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Abstract

First, we introduce m-intermediate curvature C,, which interpolates between Ricci
(m =1) and scalar curvature (m =n - 1) and prove in this context a generalized
Geroch conjecture. In particular, we show that M™» ™ xT™ n <7, does not admit
a metric with C,, > 0.

Next, we study initial data sets (M, g, k) which are used in General Relativity
to describe isolated gravitational systems. We introduce spacetime harmonic
functions, i.e. functions solving the PDE Au = —tr k|Vu|, to give a new lower
bound for the mass of (M,g,k). This lower bound in particular implies the
spacetime positive mass theorem including the case of equality.

Finally, we discuss recent progress towards the spacetime Penrose conjecture.
We demonstrate how the famous monotonicity formula for the Hawking energy
under inverse mean curvature flow can be generalized to initial data sets. This
leads to a new notion of spacetime inverse mean curvature flow which is based on
double null foliations.

Several of the above results have been obtained in collaboration with Simon

Brendle, Florian Johne, Demetre Kazaras, Marcus Khuri and Yiyue Zhang.
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Chapter 1

Introduction

1.1 Proof of a generalized Geroch Conjecture

Bonnet-Myers’ theorem implies that M" ! x S! does not admit a metric with positive
Ricci curvature while the resolution of Geroch’s conjecture yields that the torus T™ does
not admit a metric of positive scalar curvature. Together with S. Brendle and F. Johne

we showed in [22]:

Theorem A. Let n < 7. On T™ x M™"™ there is no complete metric of positive m-

intermediate curvature.

Here m-intermediate curvature is a new notion of curvature we introduced which
interpolates between Ricci curvature (m = 1) and scalar curvature (m = n —1). Our
proof uses stable weighted slicings of order m and delicate extrinsic curvature estimates.
We also discuss other recent work about m intermediate curvature [29, 34, 38, 89, 119|
by X. Chen, A. Chow, F. Johne, J. Wan, J. Chu, K.-K. Kwong, M.-C. Lee, M. Labbi
and K. Xu.

1.2 Spacetime harmonic functions

Besides the initial proofs of the Geroch conjecture due to R. Schoen, S.-T. Yau [106], and
M. Gromov, H.B. Lawson [58], there is another argument in dimension 3 due to D. Stern

[113] using harmonic maps. This idea has been expanded upon by H. Bray, D. Kazaras,
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M. Khuri and D. Stern to give a new proof of the Riemannian positive mass theorem
(PMT) [18]. In [64] we showed with D. Kazaras and M. Khuri the spacetime PMT using
spacetime harmonic functions, and in [72] we proved with Y. Zhang the corresponding

rigidity. The main result of the two papers [64, 72| can be stated as follows:

Theorem B. Let (M, g,k) be a complete, asymptotically flat initial data set satisfying
the dominant energy condition p > |J|. Then there exists a spacetime harmonic function
uw such that

1 |V2u + k| Vul|?
E—Pz—[ WU RIVUE o va] + 20, vu) | dpe.
72 [ (e el 20290

In particular, we have E > |P|. Moreover, E = |P|, implies E = |P| =0 and that (M, g,k)

isometrically embeds into Minkowski space.

Here p,J are the energy and momentum densities, M., is the generalized exterior
region of M, cf. Appendix B.1, and we remark that the case of equality of the spacetime
PMT has previously only been known under several additional decay assumptions [10,
64, 77]. In further work joint with H. Bray, D. Kazaras, M. Khuri and Y. Zhang
[16, 17, 65, 66] we have found various other applications of spacetime harmonic functions.
This includes existence results for black holes, and purely Riemannian statements such
as a conjecture of M. Gromov, a generalization of Bonnet-Myers’ theorem and band
width inequalities. Also, see [3, 27, 28, 114, 115] by A. Alaee, P.-K. Hung, M. Khuri,

X. Chai, X. Wan and T.-Y. Tsang for even more examples.

1.3 Monotonicity of the Hawking energy

The success of spacetime harmonic functions raises the question whether other important

tools from Riemannian geometry also have “spacetime analogs”. Omne of the central
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results concerning asymptotically flat manifolds is the Riemannian Penrose inequality
which has been proven by G. Huisken and T. Ilmanen [79] for connected horizons, and
by H. Bray [13] for arbitrary ones. Husisken-Ilmanen’s proof relies on inverse mean
curvature flow (IMCF) and the monotonicity of the Hawking energy. In [63] we showed

the following generalization of this monotonicity formula:

Theorem C. Let (M, g,k) be an asymptotically flat initial data set satisfying the dom-
inant energy condition p > |J|. Let 31,%9 be two surfaces in M with 3o containing

enclosing ¥1. Let (u,v) be a solution to spacetime IMCF

3|Vul[Vol+(Vu,Vv)
ut+v

Au = —try(k)|Vu| + kyy|Vu| + meu +

Av = trg(k’)|V’U| — kr]r]|vv| + V?mv + W

VulVul+Vu|Vul Then

with appropriate boundary conditions, where 1 = Ralvorvoa|

mH(Eg) > mH(El)

where my is the spacetime Hawking energy

o (157 fo0-0e04)
=/ 2 (1o — [ 0.0.d4
wa (2) =\ 16 \1 ™ 167 S O-0+24)

and where 8, = H + try, k are the null-expansions.

We will demonstrate that Theorem C implies both the Hawking energy monotonic-
ity in the Riemannian setting, and the integral formula of Theorem B. In particular,
the above formula implies the spacetime PMT and the Riemannian Penrose inequality.
Compared to other approaches towards spacetime IMCF [15, 19, 51, 80, 98], our ap-
proach has the advantage that we both have a monotonicity formula and a PDE with a

comparatively simple structure. We will discuss existence results in Chapter 4.5.



1.4 Outline

In chapters 2, 3, and 4 we will prove theorems A, B and C respectively. At the beginning
of each section we will include detailed information about the background, literature and
related topics. We will focus in our exposition on the central geometric and analytic
ideas, and outsource less important technical details to the corresponding appendices
A, B and C.

Further papers I wrote during my time in graduate school [14, 16, 17, 65, 66, 67, 68,
69, 70, 71, 73] will not be discussed.



Chapter 2

Proof of a generalized Geroch conjecture

This section is based on joint work with Simon Brendle and Florian Johne [22].

The round metric g2 on S? has positive Gaussian curvature, and Gauss-Bonnet’s
theorem shows that there is no such metric on the torus T?. Similarly, we obtain the

following figure in one dimension higher:

Table 2.1: Positive curvature in Dimension 3

Dimension 3 S3 | S2xSt| T3

Existence of a metric with Ric> 07 | v X X

Existence of a metric with B> 07 | v/ Ve X

Note that the round metric ggs has positive Ricci curvature Ric, and the product
metric gge @ g1 has positive scalar curvature R. The non-existence of metrics with
positive Ricci curvature on S? xS and T? follow from Bonnet-Myers’ diameter estimate,
and the non-existence of metrics of positive scalar curvature on T® is the statement of

the famous Geroch conjecture.

Theorem 2.0.1 (Bonnet-Myers’ theorem). Let (M™,g) be Riemannian manifold with

Ric > (n-1). Then the fundamental group of M™ is finite, and we have diam(M™) < 7.

Here and in the rest of this manuscript all manifolds are assumed to be complete,

orientable and smooth.



Corollary 2.0.2. There is no metric with Ric >0 on M ! x S!.

Proof. If M™ ' xS! has Ric > 0, so does the cover M ! xR which has infinite diameter.

O]

Bonnet-Myers’ theorem has first been shown by S. Myers [99] using the second vari-
ation formula of geodesics and a corresponding rigidity statement has been established
by S.-Y. Cheng [30]. New proofs have been given by C. Croke and B. Kleiner [40] using
the distance function and by the author, D. Kazaras, M. Khuri and Y. Zhang using
spacetime harmonic functions [65]. We remark that the proof using spacetime harmonic

functions also applies to open and incomplete manifolds and includes rigidity.

Theorem 2.0.3 (Geroch conjecture). There is no metric g with R >0 on the torus T".

This has been first established by R. Schoen and S.-T. Yau [106] up to dimension 7
using the minimal surface techniques, and later by M. Gromov and H.B. Lawson [58] in
all dimension using the twisted Lichnerowicz formula. A new proof in Dimension 3 has
recently been discovered by D. Stern [113] based upon harmonic maps into S!.

Applying again Bonnet-Myers’ theorem and the Geroch conjecture, we obtain the

figure below for Dimension 4.

Table 2.2: Positive curvature in Dimension 4

Dimension 4 St S?2xS? | SExSt | S2xT? | T
Existence of a metric with sec > 07 | v/ ? X X
Existence of a metric with Ric > 0?7 | v/ v X X
Existence of a metric with R >07 | v v v v




Note that it is still an open question whether there exists a metric of positive sectional
curvature sec > 0 on S*xS?. This is known as Hopf’s conjecture [54] and remains unsolved

for more than half a century.

Observe that neither sectional, Ricci, nor scalar curvature are able to distinguish
between the different topological spaces S* x S! and S? x T2. This motivated us to

introduce a new notion of curvature in [22]:

Definition 2.0.4 (Positive m-intermediate curvature). Suppose (N™,g) is a Rieman-

nian manifold. Then (N™,g) has positive m-intermediate curvature at p € M, if the

inequality
m n
Cm(er,...,em) =Y. > sec(ep,eq) >0
p=1g=p+1
holds for every orthonormal basis {e1,...,en} of the tangent space TyM. The man-

ifold (N™,g) has positive m-intermediate curvature, if it has positive m-intermediate

curvature for all pe M.

In the tables below we illustrate what it means for C,,, m =1, 2,3, to be positive in
Dimension 4. In general, m-intermediate curvature is obtained by “adding m columns

of sectional curvatures’



Table 2.3: The l-intermediate curvature C; is obtained by summing the sectional

curvatures highlighted in red. In particular, we have C;(e1) = Ric(ey,e1).

Dimension 4 el € es ey
e 0 sec(eq, ) | sec(er,ez) | sec(er,eq)
e sec(eq, e1) 0 sec(eg, e3) | sec(eq,ey)
es sec(es, e1) | sec(es,ez) 0 sec(es, eq)
ey sec(ey,e1) | sec(ey,es) | sec(eq,e3) 0

Table 2.4: The 2-intermediate curvature C, is obtained by summing the sectional
curvatures highlighted in blue. In particular, we have Cs(e1,e3) = BiRic(eq, e3).
Here the bi-Ricci curvature has been previously introduced by Y. Shen and R. Ye

in [110] via BiRic(ey, es) = Ric(eq, e1) + Ric(eg, e2) —sec(eq, e2).

Dimension 4 e1 €9 es3 €4
e 0 sec(er,ez) | sec(eq,es) | sec(er,eq)
) sec(ez, e1) 0 sec(eq, e3) | sec(eg, eq)
es sec(es,e1) | sec(es,es) 0 sec(es, e4)
ey sec(eq,e1) | sec(ey,ez) | sec(ey,e3) 0

Observe that Theorem A implies that the manifold S? x T? does not admit a metric
of positive 2-intermediate curvature, while a straightforward computation shows that
the standard metric on S? x S' does have positive 2-intermediate curvature. Thus, Cs is
able to distinguish the topological spaces S? x T? and S? x S!, and we can complete the

above picture:



Table 2.5: The 3-intermediate curvature Cs is obtained by summing the sectional

curvatures highlighted in purple. In particular, we have in Dimension 4 C3 = %R.

Dimension 4 el € es ey
e 0 sec(eq, ) | sec(er,ez) | sec(er,eq)
e sec(eg, 1) 0 sec(eg, e3) | sec(eq,ey)
es sec(es, er) | sec(es, ez) 0 sec(es, eq)
ey sec(eyq,e1) | sec(eq, ea) | sec(ey,e3) 0

Table 2.6: Positive curvature in Dimension 4 revisited

Dimension 4 S* | S$2xS? | $3xSt | S2xT? | T4
Existence of metric with sec > 07 | v ? X X X
Existence of metric with Ric > 07 | v v X X X
Existence of metric with C, > 07 | v Ve Ve X X
Existence of metric with R > 07 | v/ v 4 v X

Theorem A follows from a slightly more general statement. To state this result we

need to introduce the notion of stable weighted slicings:

Definition 2.0.5 (Stable weighted slicing of order m).

Suppose 1 <m <n—1 and let (N",g) be a Riemannian manifold of dimension dim N =
n. A stable weighted slicing of order m consists of a collection of submanifolds ¥y,
0 <k <m, and a collection of positive functions pr € C*°(Xk) satisfying the following

conditions:

e Xg=N and py = 1.



o For each 1<k <m, X is a embedded two-sided hypersurface in ¥_1. Moreover,

Yk 1s a stable critical point of the py_1-weighted area
-k
Hyh (2) = [ oo

in the class of hypersurfaces ¥ c Xg_q.

e For each 1 <k <m, the function o pl’“‘z e C*(Xg) is a first eigenfunction of the
- k

stability operator associated with the py_1-weighted area.

This definition is similar but not identical to the notion of minimal m-slicings used
by R. Schoen and S.-T. Yau in [107]. See Figure 2.1 for a depiction of a stable weighted
slicing.

Now we can state the main result of [22]:

Theorem 2.0.6 (m-intermediate curvature and stable weighted slicings).
Assume that n(m —2) <m? - 2. Suppose (N, g) is a closed Riemannian manifold with

positive m-intermediate curvature. Then N does not admit a stable weighted slicing
YmcCerc¥icXg=N"
of order m<n-1.

The dimensional constraint n(m —2) < m? -2 is always satisfied for n < 7 and arises
from several algebraic inequalities originating from stability inequalities. This should be
compared with the proof of the codimension-7 regularity for area-minimizing surfaces, cf.
[112, Appendix B], which also relies on algebraic inequalities appearing in the stability

inequality for area-minimizing surfaces.

Combining Theorem 2.0.6 with the topological existence result below yields Theorem

10



Theorem 2.0.7 (Existence of stable weighted slicings).
Assumen <7 and 1 <m <n-1. Let N be a closed manifold of dimension n, and
suppose that there exists a closed manifold M™™ ™ and a map F: N™ — M™™ ™ xT™ with
non-zero degree. Then for each Riemannian metric g on N there exists a stable smooth
weighted slicing

YmCYmo1C--CcXicXg=N"

of order m.

Theorem A has been generalized into various directions by several authors: S. Chen
[29] extended Theorem A to the non-compact setting, while A. Chow, F. Johne and
J. Wan [34] allowed a non-empty boundary to be present. J. Chu, K.-K. Kwong and M.-
C. Lee [38] as well as K. Xu [119] addressed the corresponding rigidity, and M. Labbi used
Theorem A to compute the Riemann invariants of certain manifolds. Moreover, K. Xu
[119] constructed examples demonstrating that the dimensional bound n(m-2) < m?-2
is sharp. Finally, we show in an upcoming work a band-width version of Theorem A.

This chapter is organized as follows: In Section 2.1 we establish several elementary
properties of C,, and recall the stability formula for area-minimizing hypersurfaces.
Next, we prove in Section 2.2 Theorem A for m = 1 and m = 2 before proceeding
with the general case in Section 2.3. Thereby we highlight the geometric ideas of our

argument while several technical aspects are moved to Appendix A.

2.1 Preliminaries

The next two lemma follow from standard computations:

Lemma 2.1.1. Consider the manifold S*™™ x T™ equipped with the standard metric g,

i.€. g = gsn-m ® grm where gsn-m is the round metric on S*™™, and grm is the flat metric

11



on T™. Then Cp(g) 20 and Cpy4i(g) >0 for k > 1.

Lemma 2.1.2. Let (N",g) be a Riemannian manifold with positive sectional curvature.
Then (N™,g) has positive m-intermediate curvature for all m > 1. Similarly, if Cy, > 0

for some m > 1, then (N™,g) has positive scalar curvature.

Recall that given m orthonormal vectors {eq,..., e, }, m-intermediate curvature is

defined as the sum

m n
Cm(er,....em) =Y. > sec(ep,eq).
:p+
In fact, C,, depends only on the m-plane spanned by the vectors {e1,...,en}:

Lemma 2.1.3. m-intermediate curvature is a function on on the Grassmanian, i.e.
given two sets of orthonormal vectors {e1,...,em} and {f1,... fm} spanning the same

m-dimensional plane in T,N", we have

Cm(eh'” 76m) = Cm(f177fm)

Proof. Observe that
Smn(€l,....em) +2Cn(e1,....em) =R

where

n n
Smn(€1,...,em) = Z Z Rm(ep, eq, €p, €q)-
p=m+1g=m+1
Here sy, is (m,n)-intermediate scalar curvature introduced by M.L. Labbi [88] and

further studied by M. Burkemper, C. Searle and M. Walsh [23]. Since sy, depend only

on the Grassmanian |23, Section 2|, the result follows. O

It is well-known that taking connected sums of two manifolds preserves positive

scalar curvature but does not preserve positive Ricci curvature. In our setting we obtain:

12



Lemma 2.1.4. Positive m-intermediate curvature is preserved under surgeries of codi-
mension ¢ >n—m+ 2. In other words, if both N™ and M™ admit a metric with Cp, >0,

then so does the manifold obtained by surgery of codimension ¢ >n—m + 2.

In particular, positive scalar curvature is preserved under codimension 3 surgeries
which recovers a classical result of R. Schoen, S.-T. Yau [106] and M. Gromov, H.B. Law-

son [59].

Proof. This follows immediately from S. Hoelzel’s general surgery result [74, Theorem

Al O

Our arguments employ the first and second variation of a suitably weighted area

which we will recall next.

Consider a Riemannian manifold (N",g), a smooth positive function p : N* - R,
and an embedded two-sided closed manifold > ¢ N™. For a given smooth function f €
C*(X) we consider a variation F': (—¢,e)xX - N™ with F'(0,x) = x and %F(s, x)‘s:O =
f(x)v(zx). In the following, we denote the map F(s,-) by Fs. Moreover, we denote by

Ys the image of F and by v the unit normal vector field to F.

By precomposing the maps Fy with suitable tangential diffeomorphisms, we can

arrange that the variation is normal in the sense that

0
Fs: s Vs,
0s fsv

where f is a smooth function on X;.

We consider the p-weighted area defined by

-1 —
Hy ()= /E pdpu
where p is the area-measure on X.

13



Proposition 2.1.5 (First variation of weighted area).

The first variation of weighted area is given by

d )1
Lyn-iix,
ds o (5s)

= [Lof (Hs +(Vxlog p,v) dp
s=0 by
Here Vi is the Levi-Civita connection of N™ and Hy, the mean curvature of 3.

Proof. This is a consequence of the first variation formula for area, and the chain rule.

O]

Corollary 2.1.6.

Suppose X is a critical point of weighted area. Then we have

Hy, = ~(Vnlogp,v).

For a constant weight we recover the minimal surface equation Hy, = 0.

Proof. This follows immediately from the fundamental lemma of the calculus of varia-

tions. O

Proposition 2.1.7 (Second variation formula on critical points).
If ¥ is a critical point of the weighted area functional, then the second variation of

weighted area is given by

2o
d_ssz (2s)

s=0

:/EP(_fAzf ~ (|As]® + Ricn (v,v)) 2 + 2 (Vi log p) (v,v) = f(Vslog p, Vs f)) dp.

Here Ay is the Laplacian operator induced on ¥ and Ay, is the scalar-valued second

fundamental form of X.

14



Proof. We use normal variations for our computation, and hence the first derivative is

given by
d

e dszf SH 1 y Vs ds-
05 Iy, Plm ESpf( s, +(Vnlogp,vs)) du

We now differentiate both sides of this equation with respect to s, and evaluate the
result at s = 0. By the variation formulas for hypersurfaces, compare for example with

[81], the first order change in the mean curvature is given by

9y,

P = -Axf - (JAs]® + Ricy (v,v)) f,

S=

whereas the first order change in the normal vector field is given by

V5V5|S:0 = _vEf'

This implies

0
95 (Hs, +(Varlogp,vs))
S

s=0

=-Axf - (JAs]® + Ricy (v,v)) f + (Vi log p) (v,v) f - (Vs log p, Vs f),

hence

a2
a2 e (%)

s=0

= [ of (~Ass = (JAsP + Riew (1)) £ + (T log p) (1) f = (Vs 1oz, V) dt.

This finishes the proof. O

2.2 Proof of Theorem A for specical cases

2.2.1 Proof of Theorem A for m=1

We show that N™ = M™ ! x S! does not admit a metric g with Ric(g) > 0. As discussed

in the previous section, this follows immediately from Bonnet-Myers’ theorem. Here

15



we give an alternative argument based on area-minimizing hypersurfaces which we will

generalize to other values of m.

Minimizing area in a non-trivial homology class of N", we obtain a stable minimal
surface X1, cf. Appendix A.3. Note that X is a stable weighted slicing of order m = 1.
According to the second variation formula, Proposition 2.1.7, we have for every smooth

test function f e C*(X;)

0<- fz (fAs.f + Ricn (v, 0) f2 + | As, [2£2).

Choosing f =1 demonstrates that Ricy(g) > 0 is impossible.

2.2.2 Proof of Theorem A for m =2

Our proof of Theorem A employs stable weighted slicings of order m as depicted in
Figure 2.1 below. In the figure, the cube’s faces are identified to represent T™, and
each point in the cube represents a copy of M"™ ™. Minimizing area in a non-trivial
homology class leads to a stable minimal surface 31 and the stability inequality for
31 gives rise for a non-trivial eigenfunction u;. Next, we minimize within Y the wuq-
weighted area to obtain a stable weighted minimal surface Yo with eigenfunction wus.
Iterating this process leads to a stable wuq - --- - uy,_1-weighted minimal surface ¥,, in
Ym-1. Applying the stability inequality on X, rules out the existence of a metric with

Cp,>00on N™ =M™ x T,
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Yo = Mn—m x Tm
>J; minimal surface ~

Y9 up-weighted minimal surface ~ us

I
| Y Up - ... - Up_1-weighted minimal surface ~ ¢
I

Figure 2.1: Schematic description of our slicing argument

Even though there are no conceptual differences between the case m = 2 and the
general case, the algebra becomes significantly more involved in the latter setting. There-
fore, we include the computation for m = 2 separately to highlight the most important

analytic ideas.

As in the case m = 1 we start with constructing a stable minimal surface 3; in
M"2xT? cf. Appendix A. The hypersurface ¥ is smooth since n < 7. On ¥; we have

for every smooth test function f e C*(3;)

0<— [ (Fw, g+ Ricn(v,m)f +1ds, ).

It is well-known, see for instance [49, Theorem 1], that such an inequality leads to the

existence of a first eigenfunction u; of the stability operator satisfying
Ay up = -Ajug — |A21|2’LL1 - Ricy (v1,v1)ug
for some eigenvalue A > 0. For the sake of completeness, we include a proof below:

Lemma 2.2.1. Let ¥ be a closed manifold, and let ¢ be a smooth function on 3. Suppose
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that

0< (947 +or*)dp

for all smooth test functions f € C*(X1). Then there exists a smooth, strictly positive

function u solving the equation
Au = ou + Au
for some A > 0.

Proof. Since [5(|Vf]>+¢f?)du is bounded from below, we can consider the correspond-

ing variational problem

int { (VI +02)du] £ € WHA(E), I flacs) =1}

Let {u;} be a minimizing sequence with |lu;||z2(x;) =1 and

fz (IVusl? + pu2) dps — A

for some constant A > 0. Since X is compact, ¢ is bounded, and therefore w; is uniformly
bounded in W12(%). This implies that u; is subsequently converging strongly in L?(3)
to some function u by Rellich-Kondrachov’s theorem, and weakly in W12(X) by Banach-
Alaoglu’s theorem together with the reflexivity of the space W12(XZ). Due to the strong
convergence in L?(X) and the normalization |u; lz2(x) = 1, we obtain that |ufz2(x) = 1.
Due to the weak convergence in W1?() and the weak lower semicontinuity of [-|y1.2(x),

we find

fz (|V'u,|2 + q§u2) dp = .

Hence w is indeed a minimizer and therefore satisfies the corresponding Euler-Lagrange

equation Awu = ¢u + Au. By standard elliptic theory, u is smooth.
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Next, observe that |u| also lies in W1?(X) and satisfies lull[ 25y = 1. Hence, |u] is
a valid competitor of the above variational problem. Since, [(|V[u|]® + flu[*)dV = A,
the function |u| is also a minimizer of the variational problem. Thus, |u| solves the
corresponding Euler-Lagrange equation and is smooth by elliptic regularity. Therefore,
u must have vanishing normal derivative on the boundary of the set ¥ := {z € ¥ : u(z) >
0}. Note that 3, is with out loss of generality non-empty since we may replace u by
—u. Applying Hopf’s Lemma to X5 we deduce that X5 = X, i.e. u must be non-negative.

Using the strong maximum principle, u is in fact strictly positive. O

Resuming with the proof of Theorem A for m = 2, we consider on ¥; the weighted

area functional

HI2() = /Euldu.

Minimizing H?? in a non-trivial homology class of ¥; leads to stable weighted minimal
hypersurface 3o c 31 of dimension n—2. Again, we refer to Appendix A.3 to justify the

existence of Yo. By the first variation formula, Corollary 2.1.6, we have
HZQ ==V, U1

where Hy, is the mean curvature of ¥y c 37 with respect to the unit normal 1. By the

second variation formula, Proposition 2.1.7, we have for every test function f € C*(%5)

0= [ (Fs, £ +1Aw, 2+ Rics, (v2,0) ) dp
2

- f22 ur (=2 (V3 w) (va,v2) + Vs, f, Vs, ur) f) dps

where Ay, is the second fundamental form of 35 c ¥;, and Ricy, is the Ricci curvature
of 31. Next, we would like to make use of u; satisfying the eigenvalue equation Ay, u; =

-Auq - |A21|2u1 —Ricy (v1,v1)u;. Therefore, we insert the text function f =uj! which
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yields
0<- fz (u{l(—uI1A22u1 +|Vy, logu1|2) dpu
2
- [E (|A22|2 + RiCEl (l/g, V2) - u[l(Vélul)(yg, VQ)) du.
2

By choosing f = u;! that the factors in front of the Ay,u; and (VQE2’LL1)(V2,I/2) terms

coincide. With the help of the first variation formula, this allows us to compute
As,ur + (V3 u1) (v2,v2) = A, un = Hy, Vi,ur = Aguy +uy' (V0 u)?,

Thus, using the eigenvalue equation for u; and estimating |Vs,u1]? > (V,,u1)?, we

obtain
0<- A (u{1(|A21|2 + RiCN(Vl, Vl) + ‘VEQ logul\Q + |A22|2 + RiCZl(l/Q, VQ)))d,u,
2

Next, we would like to replace Ricy, (v2,v2) with a curvature term of ¥g = N™ = M n=2 y

T2. To do so, we use the Gauss equations which state
RiCE1 (1/2, I/Q) = RiCN(VQ, 1/2) - SeCN(I/l7 1/2) - (Agl(l/z, VQ))z.

Hence

0<—- /; uIl(RiCN(Vl,Vl) + Ricy (va, v2) —secy (v1,v2))dp = - ,[2 UIICQ(Vl, vo)dp
2 2

which implies that Co cannot be strictly positive on N™. This finishes the proof of
Theorem A for m = 2.

We would highlight that m-intermediate curvature is up to some extrinsic curvature
terms just the sum of Ricci curvature terms coming from a stable slicing. In other
words, m-intermediate curvature is the natural notion of curvature associated to stable

weighted slicings.
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2.3 The general case

For arbitrary m, we use the topology of the manifold N™ = M™™" x T™ to construct a
stable weighted slicing ¥,, ¢ X,,_1 ¢ -+ ¢ X1 ©¢ Xg = N", cf. Figure 2.1 and Appendix
A.3. After a tedious (but otherwise to m = 2 similar) computation and some delicate
gradient estimates, cf. Appendix A.1, the stability inequality of the uy-. . .-u,;,_1-weighted

minimal surface ¥, c ¥,,-1 yields:

Lemma 2.3.1 (Stability inequality for weighted slicings). Let ¥,, ¢ ¥,,-1 c---c Xj C

Yo =N" be a stable weighted slicing of order m. Then we have

0-< f (Cm(ul,...,ym) + ZVk)d,u
Xm k=1

where Vi, are extrinsic curvature terms given by

m n

Vi :|AE1|2 + Z Z (AE1 (ep’ ep)AEl(eq’ eq) - Ay, (6p> eq)2) )
p=2g=p+l
1 1
A P -2 - —— | HZ
Ve =14z (2 2(k:—1)) Z

+ > > (As(ep ep)As, (eq,eq) — Agk(ep,eq)z) for2<k<m-1,

For m =1 and m = 2, we saw in the previous section that ;' Vi > 0 which implied
that N™ = M™ ™ x T™ does not admit a metric with positive m-intermediate curvature.

Let us analyze the general case next:
Lemma 2.3.2. Suppose n(m —2) <m?-2. Then Y7, Vy > 2.

This estimate uses different ideas for the three different cases k=1,2<k <m-1 and

k =m. The main philosophy of our argument is that we have good second fundamental
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form terms competing against bad mean curvature terms. Since for a k-dimensional
hypersurface the estimate |A[?> > %H 2 holds, we should not expect that the good second
fundamental form terms can control the bad mean curvature terms in arbitrary large
dimensions. Due to the technical nature, the proof of Lemma 2.3.2 will be carried out

in Appendix A.2.

Lemma 2.3.3 (Algebraic Lemma). Let n<7. Then n(m—2) <m? -2,

We remark that for m = 1,m = 2,m = n—-2,m = n -1 the dimension n can be
arbitrarily large. On the other side for m = 3, we obtain n(3 -2) <32 -2, ie. n<7.
Similarly, we also obtain n < 7 for m = 4 and m = 5. This dimensional constraint is
sharp as demonstrated by K. Xu [119] who constructed counterexamples to Theorem A
in dimensions n(m —2) > m? - 2. Moreover, we observe that the dimensional constraint
is symmetric in the sense that n(m —2) <m? -2 is equivalent to n(m - 2) < m? -2 for

m=n-m.
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Chapter 3

Spacetime harmonic functions

This chapter is based upon joint work with Demetre Kazaras, Marcus Khuri [64] (the

mass formula), and Yiyue Zhang [72] (the case of equality).

In Dimension 3 there is a surprisingly elegant proof of the Geroch conjecture due
to D. Stern [113]. While R. Schoen and S.-T. Yau [106] exploit the existence of non-
trivial homology classes in Hy(T?;7Z) by constructing area-minimizing surfaces, D. Stern
considers the dual problem of minimizing energy of maps T3 to S!. This leads to the
existence of a harmonic map u : T3 - S! where we assume for simplicity that Vu # 0.

The harmonicity of u implies the Bochner identity
1 .
§A|Vu|2 = Ric(Vu, Vu) + |[V2ul>.

Now the crucial observation is that the Ricci curvature term can be expressed as
Ric(v,v)|Vul> where v = |§_Z| is the unit normal to the level-sets ¥; of u. Hence, we
can use the contracted Gauss equations 2 Ric(v,v) = R~ 2K + H? - |A]> where K is the
Gaussian curvature, H the mean curvature and A the second fundamental form of the
level sets ¥; = {u = t}. This trick has been previously been known in the physics liter-

ature where it found several applications due to J. Jezierski, J. Kijowski and P. Waluk

[84, 85]. Expressing the second fundamental form A as A|Vu| = V?u|rsers, and inte-

'For a rigorous proof see Section 3.3.
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grating Bochner’s formula and the Gauss equations yields

0—2[ A|vu|—f V| piv)a —2/ K|vuld (3.1)
=% = s\ vyl H72 s - '

Since T® has no spherical classes, the maximum principle implies that the level sets

Y = {u =t} cannot be spherical. Hence, the coarea formula yields

-2[ K|Vu|=—2/f KdA>0.
T3 St U,

Therefore, T? cannot admit a metric of positive scalar curvature.

Besides harmonic maps, level-sets also arise naturally in the study of geometric
flows. For instance G. Huisken and T. Ilmanen proved in [79]| the Riemannian Penrose
inequality for a single black hole via a level-set formulation of inverse mean curvature
flow.

In this section we introduce several new differential equation and demonstrate how
we can use the level-sets of their solutions to obtain powerful applications in both math-
ematical relativity and Riemannian geometry. In particular, we use spacetime harmonic

functions to prove Theorem B which implies the spacetime positive mass theorem.

3.1 Initial data sets

Asymptotically flat initial data sets (M3, g, k) naturally arise in General Relativity
where they are used to model isolated gravitational systems such as stars, galaxies and
black holes. Here (M3, g) is a complete non-compact Riemannian manifold where g ap-
proaches the Euclidean metric § at infinity and k is a symmetric two-tensor approaching

zero at infinity.

More precisely, we say a triple (M?3,g,k) is an asymptotically flat initial data set

of order 7 € (%, 1] if (M3,g) contains a compact set C ¢ M such that we can write
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M~C = LJK0 M. ¢ g Where the ends M ¢ nq are pairwise disjoint and diffeomorphic to the
complement of a ball R3\ B;. Moreover, we require that there exists a coordinate system

in each end satisfying

10" (935 = 6i3) ()| =O(l[ ), 1=0,1,2,
(3.2)
10'kij ()] =O (|| 1), 1=0,1,
Here O() is the standard Landau notation.

In Einstein’s theory of gravity, Lorentzian manifolds (A%, ) are used to model
spacetimes, and initial data sets (M3, g, k) above arise as spacelike slices inside (M?,g).
Here g is metric induced from g, and k the second fundamental form. According to
general relativity, matter curves spacetime and the curvature of spacetime determines
the motions of matter. Mathematically, this corresponds to (M*, g) solving the famous
FEinstein equations Ric — —Rg 87T where T is the stress energy tensor. Since geom-
etry equals physics, making physically reasonable assumptions on 7" leads to geometric
assumptions on (M*, g) which translate to geometric assumptions on (M3, g, k) via the
Gauss-Codazzi equations. In particular, we will assume that our spacetimes satisfy the
dominant energy condition which physically amounts to us not being able to observe
non-negative mass densities. Mathematically, this translates on each initial data set to

the condition

| Jl,
where p is the energy density, and J the momentum density J defined by
1
p=5(R+trg K- k),  J=divy(k-tr, kg).

Moreover, we define the ADM energy E and linear momentum P by

= lim —f Z(gz]z gzz,])v d,u,,

r—>00 167T

P, = lim — [ (kij ~ trg kgij) vldp

T —>00 7'('
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where v is the outer unit normal to the sphere S, and du is its area element. Furthermore,
we set m = /FE? —|P|2. In order to ensure that F and P are well-defined in equation
(3.3), we impose additionally p,.J € L*(M).

A fundamental results about initial data sets is the positive mass theorem (PMT):

Theorem 3.1.1. Suppose (M,g,k) is a complete asymptotically flat initial data set

satisfying the dominant energy condition (DEC) > |J|. Then E > |P|.

This result has been first established by R. Schoen and S.-T. Yau in [109] using the
Jang equation and by E. Witten in [118| using spinors. Further proofs have been given
in [46, 47, 64|, and the important special case k = 0 has been treated in |2, 18, 70, 79, 92,
96, 108]. We refer to [64] for a more detailed historical overview and to the monograph
[90] for an in-depth discussion of mathematical relativity.

In this chapter we will analyze how so-called spacetime harmonic functions, i.e. func-
tions solving the PDE Au = —tr, k|Vu| can be used to study initial data sets (M, g, k).
This will not just allow us to obtain a more elementary proof of the spacetime PMT,

but it also allows us to classify the initial data sets satisfying the identity E = |P|.

3.2 Further applications

Before proceeding with an in-depth study of the spacetime positive mass theorem, we
first discuss several other applications of spacetime harmonic functions. Surprisingly,
there is a whole zoo of applications including purely geometric statements and physically

motivated results.
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3.2.1 Comparison geometry

Given a Riemannian manifold (M, g) we can artificially construct an initial data set
(M, g, k) by setting k = fg for a suitably chosen function f. Thus, we can use spacetime

harmonic functions in a purely Riemannian context.

Similarly, other techniques from GR can be applied to geometric problems: In case
k= fg, MOTS (marginally outer trapped surfaces) are called p-bubbles, and the Dirac
operator is called Callias operator. Both u-bubbles and the Callias operator led to many
important geometric results, cf. [31, 55, 91, 103, 121] and |25, 26, 120].

In a joint work with D. Kazaras, M. Khuri and Y. Zhang [65] we used spacetime
harmonic functions to obtain a new proof of Bonnet-Myers’ diameter estimate, cf. The-
orem 2.0.1, including Cheng’s rigidity [30]. Compared to Myers’ original argument using
geodesics, and to Croke-Kleiner’s [40] argument using the distance function, our proof
has the advantage that it also works for open and incomplete manifolds. In the same

paper, we also showed the following result classifying lens spaces:

Theorem 3.2.1. Let (M3,g) be a closed Riemannian manifold with 2-Ricci curvature

at least 4. If ¥? ¢ M? is a connected embedded closed surface of positive genus, then

Inj, (2?) < (3.4)

If additionally Ric > 2g and equality occurs in (3.4), then the universal cover of (M3, g)
is isometric to the round sphere and X2 lifts to the Clifford torus. Moreover, in this case

(M3, g) is isometric to a round sphere or a round lens space.

Here Inf, is the normal injectivity radius, and we say that the 2-Ricci curvature is
at least 4 if the sum of any two eigenvalues of the operator Ric is greater or equal than

4.
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Compared to other techniques spacetime harmonic functions excel at describing
complicated rigidity phenomena which we later exploit for the spacetime PMT. Here is

another example from [65]:

Theorem 3.2.2. Let (M3,0.M?3,g) be a 3-dimensional Riemannian band with no
spherical classes in Ho(M?3;7). Consider the sign reversed minimal outward mean cur-
vature Hy = —mingys H. If (M3, g) has 2-Ricci curvature at least 4, then Hy > 0 and

the width of the band satisfies
w = dist(O_M?>,0, M>) < arctan(Hp/2). (3.5)

If additionally Ric > 2g and equality is achieved in (3.5), then the universal cover of

(M?3,g) is isometric to ([-%, %] x R?, g) where

w w
ge=dp*+ G2()da* + V20, pe|-5. 5| () B2

and

1-7 x
¢r(p) =272 cos' Y (p+ ) cos2 (2p)

X
2

Yr(p) = 27" sin!~ T (p + T)cos2(2p)

for some Y €[0,1].

There are counterexamples for the case of equality in case the additional assumption
Ric > 2 is not satisfied [65].

Llarull’s theorem [93] states that if g > gsn and R(g) > R(gs») = n(n - 1), one must
have g = gsn. Conjecturally, this extremal character of the round metric on S™ is even
more robust: Gromov has suggested [55, Conjecture D] that the open and incomplete
manifold formed by removing finitely many points from the round sphere enjoys the
same property, also see [56, Section 3.9]. We confirm this statement in the next result,

for dimension 3 in the special case of a pair of antipodal points:
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Theorem 3.2.3. Let g be a Riemannian metric on S3~ {N,S} where N,S are the
north and south pole. If g > ggs, then there is a point x € S\ {N, S} where the scalar

curvature satisfies R(x) < 6. If additionally R > 6, then g agrees with the round metric

gss-

The proof of both this result and Theorems 3.2.2, 3.2.1 above, are also based on

spacetime harmonic functions.

3.2.2 Existence of black holes

The idea to construct a new symmetric two-tensor and to study the associated spacetime
harmonic functions also works for initial data sets and leads to black hole existence
results. Besides spacetime harmonic functions, the techniques described in Chapter 2
also lead to such as existence results. More precisely, in [66] we showed together with

D. Kazaras, M. Khuri and Y. Zhang;:

Theorem 3.2.4. Let 3 <n <7, and suppose that (M™,g,k) is an asymptotically flat
n-dimensional initial data set. Assume that there is an n-cube within M™ on which
2 n

2

1=

2nmw

| —

p=|J >

9

[\

n+1 Ve

=

where £; is the distance between the ith pair of opposite faces of the cube. Then the data

contains a closed properly embedded smooth apparent horizon.

We remark that in view of Penrose’s incompleteness theorem [100], an apparent hori-
zon is contained within the black hole region under physically reasonable assumptions.
Thus, the above statement demonstrates that if sufficiently much matter accumulates

in a fixed region, gravitational collapse must occur and a black hole must have formed.
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However, we note that the Theorem 3.2.4 does not contain information about the loca-
tion of the apparent horizon; in particular the horizon could be both inside or outside

the cube.

3.3 The integral formula

Next, we move on to the foundation of the proof of Theorem B. More precisely, we
compute in this section the central divergence formula for the case where Vu is non-
vanishing. This allows us to highlight the most important geometric and analytic aspects
of the computation, while the general case is outsourced to Appendix B.3. This integral
formula does not just crucial ingredient of the proof of Theorem B, but also for several

of the results from previous subsection.

Theorem 3.3.1. Let u be a smooth solution of the spacetime Laplace equation Au =
—trg k|Vu| with Vu # 0. Then

V2l

div(V|Vul| + kE(Vu,-)) + K|Vu| = 2Vl

+ p|Vul+ (J, Vu) (3.6)

where V2u = V2u + k|Vu|, and where K is the Gaussian curvature of the level-sets ¥y of

u.

Before proceeding with the proof, let us comment more on the structure of Equation
(3.6). Note that the right hand side will always be non-negative in case the dominant
energy condition p > |J| is satisfied. This will allows us to deduce geometric and physical
consequences. Moreover, understanding the spacetime Hessian term V2u will be the key
for proving rigidity statements. After integration we can also control the left hand side
by applying the divergence theorem to the first term, and the coarea formula together

with Gauss-Bonnet’s theorem to the second term. This leads to terms involving the
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Euler characteristic of the level-sets and boundary integral terms depending on the
null expansions ¢, = H + try. k. We will discuss in depth how to control the Euler

characteristic of the level-set in Appendix B.1 and B.2.

Proof. We begin with recalling the standard Bochner identity which states
—A’VU’Z |V2ul? + Ric(Vu, Vu) + (Vu, VAu).

Exploiting that Vu is non-vanishing, we can rewrite this identity as

AlVul = — (IV?uf* - [V|Vul[* + Ric(Vu, Vu) + (Vu, VAu)). (3.7)

1
|Vl
Let us denote with v = |V“| the unit normal to the level-sets of u, and with A, H the

second fundamental form and the mean curvature. We have

1
A= —v%u, H=—(Au-V,u).
|Vl |V |
This leads to
(Vul?(H? = |A]?) = 2|V |Vu|? - [V2ul? + (Au)? - 2AuV,,u. (3.8)

Combining the contracted Gauss equations Ric(v,v) = $(R+H?-|A|* - 2K) with equa-

tions (3.7) and (3.8), we obtain

Alvul = (|v ul? + |[VuP (R-2K) + 2(Vu, VAU + (Au)? - 2Auv,,u).

Next, we introduce the notation VZu = V?u + k|Vu| which yields

AVl =L(|@2u|2 + | VuP (R-2K) + 2(Vu, VAu) + (Au)? - 2AuV,,u)

\VI

2 2
2|V |( 2Vjuk;j|Vul - k7| Vul7).
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Inserting Au = —tr, k|Vu| leads to

1 _
AlVul =3l (|92uf? + [Vul* (R -2K) + 2(Vu, V(try k|Vul)) + try k*|Vul?)
1
+ 2|V’LL| (_2 trg leU|iju - QVzJukZJ|Vu| — |k|2|vu|2)

Observe that
(Vu, V|Vu|) = [Vu|V,u.
Hence the above term simplifies to

1

v (|92l + 2|vul* (- K) + 2|Vul(Vu, V try k) — 2V,uki;|Vul).

AlVu| =
Finally, we use the identity

=Vijukij = = div(k(Vu,-)) + ViuV ki

to finish the proof. O

3.3.1 Technical difficulties

We would like to point out several technical challenges which are present for spacetime

harmonic functions but not for harmonic functions:

e The spacetime Laplace equation Au = —trg k|Vu| is non-linear which complicates
the existence theory. This is especially an issue asymptotically hyperbolic manifolds

[17]where trg k does not decay to zero at oo.

e In general, the solution u will not be smooth which leads to some subtleties. For

instance, Sard’s theorem needs C®-regularity.

e To be able to exploit Gauss-Bonnet’s theorem we need to control the topology of

the level-sets of u. For the Riemannian positive mass theorem one can pass to the
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exterior region |79, Lemma 4.1] and then solve the spacetime Laplace equation
with Neumann boundary data. However, both of these proof steps break down
in the spacetime setting and we refer to Appendix B.1 and B.2 for a detailed

discussion.

However,the non-linearity is still mild and the spacetime Laplace equation is signif-
icantly better behaved than comparable PDEs such as Jang’s equation. We will exploit

this in Section 4.

3.4 Why spacetime harmonic functions?

In this section we discuss where spacetime harmonic functions come from and explain

several special properties.

3.4.1 Spacetime harmonic functions in Minkowski space

On any manifold, the perhaps most natural differential operator is the Laplacian. Now
suppose (M, g,k) is contained in Minkowski space (R*!,g). Within Minkowski space,
harmonic functions are given by u = ax + by + cz + dt where a,b,c,d € R. Restricting u

onto (M, g, k) leads to the equation
Au = -V yu—trg kN (u) = —try kN (u).

where N is a unit normal of (M, g, k) c R*!, and k the second fundamental form with
respect to N. However, N(u) does not solely depend on the initial data (M, g,k). In
case u is an optical function, i.e. Vu is null, we have the additional identity N(u) = |Vul.

Hence, we recover the spacetime Laplace equation Au = —trg k|Vul.
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= 1,Y, %

Figure 3.1: Given an initial data set (M, g, k) contained in Minkowski space,
the level-sets >; of a spacetime harmonic functions are given by intersections with

null-planes. We will use a similar idea to construct spacetime IMCF in Chapter

4.

3.4.2 Comparison with other techniques

Perhaps surprisingly, spacetime harmonic functions are closely related to many other
techniques used to study manifolds with non-negative scalar curvature (or more gener-

ally, initial data sets satisfying the dominant energy condition).

The idea to apply Gauss-Bonnet’s theorem in combination with the contracted
Gauss-equations lies at the heart of the minimal surface technique, though in this case
these theorems are only applied to a single surface instead of a whole family of surfaces.

Moreover, there is a connection between spacetime harmonic functions and inverse

mean curvature flow. In fact, Theorem C generalizes the integral formula from the
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previous section and the famous Hawking mass monotonicity formula for IMCF. We

will discuss the precise relationship in more detail in Section 4.

Furthermore, Witten spinors® give in a natural way rise to a vector field. If this
vector field is integrable, the corresponding function will be spacetime harmonic. We

refer to [16, Section 5| for details.

Finally, instead of choosing the harmonic function in Minkowski space to be null in
the previous subsection, we could have also chosen it be timelike, i.e. u =t. In this case
N(u) = W, and we obtain the PDE Au = —try k|Vu| which has been referred to
in the literature as generalized Jang’s equation. Again, we refer to [16, Section 5| for

details.

3.5 The positive mass theorem

Given the integral formula

: |V 2ul?
2div(V|Vu| + k(Vu,-)) + 2K|Vu| = vl

+ 2| Vul + 2(J, Vu). (3.9)

we are now almost in the position to prove Theorem B. The remaining subtleties are
to control the level-set topology which is outsourced to Appendix B.1 and B.2, and to
establish an existence theory for spacetime harmonic functions which is the subject of the
next subsection. Assuming both these results are established, we will now demonstrate

how formula (4.6) leads to the spacetime PMT.

2The spinors used by Witten [118] in his proof of the spacetime PMT. Roughly speaking, they

are just the usual Dirac spinors with respect to a “spacetime” tangent bundle.
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3.5.1 The asymptotically flat case

Now let (M3, g, k) be an asymptotically flat manifold satisfying the dominant energy
condition p > |J|. Let u be the spacetime harmonic functions whose gradient is asymp-
totic to the unit vector Z at oo. The existence of u is guaranteed by Theorem 3.6.2
established in the next subsection. For simplicity we assume M?> = R? and that Vu is
non-vanishing everywhere - both general cases are discussed in detail in Appendix B.1

and B.3.

Integrating the formula (4.6) we obtain with the help of Gauss-Bonnet’s theorem

and the divergence theorem the equation

1 9242
E+Pa:—f 2|Vl + 20, Vu) | du.
- MS( s 2ylvul+ 200, Vu))

The computation of the boundary term is slightly tedious and therefore outsourced to

Appendix B.4.

Without loss of generality we may assume that P # 0. Choosing u to be asymptotic

to T = —|—§|, the mass formula of Theorem B follows. It remains to establish the case of
equality.

3.5.2 The case of equality

We assume that E = |P|, i.e. (M, g, k) has vanishing mass m = \/FE? - |P|2. Our goal is to
show that (M, g) embeds isometrically into Minkowski space with second fundamental
form k. This has already been established previously by R. Beig, P. Chrusciel [10],
L.-H. Huang, D. Lee [77], and together with D. Kazaras and M. Khuri in [64] under
additionally imposed regularity and decay assumptions for g, k, u, J.

Our proof will proceed in four steps:
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e We show that the pair (g,k) satisfy most of the Gauss and Codazzi equations

using the mass formula of Theorem B.

e The remaining Gauss and Codazzi terms have the form A,z = V3kag — Vakss
where e,, e are tangent to the level-sets of u. We show that VEﬂF = |Vu[ 2 Aus

for some function F' where VEB is the level-set Hessian.

e We have A™F = |Vu|72p > 0. In combination with the asymptotics of g, k, Liou-

ville’s theorem yields that the Hessian of F' vanishes.

e Since all the Gauss and Codazzi equations are satisfied, the Lorentzian version
of the fundamental theorem of hypersurfaces implies that (M,g) isometrically

embeds in Minkowski space with second fundamental form k.

Let u be the spacetime harmonic function whose gradient is asymptotic to —%.

From mass formula we obtain

| 1922
0=E—P:—f 2|Vl + 20, vu) | d.
7= 5= S (T 2w+ 20,90 )

Hence V?u = 0 and p|Vu| + (J,Vu) = 0.> This yields 6 equations for v and 3 equations
for J.* Having so much information at our disposal makes the level-set technique a
powerful tool to study rigidity questions, and we would like to highlight that there is no
spinor or minimal surface proof of the case of equality.

Conceptually, in the case of equality, the minimal surface technique only gives in-

formation of the ambient manifold in a neighborhood of a hypersurface. Spinors do

3In [64] we have addressed the case of equality under the additional assumption that E = |P| = 0.
In this case we have not just one, but three functions whose spacetime Hessian V2 vanishes.
4The normal component of .J (with respect to the level-sets of u) equals —u while the tangential

components vanish since p > |J| by assumption.
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yield information about the entire manifold but for level-sets we have an additional tool

available:

Lemma 3.5.1. Let (M, g,k) be an initial data set with E = |P|, and let u be the space-

time harmonic functions asymptotic to — Then the level-sets Yy of u are flat, i.e.

P
[Pl
their Gaussian curvature K is vanishing.
Proof. Since u|Vu| = —=(J, Vu), Bochner’s identity in combination with the contracted
Gauss equation yield

1

(K |vu| + [E*|Vul* = (div k, Vu)|Vul).
[Vl

AlVu| =
On the other side, we have by the spacetime Hessian equation VZu = —k|Vy|
A|vul = |k} Vu| - (div k, Vu)
which finishes the proof. O

Next, let us introduce the notation e3 = v = |Vu For a fixed level set X, we can

[Vul*
express the level set metric by da? +dz3 which is possible since X is flat. We let e = 0,,,
eg = Oy,, and then we extend ej, ey to the entire manifold such that {e;,es,e3} forms
an orthonormal frame. We use Greek letter o, 3, v to denote tangential vectors ey, es,

and Roman letters ¢, j, k, I to denote arbitrary vectors ey, e2, e3, and as usual we employ

Einstein’s summation convention.

We define Rijkl = Rijii + kqkji — kipkji and say that (M, g, k) satisfies the Gauss
and Codazzi equations if R;jx = 0 and V;kjr — Vjkip = 0 for all i,7,k,l. Here we use
the notation Réjkel =[Vi, Vjler — Viese;)ek as well as Ryj = ([Vi,Vjler — V[ehej]ek,el).

The reason why we are interested in the Gauss and Codazzi equations is the Lorentzian

version of the fundamental theorem of hypersurfaces, also see [8, Corollary 7.3].
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Proposition 3.5.2 (Fundamental theorem of hypersurfaces). Suppose (M, g, k) satisfies
the Gauss and Codazzi equations, and assume that M is diffeomorphic to R®. Then

(M, g,k) arises as a subset of Minkowski spacetime.

We provide a proof of the fundamental theorem in Appendix B.5. In the next two
lemma we demonstrate that the majority of the Gauss and Codazzi equations are already

satisfied.

Lemma 3.5.3. We have
0 =Vikas — Vakis,
0=Vakss — Vskas,
0 =Vaks3 — Vskas.

Proof. The first identity follows from

V3 Visu
Vikas — Vakis == Vi-22— + VoL = Ryy33 = 0.
|Vl |Vl
Observe that u|Vu| = —(J, Vu) together with the DEC p > |J| yields J, = 0. This implies
Vgkag = Vakpg + V3kaz — Vakss = 0.

Thus, we have

V2.u vZ.u
Vskas — Vakss = —V3—2— + Vpu-23— = Ry333 = 0
ol " Tl
which implies the last two identities. O
Lemma 3.5.4. We have
Ri212 =0,
Ra,@Sa =0,
Ra335 :Aa,3~

where Anp = V3kag — Vakgs.
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Proof. Using the Gauss equations we obtain
R1212 =2K + h11h22 - h%z.
Thus, the first identity follows from K =0 and h = —k|py. Next, we compute

Ragsa =IVu| ' (Va Vg — V5Va) Vau
= — [V Vo (kap|Vul) + VUV 5 (kaa| Vul)

=- Vaka/g + V/gk‘a,g + kagkag — k‘ﬁgk‘aa.

Using the spacetime Hessian equation VZu = —k|Vu|, we obtain

Raﬁa?) = RaﬁaB + ka3kﬂa - kaak,BS
= VQkaﬁ - vﬁkaa = 07

where the last equality follows from the previous lemma. Finally, the third identity

follows in the same spirit as the second one. O

Next, we show that A,z is vanishing. This will be achieved by PDE methods in

combination with the asymptotics of g, k.
Lemma 3.5.5. On each level set, there exists a twice differentiable function F such that
VasF = |Vul > Aqp.
Here VEB denotes the leve-set Hessian.
For the proof of this lemma we need to additionally assume that g € C3(M) and
k € C?(M). However, we provide an alternative approach to the spacetime PMT rigidity
in Appendix B.6 which is based on a Killing development and the study of certain pp-

wave spacetimes. This approach does not require such additional regularity of g and k

and therefore establishes the case of equality of Theorem B in full generality.
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Proof. We first show that 9a(|Vu|2A11) = 01 (|Vu| 2 A12) and 01 (|Vu| 2 Azz2) = 0o (|Vu| 2 A12).
Since the level sets are flat, we can choose {e1,e2} such that (V.,eg,e,) = 0. Because

(Vea€3,€8) = —kap and applying Lemma 3.5.3, we obtain

02 A1 =02(V3ki1 — Vikis)
=Va(V3ki1 — Vik13) — k3 Vaki1 + 2ka1 V3ks
— ko1V3kiz — k21V1kss + k5 Vikia

=V2(V3k11 — Vik13).
Therefore, we have

O A11 — 01 A12

=V2(V3ki1 — Vikiz) — Vi(Vski2 — Vaki3)

=V3Vaki1 - 2Ros1ik1 — VaVikis — (VsVikiz — Rigy kio — Risaikii)
+(VaVikiz — Ri21ikiz — Riasikii)

=V3Vaoki1 — V3Viki2 — Razi2k12 — Razizkis + Rizizka

+ Ri313k23 — R1212k23 — R1213k33

Applying Lemma 3.5.4 to replace the curvature terms in the last two lanes, we obtain

02 A11 — 01 Ao

=V3Vaki1 — V3Vikia — (k12kas — kagki3) k12 — (k12kss — kaskiz — Vakia + Vikas)ki3
+ (k11kas — kiokis) koo + (k11kss — kT3 — Vakiy + Vikis)kos
— (k11kao — kTy)kos — (k11kos — kiskiz)kss

=V3Vaki1 — V3Vikia — (=V3kia + Vikas) ki3 + (- V3ki1 + Viki3) ka3,
(3.10)
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Due to the spacetime Hessian equation V2u = —k|Vu|, we have (Vseq, e3) = —(V3es, eq) =
kqs. Combining this identity with Lemma 3.5.3, we deduce
V3Vaki1 — V3Vikia
=03(Vak11) — Vvsea k11 — 2V2k(Vser,e1)
— 03(V1k12) + Vyge, k12 + V1k(Vser, e2) + Vik(er, Vzez)
=~ (e1, Vae2)Viki1 — kagVski1 — 2(Vser, e2) Vakar — 2k13Vaks1 + (e2, Vze1) Vakia
+k13V3kia + (e2, Vze1) Vikaz + k13Viksz + (e1, Vae2) Viki1 + k23 Vikis
=ko3(V1k13 — V3k11) — k13(Viks2 — Vski2).
(3.11)

Here we also used that 03(V2k11-V1k12) = 0 by Lemma 3.5.3. Combing Equation (3.10)
and (3.11) yields

DpA11 — 01 A1 = 2A12k13 — 2A11 k3.
Moreover, we have J,|Vu| = —kqa3|Vu| which implies

Or(IVul > Ar1) - 01 (|Vul > Arz)
:|VU|_2(82A11 - 81./412) + A1182|Vu|_2 — A1281|VU|_2
=|Vu| 2 (2A12k13 — 2A11ko3) + 2411 |Vu| 2kos — 2A10|Vu| 2k13

=0.

Therefore, |Vu|2A11dzy + |Vu| 2 Aadzs is closed, where dz; and dzy are the dual 1-
forms of e; and es. Since the topology of a level set is trivial, there exists on each
level set a function which we suggestively denote by Fj such that dF; = |Vu|_2./411d3:1 +

|Vu|2Aiadzs. Replacing the roles of e; and eg, there exists another function Fb such
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that dFy = |Vu| 2 Aadzy + |Vu| 2 Azedzs. Next, we compute

F 2
chﬂdx1+16dx2):gzidszchqﬁ—%;fdxlAdxg

=(|Vu|_2A12 - |VU|_2.A12)dl‘2 ANdxy = 0.
Thus there exists a function F' with dF' = Fidzy + Fodxs. O

Lemma 3.5.6. On each level set, F' is a linear function with respect to x1 and xa, i.e.

VLF =0.
Proof. First observe that F' is superharmonic on each level set, i.e.
A*F >0
which follows immediately from
A*F = |Vu[ (A + Agz) = —|Vu[ 2 J5 = |Vu| 2 > 0.
Since 0'k;; = O(|z| 1), 1=0, 1, for some T > %, and |Vu| =1+ O(|z|™™), we obtain
Fop = VogF = |Vu| ?(Vskas - Vakgs) = O(|z[772).

Integrating VQZF twice over the level set ¥, we see that F' = L + B, where L is a linear
function with respect to {x1,z2}, and B is a bounded function. Combining this with our
previous observation yields A¥B = A¥F > 0. Thus, B is constant in view of Liouville’s

theorem. O

Proof of the rigidity part of Theorem B. Since V%F =0, (M,g,k) satisfies the Gauss

and Codazzi equations which completes the proof in view of the Proposition 3.5.2. [
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3.5.3 The PMT in the hyperbolic and other settings

Finally, let us comment on the adjustments needed for the asymptotically hyperbolic
case [17]. In Theorem B the initial data set was assumed to be asymptotically flat
which means that g approaches the Euclidean metric and infinity, and k& goes to zero.
Also Physically motivated areasymptotically hyperboloidal initial data sets. In this case
g approaches the hyperbolic metric and k approaches g at infinity. The model case is
the unit sphere {(z,y,2,t) | 2% +y*> + 22 =t = =1} in Minkowski space. The induced

metric g is the hyperbolic metric

g= ] +T2dr2 +r2ggz

where r = \/m, and gg2 is the round metric on S?. Moreover, the second
fundamental form k equals g, and R(g) = —6. In general, one assumes again the dominant
energy condition p > |J|, and at co one can associate a mass to (M, g, k) which is well-
defined. There is also a positive mass theorem in this setting with a similar statement
as in Theorem B. This has been first established for special asymptotics by X. Wang
using spinors [117] and later by P. Chrusciel, M. Herzlich and E. Delay [42, 41]. There
are are also proofs by A. Sakovich using the Jang equation, M. Anderson, M. Cai
and G. Galloway using isoperimetric surfaces [4] and the rigidity in case of X. Wang’s
asymptotics has been addressed by L.H. Huang, H.C. Jang and D. Martin in [76]. The
most general result concerning the hyperbolic PMT (in Dimension 3) is obtained in a
joint paper with H. Bray, D. Kazaras, M. Khuri and Y. Zhang [17].

The same motivation for studying the spacetime Laplace equation via the intersec-
tion of null planes, cf. Figure 3.1, also holds true in this case. Moreover, the main
integral formula

|V2uf?

. \Y
div(V|Vu| + k(Vu,-)) + K|Vu| = “
2|Vl

+ pl vl + (J, Vu).
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can still be applied. However, there are several major technical challenges to overcome
which causes the proof to be significantly longer and more complicated than the one in

the asymptotically flat setting [64, 72].

e While the underlying PDE Au = —try k|Vu| are identical, try k approaches trgg = 3
at infinity in the hyperbolic setting (compared to 0 in the asymptotically flat

setting). This makes the non-linearity significantly more severe.

e In the asymptotically flat setting, |Vu| goes to 1 at oo, but in the hyperbolic
setting |Vu| goes to zero in some and to oo in other directions at oo. This lack of

spherical symmetry at oo leads to technical difficulties.

e To obtain the mass at oo the construction of an interpolation region is required.

We refer to |16, 17| for details.

We have also proved the PMT with charge for manifolds with electrical field £ using
the charged Laplace equation Au = (Vu, E) [16], and for manifolds with boundary [71]

and refer to the respective papers for details.

3.6 Existence and regularity

Let (M, g, k) be an asymptotically flat initial data set of order 7 with (possibly empty)
smooth boundary dM. The purpose of this section is to establish the appropriate
existence, uniqueness, and asymptotic properties of spacetime harmonic functions. The

proof proceeds in four steps:
e First, we solve the linear equation Av = —trgy k.

e Second, we solve on compact domains B, the spacetime Laplace equation Au" =

—try k|Vu"| with boundary data v via fixedpoint methods.
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e Next, we use barriers to obtain uniform estimates for u’.

e Finally, we use the uniform estimates to pass to a limit u" — u.

For simplicity of discussion, it will be assumed here that M possesses a single end,
although the final result stated at the end of the section will be given in full generality.
Let ;2" be a linear function of the asymptotic coordinates in the end M,,,q, with i a? =
1, and let h € C*°(0M). By slightly generalizing [9, Theorem 3.1] we may solve the

asymptotically linear Dirichlet problem
Av=—trgk on M, (3.12)

v=0 on OM, v=ax' +Ox(r'™") as 1 - oo, (3.13)

where r = |z|, ¢ is as in (3.2), and Oz indicates in the usual way additional fall-off for
each derivative taken up to order 2. Consider now the corresponding problem for the

spacetime harmonic function equation
Au+trgk|Vu|=0 on M, (3.14)

u=h on OM, u=v+0s(rP) as r- oo, (3.15)

where 5 € (0,1). As mentioned before, the strategy will be to first solve for u on a
sequence of compact domains exhausting M, use a barrier in the asymptotic end to
obtain uniform estimates, and then find a subsequence that converges to the desired

solution.

3.6.1 Solutions on compact exhausting domains

Let S, ¢ M.,q be a coordinate sphere in the asymptotic end, and let M, denote the

compact component of M \ S, having boundary OM, = OM u S,. Consider now the
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preliminary Dirichlet problem
Au" +trgk|vu"| =0 on M,, (3.16)
u'=h on OM, u'=v on S (3.17)

For this boundary value problem we will use the Leray-Schauder fixed point theorem

[53, Theorem 11.3].

Theorem 3.6.1. Let B be a Banach space and F : Bx[0,1] - B a compact mapping with
F(b,0) =0 for all b € B. If there is a constant ¢, such that any solution (b,o) € Bx[0,1]
of b=F(b,0) satisfies the a priori inequality || b ||< ¢, then there is a fixed point at o = 1.
That is, there exists by € B with by = F(by,1).

To set up the fixed point method write v” = v + w" and f = A0 + try k|V0|, where
0 = v+ v with vg € C*®°(M) a fixed function satisfying vg = h on M and vy = 0 on

M.pq. Then boundary value problem (3.16), (3.17) becomes

Aul =~ try k ([Va'| - [V9) -

) 3.18)
V(w" +20) (
- _trgk v’ - M,,
K (rv(wf+@>|+|w|) v = foon
w'=0 on JIM,. (3.19)

Let Cg’a(M,«) denote the space of C*%(M,) functions which vanish on the boundary,

and observe that A™!: C’g’a(Mr) - C%%(M,) is an isomorphism. Now set

_ -1 r V(w+217) Yw —
F(w,o) =cA [ tgk(\V(w+@)|+|Vf}]) \v, f]

(3.20)
=oAT F(w),  weCy¥(M,).

Observe that F(w) € C%%(M,) and hence F(w,o) € Cg’a(Mr). We choose B =

Cé’a(Mr) and note that the composition
1, F 0,0 AN 94 L 1,
Cy " (M) — C*(M,) — Cy™ (M,) — Cy“ (M,),
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yields a compact map F : Bx[0,1] - B since the first two pieces F' and A~ are bounded
while the inclusion ¢ is compact. Furthermore, finding a fixed point w” = F(w",1) is
equivalent to solving (3.18), (3.19) in Cg’o‘(MT) by elliptic regularity. Then u" =0 + w"
is the desired solution of (3.16), (3.17).

It remains to establish the a priori estimate |wo-|Cl,a( M,) < ¢, independent of o, for
a fixed point wy = F(we, o). Such a fixed point satisfies (3.18), (3.19) with try k and f
replaced by otryk and of. This may be viewed as a linear equation with coefficients
that depend on the solution. However, since the coefficients remain uniformly bounded
independent of the solution, L? estimates for linear elliptic equations may be applied to

obtain
| wo w2 a,)< C(” Iz + [l wo ”LP(MT))? (3.21)

where WP denotes the Sobolev space with | weak derivatives in L?, p > 1. Moreover,
since the coefficient of the zeroth order term in (3.18) vanishes, the maximum principle
is valid and leads to a C° bound for w, which in turn gives a bound for || w, || Lo (M,)-

Hence we obtain the a priori estimate
I wo w2 (ar)< Cs (3.22)

independent of ¢ where C' may change its value from line to line. According to the

Sobolev embedding W2P(M,.) < C1%(M,) for p sufficiently large, we obtain

|wg|cl,a(MT) < C,

independent of o. The Leray-Schauder theorem may now be applied to obtain a fixed

point at o =1.
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3.6.2 Barriers

Rotationally symmetric asymptotic barrier functions will be constructed to obtain uni-
form bounds on the solutions w” of (3.18), (3.19) independent of r. To this end, in the

asymptotically flat region set
@)= A W) =AW ) = A B

for 8 € (0,1) and where A\ > 0 is a constant to be chosen sufficiently large. Using the

level sets of r, the metric may be expressed as
g9 =10:[dr® + g, = [Vr|?dr® + gs2,

where gsp is the induced metric on the coordinate spheres S2. If v denotes the unit outer
normal to the coordinate spheres then

) g i i )
v =10,710, = |vr|o,, vrl? = g9 = 2 S =1+ 0a(7),

and the Laplacian becomes

AW = V2w + Hs, v(w),
where Hg, denotes mean curvature. Observe that
VI = vy = ViV = |V (@ - ),
and

1
F;r = igw - Grr = —0p log | V7],

so that
AT =|vr|*@" +|Vr|(Hs, + 0,|vr)) @
2
—(1+0(r ) (w” 2w ot w’)
T

== AB(1-B)r 2P (1+ 0@ 7)).
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Furthermore

|/C(wr) . vw| =

' 2"’
trg k v(w ~+ v) — |- Vw
[V (w" + )]+ |Vl

<Cr 97 Yw!| = CABroa2 P,
It follows that

Lw = Aw+ K(w") - Vo = -AB(1- B)r > P (1+0(r™7)).

Next, comes the estimate which justifies the use of v as Dirichlet boundary data for
u” (over the naive use of the boundary condition u" = 2 on dM,). Consider now the

asymptotics for f. According to (3.12), (3.13) we have
\f] = [Av + trg k||| = [trg k|1 - [Vo|| < Cyr207h = Cyr 2P,
by setting 8 = 2¢ — 1 > 0. Therefore, given a large radius rg, it holds that
Lw<-f for r>ry (3.23)

if A is sufficiently large. Hence, w is a super-solution of (3.18) on M, \ M,,.
In order to obtain a global barrier let @™ solve (3.18), (3.19) on M,, with (@)

replaced by IC(w"), noting that this is a linear boundary value problem. Next define

o |a=am e xg® oon M,
wy =
w on M, M,,.

This function is smooth everywhere, except at S,, where it is continuous, and is a

super-solution for (3.18) on M,, and M, \ M,, separately. Furthermore we have

87‘,[[) > arw at S’I"Q;
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if X is sufficiently large (independent of r), and this allows for an application of the weak
maximum principle. To see this, let ¢ € C°(M,) be a nonnegative test function and

observe that
oz_me SL(® - w")dV

_ me (Vo V(b —w") - K (w") - V(@ - w")) dV
_fS%O 60, (10 — w")dA,

and

0g—fM L@ w)aV
sz,.\Mm (Vo V(@ -w") - pK(w") - V(T - w"))dV
+/S%O 60, (T — w")dA,

so that upon adding these two inequalities

[, (96 (s =) - 9K (") - (ior ~w')) av
> fS  0(0, - 0,7W)dA > 0.
"0
Hence, according to |53, Theorem 8.1| the weak maximum principle yields
infpy, (wy —w") > infypy, () —w") > 0.
A similar argument with w_y yields a lower bound, and therefore
woy<w' <wy, on M,.

Consequently we obtain a global C? estimate for w” independent of 7.
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3.6.3 The global existence result

Here we will show that w” subconverges on compact subsets as 7 — oo to a C** solution
of (3.18) on all of M. In the previous subsection a uniform C° estimate was achieved.
Consider (3.18) as a linear equation with coefficients depending on w” but which are

uniformly bounded, and apply the local LP estimates to find

I w” w2a@)< C (I f ey + I w” lzeary) s

where Q cc Q' are any fixed compact subsets of M, and C is independent of r. The

uniform C° bound implies a uniform L? bound in €', and therefore
| w" lw2r@)y< C".

By Sobolev embedding this yields a uniform C*(£2) bound, so that in particular the
right-hand side of (3.18) is controlled in C%*(). Now applying the local Schauder
estimates we obtain the desired C*% estimate on a subset of Q, for any a € (0,1). It
follows then by a diagonal argument that there is a subsequence w'* converging in C>*

on any compact subset of M to a smooth function w which solves

V(w + 20)
Aw=—-tryk . - M 3.24
T (|v<w+@>|+|w|) el A 2
w=0 on J0M, -w<w<w on M~ M,. (3.25)

Finally, by setting u = 0 + w we obtain the desired solution of (3.14), (3.15).
As mentioned at the start of the section, this global existence result extends in
a straightforward manner to the case of multiple asymptotically flat ends M fnd, l =

1,...,£y. For this situation let afaji be a linear function of the asymptotic coordinates

in the end M*

end’

with ¥;(af)? = 1, and let h e C*°(9M). Then the background function
satisfies

Av=—trgk on M, (3.26)
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v=0 on OJOM,

v=aix'+O0y(r'Y) as r-oo in My, (=1,...,0. (3.27)

end>

Theorem 3.6.2. Suppose that (M, g,k) is a smooth asymptotically flat initial data set
with (possibly empty) boundary OM, and h € C*°(OM). Let v be a solution of (3.26)
and (3.27). Then for each o € (0,1) there exists a solution u € C**(M) of the spacetime

harmonic function equation
Au +trg k|Vu| =0 on M, (3.28)
such that
u=h on OM, w=v+0(r'2)  as 7 - oo. (3.29)
The solution u is unique among those which satisfy (3.29).

Proof. The existence portion was proven in the discussion above, while the uniqueness
follows from the maximum principle in the same manner as the barrier argument at the
end of Section 3.6.2. Lastly, the decay of derivatives in the asymptotic ends may be

established analogously to [109, Proposition 3|. O
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Chapter 4

Monotonicity of the Hawking energy

Harmonic functions are not the only tool to study asymptotically flat Riemannian man-
ifolds (M,g). The perhaps other most important tools are minimal surfaces, spinors,
H. Bray’s conformal flow and inverse mean curvature flow (IMCF). However, in general
an isolated gravitational system is modeled by an initial data set (M, g, k) where k is
non-vanishing. This raises the question what the corresponding spacetime (i.e. k # 0)
versions of the above techniques are. We have already seen in the previous section the
success of spacetime harmonic functions to study initial data sets, and spinors general-
ize without major adjustments to the spacetime case [118]. There are also ’spacetime’
minimal surfaces called MOTS and MITS (marginally outer and inner trapped surfaces)
which have found have been used in [47] to prove the spacetime PMT, also see the survey
[6].

IMCF and the conformal flow have been used to proof the Riemannian (k = 0)
Penrose inequality which is an important geometric statement related to Cosmic Cen-
sorship which will be explained in more detail in Section 4.1 below. Interestingly, more
elementary techniques such using harmonic functions, spinors or minimal surfaces are
insufficient to prove the Riemannian Penrose inequality. There has been a long history
of attempts to generalize IMCF and Bray’s conformal flow to the spacetime setting
[19, 15, 51, 80, 98], but all of them have been so far without success of proving the
spacetime (k # 0) Penrose conjecture which is open since 1973 [101].

The goal of this section is to introduce a new notion of spacetime IMCF which is

based on double null foliations.
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4.1 The Penrose conjecture

As mentioned in the previous chapter, General Relativity (GR) is concerned with the
study of Lorentzian manifolds (M ,g) satisfying the Einstein equations Ric — %g =8nT
where Ric is the Ricci curvature, R is the scalar curvature of g, and 7T is the stress-

energy-momentum tensor. For instance, Minkowski space R*! with metric
G =—dt* +dz® + dy® + d2?,
and the Schwarzschild spacetime with metric
g=-(1- 2Tm)dt2 +(1- QTm)_ldr2 + 72 g2

are examples of such Lorentzian manifolds with 7"= 0. As shown by Y. Choquet-Bruhat
[33], the Einstein equations can also be understood as a Cauchy problem for a system of
hyperbolic PDE. We refer to the books of D. Lee [90] and R. Wald [116] for a detailed

introduction to this topic.

An interesting feature of GR is the existence of singularities! which can arise even
in elementary examples such as the Schwarzschild spacetime above. In Schwarzschild
the singularity is hidden behind the event horizon and it is believed that this is also
generically the case? which is known as the Cosmic Censorship Conjecture.

However, to understand whether a singularity is located within the black hole region,
the entire time evolution of the spacetime has to be known. This is a notoriously difficult
task, and even in the simplest cases such as for perturbations of slices of Minkowski

space, this requires a substantial amount of analysis [37].

!The precise definition of a singularity is a subtle issue and we refer to [116] for details.

2The additional assumption of genericity is necessary as Christodoulou demonstrated in [35,

36].
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To understand Cosmic Censorship, R. Penrose proposed in 1973 a test which relates
the conjecture to a more feasible geometric problem which is depicted in Figure 4.1

below. +
A

\

/C)\ Kerr

;/
N =\
—

/\

ﬁ (M g9,k)

Figure 4.1: Penrose’s heuristic argument

Given an initial data set (M, g, k), it is believed that going forward in time, on all
matter either falls into the black hole or radiates away to co. Moreover, the final state
of (M, g,k) is described by a static solution to the Einstein equations which is a Kerr
solution, i.e. a rotating black hole. This is known as the Final State conjecture. For any
slice in Kerr, it is known that |X| < 167m? where m is the ADM mass of the slice and %
is the surface which is formed by the intersection of the black hole’s event horizon. In
fact, for Schwarzschild (i.e. the Kerr solution with zero angular momentum) we have
|¥| = 167m?. Next, we would like to trace back this inequality in time. Since matter
is radiating away to oo, the mass decreases, and Hawking’s area theorem [60, 116]

states that the area of X is increasing. Hence, we have m > /-~ 16 on (M,g,k). To
s
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locate 3 within (M, g, k) the Cosmic Censorship is used: The incompleteness theorem
of R. Penrose states that each apparent horizon (i.e. a surface with 6, = 0) leads to a
singularity in the future. Hence, |X| can be estimated by the minimal area enclosure of

an apparent horizon (highlighted in red).

Hence, we are led with the help of Cosmic Censorship to the following geometric

conjecture which is known as Penrose conjecture.

Conjecture 4.1.1. Let (M,g,k) be an initial data set satisfying the DEC. Let ¥ be

a MOTS in (M,g,k), and let ¥ be the minimal area enclosure of ¥g. Then the mass

m=+/E?—|P|? of (M, g,k) is bounded from below by

m > B
V167
Moreover, we have equality if and only if (M, g,k) is a slice in Schwarzschild spacetime.

Here a marginally outer trapped surfaces (MOTS) is a surface ¥ satisfying 6, = 0
and models an apparent horizons. Moreover, we recall the definitions of ADM energy
and momentum of (M, g, k)

1 ; 1 ;
F=1lim — L Z (gij,i _gii,j)U]dA, R = lim — L (kZ] - (tl‘g k‘)gij)’lj]dA.

reo 167 Js, & ro0 870

A counter example to the Penrose conjecture would pose a serious challenge to
the Cosmic Censorship Conjecture which is considered to be the weakest link the
above heuristic argument. Besides its physical significance, the Penrose conjecture also
presents a strengthening of the famous positive mass theorem |2, 18, 46, 47, 64, 79, 92,
96, 108, 109]. By time-reversal, i.e. by replacing k with —k, one also expects Conjec-
ture 4.1.1 hold also for marginally inner trapped surfaces (MITS), i.e surfaces satisfying

0-=0.
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The conjecture has been established in the case k = 0 by G. Huisken and T. Ilmanen
[79] (for connected horizons), and by H. Bray [13] (for arbitrary horizons). H. Bray’s
proof employs the conformal flow and has also been generalized up to dimension 7 by
H. Bray and D. Lee in [21] and to the electrostatic setting by M. Khuri, G. Weinstein

and S. Yamada in [86].

In the general case k # 0 the conjecture is wild open outside spherical symmetry
[19, 20, 61, 62, 82, 94| and H. Roesch’ result on certain null cones [104]. In the pioneering
work [19] H. Bray and M. Khuri proposed a method to couple IMCF and Jang’s equation
to solve the conjecture. This leads to a complicated system of PDE which (if it can be
solved) implies the Penrose conjecture for initial data sets which are asymptotic to the
Riemannian Schwarzschild manifold. In fact, this system would even imply the Penrose
conjecture for generalized horizons, i.e. surfaces satisfying ,6_ = 0. Thus, there have to
arise some complications in the existence theory in view of A. Carrasco and M. Mars’
counter example [24]. For more information we refer to the survey [95] by M. Mars and

the references therein.

We remark that in the statement of the Penrose inequality it is necessary to consider
the minimal area enclosure ¥ instead of the MOTS ¥y. It is easy to construct coun-
%o

terexamples to m >/ 75, see for instance Figure 1 in [79], and even the assumption of
s

Yo being an outermost MOTS is insufficient as demonstrated by I. Ben-Dov in [11].
One difficulty most approaches towards the Penrose conjecture face, is to solve cer-
tain PDE. For instance, P. Jang and R. Wald already showed in [83] that R. Geroch’s
monotonicity formula [52] implies the Riemannian Penrose inequality if an existence the-
ory for IMCF can be established. This has also been observed in the spacetime setting
for Inverse Mean Curvature Vector Flow by J. Frauendiener [51]. In the Riemannian

case this has been resolved in [1, 79, 97|, but the spacetime case this is still completely
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open. Similarly, the pioneering approach by H. Bray and M. Khuri [19] did not yield
a proof of the Penrose conjecture due to the difficulties of solving the underlying PDE

systems outside spherical symmetry.

Our notion of spacetime IMCF has a comparatively simple PDE and we will discuss

existence results in Section 4.5.

4.2 The Riemannian Penrose inequality

To motivate our definition of spacetime IMCF, we begin with recalling the two proofs

of the Riemannian Penrose inequality, i.e. Conjecture 4.1.1 for k = 0.

Theorem 4.2.1 (Riemannian Penrose inequality). Let (M3,g) be an asymptotically
flat manifold with non-negative scalar curvature R > 0 and outermost minimal surface

Y. Then

m> B
V167

As mentioned in the previous section, this theorem has been proven by G. Huisken

and T. Ilmanen [79] in case ¥ is connected using IMCF and by H. Bray [13] in the

general case using the conformal flow.

4.2.1 Bray’s conformal flow

Starting with an asymptotically flat initial data set (M3, g), the Einstein equations are
expected to deform the initial data set to a slice in Schwarzschild (or more generally,
Kerr) according to the final state conjecture. In this process, the area of the horizon
Y increases (Hawking’s area theorem) and and the mass decreases. However, the mass

and area monotonicities aren’t established fully rigorously, and our understanding of the
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Einstein equations is insufficient (by a large amount) to verify the final state conjecture.
H. Bray discovered a new flow, the so-called conformal flow, which possesses similar
properties but has a much simpler existence theory. The area of the outermost minimal
surface stays constant while the mass is non-decreasing®, and (M?3,g) is converging
to the (t = 0)-slice of Schwarzschild. Here, the deformation of (M3, g) is achieved by
conformal deformations of the metric g. We refer to H. Bray’s pioneering work [13] for

more details.

4.2.2 Huisken-Ilmanen’s weak inverse mean curvature flow

Given a surface ¥, the Hawking mass my(X) is defined via

|Z|( 1 / 2 )
Sy =/ 2 (1o = [ 7%
wa (2) =\ 1 \1 ™ 167 S B

where H is the mean curvature of . Since the outermost minimal surface has zero
mean curvature, we have
1]

ma(2) =\ 167

Now letting 3 = ¥ evolve by IMCF, i.e. the (co-pointing) normal speed is given by
%, one obtains a family of surfaces {¥;} foliating (M3, g). More precisely, Huisken-
Ilmanen introduced a weak notion of IMCF which allows the possibility jumps. An easy
computation which will be carried out below and which goes back to R. Geroch, P. Jang
and R. Wald in [52, 83| yields that mg(3;) is monotonically non-decreasing along the
flow in case R(g) > 0 and X is connected. Moreover, my(X;) - m at oo, and the result

follows.

While there has not been much progress made on generalizing the conformal flow to

the k # 0 setting, there have been several proposals for IMCF in this case. This includes

3This follows from H. Bray’s famous mass-capacity inequality.
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the uniformly area expanding flow by H. Bray, S. Hayard, M. Mars and W. Simon [15],
H. Bray’s and M. Khuri’s Jang IMCF [19], J. Frauendiener inverse mean curvature vector
flow [51], and K. Moore’s [98] and G. Huisken’s and M. Wolf’s null IMCF [80]. However,
the existence theory for the flows in [19, 15, 51| appears to be out of reach, while for
the flows in [98, 80| there appears to be no analogue to the Hawking mass monotonicity.
In this manuscript we suggest a new approach to generalize IMCF to the spacetime
setting and introduce systems of PDE which model double null foliations. This leads
simultaneously to a generalization of the Hawking mass monotonicity, cf. Theorem C,

and to existence results outside spherical symmetry, cf. Theorem 4.5.1.

4.3 Monotonicity formula vs integral formula

As before, let (M?3,g) be an asymptotically flat complete manifold with non-negative
scalar curvature R, and let 3y be the outermost minimal surface. We begin with com-

puting the aforementioned evolution of the Hawking mass:

167

_ [ 1% [ 2 ( w1 2 1 o 1 )]
=8mmp (3;) o7 Js, H*-2H (A H+|A| H+Rlc(l/,l/)H dA

Here v is the co-pointing unit normal to ¥; and A is its second fundamental form. Using

_ ﬁ( L e )
1670 (5) —1671@[ - fz H2dA

the contracted Gauss equations and integrating by parts yield

Y| H?
1670,my (2;) =8mmp (%) - \/1|6 f( diln | — AP - R+2K)dA

where K is the Gaussian curvature of 3;. Using Gauss-Bonnet’s theorem, we obtain

|VH|?

1678m (Sy) = f ( LA - H2+R)du20.
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Besides this monotonicity formula, there is also an equivalent integral formula which we
will discuss next.

An important ingredient in G. Huisken and T. Ilmanen’s proof of the Riemannian
Penrose inequality is to recognize that there is a level-set formulation of IMCF for
which one can find weak solutions. More precisely, by defining the function U via
Yy=0{xeM:U(z)<t}, we see that U satisfies the degenerate elliptic equation

. (VU
div (W) = |VU|

where we note that the term on the left hand side is the mean curvature of the level-sets

>¢. Reparametrizing u = e%U, we obtain the homogeneous equation
2
u
Au = szu+2m (4.1)
U

where v is the outer normal to the level sets ¥;. In this context, we can rephrase the

Hawking mass monotonicity formula mg(3;) —mg(Xg) >0, t >0, as integral formula

212 (g2 N2
V|

Here €2, is the region bounded by ¥y and ¥, and H is a symmetric 2-tensor defined by

1
my(3) —my(Xo) = T6r th (R|VU| +

vul? ViuVu
Hiju=viju—| u| Gij + luj . (4'3)

The RHS of equation (4.2) is non-negative in case R > 0.

To formulate such a monotonicity formula in the spacetime setting, we will take a
more general point of view. In case we do not integrate the integrand on the RHS of
equation (4.2) over a domain (2, we obtain

[H2ul® = (M7, u)?
V|

- 2K,|Vu| = 2div (VIVu| + qu - Au&) (4.4)
u

R|Vu| +
V|

where K, is the Gaussian curvature of 3; = {u(x) = t}. The above version of the

Hawking mass monotonicity generalizes to the spacetime setting.
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4.4 The Hawking mass monotonicity formula

Suppose now that (M3, g, k) is an initial data set, and recall the definitions of the energy

density p and the momentum density J
2 =R +(try(k))? - |k, J = div(k - try(k)g).

We say (M, g,k) satisfies the dominant energy condition (DEC), in case p > |J| every-
where on M. Our main result generalizes the Hawking mass integral formula (4.4) to

initial data sets:

Theorem 4.4.1. Let a € [0,1] and suppose u,v € C>*(M) are positive solutions of the

system
3 +
Au = —try(k)|Vul + aky,|Vul +aV72mu+ [Vullvel+ Ve, Vv)’

u+v
4.5
3vul[vo| + (Vu, 7o) (4:5)

u+v

Av =try(k)|Vo| - akyy,| Vo] + avgmv +

Vu|Vul|+Vv|Vul Then

’lU’Lth |VU|, |V'U| * 0, wher’e n= m

oy [ (@) 0?2 — (a(H2),0)"
|Vul |V

+ 2u(|Vu] + [Vo]) +2(J, Vu - Vo) (4.6)

- 2K,|Vu| - 2K,|Vv|

where K, K, are the Gaussian curvatures of the level sets of u,v,

1
Y =22V (|Vu| +|Vv|) + 2k(V(u -v),-) + 4(|Vu|Vv + |Vv|Vu)m

Vu Vv
20 u—— - 2Av—— - 2tr (k) V(u-v
‘VU| |VU| 9( ) ( )

and

VauVpv ViuViv + V;uV;v
H2)iiu = Viiu+ k| Vu| - 2—1—1" g, + J J ’
()i it higl uty 99 U+ v

VpuVyv ViuV v + ViuVv
(%%)ij’UZVz‘jU—kiﬂVM—Q Z_,_; gij + iUVy juViv:

u+v
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Observe that the first line in (4.6) is always non-negative, and the second line (4.6)
is non-negative in case the DEC is satisfied. In Section 4.6.2 we see that the above

formula implies upon integrating:

Corollary 4.4.2. Let (M,g) be an annulus satisfying the dominant energy condition
with spherical boundary components O-M and 0, M. Suppose u,v are constant on both
0-M and 0+ M and that uls_pr < ulo, ar, vlo_amr < v|o,ar- Then we have under the same

assumptions as in Theorem 4.4.1

(u+0)lo.m [1—ifaM(29+M+29_ Vol _8|VUI|VU|)dA]

s u+v U+ v (u+v)?
1
&t Jo_m U+ U+ (u+v)?

where 0, = H + (trg(k) — kyyy) are the null expansions. In the case a =1 we furthermore
have |Vu| = 10_(u +v) and |Vv| = 10, (u+v) on .M which implies the generalized

Hawking mass monotonicity

1 1
1-— [ 9.6,d4)> -— [ 9_0dA). 4
(“+”)|8+M( 167 Jo.ns”F ) (“+U)|8'M( 167 Jon* .7
In particular, prescribing the boundary data (u +v) =4/ %, (u+v) = % on

31, 2o respectively, Theorem C follows.

For k = 0, system (4.5) decouples if u,v have the same boundary data, and we
recover several important monotonicity formulas: For k£ =0 and a = 1, the function u = v
is rescaled IMCF (as in equation (4.1)), and we obtain the Hawking mass monotonicity
formula (4.4). For k=0 and 0 < a < 1, the function u = v solves the rescaled* p-Laplacian

equation

2
Ay = avgyu + QM
u

. _lia .
Yi.e. U=wu"1-a is (2 - a)-harmonic
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with monotonicity formula

[H2uf? - (a7, u)?
V|

- 2K, |Vu| = 2div (V|Vu| + @Vu - Au&) .
u

R|Vu| +
|Vl

This formula has been first discovered by V. Agostiniani, L. Mazzieri and F. Oronzio in
[2] which enabled them to give a new proof of the Riemannian Positive Mass Theorem
[2], and, together with C. Mantegazza, the Riemannian Penrose inequality [1]. However,
even in the special case k = 0, the above formula has some new contents since we can
prescribe different boundary conditions for v and v, such that u # v and the system does

not decouple.

Another special case is given by v = 0. Then wu is a spacetime harmonic function.
i.e. u solves the PDE Au = —try(k)|Vu|, and we recover the main integral formula of
[64], Proposition 3.2. Moreover, we will see in Theorem 4.4.4 that (4.6) recovers the
monotonicity formula of the spacetime Hawking energy [61]

o (1 g J0e0-4)
M=/ —1-— _dA].
ma (2) =\ 16 \1 ™ 167 Sy 0401

under IMCF in spherical symmetry which implies the Penrose inequality in this setting.

4.4.1 Origins of spacetime IMCF

As discussed in Section 3, to give a new proof of the spacetime PMT, D. Kazaras,
M. Khuri and the author introduced in [64] spacetime harmonic functions. In case
(M, g,k) arises as subset of Minkowski space R*!, the spacetime harmonic function u
can be obtained by restricting a null coordinate function of Minkowski space such as
x+t, to (M, g,k). Hence, in the case of equality of the spacetime PMT the level-sets ¥
of u can be obtained by intersecting null planes with the initial data set (M, g, k) c R®!

as visualized in Figure 3.1.
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A similar situation occurs for any a € [0,1] for the system

3|Vul||vVol + (Vu, Vo)

)

Au = —trg(k)|Vu| + aky,|Vu| + aV?mu +

u+v
3|Vul|Vu| + (Vu, Vo)

Av =try(k)|Vo| - aky,|Vo| + av?mv +

u+v

However, instead of leading to a single null foliation, the level sets ¥, %, of u,v lead to

a double null foliation. More precisely, we have the following:

Theorem 4.4.3. Let u = r+t and v = r—t where r,t are the radial and the time coordinate
functions of Minkowski space R®'. Then the restrictions of u,v to any initial data set
(M, g, k) c R® solve system (4.5) for any a € [0,1]. In fact, we have (H2);ju =0 and
(H%)ijv =0, and have equality in Corollary 4.4.2.
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Figure 4.2: The double null foliation (>,,%,) for the initial data set (M,g,k) c
R3! is obtained by intersecting past and future directed lightcones in R3! with
(M,g,k). We would like to highlight that the individual null foliations >, and X,
differ. This implies that an integral formula as in Theorem 4.4.1 is a more general

concept than a monotonicity formula such as the one for the Hawking mass under

IMCF.

Furthermore, we can interpret system (4.5) for a = 1 as coupled inverse null mean
curvature flow and for a = 0 as coupled spacetime harmonic functions. Given an initial

data set (M, g, k) and a surface ¥ ¢ M, we can define the future and past null expansions
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(M,g,k) c R*! with 3, Foliation (M,g,k) c R*! with ¥, Foliation

Figure 4.3: There are no monotone quantities associated with the level sets >,

and Y, individually.

0, and 6_ by
0, = H +try(k) - kyu, 0_=H —trg(k) + kv

where v is the outer normal to ¥. A generalization of IMCF to initial data sets is given
by flows with speeds % and 9% in the outward normal direction. These so called inverse
null mean curvature flows have been studied K. Moore in [98] where an existence theory
under the assumptions try(k) > 0 has been developed, also see [80]. Inverse null mean
curvature flows A, B have like regular IMCF level-set formulations which after rescaling
a= e%A, 0= 3B become

val?
Aa = —try(k)|Val + VZ,a + k,,|Val + 2%

for the speed %, and

AB = —tr, (K)[V 5] + 72 8 + ko8 + 21250

for the speed ei_ We emphasize the similarities of these above equations with our system
(4.5) for a = 1. More rigorously, we observe in Section 4.6.2 that the solutions (u,v) to
our system (4.5) are in spherical symmetry rescalings of ei_ and % flows. The rescaling

factor is given by the usual IMCF.
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4.4.2 Applications to the Penrose conjecture

Given that system (4.5) with @ = 1 and integral formuala (4.6) generalizes IMCF in-
cluding the Hawking mass monotonicity formula, it is natural to ask whether there are

applications towards the Penrose conjecture.

Theorem 4.4.4. Let (M, g,k) be a spherically symmetric initial data set satisfying the
DEC, and let a = 1. Then system (4.5) can be solved, and the integral formula (4.6)

reduces to the monotonicity formula of the spacetime Hawking energy

m (%) = ( 167 [0+6 dA)

It is well-known that the monotonicity of spacetime Hawking energy on spherically
symmetric initial data sets satisfying the DEC leads to the Penrose inequality, see for
instance [61]|. Therefore, Theorem 4.4.4 (and thus Theorem 4.4.1) implies the Penrose
inequality in spherical symmetry. In the next section we discuss existence results outside

of spherical symmetry.

4.5 Existence results

Our systems (4.5) have the advantage that there are no second-order coupling terms, and
there is a simple expression for A(v —w). This allows us to obtain an existence theory

for system (4.5) with a = 0 in full generality without having to assume any symmetry:

Theorem 4.5.1. Let (M, g, k) be a compact 3-dimensional Riemannian manifold equipped
with symmetric 2-tensor k. Suppose that the boundary of M has two connected com-

ponents O-M and 0.M. Then we can solve system (4.5) for a = 0, i.e. there exist
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functions u,v e C*>*(M) solving

3
At = — try ()| v + SV ellvel+ (v, ¥o)
U+
3|Vu||Vo| + (Vu, Vo)

Uu+v

Av =trg(k)|Vo| +

on M, with Dirichlet boundary data u = cy, v=ds on 0. M for positive constants cy,d..

To solve the system
3|Vul|Vv| + (Vu, V
" = trg(k)| u| | u|| v| ( u, v)7

u+v
4.8
317u][ o] + (Vu, Vo) (48)

u+v

Av =trg(k)|Vo| +

on M with u=c, on 9, M and v = d, on 0, M, we will first obtain uniform estimates

for the system

3|VUU,€||VUU,€| + (vucr,es, vvo‘,f—:)
|Ug e +Voe| +€

vUU,el + <VUG,Ea VUG,E)

[Uge + Voe| + € '

Auge =—otrg(k)|Vuge| +

)

4.9
3| Vige (4.9)

Avge =0 trg(k)|Vuee| +

Here o € [0,1], € > 0, and we consider the boundary data us. = c. on 0.M and
Vge = 0ds + (1 —0)cy —e on 0. M. We assume € to be sufficiently small such that
ody+(1-0)ce—e >0 for all o € [0,1]. Without loss of generality we assume that c_ < ¢,

and d_ < d,.

Lemma 4.5.2. Suppose u,. € C*(M) and vy € C>*(M) solve the system (4.9).

Then we have
c- < Uge < Cy, od-+(1-0)c-—e<v,c<0di+(1-0)cy —¢
on M.

Proof. This follows immediately from the maximum principle. O
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Lemma 4.5.3. Suppose uy. and vy. solve system (4.9). Then there exists a constant

C independent of o,u.,v.,e such that

luoellwzeary + [voelw2rary < C.
Proof. To prove this proposition, it will be helpful to rewrite the above system in terms
of

1

Woe = Voe — Ugpe, ha,a = 4o 4c
o, o,e

)

We compute for wg e
Awg e = o trg(k)(|Vuoe| + [Vsel),

and for Ay o

[V (tge +voe + G)P

Uge + Vge + €

1 _ 1
§hg72€AhU75 =- §A(um +Vge +€)+

1 2 2
:—(3lvua,s| - 3|VUU,5HVUU,5 + wa,s| + 3(vua,s, vwa,s) + |vwa,5| )
Ug,e + Vo,e + €
tr,(k try(k
+0 g2( )|Vug,a| -0 92( )|Vua75 + We |-

Using the identity

1

[V (Uo e+ Woe)| + Vg

|v(u0,8 + w078)| - ’vumE' = (’vwa,a|2 + 2<vua,aa vwa,5>)7
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we obtain

1 _
ihaiAhm
1 3| Ve 5
=- ’ VWgel” + 2{Vug.e, Vi,
Uge T Vge + € |V(Uo,a + 1)0,5)| + |VUU75| (| ’El < ~ ’E))
1
—_— (S(VUU,E, Vwee) + |Vw075|2)
Uge +Vge t €
try (k) 1 9
- YVw + 2(Vuge, VW
2 |V(u375 N wa’€)| i |VUU’€| (| 076‘ ( o, a,e))
1 1
= | -3| Vo] Ve + |V
Uge +Vge + € IV (U + Woe)| + [V
1 <VU,05, Vws 5) 2
’ 7 Vw +2(VUgye, VW
o Vo 1 € IV (g + o)+ [Vitga B L ol 2Vt Virc)
try (k) 1

(Ve e* + 2 Viige, Vvge)).
2 |V(Ua7a + wa,a)| + |VUJ,£| : ‘ :

Having established our identities for Aw, . and Ah,. we proceed with estimating the

above terms. We have

|Awg e <C(|V(Uoe + Vo e)| + [V (toe = Vo)
(4.10)
<C(|Vhoelhy2 + |Vwe|)

where C'is depending on M, k, ¢, d; whose value may change from line to line. Moreover,
|Ahge| <ChY | Vw,e? + ChZ |Vwe.| (4.11)

where we used

|ng,5|

[V (tge + Woe)| + [Vuge| =

The W?2P estimate for solutions of elliptic equations states

”wUﬁ”W?’P(M) < C(|woeleary + 1hoe ”WLP(M)) <C+ C”ha,s”WLP(M)

and

|hoelwzoan < CUhoel o) + [woelfrznary) < C+ Clwee iy znar)-
(M) (M)
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By the Gagliardo-Nirenberg interpolation inequality, we have

IVwe %QP(M) < CO|VWore || 1o (1) | Wore | L= (a1

and
IVho el oary < CIVhoel o ary 1ol 22
where
= 2}; __33 <1

Hence, we are lead to

[20e

W2 (M) <C+ CHwJ’E w2p(M) S C+ CHho—’gle,p(M)

o 1
<C'+ C”ho,s ”WZP(M) < +§Hha,e HWQJ’(M)-

Thus, we have |hoe|w2rary < C which implies |woc|w2p(ary € C. Reconstructing

U, Vge from hy o, W, o, we also obtain ||ug . \Wz,p(M) + | voe ||W2,p(M) < C which finishes

the proof.. O

We can use the Sobolev inequality and Schauder estimates to improve the above

estimate to C*%. More precisely, we obtain:

Lemma 4.5.4. Suppose Uq ¢, Vs solve system (4.9). Then there exists a constant C

independent of 0,Ug ¢, Vo, such that

luo el 2oy + Vel oz < C-

Having obtained uniform estimates for system (4.9) we will use Leray-Schauder’s
fixed point theorem below to obtain solutions of (4.9) for ¢ = 1. Passing to a limit € - 0

then gives a solution to (4.8) establishing Theorem 4.5.1.
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Proof of Theorem 4.5.1. Let ¢7° be two functions on M with ¢7° = ¢y, ¢7° = ody +
(1-0)cy —e on 0. M. We denote with Cg’a(M) the set C%%functions on M which
vanish on 9. M. Observe that C’g’o‘(M ) is a Banach space. We define a family of maps
Foe: CYY(M) @ CT*(M) - Cp*(M) @ C3*(M) via

Foe(u,0) = [Ag" (7% (u,0)) , A5 (677 (u, v)) ]
where

T (u,0) = £ otrg(K)|V (u+ @)
L3IVt )|Vt ¢ )[+{V(ut o), V(v +¢4))

u+d_+v+o|+e

- A"

and where Ag! maps a function f to the solution v of Ay = f on M with vanish-
ing Dirichlet boundary data. By standard elliptic theory, F,. is indeed a map into
C’g (M) EBC'S "*(M). Moreover, F, . is a compact operator since the image of a bounded
sequence {(u;,v;)} has a convergent subsequence. Observe that if F,.(u,v) = (u,v),
then (u+¢_,v+¢,) solve system (4.9). Hence, we can use our uniform estimates, Lemma
4.5.4, and Leray-Schauder’s fixed point theorem, see for instance Theorem 11.6 in [53],
to deduce that there exists a solution of Fj o(u1,e,v1.) = (u1,,v1,) if there exists a
solution of Fy o (uo.e,v0,e) = (1o, v0,). Let Uy be the harmonic function with Uy = i

on 0.M. Then ug. = % satisfies
\E

2
AUO,E = 2—|VU0,5|
Ug,e

with ug. = c. on 0.M. Next, let vo. = up. — €. Note that vg. = c. —€ on 0, M and
voe >0 on M. Then

3|Vuo || Vv e| + (Vo e, Vo e)
B [uo,e + ol +€
3|Vuo || Vv e] + (Vo e, Vo e)
- |UO75 + 1}075| + )

)

Aug ¢

AUO,E

74



Thus, we may find solutions (uj.,vi.) to system (4.9) for o = 1. Since uj.,v1. are
uniformly bounded away from zero, and we have uniform C%“-estimates for (u1.,v1¢)

in terms of €, we can take the limit & - 0 to obtain solutions (u,v) to system (4.8). [

A crucial ingredient of the above proof is that the system (4.5) takes a simpler form
forw=u-vand h = u—}rv as in (4.10) and (4.11). We remark that for the p-harmonic
system, i.e. system (4.5) for a € (0,1), can be rewritten in a very similar form to (4.10)
and (4.11) though we have to re-define h = (u + v)f%cla. Note that the radial function
r T is p-harmonic in R3 for p = 2—a. We also expect that the solutions of system (4.5)

for a = 0 established in this section can be used to give a new proof for the spacetime

PMT.

4.6 Further discussions

In this section we better understand spacetime IMCF within Minkowski space and
Schwarzschild, and also give an example of another PDE system incorporating elec-

trical fields.

4.6.1 Minkowski space

In this section we show that for any initial data set (M, g, k) contained in Minkowski
space (R*1, g) the functions u = 7+t and v = r—t solve system (4.5) and satisfy H2u = 0,

H2v = 0 where

VyuVyv ViuViv + ViuV;v
(H2)iju = Viju + kij| V| -2 ZL+17 gij + —— —,

u+v

VyuVyv ViuViv + ViuV;v
(Hg)ijfl):vijv_kij|vv|—2 ZJ’_?:) gij"f‘ 3 J j i ‘

u+v
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Moreover, we analyze what the existence of functions satisfying the conditions H2u = 0,

H?v = 0 implies for general initial data sets.

Proof of Theorem 4.4.3. We begin with observing that V(v —u) = 0 and V?(uv) = 23

where g is the metric of Minkowski space. This implies
25 =vV2u+uVv + Vu® Vv + Vo ® Vu
=(u+0)Vu+Vu® Vo + Vo e Vu.
Similarly,
27 = (u+v)V?0 + Vu ® Vou + Vo ® Vu.
Restricting the above two equalities onto T*M ® T™ M we obtain

2g =(u+ UWQ|T*M®T*MU +Vu® Vu+ Vv ® Vu,

29 =(u + U)v2|T*M®T*MU +Vu® Vv +Vu® Vu.

Next, let us denote with N the future pointing unit normal of M c R3!. It is well-known

that
?2|T*M®T*MU =V2u + kN(u),
§2|T*M®T*MU :v2'U + kN(U)
Since Vu and Vv are null, we have
=2 )
Ve mer pru =V7u + k|Vul,
=2 2
Vs mer* v =Vv — k|Vul.
Combining everything yields
29 =(u+v)(Viu+ k|Vu|) + Vu ® Vo + Vo ® Vu,

29 =(u+v) (V30 - k|Vu|) + Vi ® Vv + Vo ® Vu.
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Observe that Lemma C.1.2 implies
|Vul| Vol + (Vu, Vo) = 2V,uV,v. (4.12)
Therefore, it suffices to show that
2 = [Vul[ Vo[ + (Vu, Vo)
for any initial data set (M,g,k) c R31. To do so, we observe that
2 =g(Vu,Vv) = (Vu, Vo) + g(N(u)N, N(v)N).

Since

gIN(u)N,N(v)N) = -N(u)N (v) = |[Vul[Vo],
the result follows. O

We remark that in Minkowski space we can also solve for any ¢ > 0 the boosted

system

VpuVyv ViuV;v + V,;uVv
1 Gij + i ’
C—QU, + v C—QU +v

VayuVyv ViuViv + ViuV;v
0 = V4jv — kij|Vo| -2 U 277 gij + L It
u+ cev

0= Viju + k‘ij|V’LL| -2

u+cv
where u = c(r+t) and v =1(r-1t).
The vector field n appears in both the integral formulas (4.6) and (4.24). Next, we

describe n for IDS (M, g, k) in Minkowski space. In the following proposition we equip

(R, g) with spherical coordinates (9,, 0, 0¢,0p).

Proposition 4.6.1. Let (M, g,k) c (R*!,g) be an IDS contained in Minkowski space.
Then g(n,0p) =0 and g(n,04) = 0.
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Proof. We have

O+ 0y =Vu=Vu+ N(u)N

and
Or — 0 =Vv+ N(v)N.
Therefore,
n||Vu|Vo + |Vo|Vu| = |[Vo|Vu + [Vu|Vo = 0, (|Vu| + [Vo|) + 0,(|Vu| — |Vu]),
and the result follows. O

4.6.2 Schwarzschild

We begin with the proof of Corollary 4.1.1 before proceeding with the Penrose inequality

in spherical symmetry 4.4.4 and studying arbitrary slices of Schwarzschild.

Proof of Corollary 4.4.2. Recall from Theorem 4.4.1 that

oy P () ) | 2P~ ()00
|Vul |V

- 2K,|Vu| - 2K,|Vv|
> - 2K,|Vu| - 2K,|Vv|.

where we used that (M, g, k) satisfies the DEC, and where
1
Y =29(|vul +|vol) + 2k(V (u - v), ) +4([Vulvo + Vo] vu) ——
28w oA VY 2t (k) (u - v).

|Vul |V
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Next, recall that each boundary component 0. M is a level set for both u and v which
can be interpreted as 0-M and 0, M being unboosted with respect to each other. Hence
vi=n=v, =1, on 0. M and

H‘VU’ + Vi = Au = —try, |V’LL‘ +Voou + kl,V|Vu| + 4—|VU-|’|_VU|,
u v

|Vul| Vol

H|Vv|+ Vv = Av = trg V| + Vv — Ky [ V| + 4
u+v

on .M. Since |Vul,|Vv| are non-zero, this implies
1 1
|Vl = 19+(u+v), |Vu| = ZH_(u+U). (4.14)

Combining these equations with the identity Au = V,,u + HV,u, we obtain

8|Vul|| V|
u+v

20 (u+v) - 2ty (k) (|Vu] - Vo)

Y, =2V, (u+ v) + 2k, (|Vu| - |[Vo]) +

== 2H(|Vul +[Vv]) + 2k, (|Vu] - Vo))

8|Vul|Vu
LAVallvel o ky(wul - [vol)
u+v
8
20, vl - 26w + ALYVl
u+v

1
=——0,0_(u+v).
o+ (u+v)
Combining this with equation (4.13) yields after integration

-wf 0,0.d4 > -t Vlon 0+9,dA+i[ (Ku|Vu| + Koo )dV
167 oy M M A7 Jm

167 o-

Next, we use twice the coarea formula and Gauss-Bonnet’s theorem to obtain

u| + ’U‘ +
A/[(Ku|Vu| + K| Vo|)dV = [ "M gt + f "M drdt = Ar(u+v)|o_ar —4m(u+v)|o, M-
v

Ulo_ M |6, M

Hence, we have

1 1
1-— _dA| > 1-— _dA 4.1
(u+v)|3+M( o [ 00 )_(u+u)|a,M( — [ 0.0 ) (4.15)
which finishes the proof. O
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In order to prove Theorem 4.4.4 which implies the Penrose inequality in spherical

symmetry, we first establish the following Lemma.

Lemma 4.6.2. Let (M, g,k) be a spherically symmetric initial data set and let g ¢ M
be the outermost horizon. Let s be a smooth solution of rescaled IMCF starting from

Yo, t.e. As=V,, 5+ 2@ with s(Xg) = ‘fé—gr'. Outside Yo we define the spherically

symmetric function w =w(r) via
1
w(r) =[5 (trg (k) =k )sdp
where T is the distance to Xg. Then u,v, implicitly defined by
u+v=s, v-u=w,
solve system (4.5) for a =1. Moreover, we have
|V Ly |Vl Ly (4.16)
vl =-0s, u| = —0_s. .
47" 4
Here v is the unit normal to the spherically symmetric surfaces and we note that
V=Uy=Uy=1.

Proof. Since s solves rescaled IMCF, and using As = V,,s + HV,s, we deduce that
|Vs| = 3 Hs. Moreover, we have |[Vw| = 1|try(k)—ky,|s. Since % is the outermost horizon
and is therefore not enclosed by any MITS or MOTS, we also obtain that 6,,6_ > 0 for
all spherically symmetric surfaces outside ¥y . This implies H > |trg(k) — k.| for all
spherically symmetric surfaces outside ¥, and since u = %(s —w) and v = %(s +w) we

obtain
1 1
|V’U| = 19+S7 |VU| = ZG_S.

Note that this in particular implies Vu, Vv # 0 outside ¥g as well as V,u,V,v > 0.

Multiplying the above identities by |Vul,|Vv|, we obtain in the same fashion as in the
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computation of equation (4.14) that (u,v) solve system (4.5) with a = 1. This finishes

the proof. 0

Observe that (4.16) implies that the level sets of u move by rescaled - flow, and
the level sets of v move by rescaled - ﬂow The rescaling factor is in both cases given

by 75 where s is rescaled IMCF.

The above lemma immediately yields

Corollary 4.6.3. We can solve the system (4.5) for a =1 in spherical symmetry.

We remark that although system (4.5) is in many ways the most complicated for a = 1
due to its degenerate elliptic character, the existence theory for a = 1 is substantially
simpler than for a € [0,1) in spherical symmetry. This contrasts the Riemannian (i.e.
k = 0 case) where the existence theory for harmonic functions is elementary compared
to the sophisticated existence theory for IMCF [79, 97|. The reason for this reverse
behavior stems from the fact that the system decouples for a = 1 in spherical symmetry
as demonstrated in Lemma 4.6.2. However, the system appears not to decouple in
spherical symmetry for a # 1, and the function u + v is not the rescaling of a p-harmonic

function.

Proof of Theorem 4.4.4. Let (M,g,k) be a spherically symmetric initial data set satis-
fying the DEC, and let u,v be solutions to system (4.5) for a = 1 outside the horizon ¥

as described in Lemma 4.6.2. As in the proof of Corollary 4.4.2 above, we obtain

1

(u+v)|g2(1——/ 6,6 dA)>(u+v)|El( - 219+0_dA) (4.17)

for any spherically symmetric surface Yo enclosing 21 enclosing ;. Since u+v = s solves

rescaled IMCF As=vV,,s+ QW o with s(Xo) = Eol “and because IMCF is uniformly

671"
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area expanding, we obtain

> 1 > 1
22| (1 b 9+9_dA) o/ P (1 . 9+0_dA)
167 167 Jx, 167 160 Jx;

Hence, the spacetime Hawking energy

2]

1
$,) =1/ 124 1——f 0.0 dA) 41
m () 167r( 167 Jx, F (4.18)

is monotonically increasing for spherically symmetric initial data sets satisfying the

DEC. O

In Minkowski space we can obtain for any initial data set (M, g, k) c R®! solutions
to system (4.5) by restricting the optical functions u = r+¢ and v = r -t to M. Moreover
(H2)iju = 0 and (H2);jv = 0. For Schwarzschild the situation is similar, though the

underlying objects are null vector fields rather than null functions:

Proposition 4.6.4. Let (M,g) be the Schwarzschild spacetime of mass m >0 in static

coordinates, 1i.e.
g=—¢dt* + o~ dr* + r’gge

where ¢ = (1 - 27'") On (M,g) we define the null vector fields X = ¢V (r* +t) and
Y = ¢V(r* —t) where r* = r +2mlIn(5- — 1) is the tortoise coordinate. Then on each
spherically symmetric initial data set (M,g,k) in (M,g) the vector fields X|rar and
Y|rar are integrable, i.e. there are functions u,v on M with Vu = X|pp and Vo = Y|y
These functions u,v solve the system (4.5) for a =1 and we have |H2u[*~((H2);u)? =0

as well as [H2v> = ((H2)yyv)* = 0. Moreover, VX, = VY, = 5.

We would like to remark that X +Y =2Vr and X - Y = 2T where T is the time-like
A _ 2
Killing vector field T = (1 - =*)Vt.
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Proof. Recall that we have in view of equation (4.12)

9 [Vul|[Vou| + (Vu, Vo) ViuV;v + VjuVv

(H)iju = Viju + kij| Vu| - o gij + 0 ,

Vu||Vv| + (Vu, Vv ViuVjv+ V,uVv

(Hg)ijv:vijv_kiﬂvm_ | || | ( >gij+ 7 7 7 7 .
u+v u+v

Next, observe that we have V,X; = V;X; unless (¢,5) = (r,t),(¢t,r). Thus, X,Y are
integrable on each spherically symmetric IDS. Moreover, VX = VX + k(N, X); = VX +

| X|k and VY = VY - k|VY]| since X,Y are null vectors. This implies
(XNY[+(X,Y) = g(N(u)N,N(@)N) +(X,Y) = 5(X,Y) = 2¢.

To prove the above proposition, it thus suffices to show on (M, g)

XaY5 + XﬂYa
2r

XaY5 + Xnga

4.19
2r ’ ( )

= ¢_ - ¢ _
vaXB = ;gaﬁ - VaYB = ;gaﬁ -
for all o, B8 apart form (o, ) = (r,7),(r,t),(t,7), (t,t). We merely perform the compu-
tation for V4 Xg since the ones for V,Yj3 are analogous.

Denoting with A = dy,0p the standard spherical coordinates, we compute for o # A

§AXO¢ :604_XA = 0

and
¢ — XocYA + XAYa
—9Aa — —— =0.
T 2r
Moreover, we have
_ _ B X YA + XAY
VaXa=I"y, X, = 944 %

Next, observe that 1 has only components in Vr and Vt direction, i.e. 7 =aV, +bV,.

We calculate

2 2 1M
VMT— T‘_27 vttr__¢ T‘_2
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This leads to
m_ m
Vo Xy = Viur = 59(n,m) = =
r r
which finishes the proof. O

We would like to remark that in case m # 0, the Killing vector field T' = %(X -Y)
does not satisty v,T; = 0, VT, = 0. Hence, equation (4.19) is not satisfied for («, ) =
(r,t), and X,Y are not integrable on the entire spacetime (M, g). Thus, in contrast to
Minkowski space, there are no globally defined functions u,v such that when they are
restricted to an IDS, they solve system (4.5) for a = 1. However, there are other such
globally defined null functions v = r* +t and v = r* — ¢ which do satisfy another nice set

of equations. More precisely, we have:

Proposition 4.6.5. Consider the functions u=r*+t and v =r*—t in the Schwarzschild
spacetime (M,g). Then on any IDS (M,g,k) ¢ (M,g) (not necessarily spherically

symmetric) the restrictions of the functions u,v onto M satisfy

[Vul[Vol +(Vu, Vo)

0. |Vu| =Au + trg k|Vu| - V2, 1~ Ky, |Vu| = ¢ )
vulvel + (vu vy
ul||Vo u, VU
0_|Vv| =Av — try k|Vo| = V2, 0+ kyyu, VO] = ¢ . .
and
m 3|Vu||Vv| + (Vu, Vv
Au =(kyy — trg k:)|Vu|+V$mu—r—2(|vu|2_(vnu)2)+¢) V| |2r< >’ o
4.21
m 3|Vul|lVu| + Vu, Vv
Av =(trg k= ko) |Vo]+ Vv = 5 (IVel* = (Vo)) + ¢ el |2r< 3
as well as
V2u = Hvul + Lo(vulve + (vu, 7))
m ¢
- = Vu® Vu- —(Vu® Vo + Vo ® Vu),
r2 2r
(4.22)

V?v = — k|| + %MIWIIWI +(Vu, Vo))
m 0]
-5 V@ Vu- —(Vu® Vv + Vv e Vu).
T 2r
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Proof. We only show the computation for w since the one for v is analogous. We have

_ _ 1
Viﬁt = Fﬁw = §9tt(Va95t + V39at)

which implies

=2, =2 m o 1
Vit =Vt = _T_2¢

and V2t = 0 otherwise. Next, we compute
_ - m
Vit =02t + T O = _T_2¢ 2,
=2 * 2 * T * 1
VAAT :aAA’I" +FAA8T7" =-,
r

P ., m
V?tr =L, 0pr" = — 3
where A € {6, ¢}. Moreover, V§¢r* =0, V4,7 =0 and VZ7* = 0. Hence,
_ g _ _ _ _ m_ _
v2u =4 E(Vu® Vu+Vo®Vu)— =Vu® Vu
ro2r 72

which implies on any initial data set (M, g, k)
m
V2u = - k|Vu| + g_ £(Vu<2>V11+W® Vu) - =Vu® Vu.
ro2r r2
Next, we observe that on each initial data set
V| Vol +(Vu, Vo) = (N ()N, N(0)N) + (Vu, Vo) = 2¢7".
Therefore, we are lead to the equation
2 g o m
Vu = - k|Vul| + 5¢(’VUHV’U| +(Vu, Vv)) - ﬂ(Vu ® Vv + Vv Vu) — T—QVu ® Vu.

Taking the trace, we obtain

3|Vul[ Vol + (Vu, V)

Au = —trg k|Vu| + ¢ 5
,

m 2
- —|Vu|~.
7"2| |
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Moreover,

[Vu||[Vo| - (Vu, Vo)

m
Vo= ko, [Vl = VUl + ¢
r 2r
and
2 m 2
Vot = k| V| = T—2(Vnu) :
Thus, the result follows. O

Note that by relating w and v to r via the identity u + v = 2r*, systems (4.20) and
(4.21) can also be studied for an arbitrary initial data set which does not arise as slice
in Schwarzschild. Moreover, system (4.21) reduces to system (4.5) with a = 1 in case
m = 0.

Finally, we would like to point out the importance of equations such as (4.22) lies
in the fact that they can be used to characterize slices in certain spacetimes. See for
instance [72, 64] for slices in Minkowski space and Proposition 2 in J. Krohn’s paper

[87] for slices of Schwarzschild.

4.6.3 The charged setting

Finally, we would like to give another example where the double null foliation concept is
useful. In [64] the spacetime PMT has been proven via spacetime harmonic functions,
and in [16] the PMT with charge has been proven via charged harmonic functions, i.e.
functions solving Awu = (E, Vu) where F is the electrical field. Given an initial data set
(M, g,k) equipped with an electrical field E, we need to combine both approaches and

use double null foliations:
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Theorem 4.6.6. Let E be a divergence-free vector field on (M, g, k). Suppose u,v solve

the system

Au = EE, —try(k)|Vul

(4.23)
Av =EE) +try(k)| Vvl
with |Vul,|Vv| £ 0, where & = \/|Vv||[Vu| and n = %. Then we have
1
div(2) :mqgfuﬁ +|Vul(2u - 2K, - 2|E?) + 2|vul(J, Vu))
| (4.24)
+ m(k‘fvﬁ +|Vol* (2p - 2K, ~ 21 EP) - 2|vol(J, Vo).

where K, K, are the Gaussian curvatures of the level-sets of u,v,

Vu Vv _
Z =V|Vu| - Au— + V|Vo| - Av— + 267} (|Vul|Vo| + (Vu, Vo)) E
V| Vo]

—trg(k)Vu + trg(k)Vo + k(Vu,-) - k(Vv,-),
and

(E2)iju =Viu+EmE; + En;E; — EEngs; + kij| Vul,

(E2)ijv =Viv + EmiE; + &nj E; — EEngs; — kij| V.
We remark the important role the vector field n plays in both integral formulas.
Observe that the above formula recovers Proposition 3.2 of [64] in case E = 0 which has

been the main ingredient to prove the spacetime PMT, and equation (8.7) of [16] in case

k =0 which has been the main ingredient to prove PMT with charge.
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Chapter 5

Conclusion

We have successfully proven Theorems A, B and C. It remains an open question to

establish the spacetime Penrose inequality in full generality.
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Appendix A

Technical aspects of Theorem A

This appendix is based on joint work with Simon Brendle and Florian Johne [22].

We discuss the technical aspects of our proof of the generalized Geroch conjecture
which we omitted in the main text. We begin with establishing the stability inequality

for stable weighted slicings, Lemma 2.3.1.

A.1 The stability inequality

Let (N, g) be a closed Riemannian manifold of dimension dim N = n. Throughout this
section, we assume that we are given an stable weighted slicing of order m. Our goal is

to show that metric g cannot have positive m-intermediate curvature.

By the first variation formula for weighted area, Corollary 2.1.6, the mean curvature
Hy,, of the slice ¥, in the manifold ¥, satisfies for 1 <k <m the relation
Hy, = —(Vs,_, log pg-1, k)

where we set pg = ug-----u. By the second variation formula for weighted area (compare

Proposition 2.1.7) we obtain for 1 < k <m the inequality

0 < ‘/Ek Pk-1 (_wAka - ¢<V2k IOg Pk-1, VE,J/’)) d/,L

- '[Ek pr-1 (|As, [* + Rics,_, (v, vi) = (V3,_, 108 pr1) (Vs i) ) ©° dt

for all ¢ € C*°(3y). By Definition 2.0.5 we may write px = pg_1 vk, where v > 0 is

the first eigenfunction of the stability operator for the weighted area functional. The
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function vy, satisfies
Akvg = = A, v — (Vs log p_1, Vs, vx) — (JAs, |* + Ries, , (g, vi)) ve
+ (V% log pr_1) (v, vk ) v,

where A\ > 0 denotes the first eigenvalue of the stability operator.

By setting wy, = log vy, we record the following equation:

A == As,wi — (Vs log p_1, Vs, wi) — (|As, |* + Rics, , (vk,vi)) (A1)

+(V3,,_, log pr-1) (Ve vi) — |V, wil*.

We next record two lemmata connecting the second derivatives on consecutive slices.

Lemma A.1.1 (First slicing identity).

We have for 1 <k <m the identity

Ay, log pr-1 + (Vs log pr_1) (vk, vi) = Ay, , log pr—1 + H3, .

Proof. The above formula follows by applying the formula relating the Laplace operator

on a submanifold to the Laplace operator on the ambient space

As, f+(V8, [ (Wk,v) = As,_, f = Hs, (Vs f. o).

to the function f =logpr_1. The gradient term on the right-hand side is rewritten by

using the first variation formula for weighted area
HEk = _<v2k—1 log pk’—l? Vk!)

from Corollary 2.1.6. O
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Lemma A.1.2 (Second slicing identity).

We have for 1 <k <m—1 the identity

Ay, log p, =Ay;, log pr-1 + (V3 10g pr-1) (Ui, i)

= (A +1As, [P + Rics,_, (v, vi) + (Vs, log pr, Vi, wie)) -

Proof. This follows from the identity log pr = wg + log pr_1 together with the equation
(A.1). O

Lemma A.1.3 (Stability inequality on the bottom slice).

On the bottom slice ., we have the inequality

[ p;nl_l (AEm_l log py-1 + H%m) dp > fz p,_nl_l (\Ang + Ricy,_, (Vim, Vm)) dp.

m m

Proof. By the second variation of weighted area (compare Proposition 2.1.7) the stability

inequality on the bottom slice ¥, gives

ogfz pm-1 (=fAsx,. - f(Vs,, log pm-1,Vs,, f)) du

- L Pm-1 (|A2m|2 + Riczmq (Vma Vm) - (v%m,l log pm—l)(yma Vm)) f2 d,“

for all test functions f € C*°(%,,). Since the weight p,,-1 is positive, we may use the

direction f = p.1 | in the stability inequality, and observe

Ay, [ =-Ax,, pr_nl—l = p;nl—lAEm log pm-1 - P;?—1|V2mpm—1|2a

~(Vs,, 108 pr1, Vs, f) = ~(Vs2,, 108 P, Vs, Pt ) = +00 1|V 5 Pt [
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The gradient terms in the previous formulae cancel, and we obtain by rearrangement

L pnr (85,108 pmey + (T, 108 pinct) (Vs vim))

2 ‘/X‘: p’r_nl—l (|A21n|2 + R’icszl (Vm7 l/m)) dlu

Finally, we use the first slicing equality from Lemma A.1.1 to replace

Ay, log pm-1 + (V%m_l 10g pm-1)(Vm, Vm) = As,,_, 10g pm-1 + H%m
which finishes the proof. O

Lemma 2.3.1 will follow now by carefully computing and estimating all terms ap-

pearing in Lemma A.1.3.

Lemma A.1.4.

We have the inequality

fz Pl (A+R+G+E) du<0,

where the eigenvalue term A, the intrinsic curvature term R, the extrinsic curvature

term &, and the gradient term G are given by

m-1 m m-1

A=Y X\, R=) Rics, , (v, vk), G= ) (Vs, log pk, Vs, wk),
j=1 f=1 1
m m

and €= |As, |* - EH%k
k=1 k=2

Proof. If we combine the first slicing equality, Lemma A.1.1, and the second slicing

equality, Lemma A.1.2, we obtain for 1 < k <m — 1 the identity

Ay, log p, = Ay, log pr—1 + H%]H - (/\k + |A§]k|2 + Rics, , (v, vk) + Vs, log pr, Vzkwk)) .
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Summation of the above formula over k£ from 1 to m — 1 yields

m—1

Ay, -110g pm-1 =Ax, logpo + > H%k
k=1
m—1 9
= > (A +|As,|? + Rics,, (U, vk) + (Vs 10g pi, Vs, wi)) -
s

We plug this equation into the stability inequality, Lemma A.1.3. Moreover, we
observe that the weight pg is constant, the mean curvature of the top slice Hy,, vanishes,
and that the stability inequality contains the mean curvature term H%m the extrinsic
curvature term | Ay, |* and the curvature term Rics,,_, (Vm, Vm ). Then the lemma follows

by grouping the terms suitably. O

The eigenvalue term A is non-negative, since it is the sum of the non-negative eigen-

values. We will estimate the other terms below.

The first step is to estimate the gradient terms:

Lemma A.1.5 (Estimate of gradient terms).

We have the estimate

Proof. We define for k£ > 1 the non-negative real numbers «y by

k-1
o= ——.

2k

By direct computation one verifies the identity

1 1
o=
b=
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for k > 2. Using the identity Hy, , = —(Vy, log pk, Vg+1), we obtain

<V7Ek h)g[Qk,§7EklUk>
=(Vx, log p, Vs, (log p, —log pr-1))

1
=(1 - ay)| Vs, log pp|* - EWEIQ log pr-1|*

2

1
+ay |V, logpr - EVZ,C log pr-1

=(1-ag) Hy, | + (1= ap) [Vs,,, log pul* = (1 - 1) [V, log ppa
2

1
+ay |V, log py, - Evzk log k-1

for 2 <k <m—1. Summation over k from 2 to m — 1 yields the formula

m—1 m—1

S (Vs logpr, Vs, wi) > > (L) Hg | + (1= 1) [V, 0g pm-1|* = Vs, log pa] .
k+1

k=2 k=2

Moreover, the identity Hy, = —(Vx, log p1,v2) implies

(Vs log p1, Vs, wi) = |V, log p1* = Hy, +|Vs, log p1|*.

Adding the two inequalities gives

m—1 m—1
> (Vs log pr, Vs,wr) 2 Y0 (1-ag) Hy, |+ (1= n1) [V, log pra |
k=1 k=1
which finishes the proof. O

In the next step we rewrite the intrinsic curvature terms with the help of the Gauss

equations:

Lemma A.1.6 (Iterated Gauss equations).

The curvature term R s given by
m-1 m n 9
R=Cn(e1,...,em)+ Z Z Z (Azk(epa ep)As, (€q,€q) — Ax, (€p, €q) ) )
k=1 p=k+1q=p+1

where Cy, denotes the m-intermediate curvature of the Riemannian manifold (N",g).
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Proof. Fix a point x € ¥, and consider an orthonormal basis {ej,...,e,} of T, N with
ej = v; for 1 < j <m as above. We observe by the definition of the Ricci curvature on

the slice ¥_1, and by the Gauss equations the formula

n

Rics, , (vp, 1) = Rics, , (ep,ep) = D, Ry, (ep, eq. €p,€q)
q=p+1
n n p-1 )
Z Rmp(ep, €q, €p, €q) + Z Z (AEk(ep’ep)AEk(eqveq) - As, (ep,€q) ) .
q=p+1 q=p+1 k=1

Summation over p from 1 to m then implies

R = ZRngp (vp, 1)
p=1

MS

n m n p-1
Z Rmpy (ep, eq, €p,€q) + Z Z Z (AZk(epvep)AEk(eq»eq) _AEk(epaeq)2)

p:1 q=p+1 p=1g=p+1k=1
m n p-1 5
=Cn(et,....em) + Z Z Z (AZk(epaep)AEk(emeq)_AEk(ezweq) )
: q=p+ k=1
If we interchange the order of summation, the assertion follows. O

Combining the lemmata A.1.6, A.1.4, A.1.5, and reorganizing terms, Lemma 2.3.1

follows.

A.2 Extrinsic curvature estimates

In this section we prove Lemma 2.3.2. We use different estimates for the top slice, the

intermediate slices and the bottom slice.

Lemma A.2.1 (Extrinsic curvature terms on top slice).
We have the estimate

m?-2-n(m-2) (& ’
Viz 2(n-m)(m-1) (Z::Azl(epjep)) .
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Proof. To estimate the term V;, we begin by discarding the off-diagonal terms of the

second fundamental form hy, :

Vi =|A21|2 + Z Z (AZ1(epa€p)A21(eqveq) _AZ1(epv€q)2)

p=2q=p+1
n 9 m n
> Z Agl(ep, €p) + Z Z Azl(epyep)A&(eqveq)'
p=2 p=2q=p+1

The terms on the right hand side can be rewritten as follows:

2
Vi > — Z Agl(ep,ep) + 2 Agl(eq,eq) + Z Ay, (ep,ep) Hs, — = (Z Ay, (ep, ep))

p2 g=m+1 2p2

Recall that Hy;, = 0. By the Cauchy-Schwarz inequality,

2
(2 Ay, (€p7 ep))
p=2

ZAxl(ep’ep) 2 m—1

p=2

and

Z AEI (€q, e(I)

q=m+1

—-m qg=m+1

2
( Z Agl(eq,eq)) (ZAE1(6P7‘3P))

where in the last step we have used the fact that Hy,, = 0. Putting these facts together,

the assertion follows. O

Lemma A.2.2 (Extrinsic curvature terms on intermediate slices).

We have for 2 <k <m—1 the estimate

2
-2-n(m-2)
sz 2(m—-1)(n-m) ( Z Azk(eq’%))

qg=m+1

Proof. To estimate the term Vj, we start by discarding the off-diagonal terms:

1 1 m n
Vi =|h2k|2 -lz- H%k + 2 Z (Agk(ep, ep)As, (eq,eq) — As, (ep, 64)2)
2 2(k - 1) p=k+1 q=p+1

2 Z Azk(€p>ep)2_ (__—)H%k " Z Z Az, (ep, ep) As, (eq, €q)-

p=k+1 2 Q(k - 1) p=k+1q=p+1
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The terms on the right hand side can be rewritten as follows:

1 m n
Vi 25 Z AEk(€p7ep)2+ Z AZk(eqaeq)Q

p=k+1 g
i 2
1 m ) , )
+ m (p:%;rlAEk(epa ep)) - (5 B m) (q_%:ﬂ Agk(eq, eq))
1 m "
’ k-1 (p:zk;rl Al ep)) (q—;ﬂ As, (eq, eq)) .

The Cauchy—Schwarz inequality gives

2
Z AEk(ep7€p)22 Z AEk(ewep))

p=k+1 m-= (p k+1

and

Z AEk(eqaeq)

g=m+1

2
m( Z AEk(eq’eq))

q=m+1

Moreover, Young’s inequality implies

2
( Z AEk(ep’ep))( Z AEk(eqveq)) ( )( Z AEk(epaep))

=k+1 qg=m+1 p=k+1
2
m-—k "
L. Ay, (eq, .
2(m-1) (q=;+1 weleo eQ))

Putting these facts together, the assertion follows. O

Lemma A.2.3 (Extrinsic curvature terms on bottom slice).

We have the estimate
Vs m? -2 -n(m-2)

S om 1) Hg . (A.2)

Proof. We observe by the the trace estimate for symmetric two-tensors the inequality

1 1 1 1 1
e i) S e e
- m?-2-n(m-2)

~ 2(n-m)(m-1)

2
H .
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Clearly, Lemma 2.3.2 follows.

A.3 Existence of minimal slicings

In this section we prove existence of stable weighted slicings of order m. The argument
uses the mapping degree and is essentially contained in Theorem 4.5 of [107]|. Alterna-
tively, one could also use an argument based on homology, compare with Theorem 4.6

in [107].

Proof of Theorem 2.0.7. Suppose F: N - T™xM™ "™ has degree d # 0. The projection
of F onto the factors yields maps fo: N - M and maps fi,..., fm: N - S'. Let © be
a top-dimensional form of the manifold M normalized such that [,,© =1, and let 6 be
a one-form on the circle S! with Js1 0 = 1. We define the pull-back forms Q := f; © and
wj = f;’ 9. By the normalization condition we deduce that [ywi A Awy, AQ=d.

We claim that one can construct the slices 3;, and the weights pg, such that fEk Wit A
-~ Awm A =d holds. We prove the claim by induction. The base case k = 0 holds
by the previous observation and by setting > := N and pg := 1. For the induction
step we suppose that we have constructed the slice ¥;_1 and the weight pg_1, such that
/Ek,lwk/\"'/\wm/\g =d.

We define a class A;, by
Ayj = {E is an (n — k) — integer rectifiable current in ¥j with /Z Wil A - Awm A = d}.

The first step is to show that the above class is non-empty. Suppose py € S! is a
regular value of the map fils, , : Bx-1 = S'. Then the the preimage Sp={z e
fu(x) = p} is a smooth and embedded hypersurface in Xj_;. A priori ¥; might be

empty. On the complement S'\{p} the one-form 6 is exact. In other words, there exists
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a function vy : S"\{px} — R, such that di, = . Moreover, due to the normalization
condition [y 6 = 1, the function ¢y, jumps by 1 at py.

We define a function ¢y, : Zk_l\f]k — R by setting @y := 9 o fx. Since the pull-back
commutes with the differential we deduce dyy, = £ (di) = fi 6 = wy on Y1\ Sk

The above observation (and the closedness of the forms wyg, ..., wn, ) implies
A(Pr Wkt A AW ASY) = W AWgg1 A+ Awp AL

Let us integrate the above relation over ¥;_1 \ ¥j. By Stokes theorem, the integral of
the left hand side yields two boundary integrals over 5. Since g jumps by 1 at S,

we obtain

[ Wk+1/\"'/\wm/\Q: - d(@kwk+1A"'AwmAQ)
Zk Ek,l\zk

:f L WEAWELL A AW A€
Y1\

=d.

In particular, ¥, is non-empty and belongs to the class Ag. This shows that the class
A}, is non-empty.

We consider the variational problem
o =inf {M, | n-k(Z): S e A},

where M, | i denotes the p;_;-weighted mass functional on (n - k)-integer rectifi-
able currents. By the compactness theory for integer rectifiable currents, compare for
example Theorem 7.5.3 in [?], we deduce that there exists an (n — k)-integer rectifiable
current Y, with mass M, | ,-x(Xx) = o%.

By the regularity theory for integer rectifiable currents, compare for example Theo-

rem 7.5.8 in |?] or the survey [43], and the dimension bound n < 7 we deduce that Xy
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is a smooth, two-sided and embedded hypersurface. Moreover, the smooth surface >
is stable with respect to variations of the weighted area, and therefore we can find a
positive first eigenfunction vy of the weighted stability operator. Defining the weight pp

by the formula pi = pr_1 - v completes the induction step. O
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Appendix B

Technical aspects of Theorem B

This appendix is based upon joint work with D. Kazaras and M. Khuri [64] and with
Yiyue Zhang HirschZhang.

We address several technical difficulties arising in the proof of Theorem B. We would
like to highlight that the majority of these difficulties are caused by the vanishing of the

gradient of the spacetime harmonic function.

B.1 The generalized exterior region

Recall the central formula

. |@2u|2
div(V|Vu| + k(Vu,-)) + K|Vu| =
2|Vl

+ pl vl + (J, Vu).

Upon integration and by use of Gauss-Bonnet’s theorem, this formula leads to the
spacetime PMT assuming the level-sets of u are not spherical. In the main text we
assumed that M3 is topologically R?. In this case spherical level-sets must bound a
region. However, in view of the strong maximum principle, this is impossible.

In general this does not need to be the case. For instance, for R3#S? x S! spherical
level-sets can be present. To solve this issue we will construct a so-called generalized
exterior region, i.e. an asymptotically flat manifold (Mez,g,k) whose end coincides
with (M, g, k), whose second homology is trivial and whose boundary consist entirely of

MITS and MOTS (i.e. surfaces where 0, = H +try k =0). On these MOTS and MITS
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boundaries we then carefully choose appropriate boundary conditions for the spacetime

harmonic function . This will be the subject of this and the next section.

In Lemma 4.1 of [79] G. Huisken and T. Ilmanen established the existence of an
exterior region for asymptotically flat Riemannian 3-manifolds, showing that for each
asymptotic end there is such a region which is diffeomorphic to the complement of a finite
union of balls in R?. They accomplished this by removing all compact minimal surfaces,
including immersed ones, to identify the trapped region and remove it. As pointed out by
Lee in [90, page 140], the weaker topological simplification Ho(Meyt, OMeye; Z) = 0 may
still be achieved by only removing embedded compact minimal surfaces. His proof relies
on the classical result that within each nontrivial 2-dimensional homology class there
exists an area minimizing minimal surface representative. Due to the lack of a variational
characterization, such a result is not currently known for MOTS. Nevertheless, the
conclusion of Lee’s observation still remains valid in spirit with the role of minimal

surfaces replaced by that of MOTS and MITS.

Proposition B.1.1. Let (M,g,k) be a smooth asymptotically flat initial data set sat-
isfying the dominant energy condition. Then for each end Meyq, there exists a new
initial data set (Megt, Gext, kext) having a single end which is isometric (as initial data)
to (Meng, g, k). Furthermore, My is orientable, satisfies Ho(Meyt,OMeye; Z) = 0, and
has a boundary OMe. consisting entirely of MOTS and MITS.

Proof. There are two primary steps. The first is to identify appropriate (possibly im-
mersed) MOTS and MITS to remove from M in order to obtain a subset M’ 5 Mg,
whose compactification admits a positive scalar curvature metric. The second step en-
tails reducing the first Betti number of M’ to zero via an iterative process which involves
passing to finite sheeted covers. The proof of the first step is based on a reorganization

of the arguments used for [5, Theorem 1.2|, and thus only an outline of the main ideas
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will be given here. The second step will be described in detail. In what follows, we as-
sume without loss of generality that M is orientable by passing to the orientable double

cover if necessary.

According to [47, Theorem 22| there is a sequence of perturbed initial data (M, g;, k;)
with g; > ¢ in WE’(’IP(M) and k; - k in W_Qép_l(M) as i > oo for p > 3, such that a strict
dominant energy condition is satisfied p; > |Ji|g,. To this end, solve the Jang equation
[46, Proposition 7| for (M, g;, k;) with standard asymptotic decay in each end. Note that
the assumed decay on Tryk is not in general sufficient to guarantee bounded solutions
of Jang’s equation near infinity. However, as pointed out in |5, Remarks 2.2 and 3.1],
this technicality can be avoided by an appropriate deformation of the initial data in
the asymptotic ends. The solution of Jang’s equation gives rise to a hypersurface in
R x M which is a vertical graph over an open subset of M containing the asymptotic
ends; €); ¢ M will denote the component of this open set that contains the designated
end M.,q. The components of the boundary 9€); are spherical MOTS or MITS that
satisfy a uniform C-almost minimization property |5, Remark 2.3|, [44]. Note that the
spherical topology is due to the strict dominant energy condition and stability property
of the Jang graph. Observe that due to the strict dominant energy condition, the proof
of |5, Theorem 1.2| shows that a conformal change of metric may be introduced, after
preliminary deformations along the asymptotically cylindrical ends as well as in the
asymptotically flat ends, to arrive at a positive scalar curvature (PSC) metric on the
manifold obtained by compactifying the asymptotically flat ends of €2;, which also has

a Riemannian product structure near each boundary component.

Next, by the compactness theory of [44, 45], the sequence 9€2; subconverges in the
C?% local graph sense to a set S which is a finite collection of MOTS {Sa}o0, and

MITS {85}221 in (M,g,k). Moreover, each of these MOTS and MITS arises from a
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sequence of connected closed properly embedded MOTS S;; c 9; or MITS S, c 99,
with respect to (g;,k;). We claim that S is a smooth submanifold. If a MOTS S, or a
MITS §; remains disjoint from the other MOTS and MITS of S, then this component
is a smooth submanifold. If S; or S, has nontrivial intersection and does not coincide
with another member of the MOTS and MITS comprising S, this violates the C-almost
minimization property of 9€); for large . Thus the MOTS and MITS in § are pairwise

disjoint, and hence are smooth submanifolds.

To conclude the first step, remove the surface S from M and take the metric com-
pletion of the component containing the designated end M., 4 to obtain an initial data
set (M',g,k). Note that this contains (Meng, g, k), has boundary components consist-
ing entirely of smooth MOTS and MITS, and the topology of M’ agrees with that of
Q; for large ¢. Because €); admits a PSC metric having Riemannian product structure
near each boundary component, we may apply the prime decomposition theorem along
with a result of Gromov-Lawson [58] and the resolution of the Poincaré conjecture to
deduce that manifold M’ has PSC topology. That is, M’ is diffeomorphic to a finite
connected sum of spherical spaces, S' x §2’s, and R?’s representing the ends, all with
a finite number of 3-balls removed which indicate the horizons. Thus, to conclude the
first step of the proof, we have produced an asymptotically flat initial data set (M, g, k)
having PSC topology, with boundary M’ consisting of MOTS and MITS components,
and is such that one of the ends coincides with (Meyq, g, k).

In the second step of the proof the first Betti number of M’ will be reduced to
zero with an iterative procedure. Since Hy(M',0M';Z) is Poincaré dual to H'(M';Z),
which is itself isomorphic to the torsion-free subgroup of Hy(M';Z), this procedure will
result in the desired conclusion of vanishing second homology relative to the boundary.

As observed above, M’ can be expressed as the compliment of finitely many disjoint
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balls in #Z(S 1« §2)#N where N is a rational homology sphere. Since N has vanishing
first Betti number, by (M’) is equal to the number of its handle S* x $? summands. We
proceed by constructing a particular double cover of M’. Let ¥’ ¢ M’ be the image
of an embedding of S? in one of the S! x §? summands of M’ which is homologous
{pt} x §? c 81 x S2. Define W to be the metric completion of M’ \ ¥ and notice that

its boundary can be decomposed as
OW =0M'u¥]uX),
where X} and X, are copies of ¥’. Next, consider the manifold
M=WyuWs/ ~,

where W, and W5 are copies of W and the relation ~ identifies 3} ¢ W; with 3 c W,
and ¥ ¢ Wy with ¥} ¢ Wa. The manifold M is a two-fold cover of M, classified by
the mod 2 reduction of the cohomology class Poincaré dual to [X], and the pullback
of the data (g,k) to M will be denoted by (g,k). Furthermore, observe that M is

diffeomorphic to the complement of finitely many disjoint balls in

(#71(S" x SH#N) #(S" x SH)# (#71(S" x S*)#N),

so that

bi(M)=2b (M) -1. (B.1)

Consider the two ends of M that are isometric to M.,q, and choose one for reference
and denote it by £. The boundary of the double cover may be decomposed as OM =
0. M UO_M, where 6, =0 on 9. M and the null expansions are computed with respect
to the unit normal pointing inside M. Now let D c M be the bounded component that
remains after removing sufficiently large coordinate spheres in each of the asymptotic

ends of M. The boundary may be decomposed into two types of surfaces D = gy D U
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O0inD, in which 6, > 0 on 0,,/D with respect to the normal pointing out of D, and
0, <0 on 9;,D with respect to the normal pointing into D. Note that MOTS boundary
components belong to 0;,D, while MITS components belong to J,:D. Moreover the
coordinate sphere boundary in £ satisfies the strict inequality 6, > 0 and belongs to
Oout D, while the coordinate sphere boundaries lying in the remaining ends satisfy the
strict inequality 0, < 0 and belong to 0;,D. It follows that we may apply the MOTS
existence result [48, Theorem 4.2|, or rather a slight generalization of it to allow for
nonstrict inequalities (see |7, Section 5] or [45, Remark 4.1]), to obtain an outermost
(with respect to £) MOTS ¥ c D that separates 0y D from 0;,D. Furthermore, this
surface separates M into two disjoint regions MY = Moy UM, where My is the
component containing the reference end &, see Figure B.1.

In the remainder of the argument, we will first consider the case in which (M, g, k)
satisfies a strict dominant energy condition, and will subsequently explain the alterations
required for the general case. By the strict dominant energy condition, stability of
outermost MOTS, and orientability of M, it follows that ¥ consists of finitely many
disjoint embedded spheres. Now consider the Mayer-Vietoris sequence associated with

the decomposition M = Mgyt U My, that is
> Hi(Z;R) — Hi(Mout;R) @ Hi(Mp;R) — Hi(M;R) —> .

Since Hp(X;R) = 0 we find that that by (My) + by1(My,) < b1 (M). Taking (B.1) into
consideration shows that either M,,; or M;, must have first Betti number strictly less
than by (M"); label the component of this manifold that contains an isometric copy of
Mena, by M. Notice that each component of the boundary of M is either a MOTS or
a MITS. Moreover, as ¥ is spherical, the sets M, and Mj, give rise to a connected
sum decomposition of M. Tt follows that both M,y and M, are diffeomorphic to

the compliment of finitely many disjoint balls in the connected sum of S x §%’s and a
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rational homology sphere. Furthermore, we may assume that M has a single end, since
if necessary attention may be restricted to the region outside the outermost MOTS to
isolate the isometric copy of M,,4. This same procedure can be applied to M’ to once
again reduce the first Betti number by at least one. Continuing in this manner yields

the desired initial data (Meyt, Gewts Kext )-

(Meztu Gexts kea:t)

Figure B.1: A schematic description of the stages in the second step in the proof

of Proposition B.1.1.
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To finish, we describe the modifications necessary to accomplish the construction in
the above paragraph in the general case when (M,g, k) satisfies the dominant energy
condition, but not strictly so. In this case, apply the approximating argument from
the first step to obtain a sequence (g;,k;) on M satisfying the strict dominant energy
condition and which converges to (g, E). Note that a minor refinement of [47, Theorem
22| is required for this due to the presence of boundary components, see [5, footnote -

page 869]. The outermost MOTS ¥; that induces a separation M = Mﬁmt UM, admits

in
the C-almost minimization property and consists of spherical MOTS and MITS. By the
arguments of the previous paragraph, the first Betti number of either Miut or Mzn is
strictly less than by (M'). As described in the first step of the proof, ¥; subconverges
to a limiting MOTS/MITS surface S in M, and we may consider the metric completion
M of M ~S. The two components of M containing the isometric copies of M,,4, have
the same topology as components of Miut or Mﬁn for sufficiently large i. It follows
that one of them, M, satisfies by (M’) < b1 (M’). As above it may be assumed that the
component M’ possesses one end modeling €. Moreover its boundary consists of MOTS
and MITS, and it is diffeomorphic to the compliment of finitely many disjoint balls in

the connected sum of S' x S?’s and a rational homology sphere. Thus the iteration may

be continued to obtain the desired conclusion. O

B.2 Controlling the level-set topology

As seen in Figure B.1, we have now created a manifold with vanishing second homology,
but we might have created a MITS / MOTS boundary. In the Riemannian case (i.e. the
k =0 setting) two strategies have been pursued in [18|: First, it is possible to fill-in the
boundary components to create a manifold without boundary. Second, it is possible to

use Neumann boundary conditions for the spacetime harmonic funtions for which one
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can verify that they don’t contribute negatively to the integral formula. However, both

approaches are not available in the spacetime (k # 0) setting.

In order to apply the main integral inequality Proposition B.3.2 below successfully, it
is important to ensure that the Euler characteristic of regular level sets for the spacetime
harmonic function does not exceed 1. In this section, we show that it is possible to choose
the spacetime harmonic function, by carefully selecting its Dirichlet data, to achieve
this goal for the level sets. Since this will be employed for generalized exterior regions,
here we consider asymptotically flat initial data (M, g, k) with a single asymptotic end,
although the boundary may have several components dM = U}’ ;0; M. Let v solve (3.26),

(3.27) and consider the Dirichlet problem

Auc + trg k|Vue| =0 on M, (B.2)
Ue=c¢; on O;M, i=1,...,n, Ue =v+0x(r' ™21 as 7 > oo, (B.3)
where ¢ = (¢q,. .., ¢,) are constants. The following is a technical preliminary result that

indicates how to choose the constants ¢ in order to achieve the main topological conclu-
sions of Theorem B.2.2 concerning level sets, as well as to aid with the computation of

boundary terms in the integral inequality Proposition B.3.2.

Lemma B.2.1. Let uc be the solution of (B.2), (B.3) given by Theorem 3.6.2.

1. Let (-1)%, ¢; € {0,1} be a choice of sign associated with each boundary component
1=1,...,n. There exists a set of constants ¢ such that for each boundary compo-
nent there is a point y; € 0; M with |Vue(y;)| = 0, and in addition (-1)%0yuc > 0

on O; M, where v is the unit normal to OM pointing outside M.

2. If v # 0, then within each boundary component O; M, the set of points at which

|Vue| =0 is nowhere dense.
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Proof. A priori estimates established in the previous section show that u. is continuously

differentiable in c. Set u; := 0., u and observe that these functions satisfy

Au; +tr9kﬂ Vu; =0 on M, (B.4)
Vel
ui=0;; on O;M, j=1,...,n, ui =02 as - oo. (B.5)

Clearly the set of functions {uq,...,u,} is linearly independent. Pick y; € O;M, i =

1,...,n and set y = (y1,...,yn). We claim that the Jacobian matrix

[ Dun(y1) Dwus(yr) o Duun(yn))

Oy Oyl .o Oply
U(ey) - 1(y2) 2(y2) (y2)

_avul(yn) av“?(yn) s 6Uun(yn)_

is invertible, where v is the unit outer normal to M. Suppose by way of contradiction
that it is not invertible. Then there exist constants b;, ¢ = 1,...,n, not all zero, such

that w = }i"; bju; satisfies dyu(y;) =0, j=1,...,n. Note that the function u satisfies

Au+trgkvuc-Vu:0 on M,
[Vue|

u=b; on M, j=1,...,n, u=0@r"%) as  r - o.

Since b; are not all zero, we have that u # 0. On the other hand, by the maximum
principle either the global max or min must be achieved on 9;,M for some 7g. By the
Hopf lemma, we then have d,u(yi,) # 0. However this contradicts the basic property of
u described above. It follows that U is invertible.

We now show that U(c,y) stays uniformly bounded and away from being singu-
lar. To see this, suppose that for a sequence {(c;,y;)};°; either || U(cy,yr) |- oo
or detU(cy,y;) = 0. Observe that the solutions 0. uc, of (B.4), (B.5) are uniformly

controlled in I/Vli’f(M ) by the LP estimates, since the first order coefficients remain
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uniformly bounded. It follows that there is subsequential convergence in C**(M) to a
solution O, ue. Consequently, using that the sequence {y;} c II" ;0; M lies in a compact
set, we find that there is subconvergence U(c;,y;) = U(o0). However, the arguments of
the previous paragraph show that U(oo) is invertible, and this contradiction yields the

desired conclusion. In particular, U~!(c,y) is uniformly bounded.

Consider the map U :R™ - R" given by

il(cl, ey Cn) = (3vuc(y1(c)), cee ,&,uc(yn(c))),

where y;(c) € ;M is a point at which O,u. achieves its: minimum over this com-
ponent when ¢; = 0, or maximum over this component when ¢; = 1. Observe that Ll
is continuous. Moreover, it will be shown that this function is differentiable in cer-
tain directions, and the matrix U will play a role similar to a Jacobian for 4. Set
pPo = (Opup(y1(0)),...,0up(yn(0))), and let p(t) ¢ R™ be a smooth curve emanating
from pp = p(0) and ending at p(1) = 0. We claim that there is a smooth curve c(t),
t € [0,1], emanating from ¢(0) = 0, such that {(c(¢)) = p(¢). To find this solve the ODE

initial value problem

c'(t) = U™ (e(t),y(c(1)))p' (1), c(0) = 0. (B.6)

Observe that global existence holds since U (¢, y(c)) is uniformly bounded indepen-

dent of c.

We will now show that ${(c(t)) is differentiable. Let y;(c) be a minimum point for
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Opic on O; M, and 0 < s <t < 1; a similar argument holds or a maximum point. Then

Outie(ry (yi(c(t))) = Ovtie(s) (yi(e(s)))
= [Bvc(ry (wi(e(t))) = Buie(s) (wi(c(t)))]

+ [Butie(s) (4i(c(t))) = Buue(sy (vi(c(s)))]
201y (Yi(€(t))) = Outie(s) (yi(c(t)))
= ; Ou0c,ue(r) (yi(c(t)) () (t = 5) + o(t - 5)

=p;(t)(t - s) +o(t - 5),
and
Outie(r) (Yi(e(t))) = Outie(s) (yi(c(s)))
= [Bvtie(y (Wi (c(t))) = Doy (vi(c(s)))]
+ [Butie(ry (yi(e(s))) = Bue(s) (3i(c(5)))]
<o) (¥i(€(5))) = ptie(s) (yi(c(s)))

=2 0u0c;uc(s) (yi(e(s))cj(s)(t = 5) + ot = 5)
J

=pi(s)(t = s) +o(t - s),
where we have used Taylor’s theorem and (B.6) with the notation p(t) = (p1(t),...,pn(t)).
Dividing both sides of these equations by ¢ — s and letting ¢ - s shows that {(c(t)) is
differentiable, and

Lu(e() = p'(1).

Integrating this equation then gives the desired relation. We now have $(c(1)) =0, so

that ¢(1) is the claimed set of constants such that

Ouuey(yi(c(1))) =0,  i=1,...,n.

This completes the proof of (1).

112



Consider now part (2). Suppose that the set within 9;M on which |Vuc| = 0 has a
nonempty interior. Then since equation (B.2) may be viewed as a linear equations with
bounded coefficients, the unique continuation result [?, Theorem 1.7| applies to show
that uc = const. This contradicts the assumption that v # 0. Since the set on which

|Vue| = 0 is also closed, it follows that it is nowhere dense. O

ug'(c;)

ug'(0)

uc'(-1)

Figure B.2: Possible level sets of the function u. constructed in Lemma B.2.1.
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We are now in a position to establish the main topological result concerning regu-
lar level sets of the spacetime harmonic function wue arising from Lemma B.2.1. This
will later be employed in generalized exterior regions which have a simplified topology,
although we do not use here the MOTS and MITS condition on the boundary of such

regions.

Theorem B.2.2. Let (M, g,k) be a smooth asymptotically flat initial data set having a
single asymptotic end, and satisfying Ho(M,0M;Z) = 0. Let uc be the solution of (B.2),
(B.3) with ¢ given by Lemma B.2.1. Then all reqular level sets of uc are connected and
noncompact with a single end modeled on R* \ By. In particular, if ¥ is a regular level

set then its Fuler characteristic satisfies x(2¢) < 1.

Proof. Let ¥ = u;l(t) be a regular level set, and suppose that there is a compact
connected component ¥j c ;. Note that 3 is a 2-sided properly embedded submanifold.
Since Ho(M,0M;Z) =0 the boundary cycles 0; M, i =1,...,n generate Ho(M). Thus,
either ¥} is homologous to zero or it is homologous to a sum of boundary cycles. In
the former case X} bounds a compact region of M, and since the spacetime harmonic
function equation admits a maximum principle the solution uc = ¢ in this region. This,
however, contradicts the assumption that ¢ is a regular value. So now consider the later
case in which [X}] can be represented as the sum of boundary classes ¥ ;.;[0; M ], for some
index set I. Let D c¢ M denote the compact region bounded by ¥} U (U;e;0; M) = 9D.
Since the maximum and minimum of ue on D are achieved on the boundary, it follows
that either the max or min is achieved on 0;,M, for some ip € I. In particular, this
max or min is achieved at y;, € 0;,M. Next observe that the Hopf lemma applies
to the spacetime harmonic function equation, since the nonlinear first order part may
be expressed as a linear term with bounded coefficients, and therefore dyuc(yi,) # 0.

However this contradicts the fact that y;, is a critical point for u., as stated in Lemma
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B.2.1. We conclude that all components of 3; are noncompact. Moreover 3 is a closed
subset of M, since it is properly embedded. Therefore if any component of ¥; stays
within M, (see Section 3.6.1), it must be compact which is a contradiction. It follows

that each component must extend beyond S, for all r.

The asymptotics of uc ~ a;z’ in the end M,,q imply that for all sufficiently large r
the level set ; stays within a slab {2z € M \ M, |t-C < a;2' < t+C}, for some constant
C. Indeed, by the implicit function theorem 3; may be presented uniquely in this region
as a graph over the plane ¢ = a;2°. Hence, ¥, is connected and has a single end modeled

on R\ Bj. O

B.3 The integral formula with vanishing gradient

We have already established the main formula for spacetime harmonic functions u in
Theorem 3.3.1 assuming that Vu is not vanishing. However, this may not be the case
in general, and we establish in this setting a version of Theorem 3.3.1 which allows Vu
to vanish.

Before stating the primary integral formula for spacetime harmonic functions, we
give a technical lemma based on a refined version of Kato’s inequality. This will be
used in the proof of the main result of this section. Note that the natural regularity for
spacetime harmonic functions is C>®(M), 0 < a < 1. By Rademacher’s theorem |Vu|
is then differentiable almost everywhere, and from the equation the same holds for Au.

Thus, the inequality of the next result holds away from a set of measure zero.

Lemma B.3.1. Let u be a spacetime harmonic function for the initial data set (M, g, k).

Then there exists a constant C' > 0 depending only on K and its first derivatives such
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that

V2ul? = 9| Vul[® + (Vu, VAu) 2 ~C|vul® (B.7)
Proof. By using the spacetime Laplace equation Au = —try k|Vu|, we have
1
(Vu, VAU) > —try k(Vu, V|Vu|) - Co|Vul* > _ZWWUHQ - Cy|vul’. (B.8)
Moreover, a refined version of the Kato inequality produces
2 2 9 2 2
|Vul” > Z]V|Vu|| - Co|Vul”. (B.9)

Note that as discussed above, these inequalities hold almost everywhere. Combining
(B.8) and (B.9) yields the desired result.
It remains to establish (B.9). To this end denote u; = 9;u and set

1 1 1
Xi = §8Z|Vu|2 - g(A’u,)’U,Z, ‘/Vz‘j = X(Zuj) - §<X, Vu)gij,

where parentheses are used to indicate symmetrization of indices. Observe that

o 1
|VV|2 =X"’ (X(Zuj) - §<X, Vu)gij)
2 IXPIVul? + (X, Tu)?
5 6
CIXPlvul,
3
which implies that
1 7 2 17
-X 82|Vu| =X ujviju
2
_ X (viju - §(Au)gij) + 2 (Au)(X, V)

i (viju _ %(Au)gij) . %(Au)(X, vu)

s|W|\/ V20l - 5 (Au)? + - (Au)(X, Va)

2 1 1
S\/;IXIIVUI\/IVQUIQ = 3(Aw)? + 2 (Au)(X, Vu).
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It follows that

2 1
|X| < \/;|Vu|\/|v2u|2 - g(Au)Q.

Squaring both sides, utilizing the spacetime harmonic function equation, and applying
Young’s inequality then gives
202, 1231 20,12 4 Oy |2
[Vul*[v7ul” 25 (Au)T|Vul” + S1X]
1 3
=5 (Bu)’|vul* + Z|V|VulP|Vul - (Aw)|Vul(Vu, V| Vu))
5)
zZ|v|vU||2|Vu|2 — Cy|vul*.
This gives inequality (B.9), if |[Vu| # 0. At points where |Vu| = 0 and |Vu] is differentiable,
we have that |V|Vul| = 0 since the nonnegative function |Vu| achieves its minimum value.

Inequality (B.9) thus holds trivially at such points. The remaining points, where |Vu| = 0

and |Vul is not differentiable, form a set of measure zero. O]

We are now in a position to establish the main integral formula for spacetime har-
monic functions. This may be viewed as a generalization of [18, Proposition 4.2|, see

also [113].

Proposition B.3.2. Let (2,g,k) be a 3-dimensional oriented compact initial data set
with smooth boundary 0N, having outward unit normal v. Let u: Q) - R be a spacetime
harmonic function, and denote the open subset of O on which |Vu| # 0 by 0:0Q. Ifu

and u denote the mazimum and minimum values of u and ¢ are t-level sets, then

f (0| V| + k(Vu v))dA>[ﬂf LV L ) - K ) dade
0209 ’ T Ju In \ 2 |Vul? a ’

where v = |Vu and K is the level set Gauss curvature.

[Vul
Proof. Recall Bochner’s identity

1 2 _ 92,2 .

2A]Vu| = |V*ul* + Ric(Vu, Vu) + (Vu, VAu).
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For € > 0 set . = \/|Vul|? + &, and use Bochner’s identity to find

_Alvul? |v|vulP?
- - 3
2 4z (B.10)

Ay,

1
2; (‘V2u‘2 _ ‘V‘VuHQ + Ric(Vu, Vu) + (Vu, VAU)) .
g

On a regular level set 3, the unit normal is v = |§—u“| and the second fundamental form

is given by A = %, where V%u represents the Hessian of u restricted to T @ T'X. We
then have
AP = [Val ™ (|9%uf - 2|V |Vul + [VPu(v, »)]?) .
and the mean curvature satisfies
\Vu|H = Au - V. (B.11)

Furthermore by taking two traces of the Gauss equations

2Ric(v,v) = R-2K - |A]* + H?, (B.12)
where R is the scalar curvature of g. Combining these formulas with (B.10) produces

Age 2 (V2 =719 ul?)

2
L ((w, VAu) + @ (R—2K + H” - |A|2))

1% (B.13)
(192,12 _ 2
=35, (Voul’ + (B = Re)[vel’)
+3 (2(Vu, VAu) + (Au)? - 2(Au)Viu) .
Pe

Let us now replace the Hessian with the spacetime Hessian via the relation V2u =
V2u + k|Vu|, and utilize the spacetime harmonic function equation Au = - try k|Vu| to

find
1

Age o (|72l - 2k, T2 Tl - 2 uf + (R-26)|vul?

€

~2(Vu, V trg k)|Vu| - 2try k(Vu, V|Vul) + trg k|Vul® + 2tr, k‘|Vu|V12,u) .

118



Moreover noting that

1 .
(Vu, V|Vul) = (u V|vul?) = u'Viu = |Vu|Viu,
2 = R+try k? - |k[2

g’

gives rise to the following inequality on a regular level set

1 _
Ape> o (|V2u)* + (2 = 2K)|Vul? - 2(k, V?u)|Vu| - 2(Vu, V trg k)| Vul) . (B.14)

£

Consider an open set A c [u,u] containing the critical values of u, and let B c [u, u]

denote the complementary closed set. Then integrate by parts to obtain

f BupedA = f Ag.dV = f | DpedV fu gy eV

According to Lemma B.3.1 and (B.10) there is a positive constant Cj, depending only

on Ric(g) along with trg & and its first derivatives, such that
Ape > —Co|Vul. (B.15)
An application of the coarea formula to u:u *(A) — A then produces

- ApedV<Co [ vulav =Cy [ HASdt, B.16
S Beedv <o [ velav=Co [ #(5) (B.16)

where H?(%;) is the 2-dimensional Hausdorff measure of the t-level set X;. Next, apply

the coarea formula to u:u'(B) — B together with (B.14) to find

Ap:dV
J

f f Vel (1Y o~ ok | aadr,
2 teB IS e |Vu\2

27 LBfE |w|[ 2 ((k, V%) + (Vu,Vtrgk:))]dAdt.

ve | |vul
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Combining all this together produces

[ 8U<p€dA+C’0[ H2(S,)dt

|Vul |V2u|2
+2u—-2K | dAdt .
%3 /t;B fz Toap T (B.17)

k try kY) dAdt.
fteB/ v2u) + (Vu, V tr, ))

On the set ™! (B), we have that |Vu| is uniformly bounded from below. In addition,

on 0+ it holds that

Oppe = ’vu|8U|Vu| - 0y|Vu| as e-0.

€

Therefore, the limit ¢ - 0 may be taken in (B.17), resulting in the same bulk expression
except that . is replaced by |Vu|, and with the boundary integral taken over the
restricted set. Furthermore, by Sard’s theorem (see Remark B.3.3 below) the measure
|A| of A may be taken to be arbitrarily small. Since the map ¢ — H2(%;) is integrable

over [u,u] in light of the coarea formula, by then taking |A| - 0 we obtain

1 T 2,2
f 0,|VuldA z—f f VTl ook ) adr
02002 2 U >t |VU|2

—fQ((k,V2u)+(VU,Vtr9k))dV.

Lastly integrating parts

- [(k, V2u)dV = - [ kijvijudv = f Uivjkiij - f k(VU,U)dA,
Q Q Q o9
and recalling that J = divy(k - Kg), yields the desired result. O

Remark B.3.3. The classical statement of Sard’s theorem in the current context re-
quires v € C3, while spacetime harmonic functions typically only satisfy uw € C>,
0 < o < 1. Nevertheless, Sard’s theorem still applies. To see this, observe that since
|Vu| is Lipschitz and hence in Lfoc for all p, elliptic regularity yields u € W2’p. 1t fol-
lows from Kato’s inequality that |Vul| € V[/lo’f, and therefore u € W’ 5P According to [50,

Theorem 5] the conclusion of Sard’s theorem holds for such functions.
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B.4 Computations at infinity

Let (M, g, k) be a complete asymptotically flat initial data set for the Einstein equations,
having generalized exterior region M.,; associated with a particular end M,,4 and given
by Proposition B.1.1; for convenience we will continue denoting the metric and extrinsic

2

curvature on M., by (g,k). Suppose that = = (z',22,23) are spacetime harmonic

coordinates on My This means that each function z! satisfies (B.2), (B.3) and is

l

given by Theorem 3.6.2 and Lemma B.2.1 (1), with asymptotics 2! ~ #' for some given

2 #3) on M,,4. More precisely, by the

asymptotically flat coordinate system & = (&!,%
first part of Lemma B.2.1 we may choose the sign of the normal derivative at each

boundary component 0; Mgy, ¢ =1,...,n so that:

Dyt <0 on 8; Mgy if 0, (0;Megy) = 0,
(B.18)

vl >0 on Mgy if 0 (9;Mozy) =0, 1=1,2,3.

Note that although z! are referred to as spacetime harmonic coordinates and are defined
on all of M., they are only guaranteed to form a coordinate system in M,,4. Observe
that due to the asymptotic expansion in Theorem 3.6.2, the ADM energy and linear mo-
mentum computed in spacetime harmonic coordinates will agree with the computation
in any other valid asymptoticaly flat coordinate system [9].
For L > 0 sufficiently large define the cylindrical boundaries

DE ={z e M| (2*)?+ (2?2 < L2, 2! = 2L},

Tp={z € Mepa | (2°) + (¢°)" = L?, |2 < L},

CrL=DjuTLuDj,
and denote by €7 the bounded component of Mg, ~ Cp, so that 0Q;, = Cp U O0Meys.

Let u = 2! be the spacetime harmonic function described above, and set ¥y = u~1(t) as

well as EtL =3;nQp. If t is a regular value of u, then 82,{“ lies entirely within Cp, due
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to the fact that u has critical points on each component 0; My, i = 1,...,n. Note also
that the regular level sets ZtL meet T, transversely, and by Theorem B.2.2, ZtL has only
one component so that X(Ef ) < 1. Therefore we may apply Proposition B.3.2 together

with the Gauss-Bonnet theorem to obtain

1 (9%
2 QL ’Vu|

L
< [ |2ny(z —/ dt / } k(Vu,v)) dA
[L( X (Z¢) — m,L) + oty (Ou|Vu| + k(Vu,v))
L
S47rL—[L ([ZthTL nt,L)dmch (9|l + k(Vu, v)) dA

A k(Vu,v))dA,
o [ @ulvul s k(Tu.0)

+20rﬂJbNVu0dV

(B.19)

where ry 1, is the geodesic curvature of Ef N1y, interpreted as the boundary curve in ¥,
0:0Meyt denotes the subset of M, where |Vu| # 0, and we have used that |Vu| >0 on
Cr.

In what follows we will compute first the outer boundary integral along Cy, in the
asymptotic end, from which the ADM energy and linear momentum will arise. The
inner boundary integral along 0,9M.z: will then be computed and shown to vanish, due

to the fact that dM.,; consists of MOTS and MITS. Below, the notation ij +f will be

used to represent |, p: [ /, p- I

B.4.1 Computation of the outer boundary integral

In this section we show that the boundary term at oo of the main integral formula B.3.2
indeed yields the mass which follows the argument in the Riemannian case.

In [18, Lemma 6.1|, a computation was carried out in harmonic coordinates. Each
step of the proof applies here without change using spacetime harmonic coordinates,

except for equation [18, (6.9)] where harmonicity was used. By replacing the harmonic
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function equation with the spacetime harmonic function equation, in this calculation,

we find that

[ By|VuldA
Cr
1
= f + (— >(915.5 = gjj1) —trg ’f) dA
D% 2 5

1 _
+ = / [932(921,1 -g11,2) + 1?3(931,1 - 911,3)] dA + O(L1 2q)-
2L J1;,

Similarly, |18, Lemma 6.2] may be carried over without change to the current setting to

yield

L
f (f HL@L) dt
-L ZtﬁTL

1
=4nl + — f [1’2 (9332 — 923,3) + x3(922,3 - 932,2)] dA
2L Jr,,
+O(L'721 4+ 179).
Next, observe that the outward normal v to Cf, takes the form
+01 + O(|x|™7) on D7,
z—Z@g + %83 + O(ll‘l_q) on 17,.
Furthermore
Vu = g"'8; = 91 + O(|z|™9).
It follows that

k(Vu,v) = £ky1 +O(|z|7™%)  on D%,

a.nd
k‘(Vu v) - k1o + —xgk +O(|x| ! ])
’ L 12 L 13 ’
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Finally, combining these computations produces

L
47rL—[L ([ZthTL Iit,L) dt+[CL (0u|Vu| + k(Vu,v)) dA

1
2 Z(gljj 9j3, l)dA

1 22 a3
s [ 5 (garn - 2 (gs11 - gi1s) | dA
5 Jr, [ 7 (9211 —9g112) + 7 (9311 911,3)]

+1f [96—2(9233—933 2)+$—3(9322—922 3)]dA (B.20)
2 TL L ) ) L ’ ’
+[ i(k‘n—lC)dA+f (w—2k:12+x—gklg)dA+O(L1‘2q+L‘q)

D% T\ L L

1
2 L ;(gz],] gj]z)v 'dA

" fc (k1; = (Trgk)gis) vidA + O(L'=2 + L),
L

B.4.2 Computation of the inner boundary integral

Here we show that the inner boundary integral over 0.9M..; vanishes, due to boundary
behavior of the spacetime harmonic function combined with the fact that each boundary
component is either a MOTS or MITS. Moreover, if the boundary components consist
of weakly trapped surfaces then the inner boundary integral is nonpositive, which is an
advantageous sign with respect to positivity of the ADM energy. Let v denote the unit
normal to a boundary component 9; Mz, which points outside of M.,¢. Then because
u is constant on 9; M., the spacetime harmonic function equation and gradient may

be rewritten on this surface as
v2,u = Ho(u) - try k|Vul, Vu =v(u)v.
Note that here, the mean curvature H is computed with respect to —v. Observe that

1 1 y :
|Vu|Oy|Vu| = §8U|Vu]2 = 5&, (g7 uiu;) = w!Vjpu = v(u)Viu,
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and hence

U(u) U(U) —ir u v\u)| —trqg KU
0Vl = TV = T (Hu(u) — g {9ul) = Hlo(u)| ~try ko (),

Furthermore since
trg k = k(v,v) + Tron,,. K, k(Vu,v) = k(v,v)v(u), (B.21)

it follows that the inner boundary integral becomes
Oy k s dA = / H (T k dA
/&OMW (0| Vu| + k(Vu,v)) - [H|v(u)| - (Troa,,, k) v(u)]

= 0 dA
> ]@Mm LJu(u)]dA,

(B.22)

where we have used (B.18) in the last step. The notation 6. above indicates that the inte-
grand contains 6, for a MOTS component and 6_ for a MITS component. We conclude
that the inner boundary integral vanishes. Similarly, if the boundary of the general-
ized exterior region consists of weakly trapped surfaces then this boundary integral is

nonpositive.

B.4.3 Proof of Theorem B (the inequality)

By combining (B.19), (B.20), (B.22), and taking the limit as L - co we obtain

R f V2l o 1) vl ) av. (B.23)
2067 Jaen \ v T ’ '

since ¢ > 5. Furthermore, it may be assumed without loss of generality that the ADM
linear momentum satisfies P; = —|P|, by applying an appropriate rotation of the asymp-

totically flat coordinates Z. This yields the desired inequalities.
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B.5 Classifying hypersurfaces in Minkowski space

In this section we address the Lorentzian version of fundamental theorem of hypersur-

faces which is needed to prove the case of equality of the spacetime PMT.

Proof of Proposition 3.5.2. We follow the proof of [102, page 100]. Let U be a compact
subset of M. We construct the metric g = —dt? + g; on (—¢,¢) x U by prescribing
0:9¢(0;,05) :2?123‘757

lt=0 =9,
(B.24)

8(Vit) - (V)5 =0,

Vijtl=o =k
where (6225)% = g’“l(ﬁfkt)(?ilt). We will use Roman letters {7, j, k,l} to denote indices
tangential to M. By standard ODE existence theory there exists a small € > 0 such
that we can solve the above equation for ¢ € (-¢,¢). Next, we take a cover {U;} of
M. According to the asymptotics of (M, g, k), there exists a uniform ¢ > 0 for each Uj.
Therefore, we can patch together above’s construction and (M, g) can be embedded in

((-e,e) x M, g) with the second fundamental form k.

To verify the flatness of g we proceed exactly as in [102]. It suffices to verify that

the curvatures Ryiji, Rijr and Ryjp arve vanishing. Observe that (Vt, Vt) = -1 implies
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V;Vit = 0. Combining this with the third line of equation (B.24) yields

0 =0,(V5;t) - (V*1)3;
=00Vt + (V)%
=ViVeVjt = Rugje + (V1)
=0:(V19;5t) - V(D1 V:0)) = V205, Vi) - Ruige + (V)3

= — Ryije.
Since Ryiji =0, V49, = 0 and I'; = 0, we obtain

Ou(Ruiji) =(ViR) i + RujiTy; + RueLh; + Rujr Ty
= B = B 5 &l . p B Tl
=(ViR) it + (ViR)uiji + RujaTt; + Rean Ty + Rl
=0; (Ruik) - Rin Ty — Rean Ty + O (Reije) — Ruije Ty — RuijiThy
+ Rtljkff:i + Rtilkfij + Rtljkffgk
== Rlitkfé‘t - Rtilkfé‘t - Rlijtﬂgt - Rtijlfggt + Rtljkf‘ii + Rtilkf‘ij + Rtljk:ffgk-
According to the Codazzi equation, Rtijk|t:0 =0, and thus Rtijk = 0. Next, we compute
at(Rijkl) =(?tR)ijkl + stkzlf;‘ + Rz’sklffj + Rijslffk + Rz’jkzsffz
=(ViR)iju + (ViR)ijt + Rojial's; + RisiaT's; + Rijailsy, + RijisTy)
== Rijslet - Rz’jksfft + stszfi + Risklffj + Rz‘jslffk + Rz’jksffl

D S D S
=Rgjrl'; + Riskil't;-

According to the Gauss equations, Rijkl\tzo =0, and thus Rijkl = 0. Therefore, M is flat

which implies together with M = R? that M is a subset of Minkowski spacetime. O
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B.6 The Killing development

Another way to prove rigidity for the spacetime PMT, is to construct a spacetime using
spacetime harmonic function, and demonstrating that this spacetime is Minkowski space.

For this purpose, we define on M* = R x M? the Lorentzian metric
g =2drdu+g

where 7 is the flat coordinate on the R-factor. This so-called Killing Development is
motivated by [10, 64], though we note that the Killing Development in [10, 64] was
obtained from three, rather than a single vector field. Since M3 = R3, we have M* = R,
and thus it suffices to show that g is flat. The flatness of § follows essentially from
the Gauss and Codazzi equations computed in Section 3.5.2. We present here another
approach which has the advantage that it does not require the additional regularity
assumptions g € C3(M?3) and k € C*(M?3) used in Lemma 3.5.5, and therefore establishes

the rigidity of Theorem B in full generality.

We first claim that we can write
g = (|vu| + a® + b*)du? + 2adudz; + 2bdudzs + dz} + dx3, (B.25)

for some functions a,b e C2(M?3). This essentially follows from the flatness of the level-

sets of u, but let us elaborate more on this construction:

To write g in the above form, we need to define globally defined coordinates x1, zo.
To do so, we begin with introducing global polar coordinates. Given some point py € M3,
let T': (00, +00) = M?3 be the integral curve through py with respect to the vector field

Vu. We define the function p(p) = d(p,I'n ¥,,)) where d denotes the distance within
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the level set ;). Since u € C3(M) and |Vu| # 0, the second fundamental form of ¥

u(p u(p)

is C1. On each level set ; of u, we can write the metric gs, as dp®+p>df?. We would like
g to have globally such a form, i.e., we need to define an angle function 6(p) € [0,27) for
any p € M3\I'. To uniquely determine §(p), we fix another point p; € M3 not contained
in the image im(T"). Let T'y : (—o0,00) - M? be the integral curve through p; with
respect to the vector field Vu. Since |Vu| # 0, we have im(T") nim(T';) = @. We set

6(I'1) =0. Thus, the Lorentzian metric § can be written in the form
G =2drdu+ (|Vu|™? + a2 + p2b3)du’ + 2apdudp + 2bodudd + dp* + p*db?

for some functions ag, by € C2(M3\I'), where the C? regularity follows from the second

fundamental form being C'. Finally, we change coordinates via 1 = pcosf, xo = psinf

and set
a=agcost — bopf1 sinf, b=agsinf + bgpf1 cos 6
to obtain
G = 2drdu + (|Vul* + a® + b*)du® + 2adudzy + 2bdudzy + d? + dza
as desired.

In (7,u,1,22) coordinates, the inverse metric ! is given by

~|vu|? 1 -a -b
. 1 0 0 O
g =
-a 0 1 O
-b 0o 0 1
Therefore, we have
Vu = §"9; = 0;



Moreover, the null vector Vu = 9; is covariantly constant, i.e., V?u = 0. Thus, (M4,§)
is a pp-wave. See [12] for a more detailed discussion of such spacetimes. Therefore, we

have on (M3, g,k)
0= @?ju|TM3 = iju + IIijN(u) = (Aij — kij)|Vul

where N = |[Vu|(=|Vu|20; + 9, — ady — bdz) is a time-like unit normal vector. Thus, the

second fundamental form A of (M3, g) c (M*,§) is given by k.

The vector fields {0i,0s,0,,0;} form a frame of TM* and {Vu,01,02} form an
orthogonal frame of T'M?3. Using Mathematica, we obtain that the only non-vanishing

Ricci curvature terms of § are given by

— 1

Ric(0y, 01) :5(—%2$2 +byyzs)s

— 1

RIC(aUn 82) :§(a$1x2 - b:c1oc1)a (B26)

__ 1 1

Ric(0y, Oy) =§(ax2 — by, )% - EAR2(|VU|_2 +a% + %) + auz, + bz,
Taking the trace of Ric, we have R = 0, then pu = Ric(N,N) and J = Ric(N,-). The
identity (J,81) = (J,d2) = 0 yields Ric(N,d;) = Ric(N,d,) = 0. Combining this with
11> 0, we obtain Ric(dy,d,) 2 0. The equation Ric(N,d;) = Ric(N,ds) = 0 also implies

Orozy = Opiz,  ANd Az 2o = bz -

Thus, ¥ = ag, — by, only depends on u. Hence, there exists a function ! such that
a = xop(u) + Iy, and b = —z19(u) + ly,. Inserting this into the third line of Equation
(B.26), we obtain

1 _ 1 1
ARZ (§’VU| 2 + Elil + 5l§2 + lml.fUQT/J(U) - lx2$1¢(u) - lu) <0. (B27)
Next, we define

1, 5 1 1
F(u,z1,29) = 5|Vu| 24 5551 + 5122 + g, 2ot (1) = Ly z1h () = Ly
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Another computation and the fact that Vu is covariantly constant, yield that the only

non-vanishing Riemann curvature terms of g in the frame {0, 02, 0;, Vu} are given by

R(Vu,01,01, Vu) =R(Vu, 01,01, Vu) + k(Vu, Vu)k(d1,01) - k*(Vu, 01)
== [Vl Frpa,
R(Vu, 8,8, V) =R(Vu, 81,01, V) + k(Vu, Vu)k(dz, 82) - k*(Vu, 82)
=~ |Vul|* Frpas,
R(Vu, 81,02, V) = = |Vul* Fyya,.
According to Theorem 4.2 in [64], we have |Vu| = 1+ O1(|z|™™). Combining this with
the asymptotics for g and k in (3.2), we obtain Fy,, = O(|z|"72), where i,j = 1,2.

Therefore, we can follow the proof of Lemma 3.5.6 to conclude that F' is a linear function

with respect to z1, xo. Thus, g is flat which finishes the proof.
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Appendix C

Technical aspects of Theorem C

In this section we compute the integral formulas (4.6) and (4.24). They in particular
generalize the Hawking mass monotonicity formula for IMCF [52, 79, 83|, the spacetime
Hawking energy monotonicity in spherical symmetry [61], the integral formula for har-
monic and p-harmonic functions [1, 2, 18], for spacetime harmonic functions [64, 17| and
for charged harmonic functions [16]. We remark that the aforementioned formulas led
to proofs of the Riemannian Penrose inequality [1, 79|, the spacetime Penrose inequality
in spherical symmetry [61], the Riemannian [2, 18|, spacetime [64] and hyperbolic PMT
[17], as well as the PMT with charge 16| and corners [71].

C.1 Spacetime IMCF and p-harmonic functions

We denote with v, = @—Zl and v, = @—Zl the unit normals to the level sets of u and v.
Throughout this section we assume that both v, and v, are well-defined, i.e. |Vul,|Vv| #
0. We expect that the cases where Vu, Vv are allowed to vanish can be treated in a

similar fashion as in [1, 64, 113].

ext, we define 7 = umy in case v, # —1,, an =0 in case v, = —v,. Similarly,
Next defi Yoty + d 0 Similarl
u v
we define f = % in case vy, # 1, and in case vy, = v, we set f = 0 (which is the case
u v

in spherical symmetry). It is convenient to compute formula (4.6) in this frame. We

remark that v, # -1, for any initial data set contained in Minkowski space.

We start with collecting several elementary properties about 1 and f:
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Lemma C.1.1. We have
VayuV v = =V yuVyv.
In particular, for any symmetric 2-tensor AY
A (VuV v+ Vjuvw) = 2477, uv v + 2477y puv .

Proof. To prove the first identity we can assume without loss of generality that v, # v,

and v, # -1v,. We compute

VnuV ! ([Vul[Vol + (Vu, Vo)) (=[Vul| Vo] + (Vu, Vo))
uV v = ul|Vo u, Vo)) (=|Vul|Vo u, Vo
T ot vl = V|Vl
and
VyuV ! ([Vul[vol + (Vu, Vo)) (|Vul| Vo - (Vu, Vo))
vV fu = ul|Vo u, Vv u||Vo| = (Vu, Vv)).
T vt vl = wlvadlvel
The second identity directly follows from the first one. O

Lemma C.1.2. We have

(Vu, Vv) = VyuVyv + VuV po
and

|Vul|Vo| = VyuVyv - VsuV fu.

Proof. The first identity is trivial, so it suffices to show the second one. Observe that

|Vul? = (Vyu)? + (V yu)? which holds also in case vy, = v, or v, = —1,. We compute using
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Lemma C.1.1
[Vul*|vof*
=((Vyu)® + (Vyu)*) ((V0)? + (V50)?)
=(VyuVyo)? + (Vyuv ;0)? + (Vyu) (Y 50)? + (V50) (Y pu)
=(VyuVyv)? + (V juV jv)? = 2V,uV,oV juV fu
=(V,uVyv - V suV sv)>.
Taking the square root on both sides yields
|Vul|Vo| = [VyuVyv = V puV su).

We clearly have V,uV,v -V uVsv >0 in case v, = v, or v, = —1,. In case v, # v, and

Vy = =V, wWe have

VUl [ Vol (VyuVayv - V puv v)

1
= (IVul| Vol + (Vu, V0))* +

2
Vu||Vv| —(Vu, V
|I/ I/UP (| || U| < U>)

vy = v|?
>0

which finishes the proof. O

Lemma C.1.3. We have

Uy t+ Vv| = 2<Vu777> = 2<VU777>

as well as

v = vl = 2, f) = =2(wy, f).

Proof. Recall that v, = % and v, = |§—Z| We compute
2
s |TTL VT (vl + (T 90))
Y [Vullvl [Vul|vol
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and

1
[V + ol (Vs 1) =V, v + 1) = === ([Vul|[ Vo] + (Vu, Vv))
|Vu|[ Vo
which implies |vy, + vy| = 2(vy,n). In case v, = -1, we clearly have (vy,n) = (vy,n).
Moreover, observe in case v, # -1,
1+ (v, v
<VU777> = M = <VU777>
|t + vy
which implies the first identity. Replacing v by —v, the second identity follows. ]

Recall that

VauVpv V,uViv + ViuV;v
: n=rn L) J i
(H2)iju = Viju+ kis| Vul - 2———1=gj; + o :

VyuVyv ViuViv + ViuVv
(H2)ijv = Vijv = kig| Vol - 2 Zﬂ? gij + ——2 juviv:

u+v

The proof of Theorem 4.4.1 is implied by the following two proposition regarding H2:

Proposition C.1.4. Let a €[0,1] and suppose u,v solve system (4.5). Then we have

[Hul®  (a(HE)pyu)?
|Vl |Vl

=R|Vu| - 2K, |Vu| + [k*|Vu| - try(k)?|Vu| + 2| Vu|V,, try(k) - 2|Vu|Viki,

+d1v(—2V|Vu|+2Au|V |+2k:(Vu ) - 2(Vutrg(k:))+4|Vu|—) (C.1)
+v
[Vl [Vl [Vul[Vol
_4avnn”<’/uaf>2u+v+4 Vv f)2u+ +4(|Vu| - [Vv |)( v

ViuV,v + Vjuvv
u+v

g()

. 47ullvol-L= _ 8|vu|vo|
J u +

Here R is the scalar curvature of g, and K, K, are the Gaussian curvatures of the level

sets of u,v.
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Proposition C.1.5. Let a € [0,1] and suppose u,v solve system (4.5). Then we have

[H20 (a(H2)pyv)?
|Vl |Vl

=R|Vv| - 2K, |Vo| + [k[*|Vo] = try (k)?|Vo] = 2| V0|V, trg(k) + 2/V0|Vikiy,

+div (—2V\Vv| + 2Avﬂ - 2k(Vv,-) +2(Vutry(k)) + 4|V V+u ) (C.2)
u+7v

|Vl
, |Vl 2 Vo] [Vul[vel
—4aV ppulvy, f) +U+4avnn v{va, f) Ut +4([vo] - [Vul) (u+v)?
ViuVv + V,uV;v k)

trg(
- 2ki; +4|Vu||Vv|g— +8|Vu||Vv|i
u+v u+v

u+v
Proof of Theorem 4.4.1. This follows immediately from adding equation (C.1) to equa-

tion (C.2). Observe how the last two lines of both (C.1) and (C.2) cancel. O

To prove Proposition C.1.4 and Proposition C.1.5 we will make use of several aux-

iliary lemma:

Lemma C.1.6. Let a € [0,1] and suppose u,v solve system (4.5). Then we have

H3uf” + (Au)?
VyuVyv)?
:|v2u|2+|k|2|vu|2+8( nU WU)
(u+v)2
VpouVyv ViuV;v + V;uV;v
+2V,~juk’ij|Vu| 4‘61‘9(]{7)|Vu|M Qkij|Vu| L -2
+v u+v
VpuVnv VyuV v
b (41 40) v, w1V | g VIOV
( a)Vint w fru Wt

+ (trg (k) - ak‘nn)2|Vu|2 + GQ(VTWU)Q = 2aVpyu(trg(k) - akyy )| Vu|
VruV v
u+v

VauV v
u(t g(k) akyy)|Vul.

-4Au
-4

Proof. Using Lemma C.1.1 several times we obtain
(ViuV;v + VjuVv)(ViuV;v + VjuV,v)

=4(VyuVyv)® +4(V juv pv)?
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and
Viju(ViuV v + V;juViv) = 2V,uVyuVyv + 2V ppuV ¢V fv
as well as
gij (ViuVjv + V;uVv) = 2V,uV,v + 2V fuV fv.

This allows us to compute

(Vyuvyv)? + 4(V?7“an)2 + (Vyuvyv)?
(u+v)? (u+v)?
VpauVyv ViuV;v + V,;uV;v

+ 2V jukij|Vu| - 4try (k)| Vu |M + 2k Vu| = JUMJ -

VyuVayv \Y uV v+v uV v

Y 8 u bt

u+v (u+v)

VyuVyv VruV v
utv

112 u? =|v2ul? + [k vul? + 12

—4Au

+ 4Vm7u + 4fou

Grouping together terms, we obtain

(Vyuvy)*  (Vuvso)”
(u+v)?2 (u+v)?2
VouVpv
+ 2V uki;|Vul - 4 trg (k)| Vu |u + 2kij|Vul

VouVayv \% V v
V¥Vl 8vnuv,7vf—’02
u+v (u+v)
VauVav VuV v
u+v

12 =Vl + kP vul® + 8
ViuV;v + VjijuVv
u+v (0_3)

- 4Au

+ 4V7mu + 4fou

Next, we recall that the PDE (4.5) for u states

3|Vu||Vu| + (Vu, Vo)

2
Au = —trg(k)|Vul + aky,|Vul + aVy, u + e

Moreover, we note that Lemma C.1.2 implies

3|Vul|[Vu| + (Vu, Vu) = 4V ,uV,v — 2V fuV fu.
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Thus, we are able to calculate

(Au)2 _ 4Auw
U+ v
V ruV rv
=Au (avnnu = (trg (k) = kyp)|Vul - 2 {HJ )

=(trg(k) - ak‘m)2|Vu|2 + aQ(Vymu)Q = 2aVyyu(trg(k) - aky, )|Vl

ViuVyev  VauVyv
-2A +4 Vinu = (trg(k) = kyy) |V
L—— wt o (aVymu = (trg(k) = kpy)|Vul)
VyuV v
e GRS CH ORI\t

=(trg(k) = akny)*|Vul* + a*(Vyqu)? = 2aVpgu(trg (k) - aky,)|Vul
ViuVyso (Vqufv)

- 4A
Ry (u+v)?2
V uVpv U u v
S b1y (k) = ki )| 9] + dau 0
VyuV v
+8vnuvn”m.

Combining the above identity with equation (C.3), we obtain

[H2uf? + (Au)?

VyuVyv)?
=|V2ul? + |k Vul® + 8M
(u+v)?
AVARTAVR)) ViuV,v + V;uV;v
+ 2V ukif|Vu| - 4trg (k)| Vu |M + 2hi |Vl —————
VypuVyv V uV fv
+ (4+4a)v7muu +4fou—f - /
u+v

+ (try(k) - aknn)2|Vu]2 + (12(V,mu)2 - 2aVyu(trg(k) — aky,)|Vul
VyuV v
U+ v

—4Au

VnNaY (0 (k) - aku )|V
u+v

-4

which finishes the proof.
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Lemma C.1.7. Let a € [0,1] and suppose u,v solve system (4.5). Then we have

4 VpuVpv
—(1+ \v4 JnzyYnz
|vu|( CL) 7777u U+ v
V|
s o]
(vu, £YV ppu—
Vul |Vl
-4 2|_ +4 -
aVpnu(vu, f) T aVon(u U)u+v
-3
+4div(\Vu| v )+4|w||wyM
U+v (u+v)2
trqg(k) —ak
—4|Vu||vU|M
u+v

Proof. Recall that

3|Vu||Vu| + (Vu, Vo)

2
Av =try(k)|Vv| - aky|Vo| +aVy, v + e

Using this equation we compute

4vyvyuu|vv|
u+v
Vv
-4(vivul, -T2
u+v
A 2
:4div(|vU| Vv )_4|vu|_v 4y VUL (T )
u+v u+v (u+v)?
v -3
:4diV(|VU|ﬂ)—4G|VU| nnv+4|Vu||Vv|—|vv| [V
u+v u+v (u+v)?

trg(k) — akyy,

~ 4vul|vol =
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Next, observe by Lemma C.1.3

<Vu,77>2vm7u

:<Vua77>2| v(l/u+ljv)(l/u+1/v)u

Uy + Uy |?
1

:Z(Zvyu’/uu + vVuVuu + VV’UV’UU)

1
:Z(2vyul’vu T Vou(frvp) U+ VVv(l/u—f)u)

1
:VVuVUu + Zv(yufuv)(l’ufyv)u

=V + <Vu, f>2fou.

Hence,
4 VouVy,v
|vu|( ) nnm U+ v
4 VauVayv  4a VauVayv
= +
v M ure vl ™ ur e
Vv Vv
:4vl/vl/uu | ’ -"-4(1/1147f)Qvff,LLu
U+ U+
[Vl 2 [Vl
+4avnnu—u+v - 4aVypu({vy, f) iy
Combining this with equation (C.4) yields
4 VaouV,v
|vu’( ) nnm U+ v
Vol
o 1P
(vu, f) T
Vul |Vl
-4 21Vl 4 -
avVpnu(vu, f) T aVon(u U)u+v
-3
+4div(|Vu| v )+4|w||w|L|Vﬂ|
u+v (u+v)
try (k) — ak
U+

as desired.
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Lemma C.1.8. Let a€[0,1] and suppose u,v solve system (4.5). Then we have

—2atry(k)Vypu = - 2div(Vutrg(k)) + 2(=try(k)|Vu| + akyy|Vul) try (k)
4V, uVyv = 2V suV v

+2try(k) e

+2|VulV,, try(k).

Proof. Using the PDE for u (4.5), we compute

—2atry(k) Vi,
try(k
[Vl

=-2adiv(Vutrg(k)) + 2a(—try(k)|Vu| + aky,|Vu| + aVy,u) try (k)
AV, uVyv = 2V suV pv

+2atry(k) "
u+v

- QG’VVuVUUtrQ(k) + QG"VU‘vVu trg(k)
Thus, we obtain

—2atry(k)Vppu = —2div(Vutrg(k)) + 2(—trg(k)|Vu| + akpy|Vul) trg (k)
4V, uVyv = 2V fuV jv
u+v

+2try(k) +2|Vu|V,, try(k)
which finishes the proof.

Lemma C.1.9. For any twice-differentiable function u we have

div [ V19ul - AuY ) = L (19202 + VP (R - 2K,) - (Au)?).
[Vul ) 2|Vul

Proof. This formula has already been established in equation (4.8) of [16], also see the

article of D. Stern [113]. We nonetheless include a proof to make this manuscript more

self-contained. We compute using Bochner’s identity and the Gauss equations

2A|Vu| =2/vu| ™ (Ric(Vu, Vu) + [Vul* + (VAu, Vu) - |[V|Vu]*)
=2/ Vu| ™ ([V2uf* + (VAU Vu) = [V|Vu*) + (R - 2K,)|Vul

+[V2ul? + [Vul " ((Au - Viu)® - V2 + 2|V |V - (Vuu)?)
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Rewriting the term 2|Vu|™(VAu, Vu), the result follows. O

Now we have all the auxiliary ingredients to proceed with the proof of Proposition

C.1.4. The proof of Proposition C.1.5 is identical so we will omit it.
Proof of Proposition C.1.4. Combining Lemma C.1.6 and Lemma C.1.7, we obtain

[H2uf? + (Au)?

2
192 + k2 {puf + s V)
(u+v)?
VpuVyv ViuV;v + V,;uV;v
+ 2V uki;|Vul - 4 trg (k)| Vu |u + 2k V| ——1—
U+
+ (trg (k) = akpy)*[Vul + a® (Vpyu)? = 209 u(try (k) - ak,,)|Vul
_4Aququv
U+
VpuVnyv
Vul?
» .
aVv(vu, f) Wt
. \Y Vu||V
+4|Vu\d1v(\Vu|—U)—8|VuHV vullvel “2|
+v (u+v)
|Vul| Vol trg(k) — ak
+AVul([Vul - [Vo) =05 = |Vuf’ | Vo=
(u+v)? u+wv

Observe how the Vsu terms cancel. Next, we calculate using Lemma C.1.2

VouV VuV v
( nlU 17’0) —4Au f f _8|vu||vv|w
(u+v)?2 (u+v)2
YN OV (Vyuv v)? 16 LUV FUV UV Y
u+v (u+v)2 (u+v)2
V fuV v Vyuvyv
=~ daVu—L 4ty (k) - ab) vl L

Moreover,
(M) nyu)? =V + k| Vul)® = (V) + 2k [Vl Vg + k3 [ Vuf.
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Hence, we obtain

|/H?ru|2 + (AU)Z - (a(%z)nnu)Q

=[V?uf® + kP [Vul
ViuV;v + V,;uV;v
u+v

VouV v
+2Vz‘ju/‘€ijlwl—4t1"g(k)|W!—Z :

+ Qkiqul

+ (trg (k)? - 2atrg(k)knn)|Vu|2 = 2aVyu trg(k)|Vul

— 4W(tr9(k) - akvu)lVU’
u+v
|VU|2 Vf’LLVf’U
—4av ) —4av,,u~—I7
aVynv{vu, f) . avynu .
+4|Vul div(|Vu| Vo )
u+v
Vul|Vv tro (k) — ak
(u+v) wt
VruV
+4(trg(k) - akyy )|V~
u+v

Next, we use the divergence identity

Vz-jukij =div k(Vu, ) - |vu’vikiyu
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and Lemma C.1.8 which results in

WEUF + (AU)Q - (G(Hi)nn“)Q

=Vl + K|V ul?
ViuV;v + V;uViv
u+v

+ 2|Vl div k(Vu, ) - 2|Vul*Vikiy, + 2ki;|Vul

- trg(k)*|Vul”

v, uv
_4—,,71, nv(—akW)Wu\
+ v
2| Vul? VjuV v
—4aV (v, f) o - 4aVyy, e
+4|Vu|div(|Vu| Vv )
+v
VullVou tr (k) — ak
cul(vul - [7o) VAV gy Hal 2~ 2
(u+wv) u+v
Vruv
u+v

- 2|Vu|div(Vutry(k))

+2|Vul*V,, try (k).

By collecting terms which are homogeneous of degree 1 in k (though note they will
cancel anyways with the corresponding terms from Proposition C.1.5), this simplifies

further to

[HEul + (Au)? ~ (a(H3)yyu)?

=V + [EP[Vul? - try (k)2 [Vul® + 2|Vul>V,, try (k) - 2|Vul*Viki,

Vv)
+v

Vul? Vu||Vv
LA YR e AT A
U+ u+v ( +v)

ViuV;v + VjuV;v rg(k:)
u

2 Vu| div k(Vu, -) — 2/Tu| div(Tutry (k) + 47| div (|vU|

—4aV (v, f)

+ 2k |Vul — 4 vul’|vv |

8|V||V|
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Next, we use Lemma (C.1.9) to obtain

[Hiul>  (a(HD)pmu)?
|Vul |Vul

=R|Vu| - 2K, |Vu| + [k[*|Vu| - trg(k)?|Vu| + 2| VulV,, trg(k) - 2|Vu|Vikiy,

+ div [ -2v|Vu| + 280 4 2(Va, ) — 2(Vutrg (k) + 4] Va2
|Vul u+v
[Vl

Vo |Vu|| V|
+4 , 21Vl - Vo)) ——
vy ATl £ 5 vl - vl S
ViuV v + VjjuV; try (K
AT 4wl v ig( )

u+v +v

- 4av7777v<yua f>2

k
+ 2]{?” 8|Vu||Vv|ﬂ
u+v

which finishes the proof. O

C.2 Spacetime charged harmonic functions

Vu+Uy
[Vu+v]

Again, we set 7 = in case v, # -1, and n = 0 in case v, = —v,. Note that the

integral formula (4.24) in Theorem 4.6.6 reduces to the integral formula for spacetime
harmonic functions in case n = 0, cf. Proposition 3.2 in [64]. Therefore, we assume

without loss of generality that v, # —v,, in the proof below.
Proof of Theorem 4.6.6. Recall that the charged spacetime Hessians are given by

(E2)iju=Viu+EnE; + En;E; — EEpgs; + kij| Vi,

(E2)ijv =Viv + EnEj + &0y E; - EEngs; — kij| V|
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where ¢ = \/W . We compute
E2uf® =|V?ul® + 26°|E? + 36’ E)
+4¢Vijuni Ej - 2aAuEy + 2a°E2 - 40”E;,
+2(EniEj + EnjE; — EE,gi5) kij|Vul
+ |k‘|2|Vu|2 + 2V?jukij|Vu|
=Vl + 2¢%| Ef?
+4¢VijunEj - B
+2(Emi By + &n; Ei = EEygij)kij| Vul

+ B[PV ul® + 2V uky;|Vul + 2trg (k)| Vul¢ B,
Similarly, we obtain
[£20 <[v20f + 262 P
2 2
+ 4£Vij’U77iEj —f ET]
= 2(EmiEj + & B — EEygi ) kij| Vv
+ kP [vuf? - QV?jukij|Vu| - 2try(k)|Vul(E,y.

Using Lemma C.1.9, we obtain

div(V|Vu|—Auﬂ+V|Vv| Av—)
[Vul Vo

(|52u|2 26 |E|2+€ E2 4€VZJU772E )

2IV |
2| |(IVuI (Rar = 2Ky) = (§By = trg (k)| Vul)® = [K*|Vuf* - 2V uki;|Vul)
2| |(182 off = 2% B + € B} - 46V oni By)
2|v aroa Vol (Bar = 2K0) = (€, + try (R)|T0])” = kW0l + 2750k Vo).
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Simplifying yields

div (V|Vu| YN V|vo| - Av—)
[Vul Vo

(|52u|2 25 |‘E|2 4§V”W71E )

2|V |
2| |(|VU| (Rar = 2K,,) + 2 trg (k) Au|Vul + (trg (k) = k)| Vul? - 2V ukij|Vu])
2| |(|52 o = 2% Ef - A€V jon: )
2|V |(|Vv| (Ry - 2K,) - 2trg(kz)AU|Vv|+(trg(k:) - |k)|vol? +2V?jvk:¢j|Vv|).

Next, we compute

v |€V2]umE - div |I§||v E|-v, % V- || '|vz-uvij
and similarly
ﬁgv?jvaj:diV %vl mk =V, % iVn ||V ;Vzvvij
Observe that
2, ||§Z|I EjV,u+2V; 1;:}‘: E;v,

=671V, |Vo|E;Vu — €Vl | Vu| V| Vul v, uE;

+ &Y,V E; vy - €7Vl |V V| Vol uE; = 0
where we used Lemma C.1.3 in combination with |Vov|V,u = |Vv||Vu|(vy,n). Moreover,

Vo] V|
|Vl |Vl

=YV En, Vu|vo| + Vo|Vul)

VZU,V]'UZE + VZ"UijEj

=¢Y|Vulvv + Vulvo|[(VEn,n) = 0
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where we used that (n,7) =1 and (Vgn,n) = 0. Hence, we obtain

div| V|Vu| - Au| |+v|vv| Av— \“v VyvE + 2\||v o )
7)

sio (€2l - 2487 EI?)

2IV |
2| |(|Vu| (Ryr - 2K, )+2trg(k)Au|Vu|+(trg(k) — k) |vul? - QV?jukij|Vu|)
Ex|* - 26%|E
QW g (E20F - 26%1P)
4T |(|Vvl (Rar = 2Ky) = 2ty (k) Av| Vo] + (b4 (k) = k) [V + 2V k5| Vo).

Integrating by parts, we find

div(Z) = (|52u|2 2|Vv||Vu||E\ )

2|V |

2| ‘(|Vu| (2p - 2K,,) + 2|Vul(J, Vu))

&% = 2|vul|vo||E
2|v|(| | - 2|vul[vo||E]?)

2|v |(IWI (2p - 2K,) = 2[Vo[(J, Vo).

where
=V|Vu| - AudY VIVu| - Av TV, 2671 (| V|| Vo] + (Vu, Vo)) E
V| [Vl
—try(k)Vu + try(k) Vv + k(Vu,-) = k(Vv,-).

This finishes the proof.
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