
INTERMEDIATE CURVATURE, SPACETIME
HARMONIC FUNCTIONS AND THE

MONOTONICITY OF THE HAWKING ENERGY
by

Sven Hirsch

Department of Mathematics
Duke University

Date:
Approved:

Hubert Bray, Advisor

William Allard

Robert Bryant

Mark Stern

Dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy

in the Department of Mathematics
in the Graduate School of

Duke University

2023



ABSTRACT

INTERMEDIATE CURVATURE, SPACETIME
HARMONIC FUNCTIONS AND THE

MONOTONICITY OF THE HAWKING ENERGY
by

Sven Hirsch

Department of Mathematics
Duke University

Date:
Approved:

Hubert Bray, Advisor

William Allard

Robert Bryant

Mark Stern

An abstract of a dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy

in the Department of Mathematics
in the Graduate School of

Duke University

2023



Copyright © 2023 by Sven Hirsch
All rights reserved



Abstract

First, we introduce m-intermediate curvature Cm which interpolates between Ricci

(m = 1) and scalar curvature (m = n − 1) and prove in this context a generalized

Geroch conjecture. In particular, we show that Mn−m×Tm, n ≤ 7, does not admit

a metric with Cm > 0.

Next, we study initial data sets (M,g, k) which are used in General Relativity

to describe isolated gravitational systems. We introduce spacetime harmonic

functions, i.e. functions solving the PDE ∆u = −trgk∣∇u∣, to give a new lower

bound for the mass of (M,g, k). This lower bound in particular implies the

spacetime positive mass theorem including the case of equality.

Finally, we discuss recent progress towards the spacetime Penrose conjecture.

We demonstrate how the famous monotonicity formula for the Hawking energy

under inverse mean curvature flow can be generalized to initial data sets. This

leads to a new notion of spacetime inverse mean curvature flow which is based on

double null foliations.

Several of the above results have been obtained in collaboration with Simon

Brendle, Florian Johne, Demetre Kazaras, Marcus Khuri and Yiyue Zhang.
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Chapter 1

Introduction

1.1 Proof of a generalized Geroch Conjecture

Bonnet-Myers’ theorem implies that Mn−1 × S1 does not admit a metric with positive

Ricci curvature while the resolution of Geroch’s conjecture yields that the torus Tn does

not admit a metric of positive scalar curvature. Together with S. Brendle and F. Johne

we showed in [22]:

Theorem A. Let n ≤ 7. On Tm ×Mn−m there is no complete metric of positive m-

intermediate curvature.

Here m-intermediate curvature is a new notion of curvature we introduced which

interpolates between Ricci curvature (m = 1) and scalar curvature (m = n − 1). Our

proof uses stable weighted slicings of order m and delicate extrinsic curvature estimates.

We also discuss other recent work about m intermediate curvature [29, 34, 38, 89, 119]

by X. Chen, A. Chow, F. Johne, J. Wan, J. Chu, K.-K. Kwong, M.-C. Lee, M. Labbi

and K. Xu.

1.2 Spacetime harmonic functions

Besides the initial proofs of the Geroch conjecture due to R. Schoen, S.-T. Yau [106], and

M. Gromov, H.B. Lawson [58], there is another argument in dimension 3 due to D. Stern

[113] using harmonic maps. This idea has been expanded upon by H. Bray, D. Kazaras,
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M. Khuri and D. Stern to give a new proof of the Riemannian positive mass theorem

(PMT) [18]. In [64] we showed with D. Kazaras and M. Khuri the spacetime PMT using

spacetime harmonic functions, and in [72] we proved with Y. Zhang the corresponding

rigidity. The main result of the two papers [64, 72] can be stated as follows:

Theorem B. Let (M,g, k) be a complete, asymptotically flat initial data set satisfying

the dominant energy condition µ ≥ ∣J ∣. Then there exists a spacetime harmonic function

u such that

E − ∣P ∣ ≥
1

16π
∫
Mext

(
∣∇2u + k∣∇u∣∣2

∣∇u∣
+ 2µ∣∇u∣ + 2⟨J,∇u⟩)dµ.

In particular, we have E ≥ ∣P ∣. Moreover, E = ∣P ∣, implies E = ∣P ∣ = 0 and that (M,g, k)

isometrically embeds into Minkowski space.

Here µ,J are the energy and momentum densities, Mext is the generalized exterior

region of M , cf. Appendix B.1, and we remark that the case of equality of the spacetime

PMT has previously only been known under several additional decay assumptions [10,

64, 77]. In further work joint with H. Bray, D. Kazaras, M. Khuri and Y. Zhang

[16, 17, 65, 66] we have found various other applications of spacetime harmonic functions.

This includes existence results for black holes, and purely Riemannian statements such

as a conjecture of M. Gromov, a generalization of Bonnet-Myers’ theorem and band

width inequalities. Also, see [3, 27, 28, 114, 115] by A. Alaee, P.-K. Hung, M. Khuri,

X. Chai, X. Wan and T.-Y. Tsang for even more examples.

1.3 Monotonicity of the Hawking energy

The success of spacetime harmonic functions raises the question whether other important

tools from Riemannian geometry also have “spacetime analogs”. One of the central
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results concerning asymptotically flat manifolds is the Riemannian Penrose inequality

which has been proven by G. Huisken and T. Ilmanen [79] for connected horizons, and

by H. Bray [13] for arbitrary ones. Husisken-Ilmanen’s proof relies on inverse mean

curvature flow (IMCF) and the monotonicity of the Hawking energy. In [63] we showed

the following generalization of this monotonicity formula:

Theorem C. Let (M,g, k) be an asymptotically flat initial data set satisfying the dom-

inant energy condition µ ≥ ∣J ∣. Let Σ1,Σ2 be two surfaces in M with Σ2 containing

enclosing Σ1. Let (u, v) be a solution to spacetime IMCF

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

∆u = − trg(k)∣∇u∣ + kηη ∣∇u∣ + ∇
2
ηηu +

3∣∇u∣∣∇v∣+⟨∇u,∇v⟩
u+v

∆v = trg(k)∣∇v∣ − kηη ∣∇v∣ + ∇
2
ηηv +

3∣∇u∣∣∇v∣+⟨∇u,∇v⟩
u+v

,

with appropriate boundary conditions, where η = ∇u∣∇v∣+∇v∣∇u∣∣∇u∣∇v∣+∇v∣∇u∣∣ . Then

mH(Σ2) ≥ mH(Σ1)

where mH is the spacetime Hawking energy

mH(Σ) =

√
∣Σ∣

16π
(1 −

1

16π
∫
Σ
θ−θ+dA) ,

and where θ± =H ± trΣ k are the null-expansions.

We will demonstrate that Theorem C implies both the Hawking energy monotonic-

ity in the Riemannian setting, and the integral formula of Theorem B. In particular,

the above formula implies the spacetime PMT and the Riemannian Penrose inequality.

Compared to other approaches towards spacetime IMCF [15, 19, 51, 80, 98], our ap-

proach has the advantage that we both have a monotonicity formula and a PDE with a

comparatively simple structure. We will discuss existence results in Chapter 4.5.

3



1.4 Outline

In chapters 2, 3, and 4 we will prove theorems A, B and C respectively. At the beginning

of each section we will include detailed information about the background, literature and

related topics. We will focus in our exposition on the central geometric and analytic

ideas, and outsource less important technical details to the corresponding appendices

A, B and C.

Further papers I wrote during my time in graduate school [14, 16, 17, 65, 66, 67, 68,

69, 70, 71, 73] will not be discussed.

4



Chapter 2

Proof of a generalized Geroch conjecture

This section is based on joint work with Simon Brendle and Florian Johne [22].

The round metric gS2 on S2 has positive Gaussian curvature, and Gauss-Bonnet’s

theorem shows that there is no such metric on the torus T2. Similarly, we obtain the

following figure in one dimension higher:

Table 2.1: Positive curvature in Dimension 3

Dimension 3 S3 S2 × S1 T3

Existence of a metric with Ric > 0? ✓ ✗ ✗

Existence of a metric with R > 0? ✓ ✓ ✗

Note that the round metric gS3 has positive Ricci curvature Ric, and the product

metric gS2 ⊕ gS1 has positive scalar curvature R. The non-existence of metrics with

positive Ricci curvature on S2×S1 and T3 follow from Bonnet-Myers’ diameter estimate,

and the non-existence of metrics of positive scalar curvature on T3 is the statement of

the famous Geroch conjecture.

Theorem 2.0.1 (Bonnet-Myers’ theorem). Let (Mn, g) be Riemannian manifold with

Ric ≥ (n− 1). Then the fundamental group of Mn is finite, and we have diam(Mn) ≤ π.

Here and in the rest of this manuscript all manifolds are assumed to be complete,

orientable and smooth.
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Corollary 2.0.2. There is no metric with Ric > 0 on Mn−1 × S1.

Proof. If Mn−1×S1 has Ric > 0, so does the cover Mn−1×R which has infinite diameter.

Bonnet-Myers’ theorem has first been shown by S. Myers [99] using the second vari-

ation formula of geodesics and a corresponding rigidity statement has been established

by S.-Y. Cheng [30]. New proofs have been given by C. Croke and B. Kleiner [40] using

the distance function and by the author, D. Kazaras, M. Khuri and Y. Zhang using

spacetime harmonic functions [65]. We remark that the proof using spacetime harmonic

functions also applies to open and incomplete manifolds and includes rigidity.

Theorem 2.0.3 (Geroch conjecture). There is no metric g with R > 0 on the torus Tn.

This has been first established by R. Schoen and S.-T. Yau [106] up to dimension 7

using the minimal surface techniques, and later by M. Gromov and H.B. Lawson [58] in

all dimension using the twisted Lichnerowicz formula. A new proof in Dimension 3 has

recently been discovered by D. Stern [113] based upon harmonic maps into S1.

Applying again Bonnet-Myers’ theorem and the Geroch conjecture, we obtain the

figure below for Dimension 4.

Table 2.2: Positive curvature in Dimension 4

Dimension 4 S4 S2 × S2 S3 × S1 S2 ×T2 T4

Existence of a metric with sec > 0? ✓ ? ✗ ✗ ✗

Existence of a metric with Ric > 0? ✓ ✓ ✗ ✗ ✗

Existence of a metric with R > 0? ✓ ✓ ✓ ✓ ✗

6



Note that it is still an open question whether there exists a metric of positive sectional

curvature sec > 0 on S2×S2. This is known as Hopf’s conjecture [54] and remains unsolved

for more than half a century.

Observe that neither sectional, Ricci, nor scalar curvature are able to distinguish

between the different topological spaces S3 × S1 and S2 × T2. This motivated us to

introduce a new notion of curvature in [22]:

Definition 2.0.4 (Positive m-intermediate curvature). Suppose (Nn, g) is a Rieman-

nian manifold. Then (Nn, g) has positive m-intermediate curvature at p ∈ M , if the

inequality

Cm(e1, . . . , em) ∶=
m

∑
p=1

n

∑
q=p+1

sec(ep, eq) > 0

holds for every orthonormal basis {e1, . . . , en} of the tangent space TpM . The man-

ifold (Nn, g) has positive m-intermediate curvature, if it has positive m-intermediate

curvature for all p ∈M .

In the tables below we illustrate what it means for Cm, m = 1,2,3, to be positive in

Dimension 4. In general, m-intermediate curvature is obtained by “adding m columns

of sectional curvatures”:

7



Table 2.3: The 1-intermediate curvature C1 is obtained by summing the sectional

curvatures highlighted in red. In particular, we have C1(e1) = Ric(e1, e1).

Dimension 4 e1 e2 e3 e4

e1 0 sec(e1, e2) sec(e1, e3) sec(e1, e4)

e2 sec(e2, e1) 0 sec(e2, e3) sec(e2, e4)

e3 sec(e3, e1) sec(e3, e2) 0 sec(e3, e4)

e4 sec(e4, e1) sec(e4, e2) sec(e4, e3) 0

Table 2.4: The 2-intermediate curvature C2 is obtained by summing the sectional

curvatures highlighted in blue. In particular, we have C2(e1, e2) = BiRic(e1, e2).

Here the bi-Ricci curvature has been previously introduced by Y. Shen and R. Ye

in [110] via BiRic(e1, e2) = Ric(e1, e1) +Ric(e2, e2) − sec(e1, e2).

Dimension 4 e1 e2 e3 e4

e1 0 sec(e1, e2) sec(e1, e3) sec(e1, e4)

e2 sec(e2, e1) 0 sec(e2, e3) sec(e2, e4)

e3 sec(e3, e1) sec(e3, e2) 0 sec(e3, e4)

e4 sec(e4, e1) sec(e4, e2) sec(e4, e3) 0

Observe that Theorem A implies that the manifold S2 ×T2 does not admit a metric

of positive 2-intermediate curvature, while a straightforward computation shows that

the standard metric on S3 × S1 does have positive 2-intermediate curvature. Thus, C2 is

able to distinguish the topological spaces S2 ×T2 and S3 × S1, and we can complete the

above picture:

8



Table 2.5: The 3-intermediate curvature C3 is obtained by summing the sectional

curvatures highlighted in purple. In particular, we have in Dimension 4 C3 = 1
2 R.

Dimension 4 e1 e2 e3 e4

e1 0 sec(e1, e2) sec(e1, e3) sec(e1, e4)

e2 sec(e2, e1) 0 sec(e2, e3) sec(e2, e4)

e3 sec(e3, e1) sec(e3, e2) 0 sec(e3, e4)

e4 sec(e4, e1) sec(e4, e2) sec(e4, e3) 0

Table 2.6: Positive curvature in Dimension 4 revisited

Dimension 4 S4 S2 × S2 S3 × S1 S2 ×T2 T4

Existence of metric with sec > 0? ✓ ? ✗ ✗ ✗

Existence of metric with Ric > 0? ✓ ✓ ✗ ✗ ✗

Existence of metric with C2 > 0? ✓ ✓ ✓ ✗ ✗

Existence of metric with R > 0? ✓ ✓ ✓ ✓ ✗

Theorem A follows from a slightly more general statement. To state this result we

need to introduce the notion of stable weighted slicings:

Definition 2.0.5 (Stable weighted slicing of order m).

Suppose 1 ≤m ≤ n − 1 and let (Nn, g) be a Riemannian manifold of dimension dimN =

n. A stable weighted slicing of order m consists of a collection of submanifolds Σk,

0 ≤ k ≤ m, and a collection of positive functions ρk ∈ C∞(Σk) satisfying the following

conditions:

• Σ0 = N and ρ0 = 1.

9



• For each 1 ≤ k ≤m, Σk is a embedded two-sided hypersurface in Σk−1. Moreover,

Σk is a stable critical point of the ρk−1-weighted area

H
n−k
ρk−1
(Σ) = ∫

Σ
ρk−1 dµ

in the class of hypersurfaces Σ ⊂ Σk−1.

• For each 1 ≤ k ≤ m, the function ρk
ρk−1∣Σk

∈ C∞(Σk) is a first eigenfunction of the

stability operator associated with the ρk−1-weighted area.

This definition is similar but not identical to the notion of minimal m-slicings used

by R. Schoen and S.-T. Yau in [107]. See Figure 2.1 for a depiction of a stable weighted

slicing.

Now we can state the main result of [22]:

Theorem 2.0.6 (m-intermediate curvature and stable weighted slicings).

Assume that n(m − 2) ≤m2 − 2. Suppose (Nn, g) is a closed Riemannian manifold with

positive m-intermediate curvature. Then N does not admit a stable weighted slicing

Σm ⊂ ⋅ ⋅ ⋅ ⊂ Σ1 ⊂ Σ0 = N
n

of order m ≤ n − 1.

The dimensional constraint n(m− 2) ≤m2 − 2 is always satisfied for n ≤ 7 and arises

from several algebraic inequalities originating from stability inequalities. This should be

compared with the proof of the codimension-7 regularity for area-minimizing surfaces, cf.

[112, Appendix B], which also relies on algebraic inequalities appearing in the stability

inequality for area-minimizing surfaces.

Combining Theorem 2.0.6 with the topological existence result below yields Theorem

A.

10



Theorem 2.0.7 (Existence of stable weighted slicings).

Assume n ≤ 7 and 1 ≤ m ≤ n − 1. Let Nn be a closed manifold of dimension n, and

suppose that there exists a closed manifold Mn−m and a map F ∶ Nn →Mn−m ×Tm with

non-zero degree. Then for each Riemannian metric g on N there exists a stable smooth

weighted slicing

Σm ⊂ Σm−1 ⊂ ⋅ ⋅ ⋅ ⊂ Σ1 ⊂ Σ0 = N
n

of order m.

Theorem A has been generalized into various directions by several authors: S. Chen

[29] extended Theorem A to the non-compact setting, while A. Chow, F. Johne and

J. Wan [34] allowed a non-empty boundary to be present. J. Chu, K.-K. Kwong and M.-

C. Lee [38] as well as K. Xu [119] addressed the corresponding rigidity, and M. Labbi used

Theorem A to compute the Riemann invariants of certain manifolds. Moreover, K. Xu

[119] constructed examples demonstrating that the dimensional bound n(m−2) ≤m2−2

is sharp. Finally, we show in an upcoming work a band-width version of Theorem A.

This chapter is organized as follows: In Section 2.1 we establish several elementary

properties of Cm and recall the stability formula for area-minimizing hypersurfaces.

Next, we prove in Section 2.2 Theorem A for m = 1 and m = 2 before proceeding

with the general case in Section 2.3. Thereby we highlight the geometric ideas of our

argument while several technical aspects are moved to Appendix A.

2.1 Preliminaries

The next two lemma follow from standard computations:

Lemma 2.1.1. Consider the manifold Sn−m ×Tm equipped with the standard metric g,

i.e. g = gSn−m⊕gTm where gSn−m is the round metric on Sn−m, and gTm is the flat metric

11



on Tm. Then Cm(g) ≥ 0 and Cm+k(g) > 0 for k ≥ 1.

Lemma 2.1.2. Let (Nn, g) be a Riemannian manifold with positive sectional curvature.

Then (Nn, g) has positive m-intermediate curvature for all m ≥ 1. Similarly, if Cm > 0

for some m ≥ 1, then (Nn, g) has positive scalar curvature.

Recall that given m orthonormal vectors {e1, . . . , em}, m-intermediate curvature is

defined as the sum

Cm(e1, . . . , em) =
m

∑
p=1

n

∑
q=p+1

sec(ep, eq).

In fact, Cm depends only on the m-plane spanned by the vectors {e1, . . . , em}:

Lemma 2.1.3. m-intermediate curvature is a function on on the Grassmanian, i.e.

given two sets of orthonormal vectors {e1, . . . , em} and {f1, . . . fm} spanning the same

m-dimensional plane in TpN
n, we have

Cm(e1, . . . , em) = Cm(f1, . . . , fm).

Proof. Observe that

sm,n(e1, . . . , em) + 2Cm(e1, . . . , em) = R

where

sm,n(e1, . . . , em) =
n

∑
p=m+1

n

∑
q=m+1

Rm(ep, eq, ep, eq).

Here sm,n is (m,n)-intermediate scalar curvature introduced by M.L. Labbi [88] and

further studied by M. Burkemper, C. Searle and M. Walsh [23]. Since sm,n depend only

on the Grassmanian [23, Section 2], the result follows.

It is well-known that taking connected sums of two manifolds preserves positive

scalar curvature but does not preserve positive Ricci curvature. In our setting we obtain:
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Lemma 2.1.4. Positive m-intermediate curvature is preserved under surgeries of codi-

mension c ≥ n −m + 2. In other words, if both Nn and Mn admit a metric with Cm > 0,

then so does the manifold obtained by surgery of codimension c ≥ n −m + 2.

In particular, positive scalar curvature is preserved under codimension 3 surgeries

which recovers a classical result of R. Schoen, S.-T. Yau [106] and M. Gromov, H.B. Law-

son [59].

Proof. This follows immediately from S. Hoelzel’s general surgery result [74, Theorem

A].

Our arguments employ the first and second variation of a suitably weighted area

which we will recall next.

Consider a Riemannian manifold (Nn, g), a smooth positive function ρ ∶ Nn → R,

and an embedded two-sided closed manifold Σ ⊂ Nn. For a given smooth function f ∈

C∞(Σ) we consider a variation F ∶ (−ϵ, ϵ)×Σ→ Nn with F (0, x) = x and ∂
∂sF (s, x)∣s=0 =

f(x)ν(x). In the following, we denote the map F (s, ⋅) by Fs. Moreover, we denote by

Σs the image of Fs and by νs the unit normal vector field to Fs.

By precomposing the maps Fs with suitable tangential diffeomorphisms, we can

arrange that the variation is normal in the sense that

∂

∂s
Fs = fs νs,

where fs is a smooth function on Σs.

We consider the ρ-weighted area defined by

H
n−1
ρ (Σ) ∶= ∫

Σ
ρdµ

where µ is the area-measure on Σ.

13



Proposition 2.1.5 (First variation of weighted area).

The first variation of weighted area is given by

d

ds
H

n−1
ρ (Σs)∣

s=0
= ∫

Σ
ρf (HΣ + ⟨∇N log ρ, ν⟩) dµ.

Here ∇N is the Levi-Civita connection of Nn and HΣ the mean curvature of Σ.

Proof. This is a consequence of the first variation formula for area, and the chain rule.

Corollary 2.1.6.

Suppose Σ is a critical point of weighted area. Then we have

HΣ = −⟨∇N log ρ, ν⟩.

For a constant weight we recover the minimal surface equation HΣ = 0.

Proof. This follows immediately from the fundamental lemma of the calculus of varia-

tions.

Proposition 2.1.7 (Second variation formula on critical points).

If Σ is a critical point of the weighted area functional, then the second variation of

weighted area is given by

d2

ds2
H

n−1
ρ (Σs)∣

s=0

=∫
Σ
ρ (−f∆Σf − (∣AΣ∣

2
+RicN(ν, ν)) f

2
+ f2(∇2

N log ρ)(ν, ν) − f⟨∇Σ log ρ,∇Σf⟩) dµ.

Here ∆Σ is the Laplacian operator induced on Σ and AΣ is the scalar-valued second

fundamental form of Σ.

14



Proof. We use normal variations for our computation, and hence the first derivative is

given by
d

ds
∫
Σs

ρdµs = ∫
Σs

ρfs (HΣs + ⟨∇N log ρ, νs⟩) dµs.

We now differentiate both sides of this equation with respect to s, and evaluate the

result at s = 0. By the variation formulas for hypersurfaces, compare for example with

[81], the first order change in the mean curvature is given by

∂

∂s
HΣs ∣

s=0
= −∆Σf − (∣AΣ∣

2
+RicN(ν, ν)) f,

whereas the first order change in the normal vector field is given by

∇sνs∣s=0 = −∇Σf.

This implies

∂

∂s
(HΣs + ⟨∇M log ρ, νs⟩)∣

s=0

= −∆Σf − (∣AΣ∣
2
+RicN(ν, ν)) f + (∇

2
N log ρ)(ν, ν)f − ⟨∇Σ log ρ,∇Σf⟩,

hence

d2

ds2
H

n−1
ρ (Σs)∣

s=0

=∫
Σ
ρf (−∆Σf − (∣AΣ∣

2
+RicN(ν, ν)) f + (∇

2
N log ρ)(ν, ν)f − ⟨∇Σ log ρ,∇Σf⟩) dµ.

This finishes the proof.

2.2 Proof of Theorem A for specical cases

2.2.1 Proof of Theorem A for m = 1

We show that Nn =Mn−1 × S1 does not admit a metric g with Ric(g) > 0. As discussed

in the previous section, this follows immediately from Bonnet-Myers’ theorem. Here
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we give an alternative argument based on area-minimizing hypersurfaces which we will

generalize to other values of m.

Minimizing area in a non-trivial homology class of Nn, we obtain a stable minimal

surface Σ1, cf. Appendix A.3. Note that Σ1 is a stable weighted slicing of order m = 1.

According to the second variation formula, Proposition 2.1.7, we have for every smooth

test function f ∈ C∞(Σ1)

0 ≤ −∫
Σ1

(f∆Σf +RicN(ν, ν)f
2
+ ∣AΣ1 ∣

2f2).

Choosing f = 1 demonstrates that RicN(g) > 0 is impossible.

2.2.2 Proof of Theorem A for m = 2

Our proof of Theorem A employs stable weighted slicings of order m as depicted in

Figure 2.1 below. In the figure, the cube’s faces are identified to represent Tm, and

each point in the cube represents a copy of Mn−m. Minimizing area in a non-trivial

homology class leads to a stable minimal surface Σ1 and the stability inequality for

Σ1 gives rise for a non-trivial eigenfunction u1. Next, we minimize within Σ1 the u1-

weighted area to obtain a stable weighted minimal surface Σ2 with eigenfunction u2.

Iterating this process leads to a stable u1 ⋅ ⋅ ⋅ ⋅ ⋅ um−1-weighted minimal surface Σm in

Σm−1. Applying the stability inequality on Σm rules out the existence of a metric with

Cm > 0 on Nn =Mn−m ×Tm.
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Σ0 =Mn−m ×Tm

Σ1 minimal surface ↝ u1

Σ2 u1-weighted minimal surface ↝ u2

⋮

Σm u1 ⋅ . . . ⋅ um−1-weighted minimal surface ↝ E

Figure 2.1: Schematic description of our slicing argument

Even though there are no conceptual differences between the case m = 2 and the

general case, the algebra becomes significantly more involved in the latter setting. There-

fore, we include the computation for m = 2 separately to highlight the most important

analytic ideas.

As in the case m = 1 we start with constructing a stable minimal surface Σ1 in

Mn−2 ×T2, cf. Appendix A. The hypersurface Σ1 is smooth since n ≤ 7. On Σ1 we have

for every smooth test function f ∈ C∞(Σ1)

0 ≤ −∫
Σ1

(f∆Σ1f +RicN(ν1, ν1)f
2
+ ∣AΣ1 ∣

2f2).

It is well-known, see for instance [49, Theorem 1], that such an inequality leads to the

existence of a first eigenfunction u1 of the stability operator satisfying

∆Σ1u1 = −λ1u1 − ∣AΣ1 ∣
2u1 −RicN(ν1, ν1)u1

for some eigenvalue λ1 ≥ 0. For the sake of completeness, we include a proof below:

Lemma 2.2.1. Let Σ be a closed manifold, and let ϕ be a smooth function on Σ. Suppose
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that

0 ≤ ∫
Σ
(∣∇f ∣2 + ϕf2)dµ

for all smooth test functions f ∈ C∞(Σ1). Then there exists a smooth, strictly positive

function u solving the equation

∆u = ϕu + λu

for some λ ≥ 0.

Proof. Since ∫Σ(∣∇f ∣
2+ϕf2)dµ is bounded from below, we can consider the correspond-

ing variational problem

inf {∫
Σ
(∣∇f ∣2 + ϕf2)dµ ∣ f ∈W 1,2

(Σ), ∥f∥L2(Σ) = 1} .

Let {ui} be a minimizing sequence with ∥ui∥L2(Σ) = 1 and

∫
Σ
(∣∇ui∣

2
+ ϕu2i )dµ→ λ

for some constant λ ≥ 0. Since Σ is compact, ϕ is bounded, and therefore ui is uniformly

bounded in W 1,2(Σ). This implies that ui is subsequently converging strongly in L2(Σ)

to some function u by Rellich-Kondrachov’s theorem, and weakly inW 1,2(Σ) by Banach-

Alaoglu’s theorem together with the reflexivity of the space W 1,2(Σ). Due to the strong

convergence in L2(Σ) and the normalization ∥ui∥L2(Σ) = 1, we obtain that ∥u∥L2(Σ) = 1.

Due to the weak convergence inW 1,2(Σ) and the weak lower semicontinuity of ∥⋅∥W 1,2(Σ),

we find

∫
Σ
(∣∇u∣2 + ϕu2)dµ = λ.

Hence u is indeed a minimizer and therefore satisfies the corresponding Euler-Lagrange

equation ∆u = ϕu + λu. By standard elliptic theory, u is smooth.
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Next, observe that ∣u∣ also lies in W 1,2(Σ) and satisfies ∥∣u∣∥L2(Σ) = 1. Hence, ∣u∣ is

a valid competitor of the above variational problem. Since, ∫Σ(∣∇∣u∣∣
2 + f ∣u∣2)dV = λ,

the function ∣u∣ is also a minimizer of the variational problem. Thus, ∣u∣ solves the

corresponding Euler-Lagrange equation and is smooth by elliptic regularity. Therefore,

u must have vanishing normal derivative on the boundary of the set Σ≥ ∶= {x ∈ Σ ∶ u(x) >

0}. Note that Σ≥ is with out loss of generality non-empty since we may replace u by

−u. Applying Hopf’s Lemma to Σ≥ we deduce that Σ≥ = Σ, i.e. u must be non-negative.

Using the strong maximum principle, u is in fact strictly positive.

Resuming with the proof of Theorem A for m = 2, we consider on Σ1 the weighted

area functional

H
n−2
u1
(Σ) = ∫

Σ
u1dµ.

Minimizing Hn−2
u in a non-trivial homology class of Σ1 leads to stable weighted minimal

hypersurface Σ2 ⊂ Σ1 of dimension n−2. Again, we refer to Appendix A.3 to justify the

existence of Σ2. By the first variation formula, Corollary 2.1.6, we have

HΣ2 = −∇ν1u1

where HΣ2 is the mean curvature of Σ2 ⊂ Σ1 with respect to the unit normal ν2. By the

second variation formula, Proposition 2.1.7, we have for every test function f ∈ C∞(Σ2)

0 ≤ − ∫
Σ2

u1 (f∆Σ2f + ∣AΣ2 ∣
2f2 +RicΣ1(ν2, ν2)f

2)dµ

− ∫
Σ2

u1 (−f
2
(∇

2
Σ1
u1)(ν2, ν2) + ⟨∇Σ2f,∇Σ2u1⟩f)dµ

where AΣ2 is the second fundamental form of Σ2 ⊂ Σ1, and RicΣ1 is the Ricci curvature

of Σ1. Next, we would like to make use of u1 satisfying the eigenvalue equation ∆Σ1u1 =

−λ1u1 − ∣AΣ1 ∣
2u1 −RicN(ν1, ν1)u1. Therefore, we insert the text function f = u−11 which
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yields

0 ≤ − ∫
Σ2

(u−11 (−u
−1
1 ∆Σ2u1 + ∣∇Σ2 logu1∣

2)dµ

− ∫
Σ2

(∣AΣ2 ∣
2
+RicΣ1(ν2, ν2) − u

−1
1 (∇

2
Σ1
u1)(ν2, ν2))dµ.

By choosing f = u−11 that the factors in front of the ∆Σ2u1 and (∇2
Σ2
u1)(ν2, ν2) terms

coincide. With the help of the first variation formula, this allows us to compute

∆Σ2u1 + (∇
2
Σ1
u1)(ν2, ν2) =∆Σ1u1 −HΣ2∇ν2u1 =∆Σ1u1 + u

−1
1 (∇

Σ1
ν2 u1)

2.

Thus, using the eigenvalue equation for u1 and estimating ∣∇Σ1u1∣
2 ≥ (∇ν2u1)

2, we

obtain

0 ≤ −∫
Σ2

(u−11 (∣AΣ1 ∣
2
+RicN(ν1, ν1) + ∣∇Σ2 logu1∣

2
+ ∣AΣ2 ∣

2
+RicΣ1(ν2, ν2)))dµ

Next, we would like to replace RicΣ1(ν2, ν2) with a curvature term of Σ0 = N
n =Mn−2×

T2. To do so, we use the Gauss equations which state

RicΣ1(ν2, ν2) = RicN(ν2, ν2) − secN(ν1, ν2) − (AΣ1(ν2, ν2))
2.

Hence

0 ≤ −∫
Σ2

u−11 (RicN(ν1, ν1) +RicN(ν2, ν2) − secN(ν1, ν2))dµ = −∫
Σ2

u−11 C2(ν1, ν2)dµ

which implies that C2 cannot be strictly positive on Nn. This finishes the proof of

Theorem A for m = 2.

We would highlight that m-intermediate curvature is up to some extrinsic curvature

terms just the sum of Ricci curvature terms coming from a stable slicing. In other

words, m-intermediate curvature is the natural notion of curvature associated to stable

weighted slicings.
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2.3 The general case

For arbitrary m, we use the topology of the manifold Nn =Mn−m × Tm to construct a

stable weighted slicing Σm ⊂ Σm−1 ⊂ ⋅ ⋅ ⋅ ⊂ Σ1 ⊂ Σ0 = N
n, cf. Figure 2.1 and Appendix

A.3. After a tedious (but otherwise to m = 2 similar) computation and some delicate

gradient estimates, cf. Appendix A.1, the stability inequality of the u1 ⋅. . .⋅um−1-weighted

minimal surface Σm ⊂ Σm−1 yields:

Lemma 2.3.1 (Stability inequality for weighted slicings). Let Σm ⊂ Σm−1 ⊂ ⋅ ⋅ ⋅ ⊂ Σ1 ⊂

Σ0 = N
n be a stable weighted slicing of order m. Then we have

0− ≤ ∫
Σm

(Cm(ν1, . . . , νm) +
m

∑
k=1
Vk)dµ

where Vk are extrinsic curvature terms given by

V1 =∣AΣ1 ∣
2
+

m

∑
p=2

n

∑
q=p+1

(AΣ1(ep, ep)AΣ1(eq, eq) −AΣ1(ep, eq)
2) ,

Vk =∣AΣk
∣
2
− (

1

2
−

1

2(k − 1)
)H2

Σk

+
m

∑
p=k+1

n

∑
q=p+1

(AΣk
(ep, ep)AΣk

(eq, eq) −AΣk
(ep, eq)

2) for 2 ≤ k ≤m − 1,

Vm =∣AΣm ∣
2
− (

1

2
−

1

2(m − 1)
)H2

Σm
.

For m = 1 and m = 2, we saw in the previous section that ∑m
k=1 Vk ≥ 0 which implied

that Nn =Mn−m ×Tm does not admit a metric with positive m-intermediate curvature.

Let us analyze the general case next:

Lemma 2.3.2. Suppose n(m − 2) ≤m2 − 2. Then ∑m
k=1 Vk ≥ 2.

This estimate uses different ideas for the three different cases k = 1, 2 ≤ k ≤m−1 and

k =m. The main philosophy of our argument is that we have good second fundamental
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form terms competing against bad mean curvature terms. Since for a k-dimensional

hypersurface the estimate ∣A∣2 ≥ 1
kH

2 holds, we should not expect that the good second

fundamental form terms can control the bad mean curvature terms in arbitrary large

dimensions. Due to the technical nature, the proof of Lemma 2.3.2 will be carried out

in Appendix A.2.

Lemma 2.3.3 (Algebraic Lemma). Let n ≤ 7. Then n(m − 2) ≤m2 − 2.

We remark that for m = 1,m = 2,m = n − 2,m = n − 1 the dimension n can be

arbitrarily large. On the other side for m = 3, we obtain n(3 − 2) ≤ 32 − 2, i.e. n ≤ 7.

Similarly, we also obtain n ≤ 7 for m = 4 and m = 5. This dimensional constraint is

sharp as demonstrated by K. Xu [119] who constructed counterexamples to Theorem A

in dimensions n(m− 2) >m2 − 2. Moreover, we observe that the dimensional constraint

is symmetric in the sense that n(m − 2) ≤m2 − 2 is equivalent to n(m̃ − 2) ≤ m̃2 − 2 for

m̃ = n −m.
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Chapter 3

Spacetime harmonic functions

This chapter is based upon joint work with Demetre Kazaras, Marcus Khuri [64] (the

mass formula), and Yiyue Zhang [72] (the case of equality).

In Dimension 3 there is a surprisingly elegant proof of the Geroch conjecture due

to D. Stern [113]. While R. Schoen and S.-T. Yau [106] exploit the existence of non-

trivial homology classes in H2(T3;Z) by constructing area-minimizing surfaces, D. Stern

considers the dual problem of minimizing energy of maps T3 to S1. This leads to the

existence of a harmonic map u ∶ T3 → S1 where we assume for simplicity that ∇u ≠ 01.

The harmonicity of u implies the Bochner identity

1

2
∆∣∇u∣2 = Ric(∇u,∇u) + ∣∇2u∣2.

Now the crucial observation is that the Ricci curvature term can be expressed as

Ric(ν, ν)∣∇u∣2 where ν = ∇u
∣∇u∣ is the unit normal to the level-sets Σt of u. Hence, we

can use the contracted Gauss equations 2Ric(ν, ν) = R − 2K +H2 − ∣A∣2 where K is the

Gaussian curvature, H the mean curvature and A the second fundamental form of the

level sets Σt = {u = t}. This trick has been previously been known in the physics liter-

ature where it found several applications due to J. Jezierski, J. Kijowski and P. Waluk

[84, 85]. Expressing the second fundamental form A as A∣∇u∣ = ∇2u∣TΣ⊗TΣ, and inte-

1For a rigorous proof see Section 3.3.
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grating Bochner’s formula and the Gauss equations yields

0 = 2∫
T3

∆∣∇u∣ = ∫
T3
(
∣∇2u∣2

∣∇u∣
+R∣∇u∣)dµ − 2∫

T3
K ∣∇u∣dµ. (3.1)

Since T3 has no spherical classes, the maximum principle implies that the level sets

Σt = {u = t} cannot be spherical. Hence, the coarea formula yields

−2∫
T3
K ∣∇u∣ = −2∫

S1
∫
Σt

KdA ≥ 0.

Therefore, T3 cannot admit a metric of positive scalar curvature.

Besides harmonic maps, level-sets also arise naturally in the study of geometric

flows. For instance G. Huisken and T. Ilmanen proved in [79] the Riemannian Penrose

inequality for a single black hole via a level-set formulation of inverse mean curvature

flow.

In this section we introduce several new differential equation and demonstrate how

we can use the level-sets of their solutions to obtain powerful applications in both math-

ematical relativity and Riemannian geometry. In particular, we use spacetime harmonic

functions to prove Theorem B which implies the spacetime positive mass theorem.

3.1 Initial data sets

Asymptotically flat initial data sets (M3, g, k) naturally arise in General Relativity

where they are used to model isolated gravitational systems such as stars, galaxies and

black holes. Here (M3, g) is a complete non-compact Riemannian manifold where g ap-

proaches the Euclidean metric δ at infinity and k is a symmetric two-tensor approaching

zero at infinity.

More precisely, we say a triple (M3, g, k) is an asymptotically flat initial data set

of order τ ∈ (12 ,1] if (M3, g) contains a compact set C ⊂ M such that we can write
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M ∖ C = ∪ℓ0ℓ=1M
ℓ
end where the ends M ℓ

end are pairwise disjoint and diffeomorphic to the

complement of a ball R3∖B1. Moreover, we require that there exists a coordinate system

in each end satisfying

∣∂l(gij − δij)(x)∣ =O(∣x∣
−τ−l
), l = 0,1,2,

∣∂lkij(x)∣ =O(∣x∣
−τ−1−l

), l = 0,1.

(3.2)

Here O(⋅) is the standard Landau notation.

In Einstein’s theory of gravity, Lorentzian manifolds (M̄4, ḡ) are used to model

spacetimes, and initial data sets (M3, g, k) above arise as spacelike slices inside (M̄4, ḡ).

Here g is metric induced from ḡ, and k the second fundamental form. According to

general relativity, matter curves spacetime and the curvature of spacetime determines

the motions of matter. Mathematically, this corresponds to (M̄4, ḡ) solving the famous

Einstein equations R̄ic − 1
2R̄ḡ = 8πT where T is the stress energy tensor. Since geom-

etry equals physics, making physically reasonable assumptions on T leads to geometric

assumptions on (M̄4, ḡ) which translate to geometric assumptions on (M3, g, k) via the

Gauss-Codazzi equations. In particular, we will assume that our spacetimes satisfy the

dominant energy condition which physically amounts to us not being able to observe

non-negative mass densities. Mathematically, this translates on each initial data set to

the condition

µ ≥ ∣J ∣,

where µ is the energy density, and J the momentum density J defined by

µ =
1

2
(R+ trg k

2
− ∣k∣2), J = divg(k − trg kg).

Moreover, we define the ADM energy E and linear momentum P by

E = lim
r→∞

1

16π
∫
Sr
∑
i

(gij,i − gii,j)υ
jdµ,

Pi = lim
r→∞

1

8π
∫
Sr
(kij − trg kgij)υ

jdµ

(3.3)
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where υ is the outer unit normal to the sphere Sr and dµ is its area element. Furthermore,

we set m =
√
E2 − ∣P ∣2. In order to ensure that E and P are well-defined in equation

(3.3), we impose additionally µ,J ∈ L1(M).

A fundamental results about initial data sets is the positive mass theorem (PMT):

Theorem 3.1.1. Suppose (M,g, k) is a complete asymptotically flat initial data set

satisfying the dominant energy condition (DEC) µ ≥ ∣J ∣. Then E ≥ ∣P ∣.

This result has been first established by R. Schoen and S.-T. Yau in [109] using the

Jang equation and by E. Witten in [118] using spinors. Further proofs have been given

in [46, 47, 64], and the important special case k = 0 has been treated in [2, 18, 70, 79, 92,

96, 108]. We refer to [64] for a more detailed historical overview and to the monograph

[90] for an in-depth discussion of mathematical relativity.

In this chapter we will analyze how so-called spacetime harmonic functions, i.e. func-

tions solving the PDE ∆u = − trg k∣∇u∣ can be used to study initial data sets (M,g, k).

This will not just allow us to obtain a more elementary proof of the spacetime PMT,

but it also allows us to classify the initial data sets satisfying the identity E = ∣P ∣.

3.2 Further applications

Before proceeding with an in-depth study of the spacetime positive mass theorem, we

first discuss several other applications of spacetime harmonic functions. Surprisingly,

there is a whole zoo of applications including purely geometric statements and physically

motivated results.
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3.2.1 Comparison geometry

Given a Riemannian manifold (M,g) we can artificially construct an initial data set

(M,g, k) by setting k = fg for a suitably chosen function f . Thus, we can use spacetime

harmonic functions in a purely Riemannian context.

Similarly, other techniques from GR can be applied to geometric problems: In case

k = fg, MOTS (marginally outer trapped surfaces) are called µ-bubbles, and the Dirac

operator is called Callias operator. Both µ-bubbles and the Callias operator led to many

important geometric results, cf. [31, 55, 91, 103, 121] and [25, 26, 120].

In a joint work with D. Kazaras, M. Khuri and Y. Zhang [65] we used spacetime

harmonic functions to obtain a new proof of Bonnet-Myers’ diameter estimate, cf. The-

orem 2.0.1, including Cheng’s rigidity [30]. Compared to Myers’ original argument using

geodesics, and to Croke-Kleiner’s [40] argument using the distance function, our proof

has the advantage that it also works for open and incomplete manifolds. In the same

paper, we also showed the following result classifying lens spaces:

Theorem 3.2.1. Let (M3, g) be a closed Riemannian manifold with 2-Ricci curvature

at least 4. If Σ2 ⊂M3 is a connected embedded closed surface of positive genus, then

Injn(Σ
2
) ≤

π

4
. (3.4)

If additionally Ric ≥ 2g and equality occurs in (3.4), then the universal cover of (M3, g)

is isometric to the round sphere and Σ2 lifts to the Clifford torus. Moreover, in this case

(M3, g) is isometric to a round sphere or a round lens space.

Here Infn is the normal injectivity radius, and we say that the 2-Ricci curvature is

at least 4 if the sum of any two eigenvalues of the operator Ric is greater or equal than

4.
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Compared to other techniques spacetime harmonic functions excel at describing

complicated rigidity phenomena which we later exploit for the spacetime PMT. Here is

another example from [65]:

Theorem 3.2.2. Let (M3, ∂±M
3, g) be a 3-dimensional Riemannian band with no

spherical classes in H2(M
3;Z). Consider the sign reversed minimal outward mean cur-

vature H0 = −min∂M3 H. If (M3, g) has 2-Ricci curvature at least 4, then H0 > 0 and

the width of the band satisfies

w ∶= dist(∂−M3, ∂+M
3
) ≤ arctan(H0/2). (3.5)

If additionally Ric ≥ 2g and equality is achieved in (3.5), then the universal cover of

(M3, g) is isometric to ([−w
2 ,

w
2 ] ×R

2, gΥ) where

gΥ = dρ
2
+ ϕ2Υ(ρ)dx

2
+ ψ2

Υ(ρ)dy
2, ρ ∈ [−

w

2
,
w

2
] , (x, y) ∈ R2,

and
⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

ϕΥ(ρ) = 2
1−Υ
2 cos1−Υ(ρ + π

4 ) cos
Υ
2 (2ρ)

ψΥ(ρ) = 2
1−Υ
2 sin1−Υ(ρ + π

4 ) cos
Υ
2 (2ρ)

for some Υ ∈ [0,1].

There are counterexamples for the case of equality in case the additional assumption

Ric ≥ 2 is not satisfied [65].

Llarull’s theorem [93] states that if g ≥ gSn and R(g) ≥ R(gSn) = n(n − 1), one must

have g = gSn . Conjecturally, this extremal character of the round metric on Sn is even

more robust: Gromov has suggested [55, Conjecture D] that the open and incomplete

manifold formed by removing finitely many points from the round sphere enjoys the

same property, also see [56, Section 3.9]. We confirm this statement in the next result,

for dimension 3 in the special case of a pair of antipodal points:
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Theorem 3.2.3. Let g be a Riemannian metric on S3 ∖ {N,S} where N,S are the

north and south pole. If g ≥ gS3, then there is a point x ∈ S3 ∖ {N,S} where the scalar

curvature satisfies R(x) ≤ 6. If additionally R ≥ 6, then g agrees with the round metric

gS3.

The proof of both this result and Theorems 3.2.2, 3.2.1 above, are also based on

spacetime harmonic functions.

3.2.2 Existence of black holes

The idea to construct a new symmetric two-tensor and to study the associated spacetime

harmonic functions also works for initial data sets and leads to black hole existence

results. Besides spacetime harmonic functions, the techniques described in Chapter 2

also lead to such as existence results. More precisely, in [66] we showed together with

D. Kazaras, M. Khuri and Y. Zhang:

Theorem 3.2.4. Let 3 ≤ n ≤ 7, and suppose that (Mn, g, k) is an asymptotically flat

n-dimensional initial data set. Assume that there is an n-cube within Mn on which

µ − ∣J ∣ ≥
2nπ2

n + 1

n

∑
i=1

1

ℓ2i
,

where ℓi is the distance between the ith pair of opposite faces of the cube. Then the data

contains a closed properly embedded smooth apparent horizon.

We remark that in view of Penrose’s incompleteness theorem [100], an apparent hori-

zon is contained within the black hole region under physically reasonable assumptions.

Thus, the above statement demonstrates that if sufficiently much matter accumulates

in a fixed region, gravitational collapse must occur and a black hole must have formed.
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However, we note that the Theorem 3.2.4 does not contain information about the loca-

tion of the apparent horizon; in particular the horizon could be both inside or outside

the cube.

3.3 The integral formula

Next, we move on to the foundation of the proof of Theorem B. More precisely, we

compute in this section the central divergence formula for the case where ∇u is non-

vanishing. This allows us to highlight the most important geometric and analytic aspects

of the computation, while the general case is outsourced to Appendix B.3. This integral

formula does not just crucial ingredient of the proof of Theorem B, but also for several

of the results from previous subsection.

Theorem 3.3.1. Let u be a smooth solution of the spacetime Laplace equation ∆u =

− trg k∣∇u∣ with ∇u ≠ 0. Then

div(∇∣∇u∣ + k(∇u, ⋅)) +K ∣∇u∣ =
∣∇̄2u∣2

2∣∇u∣
+ µ∣∇u∣ + ⟨J,∇u⟩ (3.6)

where ∇̄2u = ∇2u+ k∣∇u∣, and where K is the Gaussian curvature of the level-sets Σt of

u.

Before proceeding with the proof, let us comment more on the structure of Equation

(3.6). Note that the right hand side will always be non-negative in case the dominant

energy condition µ ≥ ∣J ∣ is satisfied. This will allows us to deduce geometric and physical

consequences. Moreover, understanding the spacetime Hessian term ∇̄2u will be the key

for proving rigidity statements. After integration we can also control the left hand side

by applying the divergence theorem to the first term, and the coarea formula together

with Gauss-Bonnet’s theorem to the second term. This leads to terms involving the
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Euler characteristic of the level-sets and boundary integral terms depending on the

null expansions θ± = H ± trgΣ k. We will discuss in depth how to control the Euler

characteristic of the level-set in Appendix B.1 and B.2.

Proof. We begin with recalling the standard Bochner identity which states

1

2
∆∣∇u∣2 = ∣∇2u∣2 +Ric(∇u,∇u) + ⟨∇u,∇∆u⟩.

Exploiting that ∇u is non-vanishing, we can rewrite this identity as

∆∣∇u∣ =
1

∣∇u∣
(∣∇

2u∣2 − ∣∇∣∇u∣∣2 +Ric(∇u,∇u) + ⟨∇u,∇∆u⟩). (3.7)

Let us denote with ν = ∇u∣∇u∣ the unit normal to the level-sets of u, and with A,H the

second fundamental form and the mean curvature. We have

A =
1

∣∇u∣
∇

2u, H =
1

∣∇u∣
(∆u −∇ννu).

This leads to

∣∇u∣2(H2
− ∣A∣2) = 2∣∇∣∇u∣∣2 − ∣∇2u∣2 + (∆u)2 − 2∆u∇ννu. (3.8)

Combining the contracted Gauss equations Ric(ν, ν) = 1
2(R+H

2 − ∣A∣2 −2K) with equa-

tions (3.7) and (3.8), we obtain

∆∣∇u∣ =
1

2∣∇u∣
(∣∇

2u∣2 + ∣∇u∣2(R−2K) + 2⟨∇u,∇∆u⟩ + (∆u)2 − 2∆u∇ννu).

Next, we introduce the notation ∇̄2u = ∇2u + k∣∇u∣ which yields

∆∣∇u∣ =
1

∣∇u∣
(∣∇̄

2u∣2 + ∣∇u∣2(R−2K) + 2⟨∇u,∇∆u⟩ + (∆u)2 − 2∆u∇ννu)

+
1

2∣∇u∣
(−2∇ijukij ∣∇u∣ − ∣k∣

2
∣∇u∣2).
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Inserting ∆u = − trg k∣∇u∣ leads to

∆∣∇u∣ =
1

2∣∇u∣
(∣∇̄

2u∣2 + ∣∇u∣2(R−2K) + 2⟨∇u,∇(trg k∣∇u∣)⟩ + trg k
2
∣∇u∣2)

+
1

2∣∇u∣
(−2 trg k∣∇u∣∇ννu − 2∇ijukij ∣∇u∣ − ∣k∣

2
∣∇u∣2).

Observe that

⟨∇u,∇∣∇u∣⟩ = ∣∇u∣∇ννu.

Hence the above term simplifies to

∆∣∇u∣ =
1

2∣∇u∣
(∣∇̄

2u∣2 + 2∣∇u∣2(µ −K) + 2∣∇u∣⟨∇u,∇ trg k⟩ − 2∇ijukij ∣∇u∣).

Finally, we use the identity

−∇ijukij = −div(k(∇u, ⋅)) + ∇iu∇jkij

to finish the proof.

3.3.1 Technical difficulties

We would like to point out several technical challenges which are present for spacetime

harmonic functions but not for harmonic functions:

• The spacetime Laplace equation ∆u = − trg k∣∇u∣ is non-linear which complicates

the existence theory. This is especially an issue asymptotically hyperbolic manifolds

[17]where trg k does not decay to zero at ∞.

• In general, the solution u will not be smooth which leads to some subtleties. For

instance, Sard’s theorem needs C3-regularity.

• To be able to exploit Gauss-Bonnet’s theorem we need to control the topology of

the level-sets of u. For the Riemannian positive mass theorem one can pass to the
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exterior region [79, Lemma 4.1] and then solve the spacetime Laplace equation

with Neumann boundary data. However, both of these proof steps break down

in the spacetime setting and we refer to Appendix B.1 and B.2 for a detailed

discussion.

However,the non-linearity is still mild and the spacetime Laplace equation is signif-

icantly better behaved than comparable PDEs such as Jang’s equation. We will exploit

this in Section 4.

3.4 Why spacetime harmonic functions?

In this section we discuss where spacetime harmonic functions come from and explain

several special properties.

3.4.1 Spacetime harmonic functions in Minkowski space

On any manifold, the perhaps most natural differential operator is the Laplacian. Now

suppose (M,g, k) is contained in Minkowski space (R3,1, ḡ). Within Minkowski space,

harmonic functions are given by u = ax + by + cz + dt where a, b, c, d ∈ R. Restricting u

onto (M,g, k) leads to the equation

∆u = −∇̄2
NNu − trg kN(u) = − trg kN(u).

where N is a unit normal of (M,g, k) ⊂ R3,1, and k the second fundamental form with

respect to N . However, N(u) does not solely depend on the initial data (M,g, k). In

case u is an optical function, i.e. ∇̄u is null, we have the additional identity N(u) = ∣∇u∣.

Hence, we recover the spacetime Laplace equation ∆u = − trg k∣∇u∣.
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t

x, y, z

Figure 3.1: Given an initial data set (M,g, k) contained in Minkowski space,

the level-sets Σt of a spacetime harmonic functions are given by intersections with

null-planes. We will use a similar idea to construct spacetime IMCF in Chapter

4.

3.4.2 Comparison with other techniques

Perhaps surprisingly, spacetime harmonic functions are closely related to many other

techniques used to study manifolds with non-negative scalar curvature (or more gener-

ally, initial data sets satisfying the dominant energy condition).

The idea to apply Gauss-Bonnet’s theorem in combination with the contracted

Gauss-equations lies at the heart of the minimal surface technique, though in this case

these theorems are only applied to a single surface instead of a whole family of surfaces.

Moreover, there is a connection between spacetime harmonic functions and inverse

mean curvature flow. In fact, Theorem C generalizes the integral formula from the

34



previous section and the famous Hawking mass monotonicity formula for IMCF. We

will discuss the precise relationship in more detail in Section 4.

Furthermore, Witten spinors2 give in a natural way rise to a vector field. If this

vector field is integrable, the corresponding function will be spacetime harmonic. We

refer to [16, Section 5] for details.

Finally, instead of choosing the harmonic function in Minkowski space to be null in

the previous subsection, we could have also chosen it be timelike, i.e. u = t. In this case

N(u) =
√
1 + ∣∇u∣2, and we obtain the PDE ∆u = − trg k∣∇u∣ which has been referred to

in the literature as generalized Jang’s equation. Again, we refer to [16, Section 5] for

details.

3.5 The positive mass theorem

Given the integral formula

2div(∇∣∇u∣ + k(∇u, ⋅)) + 2K ∣∇u∣ =
∣∇̄2u∣2

∣∇u∣
+ 2µ∣∇u∣ + 2⟨J,∇u⟩. (3.9)

we are now almost in the position to prove Theorem B. The remaining subtleties are

to control the level-set topology which is outsourced to Appendix B.1 and B.2, and to

establish an existence theory for spacetime harmonic functions which is the subject of the

next subsection. Assuming both these results are established, we will now demonstrate

how formula (4.6) leads to the spacetime PMT.

2The spinors used by Witten [118] in his proof of the spacetime PMT. Roughly speaking, they

are just the usual Dirac spinors with respect to a “spacetime” tangent bundle.
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3.5.1 The asymptotically flat case

Now let (M3, g, k) be an asymptotically flat manifold satisfying the dominant energy

condition µ ≥ ∣J ∣. Let u be the spacetime harmonic functions whose gradient is asymp-

totic to the unit vector x⃗ at ∞. The existence of u is guaranteed by Theorem 3.6.2

established in the next subsection. For simplicity we assume M3 = R3 and that ∇u is

non-vanishing everywhere - both general cases are discussed in detail in Appendix B.1

and B.3.

Integrating the formula (4.6) we obtain with the help of Gauss-Bonnet’s theorem

and the divergence theorem the equation

E + Px⃗ =
1

16π
∫
M3
(
∣∇̄2u∣2

∣∇u∣
+ 2µ∣∇u∣ + 2⟨J,∇u⟩)dµ.

The computation of the boundary term is slightly tedious and therefore outsourced to

Appendix B.4.

Without loss of generality we may assume that P ≠ 0. Choosing u to be asymptotic

to x⃗ = − P
∣P ∣ , the mass formula of Theorem B follows. It remains to establish the case of

equality.

3.5.2 The case of equality

We assume that E = ∣P ∣, i.e. (M,g, k) has vanishing mass m =
√
E2 − ∣P ∣2. Our goal is to

show that (M,g) embeds isometrically into Minkowski space with second fundamental

form k. This has already been established previously by R. Beig, P. Chrusciel [10],

L.-H. Huang, D. Lee [77], and together with D. Kazaras and M. Khuri in [64] under

additionally imposed regularity and decay assumptions for g, k, µ, J .

Our proof will proceed in four steps:
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• We show that the pair (g, k) satisfy most of the Gauss and Codazzi equations

using the mass formula of Theorem B.

• The remaining Gauss and Codazzi terms have the form Aαβ ∶= ∇3kαβ − ∇αkβ3

where eα, eβ are tangent to the level-sets of u. We show that ∇Σ
αβF = ∣∇u∣

−2Aαβ

for some function F where ∇Σ
αβ is the level-set Hessian.

• We have ∆ΣF = ∣∇u∣−2µ ≥ 0. In combination with the asymptotics of g, k, Liou-

ville’s theorem yields that the Hessian of F vanishes.

• Since all the Gauss and Codazzi equations are satisfied, the Lorentzian version

of the fundamental theorem of hypersurfaces implies that (M,g) isometrically

embeds in Minkowski space with second fundamental form k.

Let u be the spacetime harmonic function whose gradient is asymptotic to − P
∣P ∣ .

From mass formula we obtain

0 = E − ∣P ∣ =
1

16π
∫
M3
(
∣∇̄2u∣2

∣∇u∣
+ 2µ∣∇u∣ + 2⟨J,∇u⟩)dµ.

Hence ∇̄2u = 0 and µ∣∇u∣ + ⟨J,∇u⟩ = 0.3 This yields 6 equations for u and 3 equations

for J .4 Having so much information at our disposal makes the level-set technique a

powerful tool to study rigidity questions, and we would like to highlight that there is no

spinor or minimal surface proof of the case of equality.

Conceptually, in the case of equality, the minimal surface technique only gives in-

formation of the ambient manifold in a neighborhood of a hypersurface. Spinors do

3In [64] we have addressed the case of equality under the additional assumption that E = ∣P ∣ = 0.

In this case we have not just one, but three functions whose spacetime Hessian ∇̄2 vanishes.

4The normal component of J (with respect to the level-sets of u) equals −µ while the tangential

components vanish since µ ≥ ∣J ∣ by assumption.

37



yield information about the entire manifold but for level-sets we have an additional tool

available:

Lemma 3.5.1. Let (M,g, k) be an initial data set with E = ∣P ∣, and let u be the space-

time harmonic functions asymptotic to − P
∣P ∣ . Then the level-sets Σt of u are flat, i.e.

their Gaussian curvature K is vanishing.

Proof. Since µ∣∇u∣ = −⟨J,∇u⟩, Bochner’s identity in combination with the contracted

Gauss equation yield

∆∣∇u∣ =
1

∣∇u∣
(−K ∣∇u∣ + ∣k∣2∣∇u∣2 − ⟨div k,∇u⟩∣∇u∣).

On the other side, we have by the spacetime Hessian equation ∇2u = −k∣∇u∣

∆∣∇u∣ = ∣k∣2∣∇u∣ − ⟨div k,∇u⟩

which finishes the proof.

Next, let us introduce the notation e3 = ν =
∇u
∣∇u∣ . For a fixed level set Σ, we can

express the level set metric by dx21+dx
2
2 which is possible since Σ is flat. We let e1 = ∂x1 ,

e2 = ∂x2 , and then we extend e1, e2 to the entire manifold such that {e1, e2, e3} forms

an orthonormal frame. We use Greek letter α, β, γ to denote tangential vectors e1, e2,

and Roman letters i, j, k, l to denote arbitrary vectors e1, e2, e3, and as usual we employ

Einstein’s summation convention.

We define R̄ijkl = Rijkl + kilkjk − kikkjl and say that (M,g, k) satisfies the Gauss

and Codazzi equations if R̄ijkl = 0 and ∇ikjk − ∇jkik = 0 for all i, j, k, l. Here we use

the notation Rl
ijkel = [∇i,∇j]ek −∇[ei,ej]ek as well as Rijkl = ⟨[∇i,∇j]ek −∇[ei,ej]ek, el⟩.

The reason why we are interested in the Gauss and Codazzi equations is the Lorentzian

version of the fundamental theorem of hypersurfaces, also see [8, Corollary 7.3].
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Proposition 3.5.2 (Fundamental theorem of hypersurfaces). Suppose (M,g, k) satisfies

the Gauss and Codazzi equations, and assume that M is diffeomorphic to R3. Then

(M,g, k) arises as a subset of Minkowski spacetime.

We provide a proof of the fundamental theorem in Appendix B.5. In the next two

lemma we demonstrate that the majority of the Gauss and Codazzi equations are already

satisfied.

Lemma 3.5.3. We have

0 =∇1k23 −∇2k13,

0 =∇αkββ −∇βkαβ,

0 =∇αk33 −∇3kα3.

Proof. The first identity follows from

∇1k23 −∇2k13 = −∇1
∇2

23u

∣∇u∣
+ ∇2

∇2
13u

∣∇u∣
= R2133 = 0.

Observe that µ∣∇u∣ = −⟨J,∇u⟩ together with the DEC µ ≥ ∣J ∣ yields Jα = 0. This implies

∇βkαβ −∇αkββ +∇3kα3 −∇αk33 = 0.

Thus, we have

∇3kα3 −∇αk33 = −∇3
∇2

α3u

∣∇u∣
+ ∇α

∇2
33u

∣∇u∣
= Rα333 = 0

which implies the last two identities.

Lemma 3.5.4. We have

R̄1212 =0,

R̄αβ3α =0,

R̄α33β =Aαβ.

where Aαβ ∶= ∇3kαβ −∇αkβ3.
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Proof. Using the Gauss equations we obtain

R1212 = 2K + h11h22 − h
2
12.

Thus, the first identity follows from K = 0 and h = −k∣TΣ. Next, we compute

Rαβ3α =∣∇u∣
−1
(∇α∇β −∇β∇α)∇αu

= − ∣∇u∣−1∇α(kαβ ∣∇u∣) + ∣∇u∣
−1
∇β(kαα∣∇u∣)

= − ∇αkαβ +∇βkαβ + kα3kαβ − kβ3kαα.

Using the spacetime Hessian equation ∇2u = −k∣∇u∣, we obtain

R̄αβα3 = Rαβα3 + kα3kβα − kααkβ3

= ∇αkαβ −∇βkαα = 0,

where the last equality follows from the previous lemma. Finally, the third identity

follows in the same spirit as the second one.

Next, we show that Aαβ is vanishing. This will be achieved by PDE methods in

combination with the asymptotics of g, k.

Lemma 3.5.5. On each level set, there exists a twice differentiable function F such that

∇
Σ
αβF = ∣∇u∣

−2
Aαβ.

Here ∇Σ
αβ denotes the leve-set Hessian.

For the proof of this lemma we need to additionally assume that g ∈ C3(M) and

k ∈ C2(M). However, we provide an alternative approach to the spacetime PMT rigidity

in Appendix B.6 which is based on a Killing development and the study of certain pp-

wave spacetimes. This approach does not require such additional regularity of g and k

and therefore establishes the case of equality of Theorem B in full generality.
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Proof. We first show that ∂2(∣∇u∣−2A11) = ∂1(∣∇u∣
−2A12) and ∂1(∣∇u∣−2A22) = ∂2(∣∇u∣

−2A12).

Since the level sets are flat, we can choose {e1, e2} such that ⟨∇eαeβ, eγ⟩ = 0. Because

⟨∇eαe3, eβ⟩ = −kαβ and applying Lemma 3.5.3, we obtain

∂2A11 =∂2(∇3k11 −∇1k13)

=∇2(∇3k11 −∇1k13) − k
α
2∇αk11 + 2k21∇3k31

− k21∇3k13 − k21∇1k33 + k
α
2∇1k1α

=∇2(∇3k11 −∇1k13).

Therefore, we have

∂2A11 − ∂1A12

=∇2(∇3k11 −∇1k13) − ∇1(∇3k12 −∇2k13)

=∇3∇2k11 − 2R231ik1i −∇2∇1k13 − (∇3∇1k12 −R
i
131iki2 −R132ik1i)

+ (∇2∇1k13 −R121iki3 −R123ik1i)

=∇3∇2k11 −∇3∇1k12 −R2312k12 −R2313k13 +R1312k22

+R1313k23 −R1212k23 −R1213k33

Applying Lemma 3.5.4 to replace the curvature terms in the last two lanes, we obtain

∂2A11 − ∂1A12

=∇3∇2k11 −∇3∇1k12 − (k12k23 − k22k13)k12 − (k12k33 − k23k13 −∇3k12 +∇1k23)k13

+ (k11k23 − k12k13)k22 + (k11k33 − k
2
13 −∇3k11 +∇1k13)k23

− (k11k22 − k
2
12)k23 − (k11k23 − k13k12)k33

=∇3∇2k11 −∇3∇1k12 − (−∇3k12 +∇1k23)k13 + (−∇3k11 +∇1k13)k23,

(3.10)
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Due to the spacetime Hessian equation ∇2u = −k∣∇u∣, we have ⟨∇3eα, e3⟩ = −⟨∇3e3, eα⟩ =

kα3. Combining this identity with Lemma 3.5.3, we deduce

∇3∇2k11 −∇3∇1k12

=∂3(∇2k11) − ∇∇3e2k11 − 2∇2k(∇3e1, e1)

− ∂3(∇1k12) + ∇∇3e1k12 +∇1k(∇3e1, e2) + ∇1k(e1,∇3e2)

= − ⟨e1,∇3e2⟩∇1k11 − k23∇3k11 − 2⟨∇3e1, e2⟩∇2k21 − 2k13∇2k31 + ⟨e2,∇3e1⟩∇2k12

+ k13∇3k12 + ⟨e2,∇3e1⟩∇1k22 + k13∇1k32 + ⟨e1,∇3e2⟩∇1k11 + k23∇1k13

=k23(∇1k13 −∇3k11) − k13(∇1k32 −∇3k12).

(3.11)

Here we also used that ∂3(∇2k11−∇1k12) = 0 by Lemma 3.5.3. Combing Equation (3.10)

and (3.11) yields

∂2A11 − ∂1A12 = 2A12k13 − 2A11k23.

Moreover, we have ∂α∣∇u∣ = −kα3∣∇u∣ which implies

∂2(∣∇u∣
−2
A11) − ∂1(∣∇u∣

−2
A12)

=∣∇u∣−2(∂2A11 − ∂1A12) +A11∂2∣∇u∣
−2
−A12∂1∣∇u∣

−2

=∣∇u∣−2(2A12k13 − 2A11k23) + 2A11∣∇u∣
−2k23 − 2A12∣∇u∣

−2k13

=0.

Therefore, ∣∇u∣−2A11dx1 + ∣∇u∣
−2A12dx2 is closed, where dx1 and dx2 are the dual 1-

forms of e1 and e2. Since the topology of a level set is trivial, there exists on each

level set a function which we suggestively denote by F1 such that dF1 = ∣∇u∣
−2A11dx1 +

∣∇u∣−2A12dx2. Replacing the roles of e1 and e2, there exists another function F2 such
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that dF2 = ∣∇u∣
−2A12dx1 + ∣∇u∣

−2A22dx2. Next, we compute

d(F1dx1 + F2dx2) =
∂F1

∂x2
dx2 ∧ dx1 +

∂F2

∂x1
dx1 ∧ dx2

=(∣∇u∣−2A12 − ∣∇u∣
−2
A12)dx2 ∧ dx1 = 0.

Thus there exists a function F with dF = F1dx1 + F2dx2.

Lemma 3.5.6. On each level set, F is a linear function with respect to x1 and x2, i.e.

∇2
ΣF = 0.

Proof. First observe that F is superharmonic on each level set, i.e.

∆ΣF ≥ 0

which follows immediately from

∆ΣF = ∣∇u∣−2(A11 +A22) = −∣∇u∣
−2J3 = ∣∇u∣

−2µ ≥ 0.

Since ∂lkij = O(∣x∣−τ−l−1), l = 0,1, for some τ > 1
2 , and ∣∇u∣ = 1 +O(∣x∣−τ), we obtain

Fαβ = ∇
Σ
αβF = ∣∇u∣

−2
(∇3kαβ −∇αkβ3) = O(∣x∣

−τ−2
).

Integrating ∇2
ΣF twice over the level set Σ, we see that F = L +B, where L is a linear

function with respect to {x1, x2}, and B is a bounded function. Combining this with our

previous observation yields ∆ΣB = ∆ΣF ≥ 0. Thus, B is constant in view of Liouville’s

theorem.

Proof of the rigidity part of Theorem B. Since ∇2
ΣF = 0, (M,g, k) satisfies the Gauss

and Codazzi equations which completes the proof in view of the Proposition 3.5.2.
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3.5.3 The PMT in the hyperbolic and other settings

Finally, let us comment on the adjustments needed for the asymptotically hyperbolic

case [17]. In Theorem B the initial data set was assumed to be asymptotically flat

which means that g approaches the Euclidean metric and infinity, and k goes to zero.

Also Physically motivated areasymptotically hyperboloidal initial data sets. In this case

g approaches the hyperbolic metric and k approaches g at infinity. The model case is

the unit sphere {(x, y, z, t) ∣ x2 + y2 + z2 − t2 = −1} in Minkowski space. The induced

metric g is the hyperbolic metric

g =
1

1 + r2
dr2 + r2gS2

where r =
√
x2 + y2 + z2, and gS2 is the round metric on S2. Moreover, the second

fundamental form k equals g, and R(g) = −6. In general, one assumes again the dominant

energy condition µ ≥ ∣J ∣, and at ∞ one can associate a mass to (M,g, k) which is well-

defined. There is also a positive mass theorem in this setting with a similar statement

as in Theorem B. This has been first established for special asymptotics by X. Wang

using spinors [117] and later by P. Chrusciel, M. Herzlich and E. Delay [42, 41]. There

are are also proofs by A. Sakovich using the Jang equation, M. Anderson, M. Cai

and G. Galloway using isoperimetric surfaces [4] and the rigidity in case of X. Wang’s

asymptotics has been addressed by L.H. Huang, H.C. Jang and D. Martin in [76]. The

most general result concerning the hyperbolic PMT (in Dimension 3) is obtained in a

joint paper with H. Bray, D. Kazaras, M. Khuri and Y. Zhang [17].

The same motivation for studying the spacetime Laplace equation via the intersec-

tion of null planes, cf. Figure 3.1, also holds true in this case. Moreover, the main

integral formula

div(∇∣∇u∣ + k(∇u, ⋅)) +K ∣∇u∣ =
∣∇̄2u∣2

2∣∇u∣
+ µ∣∇u∣ + ⟨J,∇u⟩.
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can still be applied. However, there are several major technical challenges to overcome

which causes the proof to be significantly longer and more complicated than the one in

the asymptotically flat setting [64, 72].

• While the underlying PDE ∆u = − trg k∣∇u∣ are identical, trg k approaches trgg = 3

at infinity in the hyperbolic setting (compared to 0 in the asymptotically flat

setting). This makes the non-linearity significantly more severe.

• In the asymptotically flat setting, ∣∇u∣ goes to 1 at ∞, but in the hyperbolic

setting ∣∇u∣ goes to zero in some and to ∞ in other directions at ∞. This lack of

spherical symmetry at ∞ leads to technical difficulties.

• To obtain the mass at ∞ the construction of an interpolation region is required.

We refer to [16, 17] for details.

We have also proved the PMT with charge for manifolds with electrical field E using

the charged Laplace equation ∆u = ⟨∇u,E⟩ [16], and for manifolds with boundary [71]

and refer to the respective papers for details.

3.6 Existence and regularity

Let (M,g, k) be an asymptotically flat initial data set of order τ with (possibly empty)

smooth boundary ∂M . The purpose of this section is to establish the appropriate

existence, uniqueness, and asymptotic properties of spacetime harmonic functions. The

proof proceeds in four steps:

• First, we solve the linear equation ∆v = − trg k.

• Second, we solve on compact domains Br the spacetime Laplace equation ∆ur =

− trg k∣∇u
r ∣ with boundary data v via fixedpoint methods.
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• Next, we use barriers to obtain uniform estimates for ur.

• Finally, we use the uniform estimates to pass to a limit ur → u.

For simplicity of discussion, it will be assumed here that M possesses a single end,

although the final result stated at the end of the section will be given in full generality.

Let aixi be a linear function of the asymptotic coordinates in the end Mend, with ∑i a
2
i =

1, and let h ∈ C∞(∂M). By slightly generalizing [9, Theorem 3.1] we may solve the

asymptotically linear Dirichlet problem

∆v = − trg k on M, (3.12)

v = 0 on ∂M, v = aix
i
+O2(r

1−τ
) as r →∞, (3.13)

where r = ∣x∣, q is as in (3.2), and O2 indicates in the usual way additional fall-off for

each derivative taken up to order 2. Consider now the corresponding problem for the

spacetime harmonic function equation

∆u + trg k∣∇u∣ = 0 on M, (3.14)

u = h on ∂M, u = v +O2(r
−β
) as r →∞, (3.15)

where β ∈ (0,1). As mentioned before, the strategy will be to first solve for u on a

sequence of compact domains exhausting M , use a barrier in the asymptotic end to

obtain uniform estimates, and then find a subsequence that converges to the desired

solution.

3.6.1 Solutions on compact exhausting domains

Let Sr ⊂ Mend be a coordinate sphere in the asymptotic end, and let Mr denote the

compact component of M ∖ Sr having boundary ∂Mr = ∂M ∪ Sr. Consider now the
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preliminary Dirichlet problem

∆ur + trg k∣∇u
r
∣ = 0 on Mr, (3.16)

ur = h on ∂M, ur = v on Sr. (3.17)

For this boundary value problem we will use the Leray-Schauder fixed point theorem

[53, Theorem 11.3].

Theorem 3.6.1. Let B be a Banach space and F ∶ B×[0,1] → B a compact mapping with

F(b,0) = 0 for all b ∈ B. If there is a constant c, such that any solution (b, σ) ∈ B×[0,1]

of b = F(b, σ) satisfies the a priori inequality ∥ b ∥≤ c, then there is a fixed point at σ = 1.

That is, there exists b1 ∈ B with b1 = F(b1,1).

To set up the fixed point method write ur = ṽ + wr and f = ∆ṽ + trg k∣∇ṽ∣, where

ṽ = v + v0 with v0 ∈ C
∞(M) a fixed function satisfying v0 = h on ∂M and v0 ≡ 0 on

Mend. Then boundary value problem (3.16), (3.17) becomes

∆wr
= − trg k (∣∇u

r
∣ − ∣∇ṽ∣) − f

= − trg k (
∇(wr + 2ṽ)

∣∇(wr + ṽ)∣ + ∣∇ṽ∣
) ⋅ ∇wr

− f on Mr,
(3.18)

wr
= 0 on ∂Mr. (3.19)

Let C2,α
0 (Mr) denote the space of C2,α(Mr) functions which vanish on the boundary,

and observe that ∆−1 ∶ C2,α
0 (Mr) → C0,α(Mr) is an isomorphism. Now set

F(w,σ) =σ∆−1 [− trg k (
∇(w + 2ṽ)

∣∇(w + ṽ)∣ + ∣∇ṽ∣
) ⋅ ∇w − f]

=∶σ∆−1F (w), w ∈ C1,α
0 (Mr).

(3.20)

Observe that F (w) ∈ C0,α(Mr) and hence F(w,σ) ∈ C2,α
0 (Mr). We choose B =

C1,α
0 (Mr) and note that the composition

C1,α
0 (Mr)

F
Ð→C0,α

(Mr)
∆−1
Ð→C2,α

0 (Mr)
ι
Ð→C1,α

0 (Mr),
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yields a compact map F ∶ B×[0,1] → B since the first two pieces F and ∆−1 are bounded

while the inclusion ι is compact. Furthermore, finding a fixed point wr = F(wr,1) is

equivalent to solving (3.18), (3.19) in C2,α
0 (Mr) by elliptic regularity. Then ur = ṽ +wr

is the desired solution of (3.16), (3.17).

It remains to establish the a priori estimate ∣wσ ∣C1,α(Mr) ≤ c, independent of σ, for

a fixed point wσ = F(wσ, σ). Such a fixed point satisfies (3.18), (3.19) with trg k and f

replaced by σ trg k and σf . This may be viewed as a linear equation with coefficients

that depend on the solution. However, since the coefficients remain uniformly bounded

independent of the solution, Lp estimates for linear elliptic equations may be applied to

obtain

∥ wσ ∥W 2,p(Mr)≤ C (∥ f ∥Lp(Mr) + ∥ wσ ∥Lp(Mr)) , (3.21)

where W l,p denotes the Sobolev space with l weak derivatives in Lp, p > 1. Moreover,

since the coefficient of the zeroth order term in (3.18) vanishes, the maximum principle

is valid and leads to a C0 bound for wσ which in turn gives a bound for ∥ wσ ∥Lp(Mr).

Hence we obtain the a priori estimate

∥ wσ ∥W 2,p(Mr)≤ C, (3.22)

independent of σ where C may change its value from line to line. According to the

Sobolev embedding W 2,p(Mr) ↪ C1,α(Mr) for p sufficiently large, we obtain

∣wσ ∣C1,α(Mr) ≤ C,

independent of σ. The Leray-Schauder theorem may now be applied to obtain a fixed

point at σ = 1.
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3.6.2 Barriers

Rotationally symmetric asymptotic barrier functions will be constructed to obtain uni-

form bounds on the solutions wr of (3.18), (3.19) independent of r. To this end, in the

asymptotically flat region set

w(r) = λr−β, w′(r) = −λβr−1−β, w′′(r) = λβ(1 + β)r−2−β,

for β ∈ (0,1) and where λ > 0 is a constant to be chosen sufficiently large. Using the

level sets of r, the metric may be expressed as

g = ∣∂r ∣
2dr2 + gr = ∣∇r∣

−2dr2 + gS2r ,

where gS2r is the induced metric on the coordinate spheres S2r . If υ denotes the unit outer

normal to the coordinate spheres then

υ = ∣∂r ∣
−1∂r = ∣∇r∣∂r, ∣∇r∣2 = gij∂ir∂jr =

gijxixj

r2
= 1 +O2(r

−q
),

and the Laplacian becomes

∆w = ∇2
υw +HSrυ(w),

where HSr denotes mean curvature. Observe that

∇
2
υw = υ

iυj∇ijw = ∣∇r∣
2
∇rrw = ∣∇r∣

2 (w′′ − Γr
rrw

′) ,

and

Γr
rr =

1

2
grr∂rgrr = −∂r log ∣∇r∣,

so that

∆w =∣∇r∣2w′′ + ∣∇r∣ (HSr + ∂r ∣∇r∣)w
′

=(1 +O(r−q)) (w′′ +
2

r
w′ +O(r−q−1)w′)

= − λβ(1 − β)r−2−β (1 +O(r−q)) .
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Furthermore

∣K(wr
) ⋅ ∇w∣ ∶= ∣trg k (

∇(wr + 2ṽ)

∣∇(wr + ṽ)∣ + ∣∇ṽ∣
) ⋅ ∇w∣

≤Cr−q−1∣w′∣ = Cλβr−q−2−β.

It follows that

Lw ∶=∆w +K(wr
) ⋅ ∇w = −λβ(1 − β)r−2−β (1 +O(r−q)) .

Next, comes the estimate which justifies the use of v as Dirichlet boundary data for

ur (over the naive use of the boundary condition ur = x on ∂Mr). Consider now the

asymptotics for f . According to (3.12), (3.13) we have

∣f ∣ = ∣∆v + trg k∣∇v∣∣ = ∣ trg k∣∣1 − ∣∇v∣∣ ≤ C1r
−2q−1

= C1r
−2−β,

by setting β = 2q − 1 > 0. Therefore, given a large radius r0, it holds that

Lw ≤ −f for r > r0 (3.23)

if λ is sufficiently large. Hence, w is a super-solution of (3.18) on Mr ∖Mr0 .

In order to obtain a global barrier let w̃r0 solve (3.18), (3.19) on Mr0 with K(w̃r0)

replaced by K(wr), noting that this is a linear boundary value problem. Next define

ŵλ =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

w̃ ∶= w̃r0 + λr−β0 on Mr0 ,

w on Mr ∖Mr0 .

This function is smooth everywhere, except at Sr0 where it is continuous, and is a

super-solution for (3.18) on Mr0 and Mr ∖Mr0 separately. Furthermore we have

∂rw̃ > ∂rw at Sr0 ,
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if λ is sufficiently large (independent of r), and this allows for an application of the weak

maximum principle. To see this, let ϕ ∈ C∞c (Mr) be a nonnegative test function and

observe that

0 = − ∫
Mr0

ϕL(w̃ −wr
)dV

=∫
Mr0

(∇ϕ ⋅ ∇(w̃ −wr
) − ϕK(wr

) ⋅ ∇(w̃ −wr
))dV

− ∫
S2r0

ϕ∂r(w̃ −w
r
)dA,

and

0 ≤ − ∫
Mr∖Mr0

ϕL(w −wr
)dV

=∫
Mr∖Mr0

(∇ϕ ⋅ ∇(w −wr
) − ϕK(wr

) ⋅ ∇(w −wr
))dV

+ ∫
S2r0

ϕ∂r(w −w
r
)dA,

so that upon adding these two inequalities

∫
Mr

(∇ϕ ⋅ ∇(ŵλ −w
r
) − ϕK(wr

) ⋅ ∇(ŵλ −w
r
))dV

≥∫
S2r0

ϕ(∂rw̃ − ∂rw)dA ≥ 0.

Hence, according to [53, Theorem 8.1] the weak maximum principle yields

infMr(ŵλ −w
r
) ≥ inf∂Mr(ŵλ −w

r
) ≥ 0.

A similar argument with ŵ−λ yields a lower bound, and therefore

ŵ−λ < w
r
< ŵλ on Mr.

Consequently we obtain a global C0 estimate for wr independent of r.
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3.6.3 The global existence result

Here we will show that wr subconverges on compact subsets as r →∞ to a C2,α solution

of (3.18) on all of M . In the previous subsection a uniform C0 estimate was achieved.

Consider (3.18) as a linear equation with coefficients depending on wr but which are

uniformly bounded, and apply the local Lp estimates to find

∥ wr
∥W 2,p(Ω)≤ C (∥ f ∥Lp(Ω′) + ∥ w

r
∥Lp(Ω′)) ,

where Ω ⊂⊂ Ω′ are any fixed compact subsets of Mr and C is independent of r. The

uniform C0 bound implies a uniform Lp bound in Ω′, and therefore

∥ wr
∥W 2,p(Ω)≤ C

′.

By Sobolev embedding this yields a uniform C1,α(Ω) bound, so that in particular the

right-hand side of (3.18) is controlled in C0,α(Ω). Now applying the local Schauder

estimates we obtain the desired C2,α estimate on a subset of Ω, for any α ∈ (0,1). It

follows then by a diagonal argument that there is a subsequence wri converging in C2,α

on any compact subset of M to a smooth function w which solves

∆w = − trg k (
∇(w + 2ṽ)

∣∇(w + ṽ)∣ + ∣∇ṽ∣
) ⋅ ∇w − f on M, (3.24)

w = 0 on ∂M, −w < w < w on M ∖Mr0 . (3.25)

Finally, by setting u = ṽ +w we obtain the desired solution of (3.14), (3.15).

As mentioned at the start of the section, this global existence result extends in

a straightforward manner to the case of multiple asymptotically flat ends M ℓ
end, ℓ =

1, . . . , ℓ0. For this situation let aℓix
i be a linear function of the asymptotic coordinates

in the end M ℓ
end, with ∑i(a

ℓ
i)

2 = 1, and let h ∈ C∞(∂M). Then the background function

satisfies

∆v = − trg k on M, (3.26)
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v = 0 on ∂M,

v = aℓix
i
+O2(r

1−q
) as r →∞ in M ℓ

end, ℓ = 1, . . . , ℓ0. (3.27)

Theorem 3.6.2. Suppose that (M,g, k) is a smooth asymptotically flat initial data set

with (possibly empty) boundary ∂M , and h ∈ C∞(∂M). Let v be a solution of (3.26)

and (3.27). Then for each α ∈ (0,1) there exists a solution u ∈ C2,α(M) of the spacetime

harmonic function equation

∆u + trg k∣∇u∣ = 0 on M, (3.28)

such that

u = h on ∂M, u = v +O2(r
1−2q
) as r →∞. (3.29)

The solution u is unique among those which satisfy (3.29).

Proof. The existence portion was proven in the discussion above, while the uniqueness

follows from the maximum principle in the same manner as the barrier argument at the

end of Section 3.6.2. Lastly, the decay of derivatives in the asymptotic ends may be

established analogously to [109, Proposition 3].
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Chapter 4

Monotonicity of the Hawking energy

Harmonic functions are not the only tool to study asymptotically flat Riemannian man-

ifolds (M,g). The perhaps other most important tools are minimal surfaces, spinors,

H. Bray’s conformal flow and inverse mean curvature flow (IMCF). However, in general

an isolated gravitational system is modeled by an initial data set (M,g, k) where k is

non-vanishing. This raises the question what the corresponding spacetime (i.e. k ≠ 0)

versions of the above techniques are. We have already seen in the previous section the

success of spacetime harmonic functions to study initial data sets, and spinors general-

ize without major adjustments to the spacetime case [118]. There are also ’spacetime’

minimal surfaces called MOTS and MITS (marginally outer and inner trapped surfaces)

which have found have been used in [47] to prove the spacetime PMT, also see the survey

[6].

IMCF and the conformal flow have been used to proof the Riemannian (k = 0)

Penrose inequality which is an important geometric statement related to Cosmic Cen-

sorship which will be explained in more detail in Section 4.1 below. Interestingly, more

elementary techniques such using harmonic functions, spinors or minimal surfaces are

insufficient to prove the Riemannian Penrose inequality. There has been a long history

of attempts to generalize IMCF and Bray’s conformal flow to the spacetime setting

[19, 15, 51, 80, 98], but all of them have been so far without success of proving the

spacetime (k ≠ 0) Penrose conjecture which is open since 1973 [101].

The goal of this section is to introduce a new notion of spacetime IMCF which is

based on double null foliations.
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4.1 The Penrose conjecture

As mentioned in the previous chapter, General Relativity (GR) is concerned with the

study of Lorentzian manifolds (M
4
, g) satisfying the Einstein equations Ric − 1

2g = 8πT

where Ric is the Ricci curvature, R is the scalar curvature of g, and T is the stress-

energy-momentum tensor. For instance, Minkowski space R3,1 with metric

ḡ = −dt2 + dx2 + dy2 + dz2,

and the Schwarzschild spacetime with metric

ḡ = −(1 −
2m

r
)dt2 + (1 −

2m

r
)
−1dr2 + r2gS2

are examples of such Lorentzian manifolds with T = 0. As shown by Y. Choquet-Bruhat

[33], the Einstein equations can also be understood as a Cauchy problem for a system of

hyperbolic PDE. We refer to the books of D. Lee [90] and R. Wald [116] for a detailed

introduction to this topic.

An interesting feature of GR is the existence of singularities1 which can arise even

in elementary examples such as the Schwarzschild spacetime above. In Schwarzschild

the singularity is hidden behind the event horizon and it is believed that this is also

generically the case2 which is known as the Cosmic Censorship Conjecture.

However, to understand whether a singularity is located within the black hole region,

the entire time evolution of the spacetime has to be known. This is a notoriously difficult

task, and even in the simplest cases such as for perturbations of slices of Minkowski

space, this requires a substantial amount of analysis [37].

1The precise definition of a singularity is a subtle issue and we refer to [116] for details.

2The additional assumption of genericity is necessary as Christodoulou demonstrated in [35,

36].
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To understand Cosmic Censorship, R. Penrose proposed in 1973 a test which relates

the conjecture to a more feasible geometric problem which is depicted in Figure 4.1

below. t

(M,g, k)

Kerr

Figure 4.1: Penrose’s heuristic argument

Given an initial data set (M,g, k), it is believed that going forward in time, on all

matter either falls into the black hole or radiates away to ∞. Moreover, the final state

of (M,g, k) is described by a static solution to the Einstein equations which is a Kerr

solution, i.e. a rotating black hole. This is known as the Final State conjecture. For any

slice in Kerr, it is known that ∣Σ∣ ≤ 16πm2 where m is the ADM mass of the slice and Σ

is the surface which is formed by the intersection of the black hole’s event horizon. In

fact, for Schwarzschild (i.e. the Kerr solution with zero angular momentum) we have

∣Σ∣ = 16πm2. Next, we would like to trace back this inequality in time. Since matter

is radiating away to ∞, the mass decreases, and Hawking’s area theorem [60, 116]

states that the area of Σ is increasing. Hence, we have m ≥
√
∣Σ∣
16π on (M,g, k). To
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locate Σ within (M,g, k) the Cosmic Censorship is used: The incompleteness theorem

of R. Penrose states that each apparent horizon (i.e. a surface with θ+ = 0) leads to a

singularity in the future. Hence, ∣Σ∣ can be estimated by the minimal area enclosure of

an apparent horizon (highlighted in red).

Hence, we are led with the help of Cosmic Censorship to the following geometric

conjecture which is known as Penrose conjecture.

Conjecture 4.1.1. Let (M,g, k) be an initial data set satisfying the DEC. Let Σ0 be

a MOTS in (M,g, k), and let Σ be the minimal area enclosure of Σ0. Then the mass

m =
√
E2 − ∣P ∣2 of (M,g, k) is bounded from below by

m ≥

√
∣Σ∣

16π
.

Moreover, we have equality if and only if (M,g, k) is a slice in Schwarzschild spacetime.

Here a marginally outer trapped surfaces (MOTS) is a surface Σ satisfying θ+ = 0

and models an apparent horizons. Moreover, we recall the definitions of ADM energy

and momentum of (M,g, k)

E = lim
r→∞

1

16π
∫
Sr

∑
i

(gij,i − gii,j)υ
jdA, Pi = lim

r→∞

1

8π
∫
Sr

(kij − (trg k)gij)υ
jdA.

A counter example to the Penrose conjecture would pose a serious challenge to

the Cosmic Censorship Conjecture which is considered to be the weakest link the

above heuristic argument. Besides its physical significance, the Penrose conjecture also

presents a strengthening of the famous positive mass theorem [2, 18, 46, 47, 64, 79, 92,

96, 108, 109]. By time-reversal, i.e. by replacing k with −k, one also expects Conjec-

ture 4.1.1 hold also for marginally inner trapped surfaces (MITS), i.e surfaces satisfying

θ− = 0.
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The conjecture has been established in the case k = 0 by G. Huisken and T. Ilmanen

[79] (for connected horizons), and by H. Bray [13] (for arbitrary horizons). H. Bray’s

proof employs the conformal flow and has also been generalized up to dimension 7 by

H. Bray and D. Lee in [21] and to the electrostatic setting by M. Khuri, G. Weinstein

and S. Yamada in [86].

In the general case k ≠ 0 the conjecture is wild open outside spherical symmetry

[19, 20, 61, 62, 82, 94] and H. Roesch’ result on certain null cones [104]. In the pioneering

work [19] H. Bray and M. Khuri proposed a method to couple IMCF and Jang’s equation

to solve the conjecture. This leads to a complicated system of PDE which (if it can be

solved) implies the Penrose conjecture for initial data sets which are asymptotic to the

Riemannian Schwarzschild manifold. In fact, this system would even imply the Penrose

conjecture for generalized horizons, i.e. surfaces satisfying θ+θ− = 0. Thus, there have to

arise some complications in the existence theory in view of A. Carrasco and M. Mars’

counter example [24]. For more information we refer to the survey [95] by M. Mars and

the references therein.

We remark that in the statement of the Penrose inequality it is necessary to consider

the minimal area enclosure Σ instead of the MOTS Σ0. It is easy to construct coun-

terexamples to m ≥
√
∣Σ0∣
16π , see for instance Figure 1 in [79], and even the assumption of

Σ0 being an outermost MOTS is insufficient as demonstrated by I. Ben-Dov in [11].

One difficulty most approaches towards the Penrose conjecture face, is to solve cer-

tain PDE. For instance, P. Jang and R. Wald already showed in [83] that R. Geroch’s

monotonicity formula [52] implies the Riemannian Penrose inequality if an existence the-

ory for IMCF can be established. This has also been observed in the spacetime setting

for Inverse Mean Curvature Vector Flow by J. Frauendiener [51]. In the Riemannian

case this has been resolved in [1, 79, 97], but the spacetime case this is still completely
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open. Similarly, the pioneering approach by H. Bray and M. Khuri [19] did not yield

a proof of the Penrose conjecture due to the difficulties of solving the underlying PDE

systems outside spherical symmetry.

Our notion of spacetime IMCF has a comparatively simple PDE and we will discuss

existence results in Section 4.5.

4.2 The Riemannian Penrose inequality

To motivate our definition of spacetime IMCF, we begin with recalling the two proofs

of the Riemannian Penrose inequality, i.e. Conjecture 4.1.1 for k = 0.

Theorem 4.2.1 (Riemannian Penrose inequality). Let (M3, g) be an asymptotically

flat manifold with non-negative scalar curvature R ≥ 0 and outermost minimal surface

Σ. Then

m ≥

√
∣Σ∣

16π
.

As mentioned in the previous section, this theorem has been proven by G. Huisken

and T. Ilmanen [79] in case Σ is connected using IMCF and by H. Bray [13] in the

general case using the conformal flow.

4.2.1 Bray’s conformal flow

Starting with an asymptotically flat initial data set (M3, g), the Einstein equations are

expected to deform the initial data set to a slice in Schwarzschild (or more generally,

Kerr) according to the final state conjecture. In this process, the area of the horizon

Σ increases (Hawking’s area theorem) and and the mass decreases. However, the mass

and area monotonicities aren’t established fully rigorously, and our understanding of the
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Einstein equations is insufficient (by a large amount) to verify the final state conjecture.

H. Bray discovered a new flow, the so-called conformal flow, which possesses similar

properties but has a much simpler existence theory. The area of the outermost minimal

surface stays constant while the mass is non-decreasing3, and (M3, g) is converging

to the (t = 0)-slice of Schwarzschild. Here, the deformation of (M3, g) is achieved by

conformal deformations of the metric g. We refer to H. Bray’s pioneering work [13] for

more details.

4.2.2 Huisken-Ilmanen’s weak inverse mean curvature flow

Given a surface Σ, the Hawking mass mh(Σ) is defined via

mH(Σ) =

√
∣Σ∣

16π
(1 −

1

16π
∫
Σ
H2dµ)

where H is the mean curvature of Σ. Since the outermost minimal surface has zero

mean curvature, we have

mH(Σ) =

√
∣Σ∣

16π

Now letting Σ = Σ0 evolve by IMCF, i.e. the (∞-pointing) normal speed is given by

1
H , one obtains a family of surfaces {Σt} foliating (M3, g). More precisely, Huisken-

Ilmanen introduced a weak notion of IMCF which allows the possibility jumps. An easy

computation which will be carried out below and which goes back to R. Geroch, P. Jang

and R. Wald in [52, 83] yields that mH(Σt) is monotonically non-decreasing along the

flow in case R(g) ≥ 0 and Σ is connected. Moreover, mH(Σt) → m at ∞, and the result

follows.

While there has not been much progress made on generalizing the conformal flow to

the k ≠ 0 setting, there have been several proposals for IMCF in this case. This includes

3This follows from H. Bray’s famous mass-capacity inequality.
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the uniformly area expanding flow by H. Bray, S. Hayard, M. Mars and W. Simon [15],

H. Bray’s and M. Khuri’s Jang IMCF [19], J. Frauendiener inverse mean curvature vector

flow [51], and K. Moore’s [98] and G. Huisken’s and M. Wolf’s null IMCF [80]. However,

the existence theory for the flows in [19, 15, 51] appears to be out of reach, while for

the flows in [98, 80] there appears to be no analogue to the Hawking mass monotonicity.

In this manuscript we suggest a new approach to generalize IMCF to the spacetime

setting and introduce systems of PDE which model double null foliations. This leads

simultaneously to a generalization of the Hawking mass monotonicity, cf. Theorem C,

and to existence results outside spherical symmetry, cf. Theorem 4.5.1.

4.3 Monotonicity formula vs integral formula

As before, let (M3, g) be an asymptotically flat complete manifold with non-negative

scalar curvature R, and let Σ0 be the outermost minimal surface. We begin with com-

puting the aforementioned evolution of the Hawking mass:

16π∂tmH(Σt) =16π∂t

⎡
⎢
⎢
⎢
⎢
⎣

√
∣Σ∣

16π
(1 −

1

16π
∫
Σ
H2dA)

⎤
⎥
⎥
⎥
⎥
⎦

=8πmH(Σt) −

√
∣Σ∣

16π
∫
Σt

[H2
− 2H (∆Σ 1

H
+ ∣A∣2

1

H
+Ric(ν, ν)

1

H
)]dA.

Here ν is the∞-pointing unit normal to Σt and A is its second fundamental form. Using

the contracted Gauss equations and integrating by parts yield

16π∂tmH(Σt) =8πmH(Σt) −

√
∣Σ∣

16π
∫
Σt

(−
∣∇H ∣2

H2
− ∣A∣2 −R+2K)dA

where K is the Gaussian curvature of Σt. Using Gauss-Bonnet’s theorem, we obtain

16π∂tmH(Σt) = ∫
Σt

(
∣∇H ∣2

H2
+ ∣A∣2 −

1

2
H2
+R)dµ ≥ 0.
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Besides this monotonicity formula, there is also an equivalent integral formula which we

will discuss next.

An important ingredient in G. Huisken and T. Ilmanen’s proof of the Riemannian

Penrose inequality is to recognize that there is a level-set formulation of IMCF for

which one can find weak solutions. More precisely, by defining the function U via

Σt = ∂{x ∈M ∶ U(x) < t}, we see that U satisfies the degenerate elliptic equation

div(
∇U

∣∇U ∣
) = ∣∇U ∣

where we note that the term on the left hand side is the mean curvature of the level-sets

Σt. Reparametrizing u = e
1
2
U , we obtain the homogeneous equation

∆u = ∇2
ννu + 2

∣∇u∣2

u
(4.1)

where ν is the outer normal to the level sets Σt. In this context, we can rephrase the

Hawking mass monotonicity formula mH(Σt) −mH(Σ0) ≥ 0, t ≥ 0, as integral formula

mH(Σt) −mH(Σ0) =
1

16π
∫
Ωt

(R∣∇u∣ +
∣H2u∣2 − (H2

ννu)
2

∣∇u∣
)dV. (4.2)

Here Ωt is the region bounded by Σ0 and Σt, and H is a symmetric 2-tensor defined by

Hiju = ∇iju −
∣∇u∣2

u
gij +

∇iu∇ju

u
. (4.3)

The RHS of equation (4.2) is non-negative in case R ≥ 0.

To formulate such a monotonicity formula in the spacetime setting, we will take a

more general point of view. In case we do not integrate the integrand on the RHS of

equation (4.2) over a domain Ω, we obtain

R ∣∇u∣ +
∣H2u∣2 − (H2

ννu)
2

∣∇u∣
− 2Ku∣∇u∣ = 2div(∇∣∇u∣ +

∣∇u∣

u
∇u −∆u

∇u

∣∇u∣
) (4.4)

where Ku is the Gaussian curvature of Σt = {u(x) = t}. The above version of the

Hawking mass monotonicity generalizes to the spacetime setting.
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4.4 The Hawking mass monotonicity formula

Suppose now that (M3, g, k) is an initial data set, and recall the definitions of the energy

density µ and the momentum density J

2µ =R+(trg(k))
2
− ∣k∣2, J = div(k − trg(k)g).

We say (M,g, k) satisfies the dominant energy condition (DEC), in case µ ≥ ∣J ∣ every-

where on M . Our main result generalizes the Hawking mass integral formula (4.4) to

initial data sets:

Theorem 4.4.1. Let a ∈ [0,1] and suppose u, v ∈ C2,α(M) are positive solutions of the

system

∆u = − trg(k)∣∇u∣ + akηη ∣∇u∣ + a∇
2
ηηu +

3∣∇u∣∣∇v∣ + ⟨∇u,∇v⟩

u + v
,

∆v = trg(k)∣∇v∣ − akηη ∣∇v∣ + a∇
2
ηηv +

3∣∇u∣∣∇v∣ + ⟨∇u,∇v⟩

u + v

(4.5)

with ∣∇u∣, ∣∇v∣ ≠ 0, where η = ∇u∣∇v∣+∇v∣∇u∣∣∇u∣∇v∣+∇v∣∇u∣∣ . Then

divY =
∣H2
+u∣

2 − (a(H2
+)ηηu)

2

∣∇u∣
+
∣H2
−v∣

2 − (a(H2
−)ηηv)

2

∣∇v∣

+ 2µ(∣∇u∣ + ∣∇v∣) + 2⟨J,∇u −∇v⟩

− 2Ku∣∇u∣ − 2Kv ∣∇v∣

(4.6)

where Ku,Kv are the Gaussian curvatures of the level sets of u, v,

Y =2∇(∣∇u∣ + ∣∇v∣) + 2k(∇(u − v), ⋅) + 4(∣∇u∣∇v + ∣∇v∣∇u)
1

u + v

− 2∆u
∇u

∣∇u∣
− 2∆v

∇v

∣∇v∣
− 2 trg(k)∇(u − v)

and

(H
2
+)iju = ∇iju + kij ∣∇u∣ − 2

∇ηu∇ηv

u + v
gij +

∇iu∇jv +∇ju∇iv

u + v
,

(H
2
−)ijv = ∇ijv − kij ∣∇v∣ − 2

∇ηu∇ηv

u + v
gij +

∇iu∇jv +∇ju∇iv

u + v
.
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Observe that the first line in (4.6) is always non-negative, and the second line (4.6)

is non-negative in case the DEC is satisfied. In Section 4.6.2 we see that the above

formula implies upon integrating:

Corollary 4.4.2. Let (M,g) be an annulus satisfying the dominant energy condition

with spherical boundary components ∂−M and ∂+M . Suppose u, v are constant on both

∂−M and ∂+M and that u∣∂−M < u∣∂+M , v∣∂−M < v∣∂+M . Then we have under the same

assumptions as in Theorem 4.4.1

(u + v)∣∂+M [1 −
1

8π
∫
∂+M
(2θ+

∣∇u∣

u + v
+ 2θ−

∣∇v∣

u + v
− 8
∣∇u∣∣∇v∣

(u + v)2
)dA]

≥(u + v)∣∂−M [1 −
1

8π
∫
∂−M
(2θ+

∣∇u∣

u + v
+ 2θ−

∣∇v∣

u + v
− 8
∣∇u∣∣∇v∣

(u + v)2
)dA]

where θ± =H ± (trg(k) − kηη) are the null expansions. In the case a = 1 we furthermore

have ∣∇u∣ = 1
4θ−(u + v) and ∣∇v∣ = 1

4θ+(u + v) on ∂±M which implies the generalized

Hawking mass monotonicity

(u + v)∣∂+M (1 −
1

16π
∫
∂+M

θ−θ+dA) ≥(u + v)∣∂−M (1 −
1

16π
∫
∂−M

θ−θ+dA) . (4.7)

In particular, prescribing the boundary data (u + v) =
√
∣Σ1∣
16π , (u + v) =

√
∣Σ2∣
16π on

Σ1,Σ2 respectively, Theorem C follows.

For k = 0, system (4.5) decouples if u, v have the same boundary data, and we

recover several important monotonicity formulas: For k = 0 and a = 1, the function u = v

is rescaled IMCF (as in equation (4.1)), and we obtain the Hawking mass monotonicity

formula (4.4). For k = 0 and 0 ≤ a < 1, the function u = v solves the rescaled4 p-Laplacian

equation

∆u = a∇2
ννu + 2

∣∇u∣2

u

4i.e. U = u−
1+a
1−a is (2 − a)-harmonic
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with monotonicity formula

R ∣∇u∣ +
∣H2u∣2 − (aH2

ννu)
2

∣∇u∣
− 2Ku∣∇u∣ = 2div(∇∣∇u∣ +

∣∇u∣

u
∇u −∆u

∇u

∣∇u∣
) .

This formula has been first discovered by V. Agostiniani, L. Mazzieri and F. Oronzio in

[2] which enabled them to give a new proof of the Riemannian Positive Mass Theorem

[2], and, together with C. Mantegazza, the Riemannian Penrose inequality [1]. However,

even in the special case k = 0, the above formula has some new contents since we can

prescribe different boundary conditions for u and v, such that u ≠ v and the system does

not decouple.

Another special case is given by v = 0. Then u is a spacetime harmonic function.

i.e. u solves the PDE ∆u = − trg(k)∣∇u∣, and we recover the main integral formula of

[64], Proposition 3.2. Moreover, we will see in Theorem 4.4.4 that (4.6) recovers the

monotonicity formula of the spacetime Hawking energy [61]

mH(Σ) =

√
∣Σ∣

16π
(1 −

1

16π
∫
Σ
θ+θ−dA) .

under IMCF in spherical symmetry which implies the Penrose inequality in this setting.

4.4.1 Origins of spacetime IMCF

As discussed in Section 3, to give a new proof of the spacetime PMT, D. Kazaras,

M. Khuri and the author introduced in [64] spacetime harmonic functions. In case

(M,g, k) arises as subset of Minkowski space R3,1, the spacetime harmonic function u

can be obtained by restricting a null coordinate function of Minkowski space such as

x+ t, to (M,g, k). Hence, in the case of equality of the spacetime PMT the level-sets Σt

of u can be obtained by intersecting null planes with the initial data set (M,g, k) ⊂ R3,1

as visualized in Figure 3.1.
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A similar situation occurs for any a ∈ [0,1] for the system

∆u = − trg(k)∣∇u∣ + akηη ∣∇u∣ + a∇
2
ηηu +

3∣∇u∣∣∇v∣ + ⟨∇u,∇v⟩

u + v
,

∆v = trg(k)∣∇v∣ − akηη ∣∇v∣ + a∇
2
ηηv +

3∣∇u∣∣∇v∣ + ⟨∇u,∇v⟩

u + v
.

However, instead of leading to a single null foliation, the level sets Σu,Σv of u, v lead to

a double null foliation. More precisely, we have the following:

Theorem 4.4.3. Let u = r+t and v = r−t where r, t are the radial and the time coordinate

functions of Minkowski space R3,1. Then the restrictions of u, v to any initial data set

(M,g, k) ⊂ R3,1 solve system (4.5) for any a ∈ [0,1]. In fact, we have (H2
+)iju = 0 and

(H2
−)ijv = 0, and have equality in Corollary 4.4.2.
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Figure 4.2: The double null foliation (Σu,Σv) for the initial data set (M,g,k) ⊂

R3,1 is obtained by intersecting past and future directed lightcones in R3,1 with

(M,g,k). We would like to highlight that the individual null foliations Σu and Σv

differ. This implies that an integral formula as in Theorem 4.4.1 is a more general

concept than a monotonicity formula such as the one for the Hawking mass under

IMCF.

Furthermore, we can interpret system (4.5) for a = 1 as coupled inverse null mean

curvature flow and for a = 0 as coupled spacetime harmonic functions. Given an initial

data set (M,g, k) and a surface Σ ⊂M , we can define the future and past null expansions
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(M,g,k) ⊂ R3,1 with Σu Foliation (M,g,k) ⊂ R3,1 with Σv Foliation

Figure 4.3: There are no monotone quantities associated with the level sets Σu

and Σv individually.

θ+ and θ− by

θ+ =H + trg(k) − kνν , θ− =H − trg(k) + kνν

where ν is the outer normal to Σ. A generalization of IMCF to initial data sets is given

by flows with speeds 1
θ+

and 1
θ−

in the outward normal direction. These so called inverse

null mean curvature flows have been studied K. Moore in [98] where an existence theory

under the assumptions trg(k) ≥ 0 has been developed, also see [80]. Inverse null mean

curvature flows A,B have like regular IMCF level-set formulations which after rescaling

α = e
1
2
A, β = e

1
2
B become

∆α = − trg(k)∣∇α∣ + ∇
2
ννα + kνν ∣∇α∣ + 2

∣∇α∣2

α

for the speed 1
θ+

, and

∆β = − trg(k)∣∇β∣ + ∇
2
ννβ + kνν ∣∇β∣ + 2

∣∇β∣2

β

for the speed 1
θ−

. We emphasize the similarities of these above equations with our system

(4.5) for a = 1. More rigorously, we observe in Section 4.6.2 that the solutions (u, v) to

our system (4.5) are in spherical symmetry rescalings of 1
θ−

and 1
θ+

flows. The rescaling

factor is given by the usual IMCF.

68



4.4.2 Applications to the Penrose conjecture

Given that system (4.5) with a = 1 and integral formuala (4.6) generalizes IMCF in-

cluding the Hawking mass monotonicity formula, it is natural to ask whether there are

applications towards the Penrose conjecture.

Theorem 4.4.4. Let (M,g, k) be a spherically symmetric initial data set satisfying the

DEC, and let a = 1. Then system (4.5) can be solved, and the integral formula (4.6)

reduces to the monotonicity formula of the spacetime Hawking energy

mH(Σ) =

√
∣Σ∣

16π
(1 −

1

16π
∫
Σ
θ+θ−dA) .

It is well-known that the monotonicity of spacetime Hawking energy on spherically

symmetric initial data sets satisfying the DEC leads to the Penrose inequality, see for

instance [61]. Therefore, Theorem 4.4.4 (and thus Theorem 4.4.1) implies the Penrose

inequality in spherical symmetry. In the next section we discuss existence results outside

of spherical symmetry.

4.5 Existence results

Our systems (4.5) have the advantage that there are no second-order coupling terms, and

there is a simple expression for ∆(v − u). This allows us to obtain an existence theory

for system (4.5) with a = 0 in full generality without having to assume any symmetry:

Theorem 4.5.1. Let (M,g, k) be a compact 3-dimensional Riemannian manifold equipped

with symmetric 2-tensor k. Suppose that the boundary of M has two connected com-

ponents ∂−M and ∂+M . Then we can solve system (4.5) for a = 0, i.e. there exist
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functions u, v ∈ C2,α(M) solving

∆u = − trg(k)∣∇u∣ +
3∣∇u∣∣∇v∣ + ⟨∇u,∇v⟩

u + v
,

∆v = trg(k)∣∇v∣ +
3∣∇u∣∣∇v∣ + ⟨∇u,∇v⟩

u + v

on M , with Dirichlet boundary data u = c±, v = d± on ∂±M for positive constants c±, d±.

To solve the system

∆u = − trg(k)∣∇u∣ +
3∣∇u∣∣∇v∣ + ⟨∇u,∇v⟩

u + v
,

∆v = trg(k)∣∇v∣ +
3∣∇u∣∣∇v∣ + ⟨∇u,∇v⟩

u + v

(4.8)

on M with u = c± on ∂±M and v = d± on ∂±M , we will first obtain uniform estimates

for the system

∆uσ,ε = − σ trg(k)∣∇uσ,ε∣ +
3∣∇uσ,ε∣∣∇vσ,ε∣ + ⟨∇uσ,ε,∇vσ,ε⟩

∣uσ,ε + vσ,ε∣ + ε
,

∆vσ,ε =σ trg(k)∣∇vσ,ε∣ +
3∣∇uσ,ε∣∣∇vσ,ε∣ + ⟨∇uσ,ε,∇vσ,ε⟩

∣uσ,ε + vσ,ε∣ + ε
.

(4.9)

Here σ ∈ [0,1], ε > 0, and we consider the boundary data uσ,ε = c± on ∂±M and

vσ,ε = σd± + (1 − σ)c± − ε on ∂±M . We assume ε to be sufficiently small such that

σd±+(1−σ)c±−ε > 0 for all σ ∈ [0,1]. Without loss of generality we assume that c− < c+

and d− < d+.

Lemma 4.5.2. Suppose uσ,ε ∈ C
2,α(M) and vσ,ε ∈ C

2,α(M) solve the system (4.9).

Then we have

c− ≤ uσ,ε ≤ c+, σd− + (1 − σ)c− − ε ≤ vσ,ε ≤ σd+ + (1 − σ)c+ − ε

on M .

Proof. This follows immediately from the maximum principle.
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Lemma 4.5.3. Suppose uσ,ε and vσ,ε solve system (4.9). Then there exists a constant

C independent of σ,uε, vε, ε such that

∥uσ,ε∥W 2,p(M) + ∥vσ,ε∥W 2,p(M) ≤ C.

Proof. To prove this proposition, it will be helpful to rewrite the above system in terms

of

wσ,ε = vσ,ε − uσ,ε, hσ,ε =
1

uσ,ε + vσ,ε + ϵ
.

We compute for wσ,ε

∆wσ,ε = σ trg(k)(∣∇uσ,ε∣ + ∣∇vσ,ε∣),

and for hσ,ε

1

2
h−2σ,ε∆hσ,ε = −

1

2
∆(uσ,ε + vσ,ε + ϵ) +

∣∇(uσ,ε + vσ,ε + ϵ)∣
2

uσ,ε + vσ,ε + ϵ

=
1

uσ,ε + vσ,ε + ϵ
(3∣∇uσ,ε∣

2
− 3∣∇uσ,ε∣∣∇uσ,ε +wσ,ε∣ + 3⟨∇uσ,ε,∇wσ,ε⟩ + ∣∇wσ,ε∣

2
)

+ σ
trg(k)

2
∣∇uσ,ε∣ − σ

trg(k)

2
∣∇uσ,ε +wσ,ε∣.

Using the identity

∣∇(uσ,ε +wσ,ε)∣ − ∣∇uσ,ε∣ =
1

∣∇(uσ,ε +wσ,ε)∣ + ∣∇uσ,ε∣
(∣∇wσ,ε∣

2
+ 2⟨∇uσ,ε,∇wσ,ε⟩),
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we obtain

1

2
h−2σ,ε∆hσ,ε

= −
1

uσ,ε + vσ,ε + ϵ

3∣∇uσ,ε∣

∣∇(uσ,ε + vσ,ε)∣ + ∣∇uσ,ε∣
(∣∇wσ,ε∣

2
+ 2⟨∇uσ,ε,∇wσ,ε⟩)

+
1

uσ,ε + vσ,ε + ϵ
(3⟨∇uσ,ε,∇wσ,ε⟩ + ∣∇wσ,ε∣

2)

− σ
trg(k)

2

1

∣∇(uσ,ε +wσ,ε)∣ + ∣∇uσ,ε∣
(∣∇wσ,ε∣

2
+ 2⟨∇uσ,ε,∇wσ,ε⟩)

=
1

uσ,ε + vσ,ε + ϵ
(−3∣∇uσ,ε∣

1

∣∇(uσ,ε +wσ,ε)∣ + ∣∇uσ,ε∣
∣∇wσ,ε∣

2
+ ∣∇wσ,ε∣

2
)

+
1

uσ,ε + vσ,ε + ϵ
3

⟨∇uσ,ε,∇wσ,ε⟩

(∣∇(uσ,ε +wσ,ε)∣ + ∣∇uσ,ε∣)2
(∣∇wσ,ε∣

2
+ 2⟨∇uσ,ε,∇wσ,ε⟩)

− σ
trg(k)

2

1

∣∇(uσ,ε +wσ,ε)∣ + ∣∇uσ,ε∣
(∣∇wσ,ε∣

2
+ 2⟨∇uσ,ε,∇wσ,ε⟩).

Having established our identities for ∆wσ,ε and ∆hσ,ε we proceed with estimating the

above terms. We have

∣∆wσ,ε∣ ≤C(∣∇(uσ,ε + vσ,ε)∣ + ∣∇(uσ,ε − vσ,ε)∣

≤C(∣∇hσ,ε∣h
−2
σ,ε + ∣∇wσ,ε∣)

(4.10)

where C is depending onM,k, c±, d± whose value may change from line to line. Moreover,

∣∆hσ,ε∣ ≤Ch
3
σ,ε∣∇wσ,ε∣

2
+Ch2σ,ε∣∇wσ,ε∣ (4.11)

where we used

∣∇wσ,ε∣

∣∇(uσ,ε +wσ,ε)∣ + ∣∇uσ,ε∣
≤ 1.

The W 2,p estimate for solutions of elliptic equations states

∥wσ,ε∥W 2,p(M) ≤ C(∥wσ,ε∥Lp(M) + ∥hσ,ε∥W 1,p(M)) ≤ C +C∥hσ,ε∥W 1,p(M)

and

∥hσ,ε∥W 2,p(M) ≤ C(∥hσ,ε∥Lp(M)) + ∥wσ,ε∥
2
W 1,2p(M)) ≤ C +C∥wσ,ε∥

2
W 1,2p(M).
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By the Gagliardo-Nirenberg interpolation inequality, we have

∥∇wσ,ε∥
2
L2p(M) ≤ C∥∇

2wσ,ε∥Lp(M)∥wσ,ε∥L∞(M)

and

∥∇hσ,ε∥Lp(M) ≤ C∥∇
2hσ,ε∥

δ
Lp(M)∥hσ,ε∥

1−δ
L∞(M)

where

δ =
p − 3

2p − 3
< 1.

Hence, we are lead to

∥hσ,ε∥W 2,p(M) ≤C +C∥wσ,ε∥W 2,p(M) ≤ C +C∥hσ,ε∥W 1,p(M)

≤C +C∥hσ,ε∥
α
W 2,p(M) ≤ +

1

2
∥hσ,ε∥W 2,p(M).

Thus, we have ∥hσ,ε∥W 2,p(M) ≤ C which implies ∥wσ,ε∥W 2,p(M) ≤ C. Reconstructing

uσ,ε, vσ,ε from hσ,ε,wσ,ε, we also obtain ∥uσ,ε∥W 2,p(M) + ∥vσ,ε∥W 2,p(M) ≤ C which finishes

the proof..

We can use the Sobolev inequality and Schauder estimates to improve the above

estimate to C2,α. More precisely, we obtain:

Lemma 4.5.4. Suppose uσ,ε, vσ,ε solve system (4.9). Then there exists a constant C

independent of σ,uσ,ε, vσ,ε, ε such that

∥uσ,ε∥C2,α(M) + ∥vσ,ε∥C2,α(M) ≤ C.

Having obtained uniform estimates for system (4.9) we will use Leray-Schauder’s

fixed point theorem below to obtain solutions of (4.9) for σ = 1. Passing to a limit ε→ 0

then gives a solution to (4.8) establishing Theorem 4.5.1.
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Proof of Theorem 4.5.1. Let ϕσ,ε± be two functions on M with ϕσ,ε± = c±, ϕ
σ,ε
+ = σd± +

(1 − σ)c± − ε on ∂±M . We denote with C2,α
0 (M) the set C2,α-functions on M which

vanish on ∂±M . Observe that C2,α
0 (M) is a Banach space. We define a family of maps

Fσ,ϵ ∶ C
2,α
0 (M) ⊕C

2,α
0 (M) → C2,α

0 (M) ⊕C
2,α
0 (M) via

Fσ,ε(u, v) = [∆
−1
0 (G

σ,ε
− (u, v)) ,∆

−1
0 (G

σ,ε
+ (u, v))]

where

G
σ,ε
± (u, v) = ± σ trg(k)∣∇(u + ϕ−)∣

+
3∣∇(u + ϕ−)∣∣∇(v + ϕ+)∣ + ⟨∇(u + ϕ−),∇(v + ϕ+)⟩

∣u + ϕ− + v + ϕ+∣ + ε
−∆ϕσ,ε±

and where ∆−10 maps a function f to the solution ψ of ∆ψ = f on M with vanish-

ing Dirichlet boundary data. By standard elliptic theory, Fσ,ε is indeed a map into

C2,α
0 (M)⊕C

2,α
0 (M). Moreover, Fσ,ε is a compact operator since the image of a bounded

sequence {(ui, vi)} has a convergent subsequence. Observe that if Fσ,ε(u, v) = (u, v),

then (u+ϕ−, v+ϕ+) solve system (4.9). Hence, we can use our uniform estimates, Lemma

4.5.4, and Leray-Schauder’s fixed point theorem, see for instance Theorem 11.6 in [53],

to deduce that there exists a solution of F1,ε(u1,ε, v1,ε) = (u1,ε, v1,ε) if there exists a

solution of F0,ε(u0,ε, v0,ε) = (u0,ε, v0,ε). Let U0,ε be the harmonic function with U0,ε =
1
c±

on ∂±M . Then u0,ε = 1
U0,ε

satisfies

∆u0,ε = 2
∣∇u0,ε∣

2

u0,ε

with u0,ε = c± on ∂±M . Next, let v0,ε = u0,ε − ε. Note that v0,ε = c± − ε on ∂±M and

v0,ε > 0 on M . Then

∆u0,ε =
3∣∇u0,ε∣∣∇v0,ε∣ + ⟨∇u0,ε,∇v0,ε⟩

∣u0,ε + v0,ε∣ + ε
,

∆v0,ε =
3∣∇u0,ε∣∣∇v0,ε∣ + ⟨∇u0,ε,∇v0,ε⟩

∣u0,ε + v0,ε∣ + ε
.
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Thus, we may find solutions (u1,ε, v1,ε) to system (4.9) for σ = 1. Since u1,ε, v1,ε are

uniformly bounded away from zero, and we have uniform C2,α-estimates for (u1,ε, v1,ε)

in terms of ε, we can take the limit ε→ 0 to obtain solutions (u, v) to system (4.8).

A crucial ingredient of the above proof is that the system (4.5) takes a simpler form

for w = u − v and h = 1
u+v as in (4.10) and (4.11). We remark that for the p-harmonic

system, i.e. system (4.5) for a ∈ (0,1), can be rewritten in a very similar form to (4.10)

and (4.11) though we have to re-define h = (u + v)−
1+a
1−a . Note that the radial function

r−
1+a
1−a is p-harmonic in R3 for p = 2−a. We also expect that the solutions of system (4.5)

for a = 0 established in this section can be used to give a new proof for the spacetime

PMT.

4.6 Further discussions

In this section we better understand spacetime IMCF within Minkowski space and

Schwarzschild, and also give an example of another PDE system incorporating elec-

trical fields.

4.6.1 Minkowski space

In this section we show that for any initial data set (M,g, k) contained in Minkowski

space (R3,1, ḡ) the functions u = r+t and v = r−t solve system (4.5) and satisfy H2
+u = 0,

H2
−v = 0 where

(H
2
+)iju = ∇iju + kij ∣∇u∣ − 2

∇ηu∇ηv

u + v
gij +

∇iu∇jv +∇ju∇iv

u + v
,

(H
2
−)ijv = ∇ijv − kij ∣∇v∣ − 2

∇ηu∇ηv

u + v
gij +

∇iu∇jv +∇ju∇iv

u + v
.
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Moreover, we analyze what the existence of functions satisfying the conditions H2
+u = 0,

H2
−v = 0 implies for general initial data sets.

Proof of Theorem 4.4.3. We begin with observing that ∇̄2(v − u) = 0 and ∇̄2(uv) = 2ḡ

where ḡ is the metric of Minkowski space. This implies

2ḡ =v∇̄2u + u∇̄2v + ∇̄u⊗ ∇̄v + ∇̄v ⊗ ∇̄u

=(u + v)∇̄2u + ∇̄u⊗ ∇̄v + ∇̄v ⊗ ∇̄u.

Similarly,

2ḡ = (u + v)∇̄2v + ∇̄u⊗ ∇̄vv + ∇̄v ⊗ ∇̄u.

Restricting the above two equalities onto T ∗M ⊗ T ∗M we obtain

2g =(u + v)∇̄2
∣T ∗M⊗T ∗Mu +∇u⊗∇v +∇v ⊗∇u,

2g =(u + v)∇̄2
∣T ∗M⊗T ∗Mv +∇u⊗∇v +∇v ⊗∇u.

Next, let us denote with N the future pointing unit normal of M ⊂ R3,1. It is well-known

that

∇̄
2
∣T ∗M⊗T ∗Mu =∇

2u + kN(u),

∇̄
2
∣T ∗M⊗T ∗Mv =∇

2v + kN(v).

Since ∇̄u and ∇̄v are null, we have

∇̄
2
∣T ∗M⊗T ∗Mu =∇

2u + k∣∇u∣,

∇̄
2
∣T ∗M⊗T ∗Mv =∇

2v − k∣∇u∣.

Combining everything yields

2g =(u + v)(∇2u + k∣∇u∣) + ∇u⊗∇v +∇v ⊗∇u,

2g =(u + v)(∇2v − k∣∇u∣) + ∇u⊗∇v +∇v ⊗∇u.
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Observe that Lemma C.1.2 implies

∣∇u∣∣∇v∣ + ⟨∇u,∇v⟩ = 2∇ηu∇ηv. (4.12)

Therefore, it suffices to show that

2 = ∣∇u∣∣∇v∣ + ⟨∇u,∇v⟩

for any initial data set (M,g, k) ⊂ R3,1. To do so, we observe that

2 = ḡ(∇̄u, ∇̄v) = ⟨∇u,∇v⟩ + ḡ(N(u)N,N(v)N).

Since

ḡ(N(u)N,N(v)N) = −N(u)N(v) = ∣∇u∣∣∇v∣,

the result follows.

We remark that in Minkowski space we can also solve for any c > 0 the boosted

system

0 = ∇iju + kij ∣∇u∣ − 2
∇ηu∇ηv
1
c2
u + v

gij +
∇iu∇jv +∇ju∇iv

1
c2
u + v

,

0 = ∇ijv − kij ∣∇v∣ − 2
∇ηu∇ηv

u + c2v
gij +

∇iu∇jv +∇ju∇iv

u + c2v
.

where u = c(r + t) and v = 1
c (r − t).

The vector field η appears in both the integral formulas (4.6) and (4.24). Next, we

describe η for IDS (M,g, k) in Minkowski space. In the following proposition we equip

(R3,1, ḡ) with spherical coordinates (∂r, ∂t, ∂ϕ, ∂θ).

Proposition 4.6.1. Let (M,g, k) ⊂ (R3,1, ḡ) be an IDS contained in Minkowski space.

Then ḡ(η, ∂θ) = 0 and ḡ(η, ∂ϕ) = 0.
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Proof. We have

∂r + ∂t = ∇̄u = ∇u +N(u)N

and

∂r − ∂t = ∇v +N(v)N.

Therefore,

η∣∣∇u∣∇v + ∣∇v∣∇u∣ = ∣∇v∣∇u + ∣∇u∣∇v = ∂r(∣∇u∣ + ∣∇v∣) + ∂t(∣∇u∣ − ∣∇v∣),

and the result follows.

4.6.2 Schwarzschild

We begin with the proof of Corollary 4.1.1 before proceeding with the Penrose inequality

in spherical symmetry 4.4.4 and studying arbitrary slices of Schwarzschild.

Proof of Corollary 4.4.2. Recall from Theorem 4.4.1 that

divY =
∣H2
+u∣

2 − ((H2
+)ηηu)

2

∣∇u∣
+
∣H2
−v∣

2 − ((H2
−)ηηv)

2

∣∇v∣

+ 2µ(∣∇u∣ + ∣∇v∣) + 2⟨J,∇u −∇v⟩

− 2Ku∣∇u∣ − 2Kv ∣∇v∣

≥ − 2Ku∣∇u∣ − 2Kv ∣∇v∣.

(4.13)

where we used that (M,g, k) satisfies the DEC, and where

Y =2∇(∣∇u∣ + ∣∇v∣) + 2k(∇(u − v), ⋅) + 4(∣∇u∣∇v + ∣∇v∣∇u)
1

u + v

− 2∆u
∇u

∣∇u∣
− 2∆v

∇v

∣∇v∣
− 2 trg(k)∇(u − v).
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Next, recall that each boundary component ∂±M is a level set for both u and v which

can be interpreted as ∂−M and ∂+M being unboosted with respect to each other. Hence

ν ∶= η = νu = νv on ∂±M and

H ∣∇u∣ + ∇ννu =∆u = − trk ∣∇u∣ + ∇ννu + kνν ∣∇u∣ + 4
∣∇u∣∣∇v∣

u + v
,

H ∣∇v∣ + ∇ννv =∆v = trk ∣∇v∣ + ∇ννv − kνν ∣∇v∣ + 4
∣∇u∣∣∇v∣

u + v

on ∂±M . Since ∣∇u∣, ∣∇v∣ are non-zero, this implies

∣∇v∣ =
1

4
θ+(u + v), ∣∇u∣ =

1

4
θ−(u + v). (4.14)

Combining these equations with the identity ∆u = ∇ννu +H∇νu, we obtain

Yν =2∇νν(u + v) + 2kνν(∣∇u∣ − ∣∇v∣) +
8∣∇u∣∣∇v∣

u + v

− 2∆(u + v) − 2 trg(k)(∣∇u∣ − ∣∇v∣)

= − 2H(∣∇u∣ + ∣∇v∣) + 2kνν(∣∇u∣ − ∣∇v∣)

+
8∣∇u∣∣∇v∣

u + v
− 2 trg(k)(∣∇u∣ − ∣∇v∣)

= − 2θ+∣∇u∣ − 2θ−∣∇v∣ +
8∣∇u∣∣∇v∣

u + v

= −
1

2
θ+θ−(u + v).

Combining this with equation (4.13) yields after integration

−
(u + v)∣∂+M

16π
∫
∂+M

θ+θ−dA ≥ −
(u + v)∣∂−M

16π
∫
∂−M

θ+θ−dA +
1

4π
∫
M
(Ku∣∇u∣ +Kv ∣∇v∣)dV

Next, we use twice the coarea formula and Gauss-Bonnet’s theorem to obtain

∫
M
(Ku∣∇u∣ +Kv ∣∇v∣)dV = ∫

u∣∂+M

u∣∂−M
4πdt + ∫

v∣∂+M

v∣∂−M
4πdt = 4π(u + v)∣∂−M − 4π(u + v)∣∂+M .

Hence, we have

(u + v)∣∂+M (1 −
1

16π
∫
∂+M

θ+θ−dA) ≥ (u + v)∣∂−M (1 −
1

16π
∫
∂−M

θ+θ−dA) (4.15)

which finishes the proof.
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In order to prove Theorem 4.4.4 which implies the Penrose inequality in spherical

symmetry, we first establish the following Lemma.

Lemma 4.6.2. Let (M,g, k) be a spherically symmetric initial data set and let Σ0 ⊂M

be the outermost horizon. Let s be a smooth solution of rescaled IMCF starting from

Σ0, i.e. ∆s = ∇ννs + 2
∣∇s∣2
s with s(Σ0) =

√
∣Σ0∣
16π . Outside Σ0 we define the spherically

symmetric function w = w(r) via

w(r) = ∫
r

0

1

2
(trg(k) − kνν)sdρ

where r is the distance to Σ0. Then u, v, implicitly defined by

u + v = s, v − u = w,

solve system (4.5) for a = 1. Moreover, we have

∣∇v∣ =
1

4
θ+s, ∣∇u∣ =

1

4
θ−s. (4.16)

Here ν is the unit normal to the spherically symmetric surfaces and we note that

ν = νu = νv = η.

Proof. Since s solves rescaled IMCF, and using ∆s = ∇ννs + H∇νs, we deduce that

∣∇s∣ = 1
2Hs. Moreover, we have ∣∇w∣ = 1

2 ∣ trg(k)−kνν ∣s. Since Σ0 is the outermost horizon

and is therefore not enclosed by any MITS or MOTS, we also obtain that θ+, θ− > 0 for

all spherically symmetric surfaces outside Σ0 . This implies H > ∣ trg(k) − kνν ∣ for all

spherically symmetric surfaces outside Σ0, and since u = 1
2(s −w) and v = 1

2(s +w) we

obtain

∣∇v∣ =
1

4
θ+s, ∣∇u∣ =

1

4
θ−s.

Note that this in particular implies ∇u,∇v ≠ 0 outside Σ0 as well as ∇ru,∇rv > 0.

Multiplying the above identities by ∣∇u∣, ∣∇v∣, we obtain in the same fashion as in the
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computation of equation (4.14) that (u, v) solve system (4.5) with a = 1. This finishes

the proof.

Observe that (4.16) implies that the level sets of u move by rescaled 1
θ−

flow, and

the level sets of v move by rescaled 1
θ+

flow. The rescaling factor is in both cases given

by 1
4s where s is rescaled IMCF.

The above lemma immediately yields

Corollary 4.6.3. We can solve the system (4.5) for a = 1 in spherical symmetry.

We remark that although system (4.5) is in many ways the most complicated for a = 1

due to its degenerate elliptic character, the existence theory for a = 1 is substantially

simpler than for a ∈ [0,1) in spherical symmetry. This contrasts the Riemannian (i.e.

k = 0 case) where the existence theory for harmonic functions is elementary compared

to the sophisticated existence theory for IMCF [79, 97]. The reason for this reverse

behavior stems from the fact that the system decouples for a = 1 in spherical symmetry

as demonstrated in Lemma 4.6.2. However, the system appears not to decouple in

spherical symmetry for a ≠ 1, and the function u+v is not the rescaling of a p-harmonic

function.

Proof of Theorem 4.4.4. Let (M,g, k) be a spherically symmetric initial data set satis-

fying the DEC, and let u, v be solutions to system (4.5) for a = 1 outside the horizon Σ0

as described in Lemma 4.6.2. As in the proof of Corollary 4.4.2 above, we obtain

(u + v)∣Σ2 (1 −
1

16π
∫
Σ2

θ+θ−dA) ≥ (u + v)∣Σ1 (1 −
1

16π
∫
Σ1

θ+θ−dA) (4.17)

for any spherically symmetric surface Σ2 enclosing Σ1 enclosing Σ1. Since u+v = s solves

rescaled IMCF ∆s = ∇ννs + 2
∣∇s∣2
s with s(Σ0) =

√
∣Σ0∣
16π , and because IMCF is uniformly
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area expanding, we obtain
√
∣Σ2∣

16π
(1 −

1

16π
∫
Σ2

θ+θ−dA) ≥

√
∣Σ1∣

16π
(1 −

1

16π
∫
Σ1

θ+θ−dA)

Hence, the spacetime Hawking energy

mH(Σt) =

√
∣Σt∣

16π
(1 −

1

16π
∫
Σt

θ−θ+dA) (4.18)

is monotonically increasing for spherically symmetric initial data sets satisfying the

DEC.

In Minkowski space we can obtain for any initial data set (M,g, k) ⊂ R3,1 solutions

to system (4.5) by restricting the optical functions u = r+ t and v = r− t to M . Moreover

(H2
+)iju = 0 and (H2

−)ijv = 0. For Schwarzschild the situation is similar, though the

underlying objects are null vector fields rather than null functions:

Proposition 4.6.4. Let (M̄, ḡ) be the Schwarzschild spacetime of mass m ≥ 0 in static

coordinates, i.e.

ḡ = −ϕdt2 + ϕ−1dr2 + r2gS2

where ϕ = (1 − 2m
r ) On (M̄, ḡ) we define the null vector fields X = ϕ∇(r∗ + t) and

Y = ϕ∇(r∗ − t) where r∗ = r + 2m ln( r
2m − 1) is the tortoise coordinate. Then on each

spherically symmetric initial data set (M,g, k) in (M̄, ḡ) the vector fields X ∣TM and

Y ∣TM are integrable, i.e. there are functions u, v on M with ∇u =X ∣TM and ∇v = Y ∣TM .

These functions u, v solve the system (4.5) for a = 1 and we have ∣H2
+u∣

2−((H2
+)ηηu)

2 = 0

as well as ∣H2
−v∣

2 − ((H2
−)ηηv)

2 = 0. Moreover, ∇ηXη = ∇ηYη =
m
r2

.

We would like to remark that X +Y = 2∇r and X −Y = 2T where T is the time-like

Killing vector field T = (1 − 2m
r )∇t.
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Proof. Recall that we have in view of equation (4.12)

(H
2
+)iju = ∇iju + kij ∣∇u∣ −

∣∇u∣∣∇v∣ + ⟨∇u,∇v⟩

u + v
gij +

∇iu∇jv +∇ju∇iv

u + v
,

(H
2
−)ijv = ∇ijv − kij ∣∇v∣ −

∣∇u∣∣∇v∣ + ⟨∇u,∇v⟩

u + v
gij +

∇iu∇jv +∇ju∇iv

u + v
.

Next, observe that we have ∇iXj = ∇jXi unless (i, j) = (r, t), (t, r). Thus, X,Y are

integrable on each spherically symmetric IDS. Moreover, ∇̄X = ∇X + k⟨N,X⟩ḡ = ∇X +

∣X ∣k and ∇̄Y = ∇Y − k∣∇Y ∣ since X,Y are null vectors. This implies

∣X ∣∣Y ∣ + ⟨X,Y ⟩ = ḡ(N(u)N,N(v)N) + ⟨X,Y ⟩ = ḡ(X,Y ) = 2ϕ.

To prove the above proposition, it thus suffices to show on (M̄, ḡ)

∇̄αXβ =
ϕ

r
ḡαβ −

XαYβ +XβYα

2r
, ∇̄αYβ =

ϕ

r
ḡαβ −

XαYβ +XβYα

2r
(4.19)

for all α,β apart form (α,β) = (r, r), (r, t), (t, r), (t, t). We merely perform the compu-

tation for ∇̄αXβ since the ones for ∇̄αYβ are analogous.

Denoting with A = ∂ϕ, ∂θ the standard spherical coordinates, we compute for α ≠ A

∇̄AXα =∇̄αXA = 0

and

ϕ

r
ḡAα −

XαYA +XAYα
2r

= 0.

Moreover, we have

∇̄AXA =Γ̄
r
AAXr =

ϕ

r
ḡAA −

XαYA +XAYα
2r

.

Next, observe that η has only components in ∇r and ∇t direction, i.e. η = a∇r+b∇t.

We calculate

∇
2
rrr = ϕ

m

r2
, ∇

2
ttr = −ϕ

−1 m

r2
.
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This leads to

∇ηXη = ∇
2
ηηr =

m

r2
ḡ(η, η) =

m

r2

which finishes the proof.

We would like to remark that in case m ≠ 0, the Killing vector field T = 1
2(X − Y )

does not satisfy ∇rTt = 0, ∇tTr = 0. Hence, equation (4.19) is not satisfied for (α,β) =

(r, t), and X,Y are not integrable on the entire spacetime (M̄, ḡ). Thus, in contrast to

Minkowski space, there are no globally defined functions u, v such that when they are

restricted to an IDS, they solve system (4.5) for a = 1. However, there are other such

globally defined null functions u = r∗ + t and v = r∗ − t which do satisfy another nice set

of equations. More precisely, we have:

Proposition 4.6.5. Consider the functions u = r∗+t and v = r∗−t in the Schwarzschild

spacetime (M̄, ḡ). Then on any IDS (M,g, k) ⊆ (M̄, ḡ) (not necessarily spherically

symmetric) the restrictions of the functions u, v onto M satisfy

θ+∣∇u∣ =∆u + trg k∣∇u∣ − ∇
2
νuνuu − kνuνu ∣∇u∣ = ϕ

∣∇u∣∣∇v∣ + ⟨∇u,∇v⟩

r
,

θ−∣∇v∣ =∆v − trg k∣∇v∣ − ∇
2
νvνvv + kνvνv ∣∇v∣ = ϕ

∣∇u∣∣∇v∣ + ⟨∇u,∇v⟩

r
.

(4.20)

and

∆u =(kηη − trg k)∣∇u∣ + ∇
2
ηηu −

m

r2
(∣∇u∣2 − (∇ηu)

2
) + ϕ

3∣∇u∣∣∇v∣ + ⟨∇u,∇v⟩

2r
,

∆v =(trg k − kηη)∣∇v∣ + ∇
2
ηηv −

m

r2
(∣∇v∣2 − (∇ηv)

2
) + ϕ

3∣∇u∣∣∇v∣ + ⟨∇u,∇v⟩

2r
.

(4.21)

as well as

∇
2u = − k∣∇u∣ +

g

2r
ϕ(∣∇u∣∣∇v∣ + ⟨∇u,∇v⟩)

−
m

r2
∇u⊗∇u −

ϕ

2r
(∇u⊗∇v +∇v ⊗∇u),

∇
2v = − k∣∇v∣ +

g

2r
ϕ(∣∇u∣∣∇v∣ + ⟨∇u,∇v⟩)

−
m

r2
∇v ⊗∇v −

ϕ

2r
(∇u⊗∇v +∇v ⊗∇u).

(4.22)
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Proof. We only show the computation for u since the one for v is analogous. We have

∇̄
2
αβt = Γ̄

t
αβ =

1

2
ḡtt(∇αgβt +∇βgαt)

which implies

∇̄
2
rtt =∇̄

2
trt = −

m

r2
ϕ−1

and ∇̄2t = 0 otherwise. Next, we compute

∇̄
2
rrr
∗
=∂2rrr

∗
+ Γ̄r

rr∂rr
∗
= −

m

r2
ϕ−2,

∇̄
2
AAr

∗
=∂2AAr

∗
+ Γ̄r

AA∂rr
∗
=
1

r
,

∇̄
2
ttr
∗
=Γr

tt∂rr
∗
= −

m

r2

where A ∈ {θ, ϕ}. Moreover, ∇2
θϕr
∗ = 0, ∇2

Atr
∗ = 0 and ∇̄2

trr
∗ = 0. Hence,

∇̄
2u =

ḡ

r
−
ϕ

2r
(∇̄u⊗ ∇̄v + ∇̄v ⊗ ∇̄u) −

m

r2
∇̄u⊗ ∇̄u

which implies on any initial data set (M,g, k)

∇
2u = − k∣∇u∣ +

g

r
−
ϕ

2r
(∇u⊗∇v +∇v ⊗∇u) −

m

r2
∇u⊗∇u.

Next, we observe that on each initial data set

∣∇u∣∣∇v∣ + ⟨∇u,∇v⟩ = ḡ(N(u)N,N(v)N) + ⟨∇u,∇v⟩ = 2ϕ−1.

Therefore, we are lead to the equation

∇
2u = − k∣∇u∣ +

g

2r
ϕ(∣∇u∣∣∇v∣ + ⟨∇u,∇v⟩) −

ϕ

2r
(∇u⊗∇v +∇v ⊗∇u) −

m

r2
∇u⊗∇u.

Taking the trace, we obtain

∆u = − trg k∣∇u∣ + ϕ
3∣∇u∣∣∇v∣ + ⟨∇u,∇v⟩

2r
−
m

r2
∣∇u∣2.
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Moreover,

∇
2
νuνuu = −kνuνu ∣∇u∣ −

m

r2
∣∇u∣2 + ϕ

∣∇u∣∣∇v∣ − ⟨∇u,∇v⟩

2r

and

∇
2
ηηu = −kηη ∣∇u∣ −

m

r2
(∇ηu)

2.

Thus, the result follows.

Note that by relating u and v to r via the identity u + v = 2r∗, systems (4.20) and

(4.21) can also be studied for an arbitrary initial data set which does not arise as slice

in Schwarzschild. Moreover, system (4.21) reduces to system (4.5) with a = 1 in case

m = 0.

Finally, we would like to point out the importance of equations such as (4.22) lies

in the fact that they can be used to characterize slices in certain spacetimes. See for

instance [72, 64] for slices in Minkowski space and Proposition 2 in J. Krohn’s paper

[87] for slices of Schwarzschild.

4.6.3 The charged setting

Finally, we would like to give another example where the double null foliation concept is

useful. In [64] the spacetime PMT has been proven via spacetime harmonic functions,

and in [16] the PMT with charge has been proven via charged harmonic functions, i.e.

functions solving ∆u = ⟨E,∇u⟩ where E is the electrical field. Given an initial data set

(M,g, k) equipped with an electrical field E, we need to combine both approaches and

use double null foliations:
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Theorem 4.6.6. Let E be a divergence-free vector field on (M,g, k). Suppose u, v solve

the system

∆u = ξEη − trg(k)∣∇u∣

∆v = ξEη + trg(k)∣∇v∣

(4.23)

with ∣∇u∣, ∣∇v∣ ≠ 0, where ξ =
√
∣∇v∣∣∇u∣ and η = ∇u∣∇v∣+∇v∣∇u∣∣∇u∣∇v∣+∇v∣∇u∣∣ . Then we have

div(Z) =
1

2∣∇u∣
(∣E

2
+u∣

2
+ ∣∇u∣2(2µ − 2Ku − 2∣E∣

2
) + 2∣∇u∣⟨J,∇u⟩)

+
1

2∣∇v∣
(∣E

2
−v∣

2
+ ∣∇v∣2(2µ − 2Kv − 2∣E∣

2
) − 2∣∇v∣⟨J,∇v⟩).

(4.24)

where Ku,Kv are the Gaussian curvatures of the level-sets of u, v,

Z =∇∣∇u∣ −∆u
∇u

∣∇u∣
+ ∇∣∇v∣ −∆v

∇v

∣∇v∣
+ 2ξ−1(∣∇u∣∣∇v∣ + ⟨∇u,∇v⟩)E

− trg(k)∇u + trg(k)∇v + k(∇u, ⋅) − k(∇v, ⋅),

and

(E
2
+)iju =∇

2
iju + ξηiEj + ξηjEi − ξEηgij + kij ∣∇u∣,

(E
2
−)ijv =∇

2
ijv + ξηiEj + ξηjEi − ξEηgij − kij ∣∇v∣.

We remark the important role the vector field η plays in both integral formulas.

Observe that the above formula recovers Proposition 3.2 of [64] in case E = 0 which has

been the main ingredient to prove the spacetime PMT, and equation (8.7) of [16] in case

k = 0 which has been the main ingredient to prove PMT with charge.
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Chapter 5

Conclusion

We have successfully proven Theorems A, B and C. It remains an open question to

establish the spacetime Penrose inequality in full generality.
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Appendix A

Technical aspects of Theorem A

This appendix is based on joint work with Simon Brendle and Florian Johne [22].

We discuss the technical aspects of our proof of the generalized Geroch conjecture

which we omitted in the main text. We begin with establishing the stability inequality

for stable weighted slicings, Lemma 2.3.1.

A.1 The stability inequality

Let (Nn, g) be a closed Riemannian manifold of dimension dimN = n. Throughout this

section, we assume that we are given an stable weighted slicing of order m. Our goal is

to show that metric g cannot have positive m-intermediate curvature.

By the first variation formula for weighted area, Corollary 2.1.6, the mean curvature

HΣk
of the slice Σk in the manifold Σk+1 satisfies for 1 ≤ k ≤m the relation

HΣk
= −⟨∇Σk−1

log ρk−1, νk⟩

where we set ρk = u1 ⋅ ⋅ ⋅ ⋅ ⋅uk. By the second variation formula for weighted area (compare

Proposition 2.1.7) we obtain for 1 ≤ k ≤m the inequality

0 ≤∫
Σk
ρk−1 (−ψ∆Σk

ψ − ψ⟨∇Σk
log ρk−1,∇Σk

ψ⟩) dµ

− ∫
Σk

ρk−1 (∣AΣk
∣
2
+RicΣk−1

(νk, νk) − (∇
2
Σk−1

log ρk−1)(νk, νk))ψ
2 dµ

for all ψ ∈ C∞(Σk). By Definition 2.0.5 we may write ρk = ρk−1 vk, where vk > 0 is

the first eigenfunction of the stability operator for the weighted area functional. The
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function vk satisfies

λkvk = −∆Σk
vk − ⟨∇Σk

log ρk−1,∇Σk
vk⟩ − (∣AΣk

∣
2
+RicΣk−1

(νk, νk)) vk

+ (∇
2
Σk−1

log ρk−1)(νk, νk)vk,

where λk ≥ 0 denotes the first eigenvalue of the stability operator.

By setting wk = log vk we record the following equation:

λk = −∆Σk
wk − ⟨∇Σk

log ρk−1,∇Σk
wk⟩ − (∣AΣk

∣
2
+RicΣk−1

(νk, νk))

+ (∇
2
Σk−1

log ρk−1)(νk, νk) − ∣∇Σk
wk∣

2.

(A.1)

We next record two lemmata connecting the second derivatives on consecutive slices.

Lemma A.1.1 (First slicing identity).

We have for 1 ≤ k ≤m the identity

∆Σk
log ρk−1 + (∇

2
Σk−1

log ρk−1)(νk, νk) =∆Σk−1
log ρk−1 +H

2
Σk
.

Proof. The above formula follows by applying the formula relating the Laplace operator

on a submanifold to the Laplace operator on the ambient space

∆Σk
f + (∇2

Σk−1
f)(νk, νk) =∆Σk−1

f −HΣk
⟨∇Σk−1

f, νk⟩.

to the function f = log ρk−1. The gradient term on the right-hand side is rewritten by

using the first variation formula for weighted area

HΣk
= −⟨∇Σk−1

log ρk−1, νk⟩.

from Corollary 2.1.6.
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Lemma A.1.2 (Second slicing identity).

We have for 1 ≤ k ≤m − 1 the identity

∆Σk
log ρk =∆Σk

log ρk−1 + (∇
2
Σk−1

log ρk−1)(νk, νk)

− (λk + ∣AΣk
∣
2
+RicΣk−1

(νk, νk) + ⟨∇Σk
log ρk,∇Σk

wk⟩) .

Proof. This follows from the identity log ρk = wk + log ρk−1 together with the equation

(A.1).

Lemma A.1.3 (Stability inequality on the bottom slice).

On the bottom slice Σm we have the inequality

∫
Σm

ρ−1m−1 (∆Σm−1 log ρm−1 +H
2
Σm
)dµ ≥ ∫

Σm

ρ−1m−1 (∣AΣm ∣
2
+RicΣm−1(νm, νm)) dµ.

Proof. By the second variation of weighted area (compare Proposition 2.1.7) the stability

inequality on the bottom slice Σm gives

0 ≤∫
Σm

ρm−1 (−f∆Σmf − f⟨∇Σm log ρm−1,∇Σmf⟩) dµ

− ∫
Σm

ρm−1 (∣AΣm ∣
2
+RicΣm−1(νm, νm) − (∇

2
Σm−1

log ρm−1)(νm, νm)) f
2 dµ

for all test functions f ∈ C∞(Σm). Since the weight ρm−1 is positive, we may use the

direction f = ρ−1m−1 in the stability inequality, and observe

−∆Σmf = −∆Σm ρ
−1
m−1 = ρ

−1
m−1∆Σm log ρm−1 − ρ

−3
m−1∣∇Σmρm−1∣

2,

−⟨∇Σm log ρm−1,∇Σmf⟩ = −⟨∇Σm log ρm−1,∇Σmρ
−1
m−1⟩ = +ρ

3
m−1∣∇Σmρm−1∣

2.
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The gradient terms in the previous formulae cancel, and we obtain by rearrangement

∫
Σm

ρ−1m−1 (∆Σm log ρm−1 + (∇
2
Σm−1

log ρm−1)(νm, νm))dµ

≥∫
Σm

ρ−1m−1 (∣AΣm ∣
2
+RicΣm−1(νm, νm)) dµ.

Finally, we use the first slicing equality from Lemma A.1.1 to replace

∆Σm log ρm−1 + (∇
2
Σm−1

log ρm−1)(νm, νm) =∆Σm−1 log ρm−1 +H
2
Σm

which finishes the proof.

Lemma 2.3.1 will follow now by carefully computing and estimating all terms ap-

pearing in Lemma A.1.3.

Lemma A.1.4.

We have the inequality

∫
Σm

ρ−1m−1 (Λ +R+ G + E) dµ ≤ 0,

where the eigenvalue term Λ, the intrinsic curvature term R, the extrinsic curvature

term E, and the gradient term G are given by

Λ =
m−1
∑
k=1

λk, R =
m

∑
k=1

RicΣk−1
(νk, νk), G =

m−1
∑
k=1
⟨∇Σk

log ρk,∇Σk
wk⟩,

and E =
m

∑
k=1
∣AΣk
∣
2
−

m

∑
k=2

H2
Σk
.

Proof. If we combine the first slicing equality, Lemma A.1.1, and the second slicing

equality, Lemma A.1.2, we obtain for 1 ≤ k ≤m − 1 the identity

∆Σk
log ρk =∆Σk−1

log ρk−1 +H
2
Σk−1
− (λk + ∣AΣk

∣
2
+RicΣk−1

(νk, νk) + ⟨∇Σk
log ρk,∇Σk

wk⟩) .
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Summation of the above formula over k from 1 to m − 1 yields

∆Σm−1 log ρm−1 =∆Σ0 log ρ0 +
m−1
∑
k=1

H2
Σk

−
m−1
∑
k=1
(λk + ∣AΣk

∣
2
+RicΣk−1

(νk, νk) + ⟨∇Σk
log ρk,∇Σk

wk⟩) .

We plug this equation into the stability inequality, Lemma A.1.3. Moreover, we

observe that the weight ρ0 is constant, the mean curvature of the top slice HΣ1 vanishes,

and that the stability inequality contains the mean curvature term H2
Σm

the extrinsic

curvature term ∣AΣm ∣
2 and the curvature term RicΣm−1(νm, νm). Then the lemma follows

by grouping the terms suitably.

The eigenvalue term Λ is non-negative, since it is the sum of the non-negative eigen-

values. We will estimate the other terms below.

The first step is to estimate the gradient terms:

Lemma A.1.5 (Estimate of gradient terms).

We have the estimate

G ≥
m

∑
k=2
(
1

2
+

1

2(k − 1)
)H2

Σk
.

Proof. We define for k ≥ 1 the non-negative real numbers αk by

αk =
k − 1

2k
.

By direct computation one verifies the identity

1 − αk−1 =
1

4αk
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for k ≥ 2. Using the identity HΣk+1
= −⟨∇Σk

log ρk, νk+1⟩, we obtain

⟨∇Σk
log ρk,∇Σk

wk⟩

=⟨∇Σk
log ρk,∇Σk

(log ρk − log ρk−1)⟩

=(1 − αk)∣∇Σk
log ρk∣

2
−

1

4αk
∣∇Σk

log ρk−1∣
2

+ αk ∣∇Σk
log ρk −

1

2αk
∇Σk

log ρk−1∣
2

=(1 − αk)H
2
Σk+1
+ (1 − αk) ∣∇Σk+1

log ρk∣
2
− (1 − αk−1) ∣∇Σk

log ρk−1∣
2

+ αk ∣∇Σk
log ρk −

1

2αk
∇Σk

log ρk−1∣
2

for 2 ≤ k ≤m − 1. Summation over k from 2 to m − 1 yields the formula

m−1
∑
k=2
⟨∇Σk

log ρk,∇Σk
wk⟩ ≥

m−1
∑
k=2
(1 − αk)H

2
Σk+1
+ (1 − αm−1) ∣∇Σm log ρm−1∣

2
− ∣∇Σ2 log ρ1∣

2.

Moreover, the identity HΣ2 = −⟨∇Σ1 log ρ1, ν2⟩ implies

⟨∇Σ1 log ρ1,∇Σ1w1⟩ = ∣∇Σ1 log ρ1∣
2
=H2

Σ2
+ ∣∇Σ2 log ρ1∣

2.

Adding the two inequalities gives

m−1
∑
k=1
⟨∇Σk

log ρk,∇Σk
wk⟩ ≥

m−1
∑
k=1
(1 − αk)H

2
Σk+1
+ (1 − αm−1) ∣∇Σm log ρm−1∣

2

which finishes the proof.

In the next step we rewrite the intrinsic curvature terms with the help of the Gauss

equations:

Lemma A.1.6 (Iterated Gauss equations).

The curvature term R is given by

R = Cm(e1, . . . , em) +
m−1
∑
k=1

m

∑
p=k+1

n

∑
q=p+1

(AΣk
(ep, ep)AΣp(eq, eq) −AΣk

(ep, eq)
2) ,

where Cm denotes the m-intermediate curvature of the Riemannian manifold (Nn, g).
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Proof. Fix a point x ∈ Σm and consider an orthonormal basis {e1, . . . , en} of TxN with

ej = νj for 1 ≤ j ≤ m as above. We observe by the definition of the Ricci curvature on

the slice Σk−1, and by the Gauss equations the formula

RicΣp−1(νp, νp) = RicΣp−1(ep, ep) =
n

∑
q=p+1

RmΣp−1(ep, eq, ep, eq)

=
n

∑
q=p+1

RmN(ep, eq, ep, eq) +
n

∑
q=p+1

p−1
∑
k=1
(AΣk

(ep, ep)AΣk
(eq, eq) −AΣk

(ep, eq)
2) .

Summation over p from 1 to m then implies

R =
m

∑
p=1

RicΣp−1(νp, νp)

=
m

∑
p=1

n

∑
q=p+1

RmN(ep, eq, ep, eq) +
m

∑
p=1

n

∑
q=p+1

p−1
∑
k=1
(AΣk

(ep, ep)AΣk
(eq, eq) −AΣk

(ep, eq)
2)

= Cm(e1, . . . , em) +
m

∑
p=1

n

∑
q=p+1

p−1
∑
k=1
(AΣk

(ep, ep)AΣk
(eq, eq) −AΣk

(ep, eq)
2) .

If we interchange the order of summation, the assertion follows.

Combining the lemmata A.1.6, A.1.4, A.1.5, and reorganizing terms, Lemma 2.3.1

follows.

A.2 Extrinsic curvature estimates

In this section we prove Lemma 2.3.2. We use different estimates for the top slice, the

intermediate slices and the bottom slice.

Lemma A.2.1 (Extrinsic curvature terms on top slice).

We have the estimate

V1 ≥
m2 − 2 − n(m − 2)

2(n −m)(m − 1)

⎛

⎝

m

∑
p=2

AΣ1(ep, ep)
⎞

⎠

2

.
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Proof. To estimate the term V1, we begin by discarding the off-diagonal terms of the

second fundamental form hΣ1 :

V1 =∣AΣ1 ∣
2
+

m

∑
p=2

n

∑
q=p+1

(AΣ1(ep, ep)AΣ1(eq, eq) −AΣ1(ep, eq)
2)

≥
n

∑
p=2

AΣ1(ep, ep)
2
+

m

∑
p=2

n

∑
q=p+1

AΣ1(ep, ep)AΣ1(eq, eq).

The terms on the right hand side can be rewritten as follows:

V1 ≥
1

2

m

∑
p=2

AΣ1(ep, ep)
2
+

n

∑
q=m+1

AΣ1(eq, eq)
2
+

m

∑
p=2

AΣ1(ep, ep)HΣ1 −
1

2

⎛

⎝

m

∑
p=2

AΣ1(ep, ep)
⎞

⎠

2

.

Recall that HΣ1 = 0. By the Cauchy–Schwarz inequality,

m

∑
p=2

AΣ1(ep, ep)
2
≥

1

m − 1

⎛

⎝

m

∑
p=2

AΣ1(ep, ep)
⎞

⎠

2

and

n

∑
q=m+1

AΣ1(eq, eq)
2
≥

1

n −m

⎛

⎝

n

∑
q=m+1

AΣ1(eq, eq)
⎞

⎠

2

=
1

n −m

⎛

⎝

m

∑
p=2

AΣ1(ep, ep)
⎞

⎠

2

,

where in the last step we have used the fact that HΣ1 = 0. Putting these facts together,

the assertion follows.

Lemma A.2.2 (Extrinsic curvature terms on intermediate slices).

We have for 2 ≤ k ≤m − 1 the estimate

Vk ≥
m2 − 2 − n(m − 2)

2(m − 1)(n −m)

⎛

⎝

n

∑
q=m+1

AΣk
(eq, eq)

⎞

⎠

2

.

Proof. To estimate the term Vk, we start by discarding the off-diagonal terms:

Vk =∣hΣk
∣
2
− (

1

2
−

1

2(k − 1)
)H2

Σk
+

m

∑
p=k+1

n

∑
q=p+1

(AΣk
(ep, ep)AΣk

(eq, eq) −AΣk
(ep, eq)

2)

≥
n

∑
p=k+1

AΣk
(ep, ep)

2
− (

1

2
−

1

2(k − 1)
)H2

Σk
+

m

∑
p=k+1

n

∑
q=p+1

AΣk
(ep, ep)AΣk

(eq, eq).
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The terms on the right hand side can be rewritten as follows:

Vk ≥
1

2

m

∑
p=k+1

AΣk
(ep, ep)

2
+

n

∑
q=m+1

AΣk
(eq, eq)

2

+
1

2(k − 1)

⎛

⎝

m

∑
p=k+1

AΣk
(ep, ep)

⎞

⎠

2

− (
1

2
−

1

2(k − 1)
)
⎛

⎝

n

∑
q=m+1

AΣk
(eq, eq)

⎞

⎠

2

+
1

k − 1

⎛

⎝

m

∑
p=k+1

AΣk
(ep, ep)

⎞

⎠

⎛

⎝

n

∑
q=m+1

AΣk
(eq, eq)

⎞

⎠
.

The Cauchy–Schwarz inequality gives

m

∑
p=k+1

AΣk
(ep, ep)

2
≥

1

m − k

⎛

⎝

m

∑
p=k+1

AΣk
(ep, ep)

⎞

⎠

2

and
n

∑
q=m+1

AΣk
(eq, eq)

2
≥

1

n −m

⎛

⎝

n

∑
q=m+1

AΣk
(eq, eq)

⎞

⎠

2

.

Moreover, Young’s inequality implies

⎛

⎝

m

∑
p=k+1

AΣk
(ep, ep)

⎞

⎠

⎛

⎝

n

∑
q=m+1

AΣk
(eq, eq)

⎞

⎠
≥ −

m − 1

2(m − k)

⎛

⎝

m

∑
p=k+1

AΣk
(ep, ep)

⎞

⎠

2

−
m − k

2(m − 1)

⎛

⎝

n

∑
q=m+1

AΣk
(eq, eq)

⎞

⎠

2

.

Putting these facts together, the assertion follows.

Lemma A.2.3 (Extrinsic curvature terms on bottom slice).

We have the estimate

Vm ≥
m2 − 2 − n(m − 2)

2(n −m)(m − 1)
H2

Σm
. (A.2)

Proof. We observe by the the trace estimate for symmetric two-tensors the inequality

Vm = ∣AΣm ∣
2
− (

1

2
−

1

2(m − 1)
)H2

Σm
≥ (

1

n −m
− (

1

2
−

1

2(m − 1)
))H2

Σm

=
m2 − 2 − n(m − 2)

2(n −m)(m − 1)
H2

Σm
.
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Clearly, Lemma 2.3.2 follows.

A.3 Existence of minimal slicings

In this section we prove existence of stable weighted slicings of order m. The argument

uses the mapping degree and is essentially contained in Theorem 4.5 of [107]. Alterna-

tively, one could also use an argument based on homology, compare with Theorem 4.6

in [107].

Proof of Theorem 2.0.7. Suppose F ∶ Nn → Tm×Mn−m has degree d ≠ 0. The projection

of F onto the factors yields maps f0 ∶ N →M and maps f1, . . . , fm ∶ N → S1. Let Θ be

a top-dimensional form of the manifold M normalized such that ∫M Θ = 1, and let θ be

a one-form on the circle S1 with ∫S1 θ = 1. We define the pull-back forms Ω ∶= f∗0 Θ and

ωj ∶= f
∗
j θ. By the normalization condition we deduce that ∫N ω1 ∧ ⋅ ⋅ ⋅ ∧ ωm ∧Ω = d.

We claim that one can construct the slices Σk and the weights ρk, such that ∫Σk
ωk+1∧

⋅ ⋅ ⋅ ∧ ωm ∧ Ω = d holds. We prove the claim by induction. The base case k = 0 holds

by the previous observation and by setting Σ0 ∶= N and ρ0 ∶= 1. For the induction

step we suppose that we have constructed the slice Σk−1 and the weight ρk−1, such that

∫Σk−1
ωk ∧ ⋅ ⋅ ⋅ ∧ ωm ∧Ω = d.

We define a class Ak by

Ak = {Σ is an (n − k) − integer rectifiable current in Σk with ∫
Σ
ωk+1 ∧ ⋅ ⋅ ⋅ ∧ ωm ∧Ω = d} .

The first step is to show that the above class is non-empty. Suppose pk ∈ S1 is a

regular value of the map fk∣Σk−1
∶ Σk−1 → S1. Then the the preimage Σ̃k = {x ∈ Σk−1 ∶

fk(x) = pk} is a smooth and embedded hypersurface in Σk−1. A priori Σ̃k might be

empty. On the complement S1/{pk} the one-form θ is exact. In other words, there exists
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a function ψk ∶ S1/{pk} → R, such that dψk = θ. Moreover, due to the normalization

condition ∫S1 θ = 1, the function ψk jumps by 1 at pk.

We define a function φk ∶ Σk−1/Σ̃k → R by setting φk ∶= ψk ○ fk. Since the pull-back

commutes with the differential we deduce dφk = f
∗
k (dψk) = f

∗
k θ = ωk on Σk−1/Σ̃k.

The above observation (and the closedness of the forms ωk, . . . , ωm,Ω) implies

d(φk ωk+1 ∧ ⋅ ⋅ ⋅ ∧ ωm ∧Ω) = ωk ∧ ωk+1 ∧ ⋅ ⋅ ⋅ ∧ ωm ∧Ω.

Let us integrate the above relation over Σk−1 ∖ Σ̃k. By Stokes theorem, the integral of

the left hand side yields two boundary integrals over Σ̃k. Since φk jumps by 1 at Σ̃k,

we obtain

∫
Σ̃k

ωk+1 ∧ ⋅ ⋅ ⋅ ∧ ωm ∧Ω = ∫
Σk−1∖Σ̃k

d(φk ωk+1 ∧ ⋅ ⋅ ⋅ ∧ ωm ∧Ω)

= ∫
Σk−1∖Σ̃k

ωk ∧ ωk+1 ∧ ⋅ ⋅ ⋅ ∧ ωm ∧Ω

= d.

In particular, Σ̃k is non-empty and belongs to the class Ak. This shows that the class

Ak is non-empty.

We consider the variational problem

σk = inf {Mρk−1,n−k(Σ) ∶ Σ ∈ Ak} ,

where Mρk−1,n−k denotes the ρk−1-weighted mass functional on (n − k)-integer rectifi-

able currents. By the compactness theory for integer rectifiable currents, compare for

example Theorem 7.5.3 in [?], we deduce that there exists an (n − k)-integer rectifiable

current Σk+1 with mass Mρk−1,n−k(Σk) = σk.

By the regularity theory for integer rectifiable currents, compare for example Theo-

rem 7.5.8 in [?] or the survey [43], and the dimension bound n ≤ 7 we deduce that Σk
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is a smooth, two-sided and embedded hypersurface. Moreover, the smooth surface Σk

is stable with respect to variations of the weighted area, and therefore we can find a

positive first eigenfunction vk of the weighted stability operator. Defining the weight ρk

by the formula ρk = ρk−1 ⋅ vk completes the induction step.
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Appendix B

Technical aspects of Theorem B

This appendix is based upon joint work with D. Kazaras and M. Khuri [64] and with

Yiyue Zhang HirschZhang.

We address several technical difficulties arising in the proof of Theorem B. We would

like to highlight that the majority of these difficulties are caused by the vanishing of the

gradient of the spacetime harmonic function.

B.1 The generalized exterior region

Recall the central formula

div(∇∣∇u∣ + k(∇u, ⋅)) +K ∣∇u∣ =
∣∇̄2u∣2

2∣∇u∣
+ µ∣∇u∣ + ⟨J,∇u⟩.

Upon integration and by use of Gauss-Bonnet’s theorem, this formula leads to the

spacetime PMT assuming the level-sets of u are not spherical. In the main text we

assumed that M3 is topologically R3. In this case spherical level-sets must bound a

region. However, in view of the strong maximum principle, this is impossible.

In general this does not need to be the case. For instance, for R3#S2 × S1 spherical

level-sets can be present. To solve this issue we will construct a so-called generalized

exterior region, i.e. an asymptotically flat manifold (Mext, g, k) whose end coincides

with (M,g, k), whose second homology is trivial and whose boundary consist entirely of

MITS and MOTS (i.e. surfaces where θ± = H ± trΣ k = 0). On these MOTS and MITS
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boundaries we then carefully choose appropriate boundary conditions for the spacetime

harmonic function u. This will be the subject of this and the next section.

In Lemma 4.1 of [79] G. Huisken and T. Ilmanen established the existence of an

exterior region for asymptotically flat Riemannian 3-manifolds, showing that for each

asymptotic end there is such a region which is diffeomorphic to the complement of a finite

union of balls in R3. They accomplished this by removing all compact minimal surfaces,

including immersed ones, to identify the trapped region and remove it. As pointed out by

Lee in [90, page 140], the weaker topological simplification H2(Mext, ∂Mext;Z) = 0 may

still be achieved by only removing embedded compact minimal surfaces. His proof relies

on the classical result that within each nontrivial 2-dimensional homology class there

exists an area minimizing minimal surface representative. Due to the lack of a variational

characterization, such a result is not currently known for MOTS. Nevertheless, the

conclusion of Lee’s observation still remains valid in spirit with the role of minimal

surfaces replaced by that of MOTS and MITS.

Proposition B.1.1. Let (M,g, k) be a smooth asymptotically flat initial data set sat-

isfying the dominant energy condition. Then for each end Mend, there exists a new

initial data set (Mext, gext, kext) having a single end which is isometric (as initial data)

to (Mend, g, k). Furthermore, Mext is orientable, satisfies H2(Mext, ∂Mext;Z) = 0, and

has a boundary ∂Mext consisting entirely of MOTS and MITS.

Proof. There are two primary steps. The first is to identify appropriate (possibly im-

mersed) MOTS and MITS to remove from M in order to obtain a subset M ′ ⊃ Mend,

whose compactification admits a positive scalar curvature metric. The second step en-

tails reducing the first Betti number of M ′ to zero via an iterative process which involves

passing to finite sheeted covers. The proof of the first step is based on a reorganization

of the arguments used for [5, Theorem 1.2], and thus only an outline of the main ideas
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will be given here. The second step will be described in detail. In what follows, we as-

sume without loss of generality that M is orientable by passing to the orientable double

cover if necessary.

According to [47, Theorem 22] there is a sequence of perturbed initial data (M,gi, ki)

with gi → g in W 3,p
−q (M) and ki → k in W 2,p

−q−1(M) as i →∞ for p > 3, such that a strict

dominant energy condition is satisfied µi > ∣Ji∣gi . To this end, solve the Jang equation

[46, Proposition 7] for (M,gi, ki) with standard asymptotic decay in each end. Note that

the assumed decay on Trgk is not in general sufficient to guarantee bounded solutions

of Jang’s equation near infinity. However, as pointed out in [5, Remarks 2.2 and 3.1],

this technicality can be avoided by an appropriate deformation of the initial data in

the asymptotic ends. The solution of Jang’s equation gives rise to a hypersurface in

R ×M which is a vertical graph over an open subset of M containing the asymptotic

ends; Ωi ⊂ M will denote the component of this open set that contains the designated

end Mend. The components of the boundary ∂Ωi are spherical MOTS or MITS that

satisfy a uniform C-almost minimization property [5, Remark 2.3], [44]. Note that the

spherical topology is due to the strict dominant energy condition and stability property

of the Jang graph. Observe that due to the strict dominant energy condition, the proof

of [5, Theorem 1.2] shows that a conformal change of metric may be introduced, after

preliminary deformations along the asymptotically cylindrical ends as well as in the

asymptotically flat ends, to arrive at a positive scalar curvature (PSC) metric on the

manifold obtained by compactifying the asymptotically flat ends of Ωi, which also has

a Riemannian product structure near each boundary component.

Next, by the compactness theory of [44, 45], the sequence ∂Ωi subconverges in the

C2,α local graph sense to a set S which is a finite collection of MOTS {S+a }
a0
a=1 and

MITS {S−b }
b0
b=1 in (M,g, k). Moreover, each of these MOTS and MITS arises from a
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sequence of connected closed properly embedded MOTS S+ai ⊂ ∂Ωi or MITS S−bi ⊂ ∂Ωi

with respect to (gi, ki). We claim that S is a smooth submanifold. If a MOTS S+a or a

MITS S−b remains disjoint from the other MOTS and MITS of S, then this component

is a smooth submanifold. If S+a or S−b has nontrivial intersection and does not coincide

with another member of the MOTS and MITS comprising S, this violates the C-almost

minimization property of ∂Ωi for large i. Thus the MOTS and MITS in S are pairwise

disjoint, and hence are smooth submanifolds.

To conclude the first step, remove the surface S from M and take the metric com-

pletion of the component containing the designated end Mend to obtain an initial data

set (M ′, g, k). Note that this contains (Mend, g, k), has boundary components consist-

ing entirely of smooth MOTS and MITS, and the topology of M ′ agrees with that of

Ωi for large i. Because Ωi admits a PSC metric having Riemannian product structure

near each boundary component, we may apply the prime decomposition theorem along

with a result of Gromov-Lawson [58] and the resolution of the Poincaré conjecture to

deduce that manifold M ′ has PSC topology. That is, M ′ is diffeomorphic to a finite

connected sum of spherical spaces, S1 × S2’s, and R3’s representing the ends, all with

a finite number of 3-balls removed which indicate the horizons. Thus, to conclude the

first step of the proof, we have produced an asymptotically flat initial data set (M ′, g, k)

having PSC topology, with boundary ∂M ′ consisting of MOTS and MITS components,

and is such that one of the ends coincides with (Mend, g, k).

In the second step of the proof the first Betti number of M ′ will be reduced to

zero with an iterative procedure. Since H2(M
′, ∂M ′;Z) is Poincaré dual to H1(M ′;Z),

which is itself isomorphic to the torsion-free subgroup of H1(M
′;Z), this procedure will

result in the desired conclusion of vanishing second homology relative to the boundary.

As observed above, M ′ can be expressed as the compliment of finitely many disjoint
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balls in #l(S1 ×S2)#N where N is a rational homology sphere. Since N has vanishing

first Betti number, b1(M ′) is equal to the number of its handle S1 ×S2 summands. We

proceed by constructing a particular double cover of M ′. Let Σ′ ⊂ M̊ ′ be the image

of an embedding of S2 in one of the S1 × S2 summands of M ′ which is homologous

{pt} × S2 ⊂ S1 × S2. Define W to be the metric completion of M ′ ∖Σ′ and notice that

its boundary can be decomposed as

∂W = ∂M ′
∪Σ′1 ∪Σ

′
2,

where Σ′1 and Σ′2 are copies of Σ′. Next, consider the manifold

M =W1 ⊔W2/ ∼,

where W1 and W2 are copies of W and the relation ∼ identifies Σ′1 ⊂W1 with Σ′2 ⊂W2

and Σ′2 ⊂ W1 with Σ′1 ⊂ W2. The manifold M is a two-fold cover of M , classified by

the mod 2 reduction of the cohomology class Poincaré dual to [Σ], and the pullback

of the data (g, k) to M will be denoted by (g, k). Furthermore, observe that M is

diffeomorphic to the complement of finitely many disjoint balls in

(#l−1
(S1
× S2
)#N)#(S1

× S2
)# (#l−1

(S1
× S2
)#N) ,

so that

b1(M) = 2b1(M
′
) − 1. (B.1)

Consider the two ends of M that are isometric to Mend, and choose one for reference

and denote it by E . The boundary of the double cover may be decomposed as ∂M =

∂+M ∪ ∂−M , where θ± = 0 on ∂±M and the null expansions are computed with respect

to the unit normal pointing inside M . Now let D ⊂M be the bounded component that

remains after removing sufficiently large coordinate spheres in each of the asymptotic

ends of M . The boundary may be decomposed into two types of surfaces ∂D = ∂outD ∪
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∂inD, in which θ+ ≥ 0 on ∂outD with respect to the normal pointing out of D, and

θ+ ≤ 0 on ∂inD with respect to the normal pointing into D. Note that MOTS boundary

components belong to ∂inD, while MITS components belong to ∂outD. Moreover the

coordinate sphere boundary in E satisfies the strict inequality θ+ > 0 and belongs to

∂outD, while the coordinate sphere boundaries lying in the remaining ends satisfy the

strict inequality θ+ < 0 and belong to ∂inD. It follows that we may apply the MOTS

existence result [48, Theorem 4.2], or rather a slight generalization of it to allow for

nonstrict inequalities (see [7, Section 5] or [45, Remark 4.1]), to obtain an outermost

(with respect to E) MOTS Σ ⊂ D that separates ∂outD from ∂inD. Furthermore, this

surface separates M into two disjoint regions M ∖ Σ = Mout ∪M in, where Mout is the

component containing the reference end E , see Figure B.1.

In the remainder of the argument, we will first consider the case in which (M,g, k)

satisfies a strict dominant energy condition, and will subsequently explain the alterations

required for the general case. By the strict dominant energy condition, stability of

outermost MOTS, and orientability of M , it follows that Σ consists of finitely many

disjoint embedded spheres. Now consider the Mayer-Vietoris sequence associated with

the decomposition M =Mout ∪M in, that is

⋯ Ð→H1(Σ;R) Ð→H1(Mout;R) ⊕H1(M in;R) Ð→H1(M ;R) Ð→ ⋯.

Since H1(Σ;R) = 0 we find that that b1(Mout) + b1(M in) ≤ b1(M). Taking (B.1) into

consideration shows that either Mout or M in must have first Betti number strictly less

than b1(M
′); label the component of this manifold that contains an isometric copy of

Mend, by M
′
. Notice that each component of the boundary of M

′
is either a MOTS or

a MITS. Moreover, as Σ is spherical, the sets Mout and M in give rise to a connected

sum decomposition of M . It follows that both Mout and M in are diffeomorphic to

the compliment of finitely many disjoint balls in the connected sum of S1 × S2’s and a

106



rational homology sphere. Furthermore, we may assume that M
′
has a single end, since

if necessary attention may be restricted to the region outside the outermost MOTS to

isolate the isometric copy of Mend. This same procedure can be applied to M
′
to once

again reduce the first Betti number by at least one. Continuing in this manner yields

the desired initial data (Mext, gext, kext).

(M,g, k)
Σ′

(M,g, k)

M out

(Mext, gext, kext)

Figure B.1: A schematic description of the stages in the second step in the proof

of Proposition B.1.1.
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To finish, we describe the modifications necessary to accomplish the construction in

the above paragraph in the general case when (M,g, k) satisfies the dominant energy

condition, but not strictly so. In this case, apply the approximating argument from

the first step to obtain a sequence (gi, ki) on M satisfying the strict dominant energy

condition and which converges to (g, k). Note that a minor refinement of [47, Theorem

22] is required for this due to the presence of boundary components, see [5, footnote -

page 869]. The outermost MOTS Σi that induces a separation M =M
i
out ∪M

i
in, admits

the C-almost minimization property and consists of spherical MOTS and MITS. By the

arguments of the previous paragraph, the first Betti number of either M
i
out or M

i
in is

strictly less than b1(M
′). As described in the first step of the proof, Σi subconverges

to a limiting MOTS/MITS surface S in M , and we may consider the metric completion

M̂ of M ∖ S. The two components of M̂ containing the isometric copies of Mend, have

the same topology as components of M
i
out or M

i
in for sufficiently large i. It follows

that one of them, M̂ ′, satisfies b1(M̂ ′) < b1(M
′). As above it may be assumed that the

component M̂ ′ possesses one end modeling E . Moreover its boundary consists of MOTS

and MITS, and it is diffeomorphic to the compliment of finitely many disjoint balls in

the connected sum of S1 ×S2’s and a rational homology sphere. Thus the iteration may

be continued to obtain the desired conclusion.

B.2 Controlling the level-set topology

As seen in Figure B.1, we have now created a manifold with vanishing second homology,

but we might have created a MITS / MOTS boundary. In the Riemannian case (i.e. the

k = 0 setting) two strategies have been pursued in [18]: First, it is possible to fill-in the

boundary components to create a manifold without boundary. Second, it is possible to

use Neumann boundary conditions for the spacetime harmonic funtions for which one
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can verify that they don’t contribute negatively to the integral formula. However, both

approaches are not available in the spacetime (k ≠ 0) setting.

In order to apply the main integral inequality Proposition B.3.2 below successfully, it

is important to ensure that the Euler characteristic of regular level sets for the spacetime

harmonic function does not exceed 1. In this section, we show that it is possible to choose

the spacetime harmonic function, by carefully selecting its Dirichlet data, to achieve

this goal for the level sets. Since this will be employed for generalized exterior regions,

here we consider asymptotically flat initial data (M,g, k) with a single asymptotic end,

although the boundary may have several components ∂M = ∪ni=1∂iM . Let v solve (3.26),

(3.27) and consider the Dirichlet problem

∆uc + trg k∣∇uc∣ = 0 on M, (B.2)

uc = ci on ∂iM, i = 1, . . . , n, uc = v +O2(r
1−2q
) as r →∞, (B.3)

where c = (c1, . . . , cn) are constants. The following is a technical preliminary result that

indicates how to choose the constants c in order to achieve the main topological conclu-

sions of Theorem B.2.2 concerning level sets, as well as to aid with the computation of

boundary terms in the integral inequality Proposition B.3.2.

Lemma B.2.1. Let uc be the solution of (B.2), (B.3) given by Theorem 3.6.2.

1. Let (−1)ςi , ςi ∈ {0,1} be a choice of sign associated with each boundary component

i = 1, . . . , n. There exists a set of constants c such that for each boundary compo-

nent there is a point yi ∈ ∂iM with ∣∇uc(yi)∣ = 0, and in addition (−1)ςi∂υuc ≥ 0

on ∂iM , where υ is the unit normal to ∂M pointing outside M .

2. If v ≠ 0, then within each boundary component ∂iM , the set of points at which

∣∇uc∣ = 0 is nowhere dense.
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Proof. A priori estimates established in the previous section show that uc is continuously

differentiable in c. Set ui ∶= ∂ciuc and observe that these functions satisfy

∆ui + trg k
∇uc
∣∇uc∣

⋅ ∇ui = 0 on M, (B.4)

ui = δij on ∂jM, j = 1, . . . , n, ui = O(r
1−2q
) as r →∞. (B.5)

Clearly the set of functions {u1, . . . , un} is linearly independent. Pick yi ∈ ∂iM , i =

1, . . . , n and set y = (y1, . . . , yn). We claim that the Jacobian matrix

U(c,y) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂υu1(y1) ∂υu2(y1) . . . ∂υun(y1)

∂υu1(y2) ∂υu2(y2) . . . ∂υun(y2)

⋮ ⋮ ⋱ ⋮

∂υu1(yn) ∂υu2(yn) . . . ∂υun(yn)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

is invertible, where υ is the unit outer normal to ∂M . Suppose by way of contradiction

that it is not invertible. Then there exist constants bi, i = 1, . . . , n, not all zero, such

that u = ∑n
i=1 biui satisfies ∂υu(yj) = 0, j = 1, . . . , n. Note that the function u satisfies

∆u + trg k
∇uc
∣∇uc∣

⋅ ∇u = 0 on M,

u = bj on ∂jM, j = 1, . . . , n, u = O(r1−2q) as r →∞.

Since bi are not all zero, we have that u ≠ 0. On the other hand, by the maximum

principle either the global max or min must be achieved on ∂i0M for some i0. By the

Hopf lemma, we then have ∂υu(yi0) ≠ 0. However this contradicts the basic property of

u described above. It follows that U is invertible.

We now show that U(c,y) stays uniformly bounded and away from being singu-

lar. To see this, suppose that for a sequence {(cl,yl)}
∞
l=1 either ∥ U(cl,yl) ∥→ ∞

or detU(cl,yl) → 0. Observe that the solutions ∂ciucl of (B.4), (B.5) are uniformly

controlled in W 2,p
loc (M) by the Lp estimates, since the first order coefficients remain
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uniformly bounded. It follows that there is subsequential convergence in C1,α(M) to a

solution ∂ciu∞. Consequently, using that the sequence {yl} ⊂ Π
n
i=1∂iM lies in a compact

set, we find that there is subconvergence U(cl,yl) → U(∞). However, the arguments of

the previous paragraph show that U(∞) is invertible, and this contradiction yields the

desired conclusion. In particular, U−1(c,y) is uniformly bounded.

Consider the map U ∶ Rn → Rn given by

U(c1, . . . , cn) = (∂υuc(y1(c)), . . . , ∂υuc(yn(c))),

where yi(c) ∈ ∂iM is a point at which ∂υuc achieves its: minimum over this com-

ponent when ςi = 0, or maximum over this component when ςi = 1. Observe that U

is continuous. Moreover, it will be shown that this function is differentiable in cer-

tain directions, and the matrix U will play a role similar to a Jacobian for U. Set

p0 = (∂υu0(y1(0)), . . . , ∂υu0(yn(0))), and let p(t) ⊂ Rn be a smooth curve emanating

from p0 = p(0) and ending at p(1) = 0. We claim that there is a smooth curve c(t),

t ∈ [0,1], emanating from c(0) = 0, such that U(c(t)) = p(t). To find this solve the ODE

initial value problem

c′(t) = U−1(c(t),y(c(t)))p′(t), c(0) = 0. (B.6)

Observe that global existence holds since U−1(c,y(c)) is uniformly bounded indepen-

dent of c.

We will now show that U(c(t)) is differentiable. Let yi(c) be a minimum point for
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∂υuc on ∂iM , and 0 ≤ s < t ≤ 1; a similar argument holds or a maximum point. Then

∂υuc(t)(yi(c(t))) − ∂υuc(s)(yi(c(s)))

= [∂υuc(t)(yi(c(t))) − ∂υuc(s)(yi(c(t)))]

+ [∂υuc(s)(yi(c(t))) − ∂υuc(s)(yi(c(s)))]

≥∂υuc(t)(yi(c(t))) − ∂υuc(s)(yi(c(t)))

=∑
j

∂υ∂cjuc(t)(yi(c(t))c
′
j(t)(t − s) + o(t − s)

=p′i(t)(t − s) + o(t − s),

and

∂υuc(t)(yi(c(t))) − ∂υuc(s)(yi(c(s)))

= [∂υuc(t)(yi(c(t))) − ∂υuc(t)(yi(c(s)))]

+ [∂υuc(t)(yi(c(s))) − ∂υuc(s)(yi(c(s)))]

≤∂υuc(t)(yi(c(s))) − ∂υuc(s)(yi(c(s)))

=∑
j

∂υ∂cjuc(s)(yi(c(s))c
′
j(s)(t − s) + o(t − s)

=p′i(s)(t − s) + o(t − s),

where we have used Taylor’s theorem and (B.6) with the notation p(t) = (p1(t), . . . , pn(t)).

Dividing both sides of these equations by t − s and letting t → s shows that U(c(t)) is

differentiable, and
d

dt
U(c(t)) = p′(t).

Integrating this equation then gives the desired relation. We now have U(c(1)) = 0, so

that c(1) is the claimed set of constants such that

∂υuc(1)(yi(c(1))) = 0, i = 1, . . . , n.

This completes the proof of (1).
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Consider now part (2). Suppose that the set within ∂iM on which ∣∇uc∣ = 0 has a

nonempty interior. Then since equation (B.2) may be viewed as a linear equations with

bounded coefficients, the unique continuation result [?, Theorem 1.7] applies to show

that uc ≡ const. This contradicts the assumption that v ≠ 0. Since the set on which

∣∇uc∣ = 0 is also closed, it follows that it is nowhere dense.

∂iM -

u−1c (ci)

u−1c (0)

u−1c (−1)

Figure B.2: Possible level sets of the function uc constructed in Lemma B.2.1.
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We are now in a position to establish the main topological result concerning regu-

lar level sets of the spacetime harmonic function uc arising from Lemma B.2.1. This

will later be employed in generalized exterior regions which have a simplified topology,

although we do not use here the MOTS and MITS condition on the boundary of such

regions.

Theorem B.2.2. Let (M,g, k) be a smooth asymptotically flat initial data set having a

single asymptotic end, and satisfying H2(M,∂M ;Z) = 0. Let uc be the solution of (B.2),

(B.3) with c given by Lemma B.2.1. Then all regular level sets of uc are connected and

noncompact with a single end modeled on R2 ∖B1. In particular, if Σt is a regular level

set then its Euler characteristic satisfies χ(Σt) ≤ 1.

Proof. Let Σt = u
−1
c (t) be a regular level set, and suppose that there is a compact

connected component Σ′t ⊂ Σt. Note that Σ′t is a 2-sided properly embedded submanifold.

Since H2(M,∂M ;Z) = 0 the boundary cycles ∂iM , i = 1, . . . , n generate H2(M). Thus,

either Σ′t is homologous to zero or it is homologous to a sum of boundary cycles. In

the former case Σ′t bounds a compact region of M , and since the spacetime harmonic

function equation admits a maximum principle the solution uc ≡ t in this region. This,

however, contradicts the assumption that t is a regular value. So now consider the later

case in which [Σ′t] can be represented as the sum of boundary classes∑i∈I[∂iM], for some

index set I. Let D ⊂ M denote the compact region bounded by Σ′t ∪ (∪i∈I∂iM) = ∂D.

Since the maximum and minimum of uc on D are achieved on the boundary, it follows

that either the max or min is achieved on ∂i0M , for some i0 ∈ I. In particular, this

max or min is achieved at yi0 ∈ ∂i0M . Next observe that the Hopf lemma applies

to the spacetime harmonic function equation, since the nonlinear first order part may

be expressed as a linear term with bounded coefficients, and therefore ∂υuc(yi0) ≠ 0.

However this contradicts the fact that yi0 is a critical point for uc, as stated in Lemma
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B.2.1. We conclude that all components of Σt are noncompact. Moreover Σt is a closed

subset of M , since it is properly embedded. Therefore if any component of Σt stays

within Mr (see Section 3.6.1), it must be compact which is a contradiction. It follows

that each component must extend beyond Sr for all r.

The asymptotics of uc ∼ aixi in the end Mend imply that for all sufficiently large r

the level set Σt stays within a slab {x ∈M ∖Mr ∣ t−C < aix
i < t+C}, for some constant

C. Indeed, by the implicit function theorem Σt may be presented uniquely in this region

as a graph over the plane t = aixi. Hence, Σt is connected and has a single end modeled

on R2 ∖B1.

B.3 The integral formula with vanishing gradient

We have already established the main formula for spacetime harmonic functions u in

Theorem 3.3.1 assuming that ∇u is not vanishing. However, this may not be the case

in general, and we establish in this setting a version of Theorem 3.3.1 which allows ∇u

to vanish.

Before stating the primary integral formula for spacetime harmonic functions, we

give a technical lemma based on a refined version of Kato’s inequality. This will be

used in the proof of the main result of this section. Note that the natural regularity for

spacetime harmonic functions is C2,α(M), 0 < α < 1. By Rademacher’s theorem ∣∇u∣

is then differentiable almost everywhere, and from the equation the same holds for ∆u.

Thus, the inequality of the next result holds away from a set of measure zero.

Lemma B.3.1. Let u be a spacetime harmonic function for the initial data set (M,g, k).

Then there exists a constant C > 0 depending only on K and its first derivatives such
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that

∣∇
2u∣2 − ∣∇∣∇u∣∣2 + ⟨∇u,∇∆u⟩ ≥ −C ∣∇u∣2. (B.7)

Proof. By using the spacetime Laplace equation ∆u = − trg k∣∇u∣, we have

⟨∇u,∇∆u⟩ ≥ − trg k⟨∇u,∇∣∇u∣⟩ −C0∣∇u∣
2
≥ −

1

4
∣∇∣∇u∣∣2 −C1∣∇u∣

2. (B.8)

Moreover, a refined version of the Kato inequality produces

∣∇
2u∣2 ≥

5

4
∣∇∣∇u∣∣2 −C2∣∇u∣

2. (B.9)

Note that as discussed above, these inequalities hold almost everywhere. Combining

(B.8) and (B.9) yields the desired result.

It remains to establish (B.9). To this end denote ui = ∂iu and set

Xi =
1

2
∂i∣∇u∣

2
−
1

3
(∆u)ui, Wij =X(iuj) −

1

3
⟨X,∇u⟩gij ,

where parentheses are used to indicate symmetrization of indices. Observe that

∣W ∣2 =Xiuj (X(iuj) −
1

3
⟨X,∇u⟩gij)

=
1

2
∣X ∣2∣∇u∣2 +

1

6
⟨X,∇u⟩2

≤
2

3
∣X ∣2∣∇u∣2,

which implies that

1

2
Xi∂i∣∇u∣

2
=Xiuj∇iju

=Xiuj (∇iju −
1

3
(∆u)gij) +

1

3
(∆u)⟨X,∇u⟩

=W ij
(∇iju −

1

3
(∆u)gij) +

1

3
(∆u)⟨X,∇u⟩

≤∣W ∣

√

∣∇2u∣2 −
1

3
(∆u)2 +

1

3
(∆u)⟨X,∇u⟩

≤

√
2

3
∣X ∣∣∇u∣

√

∣∇2u∣2 −
1

3
(∆u)2 +

1

3
(∆u)⟨X,∇u⟩.
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It follows that

∣X ∣ ≤

√
2

3
∣∇u∣

√

∣∇2u∣2 −
1

3
(∆u)2.

Squaring both sides, utilizing the spacetime harmonic function equation, and applying

Young’s inequality then gives

∣∇u∣2∣∇2u∣2 ≥
1

3
(∆u)2∣∇u∣2 +

3

2
∣X ∣2

=
1

2
(∆u)2∣∇u∣2 +

3

2
∣∇∣∇u∣∣2∣∇u∣2 − (∆u)∣∇u∣⟨∇u,∇∣∇u∣⟩

≥
5

4
∣∇∣∇u∣∣2∣∇u∣2 −C2∣∇u∣

4.

This gives inequality (B.9), if ∣∇u∣ ≠ 0. At points where ∣∇u∣ = 0 and ∣∇u∣ is differentiable,

we have that ∣∇∣∇u∣∣ = 0 since the nonnegative function ∣∇u∣ achieves its minimum value.

Inequality (B.9) thus holds trivially at such points. The remaining points, where ∣∇u∣ = 0

and ∣∇u∣ is not differentiable, form a set of measure zero.

We are now in a position to establish the main integral formula for spacetime har-

monic functions. This may be viewed as a generalization of [18, Proposition 4.2], see

also [113].

Proposition B.3.2. Let (Ω, g, k) be a 3-dimensional oriented compact initial data set

with smooth boundary ∂Ω, having outward unit normal υ. Let u ∶ Ω→ R be a spacetime

harmonic function, and denote the open subset of ∂Ω on which ∣∇u∣ ≠ 0 by ∂≠0Ω. If u

and u denote the maximum and minimum values of u and Σt are t-level sets, then

∫
∂≠0Ω
(∂υ ∣∇u∣ + k(∇u, υ))dA ≥ ∫

u

u
∫
Σt

(
1

2

∣∇̄2u∣2

∣∇u∣2
+ µ + J(ν) −K)dAdt,

where ν = ∇u∣∇u∣ and K is the level set Gauss curvature.

Proof. Recall Bochner’s identity

1

2
∆∣∇u∣2 = ∣∇2u∣2 +Ric(∇u,∇u) + ⟨∇u,∇∆u⟩.
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For ε > 0 set φε =
√
∣∇u∣2 + ε, and use Bochner’s identity to find

∆φε =
∆∣∇u∣2

2φε
−
∣∇∣∇u∣2∣2

4φ3
ε

≥
1

φε
(∣∇

2u∣2 − ∣∇∣∇u∣∣2 +Ric(∇u,∇u) + ⟨∇u,∇∆u⟩) .

(B.10)

On a regular level set Σ, the unit normal is ν = ∇u∣∇u∣ and the second fundamental form

is given by A = ∇
2
Σu

∣∇u∣ , where ∇2
Σu represents the Hessian of u restricted to TΣ⊗TΣ. We

then have

∣A∣2 = ∣∇u∣−2 (∣∇2u∣2 − 2∣∇∣∇u∣∣2 + [∇2u(ν, ν)]2) ,

and the mean curvature satisfies

∣∇u∣H =∆u −∇2
νu. (B.11)

Furthermore by taking two traces of the Gauss equations

2Ric(ν, ν) = R−2K − ∣A∣2 +H2, (B.12)

where R is the scalar curvature of g. Combining these formulas with (B.10) produces

∆φε ≥
1

φε
(∣∇

2u∣2 − ∣∇∣∇u∣∣2)

+
1

φε
(⟨∇u,∇∆u⟩ +

∣∇u∣2

2
(R−2K +H2

− ∣A∣2))

=
1

2φε
(∣∇

2u∣2 + (Rg −RΣ)∣∇u∣
2)

+
1

2φε
(2⟨∇u,∇∆u⟩ + (∆u)2 − 2(∆u)∇2

νu) .

(B.13)

Let us now replace the Hessian with the spacetime Hessian via the relation ∇̄2u =

∇2u + k∣∇u∣, and utilize the spacetime harmonic function equation ∆u = − trg k∣∇u∣ to

find

∆φε ≥
1

2φε
(∣∇̄

2u∣2 − 2⟨k,∇2u⟩∣∇u∣ − ∣k∣2g ∣∇u∣
2
+ (R−2K)∣∇u∣2

−2⟨∇u,∇ trg k⟩∣∇u∣ − 2 trg k⟨∇u,∇∣∇u∣⟩ + trg k∣∇u∣
2
+ 2 trg k∣∇u∣∇

2
νu) .

118



Moreover noting that

⟨∇u,∇∣∇u∣⟩ =
1

2
⟨ν,∇∣∇u∣2⟩ = ui∇iνu = ∣∇u∣∇

2
νu,

2µ = R+ trg k
2
− ∣k∣2g,

gives rise to the following inequality on a regular level set

∆φε ≥
1

2φε
(∣∇̄

2u∣2 + (2µ − 2K)∣∇u∣2 − 2⟨k,∇2u⟩∣∇u∣ − 2⟨∇u,∇ trg k⟩∣∇u∣) . (B.14)

Consider an open set A ⊂ [u,u] containing the critical values of u, and let B ⊂ [u,u]

denote the complementary closed set. Then integrate by parts to obtain

∫
∂Ω
∂υφεdA = ∫

Ω
∆φεdV = ∫

u−1(A)
∆φεdV + ∫

u−1(B)
∆φεdV.

According to Lemma B.3.1 and (B.10) there is a positive constant C0, depending only

on Ric(g) along with trg k and its first derivatives, such that

∆φε ≥ −C0∣∇u∣. (B.15)

An application of the coarea formula to u ∶ u−1(A) → A then produces

−∫
u−1(A)

∆φεdV ≤ C0∫
u−1(A)

∣∇u∣dV = C0∫
t∈A
H

2
(Σt)dt, (B.16)

where H2(Σt) is the 2-dimensional Hausdorff measure of the t-level set Σt. Next, apply

the coarea formula to u ∶ u−1(B) → B together with (B.14) to find

∫
u−1(B)

∆φεdV

≥
1

2
∫
t∈B
∫
Σt

∣∇u∣

φε
[
∣∇̄2u∣2

∣∇u∣2
+ 2µ − 2K]dAdt.

≥
1

2
∫
t∈B
∫
Σt

∣∇u∣

φε
[−

2

∣∇u∣
(⟨k,∇2u⟩ + ⟨∇u,∇ trg k⟩)]dAdt.
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Combining all this together produces

∫
∂Ω
∂υφεdA +C0∫

t∈A
H

2
(Σt)dt

≥
1

2
∫
t∈B
∫
Σt

∣∇u∣

φε
(
∣∇̄2u∣2

∣∇u∣2
+ 2µ − 2K)dAdt

− ∫
t∈B
∫
Σt

φ−1ε (⟨k,∇
2u⟩ + ⟨∇u,∇ trg k⟩)dAdt.

(B.17)

On the set u−1(B), we have that ∣∇u∣ is uniformly bounded from below. In addition,

on ∂≠0Ω it holds that

∂υφε =
∣∇u∣

φε
∂υ ∣∇u∣ → ∂υ ∣∇u∣ as ε→ 0.

Therefore, the limit ε→ 0 may be taken in (B.17), resulting in the same bulk expression

except that φε is replaced by ∣∇u∣, and with the boundary integral taken over the

restricted set. Furthermore, by Sard’s theorem (see Remark B.3.3 below) the measure

∣A∣ of A may be taken to be arbitrarily small. Since the map t ↦ H2(Σt) is integrable

over [u,u] in light of the coarea formula, by then taking ∣A∣ → 0 we obtain

∫
∂≠0Ω

∂υ ∣∇u∣dA ≥
1

2
∫

u

u
∫
Σt

(
∣∇̄2u∣2

∣∇u∣2
+ 2µ − 2K)dAdt

− ∫
Ω
(⟨k,∇2u⟩ + ⟨∇u,∇ trg k⟩)dV.

Lastly integrating parts

−∫
Ω
⟨k,∇2u⟩dV = −∫

Ω
kij∇ijudV = ∫

Ω
ui∇jkij − ∫

∂Ω
k(∇u, υ)dA,

and recalling that J = divg(k −Kg), yields the desired result.

Remark B.3.3. The classical statement of Sard’s theorem in the current context re-

quires u ∈ C3, while spacetime harmonic functions typically only satisfy u ∈ C2,α,

0 < α < 1. Nevertheless, Sard’s theorem still applies. To see this, observe that since

∣∇u∣ is Lipschitz and hence in Lp
loc for all p, elliptic regularity yields u ∈ W 2,p

loc . It fol-

lows from Kato’s inequality that ∣∇u∣ ∈W 1,p
loc , and therefore u ∈W 3,p

loc . According to [50,

Theorem 5] the conclusion of Sard’s theorem holds for such functions.
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B.4 Computations at infinity

Let (M,g, k) be a complete asymptotically flat initial data set for the Einstein equations,

having generalized exterior region Mext associated with a particular end Mend and given

by Proposition B.1.1; for convenience we will continue denoting the metric and extrinsic

curvature on Mext by (g, k). Suppose that x = (x1, x2, x3) are spacetime harmonic

coordinates on Mext. This means that each function xl satisfies (B.2), (B.3) and is

given by Theorem 3.6.2 and Lemma B.2.1 (1), with asymptotics xl ∼ x̃l for some given

asymptotically flat coordinate system x̃ = (x̃1, x̃2, x̃3) on Mend. More precisely, by the

first part of Lemma B.2.1 we may choose the sign of the normal derivative at each

boundary component ∂iMext, i = 1, . . . , n so that:

∂υx
l
≤0 on ∂iMext if θ+ (∂iMext) = 0,

∂υx
l
≥0 on ∂iMext if θ− (∂iMext) = 0, l = 1,2,3.

(B.18)

Note that although xl are referred to as spacetime harmonic coordinates and are defined

on all of Mext, they are only guaranteed to form a coordinate system in Mend. Observe

that due to the asymptotic expansion in Theorem 3.6.2, the ADM energy and linear mo-

mentum computed in spacetime harmonic coordinates will agree with the computation

in any other valid asymptoticaly flat coordinate system [9].

For L > 0 sufficiently large define the cylindrical boundaries

D±L = {x ∈Mend ∣ (x
2
)
2
+ (x3)2 ≤ L2, x1 = ±L},

TL = {x ∈Mend ∣ (x
2
)
2
+ (x3)2 = L2, ∣x1∣ ≤ L},

CL =D
+
L ∪ TL ∪D

−
L,

and denote by ΩL the bounded component of Mext ∖ CL, so that ∂ΩL = CL ⊔ ∂Mext.

Let u = x1 be the spacetime harmonic function described above, and set Σt = u
−1(t) as

well as ΣL
t = Σt ∩ΩL. If t is a regular value of u, then ∂ΣL

t lies entirely within CL, due
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to the fact that u has critical points on each component ∂iMext, i = 1, . . . , n. Note also

that the regular level sets ΣL
t meet TL transversely, and by Theorem B.2.2, ΣL

t has only

one component so that χ(ΣL
t ) ≤ 1. Therefore we may apply Proposition B.3.2 together

with the Gauss-Bonnet theorem to obtain

1

2
∫
ΩL

(
∣∇̄2u∣2

∣∇u∣
+ 2(µ − ∣J ∣g)∣∇u∣)dV

≤∫

L

−L
(2πχ(Σt) − ∫

ΣL
t ∩TL

κt,L)dt + ∫
∂≠0ΩL

(∂υ ∣∇u∣ + k(∇u, υ))dA

≤4πL − ∫
L

−L
(∫

ΣL
t ∩TL

κt,L)dt + ∫
CL

(∂υ ∣∇u∣ + k(∇u, υ))dA

+ ∫
∂≠0Mext

(∂υ ∣∇u∣ + k(∇u, υ))dA,

(B.19)

where κt,L is the geodesic curvature of ΣL
t ∩TL interpreted as the boundary curve in Σt,

∂≠0Mext denotes the subset of ∂Mext where ∣∇u∣ ≠ 0, and we have used that ∣∇u∣ > 0 on

CL.

In what follows we will compute first the outer boundary integral along CL in the

asymptotic end, from which the ADM energy and linear momentum will arise. The

inner boundary integral along ∂≠0Mext will then be computed and shown to vanish, due

to the fact that ∂Mext consists of MOTS and MITS. Below, the notation ∫D±L ±f will be

used to represent ∫D+L f − ∫D−L f .

B.4.1 Computation of the outer boundary integral

In this section we show that the boundary term at ∞ of the main integral formula B.3.2

indeed yields the mass which follows the argument in the Riemannian case.

In [18, Lemma 6.1], a computation was carried out in harmonic coordinates. Each

step of the proof applies here without change using spacetime harmonic coordinates,

except for equation [18, (6.9)] where harmonicity was used. By replacing the harmonic
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function equation with the spacetime harmonic function equation, in this calculation,

we find that

∫
CL

∂υ ∣∇u∣dA

=∫
D±L

±
⎛

⎝

1

2
∑
j

(g1j,j − gjj,1) − trg k
⎞

⎠
dA

+
1

2L
∫
TL

[x2(g21,1 − g11,2) + x
3
(g31,1 − g11,3)]dA +O(L

1−2q
).

Similarly, [18, Lemma 6.2] may be carried over without change to the current setting to

yield

∫

L

−L
(∫

Σt∩TL

κt,L)dt

=4πL +
1

2L
∫
TL

[x2(g33,2 − g23,3) + x
3
(g22,3 − g32,2)]dA

+O(L1−2q
+L−q).

Next, observe that the outward normal υ to CL takes the form

υ =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

±∂1 +O(∣x∣
−q) on D±L,

x2

L ∂2 +
x3

L ∂3 +O(∣x∣
−q) on TL.

Furthermore

∇u = gi1∂i = ∂1 +O(∣x∣
−q
).

It follows that

k(∇u, υ) = ±k11 +O(∣x∣
−1−2q

) on D±L,

and

k(∇u, υ) =
x2

L
k12 +

x3

L
k13 +O(∣x∣

−1−2q
).
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Finally, combining these computations produces

4πL − ∫
L

−L
(∫

ΣL
t ∩TL

κt,L)dt + ∫
CL

(∂υ ∣∇u∣ + k(∇u, υ))dA

=
1

2
∫
D±L

±∑
j

(g1j,j − gjj,1)dA

+
1

2
∫
TL

[
x2

L
(g21,1 − g11,2) +

x3

L
(g31,1 − g11,3)]dA

+
1

2
∫
TL

[
x2

L
(g23,3 − g33,2) +

x3

L
(g32,2 − g22,3)]dA

+ ∫
D±L

±(k11 −K)dA + ∫
TL

(
x2

L
k12 +

x3

L
k13)dA +O(L

1−2q
+L−q)

=
1

2
∫
CL

∑
j

(gij,j − gjj,i)υ
idA

+ ∫
CL

(k1i − (Trgk)g1i)υ
idA +O(L1−2q

+L−q).

(B.20)

B.4.2 Computation of the inner boundary integral

Here we show that the inner boundary integral over ∂≠0Mext vanishes, due to boundary

behavior of the spacetime harmonic function combined with the fact that each boundary

component is either a MOTS or MITS. Moreover, if the boundary components consist

of weakly trapped surfaces then the inner boundary integral is nonpositive, which is an

advantageous sign with respect to positivity of the ADM energy. Let υ denote the unit

normal to a boundary component ∂iMext, which points outside of Mext. Then because

u is constant on ∂iMext, the spacetime harmonic function equation and gradient may

be rewritten on this surface as

∇
2
υυu =Hυ(u) − trg k∣∇u∣, ∇u = υ(u)υ.

Note that here, the mean curvature H is computed with respect to −υ. Observe that

∣∇u∣∂υ ∣∇u∣ =
1

2
∂υ ∣∇u∣

2
=
1

2
∂υ (g

ijuiuj) = u
j
∇jυu = υ(u)∇

2
υu,
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and hence

∂υ ∣∇u∣ =
υ(u)

∣∇u∣
∇

2
υu =

υ(u)

∣∇u∣
(Hυ(u) − trg k∣∇u∣) =H ∣υ(u)∣ − trg kυ(u).

Furthermore since

trg k = k(υ, υ) +Tr∂Mextk, k(∇u, υ) = k(υ, υ)υ(u), (B.21)

it follows that the inner boundary integral becomes

∫
∂≠0Mext

(∂υ ∣∇u∣ + k(∇u, υ))dA =∫
∂Mext

[H ∣υ(u)∣ − (Tr∂Mextk)υ(u)]dA

=
n

∑
i=1
∫
∂iMext

θ±∣υ(u)∣dA,
(B.22)

where we have used (B.18) in the last step. The notation θ± above indicates that the inte-

grand contains θ+ for a MOTS component and θ− for a MITS component. We conclude

that the inner boundary integral vanishes. Similarly, if the boundary of the general-

ized exterior region consists of weakly trapped surfaces then this boundary integral is

nonpositive.

B.4.3 Proof of Theorem B (the inequality)

By combining (B.19), (B.20), (B.22), and taking the limit as L→∞ we obtain

E + P1 ≥
1

16π
∫
Mext

(
∣∇̄2u∣2

∣∇u∣
+ 2(µ − ∣J ∣g)∣∇u∣)dV, (B.23)

since q > 1
2 . Furthermore, it may be assumed without loss of generality that the ADM

linear momentum satisfies P1 = −∣P ∣, by applying an appropriate rotation of the asymp-

totically flat coordinates x̃. This yields the desired inequalities.
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B.5 Classifying hypersurfaces in Minkowski space

In this section we address the Lorentzian version of fundamental theorem of hypersur-

faces which is needed to prove the case of equality of the spacetime PMT.

Proof of Proposition 3.5.2. We follow the proof of [102, page 100]. Let U be a compact

subset of M . We construct the metric ḡ = −dt2 + gt on (−ε, ε) ×U by prescribing

∂tgt(∂i, ∂j) =2∇̄
2
ijt,

ḡ∣t=0 =g,

∂t(∇̄
2
ijt) − (∇̄

2t)2ij =0,

∇̄
2
ijt∣t=0 =kij

(B.24)

where (∇̄2t)2ij = ḡ
kl(∇̄2

ikt)(∇̄
2
jlt). We will use Roman letters {i, j, k, l} to denote indices

tangential to M . By standard ODE existence theory there exists a small ε > 0 such

that we can solve the above equation for t ∈ (−ε, ε). Next, we take a cover {Ui} of

M . According to the asymptotics of (M,g, k), there exists a uniform ε > 0 for each Ui.

Therefore, we can patch together above’s construction and (M,g) can be embedded in

((−ε, ε) ×M, ḡ) with the second fundamental form k.

To verify the flatness of ḡ we proceed exactly as in [102]. It suffices to verify that

the curvatures R̄tijt, R̄ijkl and R̄tijk are vanishing. Observe that ⟨∇̄t, ∇̄t⟩ = −1 implies
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∇̄i∇̄tt = 0. Combining this with the third line of equation (B.24) yields

0 =∂t(∇̄
2
ijt) − (∇̄

2t)2ij

=∇̄t∇̄i∇̄jt + (∇̄
2t)2ij

=∇̄i∇̄t∇̄jt − R̄tijt + (∇̄
2t)2ij

=∂i(∇̄t∇̄jt) − ∇̄
2t(∂t, ∇̄i∂j) − ∇̄

2t(∂j , ∇̄i∂t) − R̄tijt + (∇̄
2t)2ij

= − R̄tijt.

Since R̄tijt = 0, ∇̄t∂t = 0 and Γ̄t
ti = 0, we obtain

∂t(R̄tijk) =(∇̄tR̄)tijk + R̄tljkΓ̄
l
ti + R̄tilkΓ̄

l
tj + R̄tljkΓ̄

l
tk

=(∇̄jR̄)titk + (∇̄kR̄)tijt + R̄tljkΓ̄
l
ti + R̄tilkΓ̄

l
tj + R̄tljkΓ̄

l
tk

=∂j(R̄titk) − R̄litkΓ̄
l
jt − R̄tilkΓ̄

l
jt + ∂k(R̄tijt) − R̄lijtΓ̄

l
kt − R̄tijlΓ̄

l
kt

+ R̄tljkΓ̄
l
ti + R̄tilkΓ̄

l
tj + R̄tljkΓ̄

l
tk

= − R̄litkΓ̄
l
jt − R̄tilkΓ̄

l
jt − R̄lijtΓ̄

l
kt − R̄tijlΓ̄

l
kt + R̄tljkΓ̄

l
ti + R̄tilkΓ̄

l
tj + R̄tljkΓ̄

l
tk.

According to the Codazzi equation, R̄tijk∣t=0 = 0, and thus R̄tijk = 0. Next, we compute

∂t(R̄ijkl) =(∇̄tR̄)ijkl + R̄sjklΓ̄
s
ti + R̄isklΓ̄

s
tj + R̄ijslΓ̄

s
tk + R̄ijksΓ̄

s
tl

=(∇kR̄)ijtl + (∇lR̄)ijkt + R̄sjklΓ̄
s
ti + R̄isklΓ̄

s
tj + R̄ijslΓ̄

s
tk + R̄ijksΓ̄

s
tl

= − R̄ijslΓ̄
s
kt − R̄ijksΓ̄

s
lt + R̄sjklΓ̄

s
ti + R̄isklΓ̄

s
tj + R̄ijslΓ̄

s
tk + R̄ijksΓ̄

s
tl

=R̄sjklΓ̄
s
ti + R̄isklΓ̄

s
tj .

According to the Gauss equations, R̄ijkl∣t=0 = 0, and thus R̄ijkl = 0. Therefore, M̄ is flat

which implies together with M ≅ R3 that M̄ is a subset of Minkowski spacetime.
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B.6 The Killing development

Another way to prove rigidity for the spacetime PMT, is to construct a spacetime using

spacetime harmonic function, and demonstrating that this spacetime is Minkowski space.

For this purpose, we define on M̃4 = R ×M3 the Lorentzian metric

g̃ = 2dτdu + g

where τ is the flat coordinate on the R-factor. This so-called Killing Development is

motivated by [10, 64], though we note that the Killing Development in [10, 64] was

obtained from three, rather than a single vector field. Since M3 ≅ R3, we have M̃4 ≅ R4,

and thus it suffices to show that g̃ is flat. The flatness of g̃ follows essentially from

the Gauss and Codazzi equations computed in Section 3.5.2. We present here another

approach which has the advantage that it does not require the additional regularity

assumptions g ∈ C3(M3) and k ∈ C2(M3) used in Lemma 3.5.5, and therefore establishes

the rigidity of Theorem B in full generality.

We first claim that we can write

g = (∣∇u∣−2 + a2 + b2)du2 + 2adudx1 + 2bdudx2 + dx
2
1 + dx

2
2, (B.25)

for some functions a, b ∈ C2(M3). This essentially follows from the flatness of the level-

sets of u, but let us elaborate more on this construction:

To write g in the above form, we need to define globally defined coordinates x1, x2.

To do so, we begin with introducing global polar coordinates. Given some point p0 ∈M3,

let Γ ∶ (−∞,+∞) →M3 be the integral curve through p0 with respect to the vector field

∇u. We define the function ρ(p) = d(p,Γ ∩Σu(p)) where d denotes the distance within
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the level set Σu(p). Since u ∈ C3(M) and ∣∇u∣ ≠ 0, the second fundamental form of Σu(p)

is C1. On each level set Σt of u, we can write the metric gΣt as dρ2+ρ2dθ2. We would like

g to have globally such a form, i.e., we need to define an angle function θ(p) ∈ [0,2π) for

any p ∈M3/Γ. To uniquely determine θ(p), we fix another point p1 ∈M3 not contained

in the image im(Γ). Let Γ1 ∶ (−∞,∞) → M3 be the integral curve through p1 with

respect to the vector field ∇u. Since ∣∇u∣ ≠ 0, we have im(Γ) ∩ im(Γ1) = ∅. We set

θ(Γ1) = 0. Thus, the Lorentzian metric g̃ can be written in the form

g̃ = 2dτdu + (∣∇u∣−2 + a20 + ρ
−2b20)du

2
+ 2a0dudρ + 2b0dudθ + dρ

2
+ ρ2dθ2

for some functions a0, b0 ∈ C2(M3/Γ), where the C2 regularity follows from the second

fundamental form being C1. Finally, we change coordinates via x1 = ρ cos θ, x2 = ρ sin θ

and set

a = a0 cos θ − b0ρ
−1 sin θ, b = a0 sin θ + b0ρ

−1 cos θ

to obtain

g̃ = 2dτdu + (∣∇u∣2 + a2 + b2)du2 + 2adudx1 + 2bdudx2 + dx
2
1 + dx

2
2

as desired.

In (τ, u, x1, x2) coordinates, the inverse metric g̃−1 is given by

g̃−1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−∣∇u∣−2 1 −a −b

1 0 0 0

−a 0 1 0

−b 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Therefore, we have

∇̃u = g̃ui∂i = ∂τ .
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Moreover, the null vector ∇̃u = ∂τ is covariantly constant, i.e., ∇̃2u = 0. Thus, (M̃4, g̃)

is a pp-wave. See [12] for a more detailed discussion of such spacetimes. Therefore, we

have on (M3, g, k)

0 = ∇̃2
iju∣TM3 = ∇

2
iju + IIijN̂(u) = (Aij − kij)∣∇u∣

where N = ∣∇u∣(−∣∇u∣−2∂τ + ∂u − a∂1 − b∂2) is a time-like unit normal vector. Thus, the

second fundamental form A of (M3, g) ⊂ (M̃4, g̃) is given by k.

The vector fields {∂1, ∂2, ∂u, ∂τ} form a frame of TM̃4 and {∇u, ∂1, ∂2} form an

orthogonal frame of TM3. Using Mathematica, we obtain that the only non-vanishing

Ricci curvature terms of g̃ are given by

R̃ic(∂u, ∂1) =
1

2
(−ax2x2 + bx1x2),

R̃ic(∂u, ∂2) =
1

2
(ax1x2 − bx1x1),

R̃ic(∂u, ∂u) =
1

2
(ax2 − bx1)

2
−
1

2
∆R2(∣∇u∣−2 + a2 + b2) + aux1 + bux2 .

(B.26)

Taking the trace of R̃ic, we have R̃ = 0, then µ = R̃ic(N,N) and J = R̃ic(N, ⋅). The

identity ⟨J, ∂1⟩ = ⟨J, ∂2⟩ = 0 yields R̃ic(N,∂1) = R̃ic(N,∂2) = 0. Combining this with

µ ≥ 0, we obtain R̃ic(∂u, ∂u) ≥ 0. The equation R̃ic(N,∂1) = R̃ic(N,∂2) = 0 also implies

ax2x2 = bx1x2 and ax1x2 = bx1x1 .

Thus, ψ ∶= ax2 − bx1 only depends on u. Hence, there exists a function l such that

a = x2ψ(u) + lx1 and b = −x1ψ(u) + lx2 . Inserting this into the third line of Equation

(B.26), we obtain

∆R2 (
1

2
∣∇u∣−2 +

1

2
l2x1
+
1

2
l2x2
+ lx1x2ψ(u) − lx2x1ψ(u) − lu) ≤ 0. (B.27)

Next, we define

F (u,x1, x2) ∶=
1

2
∣∇u∣−2 +

1

2
l2x1
+
1

2
l2x2
+ lx1x2ψ(u) − lx2x1ψ(u) − lu.
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Another computation and the fact that ∇̃u is covariantly constant, yield that the only

non-vanishing Riemann curvature terms of g̃ in the frame {∂1, ∂2, ∂τ ,∇u} are given by

R̃(∇u, ∂1, ∂1,∇u) =R(∇u, ∂1, ∂1,∇u) + k(∇u,∇u)k(∂1, ∂1) − k
2
(∇u, ∂1)

= − ∣∇u∣4Fx1x1 ,

R̃(∇u, ∂2, ∂2,∇u) =R(∇u, ∂1, ∂1,∇u) + k(∇u,∇u)k(∂2, ∂2) − k
2
(∇u, ∂2)

= − ∣∇u∣4Fx2x2 ,

R̃(∇u, ∂1, ∂2,∇u) = − ∣∇u∣
4Fx1x2 .

According to Theorem 4.2 in [64], we have ∣∇u∣ = 1 + O1(∣x∣
−τ). Combining this with

the asymptotics for g and k in (3.2), we obtain Fxixj = O(∣x∣
−τ−2), where i, j = 1,2.

Therefore, we can follow the proof of Lemma 3.5.6 to conclude that F is a linear function

with respect to x1, x2. Thus, g̃ is flat which finishes the proof.
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Appendix C

Technical aspects of Theorem C

In this section we compute the integral formulas (4.6) and (4.24). They in particular

generalize the Hawking mass monotonicity formula for IMCF [52, 79, 83], the spacetime

Hawking energy monotonicity in spherical symmetry [61], the integral formula for har-

monic and p-harmonic functions [1, 2, 18], for spacetime harmonic functions [64, 17] and

for charged harmonic functions [16]. We remark that the aforementioned formulas led

to proofs of the Riemannian Penrose inequality [1, 79], the spacetime Penrose inequality

in spherical symmetry [61], the Riemannian [2, 18], spacetime [64] and hyperbolic PMT

[17], as well as the PMT with charge [16] and corners [71].

C.1 Spacetime IMCF and p-harmonic functions

We denote with νu =
∇u
∣∇u∣ and νv =

∇v
∣∇v∣ the unit normals to the level sets of u and v.

Throughout this section we assume that both νu and νv are well-defined, i.e. ∣∇u∣, ∣∇v∣ ≠

0. We expect that the cases where ∇u,∇v are allowed to vanish can be treated in a

similar fashion as in [1, 64, 113].

Next, we define η = νu+νv
∣νu+νv ∣ in case νu ≠ −νv, and η = 0 in case νu = −νv. Similarly,

we define f = νu−νv
∣νu−νv ∣ in case νu ≠ νv and in case νu = νv we set f = 0 (which is the case

in spherical symmetry). It is convenient to compute formula (4.6) in this frame. We

remark that νu ≠ −νv for any initial data set contained in Minkowski space.

We start with collecting several elementary properties about η and f :
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Lemma C.1.1. We have

∇ηu∇fv = −∇fu∇ηv.

In particular, for any symmetric 2-tensor Aij

Aij
(∇iu∇jv +∇ju∇iv) = 2A

ηη
∇ηu∇ηv + 2A

ff
∇fu∇fv.

Proof. To prove the first identity we can assume without loss of generality that νu ≠ νv

and νu ≠ −νv. We compute

∇ηu∇fv =
1

∣νu + νv ∣∣νu − νv ∣∣∇u∣∣∇v∣
(∣∇u∣∣∇v∣ + ⟨∇u,∇v⟩)(−∣∇u∣∣∇v∣ + ⟨∇u,∇v⟩)

and

∇ηv∇fu =
1

∣νu + νv ∣∣νu − νv ∣∣∇u∣∣∇v∣
(∣∇u∣∣∇v∣ + ⟨∇u,∇v⟩)(∣∇u∣∣∇v∣ − ⟨∇u,∇v⟩).

The second identity directly follows from the first one.

Lemma C.1.2. We have

⟨∇u,∇v⟩ = ∇ηu∇ηv +∇fu∇fv

and

∣∇u∣∣∇v∣ = ∇ηu∇ηv −∇fu∇fv.

Proof. The first identity is trivial, so it suffices to show the second one. Observe that

∣∇u∣2 = (∇ηu)
2+(∇fu)

2 which holds also in case νu = νv or νu = −νv. We compute using

133



Lemma C.1.1

∣∇u∣2∣∇v∣2

=((∇ηu)
2
+ (∇fu)

2
)((∇ηv)

2
+ (∇fv)

2
)

=(∇ηu∇ηv)
2
+ (∇fu∇fv)

2
+ (∇ηu)

2
(∇fv)

2
+ (∇ηv)

2
(∇fu)

2

=(∇ηu∇ηv)
2
+ (∇fu∇fv)

2
− 2∇ηu∇ηv∇fu∇fv

=(∇ηu∇ηv −∇fu∇fv)
2.

Taking the square root on both sides yields

∣∇u∣∣∇v∣ = ∣∇ηu∇ηv −∇fu∇fv∣.

We clearly have ∇ηu∇ηv − ∇fu∇fv ≥ 0 in case νu = νv or νu = −νv. In case νu ≠ νv and

νu = −νv we have

∣∇u∣2∣∇v∣2(∇ηu∇ηv −∇fu∇fv)

=
1

∣νu + νv ∣2
(∣∇u∣∣∇v∣ + ⟨∇u,∇v⟩)2 +

1

∣νu − νv ∣2
(∣∇u∣∣∇v∣ − ⟨∇u,∇v⟩)2

≥0

which finishes the proof.

Lemma C.1.3. We have

∣νu + νv ∣ = 2⟨νu, η⟩ = 2⟨νv, η⟩

as well as

∣νu − νv ∣ = 2⟨νu, f⟩ = −2⟨νv, f⟩.

Proof. Recall that νu = ∇u∣∇u∣ and νv = ∇v∣∇v∣ . We compute

∣νu + νv ∣
2
= ∣
∇u∣∇v∣ + ∇v∣∇u∣

∣∇u∣∣∇v∣
∣

2

= 2
(∣∇u∣∣∇v∣ + ⟨∇u,∇v⟩)

∣∇u∣∣∇v∣
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and

∣νu + νv ∣⟨νu, η⟩ =⟨νu, νu + νv⟩ =
1

∣∇u∣∣∇v∣
(∣∇u∣∣∇v∣ + ⟨∇u,∇v⟩)

which implies ∣νu + νv ∣ = 2⟨νu, η⟩. In case νu = −νv, we clearly have ⟨νu, η⟩ = ⟨νv, η⟩.

Moreover, observe in case νu ≠ −νv

⟨νu, η⟩ =
1 + ⟨νu, νv⟩

∣νu + νv ∣
= ⟨νv, η⟩

which implies the first identity. Replacing v by −v, the second identity follows.

Recall that

(H
2
+)iju = ∇iju + kij ∣∇u∣ − 2

∇ηu∇ηv

u + v
gij +

∇iu∇jv +∇ju∇iv

u + v
,

(H
2
−)ijv = ∇ijv − kij ∣∇v∣ − 2

∇ηu∇ηv

u + v
gij +

∇iu∇jv +∇ju∇iv

u + v
.

The proof of Theorem 4.4.1 is implied by the following two proposition regarding H2
±:

Proposition C.1.4. Let a ∈ [0,1] and suppose u, v solve system (4.5). Then we have

∣H2
+u∣

2

∣∇u∣
−
(a(H2

+)ηηu)
2

∣∇u∣

=R∣∇u∣ − 2Ku∣∇u∣ + ∣k∣
2
∣∇u∣ − trg(k)

2
∣∇u∣ + 2∣∇u∣∇νu trg(k) − 2∣∇u∣∇ikiνu

+ div(−2∇∣∇u∣ + 2∆u
∇u

∣∇u∣
+ 2k(∇u, ⋅) − 2(∇u trg(k)) + 4∣∇u∣

∇v

u + v
)

− 4a∇ηηv⟨νu, f⟩
2 ∣∇u∣

u + v
+ 4a∇ηηu⟨νu, f⟩

2 ∣∇v∣

u + v
+ 4(∣∇u∣ − ∣∇v∣)

∣∇u∣∣∇v∣

(u + v)2

+ 2kij
∇iu∇jv +∇ju∇iv

u + v
− 4∣∇u∣∣∇v∣

trg(k)

u + v
− 8∣∇u∣∣∇v∣

kηη

u + v
.

(C.1)

Here R is the scalar curvature of g, and Ku,Kv are the Gaussian curvatures of the level

sets of u, v.
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Proposition C.1.5. Let a ∈ [0,1] and suppose u, v solve system (4.5). Then we have

∣H2
−v∣

2

∣∇v∣
−
(a(H2

−)ηηv)
2

∣∇v∣

=R∣∇v∣ − 2Kv ∣∇v∣ + ∣k∣
2
∣∇v∣ − trg(k)

2
∣∇v∣ − 2∣∇v∣∇νv trg(k) + 2∣∇v∣∇ikiνv

+ div(−2∇∣∇v∣ + 2∆v
∇v

∣∇v∣
− 2k(∇v, ⋅) + 2(∇v trg(k)) + 4∣∇v∣

∇u

u + v
)

− 4a∇ηηu⟨νu, f⟩
2 ∣∇u∣

u + v
+ 4a∇ηηv⟨νu, f⟩

2 ∣∇v∣

u + v
+ 4(∣∇v∣ − ∣∇u∣)

∣∇u∣∣∇v∣

(u + v)2

− 2kij
∇iu∇jv +∇ju∇iv

u + v
+ 4∣∇u∣∣∇v∣

trg(k)

u + v
+ 8∣∇u∣∣∇v∣

kηη

u + v
.

(C.2)

Proof of Theorem 4.4.1. This follows immediately from adding equation (C.1) to equa-

tion (C.2). Observe how the last two lines of both (C.1) and (C.2) cancel.

To prove Proposition C.1.4 and Proposition C.1.5 we will make use of several aux-

iliary lemma:

Lemma C.1.6. Let a ∈ [0,1] and suppose u, v solve system (4.5). Then we have

∣H
2
+u∣

2
+ (∆u)2

=∣∇
2u∣2 + ∣k∣2∣∇u∣2 + 8

(∇ηu∇ηv)
2

(u + v)2

+ 2∇ijukij ∣∇u∣ − 4 trg(k)∣∇u∣
∇ηu∇ηv

u + v
+ 2kij ∣∇u∣

∇iu∇jv +∇ju∇iv

u + v

+ (4 + 4a)∇ηηu
∇ηu∇ηv

u + v
+ 4∇ffu

∇fu∇fv

u + v

+ (trg(k) − akηη)
2
∣∇u∣2 + a2(∇ηηu)

2
− 2a∇ηηu(trg(k) − akνν)∣∇u∣

− 4∆u
∇fu∇fv

u + v

− 4
∇ηu∇ηv

u + v
(trg(k) − akνν)∣∇u∣.

Proof. Using Lemma C.1.1 several times we obtain

(∇iu∇jv +∇ju∇iv)(∇iu∇jv +∇ju∇iv)

=4(∇ηu∇ηv)
2
+ 4(∇fu∇fv)

2
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and

∇iju(∇iu∇jv +∇ju∇iv) = 2∇ηηu∇ηu∇ηv + 2∇ffu∇f∇fv

as well as

gij(∇iu∇jv +∇ju∇iv) = 2∇ηu∇ηv + 2∇fu∇fv.

This allows us to compute

∣H
2
+u∣

2
=∣∇

2u∣2 + ∣k∣2∣∇u∣2 + 12
(∇ηu∇ηv)

2

(u + v)2
+ 4
(∇ηu∇ηv)

2 + (∇fu∇fv)
2

(u + v)2

+ 2∇ijukij ∣∇u∣ − 4 trg(k)∣∇u∣
∇ηu∇ηv

u + v
+ 2kij ∣∇u∣

∇iu∇jv +∇ju∇iv

u + v

− 4∆u
∇ηu∇ηv

u + v
− 8∇ηu∇ηv

∇ηu∇ηv +∇fu∇fv

(u + v)2

+ 4∇ηηu
∇ηu∇ηv

u + v
+ 4∇ffu

∇fu∇fv

u + v
.

Grouping together terms, we obtain

∣H
2
+u∣

2
=∣∇

2u∣2 + ∣k∣2∣∇u∣2 + 8
(∇ηu∇ηv)

2

(u + v)2
+ 4
(∇fu∇fv)

2

(u + v)2

+ 2∇ijukij ∣∇u∣ − 4 trg(k)∣∇u∣
∇ηu∇ηv

u + v
+ 2kij ∣∇u∣

∇iu∇jv +∇ju∇iv

u + v

− 4∆u
∇ηu∇ηv

u + v
− 8∇ηu∇ηv

∇fu∇fv

(u + v)2

+ 4∇ηηu
∇ηu∇ηv

u + v
+ 4∇ffu

∇fu∇fv

u + v
.

(C.3)

Next, we recall that the PDE (4.5) for u states

∆u = − trg(k)∣∇u∣ + akνν ∣∇u∣ + a∇
2
ηηu +

3∣∇u∣∣∇v∣ + ⟨∇u,∇v⟩

u + v
.

Moreover, we note that Lemma C.1.2 implies

3∣∇u∣∣∇v∣ + ⟨∇u,∇v⟩ = 4∇ηu∇ηv − 2∇fu∇fv.
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Thus, we are able to calculate

(∆u)2 − 4∆u
∇ηu∇ηv

u + v

=∆u(a∇ηηu − (trg(k) − kηη)∣∇u∣ − 2
∇fu∇fv

u + v
)

=(trg(k) − akηη)
2
∣∇u∣2 + a2(∇ηηu)

2
− 2a∇ηηu(trg(k) − akνν)∣∇u∣

− 2∆u
∇fu∇fv

u + v
+ 4
∇ηu∇ηv

u + v
(a∇ηηu − (trg(k) − kηη)∣∇u∣)

− 2
∇fu∇fv

u + v
(a∇ηηu − (trg(k) − kηη)∣∇u∣)

=(trg(k) − akηη)
2
∣∇u∣2 + a2(∇ηηu)

2
− 2a∇ηηu(trg(k) − akνν)∣∇u∣

− 4∆u
∇fu∇fv

u + v
− 4
(∇fu∇fv)

2

(u + v)2

− 4
∇ηu∇ηv

u + v
(trg(k) − akνν)∣∇u∣ + 4a∇ηηu

∇ηu∇ηv

u + v

+ 8∇ηu∇ηv
∇fu∇fv

(u + v)2
.

Combining the above identity with equation (C.3), we obtain

∣H
2
+u∣

2
+ (∆u)2

=∣∇
2u∣2 + ∣k∣2∣∇u∣2 + 8

(∇ηu∇ηv)
2

(u + v)2

+ 2∇ijukij ∣∇u∣ − 4 trg(k)∣∇u∣
∇ηu∇ηv

u + v
+ 2kij ∣∇u∣

∇iu∇jv +∇ju∇iv

u + v

+ (4 + 4a)∇ηηu
∇ηu∇ηv

u + v
+ 4∇ffu

∇fu∇fv

u + v

+ (trg(k) − akηη)
2
∣∇u∣2 + a2(∇ηηu)

2
− 2a∇ηηu(trg(k) − akνν)∣∇u∣

− 4∆u
∇fu∇fv

u + v

− 4
∇ηu∇ηv

u + v
(trg(k) − akνν)∣∇u∣

which finishes the proof.
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Lemma C.1.7. Let a ∈ [0,1] and suppose u, v solve system (4.5). Then we have

4

∣∇u∣
(1 + a)∇ηηu

∇ηu∇ηv

u + v

=4⟨νu, f⟩
2
∇ffu

∣∇v∣

u + v

− 4a∇ηηu⟨νu, f⟩
2 ∣∇u∣

u + v
+ 4a∇ηη(u − v)

∣∇u∣

u + v

+ 4div (∣∇u∣
∇v

u + v
) + 4∣∇u∣∣∇v∣

∣∇v∣ − 3∣∇u∣

(u + v)2

− 4∣∇u∣∣∇v∣
trg(k) − akηη

u + v

Proof. Recall that

∆v = trg(k)∣∇v∣ − akνν ∣∇v∣ + a∇
2
ηηv +

3∣∇u∣∣∇v∣ + ⟨∇u,∇v⟩

u + v
.

Using this equation we compute

4∇νvνuu
∣∇v∣

u + v

=4 ⟨∇∣∇u∣,
∇v

u + v
⟩

=4div (∣∇u∣
∇v

u + v
) − 4∣∇u∣

∆v

u + v
+ 4∣∇u∣

∣∇v∣2 + ⟨∇u,∇v⟩

(u + v)2

=4div (∣∇u∣
∇v

u + v
) − 4a∣∇u∣

∇ηηv

u + v
+ 4∣∇u∣∣∇v∣

∣∇v∣ − 3∣∇u∣

(u + v)2

− 4∣∇u∣∣∇v∣
trg(k) − akηη

u + v
.

(C.4)
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Next, observe by Lemma C.1.3

⟨νu, η⟩
2
∇ηηu

=⟨νu, η⟩
2 1

∣νu + νv ∣2
∇(νu+νv)(νu+νv)u

=
1

4
(2∇νuνvu +∇νuνuu +∇νvνvu)

=
1

4
(2∇νuνvu +∇νu(f+νv)u +∇νv(νu−f)u)

=∇νuνvu +
1

4
∇(νu−νv)(νu−νv)u

=∇νuνvu + ⟨νu, f⟩
2
∇ffu.

Hence,

4

∣∇u∣
(1 + a)∇ηηu

∇ηu∇ηv

u + v

=
4

∣∇u∣
∇ηηu

∇ηu∇ηv

u + v
+

4a

∣∇u∣
∇ηηu

∇ηu∇ηv

u + v

=4∇νvνuu
∣∇v∣

u + v
+ 4⟨νu, f⟩

2
∇ffu

∣∇v∣

u + v

+ 4a∇ηηu
∣∇u∣

u + v
− 4a∇ηηu⟨νu, f⟩

2 ∣∇u∣

u + v
.

Combining this with equation (C.4) yields

4

∣∇u∣
(1 + a)∇ηηu

∇ηu∇ηv

u + v

=4⟨νu, f⟩
2
∇ffu

∣∇v∣

u + v

− 4a∇ηηu⟨νu, f⟩
2 ∣∇u∣

u + v
+ 4a∇ηη(u − v)

∣∇u∣

u + v

+ 4div (∣∇u∣
∇v

u + v
) + 4∣∇u∣∣∇v∣

∣∇v∣ − 3∣∇u∣

(u + v)2

− 4∣∇u∣∣∇v∣
trg(k) − akηη

u + v

as desired.
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Lemma C.1.8. Let a ∈ [0,1] and suppose u, v solve system (4.5). Then we have

−2a trg(k)∇ηηu = − 2div(∇u trg(k)) + 2(− trg(k)∣∇u∣ + akηη ∣∇u∣) trg(k)

+ 2 trg(k)
4∇ηu∇ηv − 2∇fu∇fv

u + v
+ 2∣∇u∣∇νu trg(k).

Proof. Using the PDE for u (4.5), we compute

− 2a trg(k)∇νuνuu

= − 2a ⟨∇∣∇u∣,
∇u trg(k)

∣∇u∣
⟩

= − 2adiv(∇u trg(k)) + 2a(− trg(k)∣∇u∣ + akηη ∣∇u∣ + a∇ηηu) trg(k)

+ 2a trg(k)
4∇ηu∇ηv − 2∇fu∇fv

u + v

− 2a∇νuνuu trg(k) + 2a∣∇u∣∇νu trg(k).

Thus, we obtain

−2a trg(k)∇ηηu = − 2div(∇u trg(k)) + 2(− trg(k)∣∇u∣ + akηη ∣∇u∣) trg(k)

+ 2 trg(k)
4∇ηu∇ηv − 2∇fu∇fv

u + v
+ 2∣∇u∣∇νu trg(k)

which finishes the proof.

Lemma C.1.9. For any twice-differentiable function u we have

div(∇∣∇u∣ −∆u
∇u

∣∇u∣
) =

1

2∣∇u∣
(∣∇

2u∣2 + ∣∇u∣2(R − 2Ku) − (∆u)
2
).

Proof. This formula has already been established in equation (4.8) of [16], also see the

article of D. Stern [113]. We nonetheless include a proof to make this manuscript more

self-contained. We compute using Bochner’s identity and the Gauss equations

2∆∣∇u∣ =2∣∇u∣−1(Ric(∇u,∇u) + ∣∇2u∣2 + ⟨∇∆u,∇u⟩ − ∣∇∣∇u∣∣2)

=2∣∇u∣−1(∣∇2u∣2 + ⟨∇∆u,∇u⟩ − ∣∇∣∇u∣∣2) + (R − 2Ku)∣∇u∣

+ ∣∇
2u∣2 + ∣∇u∣−1((∆u −∇ννu)

2
− ∣∇

2u∣2 + 2∣∇∣∇u∣∣2 − (∇ννu)
2
)
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Rewriting the term 2∣∇u∣−1⟨∇∆u,∇u⟩, the result follows.

Now we have all the auxiliary ingredients to proceed with the proof of Proposition

C.1.4. The proof of Proposition C.1.5 is identical so we will omit it.

Proof of Proposition C.1.4. Combining Lemma C.1.6 and Lemma C.1.7, we obtain

∣H
2
+u∣

2
+ (∆u)2

=∣∇
2u∣2 + ∣k∣2∣∇u∣2 + 8

(∇ηu∇ηv)
2

(u + v)2

+ 2∇ijukij ∣∇u∣ − 4 trg(k)∣∇u∣
∇ηu∇ηv

u + v
+ 2kij ∣∇u∣

∇iu∇jv +∇ju∇iv

u + v

+ (trg(k) − akηη)
2
∣∇u∣2 + a2(∇ηηu)

2
− 2a∇ηηu(trg(k) − akνν)∣∇u∣

− 4∆u
∇fu∇fv

u + v

− 4
∇ηu∇ηv

u + v
(trg(k) − akνν)∣∇u∣

− 4a∇ηηv⟨νu, f⟩
2 ∣∇u∣

2

u + v

+ 4∣∇u∣div (∣∇u∣
∇v

u + v
) − 8∣∇u∣∣∇v∣

∣∇u∣∣∇v∣

(u + v)2

+ 4∣∇u∣(∣∇u∣ − ∣∇v∣)
∣∇u∣∣∇v∣

(u + v)2
− 4∣∇u∣2∣∇v∣

trg(k) − akηη

u + v
.

Observe how the ∇ffu terms cancel. Next, we calculate using Lemma C.1.2

8
(∇ηu∇ηv)

2

(u + v)2
− 4∆u

∇fu∇fv

u + v
− 8∣∇u∣∣∇v∣

∣∇u∣∣∇v∣

(u + v)2

= − 4∆u
∇fu∇fv

u + v
− 8
(∇fu∇fv)

2

(u + v)2
+ 16
∇fu∇fv∇ηu∇ηv

(u + v)2

= − 4a∇ηηu
∇fu∇fv

u + v
+ 4(trg(k) − akνν)∣∇u∣

∇fu∇fv

u + v
.

Moreover,

((H
2
+)ηηu)

2
=(∇ηηu + kηηu∣∇u∣)

2
= (∇ηηu)

2
+ 2kηη ∣∇u∣∇ηηu + k

2
ηη ∣∇u∣

2.
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Hence, we obtain

∣H
2
+u∣

2
+ (∆u)2 − (a(H2

+)ηηu)
2

=∣∇
2u∣2 + ∣k∣2∣∇u∣2

+ 2∇ijukij ∣∇u∣ − 4 trg(k)∣∇u∣
∇ηu∇ηv

u + v
+ 2kij ∣∇u∣

∇iu∇jv +∇ju∇iv

u + v

+ (trg(k)
2
− 2a trg(k)kηη)∣∇u∣

2
− 2a∇ηηu trg(k)∣∇u∣

− 4
∇ηu∇ηv

u + v
(trg(k) − akνν)∣∇u∣

− 4a∇ηηv⟨νu, f⟩
2 ∣∇u∣

2

u + v
− 4a∇ηηu

∇fu∇fv

u + v

+ 4∣∇u∣div (∣∇u∣
∇v

u + v
)

+ 4∣∇u∣(∣∇u∣ − ∣∇v∣)
∣∇u∣∣∇v∣

(u + v)2
− 4∣∇u∣2∣∇v∣

trg(k) − akηη

u + v

+ 4(trg(k) − akνν)∣∇u∣
∇fu∇fv

u + v
.

Next, we use the divergence identity

∇ijukij = div k(∇u, ⋅) − ∣∇u∣∇ikiνu
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and Lemma C.1.8 which results in

∣H
2
+u∣

2
+ (∆u)2 − (a(H2

+)ηηu)
2

=∣∇
2u∣2 + ∣k∣2∣∇u∣2

+ 2∣∇u∣div k(∇u, ⋅) − 2∣∇u∣2∇ikiνu + 2kij ∣∇u∣
∇iu∇jv +∇ju∇iv

u + v

− trg(k)
2
∣∇u∣2

− 4
∇ηu∇ηv

u + v
(−akνν)∣∇u∣

− 4a∇ηηv⟨νu, f⟩
2 ∣∇u∣

2

u + v
− 4a∇ηηu

∇fu∇fv

u + v

+ 4∣∇u∣div (∣∇u∣
∇v

u + v
)

+ 4∣∇u∣(∣∇u∣ − ∣∇v∣)
∣∇u∣∣∇v∣

(u + v)2
− 4∣∇u∣2∣∇v∣

trg(k) − akηη

u + v

− 4akνν ∣∇u∣
∇fu∇fv

u + v

− 2∣∇u∣div(∇u trg(k))

+ 2∣∇u∣2∇νu trg(k).

By collecting terms which are homogeneous of degree 1 in k (though note they will

cancel anyways with the corresponding terms from Proposition C.1.5), this simplifies

further to

∣H
2
+u∣

2
+ (∆u)2 − (a(H2

+)ηηu)
2

=∣∇
2u∣2 + ∣k∣2∣∇u∣2 − trg(k)

2
∣∇u∣2 + 2∣∇u∣2∇νu trg(k) − 2∣∇u∣

2
∇ikiνu

+ 2∣∇u∣div k(∇u, ⋅) − 2∣∇u∣div(∇u trg(k)) + 4∣∇u∣div (∣∇u∣
∇v

u + v
)

− 4a∇ηηv⟨νu, f⟩
2 ∣∇u∣

2

u + v
− 4a∇ηηu

∇fu∇fv

u + v
+ 4∣∇u∣(∣∇u∣ − ∣∇v∣)

∣∇u∣∣∇v∣

(u + v)2

+ 2kij ∣∇u∣
∇iu∇jv +∇ju∇iv

u + v
− 4∣∇u∣2∣∇v∣

trg(k)

u + v
− 8a∣∇u∣2∣∇v∣

kηη

u + v
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Next, we use Lemma (C.1.9) to obtain

∣H2
+u∣

2

∣∇u∣
−
(a(H2

+)ηηu)
2

∣∇u∣

=R∣∇u∣ − 2Ku∣∇u∣ + ∣k∣
2
∣∇u∣ − trg(k)

2
∣∇u∣ + 2∣∇u∣∇νu trg(k) − 2∣∇u∣∇ikiνu

+ div(−2∇∣∇u∣ + 2∆u
∇u

∣∇u∣
+ 2k(∇u, ⋅) − 2(∇u trg(k)) + 4∣∇u∣

∇v

u + v
)

− 4a∇ηηv⟨νu, f⟩
2 ∣∇u∣

u + v
+ 4a∇ηηu⟨νu, f⟩

2 ∣∇v∣

u + v
+ 4(∣∇u∣ − ∣∇v∣)

∣∇u∣∣∇v∣

(u + v)2

+ 2kij
∇iu∇jv +∇ju∇iv

u + v
− 4∣∇u∣∣∇v∣

trg(k)

u + v
− 8∣∇u∣∣∇v∣

kηη

u + v

which finishes the proof.

C.2 Spacetime charged harmonic functions

Again, we set η = νu+νv
∣νu+νv ∣ in case νu ≠ −νv, and η = 0 in case νu = −νv. Note that the

integral formula (4.24) in Theorem 4.6.6 reduces to the integral formula for spacetime

harmonic functions in case η = 0, cf. Proposition 3.2 in [64]. Therefore, we assume

without loss of generality that νu ≠ −νv in the proof below.

Proof of Theorem 4.6.6. Recall that the charged spacetime Hessians are given by

(E
2
+)iju =∇

2
iju + ξηiEj + ξηjEi − ξEηgij + kij ∣∇u∣,

(E
2
−)ijv =∇

2
ijv + ξηiEj + ξηjEi − ξEηgij − kij ∣∇v∣
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where ξ =
√
∣∇u∣∣∇v∣. We compute

∣E
2
+u∣

2
=∣∇

2u∣2 + 2ξ2∣E∣2 + 3ξ2E2
η

+ 4ξ∇ijuηiEj − 2a∆uEη + 2a
2E2

η − 4a
2E2

η

+ 2(ξηiEj + ξηjEi − ξEηgij)kij ∣∇u∣

+ ∣k∣2∣∇u∣2 + 2∇2
ijukij ∣∇u∣

=∣∇
2u∣2 + 2ξ2∣E∣2

+ 4ξ∇ijuηiEj − ξ
2E2

η

+ 2(ξηiEj + ξηjEi − ξEηgij)kij ∣∇u∣

+ ∣k∣2∣∇u∣2 + 2∇2
ijukij ∣∇u∣ + 2 trg(k)∣∇u∣ξEη.

Similarly, we obtain

∣E
2
−v∣

2
=∣∇

2v∣2 + 2ξ2∣E∣2

+ 4ξ∇ijvηiEj − ξ
2E2

η

− 2(ξηiEj + ξηjEi − ξEηgij)kij ∣∇v∣

+ ∣k∣2∣∇u∣2 − 2∇2
ijukij ∣∇u∣ − 2 trg(k)∣∇u∣ξEη.

Using Lemma C.1.9, we obtain

div(∇∣∇u∣ −∆u
∇u

∣∇u∣
+ ∇∣∇v∣ −∆v

∇v

∣∇v∣
)

=
1

2∣∇u∣
(∣E

2
+u∣

2
− 2ξ2∣E∣2 + ξ2E2

η − 4ξ∇
2
ijuηiEj)

+
1

2∣∇u∣
(∣∇u∣2(RM − 2Ku) − (ξEη − trg(k)∣∇u∣)

2
− ∣k∣2∣∇u∣2 − 2∇2

ijukij ∣∇u∣)

+
1

2∣∇v∣
(∣E

2
−v∣

2
− 2ξ2∣E∣2 + ξ2E2

η − 4ξ∇
2
ijvηiEj)

+
1

2∣∇v∣
(∣∇v∣2(RM − 2Kv) − (ξEη + trg(k)∣∇v∣)

2
− ∣k∣2∣∇v∣2 + 2∇2

ijvkij ∣∇v∣).
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Simplifying yields

div(∇∣∇u∣ −∆u
∇u

∣∇u∣
+ ∇∣∇v∣ −∆v

∇v

∣∇v∣
)

=
1

2∣∇u∣
(∣E

2
+u∣

2
− 2ξ2∣E∣2 − 4ξ∇2

ijuηiEj)

+
1

2∣∇u∣
(∣∇u∣2(RM − 2Ku) + 2 trg(k)∆u∣∇u∣ + (trg(k)

2
− ∣k∣2)∣∇u∣2 − 2∇2

ijukij ∣∇u∣)

+
1

2∣∇v∣
(∣E

2
−v∣

2
− 2ξ2∣E∣2 − 4ξ∇2

ijvηiEj)

+
1

2∣∇v∣
(∣∇v∣2(RM − 2Kv) − 2 trg(k)∆v∣∇v∣ + (trg(k)

2
− ∣k∣2)∣∇v∣2 + 2∇2

ijvkij ∣∇v∣).

Next, we compute

1

∣∇u∣
ξ∇2

ijuηiEj =div
⎛
⎜
⎝

¿
Á
ÁÀ∣∇v∣

∣∇u∣
∇iuηiE

⎞
⎟
⎠
−∇j

¿
Á
ÁÀ∣∇v∣

∣∇u∣
Ej∇ηu −

¿
Á
ÁÀ∣∇v∣

∣∇u∣
∇iu∇jηiEj

and similarly

1

∣∇v∣
ξ∇2

ijvηiEj =div
⎛
⎜
⎝

¿
Á
ÁÀ∣∇u∣

∣∇v∣
∇ivηiE

⎞
⎟
⎠
−∇j

¿
Á
ÁÀ∣∇u∣

∣∇v∣
Ej∇ηv −

¿
Á
ÁÀ∣∇u∣

∣∇v∣
∇iv∇jηiEj .

Observe that

2∇j

¿
Á
ÁÀ∣∇v∣

∣∇u∣
Ej∇ηu + 2∇j

¿
Á
ÁÀ∣∇u∣

∣∇v∣
Ej∇ηv

=ξ−1∇j ∣∇v∣Ej∇ηu − ξ
−1
∣∇v∣∣∇u∣−1∇j ∣∇u∣∇ηuEj

+ ξ−1∇j ∣∇u∣Ej∇ηv − ξ
−1
∣∇u∣∣∇v∣−1∇j ∣∇v∣∇ηvEj = 0

where we used Lemma C.1.3 in combination with ∣∇v∣∇ηu = ∣∇v∣∣∇u∣⟨νu, η⟩. Moreover,
¿
Á
ÁÀ∣∇v∣

∣∇u∣
∇iu∇jηiEj +

¿
Á
ÁÀ∣∇u∣

∣∇v∣
∇iv∇jηiEj

=ξ−1⟨∇Eη,∇u∣∇v∣ + ∇v∣∇u∣⟩

=ξ−1∣∣∇u∣∇v +∇u∣∇v∣∣⟨∇Eη, η⟩ = 0
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where we used that ⟨η, η⟩ = 1 and ⟨∇Eη, η⟩ = 0. Hence, we obtain

div
⎛
⎜
⎝
∇∣∇u∣ −∆u

∇u

∣∇u∣
+ ∇∣∇v∣ −∆v

∇v

∣∇v∣
+ 2

¿
Á
ÁÀ∣∇u∣

∣∇v∣
∇ηvE + 2

¿
Á
ÁÀ∣∇v∣

∣∇u∣
∇ηuE

⎞
⎟
⎠

=
1

2∣∇u∣
(∣E

2
+u∣

2
− 2aξ2∣E∣2)

+
1

2∣∇u∣
(∣∇u∣2(RM − 2Ku) + 2 trg(k)∆u∣∇u∣ + (trg(k)

2
− ∣k∣2)∣∇u∣2 − 2∇2

ijukij ∣∇u∣)

+
1

2∣∇v∣
(∣E

2
−v∣

2
− 2ξ2∣E∣2)

+
1

2∣∇v∣
(∣∇v∣2(RM − 2Kv) − 2 trg(k)∆v∣∇v∣ + (trg(k)

2
− ∣k∣2)∣∇v∣2 + 2∇2

ijvkij ∣∇v∣).

Integrating by parts, we find

div(Z) =
1

2∣∇u∣
(∣E

2
+u∣

2
− 2∣∇v∣∣∇u∣∣E∣2)

+
1

2∣∇u∣
(∣∇u∣2(2µ − 2Ku) + 2∣∇u∣⟨J,∇u⟩)

+
1

2∣∇v∣
(∣E

2
−v∣

2
− 2∣∇u∣∣∇v∣∣E∣2)

+
1

2∣∇v∣
(∣∇v∣2(2µ − 2Kv) − 2∣∇v∣⟨J,∇v⟩).

where

Z =∇∣∇u∣ −∆u
∇u

∣∇u∣
+ ∇∣∇v∣ −∆v

∇v

∣∇v∣
+ 2ξ−1(∣∇u∣∣∇v∣ + ⟨∇u,∇v⟩)E

− trg(k)∇u + trg(k)∇v + k(∇u, ⋅) − k(∇v, ⋅).

This finishes the proof.
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