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The cylindrically symmetric static manifolds are classified for their Petrov types and
metrics. This classification besides verifying the earlier result that such manifolds cannot
be of petrov type II, IIT and N, gives a complete list of all static cylindrically symmetric
metrics of Petrov type O. In the case of Petrov type D metrics, the results appear as
three independent classes metrics.

Keywords: Petrov classification; static cylindrical symmetry; metrics.

The Petrov classification provides an invariant way of classifying the gravitational
fields according to the number and the multiplicity of the eigenvalues of the Weyl
tensor, Capea [1-2]. It has played a remarkable role in the investigation and the
classification of the solutions of the Einstein’s field equations besides helping in
drawing certain conclusions about the physical nature of the gravitational fields
belonging to a certain Petrov type [3 - 5]. It splits up gravitational fields into
six different types, namely, algebraically general type, type I and the algebraically
special types, types: II, IIT, D, N, and O [6-10].

The present attempt relates to classifying the cylindrically symmetric static
Lorentzian manifolds according to their Petrov types and metrics. It is known [1]
that these types of Lorentzian manifolds could be of Petrov type I, D, or O. It
is yet to be known that for a given Petrov type, what kind of gravitational fields
(gap) are possible. This work, besides independently verifying the already known
result given in reference [1], finds: (i) explicitly all possible metrics of type Oj; (ii)
all possible metrics of type D upto the first order differential constraints on their
metrics coefficients; (iii) thus the residue of (i)-(ii) readily provide all type I, static
cylindrically symmetric Lorentzian metrics. Earlier this work was undertaken in
[11], where the type O metrics were identified as type IN. This is also corrected
here. In the Newman-Penrose formalism, the components of the Weyl tensor, Cypcq
are expressed in terms of a complex null tetrad {e®} = (k,l,m,n) [1]. These are:

1
Uo = Copeak®mPkm®, Uy = Copeak®Pkm?, Uy = icabcdk“lb(kcld —mm?), (1)

U3 = Copeal k01, Uy = Copeql“ml 1o, (2)
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Then the invariants [1]:

I =Ty, — 4V, Ty 4 302 (3)
Uy U3 Uy

J=|W3 Uy Uy |, (4)
Uy ¥y Uy

K =002 - 30,030, + 203, (5)

L=Uy0, — V2 N=12L% - 03 (6)

are constructed to give the invariant I3 — 27J2%, to be used to find the Petrov
classification [1]. All algebraically special gravitational fields, satisfy I® —27.J% = 0.
In particular, for the types III, N, and O, both the invariants I and J vanish. If
I #0# Jand K =0 = N, the Petrov type is D. If ] = J = K = L = 0, but
Cabed # 0, the metric is of Petrov type N. In case Cypeq = 0, the metric is of Petrov
type O.

Here assuming that spacetime metric admits three commuting Killing vectors:
0/0t, 0/90, and 0/0z in such a way that 9/0t is hyper surface orthogonal. Then
the cylindrically symmetric static metric for a four dimensional Lorentzian manifold
in isotropic coordinates, takes the form

ds? = " dt? — dp? — a2 dh? — eMP) g2, (7)
The complex null tetrad basis for the metric (7) is given by
1 0 0 1 0 0
k= -v/2Y Y o= — (- —v/2 Y I ]
ﬂ( ot ap>’ ﬂ( ot " op) ®)
1 (e M0 0 1 (e 20 0
a__ - (=2 = Z s —p/2 Y e /2 Y ) 9
" \/§< a 5‘9+Z€ 5‘2)’m \/5( a 09 '© 5'2) ©)
The null tetrad components of the Weyl tensor (1)-(2) for the metric (7) are therefore
given by:
o= 2N =20 + XN? =y =V N + /] =Ty, Uy =0=03,  (10)
\112 _ 41_8[_4VH + 2/\// + 2/1*// _ 2]//2 + )\/2 + M/2 + V/)\/ + V/N/ _ 2/\///4/]- (11)

The invariants given by eqs.(3)-(6) are then reduced to:

I=U3+303, J=U,y (V3—U3), K=0, L=VoWy, N=T§ (3Us+Ty) (30— Ty).
(12)
This gives
P —27J% = W2 (30, + W)? (30, — W), (13)
Now to require that the metric be not of Petrov type I, we consider I? —27J2 = 0,
which gives following four possibilities: (1) To = 0,3U5+ U # 0, 3¥s — U £ 0; (2)

\I/() 75 0,3\112+\I/0 = O, 3\112 —\Ifo 75 0; (3) \I/() 75 0,3‘1’24-\1/() 75 0, 3‘1’2—\110 = O; (4)
Uy =0,3Us+ Ty =0, 30y — ¥y = 0. Possibilities 1-3, due to eqs.(11)-(13), readily
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give I # 0 # J and K = 0 = N. This concludes that in these cases the metrics ( to
be found) are of Petrov type D. Possibility 4 readily gives I = J = K = L = 0, thus
in this case the metrics are of type O. All other metrics for which I? —27J2 # 0 are
of type I. This proves that the static cylindrically symmetric Lorentzian manifolds
cannot be of Petrov types IT, IIT and N. For the Petrov type O metrics, egs.(11)-
(13), readily provide following differential constraints to be satisfied simultaneously:

2 =N+ V2 = N2y N =0, (14)

2N =y )+ N =y = VN + 0/ =0, (15)

2w = V") 4=V =N NV = 0. 16
(w K H

For a complete solution of eqs.(14)-(16), all possible cases of v/, X and u' are
considered. These are: Case I: all v/, ), i are identically zero; Case II: any
one of v/, X and p' is non zero at a point and hence in a coordinate neighbourhood
of that point; Case III: any two of v/, N and p’ are non zero at a point and
hence in a coordinate neighbourhood of that point; Case IV: all three v/, X
and p’ are non zero at a point and hence in a coordinate neighbourhood of that
point. We discuss all these cases one by one. Case I: If all v/, X, y/ are zero
then the differential constraints given by eqs.(14)-(16) are identically satisfied. In
this case an infinite cylinder has a line cut at § = 0,27 and therefore, the circular
coordinate can be straighten to write adfl = dy with dp = dx. Thus the result is
the “wrapped Minkowski” metric having a line singularity at # = 0,27. For this
metric, since Cypeq = 0, this is of the Petrov type O. Case II: In this case there
arise three sub cases: II(a) v/ # 0, = 0 = p/; IL(b) N # 0, v/ =0 = /;
II(c) ' # 0, v/ = 0 = N. Then the differential constraints, eqs.(14)-(16), in each
case reduce to 20" +v'2 = 0, 2"+ X? = 0, 24" + u'? = 0 respectively. The solutions
of these equations readily give: ez = Ap + B; e? = Ap + B; €% = Ap + B, where
A and B are constants of integration. Thus for the case II, the solutions are:
€5 =Ap+ B, A=0=je2 =Ap+B, v=0=p;e? =Ap+B,v=0=\ All
these three solutions are isomorphic to the Minkowski metric. Case I1I: Any two
of /, Nand p/are non zero e.g. we discuss the case where v/ # 0, N # 0, ¢/ = 0.
The differential constraints given by eqs.(14)-(16) therefore reduce to

2" =2\ % - \? =0, (17)
20+ N? - N =0, (18)
2+ VN =0. (19)

Using eqs.(17)-(19), one gets 20/’ + 20X = [V/N] = 0 or v\ = 4k, where
k # 0 and 4 has been used for future convenience. Now for /N = 4k, therefore
eqs.(17)-(19) reduce to

(v2 + k) [(e%)" — ket | =0, (20)
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(e3)" —kef =0. (21)

The solutions of eqs.(14)-(15) are: either e? = Acosh(ap+ ), e? =
Beosh (ap+ ), i = 0if k = a?; or ez = Acos(ap+ ), e2 = Bcos(ap+ ),
u' =0, if k = —a?, where A, B and j are constants of integration. Analogously
for the other two subcases of this type one gets: either e2 = Acosh (ap+ ),
N =0, ez chosh(apqLB) or e? *Acoe,(aerﬁ) "=0, e% = Bcos (ap + f);
and either v/ = 0, e = = Acosh(ap+ ), ez = Bcosh(ap+ f); or v/ = 0,
e2 = Acos(ap+f), ez = Bceos(ap+ ). Case IV: This is the case where all
V', N and p' are nonzero. Eqs.(14)-(16) are integrated to give

)
(v = ) R0 = gy, (22)
(A= p) e2OHr) = gy, (23)
(p—v) ex (W= = kg (24)

where k;’s (i =1,2,3) are constants of integration. We discuss all possible cases
with respect to k; as follows: IV (a) When all k,’s are zero; IV (b) any two of k;s
are zero; IV(c) any one of k;’s is zero; and IV(d) all k,’s are non zero.

Case IV (a) readily gives v/ = X = /. Case IV (b) is not possible because only
one k; can not be non zero as it is evident from the eqs.(22)-(24). Case IV(c) gives
further three subcases, these are: IVc(i) k; # 0, ko # 0, k3 = 0; IVc(ii) k1 # 0,
ko =0, k3 #0; IVc(iii) k1 =0, ks #0 and ky # 0. We discuss the Case IVc(i)
and the results follow analogously for the other two sub cases. Case IVc(i) readily
gives V' = 1/ and eqs.(28)-(30) readily give ket + koe” = 0. This implies that &y
and ko have opposite signs (k1k2 < 0) and in fact v and p can be considered identical
by absorbing the constant —Z—; ” in the definition of z. Therefore eqs.(22)-(23)
reduce to

ez — Nex ) =y (25)
Nez) — ez = gy (26)

o[>
|
[N
[E——
~
I

These equations readily give k1 + k2 = 0. Thus egs.(22)-(23) simplify to [e
%6_%, which gives
= Ae? + %kge% /e_%dp, (27)
where A is a constant of integration. Analogously the cases IVc(ii) and IVe(iii) can
be solved to give: = A, 2 = Lkoe? [e " 2dp+Aes; A= p, e = %kge% fe_%dp—l—
Ae?. This completes the solution of the case IV (c).
Case IV(d): Here all k;’s are non zero. Writing eqs.(22)-(24) in the form
(v —A) ez TATH) = fye, (28)
(A=) €2 A = e, (29)
Ter (M) = et (30)
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By adding eqs.(28)-(29), one gets

kret + kye” + kzet = 0. (31)
Again writing eqs.(28)-(29), in the form

(e”_)‘)/ = kle%(_3”+’\+“), (32)

() = kpes (=33t (33)

(e“_”)/ = kge%(”""’\_?’“). (34)

Now eq.(31) can be written as

ki + koe? "M 4 kger M =0, (35)
which on differentiation gives
ks (1) = ky (e#7V) = 0. (36)
Using eqs.(32)-(34), eq.(36) reduces to
ko ks {1 - 62@*#)} =0. (37)

This implies A — ¢ = 0. Repeating the same argument one gets 4 — v = 0 and
v — A = 0. This concludes A = pu = v, but this contradicts the supposition that k;
% 0 for each i. So there does not exist any Petrov type O solution for the case
IVd. This concludes the discussion Petrov type O solutions.

The conditions for the metric (7) to be of Petrov type D are I? —27J% =0, I #
0+# J, K =0= N. Thus eqs.(22)-(24) readily give that the metric will be of Petrov
type D if either (i) U9 =0 and ¥4 # 0 or (ii) Yo #0, ¥y #0and ¥g+3 Uy =0
or (iii) ¥ # 0, U3 # 0 and ¥y — 3Wy = 0. Thus each of eqs.(22)-(24) gives an
independent condition to be satisfied for a metric to be of Petrov type D. Egs.(22)-
(24) with one of k; = 0, readily give v’ = X or ' = ¢/ or p/ =1/, Thus all metrics
with ¥ = XA or A = p or p = v and not satisfying any of the conditions of the type
O metrics obtained above, emerge as Petrov type D solutions. The other Petrov
D solutions depends on the general solution of each of the egs.(22)-(24).

The cylindrically symmetric static manifolds have been classified according to
their Petrov types. It is shown that the Petrov types of these metrics can be
determined by the nature of only two of the null tetrad components of the Weyl
tensor, namely Wy and Ws. It is verified that a cylindrically symmetric static metric
cannot be of Petrov type IT or IIT or N. Eqs.(22)-(24) with one of k; = 0, readily
give v/ =X or N =y or p/ =v'. Thus all metrics with v =X or A= por u=v
emerge as Petrov type D solutions. The cylindrically symmetric static Lorentzian
manifolds given by the metric (7) are of Petrov type O if and only if one of the
following conditions is satisfied:
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(3) V=N =0, e* = Ap+ B;

(4) €% = Acosh(ap+ B), e? = Bsinh (ap+ B), y/ = 0;
(5) e% = Acos(ap+ B), ez = Bsinap+ B, i = 0;

(6) e3 = Acosh(ap+ B), N =0, e2 = Bsinh (ap + B);
(7) e% = Acos(ap+ B), N =0 e% = Bsin (ap + B);
(8) v/ =0, e2 = Acosh (ap+ B), ez = Bsinh (ap + B);
(9) v/ =0, e2 = Acos (ap+ B), e% = Bsin(ap + B);
10) v/ =N = p/;

1) v=2M\ ez = %er% fe_%derAe%;

12) A=p, e? = %kge% feféderAe%;

13) p=v, e? = %l@e% fe’%dpqLAe%.
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