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Abstract: We establish a correspondence between the SO(8) isoscalar, isovector and total pairing bases
and the Elliott’s SU (3) basis in the algebraic structure of the spatial part of the microscopic shell model. It
is derived from the complementarity of these algebras to the same T, S, (S,T) irreducible representations

(irreps) of the Wigners supermultiplets, contained in the shell-model number-conserving algebra U (4(2).
This important result allows for the evaluation of the content of SU(3) irreps into the different types of
pairing bases which leads to an investigation of the complementarity and competitive effects of pairing
and the quadrupole-quadrupole interactions on the energy spectra of the nuclear systems. The theory is
valid for any shell and for a number of shells as well, but we illustrate it with the results for a single ds—

shell.
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1 Introduction

It has been understood since the early years
of the development of the nuclear structure physics,
that the pairing[l] and the quadrupole-quadrupole
interactions'? are the most important short- and long-
range interactions that have to be taken into accou[rgl]t

Being with different range of action on the nucleons in

in the shell-model description of the nuclear systems

the valence shells it is quite clear that these interac-
tions actually influence the behavior of the systems in
different parts of the shells. The pairing interaction
is responsible for the appearance of the pairing gap in
the nuclei with only a few nucleons after the closed
shells and is therefore associated with the spherical
shape of the system. The quadrupole-quadrupole inter-
action dominates in the nuclei near the mid-shells and
so introduces deformation, which is related to the ap-
pearance of rotational sequences in the nuclear spectra.
Hence, in some nuclei each of these interactions could
reproduce relatively well the observed behavior of the
nuclear system, but in most of the cases the study of
the relationship between them is of great importance.
This is the main motivation for the development of the
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Pairing-plus-Quadrupole Model (PQM)[AHS] for the de-
scription of the nuclear excitation spectra. It is most
successfully done in the framework of the basic shell
model representation of the employed interactions, but
in this case the applications to real nuclear systems
are rather complicated and cumbersome, due to the
enormous dimensionality of the basis space in partic-
ular for the heavy nuclei. It is already clearly proven
that such a problem is easily avoidable by employing
a group-theoretical approachm, which introduces sym-
metry principles useful in particular for reducing the
basis spaces and in the calculation of matrix elements
of transitional operators.

In this work we present a symmetry approach by
introducing the pairing and quadrupole-quadrupole in-
teractions as invariants of respective algebras, which
reduce the space symmetry of the shell model in a
dynamical way to the SO(3) algebra of the angu-
lar momentum L. The so defined dynamical symme-
try chains are simultaneously complementary to the
Wigner’s spin-isospin SUsr(4), the spin SUs(2) or
isospin SUr(2) symmetry, which establishes the direct
connection between these two limiting cases. Since the
exactly solvable limiting cases defined by the so ob-
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tained dynamical symmetries can be considered as dif-
ferent phases of the nuclear collectivity, this approach
allows for the investigation of the competing and com-
plementarity features'® of the pairing and quadrupole
interactions in the description of the realistic nuclear
systems in the lower shells up to mass numbers A ~ 100.
We illustrate the applications of this extended alge-
braic realization') of the PQM theory for nuclei with
four valence particles in the ds shell. These examples
do not represent the general case of the shell model
spaces, but in it we are able to not only reproduce
the experimental data, but as well to evaluate the
weight of each of the considered modes on the nu-
clear structure. The two modes - the pairing and the
quadrupole interactions - compete, and in this way dif-
ferent types of collective spectra, ranging between vi-
brational and rotational can be investigated in terms

of phase transitions!®.

2 The algebraic microscopic shell-
model

The many-particle shell model wave functions are
constructed by filling the single-particle orbitals of
the valence shells with nucleons, taking into account
the Pauli principle. The latter constrain is imposed
by requiring an antisymmetrization of the total wave
function, containing the product of the spatial, spin
and isospin parts. In general, this condition and the
complementarity of the particle permutation symme-
try group and the unitary transformation on the state
orbitals!” | allows the use of the simpler case of U(40)
for the classification of the m— particles’” wave func-
tions. In U(442) the number 4 stands for the dimen-
sionality of the spin-isospin space and 2=73".(2l;+1)
is the dimensionality of the considered shell-model va-
lence space, generated by the LS-coupling of m nucle-
ons in the l1,l2...1, orbits of the considered shells.

As a result, the antisymmetric irreducible repre-
sentations of U(4£2) for m particles, labeled by the
Young diagrams {1™} can be further partitioned into
spin-isospin and spatial parts

UA2)> Usr(9)® U(R2)
{1} {r} {5}, (1)

under the condition that each of the possible irreps
{fy={fi.fo.fs,fau} (f1 = f2 2 fs > fa) and {f} =
{f1,f2, f3, fa}, where f1 > fo > fs > fa of the two com-
plementary groups Usr(4) and U({2) respectively are
conjugated to each other by interchange of the rows
and columns in their respective Young tableaux. Con-
sequently, both representations can be obtained from

each other. Since they are contained in the simple

representation {1™} withm=7_, fi, shell-model wave
functions are only labeled with the number of particles
m in the valence shell.

2.1 The spin and isospin symmetries in the
shell model

The way to account for the spin and isospin
symmetries in the niclear structure was suggested by
Wigner[m]
clear forces in respect to rotations in spin and isospin

, and is based on the invariance of the nu-

spaces. This invariance is introduced through the
Lie algebra of SUgr(4), whose representations {f} =
{fl — fa, fo— fa, fs — f4} are conjugated to and can
be obtained by the representations {f} of U({2). It is
obvious that the energy of the nuclear states strongly
depends on these quantum numbers.

Wigner’s supermultiplet model is actually the nu-
clear LS-coupling scheme!™ 11], which employs the re-

duction

S{]ST(ZI)D SUs(2) ® SUr(2)
{f} s T, (2)

that gives the total spin S = ), s; and isospin T' =
>, ti (i enumerates the considered particles) values of
the states wave functions, which together with the or-
bital angular momentum L =}, 1; of SOr(3) are good
quantum numbers in this case. Further, L and S could
be coupled to total angular momentum J = L+ S.
Using the isomorphism of the algebras SUgr(4) ~
SOs7(6), SUs(2) ~ SOs(3) and SUr(2) ~ SOr(3),
another shell-model reduction chain, equivalent to the
chain (2) can be identified™?:

SUsT(6) D SO0s(3) ® SOr(3)
[Pl,PQ,Pg] S T, (3)

and used in a conjunction with the spatial reduction
of U(452). We should point out, that the SUgr(4)
symmetry is broken in a non-dynamical way by the
Coulomb and the l.s interaction™” in the nuclear
mean-field approach. The role of both of these in-
creases with the nuclear mass number, but the consid-
ered LS-coupling scheme is still applicable to nuclei
up to mass A =~ 100. Within the number-conserving
shell-model algebra U(4§2), we consider two other re-
duction chains, which are related to the pure isoscalar
and isovector pairing interactions. In these cases, one
starts with the reduction:

U42)> U,2)® U(20)
[1™] {fo} {fe}, (4)

where 0 =S or T. In the above reduction the labels of
the representations given below the subalgebra, are ob-
tained by the standard reduction rules:{ f, } = { f1, f2},
where f1 > fo 20, fi+ fo =m and o = (f1 — f2)/2.
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Consequently, the U(262) irreps {f,} = {272,117 /2}.
The necessity of introducing these reductions will be
clarified in the next section, where the reductions of
the spatial part of U(4(2) are presented.

While applying the above reductions the spin S
and the isospin T of the system are specified, there
is no general rule for obtaining the values of the or-
bital angular momentum L, contained in the irreps
{f}, since the reduction U(£2) D SO (3) is not a canon-
ical one.

2.2 Reductions of the spatial part
2.2.1 Rotations and the SU(3) symmetry

First, we make use of one of the most important
aftermath of the supermultiplet model[lg], which can
be extended to include in the spherical shell model ro-
tational motion, which is achieved trough the Elliott’s
SU(3) model®’. The latter provides an elegant and
analytically solvable way for obtaining the missing la-
bels in the reduction of the spatial part of the Wigner’s
SUgst(4) shell model classification to the orbital angu-

lar momentum L, by introducing the reduction¥:
U2)> SU@B)D SO(3)
{f} « Ap) KL, ()

where o indicates the multiplicity of the SU(3) repre-
sentation (A, u) in the U(S2) representation {f}. The
SU(3) in Eq. (5) is generated by the components of
the quadrupole operator:

(200)

Qu= Zl: \/m(aTl%% x &l%%)(uoo)

and the orbital momentum operator

L= VA@I+1)([+1)/3(a',

l

which are presented in a second quantized form. They
act in a single valence shell labeled by [ and the bracket
denotes coupling in the angular momentum, spin and
isospin (LST). In addition, the model assumes that
the long range residual interaction has a quadrupole
character and the quadrupole-quadrupole interaction
is written as:

Vior = 5x@-Q | (®)

where Q-Q = 4C%U(3) —3L? and the eigenvalue of the
second invariant of SU(3) is C%U(3) = NP3 (0
1). Obviously, Eq. (8) gives rise to a rotational spectra
of the type L(L+1). The chain (5) is a classical exam-
ple of dynamical symmetry breaking of the degeneracy
within the U(£2) or SUgr(4) by the quadrupole inter-
action. In this way the rotational states are labeled

by the quantum numbers of the representations of the
algebras in the chain (5):

9 r) = |{/}.a(h WK LM) = m,a(Au)KLM) , (9)

and are obtained in the context of the shell model*).
Since Elliott’s SU(3) model starts with the Wigner’s
supermultiplet classification, it also breaks down from
the spin-orbit term in the nuclear mean field, and
causes a considerable rearrangement of the single-
particle levels. The model could be applied successfully
mainly for nuclei in the ds and fp shells. For treating
heavier systems several more refined approachesm]7
like the pseudo-spin symmetrym, have been employed.
2.2.2 Total, isoscalar and isovector pairing

Another way to reduce the multiplicity of the spa-
tial shell-model algebra U(§2) to the angular momen-
tum algebra SO (3) in the LS-coupling scheme is to
use the reduction chain:

U(2)D SO(R2)..0 SOL(3)
{f} 7] BL, (10)

which can easily be realized using the basic assumption
that the fundamental representation {1}y(p) is com-
posed by the representations (I1,l2,...lr) of SOL(3)
for nucleons occupying the orbits [1,l2,...l.. Then, by
using the standard methods for the decompositions
U(n) D O(n) and O(n) D O(n — 1)[15], one obtains
the values of the angular momentum operators L and
their multiplicity 5. Hence, this reduction explicitly
depends on the the [— orbits appropriate for the nu-
cleus under consideration and could be applied in one
or several orbits.

Now, we turn to another important aspect of this
reduction, namely its relation to the description of pair-
ing phenomena in the framework of the shell-model
algebras. It is proven in Ref. [16] that the SO(£2), ap-
pearing in the U({2) representation space, restricted
by the condition to be in a direct product with the
SUsr(4) algebra, is complementary to the SO(8) al-
gebra. On the other hand, the SO(8) is the spectrum
generating algebra for the isoscalar (T'=0) and isovec-
tor (T = 1) pair creation and annihilation operators
within the nuclear shell model:

20+1 - (010)
T L T 11
Sh zl:ﬁl\/ 2 (a l%%xaléé)(ouo) (11)
20+1 N (001)
Pi=Y ,/7< f f ) 12
M l B 9 a l%% xal%% (00w) s ( )

where 8; =41 or —1, and the bracket denotes coupling
in L, S,T. Obviously, these operators can be expressed

and
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in terms of the Wigner’s SUgsr(4) generators. Phys-
ically relevant reductions of the SO(8) algebra that
conserve spin and isospin are realized through three

dynamical symmetries[ll’ 12,

SO(8)
v 4 e
SOsr(6) SOr(5)®S0s(3) SOs(5)®S0r(3),
¢ { v
SOT(3)®S0s(3)
(13)

which are used to obtain analytical solutions for either
isoscalar or isovector pairing interactions in the middle
and right side chains respectively or in the left one for
both of them with equal strengths, since the SOgr(6)
algebra is the same as the one isomorphic to the Wign-
ers’ SUgt(4) in Eq. (2). Because of this, they both are
labeled by the same quantum numbers: v, [p1,p2,p3] or
(1] = (11, p2, pr3, pra] With py > p2 > ps > pa > 0, where
v=7_, p; is the seniority quantum number for SO({2)
and SO(8). In the latter case, using the relations for
the Casimir invariants of the algebras in Eqgs.(13), (2)
and (3), the total pairing interaction:

Ve(total) = G(ST- S+ PT. P) (14)

is diagonal in the basis states of the reduction chain
(10) to the angular momentum subgroup SOpL(3))
which are labeled as

|WP(total)> = |{f}av[p17p27p3]7ﬂLM> = |m,v[p],[3LM> )

(15)
where (8 gives the multiplicity of the SO(3) represen-
tations L appearing in the SO(8) ones. The eigenval-
ues of the total interaction Eq. (14) in its eigenbasis
Eq. (15) are given in Ref. [16]. They do not depend
explicitly on L,S and T'. In the case of the reduction
chain in the middle of the scheme (13), the relevant
interaction is the isoscalar pairing:

VP (isosc) =Vo=GoS'-S . (16)

The right reduction chain in (13) corresponds to the
isovector pairing:

Vegsoy) =Vi=G1P} - P, . (17)

Further, we present two other chains of the
number-conserving shell- model algebra U(4(2) that
correspond to the middle and right chains in (13)
describing the pure isoscalar Eq. (16) and isovector
Eq. (17) pairing. As shown in Ref. [16], since in these
cases one has to start with the U(4£2) D U(22)”5U(2)
(4) and U(242) also contains SO(£2) ® SU,(2), where

o =SVT, for completing the group chain the algebra
Sp(2£2) has to be included in U(22) and then reduced
to SO(2) ® SU,(2). Therefore, the group-subgroup
chains equivalent to the middle and right chains in (13)
and contained in the number-preserving shell-model
symmetry algebra U(4(2) are:

UE2)D 2D S0M@sUs@)] (g
{fs} (s);vsts  w[p] 5.

and
[U22)> Sp(22)D SO(£2)®SUr(2)] (19)

{fs} (fr);vrtr  wp) T .

Respectively, each of the algebras in Egs. (18) and
(19) is in direct product with the SUr(2) for the
isoscalar and SUg(2) for the isovector pairing respec-
tively. Hence, the irreps {f,} = {272,171}, where
fitfo=m f1 > f2 2> 0and o = L5182 of U(202),
are obtained from the partitions of Uy (2). The quan-
tum numbers of the irreps {fio} = {2"*,1?}, where
< Ve = 241+ p2,te = 1/2u2 > of Sp(?(?)[lﬁ], are
introduced in analogy to the seniority and reduced
spin/isospin. The equivalence of the reduction chains
(18) and (19) and the middle and right chains in (13)
describing the pure isoscalar (16) and isovector (17)
pairing respectively, as established in Ref. [16] is due
to the complementarity introduced in Ref. [17] and
in this case is between Sp(2(2) and SO(8) as well as
SO(2)®SU5(2) and SO(5) ® SO5(3). Then, the ba-
sis states for the Hamiltonians Vo (16) and V4 (17) in
the reductions (18) and (19) to the angular momentum
algebra SO(3) are labeled as

Ig/P(isosc)> =|m,S,vs,ts,T,v[p]BLM) , (20)
and
|!pp(isov)>5‘m,T,’UT,tT,S,’U[p]BLM> ) (21)

and the interactions given by Eqs. (16) and (17)
are diagonal in the isoscalar Eq. (20) and isovector
Eq. (21) pairing bases with eigenvalues given in Ref.
[16]. Therefore, the isovector chain (19) generates ro-
tations T'(T+1) in the isospin space and in this way dif-
fers from the chain (18). Due to relations between the
Casimir invariants of the subgroups in the chains (18),
(19)[16], the eigenenergies of Egs. (16) and (17) do not
explicitly depend on the quantum numbers v[p] of the
representations SO(§2) ~ SO(5), but instead depend
on the quantum numbers vg,ts and vr,t1 respectively,
which define the representations of Sp(2£2) D SO(S2)
in each of the considered cases. By using the standard
methods for the decomposition O(n) D O(n — 1)[15]7
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one obtains the values of the angular momentum oper-
ators L and their multiplicity 8. Hence, this reduction
explicitly depends on the [— orbits appropriate for the
nucleus under consideration and could be applied in
one or several orbits.

3 Unified reduction schemes in the
shell-model algebra

Unifying the reductions of the shell-model algebra
U(4£2) (1) in the spatial and spin-isospin branches and
taking into account the complementarity of the reduc-
tion of the spatial part U({2) and the spin-isospin part
of the Wigner’s supermultiplet model (2)[101, as well as
the two possible realizations of the reductions of the
spatial part, namely through the SU(3) algebra (5)[7]
and through the SO(£2) < SO(8) (10)!*?), we can unify
the considered above chains into a generalized reduc-
tion scheme of the type.

Now, we obtain the important result that the spa-
tial subalgebra U({2) of the shell-model algebra U (412)
contains two distinct dynamical symmetries, defined
0) and right
Both of them are complementary to the

by the reduction chains - left branch (1
branch (5).
Wigner’s supermultiplet (2).
Fig. 1, that there is a horizontal correspondence of the
irreps of SO(£2) ~ SO(8) and the ones of SU(3).

It is clearly seen in the

am | o)

U(-Q)® UW(4) <@ (/1 [50(6)| [P.P,P

/ TG e o

1=v[P[P,.P] SQZ)@’ A2) gamp| SO3)®50,(3)
wor S

#ppy#y £ =ﬂ) &

(L] ®  UJ2) ® UL2)Relation to the

T ; JT space
u@ |/

F

Fig. 1 (color online) Unified reduction scheme of
U(4€2) with the correspondence between the
total pairing chain and the SU(3) chain.

As shown in the previous section, the reduction of
the SO(8) algebra, complementary to the SO({2) shell-
model algebra, can be completed by means of reducing
the representations of U(242) into the ones of the sym-

plectic algebra Sp(2(2) and then going down to SO(3)
algebra through the direct product SO(£2) ® SU(2).
The later SU(2) algebra determines the isoscalar (16)
or isovector (17) character of the corresponding pairing
interaction. Below in Fig. 2, we illustrate the unified
reduction scheme for the isoscalar case. The isovector
case is obtained by exchange of the labels S and T in
the coresponding SU(2)—algebras and their represen-
tations.

n

i} | U(m)@u,(z) | 7

2!2) U(3) 2 | esu
[lu] [”1’ 11!”3»“4] [n nanx

S0@eU2) | | sumesue) | ®SU2)
(A 1)
T .
| 50,0)@802) | @ U
JT space

)

Fig. 2 (color online) Unified reduction scheme for
the isoscalar pairing chain and the SU(3) chain.

Here again, the horizontal correspondence of the
irreps of Sp(£2) ~ SO(5) and the ones of SU(3) is
clearly observed. From the above generalized reduc-
tion schemes it could be seen that the chains defining
the reductions in them on Figs. 1 and 2 determine full-
basis sets in which the basis states could be classified
and the correspondence between the representations la-
beling them in the pairing and rotational bases could
be explicitly obtained. We illustrate this on Tables 1
and 2 for the case of 4 particles in the ds shell. This is
not the general case, for which the reductions given on
Figs. 1 and 2 are valid, but we choose it, since it will
be presented in the applications for the ?°Ne nucleus.
The isovector result can be obtained by interchanging
the S and T labels. From the Tables 1 and 2 could
be clearly seen that the SU(3)—SO(8) correspondence
restricts which SU(3) irreps are present in a certain
pairing eigenstate. Although slightly changed, the pic-
ture remains almost the same in the isoscalar case but
only slightly expands the number of SU(3) irreps that
are allowed.

Table 1 The classification of the states of 4 particles in the ds shell ({2 = 6) according to the

reduction scheme on Fig. 1.

U(6) SO(6) S0, (6) SU(3) B SO(3) Usr(4)  SOp(6)  SUs(2) x SUT(2)
{f} (1] [1] v[p] (M) L {f} [P] (ST)
{1}15 [1%]15[2] 2[13] (1,2)15 1 1,2,3 {4}3s [2%]35 (0,0)1
(171)9

(2,2)25
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Table 1 (Continued)

U(6) S0(6) 50,(6) SU(3) x SO(3) Usr(4)  SOp(6)  SUs(2) x SUr(2)
{r} [14)[12] vip] (A ) L {7} (P] (ST)
{21%}105 [211]45[31] 4[212] (0,1)3 0 1 {31}45 [212)45 (1,0)s
[21 —1]45 (2,3)42 0 1,3,5 (0,1)3
2 2,3,4 (2,1)15
(5,0)21 0 1,3,5 (1,2)15
(3,1)24 1 1,2,3,4 (1,1)9
[12]15[2] 2[13] (1,2)15 1 1,2,3
{2%}105 [0]1[0] 0[0] (0,4)15 0 0,2,4 {2%}20 [2]20 (2,0)5
[2]20[12] 2[1] (2,0)6 0 0,2 (1,1)9
[22][22] 4[2] (4,2)60 0 0,2,4,6 (0,2)s
2 2,3,4,5 (0,0);
(3,1)24 1 1,2,3,4
{31}210 [12]15[2] 2[13] (1,2)15 1 1,2,3 {21%}15 [12]15 (1,0)3
[2]20[12] 2[1] (6,1)63 1 1,2,3,4,5, (0,1)3
6,7
[31]175[212] 4[12] (4,2)60 0 0,2,4,6 (1,1)9
2 2,3,4,5
(2,3)a2 0 1,3,5
2 2,3,4
(3,1)24 1 1,2,3,4
(2,0)6 0 0,2
{4}126 [4]105[1%] 4[0] (8,0)45 0 0,2,4,6,8 {14} [0]1 (0,0)1
(4,2)60 0 0,2,4,6
2 2,3,4,5
[0]1(0] 0[0] (0,4)15 0 0,2,4
[2]20[12] 2[1] (2,0)6 0 0,2

Table 2 The classification of the states of 4 particles in the ds shell ({2 =6) according to the isoscalar
reduction scheme (Fig. 2). In the second column, the Sp(12)—irreps < (i1, ti2 > to which correspond
< vs,ts > are listed. In the forth column, {f}s D ®(A,u) the groups of the corresponding SU(3)
irreps are listed by the SU(6) irreps from Table 1 that contain them. The groups separated by
commas correspond to the respective spins S from the previous column.

U(12) Sp(12) SO(6) x SUs(2) U(6) D ®SU(3) Ur(2) SUT(2)
{r} <p> 1] x S {fle D0 n) {} T
{14} 495 <1%> [22]x0 {22} {4} 2
[14] x 2 {14}
21?1 x 1 {21%}
[21-1]x1 {212}
<12> [2] x0 {22}
[1?]x1 {212}
<0> [0]x0 {22}
{21%}2145 <212 > 2] x1 {22} + {31} {31} 1
2 4 2
[12]x0,1,2 21 Hgﬁ’f{ééf{m b+
[31]x 0,1 {31},{31}
[212]x0,1,2 {212}, {21%},{21%}
[21-1]x0,1,2 {212},{21%},{21%}
[22] x 1 2%}

[14]x1 {141+ {212} + {31}
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Table 2 (Continued)

U(12) Sp(12) S0(6) x SUg(2) U(6) D@SU(3) Ur(2) SUT(2)
{r} <p> [u] xS {fre DB\, ) {r} T
<2> [0]x1 {22}
[2] x 1 {22} 4+ {31}
[12] x0 {22} + {31}
<12> [2] x0 {31}
[12]x 1 {14} 4+ {22} + {31}
{2%}1716 <22> [0] x 0,2 {22} 4+-{4},{2%} {22} 0
[2] x0,1,2 {22} +{4},{31},{2%}
1% x1 {212} + {31}
[31]x 1 {31}
[21%]x 1 {21?}
21—-1]x1 {212}
22] % 0,2 {22},{2%}
[14] x0,1 {14}, {212} + {31}
[4] x0 {4}
<12> [2] x0 {22} +{4}
1% x1 {212} + {31}
<0> [0] x 0 {22} + {4}

4 Transformation brackets between
the pairing and quadrupole dynam-
ical symmetries

From the above generalized reduction schemes it
could be seen that both chains defining the reduc-
tions in the spatial part of the generalized schemes
in Figs. 1 and' 2 determine full-basis sets and could
be expressed through each other. Since the micro-
scopic SU(3) model based on the three-dimensional
harmonic oscillator has a well-developed theory, includ-
ing the Wigner-Racah algebra for the calculation of
matrix elements™® ' in the SU(3) basis and various
successful applications in real nuclei[QO}, we choose to
expand the states of the pairing bases (15), (20) and
(21) with the quantum numbers {v[p|8}, {vs,ts,5}
and {vp,tr,B} correspondingly, labeled by the set of
numbers {i} through the set of basis states (9) with
the quantum numbers {a(\,u) K} denoted as the set

{j}:
|WP>iE |{f}vi7LvaS7T> :Zcij|{f},j,L,M,S,T> .

(22)
As a result of the dynamical symmetry, the pairing
interactions Eq. (14), (16) and (17) are diagonal in
(15), (20) and (21) with eigenval-
ues given in Ref. [16]. Using the expansion (22) in
the SU(3) basis states and the diagonalization proce-
dure for the matrices of the pairing interactions in the

the pairing bases

SU(3) basis:
<Wp|Hpair|Pp >= Epair(m, i, [P], (ST)) =

ZCZiCij.dkj.k < LPR|Hpair|lpR >5
ik

(23)

we obtain numerically the probability |C;;|* with
which the states of the SU(3) basis enter into the ex-
pansions of the pairing bases Eq. (22). In this way, we
actually calculate the transformation brackets between
each two chains®! of the pairing and quadrupole in-
teractions. This is of great use when calculating the
matrix elements of different operators in each of the
chains. In particular, since we do not have an ex-
plicit representation of the pairing bases in terms of
the fermion creation and annihilation operators, we
can use the transformation brackets to calculate dif-
ferent matrix elements in it. This is important for
example for the calculation of transition probabilities.
Also, this expansion could help evaluate the impor-
tance (weight) of the different SU(3) - states, when
we need to impose restrictions on the basis because of
computational difficulties. The known relations of the
SU(3) labels (A, ) and the 3,7 shape variables of the
geometrical model can be used for the analysis of the
deformations of the pairing states, expressed through
the respective SU(3) ones.

We illustrate the above results in Fig. 3, where
the bars correspond to the distribution in percentages
of the SU(3) irreps within the first five pairing states
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-L = 07,27, 47 of the ground state band and the
band-heads 03,23 of the quasi—3 with K™ =07 and
quasi—y with K™ =27 respectively, for the system of
2 protons and 2 neutrons with S=0,7=0. From the
energy values and the distribution of SU(3) irreps in
the pairing states one could reconstruct the structure
of the collective bands in the obtained classification.

100 (a) E
E . /= 0;&. E
80 4 . =2 3
E Total -4 1 Isosc
¥ 601 i :
& ] . /=0, i
40 4 . J=2; ]
20 1 k|
(80)0 (42)0 (04)0 (20)0 (80)0 (42)0
Fig. 3

Even only the first five low - lying states given on Fig.
3, show that the bands are constructed from pairing
states with all possible seniorities, not just seniority 0,
which is very often the case of the shell- model calcula-
tions. Also, the leading SU(3) irreps with the highest
weight in its containing pairing state give a clear indi-
cation for its shape or deformation.

(b) ] (¢)

[sov

040 (2000 T B0 @20 (040 | (200

(A0S
(color online) The distribution of the SU(3) irreps in the lowest-lying pairing states L = 0

+ 4+
95,21, 47 and

04,27 for the system of 2 protons and 2 neutrons with S=0,T=0. (a) The result for the total pairing, (b) the

isoscalar case and (c) the isovector case.

5 Calculations and results

As an application of the theory given in the preced-
ing sections, we present the simple case of 4 particles in
the ds shell (see Tables 1. and 2.) and in particular the
N = Z even-even nucleus 2°Ne. For its energy spectra
we evaluate the interaction strengths of each of the to-
tal, Viotal, Eq. (14), isoscalar, Vo, Eq. (16), isovector,
Vi, Eq. (17) and quadrupole-quadrupole (8) interac-
tions in the correct reproduction of the experimental
energies[m], and the root mean squared /RMS/ devia-

tion o = \/El (B, — Eéxp)2/d (per degree of freedom
d) of the model energies from the experimental ones.

First, we consider the two parameters case, and then
aim to improve it by considering the three-parameter
one.

The Hamiltonian we use for studying the energy
spectrum of the considered realistic nuclear systems in
the case of two parameters, can be writtem as:

VreS:%(l—x)Vk—&-%(l—Fx)Vz, (24)
where x is a control parameter, which obviously at
x = 1 redices to the pure V2 = $@Q - Q interaction and
at x = —1 gives the limiting case of pure Vj pairing
interactions Vi = Vp(totar) (14), Vi = Vo(16) and Vj, =
Vi(17). Hence, we investigate the influence of each
of the considered pairing interactions in conjunction
with the quadrupole-quadrupole interaction. So, com-
pared to the earlier SU(3) one-shell realization'** 24

of the PQM, we use a more general pairing Hamilto-
nian which includes proton-neutron pairing terms as
well.

In Fig. 4(a), we present the results of a mini-
mization procedure for the root-mean-squared /RMS/
value o with respect to the two parameters’ fits of G,
Go and G versus x of the residual interactions (24)
for 2°Ne, performed over the 21 lowest-lying positive-
parity experimental energies Eéxp[zzl. The lines con-
necting their limiting values at x =1 (pure Q-Q interac-
tion) and = —1 (only one of the pairing interactions)
actually represent the intervals of change of each of the
parameters. The middles of these lines at x =0 show
the values of the parameters, where both interactions
are with equal strengths. From Fig. 4(a), it could be
seen that for 2°Ne the parameter y is prevailing, intro-
ducing a deformation of nuclear shape, and rotational
like spectra. But also it is clear that the pairing inter-
actions could not be neglected and in particular the
total pairing should be taken into account.

The figures (b), (c¢) and (d) in Fig. 4, show the
change of the energy values of the first five low ly-
ing states given on Fig. 2 for z varying in the in-
terval [—1,1] in the three considered cases of correla-
tions between the total, isoscalar and isovector pairing
and the quadrupole-quadrupole interactions. It could
clearly be seen that the strong degeneracies in the pair-
ing limits are almost immediately removed from the
quadrupole-quadrupole interaction, which introduces
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Fig. 4 (color online) Results for the nucleus *°Ne with the Hamiltonians (24). (a) The values of the parameters

x and G, Go and G between the limits of pure pairing and quadrupole interactions, defining the intervals of
change of the control parameter . On each of the three lines with a triangular shape are given the values of the
two parameters Gy, x where o is minimal. The dots are the values of 2.=0. (b) The behavior of the excitation
energies of the lowest-lying pairing states as functions of the control parameter = varying from —1 to 1 along the

black dashed lines. The labels in italic and the dotted lines represent the experimental energies[QQ].

the mixing of their corresponding SU(3)-irreps (see
also the Tables 1 and 2 ). The interesting conclusion
from these two-parameter figures for the 2°Ne is that
for different values of —1 < =" < 1 different types of
spectra, varying from purely rotational to somewhat
more vibrational-like can be obtained.

Further, we can separate the two pairing modes -
the isoscalar and the isovector one - and use a Hamil-
tonian:

H= VP(isosc) + VP(isov) - %Q * Q .

In this case, one has to introduce two control param-
eters y and z, described in detail in Ref. [8]. These
are defined as having the following relation with the

(25)

%=0.112 MeV

G,/MeV

00 01 02 03 04 05 06 00 0.l

. %=0.108 MeV

02 03

three strengths Go, G1 and x of the Hamiltonian (25):
y=x/(xtG1), z = (x+G1)/(x+Go+G1) and the scaling
parameter ¢ = x +Go+ G1. Using them, the Hamilto-
nian becomes H = ¢(1—z) Visosc+c(1—y) 2Visov—cyzQ-Q.
The best three-parameter results, presented in Fig. 5
are obtained for the values x =0.108 MeV, Go=G1 =
0.29 MeV. In this case the addition of a third parame-
ter does not much change the quality of description of
the experimental results. The values of the two pairing
strengths are almost equal and the value of the rota-
tional interaction slightly diminishes. This effect could
be due to the small dimension 2 = 6 of the ds-shell.
It must be pointed out that the quality of the fit also
depends on the identification of the experimentally ob-
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Fig. 5

(color online) The values of the RMS o, in colors, as functions of the parameters Go and G for different values of x.
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served states with states of the pairing bases, which is
not unique, due to their multiple degeneracies. This
problem could partially be solved by calculating the
transition probabilities, which is not a problem in this
approach and is our further aim.

There is also a possibility in this approach to cal-
culate systematically the other types of nuclei with 4
valence particles from which we have e.g. 4, 3 and 1
protons and see what type of pairing and ordering of
the collective states appear in comparison with this
case of equal number of protons and neutrons.

6 Conclusions

On the basis of the algebraic reductions of the
spatial part of the shell-model algebra U(4(2) the dy-
namical symmetries of the microscopic pairing alge-
bras, containing the isoscalar (T = 0, S = 1), the
=1, S = 0), and total (with both of
them with equal strengths) pairing interactions™® are
investigated in the framework of Elliott’s SU(3) alge-
bra, which is also present there E[x7r}1d identifies the ro-

chains elucidate the algebraic structure of an extended

isovector (

tational limit of the shell model These reduction
Pairing-plus-Quadrupole Model. From the Pauli prin-
ciple it follows that the spatial part is conjugated to
the spin-isospin part of the shell model wave function.
Hence there exists a complementarity of the represen-
tations of the reductions groups of the spatial part and
the Wigner supermultiplet ones. This leads to inter-
relations between the respective irreps of the pairing
algebras and the SU(3) one. This is an important re-
sult, that allows us to study the complementarity and
competitive effects of the quadrupole-quadrupole and
pairing interactions on the energy spectra of the nu-
clear systems. The probability distributions or trans-
formation brackets with which the states of the SU(3)
basis enter into the expansion of the pairing basis are
obtained numerically. The parameter adjustment for
realistic nuclear systems gives the influence of each of
the considered pairing and quadrupole modes on the
reproduction of the nuclear spectra. This evaluation
is achieved and clarified by the introduction of two
or three control parameters. For illustration the theo-
retical results are compared with experimental energy
spectra of the nucleus 2°Ne, from where the optimal
values of two and three parameters of the residual in-
teractions are obtained. A further and natural devel-
opment of this model is its realization in more than
one shell. Some steps have already been done in this
direction'® but one should be cautious with the choice
of nuclei to be studied and the model spaces to work
in.
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