vaca,bef (3.17)
k(a,p)=k, Vee{l,..,N)\{aUB). (3.18)

Moreover, we prove that it holds:
Ny = (1fh) (3.19)

N
_ d(&) V3, En)
o1 d( Ell+5ha,1+5ha,2)) V( (15h1,2+5h1,1)’.”’gl(\lﬁhN,l"'EhN,z))V( §5h1,z),m,€f\<|5h,\,,z))

. (3.20)

Proof. The heavy proofs of the pseudo-orthogonality and of the expressions of non-zero SoV
. . . . - k
co-vector/vector couplings are given in Appendix C. There, the coefficients C; are character-

ized completely, but implicitly, by an unwieldy recursion that we do not solve for the generic
case. We compute them in the simplest case, see (C.73). O

It is worth to make some remarks on the above theorem. Let us first comment that the sum
in (3.14), for any fixed k and h , always reduces to at most one single non-zero term. Indeed,
fixing k # h, we can have a non-zero coupling between the vector and co-vector associated if
and only if there exists a couple of sets (a, ) C 1; with the same cardinality r < ny such that

0,2 . . . .
h= kg‘ﬁ‘), and of course if the couple (a, ) exists it is unique. The above condition means

that if ZaN:1 Oy, 1 is smaller or equal to one, then the standard orthogonality works, i.e. only

h = k produces a non-zero co-vector/vector coupling. While if 22'21 Oy,,1 is bigger or equal to

two, we have non-zero couplings also for all the co-vectors of (3.1) with!® h = l_(ggkg). Let us
remark that if one looks to this pseudo-orthogonality condition in one quantum sit’e, then the
basis (3.7) naturally emerges as the candidate to get the orthogonal basis to (3.1). Indeed, for
one site, orthogonality is satisfied by them while the fact that the orthogonality is not satisfied
for higher number of quantum sites is intrinsically related to the form of fusion relations of
the transfer matrices for higher rank. From these considerations follows our statement that if
we want to obtain mutually orthogonal co-vector/vector SoV bases, we have to use different!
families of commuting conserved charges to generate the co-vector and the vector SoV bases.

It is also useful to make some link with the preexisting work [76] in the SoV framework. In
fact, the set of vectors (3.7) has been introduced recently in [ 76] as the set of eigenvectors of a
C-operator, which plays a similar role to the Sklyanin’s B-operator. There, the starting vector,
analogous to our |0), is taken as some not better defined eigenvector of this C-operator, and
the proofs that C is diagonalizable and that so (3.7) form a basis are not addressed, while the
co-vector/vector coupling of these SoV bases is represented with some integral form.

In our paper, we prove that (3.7) is a basis, we fix the tensor product form of the starting
vector |0)in terms of the starting co-vector (1] and the general twist matrix K, we characterize

9That is for the h obtained from k removing one or more couples of (k, = 1,k, = 1) and substituting them with

(ka(a)ﬁ) = 07 kb(aJ ﬁ) = 2)

w.r.t. those used above.
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completely the form of the co-vector/vector couplings of the two SoV bases and from them the
SoV-measure.

Let us also remark that in [ 76] is given a selection rule which selects sectors of the quantum
space which are orthogonal, which translates in our setting as

(h|K) =0 if Zéh ) #Zéka,l (3.21)

This is compatible with our result (3.14), but much less restrictive as one can easily understand
by looking, for example, to our formula for r = 1. In this case, the h fixing the co-vector in
(3.7) and k fixing the vector in (3.1) differ only on one couple of index (h,,hy) # (kq, kp)-
The above selection rule only imposes that (h|k) = 0 if h, + h}, # k, + k;,, while our formula
instead specifies that (h|k) = 0 unless k, = k;, =1 and h, + h;, =2

3.3 On higher rank SoV measure

In the Theorem 3.1, we have shown that the original higher rank SoV co-vector and vector
bases as defined in (3.7) and (3.1) are not mutual orthogonal basis if the twist matrix is
invertible. Here, we want to show that from the Theorem 3.1, we can also characterize the
SoV measure associated to these bases, i.e. the measure to be used in the computation of
scalar products of separate states in these co-vector and vector bases.

Let us start introducing the following sets of co-vectors and vectors that are bases of the
Hilbert space orthogonal to our left and right SoV bases:

,(hland |h),, Vhe{0,1,2}", (3.22)
uniquely characterized by the following orthogonality conditions'?
p(klh) = 5y p(hlh), (kh), = 5x(hlh), Vhke{0,1,2}", (3.23)

where |h) and (h| are the vectors and co-vectors of the SoV basis (3.7) and (3.1), respectively.
Clearly, the set generated by the p(hl and |h)p are bases of the Hilbert space, and moreover
we have the following decompositions of the identity:

Ih), (h| |h) , (k]
I= = , 3.24
; ™ >, ™ (3.24)

h

where the sums run over all the possible values of the multiple index (h). As a consequence,
the transfer matrix eigenco-vectors and eigenvectors admit the following SoV representations
in terms of their eigenvalues:

Zl_[ o (D) (E,) 1 (3.25)
h n=1
|
ST e, o (3.26)
h n=1 @
Thus, we can naturally give the following definitions of separate vectors :
k) N
la) = Z a —2, ap = aahﬂ) (3.27)
k - Nlj B a=1

2Note here that we have included, for convenience, in the orthogonality relations the normalisation factor
(h|h) as it leads to more natural identifications in the particular case where the right and left SoV bases are directly
orthogonal to each other.
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with factorized coordinates a;, and separate co-vectors,

h| N
(Bl=> Pn ”él—; pn=] [ BU (3.28)
h h

a=1

with factorized coordinates f;, on the respective bases. The scalar product of such two separate
vector and co-vector reads:

ﬂla Zﬁth kak (329)
hk

with the SoV measure M1_1,1_< defined as:

(hlk)
_ p\HIR/p
My = Nyl (3.30)

It can be obtained from the knowledge of the scalar products between the vectors and co-
vectors of the two bases orthogonal to our chosen SoV bases:

,(hlk),, Vhke{0,1,2}". (3.31)

Let us note here that these two matrices Ny, and My, modulo some normalisation, have
direct interpretation as change of bases matrices between the bases (h| and ,(k|, namely we
have:

K|
(h| = ZNl_l,gp,\(l—_, (3.32)
k k

and conversely,

N—‘ = ZMkh hl. (3.33)

We also have similar relations (with transposition) for the bases |k) and |h) p- Moreover, it easy
to verify that these two matrices are inverse to each other:

ZMkh Bi1- (3.34)

Hence to compute the SoV measure My, we just need to get the inverse of the matrix of
scalar products N j,; in the following we show how to characterize it in terms of Ny j,, proving
in particular that it has in fact the same form as ./\/'k’h13

Let us start proving the following:

Lemma 3.1. The vectors |h), of the basis orthogonal to the SoV co-vector basis (3.1) admit the
following decompositions in the SoV vector basis (3.7):

Np
— 0,2
= |h> +ZCr Z a[5h|h(__)>) (3.35)
r=1 aufuUy=1y,
a,B,y disjoint,
#a=#p=r

13Somehow this is not surprising as in the appropriate labelling of the SoV bases, the matrix N is lower-
triangular with finite depth out of the diagonal and hence its inverse should have a similar form.
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where the coefficients B, g 1, are completely characterized by the following recursion formula:

h(0 2)
Ba,ﬁ,}_1 == Cl:(0 2) Z a’ ,Bh C (02) B (3.36)
—a,p a'ca, p'cp, hep
1<#d'=#p'<#a-1
and
or (rlr) ct 3.37)
= (sls) ¥ '

where C§Z are the coefficients of the measure (3.14).

Proof. The fact that we can write each vector |h),, satisfying (3.23), in terms of the SoV vectors
|k) follows from the fact that these last ones form a basis. Here we have to prove that the above
expression for |h), and for its coefficients indeed imply the orthogonality condition (3.23).
Let us start observing that this is the case for the diagonal term. Indeed, the following
identity follows:
(hih), = (hlh), (3:38)

by the measure (3.14) being

h # h("ﬁz), Va,f C 1y, disjoint with 1 < #a = # < n,. (3.39)
(O - B

So we are left with the proof of the orthogonality of

(klh), =0, Vk#hke{0,1,2}". (3.40)
Let us start observing that for any k such that
k # h, (3.41)
(C.45)
then it also follows
k # h( 2) Va,B C 1y, disjoint with 1 < #a = #f < ny, (3.42)

(Ca5) %P’
and so by the measure (3.14) the orthogonality holds.

So, we are left with the proof of the orthogonality for the case k = }_1‘89(’52) for any fixed
disjoint sets u C 1 and 6 C 1 such that 1 < #u = #6 < ny,. Let us observe that the following
inequalities holds:

(0,2) (0,2)
h h s 3.43
—ap (c?is) —#0 ( )

for any disjoint sets @ and 8 contained in 1y, with #a = #f such that

afuand B €56. (3.44)
Then, by the measure (3.14), we get the following co-vector/vector coupling:
Np
(02) (02) . (0.2),, (02)
(b, 1), = (B> lh) + > " > IR hyad) byng (3.45)
r=1 aUfUy=1y,
a,f,y disjoint, #a=#p=r
(0,2) (0,2) (o 2) = (0.2),.(0,2)
= (0,22 h) + c*9B,, 5 (e |y Z 2. Bapnlys hg),
= acu,pBcso,
#a=#p=r
(3.46)
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that we impose to be zero to satisfy the orthogonality condition:

(h( )|h) =0, VYucC1y,6 Clydisjoint with 1 < #u=#6 < ny. (3.47)

Here, the main observation is that this can be seen as one equation in one unknown B, 5 p,
and solved as it follows:

(02),\ —#5 (02),, (0.2)
(h? ) #® % (b, by

Bu,5,1_1 =- Z Z B, Bh T oo (3.48)
(hﬁoaz) |h£052)> — ;g“fﬁc‘i h(o 2) |h£052)>

in terms of the known SoV co-vector/vector couplings and of the coefficients B, g, for any
acu,p cd,withl < #a=#p < #6—1. Then, by using the formulae (3.14) we get:

(h( )|h> —#6 h (h(o 2)|h(0 2)) —#S ) (gkg)
N o2~ C (02 =C /M, 3.49
(n(22) |h(o 2)> n®2 h (0 2) |h(o 2)> h(02) (3.49)
o acu,BCo,
#a=#p=r

from which our formula (3.36) easily follows.

Now, it is simple to argue that (3.36) gives us recursively all the coefficient B, 5 , for any
p C 1y, 6 C 1y, disjoint, with 1 < #u = #6 < ny,.

In the case #u = #6 = 1, the formula (3.36) reads:

=h
Bupp = _C;(o,zv Va#bely, (3.50)

=a,b

which fixes completely these coefficients. Then, we can consider the case of the generic couple
of disjoint sets u C 1y,6 C 1y, with #u = #6 = 2. In these cases, we have that the formula
(3.36) reads:

h®2)

Bsp=—C" o > By hC‘(”O’;), (3.51)
—u 5 acu,bed —u g
which fixes completely these coefficients in terms of those computed in the first step of the
recursion.
In this way the formula (3.36) fixes the coefficients B,/ 5/, for any fixed couple of disjoint
sets u' C 1,8’ C 1y, with #u’ = #6' = m+ 1 < ny,, in terms of those already computed, i.e.
the B, 5 h for any fixed couple of disjoint sets u C ' C 1,6 €6’ C 1y, with#u=#5 <m. O

Let us note that the coefficients B, g}, are, as previously with the coefficients C—, also
characterized in a recursive manner, and their generic expression is missing from this Lemma.

The previous lemma implies the following corollary, which completely characterizes the
SoV measure.

Corollary 3.1. Under the same condition of Theorem 3.1, the SoV measure is defined by the
following pseudo-orthogonality relations:

M
p(bll), = (hlh) | Spic+ > > Bupid (09 |- (352
r=1 aUBUy=1,, —

a,B,y disjoint, #o;:#ﬁ =r
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Proof. We have to use just the expression derived in the previous lemma for the generic vector

Tk
Bo=l+>c > Bk, (3.53)
r=1

aufuy=1y,
a,B,y disjoint, #a=#p=r

and the definition of the co-vectors ,(h| for which it holds:

Nk
k 0
o(hik), = ,(hlk) + Zcr Z Bupi p(hlkgjﬁ )) (3.54)
r=1 aufuy=1y,
a,f,y disjoint, #a=#p=r
K
s p (hlh) 61;1,1_( + Z Cr Z Ba,ﬁ,]_< 5h,k(9’g) , (355)
r=1 aUﬁUy:lk, ==a,p

a,f,y disjoint, #a=#p=r

and being ,(h|h) = (h/h), our result follows. O

4 On the construction of orthogonal co-vector/vector SoV bases

We would like now to introduce a new family of commuting conserved charges in order to
construct from them orthogonal co-vector/vector SoV bases. We first describe our construction
for the class of simple spectrum and non-invertible K-matrices. Then, from this class, we will
define a new family of commuting conserved charges T(A) which allows for the construction of
the co-vector/vector orthogonal SoV bases for a generic simple spectrum K-matrix. The scalar
product of separate states w.r.t. the charges T(A), a class of co-vector/vector which contains
the transfer matrix eigenstates, are computed and shown to have a form similar to those of
the gl, case once one of the two states is a T(A) eigenvector.

4.1 The case of non-invertible K-matrices with simple spectrum

In the gl; case, the construction of a vector SoV basis orthogonal to the left one is not auto-
matic, as it was in the gl, case. Here, it seems that the choice of the appropriate family of
commuting conserved charges to construct the basis plays a fundamental role. In this sub-
section, we consider the special case of a simple spectrum K-matrix with one zero eigenvalue.
The orthogonal co-vector and vector SoV bases will be constructed using the transfer matrices
as in the previous section.

Theorem 4.1. Let K be a 3 x 3 simple spectrum matrix with one zero eigenvalue. For almost
any choice of the co-vector (1| and of the inhomogeneities under the condition (2.6), the set of co-
vectors (3.1) and vectors (3.7) form SoV co-vector and SoV vector bases of H* and H, respectively.
In particular, we can take (1| of the tensor product form (3.8), then the associated vector |0) has
the tensor product form defined in (3.9)-(3.10) and (3.1) and (3.7) are basis of ‘H simply asking
xy gz #0in the case i), x z # 0 in the case ii), x # 0 in the case iii).
Furthermore, (3.1) and (3.7) are mutually orthogonal SoV bases, i.e. they define the following
decomposition of the identity: )&l
h)(h
I Zh: Ny (4.1)

20



Scil SciPost Phys. 9, 086 (2020)

with

N (1) 2

i d( (1+5ha 110hg, 2)) ( §5h1,2+5h1 1) 5(511,\, 1+5hN z))v( (64, 2) g(5hN 2))

Proof. This theorem follows immediately from the results of Theorem 3.1 putting to zero the
determinant of the matrix K. O

However, the proof of our Theorem 3.1 is rather involved and takes quite numerous steps
that we give in the appendices. It is therefore of interest to have a more elementary proof in
the case at hand, namely whenever the simple spectrum twist matrix K has zero determinant
or better to say as soon as the fusion relations for the transfer matrices simplify due to the
vanishing of its associated quantum determinant. In fact, this case will provide the generic
idea to get orthogonal left and right SoV bases in the general situation. So let us explain from
now on a direct proof of this theorem.

Idea of the direct proof. The statement that (3.1) is a co-vector basis of H is proven as in the
previous proposition. Indeed the main condition:

det Mx,y,z,fq #0 (4.3)

can be satisfied as well in the case detK = 0. In fact, if the matrix K satisfies the case i), we
take k, = 0 and the condition is still x y z # 0; if the matrix K satisfies the case ii), we take
ko = 0 or ky = 0 and the condition is still x z # 0. Finally in the case iii) with ky =k; =k, =0
the condition is still x # 0. So that we are left with the proof of the orthogonality conditions.
which can be proven by using the next results. O

The first step in the direct proof of the above theorem is to obtain the SoV representations
for the action of the transfer matrices in the case where the fusion relations simplify due to
the vanishing of its associated quantum determinant. It is given in the following Proposition.

Proposition 4.1. Under the same conditions of the above theorem, the following interpolation
formulae hold for the transfer matrices:
i) On the SoV co-vector basis:

N
hITOM) = d (2 —n) (Z 61,18 sy (PIBITS + éK(i?)uxm) (4.4
a=1 T
and
N N N
(hiT{O() = T () (bl + Z B, 18 PIBITE + > 83 28l (MAED)
y o v
(Z (@18, gy (ENBEVIT, +TL00 () (h (”I) (4.5)
where

Z(l_l) = {5]11,1 + 5}11,2) (X3} 6hN,1 + 5th2}’ X(}_l) = {5h1,2) (X3} 5hN:2}’ (4-6)
ht =h—(h,—1)e, with e, = {614, n.a}, (4.7)

and
(h1y s hgs s ANITE = (Ry, oo hg £ 1, Ry (4.8)
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i) On the SoV vector basis:

. N
7, (M) = d (A —n) (Z 51, 080 y(MT LB + ) ;K(;i;”(x)), (4.9)
a=1
and

N N
R R 2 —
7O = W) L) + D 181, 08 (T )+ D81, 2800 (DT, Ih)
- a=1 - a=1 -

N N
+ D 8,18y MAED) (Z 8,@082 o (EDTFP) + [nP) 7o) (&)) :
a=1 - b=1

b,z(h{?) 2,2(h?)
(4.10)
where
2
h® =h—(h,—2)e,, 4.11)
and
TRy, s gy o in) = Ry, ooy Rg £ 1, By). (4.12)
Proof. The fusion identities take the following form in the case detK = 0:
TyOEM) T = gdetM®(E,) =0, (4.13)
TEMTOE) = TV, (4.14)
T{OEMTE) = TOED) g-det MP(E) = 0. (4.15)

Let us take the generic co-vector!® (hy, ..., hy| and then use the interpolation formula:
(6, 1+6n 2)
T(K)(A)_d(l n)( Z(K(E;))(A)"‘Zgizz)(h)(mT(K) hq,11TOhg,2 ))’ (4.16)
to compute the action of Tz(k)(k) on (hq,...,hyl:

(BIT,(A) = d(A —n) (TQK(:;)(A) b/ + Z g I ITEO (0" 2))), 4.17)

where it holds:
(hy, ..., hy,. thT(K)(€(5haz+5hal)) 5ha,1(h1:-"’héz =0,...,hyl, (4.18)
being by the fusion identities:

(A1, .shg = 2, Iy TSO(ED) = 0, (4.19)
(h1,.shg = 0,... hy| TEO(E) = 0. (4.20)

This proves our interpolation formula for the action of TZ(K)(A) on the generic element of the
co-vector basis (hy, ..., hy|. Let us now use the following interpolation formula:

N

R K,00 (614,2)

Ti00) = TG )+ el WTE ), (4.21)
- a=1

For convenience, in this section, we do not use uniformly compact notations for the SoV basis co-vectors as
their explicit form is sometimes more convenient to write the action of the transfer matrices on them.
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to compute the action of Tl(k)(k) on (hy,...,hNl:

N

(k) _ (K,00) 1) (k) (k)

12 =T (Axm+Zlga,¥(l_,)(x)(5ha,1<hln (Ea)+ 8y, o (MITIOED)),  (422)
a=

where we have used that by the fusion identity it holds:

(A1, by =0, .., hy | TE(E ) =0, (4.23)

so that the above formula reduces to:

A A N A N A
(hi7{0A) = T{ 5 () (0l + Zl Sayy M, 1 (ITIV(EQ) + Zl Sty M0, 2 (0PI T3V(E0).
a= a=

(4.24)
This leads to our result for the action of Tl(K)(A) on (h| once we use the proven formula for
the action of TZ(K)(A) on (h|.
Let us now prove the interpolation formulae for the action on SoV vectors. The fusion
identities for the case detK = 0 imply'®:

TyOCEM Ry, g #0,.hy) = 0, (4.25)

and so the only contributions to the action of TZ(K)()L) on a vector |h) come from the central

asymptotic term and the terms for h, = 0, from which the action of TZ(K)(A) easily follows.
Let us now remark that the fusion identities together with the commutativity of the transfer
matrices also imply the following actions:

TYOE IR, wr by =1, sy} = TS E DIy, o By = 2,0, hy), (4.26)
TOEWY Ry, oy hg = 2,000, By) = [, s hg = 1,0 By, (4.27)
TOE DR, s hg = 0, s i) = [, e hg = 2, .. h), (4.28)

from which we get the following action by interpolation formula

N
R R 2
TR = W TESI )+ 85,08 W) (TE) 1)
y 2y y

N N .
+ D 8,28y MTIh) + D5y, 180 (VTS (ET] [h), (4.29)
=1 - a=1 -

a

from which our formula for Tl(k)(l) on |h) follows by using the one proven for Tz(f()(k) on
|h). O

We can complete now the proof of the Theorem 4.1:

Proof of Theorem 4.1. Let us start proving the orthogonality condition:

<h1,---)hN|kl:---,kN> =0, V{kla---:kN} #{hla-":hN}e{O’ 1:2}®N- (4.30)
The proof is done by induction, assuming that it is true for any vector |k, ...,ky) such that
2521(5&[,1"‘ 5r2) = I, 1 < N—1, and proving it for vectors |ki,...,ky) with

2521(5,(;1’1 +8s 2) = [+1. To this aim we fix a vector |ky, ..., ky) with >N (8k 1 +8k 2) =1
and we denote by 7t a permutation on the set {1,..., N} such that:
Ok a1 T Ok 2 =1 fora<l and k) =0forl <a. (4.31)

151t is important to remark that the only ingredient of the proof for this theorem involve only the simplified
fusion relations.
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a) Let us first compute:

(hy oo ANITSOE s 1)K, oo k) = (s A IKG e KR 5 (4.32)
where we have defined:

k/

@ = ka@y Ya€{L..,N}\{{+1} and K]

=1 (4.33)

forany {hy,...,hn} # {k], ..., ky} € {0, 1}®N. There are three cases. The first case is h41) = 0,
then the fusion identity implies:

(s oo NI E )l o k) = 0. (4.34)

In the remaining two cases hra+1) =1 or hyqy1) = 2, we can use the interpolation formula to

compute the action of T (5n(1+1)) on the co-vector (h,..., hyl:

(Rt oo ANITSCE )R, kN>—d(5((,H)) TN E nt)) (B o B lKy, o ) (4:35)

+d(&! M)Z 810,18y E o) (B sy = 0, gyl o ).
(4.36)
Let us remark now that from {hy, ..., Ay} # {k, ...,k } and b1y = 1 or hyyq) = 2, it follows

also that {hq,...,hn} # {kq, ..., kN}, Deing kﬂ(lﬂ) = O so that:
(hq, ..., Anlkq, .o k) = 0. (4.37)
Moreover, it holds:
&n,1(h1, by =0, .., hylky, .. ky) =0, Yae{l,..,N} (4.38)

Indeed, if a € {1,...,N}\{n(l + 1)} and h, = 1, we have {hy,...,h) =0,...,hy} # {ky,...,kn},
being k,+1) = 0 # hyg41y) € {1,2}. While in the case a = n(l + 1) either hyq4q) = 2,
so that 6, 1 =0, or hy41) = 1 and the condition {hy, ..., An} # {k3, ...k} implies that
there exists at least a j # m(l + 1) such that h; # k;, so that we have still

{hl? ceey h;‘E(H—l) = 0, ceey hN} # {k]_, ceey kN}.
b) Let us compute now:

<h1) [RXD) thT]FK)(gﬂt(l-i-l))“{]) (LX) kN) = (hI) (XD hN |k17 (L) k|/\|>) (4'39)
where we have defined:

kK@ = kna) Ya€{1, . ,N\{{+1} and k., =2, (4.40)

n(l+1) —

for any {hy,...,hNn} # {K’, ...,kl’\l} € {0,1}®N. There are three cases as well. The first case is
hr@+1) = 0, then the fusion identity implies:

(R, oo NI E e o k) = 0. (4.41)

For the second case for h 1) = 1, it holds:

<h1,...,hN|TfK>(£na+n)|k1, )
= (h]_, ceey hﬂ(l-H.) thk].’ ceey TL'(H—]) 0 ceey kN) =0. (4.42)
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So we are left with the case h,;4;) = 2. Note that in this case the condition
{hy,....,hn} # {k7, ..., ky} implies that there exists a j # m(l + 1) such that h; # k;, being by
definition hn(lﬂ) = kn(l 1) = 2. We can use the following interpolation formula to compute

the action of T (En(lﬂ)) on the co-vector (hy, ..., hy|:

(B o I TYOCE 1)) = 1y;;_;;)(£na+l))<h1,...,hN|1_<>

+Zgg?;@)(gﬁaﬂ))éha,l<h1,...,hN|TfK)(5a)|1_<>
a=1 -

N A
+ 280 Erin)Bn, ol INITLOEDI). (4.43)
a=1 -

From {hy,...,hN} # {kq, ..., kn} it follows:
(hy,...,hn]K) =0, (4.44)
and, moreover, it holds:
81yt (1, o NITLOEDIR) = 81,1 (R, o By = 2, ., iy [K) =0, (4.45)

as for a = m(l + 1) it holds 6, ; = 0, because h 1) = 2, while for a # 7(l + 1) we have still
hﬂ:(l+1) =2 ?é kn(l+1) = 0 so that:

(hy,...,h, =2,..,hyk) =0. (4.46)
So, we are left with the last sum in (4.43), for which it holds:
By 2Rt s ANITYOUEDIR) = 8, o, oo by = 1, NI TS (EDID. (4.47)
i) For a = n(r) for r > [ + 1 it holds:
81y 2{Pr1)s oo . ey TS O (E eI
@2 \m(1)s s My = > Er(N)I 42 n(r)/I2
— 6ha:2 (hn(l): ceey h;'t(r) - 1, ceey hn(N)lkn(1)> ceey k;';(r) - 1, ceey kn(N)): (448)

with {hﬂ'(l)""’h;r(r) = 1""’h7T(N)} 7é {kﬂ.’(l)’ k;;( y = "kTL'(N)}' Indeed, ifr=14+1we
have shown that there is a j # 7(l + 1) such that h; 7é kj, while if r > [ + 2 we have still

hagi1) =2 # knge1) = 0.
So that for a = w(r) for r = [ + 1, we can use the step a) of the proof to get:

(hﬂt(l)’ h;r(r) .ey hn(N)lkﬂf(l)’ ceey k;;(r) = 1, ceey kTC(N)) =0. (449)

ii) For a = nt(r) for r < I. If k() = 2, then we can write the Lh.s. of (4.47) as it follows:

R) (1
B2 s oo ANITEOERLDIK) = 8y (s oo il o Ky = 1o Kngry), (4.50)
which is zero being h .y =2 # kn(r) 1.

If k() = 1, then we use the interpolation formula:

A N A
Ty (E )l = d(E! (r))(uc) T E )+ . g,i?;(h)(én(r))T§K)(£n(n))|1_<>), 4.51)

n=I[+1
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where we have used that, by the fusion identity:

T(K)(g(l) ))|l_<) =0forn<las Tz(K)(gS({I)) 2(K)5k (En(n)) =0. (4.52)

Then, for a = () for r <l and if k() = 1, (4.47) reads:

B, 2 (1) - h%m 1, oo gy | TS (E ) )
) zd(g(nl()r))(Tz(Ii(ic; (gﬂ:(r))(hﬂ:(l); SX3) h;'t(r) =1,.., hn(N)“_()

n(r

) _ _
2 8 Ere (s e h gy = Lo Bl K2y s Ky = Ly Ky))-

n=I[+1
(4.53)
Here we have:

(hrz:(l): ceey h;'t(r) - 1, ceey hn(N)ll_() - 0, (454)

being h 1) = 2 # ky41) = 0. Moreover, the remaining matrix elements
(hﬂ'(l)5 ceey h/rt(r) = 1, ceey hTL'(N)|kTL'(1)3 ceey k;;(n) = 1, ceey kTL’(N))) (455)
for r < I and 1 +1 < n are such that {hy),..h ), = L.k} #
{kr(1)> o> kg(n) 1,...,kyny}. Indeed, for n =1+ 1itholds h,;1)=2#k /(l+1) = 1 while for

[+2 < nitstill holds hﬁ(lﬂ) =2 # ky41)=0.
Finally, we can apply the step a) of our proof to show that (4.55) is zero for any fixed
[ +1 < n, just exchanging the permutation 7 with the following one

(@) = m(a)(1—=6q141)(1 =6 n) + ()8 g 141 + (L +1)5g - (4.56)

The computation of the SoV measure is standard [37,39] once one uses the interpolation
formulae of the transfer matrices given above. Let us write the elements of the proof. Let us
first define: .

h)) =h—(h,— e, Va,je{l,..,N}x{0,1,2},

and compute the matrix elements:
(P 750EM)R) = (P). (4.57)

We compute the action of TZ(K)(ﬁgl)) on the right by using the corresponding interpolation
formula, and from the orthogonality conditions we get that there is only one term with non-
zero contribution, which reads:

d(E®@) N £ (6hn1+6hn2)

BOITEOEDIE) = B) o) : (4.58)
d(ggl)) nfan=1 &, — g5hn,1+5hn,z)
Similarly, we want to compute:
(O T{O(E)BP) = (Bh), (4.59)

by using the interpolation formula for the right action of Tl(f()(i <), we obtain that once again

there is just one term that give a non-zero contribution due to the orthogonality and it reads:
(5hn 2)

P78 EHDP) = (PD) ]_[ (4.60)

5
b1 é’(l) ( hp,2)

from which our formula for the normalization holds. O

26



Scil SciPost Phys. 9, 086 (2020)

The following corollary holds:

Corollary 4.1. Let K be a 3 x 3 simple spectrum matrix with one zero eigenvalue. Then for almost
any choice of the co-vector (1| and of the inhomogeneities under the condition (2.6) the states

(0l=(h; =0,..hy =0|, (2|=(h; =2,...hy =2| (4.61)
are TZ(IA()(A) eigenstates:

17572 = £2,0d (A= m)d(A)(0), 4.62)
@750 = t2,0d(A—n)d(A + )2, (4.63)
T80()Ih) = 1) t,0d(A—md(2+m), Yhe {1,2}" (4.64)

while (0| is also Tl(m(k) eigenstate:
OIT00) = t10d()(0). (4.65)
Proof. It is enough to take the interpolation formulae for the transfer matrices and apply them
over these states. O

Theorem 4.2. Let K be a 3 x 3 simple spectrum matrix with one zero eigenvalue and with the
inhomogeneities under the condition (2.6). Then the transfer matrix spectrum is simple and, for
almost any choice of the co-vector (1|, the vector |t,) and the co-vector (t,| are transfer matrix
eigenstates if and only if they admit (up to an overall normalization) the following separate form
in the co-vector and vector SoV eigenbasis:

Zl_[tsh” ED)e 2 e, )| ) (4.66)
h n=1
N & 5 (h|
(el = 2 ] e Ee € o (4.67)
h n=1 h

where the index a run in the set of the transfer matrix eigenvalues of Tl(K)(A) and the coefficients
of the states are written in terms of the corresponding eigenvalues:

1Ot = lt) 1140, TR = ) £2(2), (4.68)
(tl T = 1Mt (El TSV ) = 2., . (4.69)

Finally, if the matrix K has simple spectrum and is diagonalizable, the same is true for the transfer
matrix TI(K)(A), which therefore admits 3N distinct eigenvalues t1.(A) with a € {1,..,, 3N}

Proof. Let us compute the matrix element:

(hie) = 1|1_[T“”5’“1 €T e 1) = (1)) 1_[t 0Dy (E,). (4.70)

a=1 a=1
From our SoV decomposition of the identity, it holds:

|h)
=> (hlr) =, (4.71)

h Ni
and then fixing the normalization of the state |t) by imposing (1|t) = 1, our statement is
proven. O

The functional equation characterization of the transfer matrix eigenvalues and ABA like
representations of the states hold also in the case where the 3 x 3 simple spectrum matrix K
has one zero eigenvalue.
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4.2 Scalar products of separate states in orthogonal SoV basis

Let us introduce the following class of "separate" co-vectors and vectors:

Z]‘[a(h o 21—[ <h> @.72)

h a=1 h a=1

The eigenvectors and co-vectors of the transfer matrix are of this form, with coefficients aﬁa
constrained by their eigenvalue. We have the following scalar product formulae:

Theorem 4.3. Let K be a 3 x 3 simple spectrum matrix with one zero eigenvalue and let the
inhomogeneity condition (2.6) be satisfied. Then, taken the generic transfer matrix eigenvector:

Zl_[t% EN D (473

there exists a permutation m,, of the set {1, ..., N} such that:
t1,0(Er,0)) = t2n(€r,ay—M) =0, V(a,b)€EAXB, (4.74)
t1n(&n @) 0, ton(Er,y—M)#0, V(a,b)EAXB, (4.75)

where we have defined:
A={1,..,M.}, B={M,+1,..,N}L (4.76)
Moreover, the action of the generic separate co-vector (a| on it reads:
(€8] €y
(alt,) = ﬁ d(EP) V(0 Eryuy)
W)=
a=1 d(ggll)) V(gnn(l)’ gﬂ:n(l\/ln))

(aletZ n) (a|thl,n)
detN_M M+ N—M, detMn M_:Mn

X b
V(&1 -+ Ema)) V(Emy)s ++s Emaiay))

(4.77)

where we have defined:

|fo2n)
sl
( HN=-M. J(i peqa,...N—M, }2

MH

( 1-h €)) (h) j—1
ﬂ. (M, +l)xA (gnn(M +1))_2 n(gﬂ'n(MnH))(g"n(Mn‘H))] )

h=0
(4.78)
1
(alxpty;) _ (h+1)_h () j-1
(M_J\An )(i,j)e{l _____ M, }2 - hZ:O 2(0) XB(gnn(l))tl n(‘gn (1))(575 (i)) P (4.79)
with
x(x)—l'\&llk_gnn(a)-i_n xy(A) = ﬁ A’_gﬂ:n(b)_n
! ia A i@ wiim, A Em) (4.80)

ty,(A) =d(N)tz,(A)/d(A —n).
We have the following identity for the action of the eigenco-vector (t,| on the eigenvector |t,):
(1 (1
N V(E o Ermy)

N M
(tnltn> = l_[ l_[ t2,n(‘§5.,}n)(b))xA(‘znn(b)) l_[ tl,n(gnn(a)) detMn TMn:
ozt V(Em,1) -+ EmaM) piim, a=1

(4.81)
where we have defined:

1
1-h h i
(TMn)(i,j)eAZ = Z tl’n(ggrn(i)))xg(5ﬂn(i))(§5rn)(i))] 1- (482)
h=0
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Proof. It is worth recalling that the zero and non-zero pattern of (4.74) and(4.75) has been
derived in [81]. There, we have moreover observed that the eigenvalue of the transfer matrix

T. 2(12)(70 is completely fixed by them, i.e. it holds

M, N
W) =T dA -] [a-e8 ) [] A—&nap- (4.83)
a=1

b=1+M,

The proof of this theorem is a direct consequence of the new found SoV measure (4.2) and
of the form of the separate states, from which we get

(alts) ZH

1
Tweoam1 (€D
(6, 2+6 ) (8 1+0my.2) ) ) (8ny.2)
( 1h12 hy,1 g 1 th)V( hy,2 & th)

Vz(gl) sees gN)

We now use the existence of the permutation 7, and the characterization of the zero and
non-zero pattern for the transfer matrix eigenvalues (4.74) and (4.75) to factorize the above
sum into two sum and get our result. Indeed, by using them the rh.s. of (4.84) reads
(MY =M, +1):

(1+6n,,1+6n,2)
d(Sq ) Breo () P2z, qlhe

14
(4.84)

2 (2)
7T (a) hy (a)2 ( nn(a))
> T e ol
hﬂn(l) ’’’’’ hnn(M) 1 hnn(Mn-H) ,,,,, n(N) =0a=1 (5 (a))
1 (1) G2 2) e p)2)
(hnn@)v(gnn(n’“ E )V (Er o & ™)

(45, 1)
N d( hitn(b) )

A (b) -

l_[ 1) 2n © (5(1 b)) m,(b) \%

=my (S 1,) (€3> €,V (E (1) -+ €M)

(6n 1) (6n 2) (6n 1) (6n 1)
M m®) (1) M, (@2’ Tn(Mp+1): mn(N)
: ﬁ € (1) &) N @) Eru) V(Enyimny) i)
i Py Ema) ~Ema@) o1 b=M &)~ Em,(b) V(Er M, +1) - EmN)
(4.85)
We can then factorize out of the above sum the factors:
N qe@yv(E®D LDy
(&) ) M
a (1) m,(My) (4.86)

a=1 dEM) V(& @)s s Emym,)

being left with the product of the following two independent sum, i.e.

(Ohyy, (1,2) CTNPVRE)
2 M" shﬂn(a)’2 (hnn(a)) (hnn(a) 1) V( Ttn(l) 2 g7Tn(,\/|n) )
Z l_[ tl,n (gﬂfn(a)) m,(a) Xp (gnn(a)) V(E g )
hﬂn(l)""’hﬂn(Mn):l a=1 TEn(l)’ B Tfn(Mn)
(4.87)
times
(6n 1) (n 1)
1 N n(Mp+1) n(N)>
Z l_[ nn(b) (g(l )a (hnn(b))xl_hnn(b)(g )V(gﬁn(Mﬁ) ’""gﬂn(N) )
n,(b)’ Tm(b) TA 7,(b) V(g . g )
hnn(M;)""’hﬂn(N)ZO b=M+ nn(Mn )’ o nn(N)

(4.88)
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As previously remarked in [37,39], these sums admit a representation in terms of one deter-
minant formulae, thanks to the multi-linearity of the Vandermonde determinant. From this,
our result (4.77) follows.

To derive the formula for the "norm" of the transfer matrix eigenvectors, we just have to
observe that by the definition of the vector SoV basis, it holds:

(talh) = ]_[t HEJ (5a)—]_[t (EDYE T e g ), (4.89)

and so we have that

(tn|1_1> =0, V(h”n(Mn+1)’ cees hﬂ:n(N)) ?é (0,...,0). (4.90)
Then the sum (4.88) reduces to
N
[T £2.E00) %), (4.91)
b=1+M,

while the first one reads:

M,
l_[ tl,n(gnn(a)) Z l_[ ty n(g(z(:)nn(a))) Xp nn(a)_l)(gﬂ'n(a))
a=1

hnn(l) ..... hrc M= =1la=1
(5hnn(l),2) (5hnn(Mn),2)
V(‘Snn(l) o€ ) )
V(Er, )+ Em,(M,))

It is now quite direct to verify the formula (4.81). O

(4.92)

4.3 On the extension to the case of simple spectrum and invertible K-matrices

The results of the previous subsections give us the possibility to define a new family of con-
served charges, from which we can introduce the orthogonal left and right SoV bases also in
the case of a general simple spectrum K-matrix with non-zero eigenvalues.

Let us assume that K is 3 x 3 simple spectrum and diagonalizable matrix with non-zero
eigenvalues. Then, by our previous results in the SoV approach [1], we know that the associ-
ated transfer matrix Tl(K)(A) is diagonalizable with simple spectrum almost for any value of the
inhomogeneities under the condition (2.6), and we have the SoV complete characterization of
its spectrum.

Let {|t()), a € {1,..,3N}} be the eigenvector basis and let {(t%], a € {1,..,3N}} be the

eigenco-vector basis associated to the transfer matrix Tl(K)(A). We define the two new families
of conserved charges:

(K) (K) | ElK)><tElK)| . .
T m—Zt (A)W, with j € {1,2}. (4.93)
a a

Here, we have denoted with ty?(?t) the spectrum of the transfer matrices TJ.(K)(A) associated

to the matrix K, obtained from K by putting one of its eigenvalue to zero while keeping its
spectrum simplicity and its diagonalizable character, i.e.:

TO®) = 110) D), 1)) =110y ), (4.94)
(TP = (L (1113700 = Al (4.95)

30



Scil SciPost Phys. 9, 086 (2020)

Note that, by construction, the families T;K)(l) are mutually commuting and they commute
with the original transfer matrices as they have diagonal form in the eigenbasis of the original
transfer matrix Tl(K) (A):

[’]TgK)(A), Tgf)(l)] _ [TI(K)UL): Tgl()(k)] =0, l,me({1,2}, (4.96)

and they share the same spectrum as the transfer matrices TJ.(K)(A). Hence, they satisfy the
following fusion equations:

TEOEM)TOE,) =TI EW)T(E,) =0, (4.97)
M€ ) =1 . (4.98)

We can now use these new family of conserved charges to construct SoV basis according
to (3.1) and (3.7) since the twist matrix K has simple spectrum:

N
= @ [y O ), Ve 0,12} 4.99)
n=1
=~ N (K)6 (K)é
b =] [, " EIT) P EDI0), Yk, €{0,1,2) (4.100)
n=1

They are mutually orthogonal as the direct proof of Theorem 4.1 uses only the fusion relations
which are just identical to the above ones (4.97) and (4.98):

N
(kih) = N, [ [ o5, (4.101)

V( (5h1,2+5h1,1) . g(‘ShN 1+, 2))V( (6p, 2) . 5(511,\, 2))

_ﬁ5 d(EM) )
11 ha,kad( gl+5has1+6ha:2)) V2(Eq, .y, EN)

(4.102)

They are also SoV bases as the spectrum of the TEK)(A) is separate in these bases. We have the

following representation of the vector and co-vector of the original transfer matrix Tl(K)()L):

\ .

1600 (R)81,0 (1) (K)% 1h) 103

I ;Lp EDt D (4.103)

() Zﬁt B3, (K)ahn 2 )@I 4.104)
21 £t En Ny ~

Moreover, let us comment that separate states of the form

N n N N

— E :l | hg |h> _2 :l | hq (hl
a) = ag ) N—, (al = ag ) N—, (4.105)

h a=1 h h a=1 h

satisfy the same Theorem 4.3 with the transfer matrix TI(K)()\) eigenvectors. This is easily
derived by using the representation of the transfer matrix eigenvector in the SoV bases con-
structed by the conserved charges ']I‘(lK)(A), since from them one gets scalar product formulae
similar to those of the gl, case, even for the simple spectrum invertible K matrix.
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5 Conclusions and perspectives

In the present paper we have addressed the problem of computing the scalar products between
the left and right SoV bases introduced earlier in [1] (see also [75]) for the fundamental rep-
resentations of the ))(gl3) lattice model with N sites. These SoV bases are determined from
chosen sets of conserved charges generated by the transfer matrix. In the model at hand the
left and right SoV bases following the construction given in [1] can be written in terms of the
transfer matrix Tl(K)(A) and its fused transfer matrix Tz(K)(JL). An important feature of these
SoV bases is that they are not orthogonal to each other for generic twist matrix K having simple
spectrum. The first key result of the present paper is the computation of the matrix of scalar
products between these right and left SoV bases as stated in Theorem 3.1.

Theorem 3.1 also shows that whenever the twist matrix K has simple spectrum and zero
determinant, the chosen left and right SoV bases are orthogonal to each others since the off-
diagonal elements of the matrix of scalar products are all proportional to some strictly positive
power of the determinant of K. Moreover, in that case, we have been able to give a direct proof
of this result simply using the simplified fusion relations resulting from the vanishing of the
corresponding quantum determinant. As a consequence, it leads to very simple formulae for
the scalar products of the so-called separate states. In that case they are just given by products
of determinants which are similar to the ones of )(gl,) type.

This observation leads us to consider the generalization of these features for the case of
a generic twist matrix K having simple spectrum and non zero determinant. This amounts
to define new SoV bases constructed from different sets of conserved charges with respect to
the one’s so far considered. We have shown that such sets of conserved charges indeed exists
and we have characterized them using their generating functional T(K)(A) for j = 1,2 defined
in (4.93). By using them, we have determined new left and right SoV bases that are indeed
orthogonal to each other, leading to simple scalar products formula for their separate states,
and in particular for the scalar products of separate states with transfer matrix eigenstates.
They are given as products of V(gl,) type determinants. This paves the way for their use in
computing form factors and possibly even correlation functions of local operators. For this we
will need to be able to write the resolution of the quantum inverse scattering problem in a
form suitable to act in a simple manner on separate states. This question is now under study.

Another important question, with regards to the key results obtained in the present paper is
how to determine in general sets of charges having properties similar to the one determined in
(4.93). One possible route to this could be to construct explicitly the similarity transformation

between the operator families ’]I‘E.K)(A) and TJ.(K)(A). In a future publication, we plan to show
for example how to compute

(18, va,be1,..,3Y, G-

which just define the matrix elements of the similarity transformation from T(lK)(A) to Tl(K)(A).
This seems accessible thanks to the scalar products analyzed in Theorem 3.1. Another impor-
tant open problem, deserving further analysis, is the possibility to find a direct construction of
the new family of conserved charges ’]I‘SK)(A) in terms of the original transfer matrix Tl(K)(A)
or the associated known family of commuting operators like the TZ(K)(}L) and the Baxter Q-
operators for the general invertible twist K. More generally, the purely algebraic construction
of a family satisfying the same simplified form of the fusion equations, like those written in
(4.97)-(4.98), is one of our future goals.
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A Explicit tensor product form of SoV starting co-vector/vector

Here, we want to prove the statements of the Proposition 3.1 about the fact that given the
co-vector (1| of tensor product type then we can write explicitly the vector |0) and it has a
tensor product form too according to (3.9) and (3.10).

Let us start proving the following general property, that we state for the gl case but that
indeed can be extended to the gl cases as well for rational R-matrices:

Proposition A.1. Let K be a 3 x 3 matrix, then we have the following explicit formula for the
product of transfer matrices:

| | (K) _ p(ar) 5a1,,4;) £5(ay,..,.am-1)
T (gaj) al, ,GMRal ;1,,a1—1 Raz, 1,. ,a2—1 Rajﬂ,l,...,ajﬂ—l RaM;l,,..,aM—l
j=1
(az, ,aM) A (Qjg15e5a0) ~(am)
x ®Ka) ap;a;+1,..., Raj;a]-+1 ..... N RaM,l;aM,1+1 ..... NRaM;aM+1,...,N> (A]')

where we have taken a; < a, < -+ < ap—; < ay and M < N and we have used the notation:
Ra;bl,...,bM = RabM('ga - ng) o 'Rabl(ga - gbl )> (A.2)

’\( ay o’ :ba . .
while bl by *” denotes the same product of R-matrices however with the factors Ry, up to
1oeees aj
_ : — 2 2 :
Rgp,, omitted and ng, =[1; Mg ap With g o =1* = (&, —&4,)°. Then, for any choice of
1< haj < 2 we have:

M
K Rg,
o [r®¢) = > D
j=1

r1€A1 ..... I’MEAM SleBl,...,SMEBM
M Mo
-
X V(g oo MV (51, 0 5m) (0l QU K, QK (A3)
=1 " j=1
where we take the following tensor product form for the co-vector:

N

(0l = X)(0,al. (A.4)

a=1

V(x1,...,X\) is the Vandermonde determinant, and C,.,
ficients. We have defined:

TS 1oy ATE SOMe finite non-zero coef-

1,..', i—1 .ha-:2’
Ajz{aj,...,N}U{{ @a] } g:h].=1 )
i+1,..,N} ifh, =2
szaJU{{a’ (z) } Zzhj:l (A.6)
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Proof. Let us consider the following product:

Ra;a+1,...,NRa+l;1,...,a+l—1 = Ra;a+2,...,NRa+l;a+2,..4,a+l—1Ra,a+1Ra+l,a+1Ra+l,aRa+l;1,...,a—1 (A'7)
= Ra;a+2,...,NRa+l;a+2,..l,a+l—1Ra+l,aRa+l,a+1Ra,a+1Ra+l;1,...,(1—1 (AS)

= Ra;a+3,...,NRa+l;a+3,,..,a+l—1Ra,a+2Ra+l,a+2Ra+l,a

x Ra+l,a+1Ra+l;1,...,a—1Ra,a+1 (A9)
= Ra;a+3,...,NRa+l;a+3,...,a+l—1Ra+l,aRa+l,a+2Ra+l,a+1
x Ra+l;1,...,a—1Ra,a+2Ra,a+1’ (A.lO)

where we have used the commutativity of R-matrices on different spaces and the Yang-Baxter
equation. So, by iterating it, we get:

_ p(a) pla+l)
Ra;a+1,...,NRa+l;1,...,a+l—1 - na’a""lRaH;1,...,a+l—1Ra;a+1,,,.,N’ (All)
once we use that:
Ra,a+lRa+l,a = na,a+l' (A12)

From this identity we get:

(K) (K) _ p(a) pla+l)
T1 (ga)T1 (§a+l) - na,a+lRa;1,...,a—1Ra+1;1’m’a+1_1Ka ®Ka+ZRa;a+1’m’NRa+l;a+l+1,...,N’
(A.13)

from which we easily obtain our statement (A.1) in the case M = 2. The general case is proven
by induction on M. To get the M + 1 case knowing that the formula (A.1) is satisfied for M,
we need to prove the following equality for q;_; < a; < -+ < ap < Qgqq:

par,....ax) plap,....ax) _ A(a—1,-,ar) 5(ag, k1)

Ral_l;al_ﬁ-l,...,N g1 Leens@ry1—1 nak+1,al—1Rak+1;1,...,ak+1—1 Ral_l;al_ﬁ-l,...,N' (A'14)
We have the following chain of equalities using the Yang-Baxter commutation relations, then
the unitarity relation for the R-matrix and in the last step the fact that two R-matrices acting
on different spaces commute:

(ag,..-ax) 5(a,...,.ax) —
ai_1;a1+1,.,N "1, a—1
— '\(al,...,ak) R '\(al,...,ak) A(al,...,ak) R A(al,...,ak)
Q1301+ 1, N T U—10k41 Traig 30+ ey Qg 3@ 1 Q1 =1 T W1 A1 T Qg3 15,0011
— plas.a) 5 (ag,..,ax) £(ag,-,ax) R R 5(a, - ar)
aj_1;ax41+ 10N @i aq 1, a =1 a0+ 1A =1 T A1k T G141 T a3 1 qp-—1
=n A(al,...,ak) A(al,...,ak) A(al,...,ak) '\(al,...,ak)
AU+ 1581~ Apeye1301—1F Loy Qg1 =1 T apg 3 Le0a -1 Thap a1+ 1,0, N @@+,
=n 7(a_1,-,ax) (a5 5Qes1)
AUt 15317 " Apyq3 L0001 —1 7 qp_g3q5-1+1,..,N°
(A.15)
et us prove the induction going from M to M + 1. We have:
M+1 M
(x) _ (K) (K)
[]r®E) =] %) 18,
j=1 j=1
—n R 5(a1) . oplaneeg) . oplagnapor)
a15--aM” Tag;l,..,a1—1 T agsl,...,a—1 ajﬂ;l,...,ajﬂ—l apm;1,...,apm—1 (A 16)
o plasan) 5 ) alaw
~(ag,...,apm AAj11500M Alam
x ®KajRa1;a1+1,..,,N Raj;aj-i-l,...,N RaM,l;aM,1+1,...,NRaM;aM"‘l’---’N
J=1
x RaM+1§1;---’aM+1_1KaM+lRaM+1;aM+1+1;---;N'

Then, keeping the last factor as it is and moving the term Ry, .1, q,,,,—1 tO the left using the
above proven exchange relation (A.14) successively, and then moving K, . freely (there is no

34



Scil SciPost Phys. 9, 086 (2020)

object acting in the same space) to the left until it will join the products of other matrices K,
we get the desired result.

We have to use now that (0| is an eigenco-vector for a generic product of rational R-matrices
acting on the local quantum spaces, hence:

(OlRal ..... al—lR(al) = mal,...,aM (Qla (A.17)

,,,,, a,—1 e a]-H;l,A..,ajH—l e am;1,....apm—1

withm,, o, some calculable non-zero coefficient. Using the explicit formula for the R-matrix,

.....

this implies the following identity:

M
(x) _ (az ..... am) . A(Qjs1505aM)
(0l ]j Ty (Eq,) = Ny, . apMay,..oay (O] ®K R LR -
. _ﬁ(aM) R
ap—1;apm—1+1,..., N-tamsam+1,..., N>

and so:

M
o] [T = > C,
j=1

rie{a;+1,...,N},...,rme{apy+1,...,N}

.....

M
VLo )OI QK. (A19)
&

Applying once again this formula, we get our second statement. O
The following lemma holds for a general simple K matrix.

Lemma A.1. Let K be a 3 x 3 w-simple matrix, then if we chose the tensor product form:

N N
<l| = (®<1)a|) F{/TII) 1—‘W = ®WK,Q? (AZO)
a=1

a=1

we have that the vector |0) defined in (3.5) has the tensor product form:

N
0) =Ty )10, a), (A.21)
=1

where |0, a) has the form (3.10) and it satisfies the following local properties

(1,alK{”10,a) = 1/ g-det MD(E,), (A.22)
(1,al(K)0,a) =0, forh=0,1, (A.23)

where K is the adjoint matrix of K;:
K,K; =K;K; = detK. (A.24)

Proof. Let us take the following normalization for the SoV co-vector basis:

N (K)(g )hn
hy,...h - , A.25
(hy, ooyl = |]_[qdemm(5 = (A.25)

where we have defined:

N N
= (1] Jq-detm®D(£,) QK. (A.26)
a=1 a=1
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Now we can use the previous lemma to get the following statement:

N
(hihinl = D0 (0l QK@K (A.27)
k1,0 kn=0,1,2 a=1
with
cf’jlljf;;;szozo if 3j € {1,..,N} : h; #0. (A.28)
By definition:
N N
0 K'\%%0) = 0,alK; "*|0,a)=0 ifdae{l,..., 1ky#0, A.29
(0l QK @ka|0) =] [(0, alk{¥*|0,a) =0 if 3a € {1,..., N} : k, # (A.29)
a=1 a=1
so we get:
(hy,....hn]0) =0 if 3j € {1,..,N} : h; #0. (A.30)
The fact that: \
(0/0) =] J(0.al0,a) =1 (A.31)
a=1

is proven by direct computations.
Finally, let us observe that the following identities:

N (18 ))h" N 05 5
n K)on,0 K)on,,2
(ol —— =], - e, (A32)
v n=1

=1 (g-detM (&)

holds for any h,, € {0,1,2}. Now, in the limit detK — 0, keeping K a 3 x 3 w-simple matrix'®,
we have that the r.h.s. of the equation (A.32) is well defined and it defines the limit of the L.h.s.,
so that our co-vector SoV basis goes back to the one defined in the case detK = 0. Moreover,
the |0, a) are well defined and so the |0) above defined in this limit still satisfies (3.5). O

B Orthogonal co-vector/vector SoV basis for gl, representations

Here, we consider the fundamental representations of the gl, Yang-Baxter algebra associated
to generic quasi-periodic boundary conditions, with transfer matrix:

TR = try K,Ryn(A—EN) Ry (A—&;) € End(H), (B.1)

where # is the quantum space of the representation, R, ,(4) € End(V, ®V}), V, ~ C?,V, ~C?
is the rational 6-vertex R-matrix solution of the Yang-Baxter equation and the twist matrix
reads

_[a b 2
K= (C d) € End(C?). (B.2)

The construction of the orthogonal co-vector and vector SoV bases for these gl, repre-
sentations is here implemented to define a reference to compare with for the more involved
constructions that we have considered in this paper for gl; representations. One should men-
tion that up similarity transformations'” the SoV bases in these gl, cases are already available
in the literature using the framework of the traditional Sklyanin’s SoV construction, see for

16That is according to the three cases considered in the Theorem 3.1.
17As discussed in section 3.4 of [1]
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example [40] for the antiperiodic case and [55] for more general twists. However, here we
are interested in implementing these constructions entirely inside our new approach [1].
The following proposition allows to produce the orthogonal basis to the left SoV basis

(hy,...,hy| = 0|]_[(T(€(5“) for any {hy, ..., hn} € {0, 1}V, (B.3)

and to show that itself is of SoV type just using the polynomial form of the transfer matrix and
the fusion equations.

Let us denote with |0) the non-zero vector orthogonal to all the SoV co-vectors with the
exception of (0], i.e.

N
l_[nzl 6hn,0
Vz(gla cees gN)’

with (hq,...,hy| the set of SoV co-vectors a basis. |0) is uniquely defined with the above
normalization. Similarly, we can introduce the non-zero vector |1) orthogonal to all the SoV
co-vectors with the exception of (1,...,1|, i.e.

HN: Op, 1
V(EL - ENVED, ..., )

which also fixes the normalization of |1).

(hy,...,hn|0) = V{hy,...,hn} € {0, 1}V, (B.4)

(hy,..,hy]1) = V{hy,...,hn} € {0, 1}N, (B.5)

Proposition B.1. Under the same conditions assuring that the set of SoV co-vectors is a basis (i.e.
almost any choice of (0|, K # xI, for any x € C, and the condition (2.6)), then the following set
of vectors:

N T(K)(g 1—h,
|h1)' : l_[( a(ga ) |l>: V{hl)'“:hN} € {Oal}N (B6)
a= Cl
forms an orthogonal basis to the left SoV basis:
N
_. 0
(hy, s il oo ) = [oms Sk, . (B.7)

V(Ep, e ENVET, . ECV)

Let t(A) be an element of the spectrum of T® (L), then the uniquely defined eigenvector |t) and
eigenco-vector (t| admit the following SoV representations:

=2 l_[(tg‘%) VEM, ., e(")hy, ... ), (B.8)
hl ..... hN_Oa 1 a
Y t(Ea—1)
(t| = Z l_[( a— "M )1—ha V(g(fu) ’§|(\|hN))<h1; ...,th, (B.9)

hdm=oa=t  4(&a)
where we have fixed their normalization by imposing:
(0ft) = (t|1) =1/V(&Ey, . EN)- (B.10)
Proof. Let us start proving the orthogonality condition:

(hlz--')hN|k1>'--:kN> =0, V{klz--'nkN}#{hlz-"JhN}e{o’l}N- (B]-l)
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The proof is done by induction, assuming that it is true for any vector |k1, ,kn) with
Z;':I=1 k, = N—1forl < N—1 and proving it for vectors |k}, ..., ky,) with Z =N—(+1).

To this aim we fix a vector |k, ..., ky) with ZD‘Zl k,, = N—I and we denote with 7t a permutation
on the set {1, ..., N} such that:

n1n

kn(a) =0fora <! and ch(a) =1forl< a, (B.12)

then we compute:

(hl) thT(K)(g( (l+1))|k1> ) > :a(gn(l-f-]))(hb---:thk/;-“; k|/\|); (B]-S)
where we have defined:

k/

n(a)

=Ky, Va€{1,..,N}\{{+1} and k/ =0, (B.14)

n(l+1) —

for any {hy,...,hn} # {k7, ...,k } € {0, 1}N. There are two cases. The first case is hoaeny =1,
then it holds:

q-detM®(&E 41)

<h]_,...,hN|T(K)(€S_L_1()l+1))|k1,...,kN) = (h/ln"'ahf\jlkl""JkN>9 (B]-S)

a(€r41)
where we have defined:
h;'c(a) = hn(a)> Vae{l,..,N}\{l +1} and hn(l+1) 0. (B.16)

Then from {hy,..hn} # {k},..ky} € {0,1}N it follows also that

{h, ... hy} # {ky, ... kn} € {0, 1}N and so the induction implies that the r.h.s. of (B.15) is
zero and so we get:
(hy,....hnlky, o k) = 0. (B.17)

The second case is h 1) = 0. We can use the following interpolation formula:

N ( ) N (l) _g(hn(b)) ( )
(K) (£ (1) _ 1) hra) n(l+1) B (&) ( (M@
T (gn(l+1))_(trK)l_[(£n(l+l) E(a) )+Z l_[ (hm)) T (5 )
a=1

a=lbiab=1& 5;]1(’;;”) @
(B.18)
from which (h, ---:hN|T(K)(§STl()Z+1), {&DIky, ..., ky) reduces to the following sum:
N N g(l) _ g(hn(b))
e ) n(l+1) ~ > n(b)
(t].’K) l_[(grc(H-l) n(a) ) <h1: [XXS) hN |k1’ ceey kN> + (hn(a)) (hn(b))
a=1b#a,b=1 gﬁ(a) - gn(b)
det M (a)
s ()’ HD h Dy, k), (B.19)
)1 1
(a(gn(a)))
where we have defined:
R = hegy, Vi€ {1, ,N}\{a} and A =1—heqq). (B.20)

Let us now note that from h ) = 0 it follows that {h;,...,hx} # {k1, ... kN} as k4 =1
by definition and similarly {h(a), - h(a)} # {ky, ..., ky} being by definition n@ (l+1) =hg41)=0
forany a € {1, ..., N}\{{+1}. Finally, from {h, ..., Ay} # {k1, ..., k\ } with gy = krr(l+1) =0,
clearly it follows that {h(ll+1), ...,h(l+1)} # {ky,....,kN}. So, by using the induction argument,
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we get that any term in the above sum is zero. So that also in the case h;;.1) = 0, we get
that (B.17) is satisfied, and so it is satisfied for any {hy,...,hAn} # {k], ..., kl’\l} which proves the
induction of the orthogonality to [ + 1. Indeed, by changing the permutation 7 we can both
take for {m(1),..., (1)} any subset of cardinality [ in {1, ..., N} and with 7(l + 1) any element
in its complement {1, ..., N}\{=(1), ..., =(D)}.

We can compute now the left/right normalization, and to do this we just need to compute
the following type of ratio:

(1, . RO IR, . h) ) (h, . hOIRY, L R) B
7 (a 7(a) 1 (a O N AC 7(a a a) ’ :
(R, . B, . BP) (A, . B TOEM R, . hP)

with i_zg.a) = hg.a) for any j € {1, ..., N}\{a} while ES.G) =0 and hga) = 1. We can use now once
again the interpolation formula (B.18) which by the orthogonality condition produces only
one non-zero term, the one associate to T’ (&, {£}). It holds:

h
(WO, OB, Ry N g g

- 11

_ _ _ _ —h
(R, RIS, B) s 60— £

(B.22)

Using the above result, it is now standard to get the proof of the Vandermonde determinant
form for the normalization.

Let us note that being the set of SoV co-vectors and vectors basis in H, it follows that for
any transfer matrix eigenstates |t) and (t| there exists at least a {ry,...,ry} € {0,1}N and a
{51, ..,sn} € {0, 1}N such that:

(rla'--: rN|t> #O’ (tlsla'-':5N> 750: (B23)
which together with the identities:
<h17 1hN|t> & <Q|t>’ (t|h1) "'JhN> & <t|l>7 V{hl) '";hN} € {O) 1}N) (B24)

imply that:
(0t) #0, (t|1) #O0. (B.25)

So we are free to fix the normalization of |t) and (t| by (B.10). Finally, the representations for
these eigenco-vectors and eigenvectors follow from the use of the SoV decomposition of the

identity:
1

1= v({Eh D, VEM, LBy, by s s il (B.26)

O

Corollary B.1. Let us assume that the condition (2.6) is satisfied and that K # xI, for any
x € C, and furthermore detK # 0, then the vectors of the right SoV basis admit also the following
representations:

N T(K) hq
|h1,...,hN> :l_[(md(fggl))) |9>, V{hl,...,hN}E{O,l}N, (B.27)

a=1

as well as for any element of the spectrum of T® )(A) the unique associated eigenco-vector (t|
admit the following SoV representations:

1 N hq

t(&q) (h1) (hn)

(tI=N (—) V(ET Y, & )Ry, e AN, (B.28)
hzh:ol:! detk d(£V) ! N
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once we fix the normalization by (B.10), where we have defined:

N egD)

N = =
¢ = (t10) [t

#0. (B.29)

Proof. Taking into account the chosen normalizations clearly it holds:

N pE)(ED)

0) = Iy =0, by = 0) = | [ —==5—10). (B.30)
a=1 a
so that:
N () hq N () ha () (£ (1)
() o -T( s ) s
a=1 \detKd(ES) a1 \ detKd(&5") a(&,)
N T® (£ H)TE(EW) ha TE) () 1=ha (B.31)
— a a 1
ﬂ(detm(aé”)a(&a)) ( a(Z,) ) v
| :hN>;

by the quantum determinant identity. From this representation of the right SoV vectors it
follows also that for any fixed left transfer matrix eigenstate (t| it holds:

<t|h11 (23} hN> S <t|9>1 V{hly (XX3) hN} € {05 ]-}N: (B'32)
so that it must holds (¢|0) # 0. O

As we have already shown in the previous appendix for gl; representations, also in gl,
representations the tensor product forms hold.

Corollary B.2. Let the inhomogeneity condition (2.6) be satisfied and K # rI, for any r € C,
and let (x,y) € C? be such that:

ng(x,y) =bx?+(d—a)xy —cy? #0. (B.33)
Then, once we define:
N
(0l = Q)Cx, ¥)as (B.34)
a=1
it holds: \ \
1 -y 1 bx+dy
1)=— , |0y =— , B.35
1) nl(;:il)( b ) 0) nog(_(axﬂﬁ ) (B.35)
where:

-1

N
ny=ny, RO Y)VEL 0 ENIVE,. ,gﬁ))(]_[a(gn)) , (B.36)

n=1

no =R, YIVAEr, &) non= | | (*—(&—&). (B.37)

1<i<j<N
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C Proof of Theorem 3.1

This appendix is dedicated to the completion of the proof of the Theorem 3.1: here we prove
the orthogonality properties and the non-zero coupling of the SoV co-vectors/vectors. It is
worth remarking that the proof of the "pseudo-orthogonality" is quite intricate and we have
divided it in several steps to make it more intelligible. The orthogonality conditions are estab-
lished in section C.1, while section C.2 is dedicated to the proof of the form of the non-zero
couplings of co-vectors/vectors.

The form of the orthogonality condition naturally leads to consider in the first instance
vectors with k € {0, 2}V, this is achieved in subsection C.1.1. In this case, the co-vector/vector
coupling is diagonal, i.e. standard orthogonality holds with non-zero coupling only for co-
vector/vector associated to the same N-tuple h = k € {0,2}N. This proof requires already
different steps. We prove it first for the case with only one k, = 2 while all the others being
zero, and then by induction for the generic N-tuple k € {0,2}N. In subsection C.1.2, we then
consider the case with just one k, = 1 while all the others k;., being in {0,2}. Here, we
prove that the standard orthogonality still works. In subsection C.1.3, we finally consider
the proof for the case with non-diagonal and diagonal couplings, which correspond to SoV
vectors associated to k with at least one couple (k, = 1, k; = 1). First, the case with just one
couple (k, = 1, k; = 1) is developed, and then the case of vectors associated to a general
ke {0,1,2}N.

In subsection C.2.1, we write the non-diagonal couplings in terms of the diagonal ones. In
particular, we prove the formula (3.14) and its power dependence w.r.t. det K. The coefficients

Cllf in (3.14) are shown to be independent w.r.t. detK and completely characterized by the

Lemma C.3 and by the solutions to the recursion equations derived in Lemma C.4. We do
not resolve these recursions in general. Rather we argue the dependence of the coefficients
in terms of the involved transfer matrix interpolation formulae and explicitly present them
in the case of co-vectors having one couple of (h, = 0, h, = 2) associated to vectors with
a couple (k, = 1, k; = 1). Finally, in subsection C.2.2, we prove the explicit form of the
co-vector/vector diagonal coupling. The proof derived there does not use the fact that for
detK = 0 we have an independent derivation of the same SoV measure.

C.1 Orthogonality proof

We use the following incomplete'® notation for the interpolation formulae in the shifted inho-
mogeneities {& Elh”)} of the transfer matrix:

N
(K) _ (hy)
O Z tat 2Tl €D
with

N
ty=a%1(bd(A—m) [ A=l To(€lw) = TO(EP)d%2(A-m)gp(2) (€2)

a=1
for a € {1,2}, where
trK)? — tr(K>
a=trK, b= % c =detK,
are the spectral invariants of the matrix K and
c,= q-detM(K)(fn) =c q-detM(”(En). (C.3)

8We need only to keep partial information on the interpolation formulae for our current aims.
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Note that this shorted notation hides the original value in which the transfer matrix was com-
puted before the interpolation, which is A in (C.1). It also loses the coefficients of the same
interpolation formulae. In the following of this appendix, all the equalities written down with
symbol = have to be interpreted up to these implicit, missing coefficients. This does not rep-

resent a problem, as here we are only interested in proofs that some matrix elements are zero
or proportional to each other, which is something that remains true independently of the exact
coefficients (as long as they do not vanish).

C.1.1 First step: the case |1_<> with k € {0,2}N

In the following, we introduce needed notations to implement operations on N-tuple of indices.
Let us denote with x = {x1,...,xy} € {0,1,2}N a generic N-tuple from {0, 1,2}, and with
(J1, - Jm) € {0,1,2}™ a generic m-tuple from {0, 1,2}. We introduce the following notations:

m
xUroin) = x — Z (X, —jde, Vai€{l,.,N}, i<m<N, (C.4)
1

where e, = {014,...,0n,4} and the rq,...,r; are defined as follows for any fixed choice of
A1y eee, Apyt

Vh<l, mae{l,..,m}:3Is€{1,...m}\{ry,...,ri}, m, <s with a,, =a, (C.5)

while it holds:
ap ;éaqa Vp#q6{1)"'>m}\{r11'-')rl}' (C-6)

In simple words, for any fixed aq,...,qa,,, the rq,...,r; are defined as the minimal set of the
smallest integers in {1,...,m} such that removing them from {1,...,m} make the condition
(C.6) satisfied. Clearly, we have | = 0 if the aq, ..., a,, are all distinct.

i) Only one k,, =2 Let us first prove:
(h|0®) = (h|T,(£,)0) =0, forh# 0. (C.7)

If h,, = 0,1 this statement is evident, since

(W T1(£,)10) = ¢, (W= *+D]o) = 0. C.8)

Now, let us fix h, = 2. Here we proceed by induction, first assuming that all the others
hi,=0,1:
Jj#n )

N
(hT1(£)10) = t1(h]0) + (VI To(E,)I0) + (bl > T1(E)I0)
l;énlzl
N
= t,(00) + BOITEN + D) o m e Y
ve I£ml=1

= (W T2(E)10).

42



Scil SciPost Phys. 9, 086 (2020)

Now, we have to use the interpolation formula for T,(&,,)

(hT1(E)10) = (WD[T,(E,)]0)

= t,(b10) + “NZ(ah/ 0 T2(E) + 831 T2(E1))0)
(C.10)
= t,(h{"|0) + Z6h;,1<1_1£3;°)|9> + Z S0t (WD T (EM)0)
=1 =1
=0,

where we have defined h' = {h},...,h} = hfll) and used that QSZ’O) # 0 holds even for [ = n,
as the condition hiz) # fo) implies hfll;lo) = hglo) # 0. Moreover, it holds

N
(W PITEDI0) = 600100+ > b T (ER)I0), (C.11)

m=1

and defining h” = {hY, ..., h} = hgl’l), we get

(DT EM)I0) = Z< h(: o) = o, (C.12)

—n,l,m

Let us now consider the induction, i.e. we assume that the orthogonality works when there
are m > 1 values of h, = 2 in (h| and we want to prove it for the case of m+ 1 values of h, = 2
in (h|. Up to a reordering of the index of the {,}, this is equivalent to prove that

(h1 =2, hm1 = 2,y g € {0, 1HT1(Em41)10) = 0. (C.13)
Setting
h = {hl = 2, cesy hm+1 = 2, hlzm+2 (S {0, 1}}, (C.14)
and once again using the development by interpolation formula, we get
N m+1
1
(BT (Eni)I0) = tr{hl0) + (b > T1(EDI0) + D (BIT1(E[)I0) (C.15)
[=m+2 =1
m+1
= > mPmyEnl0), (C.16)
=
so expanding T,(&;):
(6 )
(VI T5(E010) = ta(hy”10) + (hy) ZTZ@ I 0), (C.17)

r=1
where h). are the elements of h' = {h],...,h\} = hgl). Then, we can use the rewriting

(LR,

(811 +61.2) WITHED0) = (811 + 5,0 ) &> (Do) =0 (C.18)

Indeed, h( 1) # 0 holds even for r =1, as h(1 hi=1) 1_150) has at least one element equal to
2 being by assumption m > 1. Then, we get

(W T5(E010) = (b Z S 0 T2(£,)10) = Z 51 0c BV T ED0),  (C19)

r=m+2 r=m+2
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and finally:

(h;VIT1EM)0) = t () 10) + (b} 1)IZTl(as)IO (C.20)

which is zero by the induction. So we have proven the orthogonahty.

(hl0{”) =0, for any h# 0. (C.21)

ii) The general k € {0,2}N  We now perform the induction over the number of k, = 2 in
k€ {0,2}N. The orthogonality is assumed to work when there are m values of k, = 2 in k,

while the others being all 0, and we want to prove it for the case of m + 1 values of k, =2 in
k.

Let us start proving the following
Lemma C.1. Let k € {0, 2}N with

N
Z = (C.22)

ab
and h a N-tuple in {0, 1,2} such that h, # k, and hy, # k;, if a # b, while hy, =1 # k, =0 if
a = b. The following recursive formula holds for any ﬁxed ce{l,..,N}:

(i, GRS UCZ‘Sh 2 Z &1, 06 { LSil)IT (ED)K). (C.23)

s=1,s#r

Proof. Let us use this first interpolation formula:

( |T (6(5}% 0+5hc 1))|k) _ t]_ hlZTl( (5hr 2))
N ab(l)
=2 6200, [To(E)IK), (C.24)
r=1
as by the orthogonality assumption it holds:
ab
(hlk) =0, (C.25)
as well as
ab(hr+1)
(8.0+64,1) (RITL(EDR) = (8 06, +81,0) (B, =0, Vre{L..N}, (C26)

ab(hr+]-)
being h # k under the condition (5hr:0 + 5hr,1) = 1. This is easily the case for b # a
ab(hr+1)
as h, keeps at least one h; # k;, for j = a or j = b, independently from the choice of r.
ab(hr+1)

Inthe case a = bitholds h, = h{:"*1 5o that for r # a it still holds h, = 1 # k, = 0.
ab(hr+l)
Finally, in the case r = b =a it holds h = hgz) #k

Now, let us use the following second interpolation formula to develop the terms on the
rh.s. of (C.24) :

ab() ab® ap@ N 6,/ 146,/ ,)
(h, IT(E) = to(h, [l +(h, | To( )ik
o . ! (C.27)
Z 806 (h,y [THED)K),
s 1,s#r
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abD)
where we have defined {h’, ..., h;\l} = h_ . Indeed, by the orthogonality condition it holds:

abD)

(h, |k =0, (C.28)

-
and

ab) 5., ap(LR-1)
(8m1+612) (b, [T2EMIK) = (811 +6k)c**(h,, K =0, Vse{1,.,N},
(C.29)
ab(l’h;_l)
being h # k under the condition (5;1;,1 + 5h;,2) = 1. Indeed, this is easily the case for
ab(l’hg_l)
s#ras h keeps h! =1 # k,€{0,2}, independently from the choice of s. In the case
ab(l’h;_l) ab(0) ab(0)
s=r,itholds h . = h,_ sothatfor b # a h,  keeps at least one h; # k;j, for j = a or
ap(0)

j= b Finally, in the case s =r and a = b it holds r #a and so h = # k as by our hypothesis

on h we have h, = 1 while by (C.24) it must hold h, = 2.
Putting together the results of these interpolation developments, we get our recursion
formula as a consequence of the orthogonality assumed for m values of k; =2 in k. O

Note that the above lemma gives a recursive formula. The terms on the r.h.s. of equa-
tion (C.23) are of the same type as the starting one on the Lh.s. , and for any r,s such

ab
Op, 2 = 6p0 =1, the Ef};n surely satisfies the condition to have at least two different ele-

ments w.r.t. the given k e {0,2}N. Indeed, ﬁgls’l) contains a couple of elements equal to 1.
Hence it is possible to apply the same recursion formula to the terms on the rh.s. of equation
(C.23).

The previous lemma implies the following:

Corollary C.1. Let k € {0, 2N with

N
Z = (C.30)

ab
and h such that h, # k, and hy, # k;, if a # b, while h, =1 # k, = 0 if a = b. The following
orthogonality conditions hold for any fixed c € {1,...,N} :

ab
(L|T1( gﬁhc’0+5hc,l))|l_(> =0. (C.31)

ab
Proof. Note that if h does not contain h = 2 or h = 0, the orthogonality is proven just by apply-

ab
ing once the recursion formula. Otherwise, the recursion generate the ggls’l) where we have
reduced by one the number of h = 2, reduced by one the number of h = 0 and increased by
two the number of h = 1. This amounts to change hin h’, with h/ 4rs =g buth, =2— h =1

and hy = 0 — h, = 1. Then, if ﬁg;l) does not contain h = 2 or h = 0, the orthogonality is
proven just by applying the recursion formula one more time. Otherwise, we continue to apply
(C.23) until we arrive to the condition that there are no h = 2 or h = 0 in the index of the SoV
co-vectors involved. This proves the above corollary. O
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We are now in position to perform the induction over the number m of k, = 2 for the
orthogonality.
Up to a reordering in the indices of the {&,}, this is equivalent to prove:

(W Ty (Emsn)lK) =0, foranyh#k%) (C.32)
where we have defined:
k={k; =2,....kp =2 kisms1 = O} (C.33)

The only case that we have to consider is
2 .
h#K? withhy =2,k = 2. (C.34)
Indeed, if this is not the case we can write:

(BT (E IR = (T3 (E eI ), (C.35)

and we can directly apply the corresponding T;(&;<,,.1) on the left vector (h|, increasing by
one the associated hj<,41 < 1. Then, using the orthogonality assumed for m values of k; = 2
in k, we get zero, i.e. for hj<,,,; < 1 it holds'?

(W T1(E ek = (W VKD ) =0, (C.36)

—l,m+1

So it is sufficient to consider the tuples h of the form (C.34). But then h has at least two

elements different from the given k € {0,2}N. Indeed, from h # l_(fi)rl it follows that there
exists at least one j € {m +2,...,N} such that h; # k; =0, and by the definitions (C.34) and
(C.33) of h and Kk, it holds h,,,; = 2 # k41 = 0. So we get our proof of the orthogonality
induction being:

(h|T1(&pm+1)k) =0, (C.37)

as consequence of (C.31). Note that the proven orthogonality also implies that the above
lemma and corollary indeed hold for any m < N.

C.1.2 Second step: the case |k) with k, =1, k;, € {0,2}

Let us make the orthogonality proof in the case where k contains only one a € {1, ..., N}, such
that k, = 1 while k; € {0,2} for any b # a € {1, ..., N}, i.e. let us show that it holds:

(h|To(E)K?) =0, Vh#kwithhe{0,1,2}". (C.38)
In the case h, = 0, it rewrites
(W T2(E)IKY) = ¢, (WP T (EMKD) =0, (C.39)
and this follows by (C.31), observing that l_(go)e {0, 2}N.

In the case h, = 1 or h, = 2, we first implement the interpolation development of T,(&,):

(BT, EJK?) = t (BIKD) + h|ZT2(£(5'*1+5”52))|1_<§°)>
(C.40)
Z 8h_0¢s (hD[T1 (€M) KD).

s 1,5#a

“Note that the above discussion also implies the orthogonality (h|2) = 0 for any h # 2.
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Indeed, we have:

(hx@) =0, (C.41)

and
1)) _
(84,1 + 6 2) (MITLHEDKD) = (5 1 + 65 o)W VKD) =0, (C.42)

as it holds }_1§h3_1) # l_(flo) for s # a being h, € {1, 2}, while for s = a it still holds lgflhﬂ_l) # lg((lo)
evidently for h, = 2 but also for h, = 1. Indeed, in this last case, the condition h # k is
explicitly written as hfll) #+ l_(fll), which is equivalent to hflo) # 1_(510). Now our orthogonality
condition follows just remarking that hgl) and 1_(20) have different a and s(# a) elements, so
that it holds

OOTEMKD) =0, (C.43)

by applying (C.31).

C.1.3 Third step: orthogonality by induction on the number of k; =1 in |k)

Let us now prove our final orthogonality statement for the general case of m+1 indices k, =1
in k by induction. Up to a reordering of the indices, this is equivalent to ask that given the
N-tuple

1_( o ki=ky ==k = km+1 =1, k12m+2 €{0,2}, (C.44)
(we are fixing 1 = {1,..,m+ 1} and so ny is the integer part of (m +1) /2) then the covector
<h| is orthogonal to |1_<>, i.e. (h|k) =0, if and only if:

Ny

he{0,1,2}" suchthat > > 5 0n=0. (C.45)
S2a,8

r=0 aufuy=1y,
a,f,y disjoint, #a=#p=r

The above condition on h is denoted by

h # k (C.46)
(C.45)

It simply says that for any choice of the disjoint subsets a, f C 1y with the same cardinality

0 < #a = #p =r < ny, it must holds:

h# lsgf,’f)- (C.47)

In the following, we assume that this orthogonality holds in the case where there are only m
values of k, =1, and prove it for m+ 1.
Let us start proving the following Lemma.

Lemma C.2. Let h be the generic element of {0,1,2}N with hy # 0 and h, # 0, satisfying (C.46)
with k of the form (C.44). The following recursive formula

N N
hy#0,h, hy7#0,h,#0,1,
(PO FOTLEDI) = 381,06 D Sr, 2072 PO IITEIK),  (C48)
p=1 q

—=1,r,p,q
=1

holds for any fixed r € {1, ..., N}, indifferently equal or different from 1.
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Proof. Let us make a first interpolation

hy#0,h, hy#0,h, hy#0,h, g1+ Ong,
0PN () = 60PN FOUD) + (b #O)IZT( (et ea) ) 00

—1,r —1,r,s

_ (hy7#0,h,#0) (0) hs,2 (hy7#0,h,#0,hs—1)
=t K¢ +;[Cs (8p.1+642)(h |

+ 8,00 (W77 OV TaEMIK).

1,rs
(C.49)
Now we have that it holds:
n{n 7O PO 2 O, (C.50)
(C.45)
h(lthh r#0h,=1) # k(o) for any s such that 65, ; + 0, o = 1. (C.51)
(C.45)

Let us show the validity of (C.50) first. Clearly, we have h(hﬁéo h#0) #k k(o) ash, € {1,2} #k; =0.

Moreover, taking k k(0 0 2) for any a # b € {2,...,m + 1}, it holds h(h”éo h r70) # k(10a0b2)’ because
h,€{1,2} #k, = O Slmllarly, if we take the generic a, f C {2,...,m+ 1} with an =@ and

0 < #a=#f =r <ny, it must holds:

(h,#0,h,#0) (0,2,.. ..,0)
h1 ; ' 75 1_(1 a /5 ) (CSZ)

which is (C.50). Note that our proof of (C.50) holds independently from the value of r : it is
valid both for r # 1 and for r = 1 where h(h”éo h#0) _ h(hﬁéo)
Let us now show (C.51). We have to d1st1ngu1sh the twocasess =1lands # 1. Ifs=1

and h; = 2, we have h(h”éOh #0h—1) h% 70, 1), so the proof of (C.51) follows the same

steps as the one for (C. 50) independently from the value of r. If s = 1 and h; =1, we have
p(HACR AR 1) _  (h,£0.0)

hy” =h] , and the following implication holds:

D 4 B 4 ) “

where the L.h.s. is our starting point assumption once we fix h; = 1, holds independently from

the value of r. Note that we have used the notations h(rh{ #01) and h(rh{ #0.0)

reduce to h(ll)

Now, if s # 1, we have by definition h; # k; =0 in h(lh;fo he#0h=1) ¢ the proof of (C.51)
follows once again the same lines as those of (C.50). This proves equation (C.51).

Returning to (C.49) and using the fact that in 1_((10) there are exactly m entries with k =1,
equations (C.50), (C.51) and the assumed orthogonality give

, as these correctly

and 1_1(10) for r =1, respectively.

07O =0 and 8y, 0+ 8,0) B TVR) =0, ©54)

1,1,

and we are left with

(BIT,(E)IKY) = Zéh op (7O 7ODIT, (2K, (C.55)

Note that it similarly holds:
pmAORAOD) 4 (O (C.56)

fosind el 1)
Lrp (C45) !
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as h; =1 or 2 does not coincide with k; = 0 and p # 1 and r, being associated to the condition
Oop o=1.
D

Defining {h’, ..., hf\l} = p{m70h#01) , we can now perform a second interpolation:

=1,r,p
hy#0,h, #0,
(n1 200D T, (g0
(6
Ry #0,h, #0,1 Ry #0,h,#0,1 w.2)
= t ({7 + @ HZT (& I (C.57)
N
_ (h1#0,h,#0,1 h’+1) (0) (h1#0,h,#0,1,1) (0)
[;CZ(&I' o+ O, et 0. L3 +Z§ 2 (0 AT RDIT, (£ )G”)
q:
(C.58)
S hy#0,h )
0,h, #0,1,1 0
= D8, (07O T (gD, (C.59)
r=1
where (C.59) follows as it holds:
(hy 0, #0,1, 1 +1) ) B
hl,r,p,q (cﬁs) k;”, forany q such that (5;1&’0 + 5;1‘/1’1) =1, (C.60)

while we have suppressed the prime notation in the last line of (C.59), as h; = 2 iff. hq =2.

hy#0,h, #0, 1k, +1
Indeed, q = 1 is possible iff. h; = 1 and then h(1 ;jq & W h(r]; 71&0 L2)

nent 1 of Q(h r70.12) 4o o #k, =0, as p # 1,r, so we can argue the proof of (C.60) as done

hy#0,h,£0,1h +1
for the proof of (C.50). Instead, if g # 1, h; is not modified in h( 1? q i W so it stays

h; # k; = 0, and once again we can argue the proof of (C.60) as done for the proof of (C.50).
Collecting the results of the two interpolation expansions, we get the wanted formula (C.48)
of the Lemma.

Let us now remark that from the fact that h(li’lﬁ#o’h#o) satisfies (C.46) with k of the form

(C.44), then h(h17é0 h#0,1,1) satisfies (C.46) with the same k. Moreover, we have that h(hﬁéO h#0,1,1)

=1,r,p,q =1,rp,q
s . h,#0,h,#0,1,1
satisfies (C.46) with l_<(10), as it stays true that the component one of h( 170k, #0,1,1) 4 is non-zero,

independently from the value of p € {2,...,N}\{r} and of q € {1, .. N%\{p} Then, all the
terms (h(h”éo ohr 0.1, 1)ITz(é q)ll_((lo)) on the r.h.s. of (C.48) can be expanded once again accord-

. Then the compo-

1,r,p,q
ing to the same formula (C.48), as h(lhﬁf;h #OLD behaves exactly like a h(h”éo D with r/ = q
and h,,» =1 # 0. This ensure that this is a recursive formula. O

The previous lemma implies the following:

Corollary C.2. Under the same assumptions on hgh;#o,hraéo)

following orthogonality condition holds

and k as in the previous lemma, the

MO FOIT, () K) =0, (C.61)

for any fixed r € {1, ...,N}.

Proof. If h(lh;;éo,hr;aéo) does not contain h = 2 or h = 0, this is proven by applying once the

h17#0,h,#0,1,1
recursion formula. Otherwise, a first application of the recursion generates the h( 1# r70.L.1)

where we have reduced by one unit the number of h = 2 and the number of h = O while we
have increased by two unit the number of h = 1, transforming h like h, = 0 — h; =1 and

hg=2- h’ = 1. Then, if h(lh;f;h 7LD qoes not contain h = 2 or h = 0, the orthogonality
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is proven just by applying once again the recursion formula. Otherwise, we can continue to
apply it over and over until there are no h = 2 or h = 0 in the index of the SoV co-vectors
involved. This proves the above Corollary. O

Let us now perform the induction step over the number m of k, = 1 in the vector |l_<> Let

h be the generic element of {0, 1,2}N satisfying (C.46) with a fixed k of the form (C.44). If
h; # 0, then the orthogonality condition reads

0= (hlk) =(h)""” T, (EDIKD), (C.62)
which follows by a direct application of the above corollary. If h; = 0, it holds
(07 1) =B ToEDIK) = ey (B T1(EIK),

and so we use the following interpolation

N
(61 5)
OMTEMIK?) = £ 0P + 0P TTE " )K?)

UpC
s=1

N N
On 0 1o (LI 3+1)1.(0 1,1 0
= 2 Gro+Gra)es LTV + > 15 o (0P ITa(EIK),
s=1 s=2

(C.63)
where we have defined {h],...,h} = h(ll). From the assumed orthogonality (i.e. the induction
hypothesis) we get

N
(0P = ToEDIK”) = e > ;65,2 0 ITHEIK), (C.64)
s=1
being
1_1(115’h5+1) + l_cgo), for any s such that &, o + 65,1 = 1. (C.65)
’ (C.45) i ”

Indeed, for s = 1 it holds h{ = 1 and so h] +1 = 2 # k; = 0, so we can argue the proof of
(C.65) as done for the proof of (C.50). While for s # 1 it stays h’1 =1 so we have h’1 #k; =0,
and once again the proof of (C.65) is done as that of (C.50).

It remains to observe that the terms at the r.h.s. of (C.64) satisfy the requirements of the
previous corollary. This completes the proof by the induction of the pseudo-orthogonality
(3.14).

Note that the proven orthogonality also implies that the above lemma and corollary indeed
hold for any m < N —1.

C.2 Non-zero SoV co-vector/vector couplings

C.2.1 Nondiagonal elements from diagonal ones

The orthogonality conditions implied in the formula (3.14) of the Theorem 3.1 have been
proven in the previous subsection. Here, we complete the proof of this formula for the non-
zero matrix elements (h|k) with their expressions in terms of the diagonal ones (k|k) and the
power dependence w.r.t. ¢ = detK.
More precisely, let us assume that there are m k =1 in |k), let us say
ky =k, ==k, =1, (C.66)

1 2 m
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then we want to show that it holds

(Bl ) =16 k), (C.67)

. k . —
with C; non-zero and independent w.r.t. ¢ for?° h, = =kg . €10, 2}N=m and

(hpy, ohr, )=1(0,2), Vae{l,.,r+1} and h, =1, Vse{2r+3,..,m}. (C.68)
Moreover, the next lemmas completely characterize the coefficients Clll-{ in terms of solutions to

a derived recursion relations.
Up to a reordering in the indices of the &;, the generic case of r + 1 (0,2) couples in (h|,

. . . . (0,2,p) (1,19 .
corresponding to r +1 (1,1) in |k), is equivalent to compute (h, , .~ , |h; 5.~ , ) in terms
(11,9 (11,9
of (hy 55 21003 5r4p)s Where:
p={p1,.par} With pye; =2(1—1), Vae({l,..,r}i€{0,1}, (C.69)
ﬂ = {qla ) qu} with qoa—i =1, Vae{l,.., T},i €{0,1}, (C.70)

while h; 53 540 €10, 1, 2}N=20+1)  Then the following lemma holds:

Lemma C.3. Under the previous definition of the p and q, the following expansion holds:

(1,19
31,2,31,2r 2
¢ (0,2,p) i
923 2r+2
_ ) N (€3] (6h/av2)
¢ "q—detM*)(&;) (& —¢&a ) (1,1,p) T h(O,l,c_l)
- (1,9 (1,1,9) 5,/ ) <_1,2,3,..,,2r+2| 2(52)|—1,2,3,..,,2r+2>
o o 2D hg,2
(hyos  orealing ori) [a#2e=1(8;° — &,
r N (€Y (6’1{1’2)
(gl —&q ) (1’2’2(1-)) (0.1,9)
+Z l_[ (1) (61 5) <h1,2,3,.2.{,2r+2|T2(£2j+2)|}—11,2,3j...,2r+2> > (C.71)
j=1a#2j+2,a=1 (§2j+2— )
where we have denoted (1)
I — (1! /Y bR
h = {h > ---:hN} - 1—11,2,3,...,2r+2’ (C.72)
and for r = 0 we get:
N D) (6hg,2) (1=64,,0)
h(f’zl)_ d(E,—m) q—detM(I)(El) l—[(gl —GCq )& — &, ) (C.73)
(02) — _ -2 — 2 5 1-6 ’ '
bs dE =M 8 — ) g (e - Ora2dy g g 0ol
Proof. By the definition of the coefficients Clll—( we have:
(0,2,p) (1,1,9)
ny (hyos arDyos oio)
Coop = , (C.74)
hios.om2  crtl (h(l’l’(—l) |h(1’1’ﬂ) )
e 21,2,3,..,2r+21341,23 . or 12
then formula (C.71) follows by the following identity
(0,2,[_)) (1,1,3) . (1,1,[_)) 'e)) (O,l,g)
<1—11,2,3,...,2r|hl,2,3,...,2r+2) - Cl(hl,2,3,...,2r+2|T1(51 )Tl(£2)|h1,2,3,...,2r+2>’ (C.75)

20Where we have introduced the notation X, without the upper index values to indicate the N —m-tuple
obtained from the generic N-tuple x removing the entries {ry,...,r,} € {1,...,N}.
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once we make an interpolation expansion of T(& (11)). More in detail, up to the coefficients,
we use the interpolation identity

N
TE) 2+ Tu(E)+ LT ™) (.76)
from which it follows
(b2 TEDTED S, ) =
=ty oy Y )+ 2 o )+ 5 T % )

r 1 N
(1,2.p) (CEIRN R ) (1,2,p) (81;.2) 1, (01.9)
+ 22(1_11,2 ..... 2r+2|T1(€2a+2—i)|h1,2 ..... 2r+2) + Z <h1,2 ..... 2r+2|T1(€5 )lhl,z ..... 2r+2>

a=1i=0 s=1+2(r+1)
(C.77)
(1,1,p) (0,1,9) . (1,2p0)) (0,1,9)
Ufc @1,2 ..... 2r+2|T2(52)|hl,2 ,,,,, 2r+2> + Z(hu ..... 2r+2|T2(€2j+2)|1;11,2 ..... 2r+2> : (C.78)
j=1
Indeed, from the previous orthogonality conditions, we have:
(1,2,2) (0,1,3) . (2,2,2) (0,1,3) .
<1—11,2,3,...,2r+2|1—11,2,3,...,2r+2) =0, <}—11,2,3,...,2r+2|1—11,2,3,...,2r+2) =0, (C.79)
and
(1,2,p) 0,19 2p) ) (01,9
(}—11,2,3:..,2r+2|T1(€2(1+1)|hl,2,3:..,2r+2) = C2a+1<hl,2,3:2..,21r+2|hl,2,3:..,2r+2> =0, (C.80)

forany 1 <a <r. Also, fors > 2r + 3 and h; =0, 1, we have:

(1,2,p) (0,1,9) _ 8py0 5y (L2,pRg+1) (0,1,9,h,) _
By o5 ool T1EDM 5o o) = (Mo ol g 5 ) =0, (C.81)

as well as for s > 2r + 3 and h, = 2 we have:

(1,2,2) 1 (0,1,(_1) _ (1,2,2,2) (0,1,3,1) _
<1_11,2,3,...,2r+2|T1(£§ ))|h1,2,3,..,,2r+2> = <h1,2,3,,..,2r+2,s|}—11,2,3,...,2r+2,s) = 0. (C.82)
So we are left only with the terms written in (C.78) and our formula (C.71) follows once we
reintroduce the missing interpolation coefficients of the formula (C.76).
Let us now compute explicitly the case with only one couple of (0,2), i.e. the case r = 0.
Formula (C.71) reads:

(61 2) 1,1 0,1
he) - N €D — gy (BT (E)R)
Ch((;’z) = q—detM (51) l_[ (1) (6ng,2) h(l’l) h(l’l) ’ (C.83)
—12 a#2,a=1 (52 —&q 7 ) (_1’2 |_1’2 )

then by using the following, up to the coefficients, interpolation identity:

N
1-6
To(Es) =t + To(E) + D To(el 7o)y, (C.84)
ope §=>2
we get:
(h's I To(E)INT5°) = (b IhTs0), (C.85)

as by the orthogonality conditions, proven in the previous subsection, it holds:

(WD T, N WOD) =0, for any s> 2. (C.86)
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Indeed, we have:

(1 1),1.(0,1,1) .
1-5 (hy 5 thy5;7) =0ifh;=0,
([T el hs°))|h“’”>—{ T

<h(11215h %) =o0ifh =1,2.

(C.87)

Then, reintroducing the missing interpolation coefficients in front to TZ(K)(£ 1) in (C.84) we
get our result (C.73). O

Note that any term in the sum in (C.78), associated to a fixed j € {1,...,r}, is formally
identical to the first term of (C.78) up to the exchange of indices 2 and 2j + 2 in &j,.

The following lemma gives a recursive formula to compute the matrix elements on the right
hand side of (C.71). To simplify the notations, the lemma is formulated explicitly for the first
matrix element but it can be wused similarly for the others matrix elements

(1,2,p) (0,1,9)
(1_11,23 a Lori2l Ta(€aj12) 1hy 55 5.1)by exchanging the indices 2 <> 2j + 2 in the &, for

every term involving the j index.

Lemma C.4. Under the previous definition of the p and q, then for r > 1 the following recursion
formulae hold

r (1,1) 0)
(1,1,p) 0,1,9) (LLp}5 ) )
<h1,2,37...,2r+2|T2(£2)|h1,2,3:..,2r+2> =C3Mn,2 Z 51,2,3,2s <1_11 23, o542 |T2(€25+2)|}_11 2, 3 2r+2>

s=1
r r
1Y ) (0,1,9)
+Z:C2a+1 M2a+1,2 (Z 5$1,2,2a+1,2b (hl,z 3,.. ’ zerz|T2(€2b+2)|h1 2,3,.. 2r+2>
a=1 b=1
(C.88)
where:
(1=6p,,0)
(1) (1) - !
G U o - P o 8 275 (C.89)
2a+1,2 qe® 6 3 £ (1-61.0)° .
(€2a+1) n=0 €2a+1 €2n+2 Tl 0 2a+1 7 52n+1 2r+3<j<N €2a+1 g] ’
and
(5h 2)

2 (1)

D
2 1 gl 52 1~ 52 2 52 1 €2n+1 €2a+1 g
51,2,2a+1,2b = l_[ 4 l_[ at ax l_[ at l_[ _—

i=1 5(211,)+2 & n 1 Sap+2 ~ Eans2 n=1 églb)ﬂ —&an+1 2r43<j<N §;1b)+2 — 55.5”"’2)
(C.90)
with the following initial condition for r = 0:
(1 Ohq,0)
d(&;—mn) n Ea2— ¢
h(1 1)|T (& )|h(0 ,1) h(l 1)| (1,1) . (C.91)
b 2252 AUERLE >d(€1_7})(§1_£2+n)21_[ (1 Oha.0)

az3 &1 —
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Proof. Using the interpolation formula (C.84), we get

(1,1,[_)) (0,1,3)

<hl,2,3,...,2r+2|T2(£2)|hl,2,3,...,2r+2>
(1,1,p) (0,1,9)
nc t <h1,2,3,...,2r+2 |1—11,2,3,...,2r+2>
(1,1,p) (1,1,9) (1,0,p) (0,1,9)
+ <hl,2,3,...,2r+2|hl,2,3,...,2r+2> + @1,2,3,...,2r+2|hl,z,3,..,2r+2>
L, (LLp) ©0.1,9)
»1,P. (1-i) ,1,q
+ Z Z (1—11,2,3,...,2r+2 |T2(§2a+2—i)lhl,z,s,...,2r+2>
a=11i=0
ik (1,1,p) (611461 2) <. (0.1,0)
) 2 hg,1 hg,2 Lt
+ Z (}_11,2,3,...,2r+2|T2(§s )|h1,2,3,..,,2r+2> (C.92)
s=142(r+1)
-
(1,1,p) (11,9 11p) ) ) 0,1,9)
U:pc <h1,2,3,...,2r+2|}—11,2,3,...,2r+2> + Z C2a+1 <1_11,2,3,...,2r+2|T1(€2a+1)|h1,2,3,...,2r+2>'
a=1
(C.93)
Indeed,
(1,1,p) (0,1,9) (1,0,p) (0,1,9)
<hl,2,3:..,2r+2lhl,Z,S:..,2r+2> =0, <hl,2,3:..,2r+2|hl,2,3?...,2r+2) =0, (C.94)
and
(1,1,p) 1) 1. 019 (1,1,p()) 0,1,9)
<h1,2,3,...,2r+2|T2(§2a+2)|hl,2,3,...,2r+2) = C2a+2 (h1,2,3,...,2r+2|hl,2,3,...,2r+2> =0, (C.95)

forany 1 <a <r. Also, fors > 2r + 3 and h, = 1, 2, we have:

(1,1,p) (1) 019 _ 8py 5y (LLpA—T) (0,1,9,h) _
<h1,2,3,...,2r+2|T2(€5 )lhl,z,g,__,,2r+2> =G ’ <h1,2,3,...,2r+2,s|}—11,2,3,...,2r+2,s) - 0’ (C96)

while for s > 2r 4+ 3 and h; = 0, we have:

(1,1,p) (0,1,9) (1,1,p,0) (0,1,9,1)
(1—11,2,3:..,2r+2|T2(€5)|h1,2,3:..,2r+2> = <hl,2,3:..,2r+2,s|h1,2,3:..,2r+2,s) =0. (C.97)

So we are left only with the following terms for a € {1, ..., r} which read:

(1,1p) (0,1,9) 11p) ) 1) 1 019
<h1,2,3:..,2r+2|T2(§2¢1+1)|h1,2,3:..,2r+2> = C2a+1 <hl,2,3,.2..,21r+2|T1(€2a+1)|h1,2,3:..,2r+2>' (C.98)

Now we can use the interpolation formula (C.76) and we get

(0,1,9) 1) ) (01,9

h) 5372, lhl,Z,S,...,2r+2>

O]
(h(l,l,gm_l) ) =ty
1,2,3,.,2r+2/ oo "1121,2.3,.2r+2

21,2,3,...,2r+2

T, Dh

@1pl) ) (01,9 12p) ) (01,9

+<1—11,2,3:2.i_211*+2|1—11,2,3,...,2r+2) + <1_11,2,3T.2.i_21r+2|h1,2,3,...,2r+2>

r a
1844 5, (LLD ) (0,1.9)
+ Z Cab+1 (}—11,2,3,...,2r+2 T €41 |hl,2,3,...,2r+2>
b=1

0.1,9)

r (1,0)
+ (h(l’l’BZa—l,zb) )
1,2,3,...,2r+2

=1,2,3,...,2r+2
b=

T8 )h

2b+2

1
N
(1,1,p ) 5 (0,1,9)
f S et mEP i, ) ©99)

—1,2,3,...,.2r+ —=1,2,3,..
s=14+2(r+1)

R
(L1pgh ) .19

e <hl,2,3,...,2r’+2|T2(§2b+2)|hl,2,3:..,2r+2>' (C.100)

b=

[y
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Indeed, by the orthogonality it holds:

wLp) ) (01,9 @1pl) ) (01,9
(h, ,2,3,.. ; 21r+2|h1 2,3, 2r+2> 0, (b 12,3, ; 21r+2|h1 2,3,.. 2r+2) 0 (C.101)
@2p) ) (01,9 L1pl) ) 0,19
21,23, : 21r+2|h1 2,3,.. ari2) =0, (Iy 2,3,.. o2t ey 12,3, 2r+2> 0, (C.102)
(hy .5 . 23
while for h, = 2 it holds:
1,1p 0,1,9) w1p) 2)  (0,1,g1)
(h, 2 3,2 ,er+2 s|T1(5 )|h1 12,3, 2r+2) (1_11,2 3,2 ,21r+2,s|—1,2,3,,..,2r+2,5> =0, (C.103)
as well as for h; =0, 1 it holds:
1p) ) (0.1.9) (1L Lhe+1) - (0,1,gh)
<h1,2 3,. ,2r+2|T1(€3)|h1 2,3, 2r+2> <h1,2,3,...,2r+2,5 |h1,2,3,...,2r+2,5> =0. (C.104)
Therefore we obtain the following mixed recursion formula
(1,1,p) 19 (1,1,p) (11,9
@1 ,2,3,.. 2r+2|T2(§2)|hl 2,3,. 2r+2> <h1 ,2,3,. 2r+2|h1 2,3,.. 2r+2>
1,1,p{M" (0,1,9)
+ ch2a+1 _1 2,3,.. - zlribz|T2(€2b+2)|hl 2,3,.. 2r+2>
a=1b=1
(C.105)
L ) (0.1.9)

Indeed, all the matrix elements @1,2 3. orsol T2(&2ps2)hy 55 5 ,,) on the rhs. of (C.105)

have (r —1)-couples of (O 2),i.e. one less w.r.t. the first matrix element on the r.h.s. of (C.78)

(1,1,p) ,1,9) . (1,1,p) (1,1,9)
(hy 55 2rial T2(E2) |h1 23,.2r+2) - Moreover, the matrix element (h, , ;" , olhy ;2" 5 ,)

. . (0,2,p) (1LLd)
contains one couple less of (0,2) that the starting matrix element (h1 23..or +2|h1 23, .2r +o)s

1,1
i.e. r-couples of (0,2). Up to a reordering in the indices, (h(1 5 Bq.)"’z . +2|_(1 2. 3q) o o) can be

developed just as done in (C.71), generating matrix elements with (r—1)- couples of (0,2). In
total, we have that

(1,1,p) (1,19 & e Lp(;)) 14®)
1 21,2j L1,
<h1 ,2,3,. 2r+2|h1 2,3,. 2r+2> = CB Z =21,2,3,.. §r+2|T2(€21)|h1 2,3,.. 2r+2> (C.106)

and by substituting it in (C.105) we get the recursion formula (C.88), up to the coefficients.

Now that we have identified the non-zero contributions in the used interpolation formulae,
we can easily compute the missing coefficients presented in (C.88). From (C.92), the non-zero
contributions of T,(&,) read:

(1=, )

2 dEWM) £,—&,

(155, o) T2(52a+1)’ (C.107)

a=0 d(§2a+1) b#2a+1 €2a+1 —Sp b

where hy = 1 and h, is the b element of h1 2 ’Sp) 4o forany b > 2. Similarly, from (C.99), the
non-zero contributions of T;(& (211)+1) read:
r @ 0n2)
2a+1 ~ Sc¢ 1
Z l_[ a+—(5“) 1(<§§b)+2), (C.108)

b=1c#2b+2 §2b+2 P

55



Scil SciPost Phys. 9, 086 (2020)

) (1,1,p)
where hy, is the b element of 1_11’2’3’.__’2”2

for any b > 1. Finally, from (C.106), the non-zero

contributions of T, (& gl)) read:

r g(l) _ Eahc,z) o
3
(1) (5,15,2)T1(52b+2)’ (C.109)
b=1cA2b+2 Eop » —&¢

1,1,
h( p)

where hy, is the b element of hyos oo for any b > 1. From these expansions, it is simple to
verify that the recursion holds as written in the lemma.

Finally, the initial condition (C.91) for the recursion just coincides with the identity (C.85),
proven in the previous lemma, by reintroducing the missing interpolation coefficients in front
to TS(&,) in (C.84). O

It is worth remarking that in the recursion formula (C.88) the common part hl,Z,S,...,Zr +2
of the SoV co-vectors and vectors are left unchanged by the recursion, i.e. the recursion acts
only on the (0, 2) couples.

Moreover, thanks to Lemma C.3 the solution of these recursions formulae lead to the de-
termination of the coefficient Clll-(, as defined in (C.67). Here, we do not solve these recursions
but we use the previous lemmas to complete the proof of the Theorem 3.1 by proving the in-
dependence of the Clll-( w.r.t. c. We have just to remark that at the right hand side of (C.88) we

have matrix elements of T4(&4p) with (r — 1)-couples of (0,2) in the co-vector corresponding
to (r — 1)-couples of (1, 1) in the vector. The same statement holds true adapting (C.88) for

(1.2p0)) (0,1,9)
the development of the others matrix elements (1_11,2,3ff,2r 12l T2(E2j42) |h1,2’31_’2r +o)- Hence,

applying (r —1)-times the same recursion formulae to all the non-zero matrix elements gener-
ated in this first step of the recursion, we end up exactly in the same diagonal matrix element

(1,1,9) (1,1,9) . . . .
(B 55 orally o5 o040), Proving the following proportionality:
(0,2,p) (11,9 ri1 . (L1 (1,1,9)
(B 55 2rrallios ara) €Ty 557 5ol 5s o) (C.110)

as any time that we make a recursion we generate exactly a power one of c. The proportionality

- k . . L
coefficient C;' must then be independent with respect to c as the full dependence in c is already
made explicit in the previous formula.

C.2.2 Computation of diagonal elements

Here we give a proof of the form of the diagonal coupling between SoV co-vectors and vectors.
It is independent from the proof of the same result, but in the special case detK = 0, that is
given in the main body of the paper, see Theorem 4.1.
We follow the standard procedure used to prove the “Sklyanin measure” [37,39], by using
the usual interpolation formulae of the transfer matrices.
i) We have that
(O TOEDIRD) = (BPh). (C.111)

Computing the action of TZ(K)(§ 511)) by interpolating in the right points

N
(8n, 1+6n, 2)
TIOEW) = d(gP) (Tz(f;(;?)(&g”) +D 8 EDITOE, )), (C.112)
b=1
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where we recall the definitions

z(h) ={6p, 1+ 6n, 25 - Ony,1 + Oy 2}

N _g(hb) (m—1)N 1
e
h, h h
bape1 E50 —EM) gl O

we get

(b In) = d(éZ))(T;’;(;”(a(”)<h<”mf?)) + g ED P )

(8p, 1+6n, 2)
+ Z & (€ BTV, I,
b=1,b#a
Now, we can use the following identities:

(h(]- Sshp— 1)|h(0 hb)) lf hb € {1:2}’

(Ohy,1+0m, 2)
ney T(K) bs 52y R(0)y —
(e “1T,7(E, i) (h(lo)lh(on) ifhy =0,

and then being
) h(O) (L h© 1)’
- (cfs) —ab (c?iS) —ab

WD % hO itk e (1,2},
a (Ca5) %P

the orthogonality conditions implies the identity:

(D) = d(EP)g ) (E) B NY),

a,z(h)

or equivalently:
0} (0 N (5 w1 +0hn.2)
(hPhO)  dED) EQD — gy T2

(hgl)lhgl)> d(ggzl)) n#a,n=1 ga— (6h"’1+§h"’2) '

n

ii) Similarly, we have
(WM TEEHIEP) = (W@ h®).

Computing the action of Tl(K)(<§ <) by interpolating in the right points

(Ohq,2)

N
11000 = T (€ + 2 8oy (€T (€™,
- a=1

where we recall the definitions
X(h) = {6h1,2: EL3) 5hN’2}’
we get

(PR = 1770 ED P INP) + gl () (VY

N

(Ohy,2)
Z gl(,”(h)(ia )BT E, ") hP).
1,b#
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(C.115)

(C.116)

(C.117)

(C.118)

(C.119)

(C.120)

(C.121)

(C.122)

(C.123)

(C.124)

(C.125)
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Now, using the following identities:

(Lhp+1) 2Ry
(81 2) (h lh,,") ifhy € {0,1},
WO 7Oy p@y — [y Moy C.127
(h, 7T (&, ™ )Ih™) (hsf)lhgz;)) ifhy =2, ( )
and then being
h® h®, K2 hY, (C.128)
- (c?is) - e (cfS) —ab
l_lg;ahbH) (c;ffS) hfihb) if hy € {1,2}, (€.129)
the orthogonality conditions implies the identity:
(0 hY) = g’ (E BV, (€130
or equivalently:
RCNE) N _ ¢ (Bn2)
(he"Ih") _ Sa=n T (C.131)

FYOION :
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