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Abstract In this paper, the quantum Brownian motion of
a point particle induced by the quantum vacuum fluctua-
tions of a real massless scalar field in Einstein’s universe
under Dirichlet and Neumann boundary conditions is stud-
ied. Using the Wightman functions, general expressions for
the renormalized dispersion of the physical momentum are
derived. Distinct expressions are found for the dispersion
associated with each component of the particle’s physical
momentum, indicating that the global properties of homo-
geneity and isotropy of space are lost, as a consequence of
the introduced boundary conditions. Divergences also arise
and are related to the compact nature of Einstein’s universe
and the introduced boundary conditions.

1 Introduction

Induced quantum Brownian motion (IQBM) is one of the
phenomena originated by vacuum fluctuations of quantum
fields, similar to the very known Casimir effect [1]. The
conceptual image of the physical phenomenon related to the
IQBM corresponds to a point particle (also called test par-
ticle) interacting, for instance, with an electromagnetic or
scalar quantum field. Hence, the quantum fluctuations of the
vacuum state of the field make the test particle to follow a
random trajectory.

This elementary system has been constantly investigated
in recent years, considering distinct scenarios, both in electro-
magnetic [2–8] and scalar field [9–15] models in flat space-
time. The consequences, for instance, of distinct topologies
in the IQBM of particles in Minkowski spacetime have been
studied by considering the vacuum fluctuations of the electro-
magnetic field [16]. Furthermore, in Refs. [17–20] the IQBM
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of particles in a flat Friedmann–Lemaitre–Robertson–Walker
(FLRW) spacetime models has been also studied.

In a recent paper [21] we have investigated the IQBM in
a curved spacetime with positive constant curvature, which
defines Einstein’s universe (a closed or compact space-
time model). Among other things, there we calculated the
〈(�p̂i )2〉 dispersions for the p̂i components of the physical
momentum associated with the point particle and observe a
homogeneous and isotropic result for the dispersions, which
are typical properties of FLRW spacetime models. Periodic
divergences were also found and explained as a consequence
of the compact nature of Einstein’s universe, as well as a
possible consequence of the classical nature of the geometry
adopted. Now, in the present paper, we wish to investigate
the IQBM of a point particle in Einstein’s universe under
Dirichlet and Neumann boundary conditions.

From a theoretical viewpoint, Einstein’s universe is very
interesting because it eliminates some intrinsic technical
problems of quantum field theory in curved spacetimes. In
fact, in curved backgrounds it is well known that the defi-
nition for the quantum vacuum state can be ambiguous and
related to this ambiguity arise the phenomenon of particle
production [22,23]. For a recent review about particle pro-
duction see Ref. [23]. However, Einstein’s universe is static,
so vacuum state definition is not ambiguous [22,24,25]. In
addition, as argued in Ref. [25], it is a very important the-
oretical model that allows us to explore and study how the
spacetime curvature can influence the phenomena arising in
the context of quantum field theory.

Regarding the structure of this paper, in Sect. 2, first, we
briefly define the spacetime geometry in which we will carry
out the study. Next, we obtain the normalized solutions of
the Klein–Gordon equation and the corresponding Wightman
functions. In Sect. 3, we review the point particle dynam-
ics and derive the equations of motion that will be used to
study the momentum dispersion, which corresponds to the
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vacuum expectation value (VEV) of the particle’s squared
momentum. Finally, in Sect. 4 we summarize the main results
obtained throughout the paper.

2 Normalized solutions and Wightman functions

In order to maintain the text continuous and clear, in this
section, first we review the obtaining of the normalized solu-
tions of the Klein–Gordon equation in Einstein’s universe and
the corresponding Wightman function. Then, based on these
discussion, we obtain the Wightman function for Einstein’s
universe under Dirichlet and Neumann boundary conditions.

2.1 Einstein’s universe

Now, we must briefly present the background geometry of
the curved spacetime on which our investigation will be carry
out, that is, the spacetime in which both the point particle and
scalar field exist. One of the main elements of the modern
Cosmology consist of the Friedmann–Lemaitre–Robertson–
Walker (FLRW) metric tensor, which is defined by the line
element [26–28]

ds2 = c2dt2 − a2(t)dr2, (1)

with

dr2 =
{

dr2

1 − kr2 + r2[dθ2 + sin2(θ)dφ2]
}

. (2)

In Eq. (1) a(t) is the scale factor and in Eq. (2) the constant
parameter k, associated with the spacial geometry, can take
on three specific values, namely, k = (−1, 0,+1). Also,
as we know, these three values of the parameter k describe,
respectively, an open, flat and closed universe, but all equally
homogeneous e isotropic [26,28]. From now on we will use
units such that c = h̄ = 1.

Einstein’s universe corresponds to the particular case k =
+1 of the FLRW line element with a constant scale factor,
namely, [27–29]

ds2
EU = dt2 − a2

0

{
dχ2 + sin2(χ)

[
dθ2 + sin2(θ)dφ2

]}
,

(3)

where in order to establish the above equation we have intro-
duced the new coordinate r = sin(χ) in Eq. (2). The line
element ds2

EU describes a static universe model, whose spa-
tial section of spacetime is closed or compacted, and of finite
volume.

In Eq. (3), a0 = a(t = t0) and corresponds to a constant
value for the scale factor at an arbitrary instant of time t = t0,
which defines a hypersurface t = constant in this spacetime.
In addition, by geometric reasons, a0 is commonly known as

the radius of Einstein’s universe. Other geometric properties
of this spacetime can be consulted, for instance, in Refs. [27]
and [29]. The validity range of the coordinates in ds2

EU are
such that 0 ≤ t ≤ ∞, 0 ≤ χ ≤ π , 0 ≤ θ ≤ π and
0 ≤ φ ≤ 2π . It is observed that the angular sector (θ, φ)

corresponds to the usual angles of the spherical coordinates.
Thus, as we shall see, the part of the solution of the Klein–
Gordon equation referring to these angles corresponds to the
spherical harmonics.

2.2 Solution of the Klein–Gordon equation

According to the formalism of quantum field theory, the solu-
tion of the Klein–Gordon equation is an essential element
for the construction of the scalar field operator ψ̂(x). In gen-
eral, the dynamics of a free scalar field ψ(x), with mass mF,
propagating through an arbitrary spacetime, is given by the
expression [22,30]

(
� + m2

F + ξ R
)

ψ(x) = 0, (4)

where the second order covariant differential operator �ψ =
∇μ∇μψ is given by

�ψ(x) = 1√−g
∂μ[√−ggμν∂νψ(x)], (5)

with the determinant g = Det(gμν). In the present case,
remembering that ds2 = gμνdxμdxν , the metric tensor
gμν can be obtained directly from Eq. (3) so that g =
−a6

0 sin4(χ) sin2(θ).
In Eq. (4) the term ξ Rψ represents a contribution that

comes from the coupling between the scalar field ψ and the
effects of gravity, where the coupling strength is defined by
the constant ξ . The Ricci scalar R, in which the effects of
gravity are encoded, can be calculated by contracting the
Ricci tensor Rμν according to the relation R = gμνRμν ,
with [26]

Rμν(x) = �
β
βν,μ − �

β
μν,β + �β

αμ�α
βν − �

β
αβ�α

μν, (6)

where and Christoffel symbols are given by

�α
μν(x) = 1

2
gαβ

(
gβμ,ν + gβν,μ − gμν,β

)
. (7)

In addition, regarding the coupling constant in Eq. (4), specif-
ically, the cases ξ = 0 and ξ �= 0 represent the minimum and
non-minimum coupling cases, respectively. If, on the other
hand, one assumes the particular value ξ(n) = (n−2)

4(n−1)
, we

have the case known as conformally coupled, where n cor-
responds to the number of spacetime dimensions [22]. As
we are considering a four-dimensional spacetime n = 4 and,
consequently, ξ = 1

6 . It is important to note that even in the
case of minimal coupling (ξ = 0), the field still sees a curved
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spacetime because of the geometrical informations contained
in �ψ(x) term, as we can see from Eq. (5).

Assuming that the field ψ(x) can be decomposed as the
product of independent and separable solutions ψ(t, χ, θ, φ)

= T (t)R(χ)�(θ)�(φ), we can show that a set of solutions
of Eq. (4), representing the positive frequency modes of the
scalar field, is given by [21,31,32]

ψσ (t, χ, θ, φ) = N sin�(χ)C�+1
n−�(cos χ)Ym

� (θ, φ)e−iωn t ,

(8)

whereCα
m(z) are known as Gegenbauer polynomials or ultra-

spherical polynomials [33,34] andYm
� (θ, φ) are the spherical

harmonics [35], with n = 0, 1, 2, . . ., � = 0, 1, 2, . . . , n e
−� ≤ m ≤ �. In Eq. (8) the eigenfrequencies ωn are defined
by the expression

ωn =
[
n(n + 2)

a2
0

+ M2

]1/2

, (9)

with M2 = m2
F + ξ R and the subscript σ = (n, �,m) stands

for the set of numbers responsible for specifying each of the
field’s modes. In addition, as we shall see below, the constant
N in Eq. (8) can be obtained, so that we can construct a set
of orthonormal solutions.

At this point it is important to note that, in principle, R
can depend on the spacetime coordinates, as we can see from
Eqs. (6) and (7). Thus, in this case, its structure can signif-
icantly modify the solutions of the Klein–Gordon equation.
However, in Einstein’s universe the Ricci scalar is constant,
namely, R = 6a−2

0 , so that we can identify the constant effec-
tive mass M2 = m2 + 6

a2
0

in Eq. (9). Next we will establish

the methodology necessary to obtain the Wightman function
which is a fundamental quantity in our studies.

2.3 Quantum scalar field and Wightman functions

To study the IQBM of a point particle by a scalar field
in Einstein’s universe with Dirichlet and Neumann bound-
ary conditions we need to find the corresponding Wightman
functions. After obtaining the solutions ψσ (x) of the Klein–
Gordon equation (4), which correspond to the modes of the
scalar field (8), we can normalize these modes and use them
to construct the field operator ψ̂(x) through the following
expression [22]:

ψ̂(x) =
∑
σ

[
âσ ψσ (x) + â†

σ ψ∗
σ (x)

]
, (10)

where the coefficients âσ and â†
σ are the creation and anni-

hilation operatos, respectively. These operators, which does
not depend on the spacetime coordinates, create and annihi-
late the quanta associated with the field ψ̂(x) and satisfy the

fundamental property of commutation

[âσ , â†
σ ′ ] = δσσ ′ (11)

and the elementary algebra of the vacuum state

âσ |0〉 = 0 ( ∀ σ ), (12a)

and

〈0|âσ â
†
σ ′ |0〉 = δσσ ′ . (12b)

As we have mentioned before, in Eqs. (10), (11) and (12),
the subindex σ represents in a compacted form the set of
values for quantum numbers related to the modes of the scalar
field, which can be either discrete or continuous. However,
in the present case, we work with the set of discrete indices
σ = (n, �,m), as already pointed out. Then, the sum symbol
in Eq. (10) stands for three discrete sums in the respective
range of the quantum numbers.

In curved spacetime, the normalization condition that we
must use for normalize the modes ψσ (x) in Eq. (10) is defined
by the relation

− i
∫

dx3√−g[ψσ (∂tψ
∗
σ ′) − (∂tψσ )ψ∗

σ ′ ] = δσσ ′ , (13)

which by definition corresponds to the scalar product
between the modes ψσ (x) e ψσ ′(x), symbolically repre-
sented by the notation (ψσ , ψσ ′). This relation allow us to
construct a set of orthonormal solutions, i.e., which obey
both orthogonality and normality conditions, mathematically
expressed by properties (ψσ , ψσ ′) = (ψσ , ψ∗

σ ′) = 0 and
(ψσ , ψσ ′) = −(ψ∗

σ , ψ∗
σ ′) = δσσ ′ [22].

Considering the previous discussions, from Eqs. (10) and
(8), now we can obtain the positive frequency Wightman
function (PFWF) for the scalar field (duly normalized) in
Einstein’s universe using the general expresion

W(x, x ′) = 〈0|ψ̂(x)ψ̂(x ′)|0〉
=
∑
σ

ψσ (x)ψ∗
σ (x ′). (14)

To establish the second line of the above equation we have
used the algebras of the creation and annihilation operators
in the vacuum state shown in Eq. (12).

Next, using the methodology and expressions of this sec-
tion, we present a derivation for the Wightman functions nec-
essary to study the IQBM in Einstein’s universe under Dirich-
let and Neumann boundary conditions. In order to clarify the
discussion, we would like to present the outline of the algo-
rithm that we will be following in subsequent subsections.
In summary, the methodology consists of first obtaining the
modes, solving Eq. (4), and normalizing them, using Eq.
(13). Then, we use Eq. (10) to construct the field operator
and, finally, Eq. (14) to find the Wightman functions.
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2.3.1 PFWF for the Einstein’s universe

For the case of Einstein’s universe (E) without boundary con-
ditions, from Eqs. (8) and (13), after some computations and
simplifications, we find that

ψ
(E)
σ (t, χ, θ, φ) = N(E)

n�
sin�(χ)C�+1

n−�
(cos(χ))Ym

� (θ, φ)e−iωn t

(15)

are the normalized modes, with

N(E)
n� =

{
22�(n + 1)(n − �)![�(� + 1)]2

πa3
0ωn�(� + n + 2)

}1/2

. (16)

It is worth pointing out that, in the above equations, super-
script E indicates that the respective quantities refer to Ein-
stein’s universe without boundary conditions. In addition, to
establish the normalization constant N(E)

n� we use the orthog-
onality relations of spherical harmonics [35],∫ 2π

0
dφ

∫ π

0
dθ sin(θ)[Ym

� (θ, φ)]∗Ym′
�′ (θ, φ) = δ��′δmm′ ,

(17)

and Gegenbauer polynomials [34],∫ 1

−1
dz(1 − z2)λ−1/2Cλ

j (z)C
λ
k (z)

=
⎧⎨
⎩

0 if j �= k,
π21−2λ�( j + 2λ)

j !(λ + j)[�(λ)]2 , if j = k (λ �= 0).
(18)

According to the previous discussions, to obtain the
Wightman function, we must now replace Eq. (15) in Eq.
(14), with the sum symbol

∑
σ

≡
∞∑
n=0

n∑
�=0

�∑
m=−�

, (19)

so that we find

W(E) = 1

4π

∞∑
n=0

n∑
�=0

∣∣∣N(E)
n�

∣∣∣2 (2� + 1)e−iωn�t sin�(χ)

sin�(χ ′)C�+1
n−�(cos χ)C�+1

n−�(cos χ ′)P�(cos γ ), (20)

where we define �t = (t − t ′). To perform the sum in the
discrete index m we use the addition theorem of the spherical
harmonics, which is given by relation [35]

P�(cos(γ )) = 4π

2� + 1

�∑
m=−�

Ym
� (θ, φ)[Ym

� (θ ′, φ′)]∗, (21)

with

cos(γ ) = cos(θ) cos(θ ′) + sin(θ) sin(θ ′) cos(φ − φ′). (22)

In a superficial way, two crucial identities for the devel-
opment of Eq. (20) up to its final form are the Gegenbauer

polynomial addition theorem [34] and the Abel–Plana for-
mula [36]. Given that only the structure of Eq. (20) and its
final form (which we show below) are useful for the subse-
quent discussions, here, the formal details of this develop-
ment are omitted. However, we recommend that the reader
consult Ref. [21] and the sources cited therein for the nec-
essary details. Then, a possible representation of Eq. (20) is
such that

W(E)(x, x ′) = imF

8πa0 sin
(

�s
a0

)
∞∑

n=−∞

× (�s + 2πa0n)

σn
H (2)

1 (mFσn) (23)

for the massive scalar field and [37]

W(E)(x, x ′) = − 1

4a0π2

∞∑
n=−∞

(�s + 2πa0n)

sin
(

�s
a0

)
σ 2
n

, (24)

for the massless scalar field, with

σ 2
n = �t2 − (�s + 2πa0n)2. (25)

In Eq. (23) H (2)
1 (z) is the Hankel function or Bessel function

of the third kind [34]. As we know, in the above equations a0

is the radius of Einstein’s universe, σn represents the modulus
of the spacetime separation vector and �s corresponds to
the spatial separation between two vectors defined by the set
of coordinates (χ, θ, φ) and (χ ′, θ ′, φ′), respectively, whose
internal angle α of the separtion is such that [38,39]

cos(α) = cos(χ) cos(χ ′) + sin(χ) sin(χ ′) cos(γ ), (26)

where cos(γ ) is given by Eq. (22). In addition, in this space-
time the spatial distance �s and angle α are related by the
expression �s = a0α. Finally, we emphasize that Eqs. (23)
and (24) correspond to the PFWF expressions for the massive
and massless scalar fields in Einstein’s universe.

2.3.2 PFWF for Einstein’s universe under Dirichlet and
Neumann boundary conditions

In this part we will consider the Einstein’s universe with
the effect of Dirichlet and Neumann boundary conditions
imposed on the scalar field, with the spacetime geometry
determined by the line element (3) and the angular variable
χ defined by the modified range χ = [0, π

2

]
. It is noteworthy

that, in Einstein’s universe (without boundary conditions),
previously discussed, the natural range of the χ coordinate is
χ = [0, π ]. In the present case, we will use the Dirichlet and
Neumann boundary conditions when the angular variable χ

assumes the particular value χ = π
2 . For the Dirichlet (D)

boundary condition, the modes must satisfy the condition

ψ |χ= π
2

= 0, (27)

123



Eur. Phys. J. C            (2025) 85:71 Page 5 of 16    71 

whereas for the Neumann (N) boundary condition
(

∂ψ

∂χ

)∣∣∣∣
χ= π

2

= 0. (28)

From Eq. (8), we find that the normalized solutions that
satisfy the relations (27) and (28) are given by

ψ (i)
σ (t, χ, θ, φ)

= N(i)
n� sin�(χ)C�+1

n−�(cos(χ))Ym
� (θ, φ)e−iωn t ,

(29)

where

N(i)
n� =

{
22�+1(n + 1)(n − �)![�(� + 1)]2

πa3
0ωn�(� + n + 2)

}1/2

, (30)

with i = (D, N). The normalization constant N(i)
n� was obtained

through condition (13) and using the orthogonality rela-
tions (17) and (18). In addition, the eigenfrequencies ωn

are defined in Eq. (9). The use of boundary conditions
affects both the normalization constant and the values of
the quantum numbers. In fact, comparing Eqs. (16) and
(30) we note that N(D,N)

n� = √
2N(E)

n� . Furthermore, observ-
ing the property of Gegenbauer polynomial Cλ

n (0) = 0, for
λ �= 0 and n = 2 j + 1, with integer j ≥ 0 [33], in the
Dirichlet case the range of quantum numbers is such that
n = {1, 2, 3, . . .} and � = {0, 1, 2, . . . , n} with the con-
straint (n − �) = {1, 3, 5, . . .} (odd numbers). On the other
hand, in the Neumann case the quantum numbers are such
that n = {0, 1, 2, 3, . . .} and � = {0, 1, 2, . . . , n} with the
constraint (n − �) = {0, 2, 4, . . .} (even numbers).

To obtain the corresponding Wightman functions for the
Dirichlet and Neumann boundary conditions for the Einstein
universe we use Eqs. (14) and (29), so that we find

W(i) =
∑
n,�

(i)
W(i)

n�, (31)

where i = (D, N) and we conveniently define

W(i)
n� = 1

4π

∣∣∣N(i)
n�

∣∣∣2 (2� + 1)e−iωn�t sin�(χ) sin�(χ ′)

C�+1
n−�(cos(χ))C�+1

n−�(cos(χ ′))P�(cos(γ )). (32)

It is noteworthy that in the above relation cos(γ ) is defined
in Eq. (22). The upper index in the sum symbol specifies the
boundary condition and its respective ranges with the con-
straint of possibles values for the quantum numbers. Specif-
ically, we have that for the Dirichlet case

∑
n,�

(D)
W(D)

n� ≡
∞∑
n=1

n∑
�=0

W(D)
n� , with (n − �) = 1, 3, 5, . . . ,

(33)

and for the Neumann case

∑
n,�

(N)
W(N)

n� ≡
∞∑
n=0

n∑
�=0

W(N)
n� , with (n − �) = 0, 2, 4, . . . .

(34)

From Eqs. (32), (20), (16) and (30) we can notice that there
is a relation between the coefficients of the Einstein’s uni-
verse, W(E)

n� , and the Einstein’s universe under Dirichlet and

Neumann boundary conditions, W(D,N)
n� , namely, W(D,N)

n� =
2W(E)

n� . The W(E)
n� coefficients have the same mathematical

structure as in Eq. (32), except for the constraints on the n
and � indices. This is a direct consequence of the normaliza-
tion process. In fact, in Einstein’s universe the normalization
is performed with respect to the whole space. On the other
hand, in Einstein’s universe with the boundary conditions
considered the normalization is performed considering a sub-
space such that 0 ≤ χ ≤ π

2 , which corresponds to half of the
usual space, that is, without the boundary conditions. Then,
this gives rise to the factor of 2 observed in the previous rela-
tions. For the derivation of the Wightman function presented
below we based our analysis on Refs. [39] and [40].

Before proceeding, it is crucial for the following discus-
sions to observe the behavior of the elements of the double
series in Eq. (31). This is shown in Table 1, in which, for
understanding purposes, we have brought together the three
subtables containing the W(E,D,N)

n� coefficients for each of the
three cases discussed in this article. Table 1-(a) shows the
first terms for the case of Einstein’s universe, Eq. (20), in
which no boundary conditions are imposed on the modes.
Similarly, in Tables 1-(b) and 1-(c) we have the first possible
terms of the series (31) for the cases of Dirichlet and Neu-
mann boundary conditions, so that (n − �) must be odd and
even, repectively.

Observing the arrangement of the respective elements in
these tables, we note that the Dirichlet and Neumann series
make up the Einstein series. In other words, the empty spaces
in Tables 1-(b) and 1-(c) complement each other so that their
superposition (sum) is equal to the elements in Table 1-(a).
Precisely, we note that

W(D) + W(N) = 2W(E). (35)

The origin of factor 2 has already been explained previously.
It is also important for the current computation to find the
difference between the two solutions, that is, to calculate the
quantity

W(B) = W(N) − W(D). (36)

Then, once the results of Eqs. (35) and (36) are obtained,
we can obtain the respective expressions for the cases of
Dirichlet and Neumann boundary conditions, observing that

W(j) = W(E) + δ(j) W(B)

2
, (37)
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Table 1 First values for the W(i)
n� coefficients of the Wightman functions referring to the cases of Einstein’s universe without boundary conditions

and of the Einstein’s universe under Dirichlet and Neumann boundary conditions

n �

0 1 2 3 4 5 . . .

(a) Einstein’s universe

0 W(E)
00

1 W(E)
10 W(E)

11

2 W(E)
20 W(E)

21 W(E)
22

3 W(E)
30 W(E)

31 W(E)
32 W(E)

33

4 W(E)
40 W(E)

41 W(E)
42 W(E)

43 W(E)
44

5 W(E)
50 W(E)

51 W(E)
52 W(E)

53 W(E)
54 W(E)

55

.

.

.
. . .

(b) Einstein’s universe: Dirichlet case

0 (N)

1 W(D)
10 (N)

2 (N) W(D)
21 (N)

3 W(D)
30 (N) W(D)

32 (N)

4 (N) W(D)
41 (N) W(D)

43 (N)

5 W(D)
50 (N) W(D)

52 (N) W(D)
54 (N)

.

.

.
. . .

(c) Einstein’s universe: Neumann case

0 W(N)
00

1 (D) W(N)
11

2 W(N)
20 (D) W(N)

22

3 (D) W(N)
31 (D) W(N)

33

4 W(N)
40 (D) W(N)

42 (D) W(N)
44

5 (D) W(N)
51 (D) W(N)

53 (D) W(N)
55

.

.

.
. . .

In the tables above, the quantum numbers n and � ≤ n identify the rows and columns, respectively. In table (a) there are no constrains for the
values of n and �, so they can assume any values in their respective ranges. In the cases of tables (b) and (c), the values of n and � are subject to the
constraint (n − �) = {1, 3, 5, . . .}, for the Dirichlet condition, and (n − �) = {0, 2, 4, . . .}, for the Neumann condition. Moreover, the letters (N)
and (D), in tables (b) and (c), represent the missing coefficients, due to the constraints on the values of the subtraction (n − �). The letter (N) means
that the respective coefficient belongs to the Neumann series, table (c), whereas the letter (D) means that the coefficient belongs to the Dirichlet
series, table (b)

where we conveniently define δ(j) = [δ(D), δ(N)] = [−1,+1].
In Eqs. (36) and (37) the subscript B refers to the contribution
of the boundary condition.

According to the discussions presented above, now we
need to find the quantity W(B)

2 , in order to obtain the respective
Wightman functions W(D) and W(N) via Eq. (37), since W(E)

is given by Eqs. (23) and (24). From the Eqs. (31), (32) and
(36) we can write

W(B)

2
=
∑
n,�

(N)
fn�C

�+1
n−�(cos(χ))C�+1

n−�(cos(χ ′))

−
∑
n,�

(D)
fn�C

�+1
n−�(cos(χ))C�+1

n−�(cos(χ ′)), (38)

where we conveniently define the new coefficients

fn� = |N(E)
n� |2
4π

(2� + 1)e−iωn�t sin�(χ) sin�(χ ′)P�(cos(γ )).

(39)

The respective sum symbols in Eq. (38) are given by Eqs.
(33) and (34).

Exploiting the fact that (n− �) in the last term of Eq. (38)
is an odd number, we can absorb the negative sign in the
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Gegenbauer polynomial using the symmetry property [33]

Cλ
n (−z) = (−1)nCλ

n (z). (40)

Similarly, this procedure can be applied to the first term of
Eq. (38), that is, since (n − �) is an even number we can
also introduce a negative sign in the Gegenbauer polynomial
without loss of generality. Thus, based on the properties of
trigonometric functions, namely, cos(π − χ ′) = − cos(χ)

and sin(π − χ ′) = sin(χ), we can manipulate the resulting
expression in oder to identify the coefficients W(E)

n� with χ ′ →
(π − χ ′). Therefore, following the described methodology
we can add both terms and obtain that

W(B)

2
=

∞∑
n=0

n∑
�=0

W(E)
n�

∣∣∣
χ ′→(π−χ ′)

= W(E)
∣∣∣
χ ′→(π−χ ′)

. (41)

The expression above indicates that the boundary con-
tribution W(B)

2 can be obtained from the expression for the
Wightman function W(E) referring to Einstein’s universe.
Therefore, according to Eqs. (41) e (23) we find that

W(B)

2
= imF

8πa0 sin
(

�s̄
a0

)
∞∑

n=−∞

(�s̄ + 2πa0n)

σ̄n
H (2)

1 (mF σ̄n),

(42)

where similar to Sec. 2.3.1 we have that

σ̄ 2
n = �t2 − (�s̄ + 2πa0n)2 (43)

and

cos(ᾱ) = cos

(
�s̄

a0

)
= cos(χ) cos(π − χ ′)

+ sin(χ) sin(π − χ ′) cos(γ ), (44)

with cos(γ ) given by Eq. (22). Note that the massless limit of
Eq. (42) corresponds to Eq. (24) with the change �s → �s̄.

Similar to Ref. [21], here we are interested in the case of
a massless scalar field. Thus, in view of Eqs. (24) and (37),
for our purposes, we can establish the following expression:

W(i)(x, x ′) = − 1

4a0π2

∞∑
n=−∞

[
wn(�t,�s) + δ(i)wn(�t,�s̄)

]
,

(45)

with i = (E, D, N), δ(i) = [δ(E), δ(D), δ(N)] = [0,−1,+1],

wn(�t,�s) = (�s + 2πa0n)

sin
(

�s
a0

)
σ 2
n

(46)

and

wn(�t,�s̄) = (�s̄ + 2πa0n)

sin
(

�s̄
a0

)
σ̄ 2
n

. (47)

In the above expressions, all parameters have already been
defined previously. Futhermore, for general purposes, in Eq.

(45), we include the case δ(E) in order to compare and verify
the consistency of the results obtained below. In fact, for the
case δ(E) = 0 we obtain the PFWF for Einstein’s universe and
the expressions presented below should provide the results
obtained in Ref. [21].

Equation (45) corresponds to the expression of the PFWF
for a massless scalar field in Einstein’s universe and in the
Einstein’s universe under Dirichlet and Neumann boundary
conditions. This is a very useful expression, because we can
use it to calculate the physical observables that depend on
it and in the end study the particular cases by choosing the
appropriate values of δ(i). In fact, it is important to note that
the operations only affect the wn functions, as the δ(i) coeffi-
cients are constant. A similar structure can be found in Ref.
[14] for a massless scalar field in the presence of two parallel
planes in Minkowski spacetime. In the next sections we will
use Eq. (45) to study the momentum dispersion of a point
particle induced by the quantum vacuum fluctuations of a
massless scalar field in the case of the Einstein’s universe
subject to Dirichlet and Neumann boundary conditions.

3 Particle dynamics and momentum dispersion

3.1 General expressions

In curved spacetime, the four momentum pμ = mpuμ of a
point particle of mass mp coupled to a massless scalar field
ψ(x), is governed by the equation of motion [21,26,41]

dpμ

dτ
+ mp�

μ
νρu

νuρ = −qgμν∇νψ(x), (48)

where the constant q corresponds to the charge of the parti-
cle or, in other words, the strength of coupling between the
particle and the scalar field. In Eq. (48), uμ = dxμ/dτ rep-
resents the velocity four-vector of the particle, defined in the
usual way as the rate of variation of the spacetime coordi-
nates xμ with respect to proper time τ . The �

μ
νρ symbols are

duly defined in Eq. (7). In addition, the mass of the particle in
the above equations corresponds to a dynamic mass, which
can vary with time due to it is interaction with the scalar field,
and is defined by the relations [41]

mp(τ ) = m0 − qψ(x) (49)

and

dmp

dτ
= −quμ∇μψ(x), (50)

where m0 represents the bare mass of the particle, that is, in
the absence of interaction effects with the scalar field. In fact,
it is noted that in the limit q → 0 we obtain that mp = m0.

For simplicity, we perform the present study considering
a non-relativistic limit, which allows us to ignore the pos-

123



   71 Page 8 of 16 Eur. Phys. J. C            (2025) 85:71 

sibles effects of the particle backreaction. This scenario is
compatible with the point particle regime that we are con-
sidering [19]. Then, in this validity regime, the proper and
coordinate time are approximately equal and also only the
spatial components of Eq. (48) become significant, allowing
us to establish the following expression:

dpi

dt
+ mp�

i
νρu

νuρ = −qgiν∇νψ(x) + f iext. (51)

The term f iext has been added in order to include the effect
of sources external to the system (composed here of the par-
ticle and the scalar field). It is instructive to observe that this
expression corresponds to a generalization for the Newton’s
second law to an arbitrary coordinate system [26]. In addi-
tion, this is a classical equation.

In geral, quantum fields permeating curved spacetimes,
that is, in the presence of gravitational effects, can naturally
suffer backreaction effects. In fact, the nontrivial curvature of
spacetime (gravitity), even classically, modifies the vacuum
fluctuations of the fields. In turn, this modification gives rise
to a renormalized vacuum energy, which is provide by VEV
of the renormalized energy-momentum tensor (EMT) [42].
Consequently, according to Einstein’s field equations, this
nonzero VEV to the EMT can contribute as a source of grav-
ity (or “spacetime curvature”), which can be encoded into the
metric of the concerned spacetime. An example which illus-
trates this process can be seen in Ref. [43] where, among
other things, the authors obtain quantum corrections for the
metric tensor of a spinning cosmic string in the presence of
a conformally coupled massless scalar field. Furthermore,
regarding backreaction effects in Einstein’s universe, these
were discussed in Refs. [24] and [25] from a different per-
spective than the one we reported in this paragraph. In view
of the above, we should point out that, in our expressions,
backreaction effects directly influence Eq. (51) through the
quantities gi j and �i

νρ . However, in the present case, such
effects are neglected, due to the nonrelativistic regime and
the assumed point particle treatment.

Despite the simplifications introduced by the hypothesis
discussed above, we perceives that solving Eq. (51) is still
a difficult task. The reason is that the non-zero Christoffel
symbols �i

νρ for the metric (3) (shown in Table 2) produces
a constraint between the distinct components of pi and uμ,
making the direct solution of such expressions difficult. How-
ever, based on the fact that the origin of �i

νρ is geometric, we
can interpret the second term on the right hand side of Eq.
(51) as a classical force. Therefore, in order to analyze only
the contributions arising from quantum field fluctuations to
the motion of particle, it is appropriate to suppose that

f iext = mp�
i
νρu

νuρ. (52)

Table 2 Non-zero Christoffel symbols �
μ
νρ for Einstein’s universe

�
χ
θθ − sin(χ) cos(χ)

�
χ
φφ − cos(χ) sin(χ) sin2(θ)

�θ
χθ , �

θ
θχ , �

φ
χφ, �

φ
φχ cot(χ)

�θ
φφ − sin(θ) cos(θ)

�
φ
θφ, �

φ
φθ cot(θ)

Another possible justification for the expression of force f iext
chosen above is that, in the present approach, we are con-
sidering that the quantum effects are exclusively from the
massless scalar field ψ(x). In order to better understand the
meaning of f iext, as well as the level of approximation we are
considering, it is opportune to first observe how geometry
affects Eq. (51) and consequently the IQBM of the particle.

The dynamics of the point particle, given by Eq. (51), is
affected by the geometric coefficients gi j and �i

νρ , which
depend on the coordinate system used to describe the space-
time geometry. In addition, it is also affected by the modes
of the scalar field ψ , which propagates throughout the entire
expanse of spacetime, probing information about the geo-
metric structure of Einstein’s universe. This is easily seen by
observing, for instance, at the nontrivial mathematical struc-
tures that the expressions for the modes (15) and (29) have,
which differ from the usual form of plane waves e−iωt+ik·x
in Minkowski spacetime.

Certainly, solution of Eq. (51) considering f iext = 0 would
give us a more complete description for the pi components
of the momentum, but this case becomes unfeasible to be
solved analytically. Then, for mathematical reasons, Eq. (52)
is crucial, as its implementation allows us to find analytical
solutions. From a physical viewpoint, considering Eq. (52)
in our calculations means that we are assuming a regime in
which the geometric effects of spacetime locally do not affect
the particle dynamics. In this sense, we are assuming that the
particle indirectly probes the nontrivial effect of the geometry
of Einstein’s universe through the quantum fluctuations of the
scalar field, which permeates the entire spacetime.

In view of Eqs. (51) and (52), it follows that momentum
pi obeys the first order differential equation

dpi

dt
= −qgiν∇νψ(x),

whose integration between two successive instants of time,
t0 = 0 and t = τ , subject to classical condition of initial
value pi (0) = 0, gives as the expression

pi (x) = −q
∫ τ

0
dtgiν∇νψ(x). (53)

This equation provides the non-relativistic expressions that
govern the behavior of the spatial components of the momen-
tum of the point particle of charge q, coupled to a massless
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scalar field ψ(x) in an arbitrary spacetime, described by the
set of coordinate x . We emphasize that in the present case
x = (t, χ, θ, φ). Furthermore, we will consider that the tem-
poral variation of the coordinates is small enough that we can
neglect them.

The dispersion or variance of an observable Ô, with
respect to an arbitrary quantum state |�〉, is defined by the
relation [44]

〈(�Ô)2〉 = 〈Ô2〉 − 〈Ô〉2, (54)

where we use the compact notation 〈. . .〉 = 〈�| . . . |�〉 for
the expected values. The first term on the right hand side is
the expectation value (or mean value) of squared Ô operator
and the second one is the squared of the expectation value of
Ô. The relation in (54) is general and holds for all cases, that
is, for any quantum state |�〉 and operator Ô, but here we are
interested in the state of quantum vacuum so that |�〉 = |0〉.
So, quantizing Eq. (53), through the quantum prescription
(pi , ψ) → ( p̂i , ψ̂) and observing that 〈 p̂i 〉 = 0, as a result
of Eqs. (10) and (12), from Eqs. (53) and (54) it follows that

〈(� p̂i )2〉(j)
ren = lim

x ′→x
q2
∫ τ

0
dt ′
∫ τ

0
dtgii (x)gii (x ′)

×∂2W(j)
ren(x, x ′)

∂xi∂x ′i , (55)

where we identify the PFWF 〈0|ψ̂(x)ψ̂(x ′)|0〉 = W(x, x ′),
according to definition (14). It is noted that, since 〈(� p̂i )2〉(j)

ren

= 〈( p̂i )2〉(j)
ren, here the concepts of dispersion and VEV of the

squared momentum are synonymous. In addition, to estab-
lish the corresponding expression of 〈(� p̂i )2〉(j)

ren we use the
fact that the metric tensor of Einstein’s universe, Eq. (3), is
diagonal.

Equation (55) will allow us to calculate the dispersion of
the particle momentum components induced by the quantum
vacuum fluctuations of the massless scalar field in Einstein’s
universe, in the presence or absence of boundary conditions.
For purposes of clarity, before we proceed, it is instructive to
make some comments about the structure of this expression.
The formal limit notation represents the well-known opera-
tion of the coincidence limit, which must be performed in our
calculations in order to obtain the desired quantity. For sim-
plicity, from now on, this operation will be omitted, leaving
it implicit. The indices i and j, respectively, define the spatial
coordinate and boundary condition considered in the analy-
sis, that is, i = (χ, θ, φ) and j = (E, D, N). The subscript “ren”
indicates that the quantities used must be duly renormalized.
In the present case, as indicated in Refs. [37,38,45], the reg-
ularization of the observables is performed by discarding the
term w0(�t,�s) from Eq. (45), which is the divergent con-
tribution in the coincidence limit (�t,�s) → 0.

3.2 Dispersion for the momentum components

We will now use the results from Sects. 2.3.2 and 3.1
to study the behavior of the momentum dispersion com-
ponents, or equivalently the VEV of the components of
momentum squared. Essentially, this will be accomplished
by using Eqs. (45) and (55). In fact, by making use of
Eq. (55), for each selected component i = (χ, θ, φ), after
identifying the metric elements gii , we also use Eq. (45)
and calculate the integrals and derivatives in Eq. (55).
Then, we specify the constant coefficient δ(j) to observe the
momentum dispersion component referring to the respec-
tive boundary condition case. The metric coefficients gii

can be easily and directly obtained from Eq. (3) using
the identity gμνgμν = 1, since there are no cross terms
in the line element, so that gii = {

gχχ ; gθθ ; gφφ
} =

−a−2
0

{
1; sin−2 χ; sin−2 χ sin−2 θ

}
. Here, we faithfully fol-

low the notation and mathematical structures introduced in
Ref. [21].

First, considering the component i = χ , according to the
discussions above, we have that

〈(� p̂χ )2〉(j)
ren = 2q2a−4

0

∫ τ

0
dη(τ − η)

[
K (E)

χ (x, x ′)

+δ(j)K (B)
χ (x, x ′)

]
, (56)

where to reduce the double integral in Eq. (55) we use the
identity [10,11]∫ τ

0
dt ′
∫ τ

0
dtG(|t − t ′|) = 2

∫ τ

0
dη(τ − η)G(η), (57)

such that η = |t − t ′|, and to simplify Eq. (56) we define the
integral kernels

K (E)
i (x, x ′) :=

[
∂i∂i ′W

(E)
ren(x, x

′)
]∣∣∣

x ′=x
(58)

and

K (B)
i (x, x ′) :=

[
∂i∂i ′

W(B)(x, x ′)
2

]∣∣∣∣
x ′=x

. (59)

Eq. (58) shows that the renormalization information is con-
centrated in Einstein’s universe kernel, which corresponds to
the first term on the right-hand side of Eq. (45), or Eq. (24),
whereas the contribution of the boundary condition kernel,
Eq. (41), is given by second term of the same expression.
From Eqs. (56), (58) and (59), we note that referring to each
kernel K (k)

i (x, x ′) we have an integral

I (k)
i (x, x ′) :=

∫ τ

0
dη(τ − η)K (k)

i (x, x ′), (60)

with k = (E, B).
As we observe from Eq. (56), the momentum dispersion

〈(� p̂χ )2〉(j)
ren is composed of the sum of two contributions.

This aspect is shared by all components of the momentum
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dispersion and is a direct consequence of the mathematical
structure of the PFWF. In fact, observing Eqs. (45) and (55)
we note that the dispersion of the momentum components
allows the decomposition

〈(� p̂i )2〉(j)
ren = 〈(� p̂i )2〉(E)

ren + δ(j)〈(� p̂i )2〉(B), (61)

which shows that, for the case of the Einstein’s universe with
boundary conditions, the momentum dispersion is composed
by two contributions, one coming from Einstein’s universe
and the other from the boundary conditions used. From Eq.
(61) we can immediately see that the present study gener-
alizes and complements the previous investigations [21], in
addition to it showing the distinctions between the two stud-
ies. In addition, this relation show us that we can calculate
the two contributions to dispersion separately.

From Eqs. (56), (58), (59) and (60), after some simplifica-
tions, we find that the dispersion of the physical momentum
related to the χ component in the coincidence limit is given
by

〈(�p̂χ )2〉(j)
ren = 2q2

a2
0

[
I (E)
χ + δ(j) I (B)

χ

]
, (62)

with

I (E)
χ = − 1

(12π)2

⎧⎨
⎩1 + 12

τ2
a

− 3 csc2
( τa

2

)
+ 6 ln

[
sin
( τa

2

)
( τa

2

)
]2
⎫⎬
⎭
(63)

and

I (B)
χ = sec2(χ) sin2

(
τa
2

)
8π2 [cos(τa) + cos(2χ)]

−cot(2χ) csc(2χ)

8π2 ln

[
2 cos2(χ)

cos(τa) + cos(2χ)

]2

+[3 + cos(4χ)] csc3(2χ)

8π2 �P, (64)

where for practicality we define the auxiliary functions

�P = u+
f ln

∣∣∣∣∣
sec(u+

f )

sec(u+
i )

∣∣∣∣∣− u−
f ln

∣∣∣∣∣
sec(u−

f )

sec(u−
i )

∣∣∣∣∣− �Ff + �Fi ,

(65)

�Ff = F(u+
f ) − F(u−

f ), (66)

�Fi = F(u+
i ) − F(u−

i ) (67)

and

F(ξ) = 1

2
ln

( | sec(ξ)|
2

)
arctan[tan(ξ)]

− i

4

{
Li2

[
1 + i tan(ξ)

2

]
− Li2

[
1 − i tan(ξ)

2

]}
,

(68)

Table 3 Relation between the components of the physical momenta
and the coordinate momenta

Physical momentum pi Coordinate momentum pi

pχ a0 pχ

pθ a0 sin(χ)pθ

pφ a0 sin(χ) sin(θ)pφ

with u±
f = τa/2 ± χ , u±

i = ±χ and τa = τ/a0 the dimen-
sionless time. In Eq. (68) Liν(z) corresponds to the polylog-
arithmic function in the variable z, such that |z| < 1, which
is related to the Lerch function �(z, ν, v) by the relation
Liν(z) = z�(z, ν, 1), where v �= 0,−1,−2, . . . [46].

Before we proceed let us briefly discuss some points about
the above results. First, it is important to emphasize that to
establish Eq. (62) we have used the relation between the
components of the physical mometum p̂i and the coordinate
momentum p̂i , which are shown in Table 3. These relations
can be deduced direcly from the line element (3). The graph-
ical behavior of Eq. (62) as a function of τa is shown in Fig. 1.

To obtain the contribution I (E)
χ initially we perform the

sum and the coincidence limit (θ ′, φ′) → (θ, φ) in advance.
Then, as indicated by Eq. (58), we successively derive with
respect to the pair of variables (χ, χ ′) and take χ ′ = χ , so
that in the end we obtain the kernel K (E)

χ . Finaly, we per-

form the integral I (E)
χ , defined by Eq. (60), and find the result

shown in Eq. (63). For the boundary term I (B)
χ we follow

a similar routine, but in a different order. Initially we per-
form the coincidence limit on the variables θ and φ, then we
derive with respect to (χ, χ ′), take χ = χ ′ and simplify the
resulting expression considering the condition 0 ≤ χ ≤ π

2 .
We must remember that for the bounded case χ = [

0, π
2

]
.

Lastly, we compute the sums and integrals for each term,
obtaining as a result Eq. (64). It is important to point out
that a mathematical software was also used to simplify the
expressions.

On the other hand, choosing i = θ in Eq. (55) and using
Eq. (57) and the definitions (58) and (59), we find that the
dispersion for the corresponding momentum coordinate is
given by the relation

〈(� p̂θ )2〉(j)
ren = 2q2a−4

0 sin−4(χ)

∫ τ

0
dη(τ − η)

[
K (E)

θ (x, x ′)

+δ(j)K (B)
θ (x, x ′)

]
. (69)

The solution to the above equation provide us the following
expression for the dispersion of physical momentum related
to the theta coordinate in the coincidence limit:

〈(�p̂θ )2〉(j)
ren = 2q2

a2
0 sin2(χ)

[
I (E)
θ + δ(j) I (B)

θ

]
, (70)
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Fig. 1 Behavior of the renormalized dimensionless dispersion of the
χ component of the physical momentum as a function of the dimen-
sionless time τa , for a point particle coupled to a real massless scalar
field, in the cases of a Einstein’s universe and the Einstein’s universe

with bDirichlet and cNeumann boundary conditions. Note that we have

defined the dimensionless quantity 〈(�Pχ )2〉(j)
ren =

(
a0
q

)2 〈(�p̂χ )2〉(j)
ren.

Figures b and c assume the particular value χ = π
4

with

I (E)
θ = sin2(χ)I (E)

χ (71)

and

I (B)
θ = sec2(χ)

(8π)2 ln

[
2 cos2(χ)

cos(τa) + cos(2χ)

]2

− sec2(χ) cot(2χ)

(4π)2 �P. (72)

The methodology used in the solutions of the integral con-
tributions I (E)

θ and I (B)
θ is similar to that described for the

i = χ component. The functions I (E)
χ and �P in Eqs. (71)

and (72) are given by Eqs. (63) and (65), respectively. In
addition, we again use the relation between the quantities pi

and pi , shown in Table 3, in order to establish the dispersion
of the physical momentum pθ . The behavior of 〈(�p̂θ )2〉(j)

ren

as a function of τa is shown in Fig. 2.
Finally, analogously to previous cases, taking i = φ in

Eq. (55), using Eq. (57) and identifying the kernels (58) and

(59) we obtain that

〈(� p̂φ)2〉(j)
ren = 2q2a−4

0 sin−4(χ) sin−4(θ)∫ τ

0
dη(τ − η)

[
K (E)

φ (x, x ′) + δ(j)K (B)
φ (x, x ′)

]
. (73)

Now, calculating the respective integral contributions and
using the relations in Table 3, we find for the dispersion of
the physical momentum referring to the φ component in the
coincidence limit

〈(�p̂φ)2〉(j)
ren = 〈(�p̂θ )2〉(j)

ren. (74)

This result is a direct consequence of the relations between
the integrals I (k)

i for the components θ and φ, namely,

I (E)
φ = sin2(θ)I (E)

θ (75)

and

I (B)
φ = sin2(θ)I (B)

θ . (76)
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Fig. 2 Behavior of the renormalized dimensionless dispersion of the
θ component of the physical momentum as a function of the dimen-
sionless time τa , for a point particle coupled to a real massless scalar
field, in the cases of a Einstein’s universe and the Einstein’s universe
with b Dirichlet and c Neumann boundary conditions. The graphics are

in units of 〈(�Pθ )2〉(j)
ren =

(
a0
q

)2 〈(�p̂θ )2〉(j)
ren. Figures b and c assume

the particular value χ = π
4 . The peaks represent divergent points. The

φ component of the physical momentum dispersion, 〈(�Pφ)2〉(j)
ren, has

a similar behavior

Obviously, in view of Eq. (74) the graphical behavior of
〈(�p̂φ)2〉(j)

ren is also given by Fig. 2. It is interesting to note
that the asymmetry of these results, that is, 〈(�p̂χ )2〉(j)

ren �=
〈(�p̂θ )2〉(j)

ren = 〈(�p̂φ)2〉(j)
ren, means that the homogeneity and

isotropy properties associated with the Einstein’s universe
without boundary conditions treated in Ref. [21] is broken
when these conditions are introduced in the χ coordinates.
This also bear some resemblance to the IQBM situation of a
point particle in the presence of parallel planes in Minkowski
spacetime. In other words, in both scenarios the expression
for the velocity dispersion related to the component of the
boundary condition differs from the others [11,14]. Once all
expressions for the dispersion of the components of physi-
cal momentum have been obtained, we will now discuss the
physical and mathematical aspects of these results. Essen-
tially, the following comments consist of qualitative and
quantitative analysis.

Firstly, similar to Ref. [21], it is observed that for the
limits τa → 0 and a0 → ∞ the dispersion of the phys-
ical momentum will be zero. As reported in [21], the null
result for τa → 0, which can be easily seen in the graphs
of Figs. 1 and 2, means that we have recovered the classical
condition of null initial momentum. In fact, we must remem-
ber that this initial boundary condition was imposed in the
general expression (53) for the particle momentum and, con-
sequently, is also inserted in Eq. (55). Therefore, this result
shows the consistency of the formalism used. For the limit
a0 → ∞ we must first understand that it represents a physi-
cal situation in which Einstein’s universe, in principle finite
and compact, becomes unbounded and infinite. Therefore,
this particular limit recovers Minkowski spacetime, that is,
unbounded and boundaryless.

From Figs. 1a and 2a, we immediately notice that the phys-
ical dispersions for the case of Einstein’s universe (δ(E) = 0)
are always positive and have a fixed and increasing profile. On
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the other hand, when boundary conditions are used, disper-
sions can assume positive and negative values – see Figs. 1b,
c and 2b. Furthermore, in this case there are divergences
related to particular values of time τ

(E)
a = 2πn, with integer

n ≥ 1. These divergences, reported in reference [21], occur
due to the compact and closed nature of Einstein’s universe.
Possibly, they are consequences of the classical treatment
we use for the geometry of spacetime and in a more realistic
scenario, in which geometry can fluctuate, perhaps the diver-
gences will be eliminated. In this sense, for instance, in Ref.
[47], through a linearized gravity approach, it was shown that
assuming quantum fluctuations in the geometry of spacetime
can eliminate classical singularities in the light cone.

In the case of the Einstein’s universe with Dirichlet and
Neumann boundary conditions, shown by Figs. 1b, c, 2b,
c, we verify that, in addition to the divergences τ

(E)
a , there

are also divergent behaviors for the time values τ
(B)
a =

(2� + 1)π ∓ 2χ , with integer � ≥ 0. Observing the math-
ematical structure of τ

(B)
a we note that these intermediate

divergences are related to the boundary introduced in the χ

coordinate. In fact, these divergences arise due to the ideal-
ized boundary conditions for Einstein’s universe – Eq. (27) e
(28). We call these divergences “intermediate” because they
occur between the integer divergences of τ

(E)
a , as can be seen

in the plots for the physical momentum dispersion.
To conclude this section, for the sake of clarity, we would

like to comment a little more on the simplification that we
have used in our study, namely, the discarding of the variation
of coordinates with respect to time. Considering that this is
a complementary study, in the following discussions we will
be more objective and recommend that the reader consult
Sect. 3.3 of Ref. [21] for additional details.

Firstly, it is important to mention that this simplification
is an approach commonly used in the context of IQBM [2,
8,10,11]. Similar to the previous study [21], here we also
assume the small displacements condition (SDC), which tells
us that the coordinates do not vary significantly with respect
to time. In other words, we are considering a regime in which
the possible temporal dependence of the coordinates can be
neglected. In fact, in general, the coefficients giν and the
field ϕ in Eq. (53) are both coordinate functions which, in
turn, are functions of time, that is, giν = giν(x(t)) and ϕ =
ϕ(x(t)). However, considering the SDC hypothesis, we used
the approximation xi (t) ≈ xi , which allowed us to establish
Eq. (55) and all subsequent results.

In view of the introduction of the simplification described
above, our expressions will be subject to constraints in order
to maintain the consistency and validity of the results. Intu-
itively, we perceive that, if the xi coordinates change very
little with respect to time, the associated dispersion must be
small, because each xi value will be very close of its mean
value. Therefore, the dispersion assumes very small values,
that is, 〈(�x̂ i )〉 � 1. In the present case, the SDC is mathe-

matically represented by the expression

|〈(�ẑi )
2〉(j)ren|

a2
0

� 1, (77)

wherezi represents the physical length related to the i compo-
nent. In curved spacetime, physical (zi ) and coordinate (xi )
lengths are related according to the expression zi = √|gii |xi
[26]. Note that the previous equation corresponds to a rela-
tive (dimensionless) dispersion, established by comparing
the physical dispersion of coordinates with the radius of Ein-
stein’s universe, which defines a natural scale for the system.

In light of what was exposed, a direct way to check the
influences of each parameter on the SDC is to plot the rel-
ative dispersion (77) as a function of τa and observe under
which circumstances the restriction will not be violated. In
other words, the SDC will not be violated for time values
that maintain the validity of the relation (77), that is, bel-
low unity. In this sense, this condition will have an upper
bound of validity, which corresponds to the time in which
it is equal to unity. We can obtain an equation for the dis-
persion of coordinates by integrating Eq. (53) and observing
that pi = m(dxi/dt). Thus, assuming that xi (t) ≈ xi , as
dictated by SDC, it follows that the renormalized dispersion
for the coordinates will be obtained through the relation

〈(�x̂ i )〉(k)
ren = q2

m2
0

∫ τ

0
dt ′
∫ τ

0
dt
∫ t

0
dt1

×
∫ t ′

0
dt2g

i j
1 gi j2 ∂ j1∂ j2 W(k)

ren(z1, z2), (78)

where z1 = (t1, χ1, θ1, φ1) and z2 = (t2, χ2, θ2, φ2). A note-
worthy detail in the previous expression is the presence of the
constant massm0 of the particle. This indicates that the intro-
duction of SDC eliminates the dynamics of the mass from
our expressions. This fact shows the importance of SDC in
our approach [21].

As observed in Sect. 3.1, the mass of the particle depends
on the spacetime coordinates and the ψ field – see Eqs. (49)
and (50). Thus, at first, 〈(� p̂i )2〉 �= m2〈(�ûi )〉2, because in
general m and ui can depend on the field and, therefore, can
possibly be correlated in some way. For this reason, all previ-
ous results were discussed considering the particle momen-
tum. However, the implementation of SDC, as shown in Eq.
(78), eliminates the dynamics of the mass from our equations
and thus, under this approximation regime, we can establish
that 〈(� p̂i )2〉 = m2

0〈(�ûi )〉2. In words, in the SDC regime,
the momentum dispersion corresponds to the product of the
mass squared by the particle velocity dispersion. Therefore,
the discussions and conclusions in the precedent sections are
valid for momentum and velocity dispersion of the particle.

Following the approach described above, from Eqs. (78)
and (45), in principle we can calculate the respective expres-
sion for the dispersion of coordinates and investigate the
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requirements to validate the SDC. Observing the structure
of these expressions it is clear that this is not a trivial calcu-
lation, due to the number of operations that we must perform.
In fact, the calculation and analysis of the above expression,
both analytical and numerical, is a difficult task to carry out.
However, careful observation allows us to circumvent these
mathematical processes as well as draw a direct conclusion
without any specific calculations.

From Eq. (78) it is possible to observe that, in general, a
decisive parameter to validate Eq. (77) is the ratio q̄ = q

m0a0
.

The factor a0 in this expression comes from the integrand.
It is noted that, this dimensionless quantity, q̄ , multiplies the
entire expression resulting from integrals and derivatives in
Eq. (78). Then, q̄ modulates the amplitude of the result for
the dispersion of the coordinates, so that small values of q̄
decrease the dispersion. Therefore, in summary, the smaller
the values chosen for q̄ , the smaller the dispersion ampli-
tude and the more effective the SDC hypothesis becomes.
This is a conclusion that was also drawn (in detail) in the
previous study [21]. Furthermore, in similar systems consid-
ering scalar fields an analogous conclusion has already been
reported in the literature [10,14].

4 Final remarks

In this paper, continuing a previous investigation [21], we
study the IQBM of a point particle coupled to a massless
scalar field in Einstein’s universe with Dirichlet and Neu-
mann boundary conditions. In order to investigate the IQBM
we calculate the dispersion in the components of the parti-
cle’s physical momentum. To perform our study, some sim-
plifications were necessary, among them the consideration
that variations in the particle position with respect to time
are negligible. This hypothesis define the so-called small
displacement condition (SDC). It is observed that to vali-
date this regime it is necessary that the dimensionless ratio
q̄ = q

m0a0
has sufficiently small values. Here, this conclu-

sion was indirectly obtained through a fundamental analysis
of the expression used to study the SDC.

The formalism used allowed us to write this observable,
〈(�p̂i )2〉(j)

ren, in terms of Wightman functions, Eq. (55), show-
ing that these are crucial quantities for the studies carried out.
Therefore, given this fact, we calculate the Wightman func-
tions for each particular case and construct a compact expres-
sion that brings together all cases – Eq. (45). This compact
expression proved itself to be very useful for our purposes,
since it allowed us to symbolically organize the correspond-
ing expressions for the particle’s physical momentum in a
general way. This aspect can be seen in general in Eq. (61),
which shows that the momentum dispersion components are
composed of two contributions, one related to Einstein’s uni-

verse and the other to Dirichlet and Neumann boundary con-
ditions.

Here the results from the literature were retrieved and gen-
eralized by implementing boundary conditions in the studied
model. It is noted that the introduced boundary conditions
produce an asymmetry in the equations for dispersion in the
components of the particle’s physical momentum, thus break-
ing the properties of homogeneity and isotropy, reported in
the previous study [21]. We observed that the expression for
the component χ , Eq. (62), related to the boundary condition,
differs from the others, θ e φ, Eqs. (70) and (74), respec-
tively. This is a peculiar aspect and resembles the one which
occur in the IQBM of a point particle in the presence of per-
fectly reflecting planes in Minkowski spacetime, in where
the expression for the dispersion of the particle’s velocity in
the direction perpendicular to the plane(s) differs from those
associated with parallel directions [11,14]. Furthermore, we
observed the emergence of two sorts of divergences, namely,
τ

(E)
a = 2πn and τ

(B)
a = (2� + 1)π ∓ 2χ , with the numbers

n ≥ 1 and � ≥ 0 being real and integers. The first of these,
τ

(E)
a , arises from the compact nature of Einstein’s universe.

On the other hand, the second, τ (B)
a , arises due to the bound-

ary conditions imposed on the modes of the scalar field, for
the angular coordinate χ , defining Einstein’s universe.

We can attribute some meaning and purpose to the role of
the boundary condition in the model studied from the per-
spective that the IQBM can be thought of as an indirect way
of probing and studying the structure and non-trivial behav-
ior of quantum vacuum fluctuations [5], which in the present
case arise from a scalar field.

From the results with and without boundary conditions,
it is clearly verified an asymmetry (distinction) between the
influences of vacuum fluctuations on the dispersion of the
particle’s physical momentum, thus indicating that fluctua-
tions due to Dirichlet and Neumann boundary conditions con-
tribute in different ways to the phenomenon – see Figs. 1b,
c and 2b, c. Therefore, studying the implementation of dis-
tinct boundary conditions can be seen as a way to investigate
in more details the particular and non-trivial properties of
quantum vacuum fluctuations in a specific scenario, on the
occasion Einstein’s universe under Dirichlet and Neumann
conditions.

Other view point that we can associate with the bound-
ary conditions in the present case is the ‘simulation’ of
an Einstein universe ‘sensitive’ only to particular modes.
Thus, the boundary conditions would simulate some kind
of ‘unusual’ property in the model. For instance, in models
where the Lorentz symmetry is considered to be broken in a
certain direction the spacetime naturally becomes anisotropic
[48,49]. So, it would be interesting to see how the boundary
conditions considered here in the Einstein universe simulates
some kind of Lorentz violation in the χ -direction. We intend
to investigate this somewhere else.

123



Eur. Phys. J. C            (2025) 85:71 Page 15 of 16    71 

Finally, it is interesting to observe that the sum of the
Dirichlet and Neumann series in Eq. (35) make up the Ein-
stein series – see also Table 1. Specifically, W(E) seems to
be a combination of the W(D) and W(N) series. This rela-
tion indicates that the results of the Einstein universe may
consist of the superposition of the results associated with the
Dirichlet and Neumann cases. Therefore, seemingly such a
fact suggests that the scalar field could also be treated as
a combination of two particular fields (Dirichlet and Neu-
mann), with their respective contributions. However, despite
the mathematical expressions suggesting something of this
nature, this is a deeper mathematical aspect which must be
investigated (later and separately) with more attention, in
order to verify its veracity.
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