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Abstract

We study scalar products of Bethe vectors in the models solvable by the nested algebraic Bethe ansatz 
and described by gl(m|n) superalgebra. Using coproduct properties of the Bethe vectors we obtain a sum 
formula for their scalar products. This formula describes the scalar product in terms of a sum over partitions 
of Bethe parameters. We also obtain recursions for the Bethe vectors. This allows us to find recursions for 
the highest coefficient of the scalar product.
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1. Introduction

The problem of calculating correlation functions of quantum exactly solvable models is of 
great importance. The creation of the Quantum Inverse Scattering Method (QISM) in the early 
80s of the last century provided a powerful tool for investigating this problem [1–4]. The first 
works in which QISM was applied to the problem of correlation functions [5,6] were devoted 
to the models related to the different deformations of the affine algebra ĝl(2). Already in those 
papers, the key role of Bethe vectors scalar products was established. In particular, a sum formula
for the scalar product of Bethe vectors was obtained in [5]. This formula gives the scalar product 
as a sum over partitions of Bethe parameters.

A generalization of QISM to the models with higher rank symmetry was given in papers 
[7–9] where the nested algebraic Bethe ansatz was developed. There a recursive procedure was 
developed to construct Bethe vectors corresponding to the gl(N) algebra from the known Bethe 
vectors of the gl(N − 1) algebra. The problem of the scalar products in SU(3)-invariant models 
were studied in [10], where an analog of the sum formula for the scalar product was obtained 
and the norm of the transfer matrix eigenstates was computed. Recently in a series of papers 
[11–16] the Bethe vectors scalar products in the models with gl(3) and gl(2|1) symmetries were 
intensively studied. There determinant representations for some important particular cases were 
obtained leading eventually to the determinant formulas for form factors of local operators in the 
corresponding physical models [17–20]. A generalization of some of those results to the models 
with trigonometric R-matrix was given in [21,22].

Concerning the scalar products in the models with higher rank (super) symmetries, only few 
results are known for today. First, it is worth mentioning the papers [23,24], in which the authors 
developed a new approach to the problem based on the quantized Knizhnik–Zamolodchikov 
equation. There the norms of the transfer matrix eigenstates in gl(N)-based models were calcu-
lated. Some partial results were also obtained when specializing to fundamental representations 
or to particular cases of Bethe vectors [25–28].

In this paper we study the Bethe vectors scalar products in the models described by gl(m|n)

superalgebras. Hence it encompasses the case of gl(m) algebras. In spite of we work within the 
framework of the traditional approach based on the nested algebraic Bethe ansatz, we essentially 
use recent results obtained in [29] via the method of projections for construction of Bethe vectors. 
This method was proposed in the paper [30]. It uses the relation between two different realiza-
tions of the quantized Hopf algebra Uq(ĝl(N)) associated with the affine algebra ĝl(N), one in 
terms of the universal monodromy matrix T (z) and RT T -commutation relations and second in 
terms of the total currents, which are defined by the Gauss decomposition of the monodromy 
matrix T (z) [31]. In [29] we generalized this approach to the case of the Yangians of gl(m|n)

superalgebras. Among the results of [29] that are used in the present paper, we note the formulas 
for the action of the monodromy matrix entries onto the Bethe vectors, and also the coproduct 
formula for the Bethe vectors.

The main result of this paper is the sum formula for the scalar product of Bethe vectors. In our 
previous publications (see e.g. [15,21]) we derived it using explicit formulas of the monodromy 
matrix elements multiple actions onto the Bethe vectors. This method is straightforward, but 
it becomes rather cumbersome already for gl(3) and gl(2|1) based models. Furthermore, the 
possibility of its application to the models with higher rank symmetries is under question. Instead, 
in the present paper we use a method based on the coproduct formula for the Bethe vectors. 
Actually, the structure of the scalar product is encoded in the coproduct formula. Therefore, this 
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method directly leads to the sum formula, in which the scalar product is given as a sum over 
partitions of Bethe parameters.

The sum formula contains an important object called the highest coefficient (HC) [5]. In the 
gl(2) based models and their q-deformation the HC coincides with a partition function of the 
six-vertex model with domain wall boundary condition. An explicit representation for it was 
found in [32]. In the models with gl(3) symmetry the HC also can be associated with a special 
partition function, however, its explicit form is much more sophisticated (see e.g. [11,13]). One 
can expect that in the case of higher rank algebras an analogous explicit formula for the HC 
becomes too complex. Therefore, in this paper we do not derive such formulas, but instead, we 
obtain recursions, which allow one to construct the HC starting with the ones in the models with 
lower rank symmetries. These recursions can be derived from recursions on the Bethe vectors 
that we also obtain in this paper.

As we have already mentioned, the Bethe vectors scalar products are of great importance in 
the problem of correlation functions of quantum integrable models. Certainly, the sum formula 
is not convenient for its direct applications, as it contains a big number of terms, which grows 
exponentially in the thermodynamic limit. However, it gives a key for studying particular cases 
of scalar products, in which the sum over partitions can be reduced to a single determinant. 
This type of formulas can be used for calculating form factors of various integrable models of 
physical interest, like, for instance, the Hubbard model [33], the t-J model [34–36] or multi-
component Bose/Fermi gas [37], not to mention spin chain models as they are nowadays tested 
in condensed matter experiments [38]. We also hope that our results will be of some interest 
in the context of super-Yang–Mills theories, when studied in the integrable systems framework. 
Indeed, in these theories, the general approach relies on a spin chain based on the psu(2, 2|4)

superalgebra. We believe that the present results will contribute to a better understanding of the 
theory.

The article is organized as follows. In section 2 we introduce the model under consideration. 
There we also specify our conventions and notation. In section 3 we describe Bethe vectors of 
gl(m|n)-based models. Section 4 contains the main results of the paper. Here we give a sum for-
mula for the scalar product of generic Bethe vectors and recursion relations for the Bethe vectors 
and the highest coefficient. The rest of the paper contains the proofs of the results announced in 
section 4. In section 5 we prove recursion formulas for the Bethe vectors. Section 6 contains a 
proof of the sum formula for the scalar product. In section 7 we study highest coefficient and find 
a recursion for it. Proofs of some auxiliary statements are gathered in appendices.

2. Description of the model

2.1. gl(m|n)-based models

The R-matrix of gl(m|n)-based models acts in the tensor product Cm|n ⊗ Cm|n, where Cm|n
is the Z2-graded vector space with the grading [i] = 0 for 1 ≤ i ≤ m, [i] = 1 for m < i ≤ m + n. 
Here, we assume that m ≥ 1 and n ≥ 1, but we want to stress that our considerations are ap-
plicable to the case m = 0 or n = 0 as well, i.e. to the non-graded algebras. Matrices acting 
in this space are also graded. We define this grading on the basis of elementary units Eij as 
[Eij ] = [i] + [j ] ∈ Z2 (recall that (Eij )ab = δiaδjb). The tensor products of Cm|n spaces are 
graded as follows:

(1 ⊗ Eij ) · (Ekl ⊗ 1) = (−1)([i]+[j ])([k]+[l]) Ekl ⊗ Eij . (2.1)
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The R-matrix of gl(m|n)-invariant models has the form

R(u, v) = I+ g(u, v)P, g(u, v) = c

u − v
. (2.2)

Here c is a constant, I and P respectively are the identity matrix and the graded permutation 
operator [39]:

I= 1 ⊗ 1 =
n+m∑
i,j=1

Eii ⊗ Ejj , P =
n+m∑
i,j=1

(−1)[j ]Eij ⊗ Eji. (2.3)

The key object of QISM is a quantum monodromy matrix T (u). Its matrix elements Ti,j (u)

are graded in the same way as the matrices [Eij ]: [Ti,j (u)] = [i] + [j ]. The grading is a mor-
phism, i.e. [Ti,j (u) · Tk,l(v)] = [Ti,j (u)] + [Tk,l(v)]. Their commutation relations are given by 
the RT T -relation

R(u, v)
(
T (u) ⊗ 1

)(
1 ⊗ T (v)

) = (
1 ⊗ T (v)

)(
T (u) ⊗ 1

)
R(u, v). (2.4)

Equation (2.4) holds in the tensor product Cm|n ⊗ Cm|n ⊗H, where H is a Hilbert space of the 
Hamiltonian under consideration. Here all the tensor products are graded.

The RT T -relation (2.4) yields a set of commutation relations for the monodromy matrix 
elements

[Ti,j (u), Tk,l(v)} = (−1)[i]([k]+[l])+[k][l]g(u, v)
(
Tk,j (v)Ti,l(u) − Tk,j (u)Ti,l(v)

)
= (−1)[l]([i]+[j ])+[i][j ]g(u, v)

(
Ti,l(u)Tk,j (v) − Ti,l(v)Tk,j (u)

)
,

(2.5)

where we introduced the graded commutator

[Ti,j (u), Tk,l(v)} = Ti,j (u)Tk,l(v) − (−1)([i]+[j ])([k]+[l])Tk,l(v)Ti,j (u). (2.6)

The graded transfer matrix is defined as the supertrace of the monodromy matrix

T (u) = strT (u) =
m+n∑
j=1

(−1)[j ] Tj,j (u). (2.7)

One can easily check [39] that [T (u) , T (v)] = 0. Thus the transfer matrix can be used as a 
generating function of integrals of motion of an integrable system.

2.2. Notation

In this paper we use notation and conventions of the work [29]. Besides the function g(u, v)

we introduce two rational functions

f (u, v) = 1 + g(u, v) = u − v + c

u − v
,

h(u, v) = f (u, v)

g(u, v)
= u − v + c

c
.

(2.8)

In order to make formulas uniform we also use ‘graded’ functions
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g[i](u, v) = (−1)[i]g(u, v) = (−1)[i]c
u − v

,

f[i](u, v) = 1 + g[i](u, v) = u − v + (−1)[i]c
u − v

,

h[i](u, v) = f[i](u, v)

g[i](u, v)
= (u − v) + (−1)[i]c

(−1)[i]c
,

(2.9)

and

γi(u, v) = f[i](u, v)

h(u, v)δi,m
, γ̂i(u, v) = f[i+1](u, v)

h(v,u)δi,m
. (2.10)

Observe that we use the subscript i for the functions γ and γ̂ instead of the subscript [i]. 
This is because these functions actually take three values. For example, γi(u, v) = f (u, v) for 
i < m, γi(u, v) = g(u, v) for i = m, and γi(u, v) = f (v, u) for i > m. It is also easy to see that 
γ̂i (u, v) = (−1)δi,mγi(u, v).

Let us formulate now a convention on the notation. We denote sets of variables by bar, for ex-
ample, ū. When dealing with several of them, we may equip these sets or subsets with additional 
superscript: s̄i , t̄ ν , etc. Individual elements of the sets or subsets are denoted by Latin subscripts, 
for instance, uj is an element of ū, t ik is an element of t̄ i etc. As a rule, the number of elements 
in the sets is not shown explicitly in the equations, however we give these cardinalities in special 
comments to the formulas. We assume that the elements in every subset of variables are ordered 
in such a way that the sequence of their subscripts is strictly increasing: t̄ i = {t i1, t i2, . . . , t iri }. We 
call this ordering the natural order.

We use a shorthand notation for products of the rational functions (2.8)–(2.10). Namely, if 
some of these functions depends on a set of variables (or two sets of variables), this means that 
one should take the product over the corresponding set (or double product over two sets). For 
example,

g(ū, v) =
∏
uj ∈ū

g(uj , v),

f[i](t i−1
k , t̄ i ) =

∏
t i�∈t̄ i

f[i](t i−1
k , t i�),

γ�(s̄
i , t̄ �) =

∏
si
j ∈s̄i

∏
t�k ∈t̄ �

γ�(s
i
j , t

�
k ).

(2.11)

By definition, any product over the empty set is equal to 1. A double product is equal to 1 if at 
least one of the sets is empty.

Below we will extend this convention to the products of monodromy matrix entries and their 
eigenvalues (see (3.3) and (3.4)).

3. Bethe vectors

Bethe vectors belong to the space H in which the monodromy matrix entries act. We do not 
specify this space, however, we assume that it contains a pseudovacuum vector |0〉, such that

Ti,i(u)|0〉 = λi(u)|0〉, i = 1, . . . ,m + n,

T (u)|0〉 = 0, i > j ,
(3.1)
i,j
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where λi(u) are some scalar functions. In the framework of the generalized model [5] considered 
in this paper, they remain free functional parameters. Below it will be convenient to deal with 
ratios of these functions

αi(u) = λi(u)

λi+1(u)
, i = 1, . . . ,m + n − 1. (3.2)

We extend the convention on the shorthand notation (2.11) to the products of the functions 
introduced above, for example,

λk(ū) =
∏
uj ∈ū

λk(uj ), αi(t̄
i ) =

∏
t i�∈t̄ i

αi(t
i
�). (3.3)

We use the same convention for the products of commuting operators

Ti,j (ū) =
∏
uj ∈ū

Ti,j (uj ), for [i] + [j ] = 0, mod 2. (3.4)

Finally, for the product of odd operators Ti,j with [i] + [j ] = 1 we introduce a special notation

Ti,j (ū) = Ti,j (u1) . . . Ti,j (up)∏
1≤k<�≤p h(u�,uk)

, [i] + [j ] = 1, i < j,

Ti,j (ū) = Ti,j (u1) . . . Ti,j (up)∏
1≤k<�≤p h(uk,u�)

, [i] + [j ] = 1, i > j.

(3.5)

Due to the commutation relations (2.5) the operator products (3.5) are symmetric over permuta-
tions of the parameters ū.

3.1. Coloring

In physical models, vectors of the space H describe states with quasiparticles of different 
types (colors). In gl(m|n)-based models quasiparticles may have N = m + n − 1 colors. Let 
{r1, . . . , rN } be a set of non-negative integers. We say that a state has coloring {r1, . . . , rN }, if 
it contains ri quasiparticles of the color i. A state with a fixed coloring can be obtained by 
successive application of the creation operators Ti,j with i < j to the vector |0〉, which has zero 
coloring. Acting on this state, an operator Ti,j adds quasiparticles with the colors i, . . . , j −1, one 
particle of each color. In particular, the operator Ti,i+1 creates one quasiparticle of the color i, the 
operator T1,n+m creates N quasiparticles of N different colors. The diagonal operators Ti,i are 
neutral, the matrix elements Ti,j with i > j play the role of annihilation operators. Acting on the 
state of a fixed coloring, the annihilation operator Ti,j removes from this state the quasiparticles 
with the colors j, . . . , i − 1, one particle of each color. In particular, if j − 1 < k < i, and the 
annihilation operator Ti,j acts on a state in which there is no particles of the color k, then this 
action vanishes.

This definition can be formalized at the level of the Yangian through the Cartan generators of 
the Lie superalgebra gl(m|n). Indeed, the zero modes

Tij [0] = lim
u→∞

u

c

(
Tij (u) − δij

)
form a gl(m|n) superalgebra, with commutation relations
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[Tij [0] , Tkl[0]} = (−1)[i]([k]+[l])+[k][l](δil Tkj [0]− δjk Til[0]
)

, i, j, k, l = 1, . . . ,m+n.

(3.6)

This superalgebra is a symmetry of the generalized model, since it commutes with the transfer 
matrix, [Tij [0] , T (z)] = 0, i, j = 1, . . . , m + n. In fact the monodromy matrix entries form a 
representation of this superalgebra:

[Tij [0] , Tkl(z)} = (−1)[i]([k]+[l])+[k][l](δil Tkj (z)−δjk Til(z)
)

, i, j, k, l = 1, . . . ,m+n.

(3.7)

In particular, for the Cartan generators Tjj [0] we obtain

[Tjj [0] , Tkl(z)] = (−1)[j ](δjl − δjk

)
Tkl(z) , j, k, l = 1, . . . ,m + n. (3.8)

Then, the colors correspond to the eigenvalues under the Cartan generators1

hj =
j∑

k=1

(−1)[k] Tkk[0] , j = 1, . . . ,m + n − 1. (3.9)

Indeed, one can check that

[hj , Tkl(z)] = εj (k, l) Tkl(z) with

⎧⎪⎨⎪⎩
εj (k, l) = −1 if k ≤ j < l

εj (k, l) = +1 if l ≤ j < k

εj (k, l) = 0 otherwise

(3.10)

These eigenvalues just correspond to creation/annihilation operators as described above.
Bethe vectors are certain polynomials in the creation operators Ti,j applied to the vector |0〉. 

Since Bethe vectors are eigenvectors under the Cartan generators Tkk[0], they are also eigenvec-
tors of the color generators hj , and hence contain only terms with the same coloring.

Remark In various models of physical interest the coloring of the Bethe vectors obeys certain 
constraints, for instance, r1 ≥ r2 ≥ · · · ≥ rN . In particular, this case occurs if the monodromy 
matrix of the model is given by the product of the R-matrices (2.2) in the fundamental represen-
tation. We do not restrict ourselves with this particular case and do not impose any restriction for 
the coloring of the Bethe vectors. Thus, in what follows ri are arbitrary non-negative integers.

In this paper we do not use an explicit form of the Bethe vectors, however, the reader can find 
it in [29]. A generic Bethe vector of gl(m|n)-based model depends on N = m + n − 1 sets of 
variables t̄1, ̄t2, . . . , ̄tN called Bethe parameters. We denote Bethe vectors by B(t̄), where

t̄ = {t1
1 , . . . , t1

r1
; t2

1 , . . . , t2
r2

; . . . ; tN1 , . . . , tNrN }, (3.11)

and the cardinalities ri of the sets t̄ i coincide with the coloring. Thus, each Bethe parameter t ik
can be associated with a quasiparticle of the color i.

Bethe vectors are symmetric over permutations of the parameters t ik within the set t̄ i , however, 
they are not symmetric over permutations over parameters belonging to different sets t̄ i and t̄ j . 
For generic Bethe vectors the Bethe parameters t ik are generic complex numbers. If these pa-
rameters satisfy a special system of equations (Bethe equations), then the corresponding vector 

1 The last generator hm+n is central, see (3.10).



284 A. Hutsalyuk et al. / Nuclear Physics B 923 (2017) 277–311
becomes an eigenvector of the transfer matrix (2.7). In this case it is called on-shell Bethe vec-
tor. In this paper we consider generic Bethe vectors, however, some formulas (for instance, the 
sum formula for the scalar product (4.11), (4.15)) can be specified to the case of on-shell Bethe 
vectors as well.

Though we do not use the explicit form of the Bethe vectors, we should fix their normalization. 
We have already mentioned that a generic Bethe vector has the form of a polynomial in Ti,j with 
i < j applied to the pseudovacuum |0〉. Among all the terms of this polynomial there is one 
monomial that contains the operators Ti,j with j − i = 1 only. Let us call this term the main term
and denote it by ̃B(t̄). Then

B(t̄) = B̃(t̄) + . . . . (3.12)

where ellipsis means all the terms containing at least one operator Ti,j with j − i > 1. We will 
fix the normalization of the Bethe vectors by fixing a numeric coefficient of the main term

B̃(t̄) = T1,2(t̄
1) . . .TN,N+1(t̄

N )|0〉∏N
i=1λi+1(t̄ i )

∏N−1
i=1 f[i+1](t̄ i+1, t̄ i )

, (3.13)

where

Ti,i+1(t̄
i ) = Ti,i+1(t

i
1) . . . Ti,i+1(t

i
ri
)(∏

1≤j<k≤ri
h(t ik, t

i
j )

)δi,m
. (3.14)

Recall that we use here the shorthand notation for the products of the functions λj+1 and f[j+1]. 
The normalization in (3.13) is different from the one used in [29] by the product 

∏N
j=1 λj+1(t̄

j ). 
This additional normalization factor is convenient, because in this case the scalar products of the 
Bethe vectors depend on the ratios αi (3.2) only.

Since the operators Ti,i+1 and Tj,j+1 do not commute for i 
= j , the main term can be written 
in several forms corresponding to different ordering of the monodromy matrix entries. The or-
dering in (3.13) naturally arises if we construct Bethe vectors via the embedding of gl(m − 1|n)

to gl(m|n).

3.2. Morphism of Bethe vectors

Yangians Y(gl(m|n)) and Y(gl(n|m)) are related by a morphism ϕ [40]

ϕ :
{

Y(gl(m|n)) → Y(gl(n|m)),

T
m|n
i,j (u) → (−1)[i][j ]+[j ]+1 T

n|m
N+2−j,N+2−i (u) , i, j = 1, . . . ,N + 1,

(3.15)

and we recall that N = m + n − 1. Here we also have equipped the operators Tij with addi-
tional superscripts showing the corresponding Yangians. This mapping also acts on the vacuum 
eigenvalues λi(u) (3.1) and their ratios αi(u) (3.2)

ϕ :
{

λi(u) → −λN+2−i (u), i = 1, . . . ,N + 1 ,

αi(u) → 1
αN+1−i (u)

, i = 1, . . . ,N .
(3.16)

Morphism ϕ induces a mapping of Bethe vectors Bm|n of Y(gl(m|n)) to Bethe vectors Bn|m
of Y(gl(n|m)). To describe this mapping we introduce special orderings of the sets of Bethe 
parameters. Namely, let



A. Hutsalyuk et al. / Nuclear Physics B 923 (2017) 277–311 285
−→
t = {t̄1, t̄2, . . . , t̄N } and ←−

t = {t̄N , . . . , t̄2, t̄1}. (3.17)

The ordering of the Bethe parameters within every set t̄ k is not essential. Then

ϕ
(
B

m|n(−→
t)

)
= (−1)rmBn|m(

←−
t)∏N

k=1 αN+1−k(t̄ k)
. (3.18)

Applying the mapping (3.18) to Bm|n and then replacing m ↔ n we obtain an alternative 
description of the Bethe vectors corresponding to the embedding of gl(m|n − 1) to gl(m|n). The 
use of ϕ (3.18) allows one to establish important properties of the Bethe vectors scalar products 
(see section 7.2).

3.3. Dual Bethe vectors

Dual Bethe vectors belong to the dual space H∗, and they are polynomials in Ti,j with i > j

applied from the right to the dual pseudovacuum vector 〈0|. This vector possesses properties 
similar to (3.1)

〈0|Ti,i(u) = λi(u)〈0|, i = 1, . . . ,m + n,

〈0|Ti,j (u) = 0 , i < j ,
(3.19)

where the functions λi(u) are the same as in (3.1).
We denote dual Bethe vectors by C(t̄), where the set of Bethe parameters t̄ consists of several 

sets t̄ i as in (3.11). Similarly to how it was done for Bethe vectors, we can introduce the coloring 
of the dual Bethe vectors. At the same time the role of creation and annihilation operators are 
reversed.

One can obtain dual Bethe vectors via a special antimorphism of the algebra (2.4) [40]


 : Ti,j (u) → (−1)[i]([j ]+1)Tj,i(u). (3.20)

This antimorphism is nothing but a super (or equivalently, graded) transposition compatible with 
the notion of supertrace. It satisfies a property


(A · B) = (−1)[A][B]
(B) · 
(A), (3.21)

where A and B are arbitrary elements of the monodromy matrix. If we extend the action of this 
antimorphism to the pseudovacuum vectors by



(|0〉) = 〈0|, 


(
A|0〉) = 〈0|
(

A
)
,



(〈0|) = |0〉, 


(〈0|A) = 

(
A

)|0〉, (3.22)

then it turns out that [29]



(
B(t̄)

) =C(t̄), 

(
C(t̄)

) = (−1)rmB(t̄), (3.23)

where rm = #t̄m.

Remark It should not be surprising that 
2
(
B(t̄)

) 
= B(t̄). The point is that the antimorphism 

 is idempotent of order 4 and its square is the parity operator (counting the number of odd 
monodromy matrix elements modulo 2).

Thus, dual Bethe vectors are polynomials in Ti,j with i > j acting from the right onto 〈0|. 
They also contain the main term C̃(t̄), which now consists of the operators Ti,j with i − j = 1. 
The main term of the dual Bethe vector can be obtained from (3.13) via the mapping 
:
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C̃(t̄) = (−1)rm(rm−1)/2〈0|TN+1,N (t̄N ) . . .T2,1(t̄
1)∏N

i=1 λi+1(t̄ i )
∏N−1

i=1 f[i+1](t̄ i+1, t̄ i )
, (3.24)

where

Ti+1,i (t̄
i ) = Ti+1,i (t

i
1) . . . Ti+1,i (t

i
ri
)(∏

1≤j<k≤ri
h(t ij , t

i
k)

)δi,m
. (3.25)

Finally, using the morphism ϕ we obtain a relation between dual Bethe vectors corresponding 
to the Yangians Y(gl(m|n)) and Y(gl(n|m))

ϕ
(
C

m|n(−→
t)

)
= C

n|m(
←−
t)∏N

k=1 αN+1−k(t̄ k)
. (3.26)

4. Main results

In this section we present the main results of the paper. They are of three types: recursion 
formulas for Bethe vectors; sum formula for the Bethe vectors scalar product; recursion formulas 
for the scalar product highest coefficients. Recall that we formally consider the case m, n 
= 0. 
However, in subsection 4.3 we specify our results to the particular case of gl(m)-based models, 
that is, n = 0. The case m = 0 can be obtained from the latter via replacement c → −c in the 
R-matrix (2.2).

4.1. Recursion for Bethe vectors

Here we give recursions for (dual) Bethe vectors. These recursions allow us to construct Bethe 
vectors, knowing the ones depending on a smaller number of parameters. The corresponding 
proofs are given in section 5.

Proposition 4.1. Bethe vectors of gl(m|n)-based models satisfy a recursion

B(
{
z, t̄1};{t̄ k}N

2 ) =
N+1∑
j=2

T1,j (z)

λ2(z)

∑
part(t̄2,...,t̄ j−1)

B(
{
t̄1};{t̄ kII }j−1

2 ;{t̄ k}N

j
)

×
∏j−1

ν=2 αν(t̄
ν
I )g[ν](t̄νI , t̄ ν−1

I )γν(t̄
ν
II , t̄

ν
I )

h(t̄1, z)δm,1
∏j−1

ν=1 f[ν+1](t̄ν+1, t̄ νI )
. (4.1)

Here for j > 2 the sets of Bethe parameters t̄2, . . . , ̄tj−1 are divided into disjoint subsets t̄ νI and 
t̄ νII (ν = 2, . . . , j − 1) such that the subset t̄ νI consists of one element only: #t̄ νI = 1. The sum is 
taken over all partitions of this type. We set by definition t̄1

I ≡ z and t̄N+1 = ∅.

We used the following notation in Proposition 4.1

B(
{
z, t̄1};{t̄ k}N

2 ) = B(
{
z, t̄1}; t̄2; . . . ; t̄N ),

B(
{
t̄1};{t̄ kII }j−1

2 ;{t̄ k}N

j
) = B(t̄1; t̄2

II ; . . . ; t̄ j−1
II ; t̄ j ; . . . ; t̄N ).

(4.2)

This and similar notation will be used throughout of the paper.
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Remark We stress that each of the subsets t̄2
I , . . . , ̄tNI in (4.1) must consist of exactly one ele-

ment. However, this condition is not feasible, if the original Bethe vector B(t) contains an empty 
set t̄ k = ∅ for some k ∈ [2, . . . , N ]. In this case, the sum over j in (4.1) breaks off at j = k. 
Indeed, the action of the operators T1,j (z) with j > k on a Bethe vector necessarily creates a 
quasiparticle of the color k. Since this quasiparticle is absent in the lhs of (4.1), we cannot have 
the operators T1,j (z) with j > k in the rhs. Similar consideration shows that if B(t) contains 
several empty sets t̄ k1, . . . , ̄tk� , then the sum ends at j = min(k1, . . . , k�).

Remark One can notice that for m = 1 an additional factor h(t̄1, z)−1 appears in the recursion. 
The point is that with this recursion we add a quasiparticle of the color 1 to the original set of 
quasiparticles via the actions of the operators T1,j . For m = 1 all these operators are odd, which 
explains the appearance of the factor h(t̄1, z)−1. This difference can also be seen explicitly in the 
example of recursion for the main term (3.13)

B̃(
{
z, t̄1};{t̄ k}N

2 ) = T1,2(z)B̃(t̄)

h(t̄1, z)δm,1λ2(z)f[2](t̄2, z)
. (4.3)

Using the mappings (3.15) and (3.20) one can obtain one more recursion for the Bethe vectors 
and two recursions for the dual ones.

Proposition 4.2. Bethe vectors of gl(m|n)-based models satisfy a recursion

B(
{
t̄ k

}N−1
1 ;{z, t̄N}

) =
N∑

j=1

Tj,N+1(z)

λN+1(z)

∑
part(t̄ j ,...,t̄N−1)

B(
{
t̄ k

}j−1
1 ;{t̄ kII }N−1

j
; t̄N )

×
∏N−1

ν=j g[ν+1](t̄ν+1
I , t̄ νI )γ̂ν(t̄

ν
I , t̄ νII )

h(t̄N , z)δm,N
∏N

ν=j f[ν](t̄νI , t̄ ν−1)
. (4.4)

Here for j < N the sets of Bethe parameters t̄ j , . . . , ̄tN−1 are divided into disjoint subsets t̄ νI and 
t̄ νII (ν = j, . . . , N − 1) such that the subset t̄ νI consists of one element: #t̄ νI = 1. The sum is taken 
over all partitions of this type. We set by definition t̄NI ≡ z and t̄0 = ∅.

Remark If the Bethe vector B(t) contains several empty sets t̄ k1, . . . , ̄tk� , then the sum over j
in (4.4) begins with j = max(k1, . . . , k�) + 1.

Acting with antimorphism (3.20) onto equations (4.1) and (4.4) we immediately arrive at 
recursions for the dual Bethe vectors.

Corollary 4.1. Dual Bethe vectors of gl(m|n)-based models satisfy recursions

C(
{
z, s̄1};{s̄k

}N

2 ) =
N+1∑
j=2

∑
part(s̄2,...,s̄j−1)

C(
{
s̄1};{s̄k

II

}j−1
2 ;{s̄k

}N

j
)
Tj,1(z)

λ2(z)
(−1)r1δm,1

×
∏j−1

ν=2 αν(s̄
ν
I )g[ν](s̄ν

I , s̄ν−1
I )γ̂ν(s̄

ν
II , s̄

ν
I )

h(s̄1, z)δm,1
∏j−1

ν=1 f[ν+1](s̄ν+1, s̄ν
I )

, (4.5)

and
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C(
{
s̄k

}N−1
1 ;{z, s̄N

}
) =

N∑
j=1

∑
part(s̄j ,...,s̄N−1)

C(
{
s̄k

}j−1
1 ;{s̄k

II

}N−1
j

; s̄N )
TN+1,j (z)

λN+1(z)
(−1)rN δm,N

×
∏N−1

ν=j g[ν](s̄ν+1
I , s̄ν

I )γν(s̄
ν
I , s̄ν

II )

h(s̄N , z)δm,N
∏N

ν=j f[ν](s̄ν
I , s̄ν−1)

. (4.6)

Here the summation over the partitions occurs as in the formulas (4.1) and (4.4). The numbers 
r1 (resp. rN ) are the cardinalities of the sets s̄1 (resp. s̄N ). The subsets s̄ν

I consist of one element: 
#s̄ν

I = 1. If C(s̄) contains empty sets of the Bethe parameters, then the sums cut similarly to the 
case of the Bethe vectors B(t̄). By definition s̄1

I ≡ z in (4.5), s̄N
I ≡ z in (4.6), and s̄0 = s̄N+1 = ∅.

The proof of Corollary 4.1 is given in section 5.2.
Using recursion (4.1) one can express a Bethe vector with #t̄1 = r1 in terms of Bethe vectors 

with #t̄1 = r1 − 1. Applying this recursion successively we eventually express the original Bethe 
vector in terms of a linear combination of terms that are products of the monodromy matrix 
elements T1,j acting onto Bethe vectors with #t̄1 = 0. The latter effectively corresponds to the 
Yangian Y(gl(m − 1|n)) (see [29]):

B
m|n(∅; {t̄ k}N2 ) = B

m−1|n(t̄)
∣∣∣
t̄ k→t̄ k+1

. (4.7)

Thus, continuing this process we formally can reduce Bethe vectors of Y(gl(m|n)) to the ones of 
Y(gl(1|n)).

Similarly, using recursion (4.4) and

B
m|n({t̄ k}N−1

1 ; ∅) = B
m|n−1(t̄), (4.8)

we eventually reduce Bethe vectors of Y(gl(m|n)) to the ones of Y(gl(m|1)). The combination 
of both recursions thus defines a unique procedure for constructing Bethe vectors with respect to 
the known Bethe vectors of Y(gl(1|1)): B1|1(t̄) = T1,2(t̄)|0〉/λ2(t̄). Similarly, one can built dual 
Bethe vectors via (4.5), (4.6). These procedures, of course, are of little use for practical purposes, 
however, they can be used to prove various assertions by induction.

4.2. Sum formula for the scalar product

Let B(t̄) be a generic Bethe vector and C(s̄) be a generic dual Bethe vector such that #t̄ k =
#s̄k = rk , k = 1, . . . , N . Then their scalar product is defined by

S(s̄|t̄ ) =C(s̄)B(t̄). (4.9)

Note that if #t̄ k 
= #s̄k for some k ∈ {1, . . . , N}, then the scalar product vanishes. Indeed, in this 
case the numbers of creation and annihilation operators of the color k do not coincide.

Applying (3.22) to the scalar product and using 
[
B(t̄)

] = [
C(t̄)

] = rm [29] we find that

S(s̄|t̄ ) =C(t̄)B(s̄) = S(t̄ |s̄). (4.10)

Computing the scalar product one should use commutation relations (2.5) and move all oper-
ators Ti,j with i > j from the dual vector C(s̄) to the right through the operators Ti,j with i < j , 
which are in the vector B(t̄). In the process of commutation, new operators will appear, which 
should be moved to the right or left, depending on the relation between their subscripts. Once 
an operator Ti,j with i ≥ j reaches the vector |0〉, it either annihilates it for i > j , or gives a 
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function λi for i = j . The argument of the function λi can a priori be any Bethe parameter tk�
or sk

� . Similarly, if an operator Ti,j with i ≤ j reaches the vector 〈0|, it either annihilates it for 
i < j , or gives a function λi for i = j , which depends on one of the Bethe parameters.

Due to the normalization of the Bethe vectors the functions λi then turn into the ratios αi . 
Thus, the scalar product eventually depends on the functions αi and some rational functions 
which appear in the process of commutating the monodromy matrix entries.

The following proposition specifies how the scalar product depends on the functions αi .

Proposition 4.3. Let B(t̄) be a generic Bethe vector and C(s̄) be a generic dual Bethe vector 
such that #t̄ k = #s̄k = rk , k = 1, . . . , N . Then their scalar product is given by

S(s̄|t̄ ) =
∑

W
m|n
part (s̄I, s̄II|t̄I, t̄II)

N∏
k=1

αk(s̄
k
I )αk(t̄

k
II ). (4.11)

Here all the sets of the Bethe parameters t̄ k and s̄k are divided into two subsets t̄ k ⇒ {t̄ kI , ̄tkII }
and s̄k ⇒ {s̄k

I , ̄sk
II }, such that #t̄ kI = #s̄k

I . The sum is taken over all possible partitions of this type. 
The rational coefficients Wm|n

part depend on the partition. They are completely determined by the 
R-matrix of the model and do not depend on the ratios of the vacuum eigenvalues αk.

Proposition 4.3 states that after calculating the scalar product the Bethe parameters of the type 
k (tkj or sk

j ) can be arguments of functions λk+1 or λk only. Due to the normalization of the Bethe 
vectors these functions respectively cancel in the first case or produce the functions αk in the 
second case. We prove Proposition 4.3 in section 6.1.

We would like to stress that the rational functions Wm|n
part are model independent. Indeed, within 

the QISM framework the Hamiltonian of a quantum model is encoded in the supertrace of the 
monodromy matrix T (u). Thus, one can say that the quantum model is defined by T (u). Looking 
at presentation (4.11) one can notice that the model dependent part of the scalar product entirely 
lies in the αk functions, because only these functional parameters depend on the monodromy 
matrix. On the other hand, the coefficients Wm|n

part are completely determined by the R-matrix, 
that is, they depend only on the underlying algebra. Thus, if two different quantum integrable 
models have the same R-matrix (2.2), then the scalar products of Bethe vectors in these models 
are given by (4.11) with the same coefficients Wm|n

part .
The Highest Coefficient (HC) of the scalar product is defined as a rational coefficient corre-

sponding to the partition s̄I = s̄, t̄I = t̄ , and s̄II = t̄II = ∅. We denote the HC by Zm|n(s̄|t̄ ). Then, 
the HC is a particular case of the rational coefficient2 W

m|n
part :

W
m|n
part (s̄,∅|t̄ ,∅) = Zm|n(s̄|t̄ ). (4.12)

Similarly one can define a conjugated HC Z
m|n

(s̄|t̄ ) as a coefficient corresponding to the partition 
s̄II = s̄, t̄II = t̄ , and s̄I = t̄I = ∅.

W
m|n
part (∅, s̄|∅, t̄) = Z

m|n
(s̄|t̄ ). (4.13)

Due to (4.10) one can easily show that

2 Note that we have changed the definition of the HC with respect to the one that we used in our previous publications. 
Now it involves a normalization factor 

∏N−1 f[j+1](s̄j+1, ̄sj )f[j+1](t̄j+1, ̄tj ).

j=1
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Z
m|n

(s̄|t̄ ) = Zm|n(t̄ |s̄). (4.14)

The following proposition determines the general coefficient Wm|n
part in terms of the HC.

Proposition 4.4. For a fixed partition t̄ k ⇒ {t̄ kI , ̄tkII } and s̄k ⇒ {s̄k
I , ̄sk

II } in (4.11) the rational coef-

ficient Wm|n
part has the following presentation in terms of the HC:

W
m|n
part (s̄I, s̄II|t̄I, t̄II) = Zm|n(s̄I|t̄I) Zm|n(t̄II|s̄II)

∏N
k=1 γk(s̄

k
II , s̄

k
I )γk(t̄

k
I , t̄ kII )∏N−1

j=1 f[j+1](s̄j+1
II , s̄

j
I )f[j+1](t̄ j+1

I , t̄
j
II )

.

(4.15)

The proof of Proposition 4.4 is given in section 6.2.
Explicit expressions for the HC are known for small m and n [15]. In particular,

Z1|1(s̄|t̄ ) = g(s̄, t̄). (4.16)

Determinant representations for Z2|0 or Z0|2 were obtained in [32]. Relatively compact formulas 
for Zm|n at m + n = 3 were found in [11,14,15], however, representations for the HC in the 
general gl(m|n) case are very cumbersome. Instead, one can use relatively simple recursions 
established by the following propositions.

Proposition 4.5. The HC Zm|n(s̄|t̄ ) possesses the following recursion over the set s̄1:

Zm|n(s̄|t̄ ) =
N+1∑
p=2

∑
part(s̄2,...,s̄p−1)

part(t̄1,...,t̄p−1)

g[2](t̄1
I , s̄1

I )γ1(t̄
1
I , t̄1

II )f (t̄1
II , s̄

1
I )

f[p](s̄p, s̄
p−1
I )h(s̄1, s̄1

I )δm,1

×
p−1∏
ν=2

g[ν](s̄ν
I , s̄ν−1

I )g[ν+1](t̄νI , t̄ ν−1
I )γν(s̄

ν
II , s̄

ν
I )γν(t̄

ν
I , t̄ νII )

f[ν](s̄ν, s̄ν−1
I )f[ν](t̄νI , t̄ ν−1)

× Zm|n(
{
s̄k

II

}p−1
1 ,

{
s̄k

}N

p
|{t̄ kII }p−1

1 ;{t̄ k}N

p
). (4.17)

Here for every fixed p ∈ {2, . . . , m + n} the sums are taken over partitions t̄ k ⇒ {t̄ kI , ̄tkII } with 
k = 1, . . . , p − 1 and s̄k ⇒ {s̄k

I , ̄sk
II } with k = 2, . . . , p − 1, such that #t̄ kI = #s̄k

I = 1 for k =
2, . . . , p − 1. The subset s̄1

I is a fixed Bethe parameter from the set s̄1. There is no sum over 
partitions of the set s̄1 in (4.17).

The proof of this proposition is given in section 7.1.

Corollary 4.2. The HC Zm|n(s̄|t̄ ) satisfies the following recursion over the set t̄N :

Zm|n(s̄|t̄ ) =
N∑

p=1

∑
part(s̄p,...,s̄N )

part(t̄p,...,t̄N−1)

g(s̄N
I , t̄NI )γ̂N (s̄N

II , s̄N
I )f (s̄N

II , t̄NI )

f[p](t̄pI , t̄p−1)h(t̄N , t̄NI )δm,N

×
N−1∏
ν=p

g[ν+1](s̄ν+1
I , s̄ν

I )g[ν+1](t̄ν+1
I , t̄ νI )γ̂ν(s̄

ν
II , s̄

ν
I )γ̂ν(t̄

ν
I , t̄ νII )

f[ν+1](s̄ν+1, s̄ν
I )f[ν+1](t̄ν+1

I , t̄ ν)

× Zm|n(
{
s̄k

}p−1
,
{
s̄k

II

}N |{t̄ k}p−1;{t̄ kII }N
). (4.18)
1 p 1 p
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Here for every fixed p ∈ {1, . . . , m + n − 1} the sums are taken over partitions t̄ k ⇒ {t̄ kI , ̄tkII }
with k = p, . . . , N − 1 and s̄k ⇒ {s̄k

I , ̄sk
II } with k = p, . . . , N , such that #t̄ kI = #s̄k

I = 1 for k =
p, . . . , N − 1. The subset t̄NI is a fixed Bethe parameter from the set t̄N . There is no sum over 
partitions of the set t̄N in (4.18).

This recursion follows from (4.17) and a symmetry property of the HC (7.14) proved in sec-
tion 7.2.

Remark Similarly to the recursions for the Bethe vectors the sums over p in (4.17), (4.18) break 
off, if HC Zm|n(s̄|t̄ ) contains empty sets of the Bethe parameters. If the colors of the empty sets 
are {k1, . . . , k�}, then the sum over p ends at p = min(k1, . . . , k�) in the recursion (4.17), while 
in the recursion (4.18) it begins at p = max(k1, . . . , k�) + 1. These restrictions follow from the 
corresponding restrictions in the recursions for the Bethe vectors.

Using Proposition 4.5 one can built the HC with #s̄1 = #t̄1 = r1 in terms of the HC with 
#s̄1 = #t̄1 = r1 − 1. In particular, Zm|n with #s̄1 = #t̄1 = 1 can be expressed in terms of Zm|n
with #s̄1 = #t̄1 = 0. It is obvious, however, that

Zm|n(∅, {s̄k}N2 |∅, {t̄ k}N2 ) = Zm−1|n({s̄k}N2 |{t̄ k}N2 ). (4.19)

due to (4.7). Thus, equation (4.17) allows one to perform recursion over m as well.
Similarly, Corollary 4.2 allows one to find the HC with #s̄N = #t̄N = rN in terms of the HC 

with #s̄N = #t̄N = rN − 1 and to perform recursion over n.
Thus, using recursions (4.17) and (4.18) one can eventually express Zm|n(s̄|t̄ ) in terms of 

known HC, say, for m + n = 2. However, the corresponding explicit expressions hardly can be 
used in practice, because they are too bulky. At the same time, these recursions appear be very 
useful for proofs of some important properties of HC.

4.3. Simplified expressions for models with gl(m) symmetry

As already mentioned, the results stated above are also valid for the case of gl(m) Lie algebras 
with m > 1, simply by setting n = 0. This implies N = m − 1. In that case, most of expressions 
simplify, due to the absence of grading. We present here the simplified results occurring for 
gl(m).

• Bethe vectors of gl(m)-based models satisfy the recursions

B(
{
z, t̄1};{t̄ k}m−1

2 ) =
m∑

j=2

T1,j (z)

λ2(z)

∑
part(t̄2,...,t̄ j−1)

B(
{
t̄1};{t̄ kII }j−1

2 ;{t̄ k}m−1
j

)

×
∏j−1

ν=2 αν(t̄
ν
I ) g(t̄νI , t̄ ν−1

I )f (t̄νII , t̄
ν
I )∏j−1

ν=1 f (t̄ν+1, t̄ νI )
, (4.20)

where the conditions on sets of Bethe parameters are the same as in Proposition 4.1,

B(
{
t̄ k

}m−2
1 ;{z, t̄m−1}) =

m−1∑
j=1

Tj,m(z)

λm(z)

∑
part(t̄ j ,...,t̄m−2)

B(
{
t̄ k

}j−1
1 ;{t̄ kII }m−2

j
; t̄m−1)

×
∏m−2

ν=j g(t̄ν+1
I , t̄ νI )f (t̄νI , t̄ νII )∏m−1
f (t̄ν, t̄ ν−1)

, (4.21)

ν=j I
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where the conditions on sets of Bethe parameters are the same as in Proposition 4.2. The 
starting point for these recursions is the gl(2) Bethe vector B(t̄) = T12(t̄)|0〉/λ2(t̄).

• Dual Bethe vectors of gl(m)-based models satisfy the recursions

C(
{
z, s̄1};{s̄k

}m−1
2 ) =

m∑
j=2

∑
part(s̄2,...,s̄j−1)

C(
{
s̄1};{s̄k

II

}j−1
2 ;{s̄k

}m−1
j

)
Tj,1(z)

λ2(z)

×
∏j−1

ν=2 αν(s̄
ν
I )g(s̄ν

I , s̄ν−1
I )f (s̄ν

II , s̄
ν
I )∏j−1

ν=1 f (s̄ν+1, s̄ν
I )

, (4.22)

and

C(
{
s̄k

}m−2
1 ;{z, s̄m−1}) =

m−1∑
j=1

∑
part(s̄j ,...,s̄m−2)

C(
{
s̄k

}j−1
1 ;{s̄k

II

}m−2
j

; s̄m−1)
Tm,j (z)

λm(z)

×
∏m−2

ν=j g(s̄ν+1
I , s̄ν

I )f (s̄ν
I , s̄ν

II )∏m−1
ν=j f (s̄ν

I , s̄ν−1)
. (4.23)

The conditions on the sets of parameters and partitions are given in Corollary 4.1. The start-
ing point for these recursions is the gl(2) dual Bethe vector C(t̄) = 〈0|T21(t̄)/λ2(t̄).

• For a fixed partition t̄ k ⇒ {t̄ kI , ̄tkII } and s̄k ⇒ {s̄k
I , ̄sk

II } in (4.11) the rational coefficient Wm
part

has the following presentation in terms of the HC:

Wm
part(s̄I, s̄II|t̄I, t̄II) = Zm(s̄I|t̄I) Zm(t̄II|s̄II)

∏m−1
k=1 f (s̄k

II , s̄
k
I )f (t̄kI , t̄ kII )∏m−2

j=1 f (s̄
j+1
II , s̄

j
I )f (t̄

j+1
I , t̄

j
II )

. (4.24)

In the gl(2) and gl(3) cases this expression reduces to the formulas respectively obtained in 
[5] and [10].

• The HC Zm(s̄|t̄ ) possesses the following recursions:

Zm(s̄|t̄ ) =
m∑

p=2

∑
part(s̄2,...,s̄p−1)

part(t̄1,...,t̄p−1)

g(t̄1
I , s̄1

I )f (t̄1
I , t̄1

II )f (t̄1
II , s̄

1
I )

f (s̄p, s̄
p−1
I )

×
p−1∏
ν=2

g(s̄ν
I , s̄ν−1

I )g(t̄νI , t̄ ν−1
I )f (s̄ν

II , s̄
ν
I )f (t̄νI , t̄ νII )

f (s̄ν, s̄ν−1
I )f (t̄νI , t̄ ν−1)

× Zm(
{
s̄k

II

}p−1
1 ,

{
s̄k

}m−1
p

|{t̄ kII }p−1
1 ;{t̄ k}m−1

p
), (4.25)

and

Zm(s̄|t̄ ) =
m−1∑
p=1

∑
part(s̄p,...,s̄m−1)

part(t̄p,...,t̄m−2)

g(t̄m−1
I , s̄m−1

I )f (s̄m−1
II , s̄m−1

I )f (t̄m−1
I , s̄m−1

II )

f (t̄
p
I , t̄p−1)

×
m−2∏
ν=p

g(s̄ν+1
I , s̄ν

I )g(t̄ν+1
I , t̄ νI )f (s̄ν

II , s̄
ν
I )f (t̄νI , t̄ νII )

f (s̄ν+1, s̄ν
I )f (t̄ν+1

I , t̄ ν)

× Zm(
{
s̄k

}p−1
,
{
s̄k

II

}m−1|{t̄ k}p−1;{t̄ kII }m−1
). (4.26)
1 p 1 p
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The conditions on the sets of parameters and partitions are given in Proposition 4.5 and 
Corollary 4.2. Here, the starting point corresponds to the gl(2) case, in which Z2(s̄|t̄ ) is 
equal to the partition function of the six-vertex model with domain wall boundary conditions 
[5,32].

5. Proof of recursion for Bethe vectors

One can prove Proposition 4.1 via the formulas of the operators T1,j (z) action onto the Bethe 
vector. These formulas were derived in [29]

T1,j (z)B(t̄) = ηjB({z, t̄k}j−1
1 ; {t̄ k}Nj )

+
N+1∑

q=j+1

∑
part(t̄ j ,...,t̄q−1)

Hq,j (part)B({z, t̄k}j−1
1 ; {z, t̄kII }q−1

j ; {t̄ k}Nq ). (5.1)

Here in the second line for every q we have a sum over partitions of the sets t̄ j , . . . , ̄tq−1. The 
coefficient ηj in (5.1) is

ηj = λj (z)f[j ](t̄ j , z)h(t̄m, z)[j ]. (5.2)

The coefficient Hq,j depends on the partitions and has the form

Hq,j (part) = f[q](t̄q , z)h(t̄m, z)[j ]h(t̄mII , z)[q]−[j ]λq(z)g[j ](z, t̄q−1
I )

×
q−1∏

ν=j+1

g[ν](t̄νI , t̄ ν−1
I )

q−1∏
ν=j

�ν, (5.3)

where

�ν = αν(t̄
ν
I )γν(t̄

ν
II , t̄

ν
I )

f[ν+1](t̄ν+1, t̄ νI )
. (5.4)

Note that in (5.1) the operators T1,j (z) act onto B(t̄), while in (4.1) these operators act onto 

B(
{
t̄1

}; {t̄ kII }j−1
2 ; {t̄ k}N

j
). Therefore, we can directly use the action formula (5.1) for j = 2 only. 

For j > 2 we should replace in (5.2) and (5.3) the sets t̄2, . . . , ̄tj−1 with the subsets t̄2
II , . . . , ̄t

j−1
II

before substituting (5.1) into recursion (4.1).
We look for the terms in the formulas (5.2) and (5.3) where we should do the replacement 

{t̄2, . . . , ̄tj−1} → {t̄2
II , . . . , ̄t

j−1
II }. The sets {t̄2, . . . , ̄tj−1} appear only in the factors h(t̄m, z)[j ]

and h(t̄mII , z)[q]−[j ], and provided that m ∈ {2, . . . , j − 1}. This implies that for m = 1 there is no 
replacement to do. For m > 1, we have [j ] = 1, because j > m, and [q] = [j ], because q > j . 
Then, the factor h(t̄mII , z)[q]−[j ] drops out, and we should only replace h(t̄m, z)[j ] → h(t̄mII , z)[j ].

Thus, we arrive at the following action formula:

T1,j (z)B(
{
t̄1};{t̄ kII }j−1

2 ;{t̄ k}N

j
)

= η̃jB(
{
z, t̄1};{z, t̄kII }j−1

2 ;{t̄ k}N

j
)

+
N+1∑

q=j+1

∑
part(t̄ j ,...,t̄q−1)

H̃q,j (part)B(
{
z, t̄1}; {z, t̄kII }q−1

2 ; {t̄ k}Nq ), (5.5)
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where

η̃j = λj (z)f[j ](t̄ j , z)h(t̄mII , z)[j ]h(t̄mI , z)δm,1 , (5.6)

and

H̃q,j (part) = f[q](t̄q , z)h(t̄mII , z)[q]h(t̄mI , z)δm,1λq(z)g[j ](z, t̄q−1
I )

×
q−1∏

ν=j+1

g[ν](t̄νI , t̄ ν−1
I )

q−1∏
ν=j

�ν. (5.7)

Now everything is ready for substituting the action formula (5.5) into recursion (4.1). Let

X=
N+1∑
j=2

T1,j (z)
∑

part(t̄2,...,t̄ j−1)

∏j−1
ν=2 g[ν](t̄νI , t̄ ν−1

I )�ν

λ2(z)h(t̄1, z)δm,1f[2](t̄2, z)
B(

{
t̄1};{t̄ kII }j−1

2 ;{t̄ k}N

j
). (5.8)

It is easy to see that X is nothing else but the r.h.s. of recursion (4.1). Thus, our goal is to show 
that X = B(

{
z, ̄t1

}; {t̄ k}N

2 ). Substituting (5.5) into (5.8) we obtain

X=
N+1∑
j=2

∑
part(t̄2,...,t̄ j−1)

η̃j

∏j−1
ν=2 g[ν](t̄νI , t̄ ν−1

I )�ν

λ2(z)h(t̄1, z)δm,1f[2](t̄2, z)
B(

{
z, t̄1};{z, t̄kII }j−1

2 ;{t̄ k}N

j
)

+
N+1∑
j=2

N+1∑
q=j+1

∑
part(t̄2,...,t̄q−1)

H̃q,j (part)
∏j−1

ν=2 g[ν](t̄νI , t̄ ν−1
I )�ν

λ2(z)h(t̄1, z)δm,1f[2](t̄2, z)

×B(
{
z, t̄1}; {z, t̄kII }q−1

2 ; {t̄ k}Nq ). (5.9)

It is convenient to divide X into three contributions

X=X
(1) +X

(2) +X
(3). (5.10)

The first term X(1) corresponds to j = 2 in the first line of (5.9):

X
(1) = η̃2B(

{
z, t̄1

};{t̄ k}N

2 )

λ2(z)h(t̄1, z)δm,1f[2](t̄2, z)
. (5.11)

Substituting here η̃2 we see that

X
(1) = B(

{
z, t̄1};{t̄ k}N

2 ). (5.12)

The contribution X(2) includes the terms with j > 2 from the first line of (5.9). The contribu-
tion X(3) comes from the second line of (5.9). Consider X(3) changing the order of summation 
and substituting there (5.7). We have

X
(3) =

N+1∑
q=3

q−1∑
j=2

∑
part(t̄2,...,t̄q−1)

λq(z)f[q](t̄q , z)h(t̄mII , z)[q]h(t̄mI , z)δm,1

λ2(z)h(t̄1, z)δm,1f[2](t̄2, z)

× g(z, t̄
q−1
I )

g(t̄
j
I , t̄

j−1
I )

⎛⎝q−1∏
ν=2

g[ν](t̄νI , t̄ ν−1
I )�ν

⎞⎠ B(
{
z, t̄1}; {z, t̄kII }q−1

2 ; {t̄ k}Nq ). (5.13)

The sum over j can be easily computed
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q−1∑
j=2

1

g(t̄
j
I , t̄

j−1
I )

= 1

c

q−1∑
j=2

(t̄
j
I − t̄

j−1
I ) = 1

c
(t̄

q−1
I − t̄1

I ) = −1/g(z, t̄
q−1
I ), (5.14)

and we recall that by definition t̄1
I = z. Thus,

X
(3) = −

N+1∑
q=3

∑
part(t̄2,...,t̄q−1)

λq(z)f[q](t̄q , z)h(t̄mII , z)[q]

λ2(z)h(t̄1
II , z)

δm,1f[2](t̄2, z)

q−1∏
ν=2

g[ν](t̄νI , t̄ ν−1
I )�ν

×B(
{
z, t̄1}; {z, t̄kII }q−1

2 ; {t̄ k}Nq ). (5.15)

On the other hand, the contribution X(2) is

X
(2) =

N+1∑
j=3

∑
part(t̄2,...,t̄ j−1)

λj (z)f[j ](t̄ j , z)h(t̄mII , z)[j ]

λ2(z)h(t̄1
II , z)

δm,1f[2](t̄2, z)

j−1∏
ν=2

g[ν](t̄νI , t̄ ν−1
I )�ν

×B(
{
z, t̄1}; {z, t̄kII }j−1

2 ; {t̄ k}Nj ). (5.16)

Comparing (5.16) and (5.15) we see that they cancel each other. Thus, X =B(
{
z, ̄t1

}; {t̄ k}N

2 ). �
5.1. Proofs of Proposition 4.2

Let us derive now recursion (4.4) starting with (4.1) and using morphism (3.15). Since the 
mapping (3.15) relates two different Yangians Y(gl(m|n)) and Y(gl(n|m)), we use here addi-
tional superscripts for the functions g(u, v), f (u, v), γ (u, v), and γ̂ (u, v). For example, notation 
f

m|n
[ν] (u, v) means that the function f[ν](u, v) is defined with respect to Y(gl(m|n)):

f
m|n
[ν] (u, v) =

[
f (u, v), ν ≤ m,

f (v,u), ν > m.
(5.17)

At the same time the notation f n|m
[ν] (u, v) means that the function f[ν](u, v) is defined with respect 

to Y(gl(n|m)):

f
n|m
[ν] (u, v) =

[
f (u, v), ν ≤ n,

f (v,u), ν > n.
(5.18)

The other rational functions should be understood similarly. It is easy to see that

g
m|n
[ν] (u, v) = g

n|m
[N+2−ν](v,u),

f
m|n
[ν] (u, v) = f

n|m
[N+2−ν](v,u),

γ m|n
ν (u, v) = γ̂

n|m
N+1−ν(v,u).

(5.19)

Let us act with ϕ onto (4.1). Due to (3.15)–(3.18) we have

ϕ

(
T

m|n
1,j (z)

λ2(z)

)
= (−1)[j ] T

n|m
N+2−j,N+1(z)

λN(z)
, (5.20)

ϕ
(
B

m|n(
{
z, t̄1};{t̄ k}N

2 )
)

= (−1)rm+δm,1
Bn|m(

{
t̄ k

}2
N

;{z, t̄1
}
)

αN(z)
∏N

k=1 αN+1−k(t̄ k)
, (5.21)



296 A. Hutsalyuk et al. / Nuclear Physics B 923 (2017) 277–311
and

ϕ

⎛⎝B
m|n(

{
t̄1};{t̄ kII }j−1

2 ;{t̄ k}N

j
)

j−1∏
ν=2

αν(t̄
ν
I )

⎞⎠ = (−1)rm+δm,1+[j ]B
n|m(

{
t̄ k

}j

N
;{t̄ kII }2

j−1; t̄1)∏N
k=1 αN+1−k(t̄ k)

(5.22)

Thus, the action of the morphism ϕ onto (4.1) gives

B
n|m(

{
t̄ k

}2
N

;{z, t̄1}) =
N+1∑
j=2

TN+2−j,N+1(z)

λN+1(z)

∑
part(t̄2,...,t̄ j−1)

B
n|m(

{
t̄ k

}j

N
;{t̄ kII }2

j−1; t̄1)

×
∏j−1

ν=2 g
m|n
[ν] (t̄νI , t̄ ν−1

I )γ
m|n
ν (t̄νII , t̄

ν
I )

h(t̄1, z)δm,1
∏j−1

ν=1 f
m|n
[ν+1](t̄ν+1, t̄ νI )

. (5.23)

Using the relations (5.19) and the trivial identity δm,1 = δn,N we recast (5.23) as

B
n|m(

{
t̄ k

}2
N

;{z, t̄1}) =
N+1∑
j=2

TN+2−j,N+1(z)

λN+1(z)

∑
part(t̄2,...,t̄ j−1)

B
n|m(

{
t̄ k

}j

N
;{t̄ kII }2

j−1; t̄1)

×
∏j−1

ν=2 g
n|m
[N+2−ν](t̄

ν−1
I , t̄ νI )γ̂

n|m
N+1−ν(t̄

ν
I , t̄ νII )

h(t̄1, z)δn,N
∏j−1

ν=1 f
n|m
[N+1−ν](t̄

ν
I , t̄ ν+1)

. (5.24)

Finally, relabeling the sets of the Bethe parameters t̄ k → t̄N+1−k and changing ν → N + 1 − ν

we obtain

B
n|m(

{
t̄ k

}N−1
1 ; {z, t̄N }) =

N∑
j=1

Tj,N+1(z)

λN+1(z)

∑
part(t̄ j ,...,t̄N−1)

B
n|m(

{
t̄ k

}j−1
1 ;{t̄ kII }N−1

j
; t̄N )

×
∏N−1

ν=j g
n|m
[ν+1](t̄

ν+1
I , t̄ νI )γ̂

n|m
ν (t̄νI , t̄ νII )

h(t̄N , z)δn,N
∏N

ν=j f
n|m
[ν] (t̄νI , t̄ ν−1)

. (5.25)

It remains to replace m ↔ n, and we arrive at (4.4). �
5.2. Proof of recursion for dual Bethe vectors

To obtain recursion for dual Bethe vectors it is enough to act with antimorphism (3.20) onto 
recursions (4.1) and (4.4). Consider in details the action of 
 onto (4.1).

Acting with 
 on the lhs of (4.1) we obtain a dual vector C(
{
z, ̄t1

}; {t̄ k}N

2 ) due to (3.23). In 
the rhs we have


(T1,jB) = (−1)[j ][B]
C Tj,1. (5.26)

The parity of the Bethe vector can be determined via the coloring arguments. Recall that Bethe 
vectors are polynomials in the operators Ti,j acting on the vector |0〉, and all the terms of these 
polynomials have the same coloring. Due to the general rule, a quasiparticle of the color m can be 
created by the operators Ti,j with i ≤ m and j > m. Hence, all these operators are odd, because 
[i] = 0 for i ≤ m and [j ] = 1 for j > m. On the other hand, the action of an even operator Ti,j

cannot create a quasiparticle of the color m due to similar arguments. Thus, if a Bethe vector 
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has a coloring {r1, . . . , rN }, then all the terms of the polynomial in Ti,j contain exactly rm odd 
operators, where rm = #t̄m. Thus, 

[
B(t̄)

] = rm, mod 2.
In the case under consideration we should find the number r ′

m of the odd operators in the 

Bethe vector B(
{
t̄1

}; {t̄ kII }j−1
2 ; {t̄ k}N

j
). Let rm = #t̄m in the original vector B(t̄). If m = 1, then 

r ′
m = rm. If 1 < m < j , then r ′

m = rm − 1. Finally, if m ≥ j , then r ′
m = rm. All these cases can be 

described by the formula r ′
m = rm − [j ] + δm,1. Thus, we obtain

C(
{
z, t̄1};{t̄ k}N

2 ) =
N+1∑
j=2

∑
part(t̄2,...,t̄ j−1)

C(
{
t̄1};{t̄ kII }j−1

2 ;{t̄ k}N

j
)
Tj,1(z)

λ2(z)
(−1)[j ]r ′

m

×
∏j−1

ν=2 αν(t̄
ν
I )g[ν](t̄νI , t̄ ν−1

I )γν(t̄
ν
II , t̄

ν
I )

h(t̄1, z)δm,1
∏j−1

ν=1 f[ν+1](t̄ν+1, t̄ νI )
, (5.27)

where r ′
m = rm − [j ] + δm,1.

This expression can be slightly simplified. Recall that γ̂i (x, y) = (−1)δm,i γi(x, y). Thus, 
changing γν(t̄

ν
II , ̄t

ν
I ) → γ̂ν(t̄

ν
II , ̄t

ν
I ) in (5.27) we obtain

j−1∏
ν=2

γν(t̄
ν
II , t̄

ν
I ) = (−1)([j ]−[2])r ′

m

j−1∏
ν=2

γ̂ν(t̄
ν
II , t̄

ν
I ). (5.28)

It remains to observe that [2] = δm,1. Thus, substituting (5.28) into (5.27) and replacing the sets 
t̄ k with s̄k we arrive at (4.5). Recursion (4.6) can be obtained exactly in the same way.

6. Proof of the sum formula for the scalar product

6.1. How the scalar product depends on the vacuum eigenvalues λi(z)

In this section, we investigate the functional dependence of the scalar product on the func-
tions αi . Proposition 4.3 states that the Bethe parameters from the sets s̄i and t̄ i can be the 
arguments of the functions αi only. In other words, the scalar product does not depend on αi(s

�
k )

or αi(t
�
k ) with � 
= i.

We prove this statement via induction over N = m + n − 1. For N = 1 it becomes obvious. 
Assume that it is valid for some N −1 and consider the scalar product of the vectors Cm|n(s̄) and 
B

m|n(t̄) with m +n − 1 = N . Observe that we added superscripts to the Bethe vectors in order to 
distinguish them from the vectors corresponding to gl(m − 1|n) algebra. We first prove that the 
scalar product does not depend on the functions αi(s

�
k ) with � 
= i for i = 2, . . . , N .

Successive application of the recursion (4.5) allows one to express a dual Bethe vector Cm|n(s̄)
in terms of dual Bethe vectors Cm−1|n(σ̄ ). Schematically this expression can be written in the 
following form

C
m|n(s̄) =

m+n∑
j1,...,jr1=2

∑
{σ̄ 2,...,σ̄N }

�
(s̄)
j1,...,jr1

(σ̄ )Cm−1|n(
{
σ̄
}N

2 )
Tj1,1(s

1
1) . . . Tjr1 ,1(s

1
r1

)

λ2(s̄1)
. (6.1)

Here r1 = #s̄1 and σ̄ i ⊂ s̄i for i = 2, . . . , N . The sum is taken over multi-index {j1, . . . , jr1}. 
Every term of this sum contains also a sum over partitions of the sets s̄2, . . . , ̄sN into subsets 
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σ̄ 2, . . . , σ̄ N and their complementary subsets. The factors �(s̄)
j1,...,jr1

(σ̄ ) are some numerical co-

efficients whose explicit form is not essential. It is important, however, to note that in (4.5) they 
depend on αi(s

i
k) with i = 2, . . . , N and do not depend on the functions αi with other arguments.

Let us multiply (6.1) from the right by a Bethe vector Bm|n(t̄) and act with the operators 
Tjp,1(s

1
p) onto this vector. Due to the results of [29] the action of any operator Tij (z) onto the 

Bethe vector Bm|n(t̄) gives a linear combination of new Bethe vectors Bm|n(τ̄ ), such that τ̄ =
{τ̄ 1, . . . , τ̄ N } and τ̄ i ⊂ {t̄ i ∪ z}. In the case under consideration each of the operators Tjp,1(s

1
p)

annihilates a particle of color 1. Hence, the total action of Tj1,1(s
1
1) . . . Tjr1 ,1(s

1
r1

) annihilates all 
the particles of color 1 in the vector Bm|n(t̄). Thus, after this action the Bethe vector Bm|n(t̄)
turns into Bm−1|n(τ̄ ), where τ̄ = {τ̄ 2, . . . , τ̄ N } and τ̄ i ⊂ {t̄ i ∪ s̄1}

Tj1,1(s
1
1) . . . Tjr1 ,1(s

1
r1

)

λ2(s̄1)
B

m|n(t̄) =
∑

{τ̄2,...,τ̄N }
�(t̄)(τ̄ )Bm−1|n(

{
τ̄ k

}N

2 ). (6.2)

Here the coefficients �(t̄)(τ̄ ) of the linear combination depend on the original sets t̄ k and sub-
sets τ̄ k . They involve the functions αi whose arguments belong to the set {s̄1 ∪ t̄}. Therefore, the 
factors �(t̄)(τ̄ ) do not depend on αj(s

i
k) with i, j = 2, . . . , N .

Thus, we obtain a recursion for the scalar product

C
m|n(s̄)Bm|n(t̄) =

∑
{σ̄ 2,...,σ̄N }
{τ̄2,...,τ̄N }

�
(s̄)
j1,...,jr1

(σ̄ )�(t̄)(τ̄ )Cm−1|n(
{
σ̄ k

}N

2 )Bm−1|n(
{
τ̄ k

}N

2 ), (6.3)

where σ̄ k ⊂ s̄k and τ̄ k ⊂ {s̄1 ∪ t̄ k}. The sum is taken over subsets σ̄ k and τ̄ k .
Due to the induction assumption, the scalar product Cm−1|n(

{
σ̄ k

}N

2 )Bm−1|n(
{
τ̄ k

}N

2 ) depends 
on the functions αi with arguments σ i

k and τ i
k . Since σ i

k ∈ s̄i , we conclude that the Bethe pa-
rameters si

k for i = 2, . . . , N can become the arguments of the functions αi only. The numerical 

coefficients �(s̄)
j1,...,jr1

(σ̄ ) and �(t̄)(τ̄ ) do not break this type of dependence. Thus, we prove that 

in the scalar product Cm|n(s̄)Bm|n(t̄) the Bethe parameters si
k with i = 2, . . . , N can become the 

arguments of the functions αi only.
Due to the symmetry (4.10), an analogous property holds for the Bethe parameters t̄ i with 

i = 2, . . . , N . Namely, these parameters can be the arguments of the functions αi only.
It remains to prove that the Bethe parameters from the sets s̄1 and t̄1 can be the arguments of 

the function α1. For this we use the second recursion for the dual Bethe vector (4.6) and repeat 
all the considerations above. Then we find that the Bethe parameters si

k with i = 1, . . . , N − 1
can become the arguments of the functions αi only. Then, the use of (4.10) completes the proof 
of Proposition 4.3. �
6.2. Proof of the sum formula

Consider a composite model, in which the monodromy matrix T (u) is presented as a product 
of two partial monodromy matrices [6,20,29,41]:

T (u) = T (2)(u)T (1)(u). (6.4)

Within the framework of the composite model, it is assumed that the matrix elements of every 
T (l)(u) (l = 1, 2) act in some Hilbert space H(l), such that H = H(1) ⊗ H(2). Each of T (l)(u)
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satisfies the RT T -relation (2.4) and has its own pseudovacuum vector |0〉(l) and dual vector 
〈0|(l), such that |0〉 = |0〉(1) ⊗ |0〉(2) and 〈0| = 〈0|(1) ⊗ 〈0|(2). Since the operators T (2)

i,j (u) and 

T
(1)
k,l (v) act in different spaces, they supercommute with each other. We assume that

T
(l)
i,i (u)|0〉(l) = λ

(l)
i (u)|0〉(l),

〈0|(l)T (l)
i,i (u) = λ

(l)
i (u)〈0|(l),

i = 1, . . . ,m + n, l = 1,2, (6.5)

where λ(l)
i (u) are new free functional parameters. We also introduce

α
(l)
k (u) = λ

(l)
k (u)

λ
(l)
k+1(u)

, l = 1,2, k = 1, . . . ,N. (6.6)

Obviously

λi(u) = λ
(1)
i (u)λ

(2)
i (u), αk(u) = α

(1)
k (u)α

(2)
k (u). (6.7)

The partial monodromy matrices T (l)(u) have the corresponding Bethe vectors B(l)(t̄ ) and 
dual Bethe vectors C(l)(s̄). A Bethe vector of the total monodromy matrix T (u) can be expressed 
in terms partial Bethe vectors B(l)(t̄ ) via coproduct formula3 [29,41]

B(t̄) =
∑ ∏N

ν=1 α
(2)
ν (t̄ νi )γν(t̄

ν
ii , t̄

ν
i )∏N−1

ν=1 f[ν+1](t̄ν+1
ii , t̄ νi )

B
(1)(t̄i) ⊗B

(2)(t̄ii). (6.8)

Here all the sets of the Bethe parameters t̄ ν are divided into two subsets t̄ ν ⇒ {t̄ νi , ̄tνii }, and the 
sum is taken over all possible partitions.

Similar formula exists for the dual Bethe vectors C(s̄) (see Appendix A)

C(s̄) =
∑ ∏N

ν=1 α
(1)
ν (s̄ν

ii)γν(s̄
ν
i , s̄ν

ii)∏N−1
ν=1 f[ν+1](s̄ν+1

i , s̄ν
ii)

C
(2)(s̄ii) ⊗C

(1)(s̄i), (6.9)

where the sum is organized in the same way as in (6.8).
Then the scalar product of the total Bethe vectors C(s̄) and B(t̄) takes the form

S(s̄|t̄ ) =
∑ ∏N

ν=1 α
(1)
ν (s̄ν

ii)α
(2)
ν (t̄ νi )γν(s̄

ν
i , s̄ν

ii)γν(t̄
ν
ii , t̄

ν
i )∏N−1

ν=1 f[ν+1](s̄ν+1
i , s̄ν

ii)f[ν+1](t̄ν+1
ii , t̄ νi )

S(1)(s̄i|t̄i)S(2)(s̄ii|t̄ii), (6.10)

where

S(1)(s̄i|t̄i) =C
(1)(s̄i)B

(1)(t̄i), S(2)(s̄ii|t̄ii) =C
(2)(s̄ii)B

(2)(t̄ii). (6.11)

Note that in this formula #s̄ν
i = #t̄ νi , (and hence, #s̄ν

ii = #t̄ νii ), otherwise the scalar products S(1)

and S(2) vanish. Let #s̄ν
i = #t̄ νi = k′

ν , where k′
ν = 0, 1, . . . , rν . Then #s̄ν

ii = #t̄ νii = rν − k′
ν .

Now let us turn to equation (4.11). Our goal is to express the rational coefficients Wm|n
part in 

terms of the HC. For this we use the fact that Wm|n
part are model independent. Therefore, we can 

find them in some special model whose monodromy matrix satisfies the RTT -relation.

3 The terminology coproduct formula is used for historical reason, because (6.8) was derived for the first time in [29]
(see also [30] for the non-graded case) as a property of the Bethe vectors induced by the Yangian coproduct.



300 A. Hutsalyuk et al. / Nuclear Physics B 923 (2017) 277–311
Let us fix some partitions of the Bethe parameters in (4.11): s̄ν ⇒ {s̄ν
I , ̄sν

II } and t̄ ν ⇒ {t̄ νI , ̄tνII }
such that #s̄ν

I = #t̄ νI = kν , where kν = 0, 1, . . . , rν . Hence, #s̄ν
II = #t̄ νII = rν − kν . Consider a con-

crete model, in which4

α(1)
ν (z) = 0, if z ∈ s̄ν

II ;
α(2)

ν (z) = 0, if z ∈ t̄ νI .
(6.12)

Due to (6.7) these conditions imply

αν(z) = 0, if z ∈ s̄ν
II ∪ t̄ νI . (6.13)

Then the scalar product is proportional to the coefficient Wm|n
part (s̄I, ̄sII|t̄I, ̄tII), because all other 

terms in the sum over partitions (4.11) vanish due to the condition (6.13). Thus,

S(s̄|t̄ ) = W
m|n
part (s̄I, s̄II|t̄I, t̄II)

N∏
k=1

αk(s̄
k
I )αk(t̄

k
II ). (6.14)

On the other hand, (6.12) implies that a non-zero contribution in (6.10) occurs if and only if 
s̄ν

ii ⊂ s̄ν
I and t̄ νi ⊂ t̄ νII . Hence, rν − k′

ν ≤ kν and k′
ν ≤ rν − kν . But this is possible if and only if 

k′
ν + kν = rν . Thus, s̄ν

ii = s̄ν
I and t̄ νi = t̄ νII . Then, for the complementary subsets we obtain s̄ν

i = s̄ν
II

and t̄ νii = t̄ νI . Thus, we arrive at

S(s̄|t̄ ) =
∏N

ν=1 α
(1)
ν (s̄ν

I )α
(2)
ν (t̄ νII )γν(s̄

ν
II , s̄

ν
I )γν(t̄

ν
I , t̄ νII )∏N−1

ν=1 f[ν+1](s̄ν+1
II , s̄ν

I )f[ν+1](t̄ν+1
I , t̄ νII )

S(1)(s̄II|t̄II)S
(2)(s̄I|t̄I). (6.15)

It is easy to see that calculating the scalar product S(1)(s̄II|t̄II) we should take only the term 
corresponding to the conjugated HC. Indeed, all other terms are proportional to α(1)

ν (z) with 
z ∈ s̄ν

II , therefore, they vanish. Hence

S(1)(s̄II|t̄II) =
N∏

ν=1

α(1)
ν (t̄ νII ) · Zm|n

(s̄II|t̄II). (6.16)

Similarly, calculating the scalar product S(2)(s̄I|t̄I) we should take only the term corresponding 
to the HC:

S(2)(s̄I|t̄I) =
N∏

ν=1

α(2)
ν (s̄ν

I ) · Zm|n(s̄I|t̄I). (6.17)

Substituting this into (6.15) and using (6.7), (6.14) we arrive at

W
m|n
part (s̄I, s̄II|t̄I, t̄II) = Zm|n(s̄I|t̄I) Z

m|n
(s̄II|t̄II)

∏N
k=1 γk(s̄

k
II , s̄

k
I )γk(t̄

k
I , t̄ kII )∏N−1

j=1 f[j+1](s̄j+1
II , s̄

j
I )f[j+1](t̄ j+1

I , t̄
j
II )

.

(6.18)

This expression obviously coincides with (4.15) due to (4.14).

4 This choice of the functions αk is always possible, for example, within the framework of inhomogeneous model with 
spins in higher dimensional representations, in which inhomogeneities coincide with some of the Bethe parameters.
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7. Highest coefficient

7.1. Proof of the recursion for the Highest Coefficient

It follows from Proposition 4.3 that the scalar product is a sum, in which every term is propor-
tional to a product of the functions αk . Let us call a term unwanted, if the corresponding product 
of the functions αk contains at least one αk(t

k
j ), where tkj ∈ t̄ . Respectively, a term is wanted, if 

all functions αk depend on the Bethe parameters sk
j from the set s̄.

Below we consider some equations modulus unwanted terms. In this case we use a symbol ∼=. 
Thus, an equation of the type lhs ∼= rhs means that the lhs is equal to the rhs modulus unwanted 
terms.

Using the notion of unwanted terms one can redefine the HC (4.12) as follows:

S(s̄|t̄ ) ∼=
N∏

k=1

αk(s̄
k) · Zm|n(s̄|t̄ ). (7.1)

On the other hand, it follows from the explicit form of Bethe vectors [29] that

B(t̄) ∼= B̃(t̄) = T1,2(t̄
1) . . .TN,N+1(t̄

N )|0〉∏N
j=1 λj+1(t̄ j )

∏N−1
j=1 f[j+1](t̄ j+1, t̄ j )

, (7.2)

because all other terms in the Bethe vector contain factors αk(t
k
j ), and thus, they are unwanted. 

Hence, in order to find the HC it is enough to consider a reduced scalar product S̃(s̄|t̄ )
S(s̄|t̄ ) ∼= S̃(s̄|t̄ ) =C(s̄)B̃(t̄). (7.3)

In order to calculate the reduced scalar product (7.3) we can use the recursion (4.5) for the 
dual Bethe vector C(s̄). We write it in the form

C(s̄) =
N+1∑
p=2

∑
part(s̄2,...,s̄p−1)

C(
{
s̄k

II

}p−1
1 ;{s̄k

}N

p
)
Tp,1(s̄

1
I )

λ2(s̄
1
I )

(−1)(r1−1)δm,1

×
∏p−1

ν=2 αν(s̄
ν
I )g[ν](s̄ν

I , s̄ν−1
I )γ̂ν(s̄

ν
II , s̄

ν
I )

h(s̄1, s̄1
I )δm,1

∏p−1
ν=1 f[ν+1](s̄ν+1, s̄ν

I )
. (7.4)

Here the sum is taken over partitions of the sets s̄k ⇒ {s̄k
I , ̄sk

II } for k = 2, . . . , p, such that #s̄k
I = 1. 

The Bethe parameter s̄1
I is fixed, and hence, the subset s̄1

II also is fixed. There is no the sum over 
partitions of the set s̄1 in (7.4).

Thus, we obtain

S̃(s̄|t̄ ) =
N+1∑
p=2

∑
part(s̄2,...,s̄p−1)

(−1)(r1−1)δm,1C(
{
s̄k

II

}p−1
1 ,

{
s̄k

}N

p
) Tp,1(s̄

1
I )B̃(t̄)

×
∏p−1

ν=2 αν(s̄
ν
I )g[ν](s̄ν

I , s̄ν−1
I )γ̂ν(s̄

ν
II , s̄

ν
I )

λ2(s̄
1
I )h(s̄1, s̄1

I )δm,1
∏p−1

ν=1 f[ν+1](s̄ν+1, s̄ν
I )

. (7.5)

The action of Tp,1(s̄
1
I ) onto the vector ̃B(t̄) modulus unwanted terms is given by Proposition B.1. 

Thus, we obtain
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S̃(s̄|t̄ ) ∼= α1(s̄
1
I )

N+1∑
p=2

∑
part(s̄2,...,s̄p−1)

part(t̄1,...,t̄p−1)

(−1)(r1−1)δm,1
g[2](t̄1

I , s̄1
I )γ̂1(t̄

1
I , t̄1

II )f[1](t̄1
II , s̄

1
I )

f[p](s̄p, s̄
p−1
I )h(s̄1, s̄1

I )δm,1

×
p−1∏
ν=2

αν(s̄
ν
I )g[ν](s̄ν

I , s̄ν−1
I )g[ν+1](t̄νI , t̄ ν−1

I )γ̂ν(s̄
ν
II , s̄

ν
I )γ̂ν(t̄

ν
I , t̄ νII )

f[ν](s̄ν , s̄ν−1
I )f[ν](t̄νI , t̄ ν−1)

×C(
{
s̄k

II

}p−1
1 ,

{
s̄k

}N

p
) B̃(

{
t̄ kII

}p−1
1 ;{t̄ k}N

p
). (7.6)

Here t̄m+n = s̄m+n = ∅. Calculating the reduced scalar products in (7.6) modulus unwanted terms

C(
{
s̄k

II

}p−1
1 ,

{
s̄k

}N

p
)B̃(

{
t̄ kII

}p−1
1 ;{t̄ k}N

p
) ∼=

p−1∏
k=1

αk(s̄
k
II )

N∏
�=p

α�(s̄
�)

× Zm|n(
{
s̄k

II

}p−1
1 ,

{
s̄k

}N

p
|{t̄ kII }p−1

1 ;{t̄ k}N

p
), (7.7)

and substituting this into (7.6) we immediately arrive at the recursion (4.17).
We have also used

(−1)(r1−1)δm,1 γ̂1(t̄
1
I , t̄1

II ) = γ1(t̄
1
I , t̄1

II ), γ̂ν(s̄
ν
II , s̄

ν
I )γ̂ν(t̄

ν
I , t̄ νII ) = γν(s̄

ν
II , s̄

ν
I )γν(t̄

ν
I , t̄ νII ).

7.2. Symmetry of the Highest Coefficient

Due to isomorphism (3.15) between Yangians Y(gl(m|n)) and Y(gl(n|m)) one can find a 
simple relation between the HC corresponding to these algebras. In this section we obtain this 
relation.

Consider the sum formula (4.11) for the scalar product of gl(m|n) Bethe vectors

Sm|n(−→
s|−→t) =

∑
W

m|n
part (

−→
sI,

−→
sII|−→tI, −→

tII)

N∏
k=1

αk(s̄
k
I )αk(t̄

k
II ), (7.8)

where we have stressed the ordering (3.17) of the Bethe parameters. Let us act with the morphism 
ϕ (3.15) on the scalar product Sm|n(−→

s|−→t). This can be done in two ways. First, using (3.18) and 
(3.26) we obtain

ϕ
(
Sm|n(−→

s|−→t)
)

= ϕ
(
C

m|n(−→
s)Bm|n(−→

t)
)

= (−1)rmCn|m(
←−
s)Bn|m(

←−
t)∏N

k=1 αN+1−k(s̄k)αN+1−k(t̄ k)

= (−1)rmSn|m(
←−
s|←−t)∏N

k=1 αN+1−k(s̄k)αN+1−k(t̄ k)
. (7.9)

The scalar product Sn|m(
←−
s|←−t) has the standard representation (4.11). Thus, we find

ϕ
(
Sm|n(−→

s|−→t)
)

=
∑
part

(−1)rmW
n|m
part (

←−
sI,

←−
sII|←−tI, ←−

tII)∏N
k=1 αN+1−k(s̄k)αN+1−k(t̄ k)

N∏
k=1

αk(s̄
N−k+1
I )αk(t̄

N−k+1
II ). (7.10)

On the other hand, acting with ϕ directly on the sum formula (7.8) we have

ϕ
(
Sm|n(−→

s|−→t)
)

=
∑

W
m|n
part (

−→
sI,

−→
sII|−→tI, −→

tII)

N∏(
αN+1−k(s̄

k
I )αN+1−k(t̄

k
II )

)−1
. (7.11)
part k=1
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Comparing (7.10) and (7.11) we arrive at

(−1)rm
∑
part

W
n|m
part (

←−
sI,

←−
sII|←−tI, ←−

tII)

N∏
k=1

αN+1−k(s̄
k
I )αN+1−k(t̄

k
II )

=
∑
part

W
m|n
part (

−→
sI,

−→
sII|−→tI, −→

tII)

N∏
k=1

αN+1−k(s̄
k
II )αN+1−k(t̄

k
I ) (7.12)

Since αi are free functional parameters, the coefficients of the same products of αi must be equal. 
Hence,

W
m|n
part (

−→
sI,

−→
sII|−→tI, −→

tII) = (−1)rmW
n|m
part (

←−
sII,

←−
sI|←−tII, ←−

tI), (7.13)

for arbitrary partitions of the sets s̄ and t̄ . In particular, setting s̄II = t̄II = ∅ we obtain

Zm|n(−→
s|−→t) = (−1)rmZ

n|m
(
←−
s|←−t) = (−1)rmZn|m(

←−
t |←−s). (7.14)

Using this property one can obtain recursion (4.18) for the highest coefficient. Indeed, one can 
easily see that applying (4.17) to the rhs of (7.14) we obtain (4.18) for the lhs of this equation.

8. Conclusion

In the present paper we have considered the Bethe vectors scalar products in the integrable 
models solvable by the nested algebraic Bethe ansatz and possessing gl(m|n) supersymmetry. 
The main result of the paper is the sum formula given by equations (4.11) and (4.15). We obtained 
it using the coproduct formula for the Bethe vectors. This way certainly is more direct and simple 
than the methods used before for the derivation of the sum formulas.

The sum formula is obtained for the Bethe vectors with arbitrary coloring. However, as we 
have mentioned in section 3.1, in various models of physical interest the coloring of the Bethe 
vectors is restricted by the condition r1 ≥ r2 ≥ · · · ≥ rN . A peculiarity of these models is that 
only the ratio α1(u) is a non-trivial function of u, while all other α’s are identically constants: 
αk(u) = αk , k > 1 (actually, using a twist transformation, one can always make these constants 
equal to 1: αk(u) = 1, k > 1). Then equation (4.11) is simplified, and one can try to take the sum 
over most of partitions, what should lead to a significant simplification of the sum formula. This 
direction of possible development is very attractive, and we are planning to study this problem.

The sum formula involves the HC of the scalar product. We did not find a closed expression 
for the HC, however, we have found recursions for it. Perhaps, this way of describing the HC is 
preferable for the models with high rank of symmetry. Indeed, looking at the explicit formulas 
for the HC in the gl(3)-based models one hardly can expect to obtain a relatively simple closed 
formula for it in the general gl(m|n) case. On the other hand, the recursions obtained in this paper 
allow one to study analytical properties of the HC, in particular to find the residues in the poles 
of this rational function. Using these results it is possible to derive an analog of Gaudin formula 
for on-shell Bethe vectors in the gl(m|n) based models exactly in the same way as it was done in 
[5,10]. We will consider this question in our forthcoming publication.

As we have already mentioned in Introduction, the sum formula itself is not very convenient 
for use. One should remember, however, that the sum formula describes the scalar product of 
generic Bethe vectors, where we have no restriction for the Bethe parameters. At the same time, 
in most cases of physical interest one deals with Bethe vectors, in which most of the Bethe 
parameters satisfy Bethe equations. In particular, this situation occurs in calculating form factors. 
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Then one can hope to obtain a significant simplification of the sum formula, as it was shown for 
the models with gl(3) and gl(2|1) symmetries. We are planning to study this problem in our 
further publications.

In conclusion we would like to discuss one more possible direction of generalization of our 
results. In this paper we considered the so-called distinguished gradation, that is to say the special 
grading [i] = 0 for 1 ≤ i ≤ m, [i] = 1 for m < i ≤ m + n. However, this is not the only possible 
choice of grading. Other gradings induce different inequivalent presentations of the superalge-
bra, where the number of fermionic simple roots can vary from a presentation to another. These 
different presentations are labelled by the different Dynkin diagrams associated to the super-
algebra. Obviously, since the different presentations deal with the same superalgebra, they are 
isomorphic. However, the mapping between two presentations is based on a generalized Weyl 
transformation acting on their Dynkin diagrams, lifted at the level of the superalgebra. These 
generalized Weyl transformations, in particular, affect the bosonic/fermionic nature of the gener-
ators, and thus can change commutators to anti-commutators (and vice-versa). Then, the precise 
expression of the mapping is heavy to formulate for all the generators of the Yangian. This is 
also true for Bethe vectors and Bethe parameters, a precise correspondence can be quite intricate 
to formulate. However, from the Lie superalgebra theory one knows that such a correspondence 
must exist. These considerations have been developed in [45] for the construction of the mapping 
on the particular case of the gl(1|2) algebra. The general case of generic gl(m|n) superalgebra is 
presented in [46] for the form of the Bethe equations, but open spin chains (see also [47] where 
the periodic case is reviewed). In conclusion, if a qualitative generalization of the present results 
to the superalgebras with different gradings is rather straightforward, a precise correspondence 
remains open.
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Appendix A. Coproduct formula for the Bethe vectors

The presentation (6.8) for the Bethe vector of the composite model can be treated as a coprod-
uct formula for the Bethe vector. Indeed, equation (6.4) formally determines a coproduct � of 
the monodromy matrix entries

�(Ti,j (u)) =
m+n∑
k=1

(−1)([j ]+[k])([i]+[k])Tk,j (u) ⊗ Ti,k(u). (A.1)

Then (6.8) is nothing but the action of � onto the Bethe vector [29].
The action of the coproduct onto the dual Bethe vectors can be obtained via antimorphism 

(3.20). It was proved in [42] (see also similar consideration in prop. 1.5.4 of [43]) that

� ◦ 
 = (
 ⊗ 
) ◦ �′, (A.2)

where

�′(Ti,j (u)) =
∑

Ti,k(u) ⊗ Tk,j (u). (A.3)
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Then

�(C(t̄)) = �(
(B(t̄))) = (
 ⊗ 
) ◦ �′(B(t̄))

= (
 ⊗ 
)

(∑ ∏N
ν=1 α

(1)
ν (t̄ νI )γν(t̄

ν
II , t̄

ν
I )∏N−1

ν=1 f[ν+1](t̄ν+1
II , t̄ νI )

B
(2)(t̄I) ⊗B

(1)(t̄II)

)

=
∑ ∏N

ν=1 α
(1)
ν (t̄ νI )γν(t̄

ν
II , t̄

ν
I )∏N−1

ν=1 f[ν+1](t̄ν+1
II , t̄ νI )

C
(2)(t̄I) ⊗C

(1)(t̄II). (A.4)

Relabeling here the subsets t̄ νI ↔ t̄ νII we arrive at (6.9). �
Appendix B. Action formulas

In this section we derive the action of the operators Tp,1 on the main term (3.13). For this we 
first consider some multiple commutation relations in the RT T -algebra (2.4).

B.1. Multiple commutation relations

Multiple commutation relations of the monodromy matrix entries in superalgebras were studi-
ed in [44]. Here we consider several particular cases of commutation relations with the operators 
Ti,i+1(v̄) (3.14).

It follows from (2.5) that

Ti,i(u)Ti,i+1(v) = f[i](v,u)Ti,i+1(v)Ti,i (u) + g[i](u, v)Ti,i+1(u)Ti,i(v),

Ti,i (u)Ti−1,i (v) = f[i](u, v)Ti−1,i (v)Ti,i (u) + g[i](v,u)Ti−1,i (u)Ti,i (v).
(B.1)

We see that these commutation relations look exactly the same as in the case of algebra gl(n). 
The only difference is that the functions f and g acquire an additional subscript indicating par-
ity. Therefore, for commutation relations, we can apply the standard arguments of the algebraic 
Bethe ansatz [1,3,4]. In particular, let us consider commutation of the operator Ti,i(t

i−1
α ) with the 

product Ti,i+1(t̄
i ), where t i−1

α is a fixed parameter of the set t̄ i−1. Let us call a term wanted, if 
it contains the operator Ti,i(t

i−1
α ) in the extreme right position. Then moving Ti,i(t

i−1
α ) through 

the product Ti,i+1(t̄
i ) we should keep the original argument of Ti,i leading to

Ti,i(t
i−1
α )Ti,i+1(t̄

i ) ∼= f[i](t̄ i , t i−1
α )Ti,i+1(t̄

i )Ti,i(t
i−1
α ). (B.2)

Consider now commutation of the operator Ti+1,i(t
i−1
α ) with the product Ti,i+1(t̄

i ) using

Ti+1,i (u)Ti,i+1(v) − (−1)δi,mTi,i+1(v)Ti+1,i (u)

= g[i+1](u, v)
(
Ti+1,i+1(u)Ti,i(v) − Ti+1,i+1(v)Ti,i (u)

)
. (B.3)

Let, as before, a term be wanted, if it contains the operator Ti,i(t
i−1
α ) in the extreme right position. 

Moving Ti+1,i (t
i−1
α ) through the product Ti,i+1(t̄

i ) we can obtain the terms of the following 
type:

(i) Ti+1,i (t
i−1
α );

(ii) Ti+1,i+1(t
i
j )Ti,i (t

i−1
α ), j = 1, . . . , ri;

(iii) Ti+1,i+1(t
i−1
α )Ti,i(t

i
j ), j = 1, . . . , ri;

(iv) T (t i )T (t i ), j , j = 1, . . . , r .

(B.4)
i+1,i+1 j1 i,i j2 1 2 i
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Among all these contributions only the terms (ii) are wanted. Thus, we have

Ti+1,i (t
i−1
α )Ti,i+1(t̄

i ) ∼=
ri∑

j=1

�jTi,i+1(t̄
i \ t ij )Ti+1,i+1(t

i
j )Ti,i (t

i−1
α ), (B.5)

where �j are rational coefficients to be determined. Due to the symmetry of Ti,i+1(t̄
i ) over t̄ i

it is sufficient to find �1 only. Then a wanted term must contain Ti+1,i+1(t
i
1)Ti,i(t

i−1
α ) in the 

extreme right position. We have

Ti+1,i (t
i−1
α )Ti,i+1(t̄

i )

= Ti+1,i (t
i−1
α )

Ti,i+1(t
i
1)Ti,i+1(t̄

i \ t i1)

h(t̄ i , t i1)
δm,i

∼= g[i+1](t i−1
α , t i1)

(
Ti+1,i+1(t

i−1
α )Ti,i (t

i
1) − Ti+1,i+1(t

i
1)Ti,i (t

i−1
α )

)Ti,i+1(t̄
i \ t i1)

h(t̄ i , t i1)
δm,i

. (B.6)

The term Ti+1,i+1(t
i−1
α )Ti,i (t

i
1) obviously gives unwanted contribution. The remaining operators 

Ti+1,i+1(t
i
1)Ti,i (t

i−1
α ) should move through the product Ti,i+1(t̄

i \ t i1) via (B.1) keeping their 
arguments. This leads to

Ti+1,i (t
i−1
α )Ti,i+1(t̄

i ) ∼= g[i+1](t i1, t
i−1
α )

ri∏
k=2

f[i](t ik, t i−1
α )f[i+1](t i1, t

i
k)

× Ti,i+1(t̄
i \ t i1)

h(t̄ i , t i1)
δm,i

Ti+1,i+1(t
i
1)Ti,i (t

i−1
α ). (B.7)

Thus, using (2.10) we arrive at

�1 = g[i+1](t i1, t
i−1
α )

ri∏
k=2

f[i](t ik, t i−1
α )γ̂i(t

i
1, t

i
k). (B.8)

The final result can be written as a sum over partitions of the set t̄ i:

Ti+1,i (t
i−1
α )Ti,i+1(t̄

i ) ∼=
∑

g[i+1](t̄ iI , t i−1
α )f[i](t̄ iII, t i−1

α )γ̂i(t̄
i
I , t̄

i
II)

×Ti,i+1(t̄
i
II) Ti+1,i+1(t̄

i
I )Ti,i (t

i−1
α ). (B.9)

Here the set t̄ i is divided into subsets t̄ iI and t̄ iII such that #t̄ iI = 1.

B.2. Action formulas

In this section we consider the action of the operators Tp,1(s) onto the main term of the 
Bethe vector (3.13). Here p > 1 and s is a generic complex number. The result of this action 
contains various terms, among which we will distinguish wanted and unwanted terms. Let a term 
be wanted, if it is proportional to λ1(s) and does not contain any αi(t

k
� ). Otherwise a term is 

unwanted.

Proposition B.1. Let ̃B(t̄) be the main term of a Bethe vector (3.13). Then the wanted term of the 
action of Tp,1 onto ̃B(t̄) reads
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Tp,1(s)B̃(t̄) ∼= λ1(s)
∑

part(t̄)

p−1∏
�=2

g[�+1](t̄�I , t̄ �−1
I )γ̂�(t̄

�
I , t̄ �II )

f[�](t̄�I , t̄ �−1)

× g[2](t̄1
I , s)γ̂1(t̄

1
I , t̄1

II )f[1](t̄1
II , s)B̃(

{
t̄ kII

}p−1
1 ;{t̄ k}N

p
). (B.10)

Here the sum is taken over partitions of the sets t̄ k with k = 1, . . . , p − 1 into subsets t̄ kI and t̄ kII
such that #t̄ kI = 1.

To prove Proposition B.1 we introduce for 1 ≤ i < k ≤ m + n

B̃ik({t̄ ν}k−1
i ) = Ti,i+1(t̄

i ) . . .Tk−1,k(t̄
k−1)|0〉∏k−1

j=i λj+1(t̄ j )
∏k−2

j=i f[j+1](t̄ j+1, t̄ j )
, (B.11)

where Tj,j+1 is defined by (3.14). Obviously, B̃1,n+m({t̄ ν}N1 ) = B̃(t̄). We first prove several 
auxiliary lemmas.

Lemma B.1. Let j < � and j < i. Then

T�,j (s)B̃ik({t̄ ν}k−1
i ) = 0. (B.12)

Proof. The proof is based on the arguments of the coloring. The operator T�,j annihilates the 
particles of the colors j, . . . , � − 1. On the other hand, for i > j the state B̃ik({t̄ ν}k−1

i ) does not 
contain the particles of the color j . Hence, the action of T�,j onto ̃Bik({t̄ ν}k−1

i ) vanishes. �
Lemma B.2. Let j < i. Then

Tj,j (s)B̃ik({t̄ ν}k−1
i ) = λj (s)B̃ik({t̄ ν}k−1

i ). (B.13)

Proof. Obviously,

B̃ik({t̄ ν}k−1
i ) = Ti,i+1(t̄

i )

λi+1(t̄ i )f[i+1](t̄ i+1, t̄ i )
B̃i+1,k({t̄ ν}k−1

i+1 ). (B.14)

When one commutes Tj,j with one of the operators in the product Ti,i+1(t̄
i ), then from (2.5), we 

obtain the operators Ti,j or Ti+1,j acting on B̃i+1,k(t̄ ). Due to Lemma B.1 this action vanishes, 
because i > j . Thus,

Tj,j (s)B̃ik({t̄ ν}k−1
i ) = Ti,i+1(t̄

i )

λi+1(t̄ i )f[i+1](t̄ i+1, t̄ i )
Tj,j (s)B̃i+1,k({t̄ ν}k−1

i+1 ). (B.15)

Continuing this process we eventually move Tj,j to the vacuum vector, where it gives λj(s). �
In the following lemmas the actions are considered modulus unwanted terms. Let t i−1

α be 
a fixed parameter of the set t̄ i−1. We say that a term is wanted, if a Bethe parameter tj� for 
j = i, . . . , k − 1 becomes an argument of λj+1. Otherwise, a term is unwanted.

Lemma B.3. The wanted term of the action of Ti,i(t
i−1
α ) onto ̃Bik({t̄ ν}k−1

i ) is given by

Ti,i(t
i−1
α )B̃ik({t̄ ν}k−1

i ) ∼= λi(t
i−1
α )f[i](t̄ i , t i−1

α )B̃ik({t̄ ν}k−1
i ). (B.16)
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Proof. We present ̃Bik({t̄ ν}k−1
i ) in the form (B.14). Then, moving Ti,i(t

i−1
α ) through the product 

Ti,i+1(t̄
i ) we should use (B.2), otherwise we obtain unwanted terms. Therefore, at the first step 

we obtain

Ti,i(t
i−1
α )B̃ik({t̄ ν}k−1

i ) ∼= f[i](t̄ i , t i−1
α )Ti,i+1(t̄

i )

λi+1(t̄ i )f[i+1](t̄ i+1, t̄ i )
Ti,i(t

i−1
α )B̃i+1,k({t̄ ν}k−1

i+1 ). (B.17)

Then application of Lemma B.2 completes the proof. �
Lemma B.4. The wanted term of the action of Ti+1,i(t

i−1
α ) onto ̃Bik({t̄ ν}k−1

i ) is given by

Ti+1,i (t
i−1
α )B̃ik({t̄ ν}k−1

i )

∼=
∑

λi(t
i−1
α )g[i+1](t̄ iI , t i−1

α )f[i](t̄ iII, t i−1
α )γ̂i(t̄

i
I , t̄

i
II)B̃ik(t̄

i
II; {t̄ ν}k−1

i+1 ). (B.18)

Here the sum is taken over partitions t̄ i ⇒ {t̄ iI , ̄t iII} such that #t̄ iI = 1.

Proof. We again present ̃Bik({t̄ ν}k−1
i ) in the form (B.14). Then, moving Ti+1,i (t

i−1
α ) through the 

product Ti,i+1(t̄
i ) we should use (B.9), otherwise we obtain unwanted terms. Thus, we obtain

Ti+1,i (t
i−1
α )B̃i+1,k(t̄) ∼=

∑
g[i+1](t̄ iI , t i−1

α )f[i](t̄ iII, t i−1
α )γ̂i(t̄

i
I , t̄

i
II)

× Ti,i+1(t̄
i
II) Ti+1,i+1(t̄

i
I )Ti,i(t

i−1
α )

λi+1(t̄ i )f[i+1](t̄ i+1, t̄ i )
B̃i+1,k({t̄ ν}k−1

i+1 ). (B.19)

Then application of Lemmas B.2 and B.3 completes the proof. �
Lemma B.5. Let i < p < k. Then

Tp,i(t
i−1
α )B̃ik({t̄ ν}k−1

i )

∼= λi(t
i−1
α )

∑
part(t̄)

B̃ik({t̄ νII }p−1
i ; {t̄ ν}k−1

p )

× g[i+1](t̄ iI , t i−1
α )γ̂i(t̄

i
I , t̄

i
II)f[i](t̄ iII, t i−1

α )

p−1∏
ν=i+1

g[ν+1](t̄νI , t̄ ν−1
I )γ̂ν(t̄

ν
I , t̄ νII )

f[ν](t̄νI , t̄ ν−1)
. (B.20)

Here the sum is taken over partitions of the sets t̄ ν ⇒ {t̄ νI , ̄tνII } for ν = i, . . . , p − 1, such that 
#t̄ νI = 1.

Proof. The proof uses induction over p − i. If p − i = 1, then the statement coincides with 
the one of Lemma B.4. Assume that (B.20) is valid for i replaced with i + 1. Then we use 
presentation (B.14)

Tp,i(t
i−1
α )B̃ik({t̄ ν}k−1

i ) = Tp,i(t
i−1
α )Ti,i+1(t̄

i )

λi+1(t̄ i )f[i+1](t̄ i+1, t̄ i )
B̃i+1,k({t̄ ν}k−1

i+1 ). (B.21)

Moving Tp,i(t
i−1
α ) through the product Ti,i+1(t̄

i ) we can obtain the terms of the following type:

(i) Tp,i(t
i−1
α );

(ii) Tp,i+1(t
i
j )Ti,i(t

i−1
α );

(iii) Tp,i+1(t
i−1
α )Ti,i (t

i
j );

(iv) T (t i )T (t i ).

(B.22)
p,i+1 j1 i,i j2
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The term (i) vanishes due to Lemma B.1. The terms (iii) and (iv) give unwanted terms due to 
Lemma B.2. Hence, only the term (ii) survives. Using the arguments similar to the ones that we 
used for obtaining equation (B.9) we arrive at

Tp,i(t
i−1
α )B̃ik({t̄ ν}k−1

i ) ∼=
∑

g[i+1](t̄ iI , t i−1
α )f[i](t̄ iII, t i−1

α )γ̂i(t̄
i
I , t̄

i
II)

× Ti,i+1(t̄
i
II) Tp,i+1(t̄

i
I )Ti,i (t

i−1
α )

λi+1(t̄ i )f[i+1](t̄ i+1, t̄ i )
B̃i+1,k({t̄ ν}k−1

i+1 ). (B.23)

Here the sum is taken over partitions t̄ i ⇒ {t̄ iI , ̄t iII} such that #t̄ iI = 1. Applying Lemma B.2 we 
find

Tp,i(t
i−1
α )B̃ik({t̄ ν}k−1

i ) ∼=
∑

λi(t
i−1
α )g[i+1](t̄ iI , t i−1

α )f[i](t̄ iII, t i−1
α )γ̂i(t̄

i
I , t̄

i
II)

× Ti,i+1(t̄
i
II) Tp,i+1(t̄

i
I )

λi+1(t̄ i )f[i+1](t̄ i+1, t̄ i )
B̃i+1,k({t̄ ν}k−1

i+1 ). (B.24)

The action of Tp,i+1(t̄
i
I ) onto ̃Bi+1,k({t̄ ν}k−1

i+1 ) is known due to the induction assumption. Substi-
tuting this known action into (B.23) we prove Lemma B.5. �

In fact, Lemma B.5 gives the proof of Proposition B.1. Indeed, it is enough to set i = 1 and 
k = m + n in (B.20). We also set by definition t0

α = s and introduce an auxiliary empty set 
t̄m+n ≡ ∅. Then Lemma B.5 describes the action of Tp,1(s) onto the main term ̃B(t̄).
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