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Classification of cylindrically symmetric static Lorentzian manifolds

according to their Petrov types and metrics

Muhammad Ziad
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The cylindrically symmetric static manifolds are classified for their Petrov types and
metrics. This classification besides verifying the earlier result that such manifolds cannot
be of petrov type II, III and N, gives a complete list of all static cylindrically symmetric
metrics of Petrov type O. In the case of Petrov type D metrics, the results appear as
three independent classes metrics.
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The Petrov classification provides an invariant way of classifying the gravitational

fields according to the number and the multiplicity of the eigenvalues of the Weyl

tensor, Cabcd [1-2]. It has played a remarkable role in the investigation and the

classification of the solutions of the Einstein’s field equations besides helping in

drawing certain conclusions about the physical nature of the gravitational fields

belonging to a certain Petrov type [3 - 5]. It splits up gravitational fields into

six different types, namely, algebraically general type, type I and the algebraically

special types, types: II, III, D, N, and O [6-10].

The present attempt relates to classifying the cylindrically symmetric static

Lorentzian manifolds according to their Petrov types and metrics. It is known [1]

that these types of Lorentzian manifolds could be of Petrov type I, D, or O. It

is yet to be known that for a given Petrov type, what kind of gravitational fields

(gab) are possible. This work, besides independently verifying the already known

result given in reference [1], finds: (i) explicitly all possible metrics of type O; (ii)

all possible metrics of type D upto the first order differential constraints on their

metrics coefficients; (iii) thus the residue of (i)-(ii) readily provide all type I, static

cylindrically symmetric Lorentzian metrics. Earlier this work was undertaken in

[11], where the type O metrics were identified as type N. This is also corrected

here. In the Newman-Penrose formalism, the components of the Weyl tensor, Cabcd

are expressed in terms of a complex null tetrad {ea} = (k, l,m, n) [1]. These are:

Ψ0 = Cabcdk
ambkcmd,Ψ1 = Cabcdk

albkcmd,Ψ2 =
1

2
Cabcdk

alb(kcld −mcmd), (1)

Ψ3 = Cabcdl
akblcmd,Ψ4 = Cabcdl

amblcmd. (2)
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Then the invariants [1]:

I = Ψ0Ψ4 − 4Ψ1Ψ3 + 3Ψ2
2, (3)

J =

∣∣∣∣∣∣
Ψ4 Ψ3 Ψ2

Ψ3 Ψ2 Ψ1

Ψ2 Ψ1 Ψ0

∣∣∣∣∣∣ , (4)

K = Ψ1Ψ
2
4 − 3Ψ4Ψ3Ψ2 + 2Ψ3

3, (5)

L = Ψ2Ψ4 −Ψ2
3, N = 12L2 −Ψ2

4, (6)

are constructed to give the invariant I3 − 27J2, to be used to find the Petrov

classification [1]. All algebraically special gravitational fields, satisfy I3− 27J2 = 0.

In particular, for the types III, N, and O, both the invariants I and J vanish. If

I �= 0 �= J and K = 0 = N , the Petrov type is D. If I = J = K = L = 0, but

Cabcd �= 0, the metric is of Petrov type N. In case Cabcd = 0, the metric is of Petrov

type O.

Here assuming that spacetime metric admits three commuting Killing vectors:

∂/∂t, ∂/∂θ, and ∂/∂z in such a way that ∂/∂t is hyper surface orthogonal. Then

the cylindrically symmetric static metric for a four dimensional Lorentzian manifold

in isotropic coordinates, takes the form

ds2 = eν(ρ)dt2 − dρ2 − a2eλ(ρ)dθ2 − eμ(ρ)dz2. (7)

The complex null tetrad basis for the metric (7) is given by

ka =
1√
2

(
e−ν/2 ∂

∂t
− ∂

∂ρ

)
, la =

1√
2

(
−e−ν/2 ∂

∂t
+
∂

∂ρ

)
, (8)

ma =
1√
2

(
e−λ/2

a

∂

∂θ
+ ie−μ/2 ∂

∂z

)
,ma =

1√
2

(
e−λ/2

a

∂

∂θ
− ie−μ/2 ∂

∂z

)
. (9)

The null tetrad components of the Weyl tensor (1)-(2) for the metric (7) are therefore

given by:

Ψ0 = 1
16

[
2λ′′ − 2μ′′ + λ′2 − μ′2 − ν′λ′ + ν′μ′] = Ψ4, Ψ1 = 0 = Ψ3, (10)

Ψ2 = 1
48 [−4ν′′ + 2λ′′ + 2μ′′ − 2ν′2 + λ′2 + μ′2 + ν′λ′ + ν′μ′ − 2λ′μ′]. (11)

The invariants given by eqs.(3)-(6) are then reduced to:

I=Ψ2
0+3Ψ2

2, J=Ψ2

(
Ψ2

0−Ψ2
2

)
, K=0, L=Ψ0Ψ2, N=Ψ2

0 (3Ψ2+Ψ0) (3Ψ2−Ψ0) .

(12)

This gives

I3 − 27J2 = Ψ2
0 (3Ψ2 +Ψ0)

2
(3Ψ2 −Ψ0)

2
. (13)

Now to require that the metric be not of Petrov type I, we consider I3 − 27J2 = 0,

which gives following four possibilities: (1) Ψ0 = 0, 3Ψ2+Ψ0 �= 0, 3Ψ2−Ψ0 �= 0; (2)

Ψ0 �= 0, 3Ψ2 +Ψ0 = 0, 3Ψ2 −Ψ0 �= 0; (3) Ψ0 �= 0, 3Ψ2 +Ψ0 �= 0, 3Ψ2 −Ψ0 = 0; (4)

Ψ0 = 0, 3Ψ2+Ψ0 = 0, 3Ψ2−Ψ0 = 0. Possibilities 1-3, due to eqs.(11)-(13), readily
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give I �= 0 �= J and K = 0 = N. This concludes that in these cases the metrics ( to

be found) are of Petrov type D. Possibility 4 readily gives I = J = K = L = 0, thus

in this case the metrics are of type O. All other metrics for which I3−27J2 �= 0 are

of type I. This proves that the static cylindrically symmetric Lorentzian manifolds

cannot be of Petrov types II, III and N. For the Petrov type O metrics, eqs.(11)-

(13), readily provide following differential constraints to be satisfied simultaneously:

2 (ν′′ − λ′′) + ν′2 − λ′2 − μ′ν′ + μ′λ′ = 0, (14)

2 (λ′′ − μ′′) + λ′2 − μ′2 − ν′λ′ + ν′μ′ = 0, (15)

2 (μ′′ − ν′′) + μ′2 − ν′2 − λ′μ′ + λ′ν′ = 0. (16)

For a complete solution of eqs.(14)-(16), all possible cases of ν′, λ′ and μ′ are

considered. These are: Case I: all ν′, λ′, μ′ are identically zero; Case II: any

one of ν′, λ′ and μ′ is non zero at a point and hence in a coordinate neighbourhood

of that point; Case III: any two of ν′, λ′ and μ′ are non zero at a point and

hence in a coordinate neighbourhood of that point; Case IV: all three ν′, λ′

and μ′ are non zero at a point and hence in a coordinate neighbourhood of that

point. We discuss all these cases one by one. Case I: If all ν′, λ′, μ′ are zero

then the differential constraints given by eqs.(14)-(16) are identically satisfied. In

this case an infinite cylinder has a line cut at θ = 0, 2π and therefore, the circular

coordinate can be straighten to write adθ = dy with dρ = dx. Thus the result is

the “wrapped Minkowski” metric having a line singularity at θ = 0, 2π. For this

metric, since Cabcd ≡ 0, this is of the Petrov type O. Case II: In this case there

arise three sub cases: II(a) ν′ �= 0, λ′ = 0 = μ′; II(b) λ′ �= 0, ν′ = 0 = μ′;
II(c) μ′ �= 0, ν′ = 0 = λ′. Then the differential constraints, eqs.(14)-(16), in each

case reduce to 2ν′′+ν′2 = 0, 2λ′′+λ′2 = 0, 2μ′′+μ′2 = 0 respectively. The solutions

of these equations readily give: e
ν
2 = Aρ+B; e

λ
2 = Aρ+B; e

μ
2 = Aρ+B, where

A and B are constants of integration. Thus for the case II, the solutions are:

e
ν
2 = Aρ+B, λ = 0 = μ; e

λ
2 = Aρ+B, ν = 0 = μ; e

μ
2 = Aρ+B, ν = 0 = λ. All

these three solutions are isomorphic to the Minkowski metric. Case III: Any two

of ν′, λ′and μ′are non zero e.g. we discuss the case where ν′ �= 0, λ′ �= 0, μ′ = 0.

The differential constraints given by eqs.(14)-(16) therefore reduce to

2ν′′ − 2λ′′ + ν′2 − λ′2 = 0, (17)

2λ′′ + λ′2 − ν′λ′ = 0, (18)

2ν′′ + ν′2 − ν′λ′ = 0. (19)

Using eqs.(17)-(19), one gets 2ν′λ′′ + 2ν′′λ′ = [ν′λ′]′ = 0 or ν′λ′ = 4k, where

k �= 0 and 4 has been used for future convenience. Now for ν′λ′ = 4k, therefore

eqs.(17)-(19) reduce to (
ν′2 + 4k

) [(
e

ν
2

)′′ − ke ν
2

]
= 0, (20)
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(
e

ν
2

)′′ − k e ν
2 = 0. (21)

The solutions of eqs.(14)-(15) are: either e
ν
2 = A cosh (αρ+ β), e

λ
2 =

B cosh (αρ+ β), μ′ = 0 if k = α2; or e
ν
2 = A cos (αρ+ β), e

λ
2 = B cos (αρ+ β),

μ′ = 0, if k = −α2, where A, B and β are constants of integration. Analogously

for the other two subcases of this type one gets: either e
ν
2 = A cosh (αρ+ β),

λ′ = 0, e
μ
2 = B cosh (αρ+ β); or e

ν
2 = A cos (αρ+ β), λ′ = 0, e

μ
2 = B cos (αρ+ β);

and either ν′ = 0, e
λ
2 = A cosh (αρ+ β), e

μ
2 = B cosh (αρ+ β); or ν′ = 0,

e
λ
2 = A cos (αρ+ β), e

μ
2 = B cos (αρ+ β). Case IV: This is the case where all

ν′, λ′ and μ′ are nonzero. Eqs.(14)-(16) are integrated to give

(ν − λ)′ e 1
2 (ν+λ−μ) = k1, (22)

(λ− μ)′ e 1
2 (λ+μ−ν) = k2, (23)

(μ− ν)′ e 1
2 (μ+ν−λ) = k3. (24)

where k ,
i s (i = 1, 2, 3) are constants of integration. We discuss all possible cases

with respect to ki as follows: IV(a) When all k ,
i s are zero; IV(b) any two of k ,

i s

are zero; IV(c) any one of k ,
i s is zero; and IV(d) all k ,

i s are non zero.

Case IV(a) readily gives ν′ = λ′ = μ′. Case IV (b) is not possible because only

one ki can not be non zero as it is evident from the eqs.(22)-(24). Case IV(c) gives

further three subcases, these are: IVc(i) k1 �= 0, k2 �= 0, k3 = 0; IVc(ii) k1 �= 0,

k2 = 0, k3 �= 0; IVc(iii) k1 = 0, k2 �= 0 and k1 �= 0. We discuss the Case IVc(i)

and the results follow analogously for the other two sub cases. Case IVc(i) readily

gives ν′ = μ′ and eqs.(28)-(30) readily give k1e
μ + k2 e

ν = 0. This implies that k1
and k2 have opposite signs (k1k2 < 0) and in fact ν and μ can be considered identical

by absorbing the constant “ −k1

k2
” in the definition of z. Therefore eqs.(22)-(23)

reduce to

μ′e
1
2 (λ) − λ′e 1

2 (λ) = k1, (25)

λ′e
1
2 (λ) − μ′e 1

2 (λ) = k2. (26)

These equations readily give k1+k2 = 0. Thus eqs.(22)-(23) simplify to
[
e

λ
2 −μ

2

]′
=

k2

2 e
−μ

2 , which gives

e
λ
2 = Ae

μ
2 + 1

2k2e
μ
2

∫
e−

μ
2 dρ, (27)

whereA is a constant of integration. Analogously the cases IVc(ii) and IVc(iii) can

be solved to give:ν = λ, e
μ
2 = 1

2k2e
ν
2

∫
e−

ν
2 dρ+Ae

ν
2 ; λ = μ, e

ν
2 = 1

2k2e
λ
2

∫
e−

λ
2 dρ+

Ae
λ
2 . This completes the solution of the case IV(c).

Case IV(d): Here all k ,
i s are non zero. Writing eqs.(22)-(24) in the form

(ν − λ)′ e 1
2 (ν+λ+μ) = k1e

μ, (28)

(λ− μ)′ e 1
2 (ν+λ+μ) = k2e

ν , (29)

(μ− ν)′ e 1
2 (ν+λ+μ) = k3e

λ. (30)
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By adding eqs.(28)-(29), one gets

k1e
μ + k2 e

ν + k3 e
λ = 0. (31)

Again writing eqs.(28)-(29), in the form(
eν−λ

)′
= k1e

1
2 (−3ν+λ+μ), (32)(

eλ−μ
)′

= k2e
1
2 (ν−3λ+μ), (33)(

eμ−ν
)′

= k3e
1
2 (ν+λ−3μ). (34)

Now eq.(31) can be written as

k1 + k2e
ν−μ + k3e

λ−μ = 0, (35)

which on differentiation gives

k3
(
eλ−μ

)′ − k2 (eμ−ν
)′

= 0. (36)

Using eqs.(32)-(34), eq.(36) reduces to

k2 k3

[
1− e2(λ−μ)

]
= 0. (37)

This implies λ − μ = 0. Repeating the same argument one gets μ − ν = 0 and

ν − λ = 0. This concludes λ = μ = ν, but this contradicts the supposition that ki
�= 0 for each i. So there does not exist any Petrov type O solution for the case

IVd. This concludes the discussion Petrov type O solutions.

The conditions for the metric (7) to be of Petrov type D are I3− 27J2 = 0, I �=
0 �= J, K = 0 = N . Thus eqs.(22)-(24) readily give that the metric will be of Petrov

type D if either (i) Ψ0 = 0 and Ψ2 �= 0 or (ii) Ψ0 �= 0, Ψ2 �= 0 and Ψ0 +3 Ψ2 = 0

or (iii) Ψ0 �= 0, Ψ2 �= 0 and Ψ0 − 3Ψ2 = 0. Thus each of eqs.(22)-(24) gives an

independent condition to be satisfied for a metric to be of Petrov type D. Eqs.(22)-

(24) with one of ki = 0, readily give ν′ = λ′ or λ′ = μ′ or μ′ = ν′. Thus all metrics

with ν = λ or λ = μ or μ = ν and not satisfying any of the conditions of the type

O metrics obtained above, emerge as Petrov type D solutions. The other Petrov

D solutions depends on the general solution of each of the eqs.(22)-(24).

The cylindrically symmetric static manifolds have been classified according to

their Petrov types. It is shown that the Petrov types of these metrics can be

determined by the nature of only two of the null tetrad components of the Weyl

tensor, namely Ψ0 and Ψ2. It is verified that a cylindrically symmetric static metric

cannot be of Petrov type II or III or N. Eqs.(22)-(24) with one of ki = 0, readily

give ν′ = λ′ or λ′ = μ′ or μ′ = ν′. Thus all metrics with ν = λ or λ = μ or μ = ν

emerge as Petrov type D solutions. The cylindrically symmetric static Lorentzian

manifolds given by the metric (7) are of Petrov type O if and only if one of the

following conditions is satisfied:

(1) e
ν
2 = Aρ+B, λ′ = μ′ = 0;

(2) ν′ = 0, e
λ
2 = Aρ+B, μ′ = 0;
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(3) ν′ = λ′ = 0, e
μ
2 = Aρ+B;

(4) e
ν
2 = A cosh (αρ+B), e

λ
2 = B sinh (αρ+B), μ′ = 0;

(5) e
ν
2 = A cos (αρ+B), e

λ
2 = B sinαρ+B, μ′ = 0;

(6) e
ν
2 = A cosh (αρ+B), λ′ = 0, e

μ
2 = B sinh (αρ+B);

(7) e
ν
2 = A cos (αρ+B), λ′ = 0 e

μ
2 = B sin (αρ+B);

(8) ν′ = 0, e
λ
2 = A cosh (αρ+B), e

μ
2 = B sinh (αρ+B);

(9) ν′ = 0, e
λ
2 = A cos (αρ+B), e

μ
2 = B sin (αρ+B) ;

(10) ν′ = λ′ = μ′;
(11) ν = λ, e

μ
2 = 1

2k2e
ν
2

∫
e−

ν
2 dρ+Ae

ν
2 ;

(12) λ = μ, e
ν
2 = 1

2k2e
λ
2

∫
e−

λ
2 dρ+Ae

λ
2 ;

(13) μ = ν, e
λ
2 = 1

2k2e
μ
2

∫
e−

μ
2 dρ+Ae

μ
2 .
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