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1. Introduction

1.1. Dynamical sine-Gordon model

We consider the following stochastic damped sine-Gordon equation (SdSG) on
T2 = (R/2πZ)2 with an additive space-time white noise forcing:{

∂2
t u + ∂tu + (1 − Δ)u + γ sin(βu) =

√
2ξ

(u, ∂tu)|t=0 = (u0, v0),
(t, x) ∈ R+ × T2, (1.1)

where γ and β are non-zero real numbers and ξ denotes a (Gaussian) space-time
white noise on R+ × T2. Our main goal in this paper is to construct invariant
dynamics of SdSG (1.1) associated with the Gibbs measure, which formally reads

‘d�ρ(u, v) = Z−1 e−E(u,v)du dv’. (1.2)

Here, Z = Z(β) denotes a normalization constant and

E(u, v) =
1
2

∫
T2

(
u(x)2 + |∇u(x)|2 + v(x)2

)
dx − γ

β

∫
T2

cos (βu(x)) dx (1.3)

denotes the energy (= Hamiltonian) of the (deterministic undamped) sine-Gordon
equation:

∂2
t u + (1 − Δ)u + γ sin(βu) = 0. (1.4)

Our first goal is to provide a rigorous construction of the Gibbs measure �ρ for
0 < β2 < 4π; see theorem 1.1.

The Gibbs measure �ρ in (1.2) arises in various physical contexts such as two-
dimensional Yukawa and Coulomb gases in statistical mechanics and the quantum
sine-Gordon model in Euclidean quantum field theory. We refer the readers to
[2,6,10,21,24–27,36] and the references therein for more physical motivations
and interpretations of the measure �ρ . The dynamical model (1.1) then corresponds
to the so-called ‘canonical’ stochastic quantization [38] of the quantum sine-Gordon
model represented by the measure �ρ in (1.2).

From the analytical point of view, the hyperbolic SdSG (1.1) is a good model
for the study of singular stochastic nonlinear wave equations (SNLW). SNLW has
been studied in various settings; see for example [8, Chapter 13] and the references
therein. In particular, over the past several years, we have witnessed a fast develop-
ment in the Cauchy theory of singular SNLW on Td. When d = 2, the well-posedness
theory for SNLW with a polynomial nonlinearity:

∂2
t u + (1 − Δ)u + uk = ξ (1.5)

is now well understood [15,17,29,30]. See also [33,39] for related results on two-
dimensional compact Riemannian manifolds [33] and on R2 [39]. The situation is
more delicate for d = 3. In a recent paper [16], Gubinelli et al. treated the quadratic
case (k = 2) by adapting the paracontrolled calculus, originally introduced in the
parabolic setting [14], to the dispersive setting. For the sine-Gordon model, the
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main new difficulty in (1.1) comes from the non-polynomial nature of the non-
linearity, which makes the analysis of the relevant stochastic object particularly
non-trivial.

In the aforementioned works, the main source of difficulty comes from the rough-
ness of the space-time white noise ξ. For d � 2, the stochastic convolution Ψ, solving
the following linear stochastic wave equation:1

∂2
t Ψ + (1 − Δ)Ψ = ξ, (1.6)

belongs almost surely to C(R+;W−ε,∞(T2)) for any ε > 0 but not for ε = 0. See
lemma 2.1. This lack of regularity shows that there is an issue in forming a nonlin-
earity of the form Ψk and sin(βΨ), thus requiring a proper renormalization. In our
previous work [32], we studied the undamped case:

∂2
t u + (1 − Δ)u + γ sin(βu) = ξ. (1.7)

By introducing a time-dependent renormalization, we proved local well-posedness
of the undamped model (1.7) for any value of β2 > 0 for small times (depending
on β). The main ingredient in [32] was to exploit smallness of Ψ in (1.6) for small
times (thanks to the time-dependent nature of the renormalization).

The situation for the damped model (1.1) is, however, different from the
undamped case. In studying the problem associated with the (formally) invari-
ant measure �ρ in (1.2), we work with a time-independent renormalization and thus
the situation is closer to the parabolic model:2

∂tu +
1
2
(1 − Δ)u + γ sin(βu) = ξ, (1.8)

studied in [6,21], where the value of β2 > 0 played an important role in the solution
theory. For 0 < β2 < 4π, the Da Prato-Debussche trick [7] along with a standard
Wick renormalization yields local well-posedness of (1.8); see remark 1.5. It turns
out that there is an infinite number of thresholds: β2 = (j/(j + 1))8π, j ∈ N, where
one encounters new divergent stochastic objects, requiring further renormalizations.
By using the theory of regularity structures [19], Hairer and Shen [21] and Chandra
et al. [6] proved local well-posedness of the parabolic model (1.8) to the entire
subcritical regime 0 < β2 < 8π. When β2 = 8π, the equation (1.8) is critical and
falls outside the scope of the current theory.

Due to a weaker smoothing property of the relevant linear propagator, our hyper-
bolic model (1.1) is expected to be much more involved than the parabolic case.
Indeed, as we see below, the standard Da Prato-Debussche trick yields the solution
theory for (1.1) only for 0 < β2 < 2π (which is much smaller than the parabolic
case: 0 < β2 < 4π). See theorem 1.2 below. In the next subsection, we provide pre-
cise statements of our main results. Before proceeding further, we mention the
recent works [11,20,34] on the well-posedness theory for the stochastic heat and
wave equations with an exponential nonlinearity in the two-dimensional setting.

1The equation (1.6) is also referred to as the linear stochastic Klein-Gordon equation. In the
following, however, we simply refer to this as to the wave equation.

2We point out that while the spatially homogeneous case with ∂t − 1
2
Δ was studied in [6,21],

the model (1.8) is more relevant for our discussion. See remark 1.5.
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1.2. Main results

Our main goal in this paper is twofold; (i) provide a rigorous construction of
(a renormalized version of) the Gibbs measure �ρ in (1.2) and (ii) construct well-
defined dynamics for the hyperbolic SdSG (1.1) associated with the Gibbs initial
data. For this purpose, we first fix some notations. Given s ∈ R, let μs denote a
Gaussian measure, formally defined by

dμs = Z−1
s e−(1/2)‖u‖2

Hs du = Z−1
s

∏
n∈Z2

e−(1/2)〈n〉2s|ûn|2dûn, (1.9)

where 〈 · 〉 = (1 + | · |2)1/2 and ûn denotes the Fourier coefficient of u at the
frequency n ∈ Z2. We set

�μs = μs ⊗ μs−1. (1.10)

In particular, when s = 1, the measure �μ1 is defined as the induced probability
measure under the map:

ω ∈ Ω �−→ (uω, vω),

where uω and vω are given by

uω =
∑
n∈Z2

gn(ω)
〈n〉 en and vω =

∑
n∈Z2

hn(ω)en. (1.11)

Here, en = (2π)−1ein·x and {gn, hn}n∈Z2 denotes a family of independent stan-
dard complex-valued Gaussian random variables conditioned so that gn = g−n and
hn = h−n, n ∈ Z2. It is easy to see that �μ1 = μ1 ⊗ μ0 is supported on

Hs(T2) def= Hs(T2) × Hs−1(T2)

for s < 0 but not for s � 0.
With (1.3), (1.9) and (1.10), we can formally write �ρ in (1.2) as

d�ρ(u, v) ∼ e(γ/β)
∫

T2 cos(βu)dxd�μ1(u, v). (1.12)

In view of the roughness of the support of �μ1, the nonlinear term in (1.12) is
not well-defined and thus a proper renormalization is required to give a meaning
to (1.12).

Let PN be a smooth frequency projector onto the frequencies {n ∈ Z2 : |n| � N}
defined as a Fourier multiplier operator with a symbol:

χN (n) = χ(N−1n) (1.13)

for some fixed non-negative function χ ∈ C∞
0 (R2) such that suppχ ⊂ {ξ ∈ R2 :

|ξ| � 1} and χ ≡ 1 on {ξ ∈ R2 : |ξ| � 1
2}. Given u = uω as in (1.11), i.e.3 L(u) = μ1,

3Given a random variable X, L(X) denotes the law of X.
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set σN , N ∈ N, by setting

σN = E

[(
PNu(x)

)2
]

=
1

4π2

∑
n∈Z2

χN (n)2

〈n〉2 =
1
2π

log N + o(1), (1.14)

as N → ∞, independent of x ∈ T2. Given N ∈ N, define the truncated renormalized
density:

RN (u) =
γN

β

∫
T2

cos (βPNu(x)) dx, (1.15)

where γN = γN (β) is defined by

γN (β) = e(β2/2)σN . (1.16)

In particular, we have γN → ∞ as N → ∞. We then define the truncated
renormalized Gibbs measure:

d�ρN (u, v) = Z−1
N eRN (u)d�μ1(u, v) (1.17)

for some normalization constant ZN = ZN (β) ∈ (0,∞). We now state our first
result.

Theorem 1.1. Let 0 < β2 < 4π.

(i) The truncated renormalized density {RN}N∈N in (1.15) is a Cauchy sequence
in Lp(μ1) for any finite p � 1, thus converging to some limiting random
variable R ∈ Lp(μ1).

(ii) Given any finite p � 1, there exists Cp > 0 such that

sup
N∈N

∥∥∥eRN (u)
∥∥∥

Lp(μ1)
� Cp < ∞. (1.18)

Moreover, we have

lim
N→∞

eRN (u) = eR(u) in Lp(μ1). (1.19)

As a consequence, the truncated renormalized Gibbs measure �ρN in (1.17)
converges, in the sense of (1.19), to the renormalized Gibbs measure �ρ given by

d�ρ(u, v) = Z−1eR(u)d�μ1(u, v). (1.20)

Furthermore, the resulting Gibbs measure �ρ is equivalent to the Gaussian measure
�μ1.

The proof of theorem 1.1 also allows us to define the renormalized Gibbs measure:

dρ(u) = Z−1eR(u)dμ1(u) (1.21)

as a limit of the truncated measure

dρN (u) = Z−1
N eRN (u)dμ1(u)

for 0 < β2 < 4π. The Gibbs measure ρ in (1.21) is relevant to the parabolic model
(1.8). See remark 1.5.
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In a recent work [25], Lacoin et al. constructed a measure associated with the sine-
Gordon model in the one-dimensional setting, where the based Gaussian measure
is log-correlated (as in the massive Gaussian free field on T2). Their construction
applies to the full subcritical range4: 0 < β2 < 8π. At this moment, their argument
is restricted to the one-dimensional case and does not extend to the two-dimensional
case under consideration.

Theorem 1.1 (i) follows from the construction of the imaginary Gaussian multi-
plicative chaos; see lemma 2.2 below. The main difficulty in proving theorem 1.1 (ii)
appears in showing the uniform bound (1.18). We establish the bound (1.18) by
applying the variational approach introduced by Barashkov and Gubinelli in [1] in
the construction of the Φ4

3-measure. See also [18].

Next, we move onto the well-posedness theory of the hyperbolic SdSG (1.1). Let
us first introduce the following renormalized truncated SdSG:

∂2
t uN + ∂tuN + (1 − Δ)uN + γNPN

{
sin(βPNuN )

}
=

√
2ξ, (1.22)

where γN is as in (1.16). We now state our second result.

Theorem 1.2. Let 0 < β2 < 2π. Then, the stochastic damped sine-Gordon
equation (1.1) is almost surely globally well-posed with respect to the renormal-
ized Gibbs measure �ρ in (1.20). Furthermore, the renormalized Gibbs measure �ρ is
invariant under the dynamics.

More precisely, there exists a non-trivial stochastic process (u, ∂tu) ∈
C(R+;H−ε(T2)) for any ε > 0 such that, for any T > 0, the solution (uN , ∂tuN ) to
the truncated SdSG (1.22) with the random initial data (uN , ∂tuN )|t=0 distributed
according to the truncated Gibbs measure �ρN in (1.17), converges in probability to
(u, ∂tu) in C([0, T ];H−ε(T2)). Moreover, the law of (u(t), ∂tu(t)) is given by the
renormalized Gibbs measure �ρ in (1.20) for any t � 0.

In view of theorem 1.1 and Bourgain’s invariant measure argument [4,5], theorem
1.2 follows once we construct the limiting process (u, ∂tu) locally in time. Further-
more, in view of the equivalence of �ρ and �μ1, it suffices to study the dynamics
with the Gaussian random initial data (u0, v0) with L(u0, v0) = �μ1. As in [32], we
proceed with the Da Prato-Debussche trick. For our damped model, we let Ψ be
the solution to the linear stochastic damped wave equation:{

∂2
t Ψ + ∂tΨ + (1 − Δ)Ψ =

√
2ξ

(Ψ, ∂tΨ)|t=0 = (u0, v0),
(1.23)

where L(u0, v0) = �μ1. Define the linear damped wave propagator D(t) by

D(t) = e−(t/2)
sin

(
t
√

(3/4) − Δ
)

√
(3/4) − Δ

(1.24)

4Due to a different scaling, the threshold 0 < β2 < 2d in [25] corresponds to 0 < β2 < 8π in our
convention. See remark 1.14 in [34].
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as a Fourier multiplier operator. Then, we have

Ψ(t) = ∂tD(t)u0 + D(t)(u0 + v0) +
√

2
∫ t

0

D(t − t′)dW (t′), (1.25)

where W denotes a cylindrical Wiener process on L2(T2):

W (t) =
∑
n∈Z2

Bn(t)en, (1.26)

and {Bn}n∈Z2 is defined by Bn(0) = 0 and Bn(t) = 〈ξ,1[0,t] · en〉t,x. Here, 〈·, ·〉t,x
denotes the duality pairing on R × T2. As a result, we see that {Bn}n∈Z2 is a family
of mutually independent complex-valued5 Brownian motions conditioned so that
B−n = Bn, n ∈ Z2. By convention, we normalized Bn such that Var(Bn(t)) = t.

A direct computation shows that ΨN (t, x) = PNΨ(t, x) is a mean-zero real-
valued Gaussian random variable with variance

E
[
ΨN (t, x)2

]
= E

[(
PNΨ(t, x)

)2] = σN

for any t � 0, x ∈ T2 and N � 1, where σN is as in (1.14).
Let uN be as in theorem 1.2, satisfying (1.22) with L((uN , ∂tuN )|t=0) = �μ1.

Then, write uN as uN = wN + Ψ. Then, the residual part wN satisfies the following
equation:{

∂2
t wN + ∂twN + (1 − Δ)wN + ImPN

{
eiβPN wN ΘN

}
= 0,

(wN , ∂twN )|t=0 = (0, 0).
(1.27)

Here, ΘN denotes the so-called imaginary Gaussian multiplicative chaos defined
by

ΘN (t, x) = :eiβΨN (t,x) : def= γNeiβΨN (t,x) = e(β2/2)σN eiβΨN (t,x), (1.28)

where γN is as in (1.16). By proceeding as in [21,32], we establish the regularity
property of ΘN ; see lemma 2.2. In particular, given 0 < β2 < 4π, {ΘN}N∈N forms
a Cauchy sequence in Lp(Ω;Lq([0, T ];W−α,∞(T2))) for any finite p, q � 1 and α >
β2

4π . Then, local well-posedness of (1.27), uniformly in N , follows from a standard
contraction argument, using the Strichartz estimates, certain product estimates and
the fractional chain rule. See § 3. The restriction β2 < 2π appears due to a weaker
smoothing property in the current wave setting. See remark 1.6.

Remark 1.3. Invariant Gibbs measures for nonlinear wave equations have been
studied extensively, starting with the work [9]. See the survey papers [3,28] for
the references therein. In the context of the (deterministic) sine-Gordon equation
(1.4), McKean [27] studied the one-dimensional case and constructed an invariant
Gibbs measure for (1.4) on T. A small adaptation of our argument for proving
theorem 1.2 allows us to prove almost sure global well-posedness and invariance

5In particular, B0 is a standard real-valued Brownian motion.

https://doi.org/10.1017/prm.2020.68 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2020.68


Invariant Gibbs dynamics for the dynamical sine-Gordon model 1457

of the (renormalized) Gibbs measure �ρ for the (deterministic, renormalized) sine-
Gordon equation (1.4) on T2 for 0 < β2 < 2π.

Remark 1.4. In this paper, we use a smooth frequency projector PN with the
multiplier χN in (1.13). As in the parabolic case, it is possible to show that the
limiting Gibbs measure �ρ in theorem 1.1 and the limit (u, ∂tu) of (uN , ∂tuN ) in
theorem 1.2 are independent of the choice of the smooth cut-off function χ. See [31]
for such an argument in the wave case (with a polynomial nonlinearity). Moreover,
we may also proceed by smoothing via a mollification and obtain analogous results.

Remark 1.5. As mentioned above, the Da Prato-Debussche approach suffices
to prove local well-posedness for the parabolic sine-Gordon model (1.8) in the
range 0 < β2 < 4π; see the discussion before theorem 2.1 in [21]. Indeed, with
the Da Prato-Debussche decomposition uN = wN + Ψ, where Ψ is the stochastic
convolution for the heat case, we see that the residual part wN satisfies

∂twN +
1
2
(1 − Δ)wN + ImPN

{
eiβPN wN ΘN

}
= 0. (1.29)

Here, the imaginary Gaussian multiplicative chaos ΘN in the heat case has
exactly the same regularity as in the wave case stated in lemma 2.2. Namely, it
has the spatial regularity −α < −(β2/4π). Then, in view of the two degrees of
smoothing under the heat propagator (the Schauder estimate), local well-posedness
of (1.29) for wN in the class C([0, T ];W 2−α,∞(T2)) follows easily from the product
estimate (lemma 3.2 (iv)), provided that α < 2 − α, namely β2 < 4π.

Therefore, combining this local well-posedness, the construction of the Gibbs
measure (theorem 1.1), and Bourgain’s invariant measure argument, we conclude
almost sure global well-posedness and invariance of the renormalized Gibbs measure
ρ in (1.21) for the parabolic sine-Gordon model (1.8).

Remark 1.6. In our wave case, the linear propagator D(t) provides only one degree
of smoothing, thus requiring α − 1 < −α in proving local well-posedness. This gives
the restriction of β2 < 2π in theorem 1.2. In view of theorem 1.1, it is therefore of
very much interest to study further local well-posedness of the hyperbolic SdSG
(1.1) for 2π � β2 < 4π.

As pointed out in [21,34], the difficulty of the sine-Gordon model on T2 is heuris-
tically comparable to the one for the dynamical Φ3

3-model when β2 = 2π. Namely,
when β2 = 2π, the hyperbolic SdSG (1.1) corresponds to the quadratic SNLW (1.5)
on T3 (with k = 2). In [16], Gubinelli et al. proved local well-posedness of the
quadratic SNLW on T3 by combining the paracontrolled approach with multilin-
ear harmonic analysis. Furthermore, in order to replace a commutator argument
(which does not provide any smoothing in the dispersive/hyperbolic setting), they
also introduce paracontrolled operators. Hence, in order to treat the hyperbolic
SdSG (1.1) for β2 = 2π, we plan to adapt the paracontrolled approach as in [16].
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2. Imaginary Gaussian multiplicative chaos and construction of the
Gibbs measure

In this section, we briefly go over the regularity and convergence properties of the
imaginary Gaussian multiplicative chaos ΘN = :eiβΨN : defined in (1.28). We then
proceed to the construction of the Gibbs measure ρ as stated in theorem 1.1.

2.1. Imaginary Gaussian multiplicative chaos

In the following, we review the regularity and convergence properties of the trun-
cated stochastic convolution ΨN = PNΨ, where Ψ is as in (1.25), and ΘN in (1.28).
We use the following notation as in [32]; given two functions f and g on T2, we
write

f ≈ g

if there exist some constants c1, c2 ∈ R such that f(x) + c1 � g(x) � f(x) + c2 for
any x ∈ T2\{0} ∼= [−π, π)2 \ {0}. We first state the regularity and convergence
properties of ΨN . See [15,16,33].

Lemma 2.1. Given any T, ε > 0 and finite p � 1, {(ΨN , ∂tΨN )}N∈N is a Cauchy
sequence in Lp(Ω;C([0, T ];H−ε(T2))), thus converging to some limiting pro-
cess (Ψ, ∂tΨ) ∈ Lp(Ω;C([0, T ];H−ε(T2))). Moreover, (ΨN , ∂tΨN ) converges almost
surely to (Ψ, ∂tΨ) in C([0, T ];H−ε(T2)).

Let G = (1 − Δ)−1δ0 denote the Green function for 1 − Δ. Then, recall from [32,
lemma 2.3] that for all N ∈ N and x ∈ T2 \ {0}, we have

P2
NG(x) ≈ − 1

2π
log

(|x| + N−1
)
. (2.1)

Using (2.1), we can proceed as in the proof of lemma 2.7 in [32] and show that for
any t � 0, the covariance function:

ΓN (t, x − y) def= E
[
ΨN (t, x)ΨN (t, y)

]
satisfies

ΓN (t, x − y) ≈ − 1
2π

log
(|x − y| + N−1

)
. (2.2)

For our problem, the stochastic convolution Ψ defined in (1.25) is a stationary
process and thus ΓN is independent of t. Compare this with the time-dependent
case in [32]; see (2.23) in [32].

Next, we state the regularity and convergence properties of ΘN .

Lemma 2.2. Let 0 < β2 < 4π. Then, for any finite p, q � 1, T > 0, and α >
(β2/4π), {ΘN}N∈N is a Cauchy sequence in Lp(Ω;Lq([0, T ];W−α,∞(T2))) and
hence converges to a limiting process Θ in Lp(Ω;Lq([0, T ];W−α,∞(T2))).

Due to the stationarity of Ψ, we have γN = e(β2/2)σN in (1.16) independent of
time. This is the reason why, contrary to [32, proposition 1.1], the regularity of Θ
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in lemma 2.2 is independent of time. Compare this with proposition 1.1 in [32] for
the undamped wave case, where the regularity of the relevant imaginary Gaussian
multiplicative chaos decreases over time.

Proof. Lemma 2.2 follows from a straightforward modification of the proof of propo-
sition 1.1 in [32] on the construction of the imaginary Gaussian multiplicative chaos
in the undamped wave case. Namely, using Minkowski’s integral inequality, it suf-
fices to establish convergence of ΘN (t, x) for any fixed t � 0 and x ∈ T2, which
follows from the argument in [32, proposition 1.1] by replacing [32, Lemma 2.7]
with (2.2). In particular, β2t/4π in [32] is replaced by β2/2π. In establishing this
lemma (and proposition 1.1 in [32]), we need to exploit a key cancellation property
of charges; see lemma 2.5 in [32]. �

2.2. Construction of the Gibbs measure

In this subsection, we present a proof of rheorem 1.1. The main task here is to
establish the uniform integrability (1.18) of the densities eRN (u) of the weighted
Gaussian measures �ρN in (1.17). For this purpose, we use the variational approach
due to Barashkov and Gubinelli [1] and express the partition function ZN in (1.17)
in terms of a minimization problem involving a stochastic control problem (lemma
2.4). We then study the minimization problem and establish uniform boundedness
of the partition function ZN . Our argument follows that in § 4 of [18].

From (1.17) and integrating over μ0(v), we can express the partition function ZN

as

ZN =
∫

eRN (u)dμ1(u). (2.3)

We first show the following convergence property of RN .

Lemma 2.3. Given any finite p � 1, RN defined in (1.15) converges to some limit
R in Lp(μ1) as N → ∞.

Proof. Let L(u) = μ1. Then, from (1.15), (1.16) and (1.28), we have

RN (u) =
1
β

∫
T2

Re
(

: eiβPN u :
)
dx =

2π

β
Re Θ̂N (t, n)

∣∣
(t,n)=(0,0)

,

where Θ̂N (t, n) denotes the spatial Fourier transform at time t and the frequency
n. Then, lemma 2.3 is a direct consequence of the proof of lemma 2.2 (see the proof
of proposition 1.1 in [32]) since the convergence of ΘN (t, x) in Lp(μ1) is established
for any fixed t � 0 and x ∈ T2. �

Next, we prove the uniform integrability (1.18). Once we prove (1.18), the desired
convergence (1.19) of the density follows from a standard argument, using lemma 2.3
with (1.18). See [40, remark 3.8]. See also the proof of proposition 1.2 in [35].

In order to prove (1.18), we follow the argument in [1,18] and derive a variational
formula for the partition function ZN in (2.3). Let us first introduce some notations.
See also § 4 in [18]. Let W (t) be the cylindrical Wiener process in (1.26). We define
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a centred Gaussian process Y (t) by

Y (t) = 〈∇〉−1W (t), (2.4)

where 〈∇〉 =
√

1 − Δ. Then, we have L(Y (1)) = μ1. By setting YN = PNY , we
have L(YN (1)) = (PN )#μ1. In particular, we have E[YN (1)2] = σN , where σN is as
in (1.14).

Next, let Ha denote the space of drifts, which are the progressively measurable
processes that belong to L2([0, 1];L2(T2)), P-almost surely. Given a drift η ∈ Ha,
we define the measure Qη whose Radon-Nikodym derivative with respect to P is
given by the following stochastic exponential:

dQη

dP
= e

∫ 1
0 〈η(t),dW (t)〉−(1/2)

∫ 1
0 ‖η(t)‖2

L2
x
dt

,

where 〈·, ·〉 stands for the usual inner product on L2(T2). Then, by letting Hc

denote the subspace of Ha consisting of drifts such that Qη(Ω) = 1, it follows from
Girsanov’s theorem ([8, theorem 10.14] and [37, theorems 1.4 and 1.7 in Chapter
VIII]) that W is a semi-martingale under Qη with the following decomposition:

W (t) = W η(t) +
∫ t

0

η(t′)dt′, (2.5)

where W η is now a L2(T2)-cylindrical Wiener process under the new measure Qη.
Substituting (2.5) in (2.4) leads to the decomposition:

Y = Y η + I(η),

where

Y η(t) = 〈∇〉−1W η(t) and I(η)(t) =
∫ t

0

〈∇〉−1η(t′)dt′.

In the following, we use E to denote an expectation with respect to P, while we
use EQ for an expectation with respect to some other probability measure Q.

Proceeding as in [1, lemma 1] and [18, proposition 4.4], we then have the following
variational formula for the partition function ZN in (2.3).

Lemma 2.4. For any N ∈ N, we have

− logZN = inf
η∈Hc

EQη

[
− RN (Y η(1) + I(η)(1)) +

1
2

∫ 1

0

‖η(t)‖2
L2

x
dt

]
. (2.6)

Lemma 2.4 follows from a straightforward modification of the proof of proposition
4.4 in [18] and thus we omit details. In the following, we use lemma 2.4 and show
that the infimum in (2.6) is bounded away from −∞, uniformly in N ∈ N, which
establishes the uniform bound (1.18). To this end, we first state the following lemma
to estimate Y η(1) and I(η)(1).

Lemma 2.5. Let Y η(1) and I(η)(1) be as above.
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(i) Let 0 < β2 < 4π and α > β2

4π . Then, for any finite p � 1, we have

sup
η∈Hc

EQη‖ : eiβY η(1) : ‖p

W−α,∞
x

< ∞. (2.7)

(ii) For any η ∈ Hc, we have

‖I(η)(1)‖2
H1

x
�

∫ 1

0

‖η(t)‖2
L2

x
dt. (2.8)

Proof.

(i) For any η ∈ Hc, W η is a cylindrical Wiener process in L2(T2) under Qη.
Thus, the law of Y η(1) = 〈∇〉−1W η(1) under Qη is always given by μ1, so in
particular, it is independent of η ∈ Hc. Then, (2.7) follows from (the proof
of) lemma 2.2.

(ii) The proof of (2.8) is straightforward from Minkowski’s and Cauchy-Schwarz’s
inequalities. See the proof of lemma 4.7 in [18].

�

We are now ready to establish the uniform integrability estimate (1.18). For
simplicity, we only prove (1.18) for p = 1. In view of lemma 2.4, we need to bound
from below

WN (η) = EQη

[
− RN

(
Y η(1) + I(η)(1)

)
+

1
2

∫ 1

0

‖η(t)‖2
L2

x
dt

]
, (2.9)

uniformly in the drift η ∈ Hc and in N ∈ N. To simplify notations, we fix η ∈ Hc and
N ∈ N and drop the dependence in η and N in (2.9). Moreover, we set Y = Y η(1)
and H = I(η)(1). From the definition of RN in (1.15), we have

RN (Y + H) =
1
β

∫
T2

: cos(β(Y + H)) : dx

=
1
β

∫
T2

(
: cos(βY ) : cos(βH)− : sin(βY ) : sin(βH)

)
dx.

By duality between Hα(T2) and H−α(T2) and Cauchy’s inequality, we have

|RN (Y + H)| � ‖ : cos(βY ) : ‖H−α‖ cos(βH)
∥∥

Hα + ‖ : sin(βY ) : ‖H−α‖ cos(βH)‖Hα

�
∑

κ∈{−1,1}

{
δ−1‖ : eiκβY : ‖2

H−α + δ‖eiκβH‖2
Hα

}
(2.10)

for any δ > 0. Using the fractional chain rule (see lemma 3.2 (ii) below) and
lemma 2.5 (ii), we have

‖e±iβH‖Hα ∼ ‖e±iβH‖L2 +
∥∥|∇|α(

e±iβH)
)∥∥

L2

� 1 + ‖H‖Hα � 1 +
( ∫ 1

0

‖η(t)‖2
L2

x
dt

)1/2

,
(2.11)
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as long as α � 1. Moreover, in view of lemma 2.5 (i), we have

EQη

[
‖ : e±iβY : ‖2

H−α

]
� 1, (2.12)

provided that 0 < β2 < 4π and α > (β2/4π). Therefore, from (2.9), (2.10), (2.11)
and (2.12), we obtain

WN (η) � EQη

[
1
2

∫ 1

0

‖η(t)‖2
L2

x
dt − C1δ

−1 − C2δ
(
1 +

∫ 1

0

‖η(t)‖2
L2

x
dt

)]
.

By taking δ > 0 sufficiently small, we conclude that there exists finite C(δ) > 0
such that

sup
N∈N

sup
η∈Hc

WN (η) � sup
N∈N

sup
η∈Hc

{
− C(δ) +

1
4

EQη

∫ 1

0

‖η(t)‖2
L2 dt

}
� −C(δ) > −∞.

This proves (1.18) when p = 1. The general case p � 1 follows from a straight-
forward modification.

3. Local well-posedness of the hyperbolic SdSG

In this last section, we present a proof of theorem 1.2. As mentioned in the intro-
duction, thanks to Bourgain’s invariant measure argument and the uniform (in N)
equivalence of the (truncated) Gibbs measures and the base Gaussian measure �μ1,
it suffices to prove local well-posedness and convergence of the truncated dynamics
(1.22) with the Gaussian random initial data whose law is given by �μ1. Further-
more, in view of the uniform (in N) boundedness of the frequency projector PN on
W s,p(T2), s ∈ R, 1 � p � ∞, and the Da Prato-Debussche decomposition:

uN = wN + Ψ,

it suffices to prove local well-posedness of the following model equation:{
∂2

t w + ∂tw + (1 − Δ)w + Im
{
eiβwΘ

}
= 0,

(w, ∂tw)|t=0 = (0, 0),
(3.1)

for a given (deterministic) source function Θ.

Proposition 3.1. Given 0 < α < 1
2 , let Θ be a distribution in L2([0, 1];

W−α,∞(T2)). Then, there exists T = T (‖Θ‖L2([0,1];W−α,∞
x )) ∈ (0, 1] and a unique

solution w to (3.1) in the class:

X1−α(T ) def= C([0, T ];H1−α(T2)) ∩ C1([0, T ];H−α(T2)) ∩ L∞([0, T ];L2/α(T2)).

Moreover, the solution map: Θ �→ w is continuous.

Once we prove proposition 3.1, the convergence of the solution uN = wN + Ψ to
(1.22) follows from lemma 2.2 and arguing as in our previous work [32]. Note that
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the restriction 0 < α < 1
2 in proposition 3.1 gives the range 0 < β2 < 2π in theorem

1.2 in view of lemma 2.2.
Before proceeding to the proof of proposition 3.1, we state the following

deterministic tools from [32]; see (3.3) and lemmas 3.1 and 3.2 in [32].

Lemma 3.2. Let 0 < α < 1 and d � 1. Then, the following estimates hold:

(i) (Strichartz estimate). Let u be a solution to the linear damped wave equation
on R+ × T2: {

∂2
t u + ∂tu + (1 − Δ)u = f

(u, ∂tu)|t=0 = (u0, u1).

Then, for any 0 < T � 1, we have

‖u‖CT H1−α
x

+ ‖∂tu‖CT H−α
x

+ ‖u‖
L∞

T L
2
α
x

� ‖(u0, u1)‖H1−α + ‖f‖L1
T H−α

x
.

(ii) (fractional chain rule). Let F be a Lipschitz function on R such that
‖F ′‖L∞(R) � L. Then, for any 1 < p < ∞, we have∥∥|∇|αF (f)

∥∥
Lp(Td)

� L
∥∥|∇|αf

∥∥
Lp(Td)

.

(iii) (fractional Leibniz rule). Let 1 < pj , qj , r < ∞ with (1/pj) + (1/qj) = 1/r,
j = 1, 2. Then, we have∥∥〈∇〉α(fg)

∥∥
Lr(Td)

�
∥∥〈∇〉αf

∥∥
Lp1 (Td)

‖g‖Lq1 (Td) + ‖f‖Lp2 (Td)

∥∥〈∇〉αg
∥∥

Lq2 (Td)
.

(iv) (product estimate). Let 1 < p, q, r < ∞ such that (1/p) + (1/q) � (1/r) +
(α/d). Then, we have∥∥〈∇〉−α(fg)

∥∥
Lr(Td)

�
∥∥〈∇〉−αf

∥∥
Lp(Td)

∥∥〈∇〉αg
∥∥

Lr(Td)
.

The Strichartz estimate on T2 in (i) follows from the corresponding Strichartz
estimate for the wave/Klein-Gordon equation on R2 (see [13,22,23]) for the (1 −
α)-wave admissible pair (∞, 2/α), the finite speed of propagation, and the fact
that the linear damped wave propagator D(t) in (1.24) satisfies the same Strichartz
estimates as that for the Klein-Gordon equation ∂2

t u + ((3/4) − Δ)u = 0. For the
fractional chain rule on Td [12]. See [15] for (iii) and (iv).

We now present a proof of proposition 3.1.

Proof of proposition 3.1.. By writing (3.1) in the Duhamel formulation, we have

w(t) = Φ(w)(t) := −
∫ t

0

D(t − t′) Im
{
eiβwΘ

}
(t′)dt′,

where D(t) is as in (1.24). Fix 0 < T � 1 and 0 < α < 1/2. We use B to denote the
ball in X1−α(T ) of radius 1 centred at the origin.
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From lemma 3.2 (i), (iv) and then (ii) with α < 1 − α, we have

‖Φ(w)‖X1−α(T ) � ‖eiβwΘ‖L1
T H−α

x
� T 1/2‖eiβw‖L∞

T Hα
x
‖Θ‖

L2
T W

−α,2/α
x

� T 1/2
(
1 + ‖w‖X1−α(T )

)‖Θ‖L2
T W−α,∞

x

� T 1/2‖Θ‖L2
T W−α,∞

x

(3.2)

for w ∈ B. By the fundamental theorem of calculus, we have

eiβw1 − eiβw2 = (w1 − w2)F (w1, w2)
def= (w1 − w2)(iβ)

∫ 1

0

eiβ(τw1+(1−τ)w2)dτ.

Thus, from lemma 3.2 (i) and (iv), we have

‖Φ(w1) − Φ(w2)‖X1−α(T ) � T 1/2‖(w1 − w2)F (w1, w2)‖L∞
T W

α,2/(1+α−ε)
x

‖Θ‖
L2

T W
−α,2/ε
x

(3.3)

for any small ε > 0. Then, by applying lemma 3.2 (iii) and then (ii) to (3.3), we
obtain

‖(w1 − w2)F (w1, w2)‖L∞
T W

α,2/(1+α−ε)
x

� ‖w1 − w2‖L∞
T Hα

x
‖F (w1, w2)‖L∞

T L
2/(α−ε)
x

+ ‖w1 − w2‖L∞
T L

2/α
x

‖F (w1, w2)‖L∞
T W

α,2/(1−ε)
x

� ‖w1 − w2‖X1−α(T )

(
1 + ‖w1‖L∞

T W
α,2/(1−ε)
x

+ ‖w2‖L∞
T W

α,2/(1−ε)
x

)
.

(3.4)

Given 0 < α < 1/2, choose ε > 0 small such that α + ε < 1 − α. Then, it follows
from (3.3), (3.4) and Sobolev’s inequality that

‖Φ(w1) − Φ(w2)‖X1−α(T ) � T 1/2‖Θ‖L2
T W−α,∞

x
‖w1 − w2‖X1−α(T ) (3.5)

for any w1, w2 ∈ B.
Hence, we conclude from (3.2) and (3.5) that the map Φ = ΦΘ is a contraction

on B ⊂ X1−α(T ), provided that T = T (‖Θ‖L2([0,1];W−α,∞
x

) > 0 is sufficiently small.
The uniqueness in the whole space X1−α(T ) follows from a standard continuity
argument, while a small modification of the argument above shows the continuous
dependence on Θ. �

Proposition 3.1 thus establishes local well-posedness of the truncated
equation (1.27), uniformly in N ∈ N, and also for the limiting equation{

∂2
t w + (1 − Δ)w + ∂tw + Im

{
eiβwΘ

}
= 0,

(w, ∂tw)|t=0 = (0, 0),
(3.6)

where Θ is the limit of ΘN constructed in lemma 2.2. We briefly describe an extra
ingredient in showing convergence of wN to w, satisfying (3.6). Since the flow map
constructed in proposition 3.1 is continuous in Θ, there is only one extra term
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(Id − PN )
{
eiβwΘ

}
in estimating the difference ‖wN − w‖CT H1−α

x
. By exploiting

the fact that this extra term is supported on high frequencies {|n| � N}, we have∥∥(Id − PN )
{
eiβwΘ

}∥∥
L1

T H−α
x

� N−ε
∥∥eiβwΘ

∥∥
L1

T H−α+ε
x

� T 1/2N−ε
(
1 + ‖w‖L∞

T Hα−ε
x

)‖Θ‖L2
T W−α+ε,∞

x
.

Combining with the argument above, we can then prove convergence wN → w as
N → ∞. Note that given 0 < β2 < 2π and 0 < α < 1/2 with β2/4π < α, we have
β2/4π < α − ε for small ε > 0, which guarantees that Θ ∈ L2([0, T ];W ε−α(T2)) in
view of lemma 2.2.
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