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Abstract：We establish a correspondence between the SO(8) isoscalar, isovector and total pairing bases

and the Elliott’s SU(3) basis in the algebraic structure of the spatial part of the microscopic shell model. It

is derived from the complementarity of these algebras to the same T, S, (S,T ) irreducible representations

(irreps) of the Wigners supermultiplets, contained in the shell-model number-conserving algebra U(4Ω).

This important result allows for the evaluation of the content of SU(3) irreps into the different types of

pairing bases which leads to an investigation of the complementarity and competitive effects of pairing

and the quadrupole-quadrupole interactions on the energy spectra of the nuclear systems. The theory is

valid for any shell and for a number of shells as well, but we illustrate it with the results for a single ds−
shell.
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1 Introduction

It has been understood since the early years

of the development of the nuclear structure physics,

that the pairing
[1]

and the quadrupole-quadrupole

interactions
[2]

are the most important short- and long-

range interactions that have to be taken into account

in the shell-model description of the nuclear systems
[3]
.

Being with different range of action on the nucleons in

the valence shells it is quite clear that these interac-

tions actually influence the behavior of the systems in

different parts of the shells. The pairing interaction

is responsible for the appearance of the pairing gap in

the nuclei with only a few nucleons after the closed

shells and is therefore associated with the spherical

shape of the system. The quadrupole-quadrupole inter-

action dominates in the nuclei near the mid-shells and

so introduces deformation, which is related to the ap-

pearance of rotational sequences in the nuclear spectra.

Hence, in some nuclei each of these interactions could

reproduce relatively well the observed behavior of the

nuclear system, but in most of the cases the study of

the relationship between them is of great importance.

This is the main motivation for the development of the

Pairing-plus-Quadrupole Model (PQM)
[4–6]

for the de-

scription of the nuclear excitation spectra. It is most

successfully done in the framework of the basic shell

model representation of the employed interactions, but

in this case the applications to real nuclear systems

are rather complicated and cumbersome, due to the

enormous dimensionality of the basis space in partic-

ular for the heavy nuclei. It is already clearly proven

that such a problem is easily avoidable by employing

a group-theoretical approach
[7]
, which introduces sym-

metry principles useful in particular for reducing the

basis spaces and in the calculation of matrix elements

of transitional operators.

In this work we present a symmetry approach by

introducing the pairing and quadrupole-quadrupole in-

teractions as invariants of respective algebras, which

reduce the space symmetry of the shell model in a

dynamical way to the SO(3) algebra of the angu-

lar momentum L. The so defined dynamical symme-

try chains are simultaneously complementary to the

Wigner’s spin-isospin SUST (4), the spin SUS(2) or

isospin SUT (2) symmetry, which establishes the direct

connection between these two limiting cases. Since the

exactly solvable limiting cases defined by the so ob-
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tained dynamical symmetries can be considered as dif-

ferent phases of the nuclear collectivity, this approach

allows for the investigation of the competing and com-

plementarity features
[8]

of the pairing and quadrupole

interactions in the description of the realistic nuclear

systems in the lower shells up to mass numbers A∼ 100.

We illustrate the applications of this extended alge-

braic realization
[9]

of the PQM theory for nuclei with

four valence particles in the ds shell. These examples

do not represent the general case of the shell model

spaces, but in it we are able to not only reproduce

the experimental data, but as well to evaluate the

weight of each of the considered modes on the nu-

clear structure. The two modes - the pairing and the

quadrupole interactions - compete, and in this way dif-

ferent types of collective spectra, ranging between vi-

brational and rotational can be investigated in terms

of phase transitions
[8]
.

2 The algebraic microscopic shell-
model

The many-particle shell model wave functions are

constructed by filling the single-particle orbitals of

the valence shells with nucleons, taking into account

the Pauli principle. The latter constrain is imposed

by requiring an antisymmetrization of the total wave

function, containing the product of the spatial, spin

and isospin parts. In general, this condition and the

complementarity of the particle permutation symme-

try group and the unitary transformation on the state

orbitals
[7]
, allows the use of the simpler case of U(4Ω)

for the classification of the m− particles’ wave func-

tions. In U(4Ω) the number 4 stands for the dimen-

sionality of the spin-isospin space and Ω=
∑

i(2li+1)

is the dimensionality of the considered shell-model va-

lence space, generated by the LS-coupling of m nucle-

ons in the l1, l2 . . . lr orbits of the considered shells.

As a result, the antisymmetric irreducible repre-

sentations of U(4Ω) for m particles, labeled by the

Young diagrams {1m} can be further partitioned into

spin-isospin and spatial parts

U(4Ω)⊃ UST (4)⊗ U(Ω)

{1m} {f̃} {f} , (1)

under the condition that each of the possible irreps

{f} ≡ {f1,f2,f3,f4} (f1 > f2 > f3 > f4) and {f̃} ≡
{f̃1, f̃2, f̃3, f̃4}, where f̃1 > f̃2 > f̃3 > f̃4 of the two com-

plementary groups UST (4) and U(Ω) respectively are

conjugated to each other by interchange of the rows

and columns in their respective Young tableaux. Con-

sequently, both representations can be obtained from

each other. Since they are contained in the simple

representation {1m} with m=
∑

i f̃i, shell-model wave

functions are only labeled with the number of particles

m in the valence shell.

2.1 The spin and isospin symmetries in the
shell model

The way to account for the spin and isospin

symmetries in the niclear structure was suggested by

Wigner
[10]

, and is based on the invariance of the nu-

clear forces in respect to rotations in spin and isospin

spaces. This invariance is introduced through the

Lie algebra of SUST (4), whose representations {f̃} ≡
{f̃1 − f̃2, f̃2 − f̃3, f̃3 − f̃4} are conjugated to and can

be obtained by the representations {f} of U(Ω). It is

obvious that the energy of the nuclear states strongly

depends on these quantum numbers.

Wigner’s supermultiplet model is actually the nu-

clear LS-coupling scheme
[7, 11]

, which employs the re-

duction

SUST (4)⊃ SUS(2) ⊗ SUT (2)

{f̃} S T , (2)

that gives the total spin S =
∑

i si and isospin T =∑
i ti (i enumerates the considered particles) values of

the states wave functions, which together with the or-

bital angular momentum L=
∑

i li of SOL(3) are good

quantum numbers in this case. Further, L and S could

be coupled to total angular momentum J = L+S.

Using the isomorphism of the algebras SUST (4) ∼
SOST (6), SUS(2) ∼ SOS(3) and SUT (2) ∼ SOT (3),

another shell-model reduction chain, equivalent to the

chain (2) can be identified
[12]

:

SUST (6) ⊃ SOS(3) ⊗ SOT (3)

[P1,P2,P3] S T , (3)

and used in a conjunction with the spatial reduction

of U(4Ω). We should point out, that the SUST (4)

symmetry is broken in a non-dynamical way by the

Coulomb and the l.s interaction
[11]

in the nuclear

mean-field approach. The role of both of these in-

creases with the nuclear mass number, but the consid-

ered LS-coupling scheme is still applicable to nuclei

up to mass A ≈ 100. Within the number-conserving

shell-model algebra U(4Ω), we consider two other re-

duction chains, which are related to the pure isoscalar

and isovector pairing interactions. In these cases, one

starts with the reduction:

U(4Ω)⊃ Uσ(2)⊗ U(2Ω)

[1m] {f̃σ} {fσ} , (4)

where σ=S or T . In the above reduction the labels of

the representations given below the subalgebra, are ob-

tained by the standard reduction rules:{f̃σ}= {f1,f2},
where f1 > f2 > 0, f1 + f2 = m and σ = (f1 − f2)/2.
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Consequently, the U(2Ω) irreps {fσ} = {2f2 ,1f1−f2}.
The necessity of introducing these reductions will be

clarified in the next section, where the reductions of

the spatial part of U(4Ω) are presented.

While applying the above reductions the spin S

and the isospin T of the system are specified, there

is no general rule for obtaining the values of the or-

bital angular momentum L, contained in the irreps

{f}, since the reduction U(Ω)⊃SOL(3) is not a canon-

ical one.

2.2 Reductions of the spatial part

2.2.1 Rotations and the SU(3) symmetry

First, we make use of one of the most important

aftermath of the supermultiplet model
[13]

, which can

be extended to include in the spherical shell model ro-

tational motion, which is achieved trough the Elliott’s

SU(3) model
[2]
. The latter provides an elegant and

analytically solvable way for obtaining the missing la-

bels in the reduction of the spatial part of the Wigner’s

SUST (4) shell model classification to the orbital angu-

lar momentum L, by introducing the reduction
[14]

:

U(Ω)⊃ SU(3)⊃ SO(3)

{f} α (λ,µ) K L , (5)

where α indicates the multiplicity of the SU(3) repre-

sentation (λ,µ) in the U(Ω) representation {f}. The

SU(3) in Eq. (5) is generated by the components of

the quadrupole operator:

Qµ =
∑
l

√
8(2l+1)

(
a†l 1

2
1
2
× ãl 1

2
1
2

)(200)

(µ00)
(6)

and the orbital momentum operator

Lµ =
∑
l

√
4l(2l+1)(l+1)/3(a†l 1

2
1
2
× ãl 1

2
1
2
)
(100)

(µ00)
, (7)

which are presented in a second quantized form. They

act in a single valence shell labeled by l and the bracket

denotes coupling in the angular momentum, spin and

isospin (LST ). In addition, the model assumes that

the long range residual interaction has a quadrupole

character and the quadrupole-quadrupole interaction

is written as:

Vrot =
1

2
χQ ·Q , (8)

where Q ·Q=4C2
SU(3)−3L2 and the eigenvalue of the

second invariant of SU(3) is C2
SU(3) =λ2+λµ+µ2+3(λ+

µ). Obviously, Eq. (8) gives rise to a rotational spectra

of the type L(L+1). The chain (5) is a classical exam-

ple of dynamical symmetry breaking of the degeneracy

within the U(Ω) or SUST (4) by the quadrupole inter-

action. In this way the rotational states are labeled

by the quantum numbers of the representations of the

algebras in the chain (5):

|ΨR⟩≡ |{f},α(λ,µ)KLM⟩≡ |m,α(λ,µ)KLM⟩ , (9)

and are obtained in the context of the shell model
[11]

.

Since Elliott’s SU(3) model starts with the Wigner’s

supermultiplet classification, it also breaks down from

the spin-orbit term in the nuclear mean field, and

causes a considerable rearrangement of the single-

particle levels. The model could be applied successfully

mainly for nuclei in the ds and fp shells. For treating

heavier systems several more refined approaches
[11]

,

like the pseudo-spin symmetry
[7]
, have been employed.

2.2.2 Total, isoscalar and isovector pairing

Another way to reduce the multiplicity of the spa-

tial shell-model algebra U(Ω) to the angular momen-

tum algebra SOL(3) in the LS-coupling scheme is to

use the reduction chain:

U(Ω)⊃ SO(Ω)...⊃ SOL(3)

{f} [µ̃] β L , (10)

which can easily be realized using the basic assumption

that the fundamental representation {1}U(Ω) is com-

posed by the representations (l1, l2, . . . lr) of SOL(3)

for nucleons occupying the orbits l1, l2, . . . lr. Then, by

using the standard methods for the decompositions

U(n) ⊃ O(n) and O(n) ⊃ O(n− 1)
[15]

, one obtains

the values of the angular momentum operators L and

their multiplicity β. Hence, this reduction explicitly

depends on the the l− orbits appropriate for the nu-

cleus under consideration and could be applied in one

or several orbits.

Now, we turn to another important aspect of this

reduction, namely its relation to the description of pair-

ing phenomena in the framework of the shell-model

algebras. It is proven in Ref. [16] that the SO(Ω), ap-

pearing in the U(Ω) representation space, restricted

by the condition to be in a direct product with the

SUST (4) algebra, is complementary to the SO(8) al-

gebra. On the other hand, the SO(8) is the spectrum

generating algebra for the isoscalar (T =0) and isovec-

tor (T = 1) pair creation and annihilation operators

within the nuclear shell model:

S†
µ =

∑
l

βl

√
2l+1

2

(
a†l 1

2
1
2
× ã†

l 1
2

1
2

)(010)

(0µ0)
(11)

and

P †
µ =

∑
l

βl

√
2l+1

2

(
a†l 1

2
1
2
× ã†

l 1
2

1
2

)(001)

(00µ)
, (12)

where βl =+1 or −1, and the bracket denotes coupling

in L,S,T . Obviously, these operators can be expressed
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in terms of the Wigner’s SUST (4) generators. Phys-

ically relevant reductions of the SO(8) algebra that

conserve spin and isospin are realized through three

dynamical symmetries
[11, 12]

:

SO(8)

↙ ↓ ↘
SOST (6) SOT (5)⊗SOS(3) SOS(5)⊗SOT (3) ,

↘ ↓ ↙
SOT (3)⊗SOS(3)

(13)

which are used to obtain analytical solutions for either

isoscalar or isovector pairing interactions in the middle

and right side chains respectively or in the left one for

both of them with equal strengths, since the SOST (6)

algebra is the same as the one isomorphic to the Wign-

ers’ SUST (4) in Eq. (2). Because of this, they both are

labeled by the same quantum numbers: v, [p1,p2,p3] or

[µ] = [µ1,µ2,µ3,µ4] with µ1 > µ2 > µ3 > µ4 > 0, where

v=
∑

iµi is the seniority quantum number for SO(Ω)

and SO(8). In the latter case, using the relations for

the Casimir invariants of the algebras in Eqs.(13), (2)

and (3), the total pairing interaction:

VP (total) =G(S† ·S+P † ·P ) (14)

is diagonal in the basis states of the reduction chain

(10) to the angular momentum subgroup SOL(3))

which are labeled as

|ΨP (total)⟩≡ |{f},v[p1,p2,p3],βLM⟩≡ |m,v[p],βLM⟩ ,
(15)

where β gives the multiplicity of the SO(3) represen-

tations L appearing in the SO(8) ones. The eigenval-

ues of the total interaction Eq. (14) in its eigenbasis

Eq. (15) are given in Ref. [16]. They do not depend

explicitly on L,S and T . In the case of the reduction

chain in the middle of the scheme (13), the relevant

interaction is the isoscalar pairing:

VP (isosc) ≡V0 =G0S
† ·S . (16)

The right reduction chain in (13) corresponds to the

isovector pairing:

VP (isov) ≡V1 =G1P
†
µ ·Pµ . (17)

Further, we present two other chains of the

number-conserving shell- model algebra U(4Ω) that

correspond to the middle and right chains in (13)

describing the pure isoscalar Eq. (16) and isovector

Eq. (17) pairing. As shown in Ref. [16], since in these

cases one has to start with the U(4Ω)⊃U(2Ω)⊗SUσ(2)

(4) and U(2Ω) also contains SO(Ω)⊗SUσ(2), where

σ= S∨T , for completing the group chain the algebra

Sp(2Ω) has to be included in U(2Ω) and then reduced

to SO(Ω)⊗ SUσ(2). Therefore, the group-subgroup

chains equivalent to the middle and right chains in (13)

and contained in the number-preserving shell-model

symmetry algebra U(4Ω) are:

[U(2Ω)⊃ Sp(2Ω)⊃ SO(Ω)⊗SUS(2)]

{fs} ⟨µ̃S⟩ ;υS tS v[p] S .
(18)

and

[U(2Ω)⊃ Sp(2Ω)⊃ SO(Ω)⊗SUT (2)]

{fs} ⟨µ̃T ⟩ ;υT tT v[p] T .
(19)

Respectively, each of the algebras in Eqs. (18) and

(19) is in direct product with the SUT (2) for the

isoscalar and SUS(2) for the isovector pairing respec-

tively. Hence, the irreps {fσ} = {2f2 ,1f1}, where

f1 + f2 = m,f1 > f2 >> 0 and σ = f1−f2

2 of U(2Ω),

are obtained from the partitions of Uσ(2). The quan-

tum numbers of the irreps {µ̃σ} = {2µ1 ,1µ2}, where

< υσ = 2µ1 + µ2, tσ = 1/2µ2 > of Sp(2Ω)
[16]

, are

introduced in analogy to the seniority and reduced

spin/isospin. The equivalence of the reduction chains

(18) and (19) and the middle and right chains in (13)

describing the pure isoscalar (16) and isovector (17)

pairing respectively, as established in Ref. [16] is due

to the complementarity introduced in Ref. [17] and

in this case is between Sp(2Ω) and SO(8) as well as

SO(Ω)⊗SUσ(2) and SO(5)⊗SOσ(3). Then, the ba-

sis states for the Hamiltonians V0 (16) and V1 (17) in

the reductions (18) and (19) to the angular momentum

algebra SO(3) are labeled as

|ΨP (isosc)⟩≡ |m,S,υS , tS ,T,v[p]βLM⟩ , (20)

and

|ΨP (isov)⟩≡ |m,T,υT , tT ,S,v[p]βLM⟩ , (21)

and the interactions given by Eqs. (16) and (17)

are diagonal in the isoscalar Eq. (20) and isovector

Eq. (21) pairing bases with eigenvalues given in Ref.

[16]. Therefore, the isovector chain (19) generates ro-

tations T (T+1) in the isospin space and in this way dif-

fers from the chain (18). Due to relations between the

Casimir invariants of the subgroups in the chains (18),

(19)
[16]

, the eigenenergies of Eqs. (16) and (17) do not

explicitly depend on the quantum numbers v[p] of the

representations SO(Ω) ∼ SO(5), but instead depend

on the quantum numbers υS , tS and υT , tT respectively,

which define the representations of Sp(2Ω) ⊃ SO(Ω)

in each of the considered cases. By using the standard

methods for the decomposition O(n) ⊃ O(n− 1)
[15]

,
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one obtains the values of the angular momentum oper-

ators L and their multiplicity β. Hence, this reduction

explicitly depends on the l− orbits appropriate for the

nucleus under consideration and could be applied in

one or several orbits.

3 Unified reduction schemes in the
shell-model algebra

Unifying the reductions of the shell-model algebra

U(4Ω) (1) in the spatial and spin-isospin branches and

taking into account the complementarity of the reduc-

tion of the spatial part U(Ω) and the spin-isospin part

of the Wigner’s supermultiplet model (2)
[10]

, as well as

the two possible realizations of the reductions of the

spatial part, namely through the SU(3) algebra (5)
[7]

and through the SO(Ω)⇔SO(8) (10)
[16]

, we can unify

the considered above chains into a generalized reduc-

tion scheme of the type.

Now, we obtain the important result that the spa-

tial subalgebra U(Ω) of the shell-model algebra U(4Ω)

contains two distinct dynamical symmetries, defined

by the reduction chains - left branch (10) and right

branch (5). Both of them are complementary to the

Wigner’s supermultiplet (2). It is clearly seen in the

Fig. 1, that there is a horizontal correspondence of the

irreps of SO(Ω)∼SO(8) and the ones of SU(3).

Fig. 1 (color online)Unified reduction scheme of
U(4Ω) with the correspondence between the
total pairing chain and the SU(3) chain.

As shown in the previous section, the reduction of

the SO(8) algebra, complementary to the SO(Ω) shell-

model algebra, can be completed by means of reducing

the representations of U(2Ω) into the ones of the sym-

plectic algebra Sp(2Ω) and then going down to SO(3)

algebra through the direct product SO(Ω)⊗ SU(2).

The later SU(2) algebra determines the isoscalar (16)

or isovector (17) character of the corresponding pairing

interaction. Below in Fig. 2, we illustrate the unified

reduction scheme for the isoscalar case. The isovector

case is obtained by exchange of the labels S and T in

the coresponding SU(2)−algebras and their represen-

tations.

Fig. 2 (color online)Unified reduction scheme for
the isoscalar pairing chain and the SU(3) chain.

Here again, the horizontal correspondence of the

irreps of Sp(Ω) ∼ SO(5) and the ones of SU(3) is

clearly observed. From the above generalized reduc-

tion schemes it could be seen that the chains defining

the reductions in them on Figs. 1 and 2 determine full-

basis sets in which the basis states could be classified

and the correspondence between the representations la-

beling them in the pairing and rotational bases could

be explicitly obtained. We illustrate this on Tables 1

and 2 for the case of 4 particles in the ds shell. This is

not the general case, for which the reductions given on

Figs. 1 and 2 are valid, but we choose it, since it will

be presented in the applications for the 20Ne nucleus.

The isovector result can be obtained by interchanging

the S and T labels. From the Tables 1 and 2 could

be clearly seen that the SU(3)−SO(8) correspondence

restricts which SU(3) irreps are present in a certain

pairing eigenstate. Although slightly changed, the pic-

ture remains almost the same in the isoscalar case but

only slightly expands the number of SU(3) irreps that

are allowed.

Table 1 The classification of the states of 4 particles in the ds shell (Ω = 6) according to the
reduction scheme on Fig. 1.

U(6) SO(6) SOp(6) SU(3)
K

SO(3) UST (4) SOP (6) SUS(2)×SUT (2)

{f} ˜[µ][µ] ν[p] (λ,µ) L {f̃} [P ] (ST )

{14}15 [12]15[2] 2[13] (1,2)15 1 1,2,3 {4}35 [23]35 (0,0)1

(1,1)9

(2,2)25
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Table 1 (Continued)

U(6) SO(6) SOp(6) SU(3)
K

SO(3) UST (4) SOP (6) SUS(2)×SUT (2)

{f} ˜[µ][µ] ν[p] (λ,µ) L {f̃} [P ] (ST )

{212}105 [211]45[31] 4[212] (0,1)3 0 1 {31}45 [212]45 (1,0)3

[21−1]45 (2,3)42 0 1,3,5 (0,1)3

2 2,3,4 (2,1)15

(5,0)21 0 1,3,5 (1,2)15

(3,1)24 1 1,2,3,4 (1,1)9

[12]15[2] 2[13] (1,2)15 1 1,2,3

{22}105 [0]1[0] 0[0] (0,4)15 0 0,2,4 {22}20 [2]20 (2,0)5

[2]20[12] 2[1] (2,0)6 0 0,2 (1,1)9

[22][22] 4[2] (4,2)60 0 0,2,4,6 (0,2)5

2 2,3,4,5 (0,0)1

(3,1)24 1 1,2,3,4

{31}210 [12]15[2] 2[13] (1,2)15 1 1,2,3 {212}15 [12]15 (1,0)3

[2]20[12] 2[1] (6,1)63 1 1,2,3,4,5, (0,1)3

6,7

[31]175[212] 4[12] (4,2)60 0 0,2,4,6 (1,1)9

2 2,3,4,5

(2,3)42 0 1,3,5

2 2,3,4

(3,1)24 1 1,2,3,4

(2,0)6 0 0,2

{4}126 [4]105[14] 4[0] (8,0)45 0 0,2,4,6,8 {14}1 [0]1 (0,0)1

(4,2)60 0 0,2,4,6

2 2,3,4,5

[0]1[0] 0[0] (0,4)15 0 0,2,4

[2]20[12] 2[1] (2,0)6 0 0,2

Table 2 The classification of the states of 4 particles in the ds shell (Ω = 6) according to the isoscalar
reduction scheme (Fig. 2). In the second column, the Sp(12)−irreps < µ̃1, µ̃2 > to which correspond

< υs, ts > are listed. In the forth column, {f̃}6 ⊃ ⊕(λ,µ) the groups of the corresponding SU(3)
irreps are listed by the SU(6) irreps from Table 1 that contain them. The groups separated by
commas correspond to the respective spins S from the previous column.

U(12) Sp(12) SO(6)×SUS(2) U(6)⊃⊕SU(3) UT (2) SUT (2)

{f} < µ̃> [µ]×S {f̃}6 ⊃⊕(λ,µ) {f̃} T

{14}495 < 14 > [22]×0 {22} {4} 2

[14]×2 {14}
[212]×1 {212}

[21−1]×1 {212}
< 12 > [2]×0 {22}

[12]×1 {212}
< 0> [0]×0 {22}

{212}2145 < 212 > [2]×1 {22}+{31} {31} 1

[12]×0,1,2
{212}+{31},{14}+{212}+

{31},{212}
[31]×0,1 {31},{31}

[212]×0,1,2 {212},{212},{212}
[21−1]×0,1,2 {212},{212},{212}

[22]×1 {22}
[14]×1 {14}+{212}+{31}
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Table 2 (Continued)

U(12) Sp(12) SO(6)×SUS(2) U(6)⊃⊕SU(3) UT (2) SUT (2)

{f} < µ̃> [µ]×S {f̃}6 ⊃⊕(λ,µ) {f̃} T

< 2> [0]×1 {22}
[2]×1 {22}+{31}
[12]×0 {22}+{31}

< 12 > [2]×0 {31}
[12]×1 {14}+{22}+{31}

{22}1716 < 22 > [0]×0,2 {22}+{4},{22} {22} 0

[2]×0,1,2 {22}+{4},{31},{22}
[12]×1 {212}+{31}
[31]×1 {31}
[212]×1 {212}

[21−1]×1 {212}
[22]×0,2 {22},{22}
[14]×0,1 {14},{212}+{31}
[4]×0 {4}

< 12 > [2]×0 {22}+{4}
[12]×1 {212}+{31}

< 0> [0]×0 {22}+{4}

4 Transformation brackets between
the pairing and quadrupole dynam-
ical symmetries

From the above generalized reduction schemes it

could be seen that both chains defining the reduc-

tions in the spatial part of the generalized schemes

in Figs. 1 and 2 determine full-basis sets and could

be expressed through each other. Since the micro-

scopic SU(3) model based on the three-dimensional

harmonic oscillator has a well-developed theory, includ-

ing the Wigner-Racah algebra for the calculation of

matrix elements
[18, 19]

in the SU(3) basis and various

successful applications in real nuclei
[20]

, we choose to

expand the states of the pairing bases (15), (20) and

(21) with the quantum numbers {v[p]β}, {υS , tS ,β}
and {υT , tT ,β} correspondingly, labeled by the set of

numbers {i} through the set of basis states (9) with

the quantum numbers {α(λ,µ)K} denoted as the set

{j}:

|ΨP ⟩i ≡ |{f}, i,L,M,S,T ⟩=
∑
j

Cij |{f}, j,L,M,S,T ⟩ .

(22)

As a result of the dynamical symmetry, the pairing

interactions Eq. (14), (16) and (17) are diagonal in

the pairing bases (15), (20) and (21) with eigenval-

ues given in Ref. [16]. Using the expansion (22) in

the SU(3) basis states and the diagonalization proce-

dure for the matrices of the pairing interactions in the

SU(3) basis:

<ΨP |Hpair|ΨP >=Epair(m,i, [P ],(ST ))=∑
jk

C∗
kiCij .δkj .k <ΨR|Hpair|ΨR >j , (23)

we obtain numerically the probability |Cij |2 with
which the states of the SU(3) basis enter into the ex-
pansions of the pairing bases Eq. (22). In this way, we

actually calculate the transformation brackets between

each two chains
[21]

of the pairing and quadrupole in-

teractions. This is of great use when calculating the

matrix elements of different operators in each of the

chains. In particular, since we do not have an ex-

plicit representation of the pairing bases in terms of

the fermion creation and annihilation operators, we

can use the transformation brackets to calculate dif-

ferent matrix elements in it. This is important for

example for the calculation of transition probabilities.

Also, this expansion could help evaluate the impor-

tance (weight) of the different SU(3) - states, when

we need to impose restrictions on the basis because of

computational difficulties. The known relations of the

SU(3) labels (λ,µ) and the β,γ shape variables of the

geometrical model can be used for the analysis of the

deformations of the pairing states, expressed through

the respective SU(3) ones.

We illustrate the above results in Fig. 3, where

the bars correspond to the distribution in percentages

of the SU(3) irreps within the first five pairing states
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-L = 0+1 ,2
+
1 , 4+1 of the ground state band and the

band-heads 0+2 ,2
+
2 of the quasi−β with Kπ = 0+ and

quasi−γ with Kπ = 2+ respectively, for the system of

2 protons and 2 neutrons with S =0,T =0. From the

energy values and the distribution of SU(3) irreps in

the pairing states one could reconstruct the structure

of the collective bands in the obtained classification.

Even only the first five low - lying states given on Fig.

3, show that the bands are constructed from pairing

states with all possible seniorities, not just seniority 0,

which is very often the case of the shell- model calcula-

tions. Also, the leading SU(3) irreps with the highest

weight in its containing pairing state give a clear indi-

cation for its shape or deformation.

Fig. 3 (color online)The distribution of the SU(3) irreps in the lowest-lying pairing states L = 0+g.s.,2
+
1 , 4

+
1 and

0+2 ,2
+
2 for the system of 2 protons and 2 neutrons with S=0,T =0. (a) The result for the total pairing, (b) the

isoscalar case and (c) the isovector case.

5 Calculations and results

As an application of the theory given in the preced-

ing sections, we present the simple case of 4 particles in

the ds shell (see Tables 1. and 2.) and in particular the

N =Z even-even nucleus 20Ne. For its energy spectra

we evaluate the interaction strengths of each of the to-

tal, Vtotal, Eq. (14), isoscalar, V0, Eq. (16), isovector,

V1, Eq. (17) and quadrupole-quadrupole (8) interac-

tions in the correct reproduction of the experimental

energies
[22]

, and the root mean squared /RMS/ devia-

tion σ=
√∑

i (E
i
Th−Ei

Exp)
2
/d (per degree of freedom

d) of the model energies from the experimental ones.

First, we consider the two parameters case, and then

aim to improve it by considering the three-parameter

one.

The Hamiltonian we use for studying the energy

spectrum of the considered realistic nuclear systems in

the case of two parameters, can be writtem as:

Vres =
1

2
(1−x)Vk+

1

2
(1+x)V2 , (24)

where x is a control parameter, which obviously at

x= 1 redices to the pure V2 =
χ
2Q ·Q interaction and

at x = −1 gives the limiting case of pure Vk pairing

interactions Vk = VP(total)(14), Vk = V0(16) and Vk =

V1(17). Hence, we investigate the influence of each

of the considered pairing interactions in conjunction

with the quadrupole-quadrupole interaction. So, com-

pared to the earlier SU(3) one-shell realization
[23, 24]

of the PQM, we use a more general pairing Hamilto-

nian which includes proton-neutron pairing terms as

well.

In Fig. 4(a), we present the results of a mini-

mization procedure for the root-mean-squared /RMS/

value σ with respect to the two parameters’ fits of G,

G0 and G1 versus χ of the residual interactions (24)

for 20Ne, performed over the 21 lowest-lying positive-

parity experimental energies Ei
Exp

[22]
. The lines con-

necting their limiting values at x=1 (pure Q·Q interac-

tion) and x=−1 (only one of the pairing interactions)

actually represent the intervals of change of each of the

parameters. The middles of these lines at x= 0 show

the values of the parameters, where both interactions

are with equal strengths. From Fig. 4(a), it could be

seen that for 20Ne the parameter χ is prevailing, intro-

ducing a deformation of nuclear shape, and rotational

like spectra. But also it is clear that the pairing inter-

actions could not be neglected and in particular the

total pairing should be taken into account.

The figures (b), (c) and (d) in Fig. 4, show the

change of the energy values of the first five low ly-

ing states given on Fig. 2 for x varying in the in-

terval [−1,1] in the three considered cases of correla-

tions between the total, isoscalar and isovector pairing

and the quadrupole-quadrupole interactions. It could

clearly be seen that the strong degeneracies in the pair-

ing limits are almost immediately removed from the

quadrupole-quadrupole interaction, which introduces
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Fig. 4 (color online)Results for the nucleus 20Ne with the Hamiltonians (24). (a) The values of the parameters
χ and G, G0 and G1 between the limits of pure pairing and quadrupole interactions, defining the intervals of
change of the control parameter x. On each of the three lines with a triangular shape are given the values of the
two parameters Gk,χ where σ is minimal. The dots are the values of x= 0. (b) The behavior of the excitation
energies of the lowest-lying pairing states as functions of the control parameter x varying from −1 to 1 along the

black dashed lines. The labels in italic and the dotted lines represent the experimental energies
[22]

.

the mixing of their corresponding SU(3)-irreps (see

also the Tables 1 and 2 ). The interesting conclusion

from these two-parameter figures for the 20Ne is that

for different values of −1 < x < 1 different types of

spectra, varying from purely rotational to somewhat

more vibrational-like can be obtained.

Further, we can separate the two pairing modes -

the isoscalar and the isovector one - and use a Hamil-

tonian:

H =VP(isosc)+VP(isov)−
χ

2
Q ·Q . (25)

In this case, one has to introduce two control param-

eters y and z, described in detail in Ref. [8]. These

are defined as having the following relation with the

three strengths G0, G1 and χ of the Hamiltonian (25):

y=χ/(χ+G1), z=(χ+G1)/(χ+G0+G1) and the scaling

parameter c= χ+G0+G1. Using them, the Hamilto-

nian becomes H = c(1−z)Visosc+c(1−y)zVisov−cyzQ·Q.

The best three-parameter results, presented in Fig. 5

are obtained for the values χ=0.108 MeV, G0 =G1 =

0.29 MeV. In this case the addition of a third parame-

ter does not much change the quality of description of

the experimental results. The values of the two pairing

strengths are almost equal and the value of the rota-

tional interaction slightly diminishes. This effect could

be due to the small dimension Ω = 6 of the ds-shell.

It must be pointed out that the quality of the fit also

depends on the identification of the experimentally ob-

Fig. 5 (color online)The values of the RMS σ, in colors, as functions of the parameters G0 and G1 for different values of χ.
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served states with states of the pairing bases, which is

not unique, due to their multiple degeneracies. This

problem could partially be solved by calculating the

transition probabilities, which is not a problem in this

approach and is our further aim.

There is also a possibility in this approach to cal-

culate systematically the other types of nuclei with 4

valence particles from which we have e.g. 4, 3 and 1

protons and see what type of pairing and ordering of

the collective states appear in comparison with this

case of equal number of protons and neutrons.

6 Conclusions

On the basis of the algebraic reductions of the

spatial part of the shell-model algebra U(4Ω) the dy-

namical symmetries of the microscopic pairing alge-

bras, containing the isoscalar (T = 0, S = 1), the

isovector (T = 1, S = 0), and total (with both of

them with equal strengths) pairing interactions
[16]

are

investigated in the framework of Elliott’s SU(3) alge-

bra, which is also present there and identifies the ro-

tational limit of the shell model
[7]
. These reduction

chains elucidate the algebraic structure of an extended

Pairing-plus-Quadrupole Model. From the Pauli prin-

ciple it follows that the spatial part is conjugated to

the spin-isospin part of the shell model wave function.

Hence there exists a complementarity of the represen-

tations of the reductions groups of the spatial part and

the Wigner supermultiplet ones. This leads to inter-

relations between the respective irreps of the pairing

algebras and the SU(3) one. This is an important re-

sult, that allows us to study the complementarity and

competitive effects of the quadrupole-quadrupole and

pairing interactions on the energy spectra of the nu-

clear systems. The probability distributions or trans-

formation brackets with which the states of the SU(3)

basis enter into the expansion of the pairing basis are

obtained numerically. The parameter adjustment for

realistic nuclear systems gives the influence of each of

the considered pairing and quadrupole modes on the

reproduction of the nuclear spectra. This evaluation

is achieved and clarified by the introduction of two

or three control parameters. For illustration the theo-

retical results are compared with experimental energy

spectra of the nucleus 20Ne, from where the optimal

values of two and three parameters of the residual in-

teractions are obtained. A further and natural devel-

opment of this model is its realization in more than

one shell. Some steps have already been done in this

direction
[9]

but one should be cautious with the choice

of nuclei to be studied and the model spaces to work

in.
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SO(8)对关联和代数壳模型中的SU(3)四极基底
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摘要: 建立了SO(8)同位旋标量、同位旋矢量及总的配对基与微观壳模型坐标空间部分的Elliott SU(3)基之间的

对应关系。从该代数间的互补关系导出了在壳模型的粒子数守恒代数U(4Ω)中所包含的具有同位旋T 及自旋S的

Wigner超多重态 (不可约)表示。其重要性在于，该结果能用于研究对相互作用和四极-四极相互作用在核谱中的竞

争效应并揭示其配对基中的SU(3)组份。虽然仅展示了该理论对 ds壳的计算，其方法也适用于研究多壳的情形。
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