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Abstract

Partial differential equations (PDEs) are relevant for solving real-world
problems across many areas. However, their solution may be challenging,
especially for large-dimensional or high-resolution problems with high
memory demands. This thesis develops new quantum and quantum-
inspired numerical analysis methods for solving PDEs with potential
memory and time savings while maintaining high accuracy. First, we
resort to quantum computing, which benefits from exponential encod-
ing advantages and speedups in key operations. Due to the lack of er-
ror correction of existing quantum computers, we propose a variational
quantum algorithm to solve Hamiltonian PDEs, combining a classical
and a quantum computer to exploit the properties of the quantum reg-
ister. However, the noise sources and limited number of measurements
of current quantum devices restrict the scalability of this approach. The
high efficiency of the quantum register function encoding motivates its
use in developing quantum-inspired algorithms. The second part of the
thesis focuses on creating a matrix product state (MPS) finite precision
algebra and applying it to quantum-inspired numerical analysis. More
concretely, we develop MPS methods to solve static and time-dependent
PDEs, motivated by the solution of problems of physical interest: the
study of superconducting circuits and the expansion of a particle’s wave-
function in the context of levitodynamics. Using a two-dimensional
squeezed harmonic oscillator of up to 230 points as a benchmark, MPS
methods for Hamiltonian PDEs show exponential memory advantage
compared to vector implementations and asymptotic advantage in time
while achieving a low error in the solution approximation. Similarly, the
time evolution MPS techniques demonstrate exponential memory com-
pression and comparable accuracy and cost to standard vector methods.
We conclude that the MPS framework constitutes a memory-efficient and
accurate tool for solving PDEs. These findings present new opportunities
for applying quantum-inspired algorithms to a wider range of PDEs and
numerical analysis problems, opening exciting avenues for future research
and applications.
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Resumen

Las ecuaciones en derivadas parciales (EDPs) son relevantes para resolver
problemas del mundo real en diversas áreas. Sin embargo, su resolución
puede ser un desafío, especialmente en problemas de gran dimensión
o alta resolución, que requieren mucha memoria. Esta tesis desarrolla
nuevos métodos de análisis numérico cuánticos y de inspiración cuán-
tica para resolver EDPs, con el potencial de ahorrar memoria y tiempo,
manteniendo una alta precisión. En primer lugar, recurrimos a la com-
putación cuántica, que se beneficia de ventajas exponenciales en la cod-
ificación y de aceleraciones en operaciones clave. Debido a la falta de
corrección de errores en los ordenadores cuánticos actuales, proponemos
un algoritmo cuántico variacional para resolver EDPs Hamiltonianas,
combinando un ordenador clásico y uno cuántico para aprovechar las
propiedades del registro cuántico. Sin embargo, las fuentes de ruido y el
número limitado de medidas en los dispositivos cuánticos actuales limi-
tan la escalabilidad de esta técnica. La alta eficiencia en la codificación
de funciones del registro cuántico motiva su uso en el desarrollo de al-
goritmos inspirados en la computación cuántica. La segunda parte de la
tesis se centra en la creación de un álgebra de precisión finita de estados
producto de matriz (MPS, por sus siglas en inglés) y su aplicación al
análisis numérico inspirado en la computación cuántica. Concretamente,
desarrollamos métodos de MPS para resolver EDPs estáticas y depen-
dientes del tiempo, motivados por la resolución de problemas de interés
físico: el estudio de circuitos superconductores y la expansión de la fun-
ción de onda de una partícula en el contexto de la levitodinámica. Uti-
lizando un oscilador armónico bidimensional de hasta 230 puntos como
referencia, los métodos MPS para EDPs Hamiltonianas muestran una
ventaja exponencial en memoria en comparación con las implementa-
ciones vectoriales y una ventaja asintótica en tiempo, logrando a su vez
un bajo error en la aproximación de la solución. De manera similar,
las técnicas de MPS para evolución temporal demuestran una compre-
sión exponencial de memoria y una precisión y coste comparables a los
métodos vectoriales estándar. Concluimos que los MPS constituye una
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herramienta eficiente en memoria y precisa para resolver EDPs. Estos
hallazgos presentan nuevas oportunidades para aplicar algoritmos inspi-
rados en la computación cuántica a una gama más amplia de EDPs y
problemas de análisis numérico, abriendo emocionantes vías para futuras
investigaciones y aplicaciones.

Palabras clave: análisis numérico, ecuaciones en derivadas parciales,
computación cuántica, inspiración cuántica, algoritmos variacionales cuán-
ticos, redes de tensores, estados producto de matriz
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Chapter 1

Introduction

“The purpose of a storyteller is not to tell you how to think, but to give
you questions to think upon.”

— Brandon Sanderson, The Way of Kings

Partial differential equations (PDEs) constitute a relevant tool for
the mathematical modeling of real-world problems. Notable examples
include the Navier-Stokes equations, which govern fluid dynamics and
have applications in engineering, such as optimizing the aerodynamics of
Formula 1 cars; the SIR model in medicine used to predict the spread
of infectious diseases; and the Black-Scholes equation in finance, which
is fundamental in option pricing. In physics, PDEs are important for
the study of quantum technologies, including the study of superconduct-
ing circuits [1, 2, 3] described by Hamiltonian PDEs, and the time evo-
lution problem in levitodynamics [4] governed by the time-dependent
Schrödinger equation. Solving these PDEs can be challenging due to
their high dimensionality and fine resolution—number of points to cor-
rectly capture the problem—, leading to exponential memory and imple-
mentation costs.

The exponential advantage in information processing and the speedups
offered for relevant operations, such as the Fourier transform, make quan-
tum computers an interesting tool for solving numerical analysis prob-
lems. A particularly relevant class of quantum algorithms for solving
PDEs [5, 6, 7, 8] is based on the Harrow-Hassidim-Lloyd (HHL) al-
gorithm [9] for linear systems of equations. These methods have ad-
dressed problems like the Poisson [10] and the heat equation [11]. HHL-
based techniques for PDEs, as well as other proposals [12, 13, 14, 15,
16] based on quantum amplitude estimation (QAE) [17], require fault-
tolerant quantum computing. However, we find ourselves in the so-called
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Noisy Intermediate-Scale Quantum (NISQ) [18] era, characterized by
quantum computers with up to a few hundred physical qubits and no
error correction [19], rendering the previous methods unfeasible. Hy-
brid quantum-classical algorithms [20] appear as an alternative to take
advantage of present quantum devices. These algorithms combine clas-
sical and quantum computers, resulting in methods with lower hardware
requirements and higher noise resilience [20, 21]. These promising char-
acteristics led to the application of variational quantum algorithms [22]
to quantum numerical analysis [23, 24, 25, 26, 24, 27, 28], solving a wide
range of problems: the Feynman-Kac equation [29] and other stochastic
PDEs [30], the Poisson equation [31, 32], the advection-diffusion equa-
tion [33], the heat equation [34], and fluid dynamics [35, 36], among
others.

Quantum-inspired methods are classical algorithms that can achieve
memory compression and speedups similar to those of quantum algo-
rithms while avoiding the current limitations of quantum computers.
These techniques may rely on tensor networks [37], an exponentially ef-
ficient formalism to represent quantum states. Tensor networks arise in
the field of quantum many-body physics to overcome the curse of dimen-
sionality, i.e., the exponential scaling of the number of parameters with
the system size. This issue also poses a problem for resolving PDEs, mo-
tivating the use of tensor networks to tackle them. In quantum-inspired
numerical analysis, functions and operators may be represented using
one-dimensional tensor networks, known as matrix product states (MPS)
and operators (MPOs). García-Ripoll [38] demonstrated the efficient en-
coding of highly differentiable multidimensional functions as MPS and
the consequent speed up of numerical tasks like interpolation and solv-
ing PDEs. Later, Jobst and collaborators [39] formalized the error of the
MPS representation of functions with a rapidly decaying Fourier spec-
trum. Similar tensorial approximations were developed in mathemat-
ics under the name of tensor trains (TTs), with their quantized version
(QTTs) being equivalent to MPS. These representations have been suc-
cessfully used to solve a variety of PDEs including the Hamilton-Jacobi-
Bellman equations [40, 41, 42], high-dimensional nonlinear PDEs [43],
the nonlinear Schrödinger equation [44], and turbulence problems [45].
Overall, these quantum-inspired methods may constitute powerful tools
for addressing the computational complexity of PDEs, appearing as en-
couraging alternatives to both classical and quantum methods.

In this thesis, we propose leveraging quantum and quantum-inspired
numerical analysis to offer potential scalability advantages while main-
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taining high accuracy for the solution of PDEs. Impeled by the high com-
plexity of physically motivated PDEs, we construct encodings of func-
tions and PDEs as quantum states and operators, acting as a basis for
new, possibly more efficient methods to address these problems.

In the first part of the thesis, we focused on studying the application
of quantum computers to solve PDEs. This resulted in a novel varia-
tional quantum algorithm [46] to solve static Schrödinger-type Hamilto-
nian PDEs. This algorithm relies on a highly efficient encoding of func-
tions and operators in a quantum register based on Fourier techniques. It
is combined with new suitable Ansätze [47, 48] for representing functions
and their symmetries and various classical optimizers. This method is
used to solve the Hamiltonian PDE of different superconducting qubits,
leveraging the potential of quantum computers to model their very com-
ponents. Despite the high accuracy of the created encoding, the noise
and limited number of measurements of current quantum computers re-
strict the performance of this variational approach. This suggests the
need for alternative techniques that could benefit from this quantum
representation of functions.

Quantum-inspired techniques appear to be a suitable option for tak-
ing advantage of the quantum register encoding while avoiding errors
arising from noise sources. By mapping the register’s qubits to the ten-
sors of an MPS, it is possible to construct efficient representations of
functions [38]. This realization motivated the second part of the thesis,
in which we created new quantum-inspired algorithms to resolve PDEs
using a finite precision MPS framework. We used this binary encod-
ing to develop novel global optimization algorithms to resolve Hamil-
tonian PDEs [49]. This work integrates the MPS-MPO representation
of functions and operators with a set of basic algebraic operations and
MPS truncation algorithms, resulting in an MPS-MPO finite precision
algebra. This algebra enables working with MPS-MPO similarly to the
elements of the matrix-vector algebra, providing a powerful tool for de-
veloping quantum-inspired algorithms for numerical analysis. The one-
and two-dimensional harmonic oscillator Hamiltonian PDE—one of the
quintessential equations of quantum mechanics—acted as a benchmark
for different optimization algorithms, using a grid of up to 230 ≈ O(109)
points. This work demonstrated that MPS asymptotically exhibit expo-
nential advantages in memory and significant time savings compared to
standard vector implementations for solving Hamiltonian PDEs.

Our previous work confirmed the advantages of using MPS for solving
PDEs, thanks to their excellent memory savings. We then studied how
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this performance extends from static problems to time-dependent ones.
Our focus is the field of levitodynamics, which presents challenging prob-
lems from a numerical perspective. More specifically, when a trapped
particle is released from a tightly confined potential, its wavefunction
may experience a rapid expansion, increasing in size two or more orders
of magnitude in a brief period of time. This is a challenging problem,
both because it requires a precise modelization with a very dense rep-
resentation, and also because we need to solve the dynamics accurately.
We addressed this problem with a new MPS pseudospectral method for
solving time-dependent PDEs [50]. This work introduced a highly accu-
rate technique to approximate functions of derivatives, which is combined
with global evolution schemes independent of the locality of interactions
to solve the particle’s evolution successfully. MPS’s error scaling and
run times are comparable to FFT vector methods; however, MPS have
a significant advantage in memory, overcoming vector limitations to fa-
cilitate larger discretizations and expansions. This result restated that
the MPS-MPO finite precision algebra is an efficient framework for de-
veloping quantum-inspired numerical analysis techniques to solve PDEs
effectively with high memory usage.

Finally, the SElf-Explaining Matrix Product State (SeeMPS) [51] li-
brary includes the MPS algebra and algorithms developed in this thesis
and constitutes a valuable tool for addressing numerical analysis prob-
lems from a quantum-inspired perspective. We have developed around
12 algorithms for the numerical approximation of differentiation, inter-
polation, and partial differential equations. These algorithms are based
on an MPS-MPO finite precision algebra that enables the encoding of
multidimensional problems and an accurate representation of operators.
The SeeMPS library is a growing open-source project that has incorpo-
rated algorithms for the loading of functions and operators [52] based on
Chebyshev [53, 54] and TT-cross interpolation [55]. The library is not
only freely available, but it supports all the quantum-inspired papers
developed in this thesis and is also described in this manuscript.

The structure of this thesis is as follows. The thesis starts by in-
troducing the representation of functions and operators in a quantum
register in chapter 2. Then, chapter 3 focuses on tensor networks, par-
ticularly MPS, and how they can be used to construct a finite precision
algebra for developing quantum-inspired algorithms. Once the primary
building blocks are presented, the following sections introduce the quan-
tum and quantum-inspired algorithms for numerical analysis created in
this thesis. Chapter 4 covers the work in Ref [46]: a variational quantum
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algorithm to solve static Schrödinger-type Hamiltonian PDEs applied
to the simulation of superconducting circuits. Chapter 5 uses the finite
precision algebra to create quantum-inspired algorithms for global op-
timization of MPS. These algorithms, proposed in Ref. [49], solve the
harmonic oscillator’s Hamiltonian PDE in one and two dimensions. The
dramatic expansion of the particle’s wavefunction in a levitodynamics
setting motivates the creation of MPS algorithms for time-dependent
PDEs in chapter 6, as described in Ref. [50]. The basic functioning of
the SeeMPS library is described in chapter 7. Chapter 8 summarizes the
main contributions of this work and points out future research directions.
The contents of this thesis are outlined in Table 1.1.
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Section
Problems of study Harmonic oscillator 4.1 and 5.3

Superconducting qubits 4.1
Levitodynamics 6.1

Differentiation Finite differences† 2.2.2
Spectral method*,† 2.2.2
Hermite Distributed 6.2
Approximating Functionals†

Interpolation Finite differences† 2.3
Fourier interpolation*,† 2.3

MPS algorithms Canonical form 3.3
Expected value 3.5
MPO-MPS product 3.5
MPS-MPS product 3.5
Scalar multiplication 3.5
Simplification 3.5
Linear combination 3.5

Optimization Variational quantum PDE solver* 4.4
Gradient descent† 5.1.2
Arnoldi iteration† 5.1.4
Power iteration† 5.1.5
DMRG 5.1.6

Evolution Euler† 5.1.1
Improved Euler† 5.1.1
Runge-Kutta† 5.1.1
Runge-Kutta-Fehlberg† 5.1.1
Crank-Nicolson† 6.3.1
Arnoldi iteration† 6.3.2
Split-step† 6.3.3

Table 1.1: Main contents of the thesis. The table gathers the problems of
study and the different quantum and quantum-inspired numerical anal-
ysis techniques used to address them. The symbol * indicates that the
algorithm is quantum, while † stands for quantum-inspired. The grey
color represents non-original algorithms.
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Chapter 2

Quantum register representa-
tion of functions

In the domain of numerical analysis, a very relevant task is to repre-
sent and construct functions defined over continuous domains. Let us
take a canonical problem, which is solving the heat transfer equation
∇2f(x) = g(x), where x ∈ Ω is a multidimensional variable that runs
along some compact volume in Ω ⊂ RN , with suitable boundary condi-
tions. Since computers cannot deal with infinite-dimensional degrees of
freedom, the numerical solution of such a problem must start by find-
ing a suitable, finite-dimensional representation of the functions f(x)
and g(x). Typical approaches include sampling the values of these func-
tions over a regular or optimized multidimensional grid or expanding
those functions in a basis of functions—e.g., Fourier modes, Hermite or
Chebyshev polynomials, finite element polynomials—. Any of these em-
beddings transforms the problem into a discrete version that is amenable
to treatment in a computer. However, the size of the embedding and the
accuracy in the solution of the associated problem can pose severe chal-
lenges in many relevant situations.

In this scenario, quantum computers have been proposed as an al-
ternative platform that can provide advantages in both encoding and
solving numerical analysis problems. Starting with early results for cou-
pled linear equations—the HHL algorithm [9]— it is clear that a central
advantage of the use of quantum computers lies in leveraging the ex-
ponentially large Hilbert space, i.e., a quantum register with n qubits
may potentially represent 2n degrees of freedom associated with any of
the previous function encodings. These techniques result in a highly ef-
ficient framework for solving numerical analysis problems in quantum
computers (Chapter 4) that also extends to quantum-inspired settings
(Chapters 5 and 6), more accurate and efficient in the NISQ era [18].
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2.1 Function discretization

A quantum register can encode a function by dividing the position space
into discrete intervals and mapping them to the register’s states. The
one-dimensional case serves as an example to understand this encoding,
which is also valid for multiple dimensions (Section 2.4), inspired by
the representation in Refs. [47, 48]. Let us consider a one-dimensional
function f(x) defined on the finite interval [a, b) of size Lx = |b − a|. A
2n-point discretization of such interval leads to

x(n)s = a+ s∆x(n), (2.1)

with s ∈ {0, 1, . . . , 2n−1} and ∆x(n) = Lx
2n . Each integer s corresponds to

a quantum state s = (s0s1 . . . s2n−1), leading to a binary representation
of the coordinate values

x(n)s = x
(n)
(s0s1...s2n−1) = a+∆x(n)

n−1∑
k=0

sk2n−k−1. (2.2)

Then, a quantum register represents a function as a normalized quan-
tum state, ∣∣∣f (n)〉 = 1

N 1/2
f

2n−1∑
s=0

f
(
x(n)s

)
|s〉 , (2.3)

where Nf is the normalization constant1. Equation (2.3) encodes a func-
tion in a quantum register as a linear superposition of basis quantum
states, in which the amplitudes represent the value of the function at the
coordinate x(n)s associated with each state. This representation of func-
tions in a quantum register requires only a logarithmically small number
of qubits n = O(log2(1/∆x)), resulting in an exponential advantage com-
pared to the classical approach. This advantage translates into further
improvements in the representation errors, as discussed in section 2.5.

As an example of the encoding, Figure 2.1 represents a Gaussian
function with zero mean µ = 0 and standard deviation σ = 1,

f(x) = 1
N 1/2
f

e−x
2/2, (2.4)

1The quantum computing formalism requires quantum states to be normalized.
Tensor networks present an alternative platform for this quantum register represen-
tation that overcomes this limitation (Chapter 3).
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2.1. Function discretization

Figure 2.1: Encoding of a Gaussian function in a quantum register.
Gaussian function (2.4) quantum register discretization (2.3) in a 2n-
point grid (2.1) with Lx = 10, where n = 2, 3, 12 is the number of qubits
of the quantum register. The normalization constant is removed for the
sake of visual comparison.

where Nf is the normalization constant. Let us discretize this function
in n = 2 qubits, which corresponds to a 4-point discretization

f (n) = [f(x0), f(x1), f(x2), f(x3)]T . (2.5)

The quantum register encoding stores each value in the amplitudes of
the quantum register as∣∣∣f (n)〉 = 1

N 1/2
f

(f(x0) |0〉+ f(x1) |1〉+ f(x2) |2〉+ f(x3) |3〉) (2.6)

= 1
N 1/2
f

(f(x00) |00〉+ f(x01) |01〉+ f(x10) |10〉+ f(x11) |11〉) .

(2.7)

Adding a qubit to the discretization doubles the number of points (Fig-
ure 2.1), showing the exponential efficiency of the quantum register en-
coding.

This representation of functions in a quantum register is a particular
case of a general embedding of classical data into a quantum framework,
commonly called amplitude encoding. Amplitude encoding is a popular
method in quantum machine learning [56, 57, 58, 59] and quantum nu-
merical analysis [47, 48, 9, 60]. Among the many applications of this en-
coding of functions, chapter 4 shows how to solve Schrödinger-like static
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Hamiltonian PDEs in ideal and NISQ [18] scenarios. Interestingly, this
quantum representation can be leveraged in classical computers with the
help of quantum-inspired methods. More precisely, as discussed through
this thesis, the combination of a quantum register encoding with ten-
sor networks allows exponential gains in memory and execution tasks
for many numerical analysis algorithms—e.g., solution of static PDEs in
chapter 5 and solution of time-dependent PDEs in chapter 6.

2.2 Operator discretization

The discretization of functions on a grid can induce different represen-
tations of operators—e.g., potentials and derivatives—as linear or non-
linear transformations of the discretized information. In the particular
case of a quantum register encoding, it is possible to represent those
operators as linear transformations of the quantum register. Sometimes
those transformations correspond to physically relevant operators—e.g.,
Hermitian operators that can generate some dynamical evolution or be-
come part of a Hamiltonian—, but more often they will not, in which
case one needs some approximation technique—see variational methods
in chapter 4 —or use quantum-inspired methods that are not restricted
to physical operations—e.g. tensor network methods in chapters 5 and 6.

2.2.1 Potential operators

In this thesis, we will study PDEs associated with the Hamiltonian of
different quantum systems. The Hamiltonian H = D(−i∂x) + V (x) con-
sists of the kinetic and potential terms, respectively. The kinetic term
corresponds to the differential operator of the PDE (Section 2.2.2), while
the potential operator is a function of the position. Therefore, the ap-
plication of the potential operator is equivalent to the multiplication by
a continuous function V (x) written as the diagonal operator

V̂ (x) =
∑
s

V
(
x(n)s

)
|s〉〈s|. (2.8)

The fact that the operator is diagonal is very convenient since its appli-
cation is equivalent to elementwise vector multiplication, which enables
a better operation scaling for its tensor network implementation, as dis-
cussed in section 3.7.
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2.2.2 Differential operators

To apply a differential operator, finding an appropriate method to imple-
ment the derivative of a discretized function is essential. One commonly
used technique is the finite difference method, which can approximate dif-
ferential operators for differentiable functions with an error that reduces
polynomially in ∆x. Alternatively, Fourier techniques can exponentially
increase the accuracy of the approximation at the expense of greater
complexity.

Finite difference method

This method uses different orders of the Taylor expansion of the func-
tion to approximate the derivatives with an algebraically decreasing order
O(∆xp) that depends on the order p of the approximation. Two of the
most common expressions are the centered finite difference approxima-
tion for the first and second derivative of f(x),

∂f(x)
∂x

= f(x+∆x)− f(x−∆x)
2∆x

+O(∆x2), (2.9)

∂2f(x)
∂x2

= f(x+∆x)− 2f(x) + f(x−∆x)
∆x2

+O(∆x2). (2.10)

The classical approach implements the displacements as shifts of vec-
tors that encode the discretized functions. In the quantum represen-
tation, the displacement operators have a non-Hermitian representation
that shifts the quantum register states. When working with open bound-
ary conditions, this non-physical transformation is

Σ̂+|s〉 =
{

|s+ 1〉 s < 2n − 1,
0 else, Σ̂− =

(
Σ̂+
)†
, (2.11)

which performs a displacement over the quantum register states. This op-
eration is unitary when considering periodic boundary conditions, leading
to the upper and lower diagonal matrices

Σ̂+ =


0 1

1 . . .
. . . . . .

1 0

 , Σ̂− =


0 1

. . . . . .
. . . 1

1 0

 . (2.12)

Since the operations are unitary, they are amenable to its application
on a quantum register. Open boundary conditions correspond to non-
unitary operators and cannot be applied in physical quantum computers.
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However, they are still suitable for the quantum-inspired representation
in chapters 5 and 6. Using a linear combination of displacement oper-
ators (2.11), the differential operator implements the first and second
derivative of the function encoded in the quantum register as [38]

|∂xf (n)〉 '
1

2∆x(n)
(
Σ̂+ − Σ̂−

) ∣∣∣f (n)〉 , (2.13)

|∂2xf (n)〉 '
1(

∆x(n)
)2 (Σ̂+ − 2I+ Σ̂−

) ∣∣∣f (n)〉 . (2.14)

Spectral method

Fourier analysis techniques provide a highly efficient encoding with an ex-
ponential increase in precision (Section 2.5) compared to the finite differ-
ence method. These tools are suitable for periodic functions—naturally,
this includes functions that vanish at all orders of their derivatives to-
wards the boundaries of the function’s domain. For the spectral encod-
ing to succeed, these functions must be bandwidth-limited, meaning their
Fourier transform f̃(p) = [F̂f ](p) should be negligible outside a moderate
size volume in momentum or frequency space [−Lp/2, Lp/2). According
to the Nyquist-Shannon sampling theorem [61, 62], bandwidth-limited
functions can be efficiently sampled over a finite grid with a spacing
∆x < 2π/Lp. The discretized Fourier transform (DFT) substitutes its
continuous version in this situation. The DFT of f(xs) discretized on a
grid of N points is given by

f̃(pl) =
1√
N

N−1∑
s=0

e−2πils/Nf(xs), l = {−N/2, . . . , N/2− 1}. (2.15)

The inverse DFT is given by

f(xs) =
1√
N

N/2−1∑
l=−N/2

e2πils/N f̃(pl), s = {0, . . . , N − 1}, (2.16)

where we conveniently reorder the elements of the sum2. This definition
is valid for N even, which is satisfied for an n-qubit quantum register
encoding with N = 2n. Let us note that the original domain of variable x
will be referred to as position space, and the Fourier transformed domain
of variable p will be indistinctly called frequency or momentum space.

2Note that the Fourier transform is periodic as e2πils/N = e2πi(l+N)s/N , and hence
the indices can be translated, mapping the highest frequency components to the cor-
responding negative frequencies.
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The encoding in Eq. (2.16) is the basis for Fourier interpolation of a
discretized function over its definition domain. This definition enables
the approximation of arbitrary differential operators G(∂x). Thus, in
general

G(∂x)f(x) =
1√
N

N/2−1∑
l=−N/2

G(ipl)eiplxf̃(pl). (2.17)

This expression only involves two DFTs (a direct and inverse one) and an
elementwise multiplication of the function by complex coefficients. With
the help of the fast Fourier transform algorithm (FFT), this computation
may be performed in O((2 log2N + 1)N) steps in a computer.

The quantum Fourier transform (QFT) F̂ allows us to represent dif-
ferential operators G(∂x) as operators acting on a quantum register. The
QFT is a unitary operator that transforms an n-qubit quantum state as3

|r〉 F̂7−→ 1√
2n

2n−1∑
s=0

ei2πrs/2
n |s〉 . (2.18)

When acting on a linear superposition representing a function,
∣∣∣f (n)〉,

the QFT produces a new quantum state that encodes the inverse DFT
of the function,∣∣∣f̃ (n)〉 =

∑
s

f̃ (n)
(
p(n)s

)
|s〉 := F̂

∣∣∣f (n)〉

= 1√
2n

2n−1∑
r,s=0

ei2πsr/2
n
f
(
x(n)r

)
|s〉 .

(2.19)

Note that, due to the encoding of non-negative numbers in the quan-
tum register, the negative frequencies from the DFT are now stored in
the largest integer states of the quantum register (what is known as
complement-2 representation in computer science),

ps =
2π

∆x(n)2n
×
{
s for 0 ⩽ s < 2n−1,
s− 2n otherwise. (2.20)

Interestingly, this same problem arises when using the FFT to implement
a DFT in a classical computer, and it is something to be considered when
interpreting Eq. 2.17.

The number of gates of both the QFT and inverse QFT circuits grows
logarithmically with the discretization grid O(n2) (Figure 4.5), resulting

3Note that the sign convention is opposite to the DFT.
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in an exponential advantage over the classical fast Fourier transform with
O(n2n) operations. The smaller error of the spectral method compared
to the finite difference—up to doubly exponential in the number of qubits
(Section 2.5)—together with the exponential advantage of the quantum
implementation, motivates the use of this technique [38] for the applica-
tion of differential operators of any order as diagonal operators in Fourier
space using

D̂(−i∂x) := F̂−1∑
{s}

D
(
p(n)s

)
|s〉〈s| F̂ . (2.21)

The QFT is indeed one of the most advantageous quantum routines
when compared to their classical counterpart, and it has many appli-
cations, from Shor’s algorithm [63] for prime numbers factorization to
quantum machine learning [64] and the solution of linear systems of
equations [9].

2.3 Interpolation

Some computations require us to provide an estimate for values on all
points of the continuous domain on which a function is defined. An
interpolation scheme is an algorithm that offers such an estimate starting
from the values of a discretized function on the original grid. This thesis
relies on two types of interpolation formulas, depending on whether finite
difference or spectral methods approximate derivatives.

The first and simplest method uses a piecewise linear (or polyno-
mial) interpolation of the function between points of the discretization
grid. Given an n-qubit representation of a function f

(
x
(n)
s

)
with a dis-

cretization step ∆x(n)s , the finite difference interpolant approximates the
new points of the (n+ 1)-qubit grid by the Taylor expansion

f
(
x(n)s + ε

)
= f

(
x(n)s

)
+ ε∂xf

(
x(n)s

)
+O

((
∆x(n)

)2)
, (2.22)

where ε ∈ [−∆x(n),∆x(n)]. Substituting ε = ∆x/2 in Eq. (2.22), the
second-order finite difference interpolation formula is given by

f
(
x(n)s +∆x(n)/2

)
≈ f

(
x(n)s

)
+
f
(
x
(n)
s +∆x(n)

)
− f

(
x
(n)
s

)
2

. (2.23)

This operation can be applied in the quantum register representation by
replacing the displacements of the function with the displacement oper-
ators (2.11). Higher-order finite difference approximations include more
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displacements of the quantum register. These techniques easily translate
to a quantum-inspired setting due to the representation of displacement
operators as matrix product operators (MPOs).

Fourier interpolation [65, 38] is a second method with more advan-
tageous error scalings—up to doubly exponentially in the number of
qubits—for bandwidth-limited functions that can be resampled according
to the Nyquist-Shannon theorem [61, 62]. Given a sufficiently small spac-
ing ∆x(n) ⩽ 2π/Lp, this theorem ensures that any bandwidth-limited
function f(x) can be interpolated from a discretization

∣∣∣f (n)〉, up to
exponentially small errors. It states that a function with a maximum
bandwidth pmax can be completely determined by its samples taken at
a rate pl = 2pmax. If the sampling is made with a smaller frequency
rate, the loss of information due to aliasing does not permit proper re-
construction of the function. For a function with domain sizes Lx and
Lp in position and momentum space, respectively, their spaces need to
satisfy ∆x(n) ⩽ 2π/Lp and ∆p(n) ⩽ 2π/Lx.

Given a function (Figure 2.2(a)), the basic idea of Fourier inter-
polation is to transform the function to Fourier space (Figure 2.2(b))
and add new points as zeros (zero padding) in momentum space out-
side the bandwidth-limited interval (Figure 2.2(c)), since f̃(pl) ≈ 0 for
|pl| > pmax. Then, the application of the inverse Fourier transform leads
to the interpolated function in position space (Figure 2.2(d)). Algo-
rithm 1 shows the pseudocode to implement Fourier interpolation using
the FFT (see Appendix A for a step-by-step explanation and a Python
implementation of Fourier interpolation).

Algorithm 1 Fourier interpolation pseudocode.
function FourierInterpolation(f ,M)

Interpolate a function f to M points
N = len(f) ▷ Original number of elements
F = fft_transform(f) ▷ Perform Fourier transform
Fpadded = pad_with_zeros(F ,M -N) ▷ Add M −N points
fint = ifft_transform(Fpadded) ▷ Undo shift and transform to

position space
return sqrt(M/N)*fint ▷ Return rescaled interpolated function

end function

Fourier interpolation constitutes a unitary operation in the quantum
register representation, unlike the finite difference approximation, where
the displacement operators are only unitary for periodic boundary condi-
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Figure 2.2: Fourier interpolation of a Gaussian function. (a) 5-qubit
representation of f(x). (b) Fourier transform f̃(k). (c) Zero-padded
Fourier transform f̃zero-padded(p) with M − N = 210 − 25 = 992 added
zeros. (d) 10-qubit interpolated function fint(x).

tions. The QFT (2.18) and its inverse enable the creation of a quantum
circuit to reconstruct the original function from the discretized state in
momentum space. Section 4.3.4 includes the detailed implementation of
the Fourier interpolation quantum circuit. The Nyquist-Shannon the-
orem indicates that the minimum number of qubits necessary for an
accurate sampling is

nmin ⩽ log2
(
LpLx
2π

)
. (2.24)

2.4 Dimensionality

The encoding techniques discussed in sections 2.1 to 2.3 can be gen-
eralized to work with multidimensional functions. Let us consider a d
dimensional function f(x) = f(x1, x2, . . . , xd) with a definition interval
xi ∈ [ai, bi) of size Lxi = |bi − ai| for each dimension i = (1, . . . , d). The
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encoding uses ni qubits to represent each coordinate over 2ni points as

x
(ni)
i,si

= ai + si∆x(ni)
i . (2.25)

The integer si ∈ {0, 1, . . . , 2ni − 1} labels the grid coordinate x(ni)
i,si

of
the i-th dimension. Then, a set of labels s = (s1, s2, . . . , sd) is the d-
dimensional state associated to the coordinate xs. The normalized quan-
tum state ∣∣∣f (N)

〉
= 1

N 1/2
f

∑
{si}

f(xs) |s〉 , (2.26)

represents a multidimensional function, where Nf is a normalization fac-
tor, and the number of qubits of the register is the sum of the registers
for each coordinate N =

∑
i ni.

Analogously, multidimensional operators in function space become
transformations on the quantum register encoding each coordinate. For
the concrete case of the QFT, the spectral method resorts to its multi-
dimensional version F̂ , which transforms the state |r〉 as

|r〉 F̂7−→ 1√
2N

∑
{si}

ei2πr
∑

i
si/2N |s〉 , (2.27)

extending the one-dimensional QFT to the d dimensions of f(xs) by ap-
plying the corresponding quantum circuits on the ni qubits encoding each
dimension xi. Similar reasonings enable generalizing other operators—
e.g., potentials V (x), derivatives ∇,∇2—and algorithms—e.g., integra-
tion, interpolation, etc.—to the multidimensional scenario. It is worth
pointing out that when applying the differential operator, the QFT is
only applied on the corresponding ni qubits of the register, with a cost
that scales linearly with the dimensionality for all tensorial addition or
multiplication of operators. For the finite difference method, the dis-
placement operators are defined for each register, Σ±

i , acting only on the
ni qubits of the corresponding dimension.

2.5 Approximation errors

The interpolants in section 2.3 approximate the exact continuous func-
tion f(x) up to an error that depends on the concrete technique. For the
more straightforward finite difference interpolation, the number of ele-
ments of the Taylor expansion determines the polynomial scaling of the
error with the spatial discretization. In the case of the Fourier interpola-
tion, the number of nodes of the infinite Fourier series and the use of the
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discrete Fourier transform to approximate it dictate its accuracy. This
section reviews some results of the finite difference method and Fourier
analysis to evidence the errors of the function representation techniques
that will be used in this thesis. These errors are independent of their
application in classical, quantum, and quantum-inspired numerical anal-
ysis.

2.5.1 Finite difference errors

The finite difference method relies on the Taylor expansion of a function
to provide different order approximations of derivatives. This method is
suitable for continuous functions f(x) that are continuously differentiable
up to the order required by the finite difference scheme. For example,
to approximate the second derivative of f(x), it must be at least twice
differentiable in the region of interest.

The simplest finite difference scheme arises from the definition of the
derivative of a smooth function f(x), with x ∈ R,

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

. (2.28)

The Taylor series

f(x+ h) =
∞∑
p=0

hp

p!
dpf(x)
dxp

∣∣∣∣xp, (2.29)

provides the error of this approximation

f ′(x) = f(x+ h)− f(x)
h

+O(h). (2.30)

This finite difference scheme is known as forward finite difference, and
its error is related to the supremum of the second derivative as [66]∣∣∣∣f(x+ h)− f(x)

h
− f ′(x)

∣∣∣∣ ≤ Ch, C = supy∈[x,x+h0]
|f ′′(y)|

2
, (2.31)

with h ≤ h0.
The combination of two Taylor expansions

f(x+ h) = f(x) + hf ′(x) + h2

2
f ′′(x) +O(h3), (2.32)

f(x− h) = f(x)− hf ′(x) + h2

2
f ′′(x) +O(h3), (2.33)
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leads to the more accurate centered finite difference scheme

f ′(x) = f(x+ h)− f(x− h)
2h

+O(h2), (2.34)

whose continuous version is bounded by [66]∣∣∣∣f(x+ h)− f(x− h)
2h

− f ′(x)
∣∣∣∣ ≤ Ch2, (2.35)

C = supy∈[x−h0,x+h0]
|f (3)(y)|

6
.

This expression improves the truncation error from linear in h to a
quadratic order O(h2). This finite difference approximation of the deriva-
tive can be extended to an arbitrary order p by considering more terms
of the Taylor expansion, assuming that the function is p times differen-
tiable.

It is also possible to obtain an approximation of the second deriva-
tive f ′′(x) by adding (2.32) and (2.33). This leads to the second-order
centered finite difference

f ′′(x) = f(x+ h) + f(x− h)− 2f(x)
2h2

+O(h2). (2.36)

Similarly to Eq. (2.31), Eq. (2.36) is bounded by [66]∣∣∣∣f(x+ h)− 2f(x) + f(x− h)
h2

− f ′(x)
∣∣∣∣ ≤ Ch2, (2.37)

C = supy∈[x−h0,x+h0]
|f (4)(y)|

12
.

The most standard method is the second-order centered finite dif-
ference scheme for approximating the first and second derivatives. We
will use these formulas to approximate differential operators in quantum-
inspired scenarios in sections 5 and 6. In practical applications, the in-
finitesimal step h is substituted by the discretization step ∆x, and the
function f(xs) is defined over a discretized grid with xs = a+ s∆x, s =
0, . . . , N − 1.

2.5.2 Fourier series errors and spectral content

The finite difference method’s accuracy is limited to a polynomial scaling
in the step size ∆x, leading to an error of order p, O(2−pn), decaying
exponentially with the number of qubits n. Refs. [67, 68] show how,
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using Fourier analysis, it is possible to obtain an error that decays up to
doubly exponentially in the number of qubits.

The Fourier series expands a function f(x) as a sum of orthogo-
nal square-integrable basis functions L2

[0,2π] [67], i.e., the Fourier modes
ϕl(x) = 1√

2πe
ilx with k ∈ Z, as

f(x) =
∞∑

l=−∞
f̂lϕl. (2.38)

The values f̂l, l ∈ Z are the Fourier coefficients

f̂l =
1√
2π

∫ 2π

0
f(x)e−ilxdx. (2.39)

In practical applications, the truncation of the infinite number of
terms of the Fourier series leads to the truncated Fourier series

PNf(x) =
N/2∑

l=−N/2
f̂lϕl. (2.40)

Since this approximation removes terms from the original exact series, it
introduces an error given by

‖f(x)− PNf(x)‖2 =
∞∑

|l|=N/2+1

∣∣∣f̂l∣∣∣2 , (2.41)

which depends on how fast the Fourier coefficients (2.39) decay to zero,
which they always do according to the Riemann-Lebesgue lemma. For
an m times continuously differentiable f(x) in x ∈ [0, 2π] with m ⩾ 1,
and if f (j)(x) is periodic for all j ⩽ m− 2, then f̂l = O(1/lm) [68]. This
leads to a truncation error for f ∈ Hm(0, 2π) of order [68]

‖f(x)− PNf(x)‖ = O(N−m), (2.42)

where Hm is the Sobolev space, i.e., the space of functions whose first
m− 1 derivatives are periodic. For an analytic function f(x) ∈ C∞ and
periodic with all its derivatives on [0, 2π], the decay of the lth Fourier
coefficient is faster than any negative power of l [68]. More precisely, the
error decays exponentially with N ,

‖f(x)− PNf(x)‖ = O
(
e−rN

)
, (2.43)

for f(x) periodic with period 2π and analytic in a strip of radius r > 0
centered around the real axis |Imz < r| [68].

50



2.5. Approximation errors

Gibbs phenomenon

Many functions show discontinuities in their definition or their deriva-
tives, resulting in the appearance of the Gibbs phenomenon when us-
ing the Fourier series for their approximation. This causes oscillations
around such discontinuities due to the necessity of arbitrarily large fre-
quencies. Let us imagine a piecewise continuously differentiable periodic
function f(x), x ∈ [0, 2π] with a jump discontinuity at x = x0. Its
truncated Fourier series [68] is given by

PNf(x) =
1
2π

∫ 2π

0

 N/2∑
l=−N/2

e−il(x−y)

 f(y)dy
= 1

2π

∫ 2π

0
DN (x− y)f(y)dy,

(2.44)

where DN (ξ) is the Dirichlet kernel

DN (ξ) = 1 + 2
N/2∑
k=1

cos (kξ) . (2.45)

Approximating the Fourier series around the discontinuity as N → ∞
leads to [68]

PNf(x) '
1
2

[
f(x+0 ) + f(x−0 )

]
+ 1

2π

[
f(x+0 )− f(x−0 )

] ∫ x−x0

0
DN (y)dy.

(2.46)

The second term of the equation shows that the Dirichlet kernel modi-
fies the jump of the function by a factor (0.089489872236 . . . ), which is
around 9%. This also modifies the interpolated function since using the
trapezoidal quadrature rule to relate Eq. (2.44) with it leads to

INf(x) =
1
N

N−1∑
s=0

DN (x− xs)f(xs). (2.47)

Luckily, this effect is only present around discontinuities, and it averages
out and decays algebraically as N → ∞. Therefore, it does not limit the
computations with PNf(x) or INf(x) in the approximations of integrals
and other observables.

51



Chapter 2. Quantum register representation of functions

2.5.3 Fourier interpolation errors

In numerical applications, the discrete Fourier series replaces the contin-
uous version, whose expression is given by

f̃l =
1√
N

N−1∑
s=0

f(xs)e−ilxs , (2.48)

for xs = 2πs/N, s = 0, . . . , N − 1, x ∈ [0, 2π) and −N/2 ⩽ l ⩽ N/2 − 1.
This leads to the Fourier interpolant INf(x) of degree N/2

INf(x) :=
√

2π
N

N/2−1∑
l=−N/2

f̃lϕl(x) =
1√
N

N/2−1∑
l=−N/2

f̃le
ilx, (2.49)

that coincides with the original function in the original lattice values, i.e.,
INf(xs) = f(xs). The difference of the exact f̂l and discrete f̃l Fourier
coefficients is quantified by the aliasing term RN ,

RN := f̃l − f̂l =
∞∑

m=−∞,m 6=0
f̂l±mN . (2.50)

Since the Fourier coefficients are orthogonal, the Fourier series truncation
and the aliasing onto the lattice commute. Then, the difference between
the original function and the interpolated one is

‖f(x)− INf(x)‖2Hm(0,2π) (2.51)
≤ ‖f(x)− PNf(x)‖2Hm(0,2π) + ‖RNf(x)‖2Hm(0,2π),

where Hm(0, 2π) is the Sobolev space of functions L2(0, 2π) such that all
the distributional derivatives of u of order up to m can be represented
by functions in L2(0, 2π) [68]. This shows that the interpolation error
‖f(x)− INf(x)‖ behaves asymptotically like the truncation error [69,
68], and then, for analytical functions, the interpolation error decreases
exponentially with the number of points of the lattice N and doubly
exponentially with the number of qubits n, since N = 2n.

2.5.4 Fourier differentiation errors

Fourier differentiation relies on Fourier interpolation since it uses a dis-
cretized version of the derivative obtained from differentiating the in-
terpolated function (DNf)(x) := ∂xINf(x). However, aliasing prevents
interpolation and differentiation from commuting [67], as opposed to the
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truncation case. Thus, the resulting errors may differ. The errors asso-
ciated to this discretized differentiation are given by

‖f ′(x)−DNf(x)‖ = O
(
N1−m

)
. (2.52)

for a differentiable function f ∈ Hm(0, 2π) from a Sobolev spaceHm(0, 2π)
that supports m ⩾ 1 derivatives [68]. This error decays exponentially
with N [70] for an analytic function.

In practical applications, physically motivated PDEs have solutions
that are analytical functions and, hence, arbitrarily differentiable. Thus,
the quantum Fourier numerical analysis techniques constitute a valuable
framework for the highly efficient representation of many functions of
interest. The error may decay up to exponentially with the points of
the lattice N and doubly exponential with the number of qubits n, i.e.,
O(e−rN ) ∼ O(e−r2n), with some problem-dependent constant r. In addi-
tion, decreasing the Gibbs oscillation up to an arbitrarily small value is
possible by enlarging the interval size L until the value of f(x) is negligi-
ble, for which the function and higher derivatives are close to periodicity.
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Tensor networks
Tensor networks represent quantum states as a net of interconnected ten-
sors. This representation originated in the field of quantum many-body
physics, as it can potentially reduce memory requirements exponentially,
addressing the curse of dimensionality. The memory compression of ten-
sor networks has motivated the extension of this formalism to other fields,
such as machine learning or numerical analysis.

This chapter introduces tensor network foundations, explicitly focus-
ing on their application in developing quantum-inspired algorithms. The
discussion centers on one-dimensional tensor networks, namely matrix
product states (MPS) and operators (MPOs), which set the basis for one
of the central tools of this thesis, the MPS-MPO finite precision algebra
introduced in section 3.5. This algebra combines basic MPS-MPO op-
erations with truncation algorithms, providing a suitable framework to
create tensor network quantum-inspired algorithms. By extending the
quantum register encoding of functions and operators in chapter 2 to
an MPS-MPO representation, this algebra allows us to tackle numerical
analysis problems. Examples include the solution of Hamiltonian PDEs
described in Chapter 5 and the evolution problem in Chapter 6. The
practical implementation of this MPS-based algebra and the algorithms
for numerical analysis uses the SeeMPS [51] Python library described in
chapter 7.

3.1 Motivation

The Hilbert space of a composite quantum system grows exponentially
with its number of elements, imposing prohibitive resources for repre-
senting moderate-size quantum models, i.e., a d-level N -particle system
needs dN coefficients to construct its quantum state exactly. For exam-
ple, a two-level system with 80 particles would need 280 ≈ 1024 elements
to write the quantum state— a quantity comparable to the number of
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stars in the Universe. Classical methods to simulate such systems of-
ten struggle with this exponential scaling, facing memory limitations for
two-level systems with more than 30 particles [71], and even fewer for
more complex scenarios. This issue is particularly important in areas
of physics that deal with systems with large numbers of elements, such
as quantum many-body systems in condensed matter physics [72] and
quantum computing.

Tensor networks [37, 73] provide an alternative formalism for working
with these systems, potentially enabling an exponential compression in
the number of parameters of a quantum state. This reduction in scaling
applies to states that verify the area law for the entanglement entropy—
the entanglement entropy of such region is proportional to the size of the
region’s boundary rather than its volume. Consequently, these states
are restricted to a region of the Hilbert space and hence constrained
by locality [37], such as states with nearest or next-to-nearest interac-
tions [37, 74, 75, 76, 77, 78]. There are many Hamiltonians in Nature
of this type [37, 79], so in practice, many important problems do not
need to access the entire Hilbert space. These states can be targeted by
tensor networks, taking advantage of this locality constraint to reduce
the information needed for their representation and enabling the study
of quantum many-body problems based on the entanglement properties
of the quantum states.

The concept of tensor network dates back to 1941 when Kramers
and Wannier [80, 81] introduced transfer matrices to the Ising problem.
Significant developments in the field [82, 83, 84, 85, 86] followed this
work, which peaked with the creation of the density matrix renormaliza-
tion group (DMRG) [87, 88]. The original proposal was reformulated as
a variational algorithm to find the lowest eigenstate of some quantum-
many body operator [89, 90, 91], unleashing the true potential of DMRG
via the use of matrix product states (MPS). This algorithm performs a
local optimization of the tensors in an MPS, sweeping various times over
the whole system until the expected energy converges to the lowest value.
This reformulation of DMRG opened the venue for many applications in
fields such as condensed matter physics [92, 93] and computational chem-
istry [94, 95, 96]. Nowadays, DMRG is one of the most popular MPS
algorithms. It has been extended to tackle different problems, such as
finite-temperature [97, 98] periodic boundary conditions MPS [91], in-
finite MPS [99] or higher dimensional tensor networks [100, 101, 102].
Another important landmark was the time-evolving block decimation
(TEBD) algorithm [103, 104, 97] to address the time evolution prob-
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lem. TEBD uses the Suzuki-Trotter formula to approximate the ex-
ponential evolution by local operators. The time-dependent variational
principle (TDVP) [105, 106, 107] leverages the tangent space to sim-
ulate the real- and imaginary-time dynamics of the system, and other
proposals combine DMRG-like methods with Taylor, Padé, and Arnoldi
approximations of the evolution operator [108, 109]. The evolution prob-
lem can be studied both in imaginary and real-time and more DMRG
versions have been developed with this purpose [110, 111, 97]. This
development of the area has led to many applications in the context
of quantum many-body physics: the approximation of the low-energy
properties of quantum Hamiltonians [103, 104, 97, 87, 88], the simu-
lation of spin, bosonic and fermionic systems even in multiple dimen-
sions [112, 113, 114, 115, 101, 116, 117, 118, 119, 120, 121, 122], and
the study of quantum phases of matter [123, 124, 125, 124, 126], among
others.

A common characteristic of previous applications is that the sys-
tem’s entanglement grows slowly with the problem size or simulation
time, enabling an efficient tensor network representation. However, ten-
sor networks have been successfully applied to problems with unknown
entanglement structures. Tensor networks, whose one-dimensional rep-
resentation was rediscovered as tensor trains [127] and quantized ten-
sor trains [128] in the area of mathematics, have applications in diverse
fields, such as machine learning [129, 130, 131, 132, 133, 134, 135, 136]
and numerical analysis [109, 44, 137, 38, 49], demonstrating their poten-
tial to yield effective heuristic results. The success of these applications
illustrates the capability of tensor networks to address the challenges
posed by the exponential scaling beyond quantum many-body physics,
motivating the development of quantum-inspired methods. This thesis
explores this domain, introducing a flexible and powerful framework for
the creation of quantum-inspired algorithms (Section 3.5) to solve static
and time-dependent PDEs in chapters 5 and 6, respectively.

3.2 Tensor Networks

Let us define a tensor as a multidimensional array of complex numbers
with respect to a given basis. The tensor indices represent its dimensions
and allow access to its components. The total number of indices is the
rank of the tensor. Many everyday mathematical objects are tensors of
a certain rank; for example, a scalar is a rank-0 tensor x, a vector is a
rank-1 tensor vα, and a matrix is a rank-2 tensor Aαβ .
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Tensor contraction, i.e., summing over all values of the repeated ten-
sor indices, is the basis of tensor network operations. A simple instance
of tensor contraction is matrix multiplication. Let Aαβ , Bγδ be two ma-
trices with dimensions, NA×M ,M×NB, respectively. Then, the matrix
product can be written as

Cαδ =
M∑
β=1

AαβBβδ, (3.1)

where β = 1, . . . ,M . The number of values M of the contracted index
determines the cost of the contractions. Similarly, contractions support
more operations like computing the trace and the expectation value.
Other significant tensor operations include the permutation of indices
and reshaping.

As the number of tensors increases, the mathematical representa-
tion of tensor contraction as a sum over indices becomes cumbersome.
The tensor network community uses a diagrammatic notation to simplify
this representation, enabling a quick and intuitive understanding of these
operations. This notation is a modification of the Penrose graphical no-
tation or tensor diagram notation [138] and is nowadays widely employed
in different fields besides tensor networks, such as category theory, com-
puting science, and quantum algorithms. Figure 3.1(a) shows a variety of
tensors in this diagrammatic representation, in which tensors are shapes,
with legs representing the tensor indices. In this notation, matrix multi-
plication (3.1) is depicted as in Figure 3.1(b), where connections among
tensors represent contractions of the given indices. The Kronecker delta
δij , which represents a contraction of a tensor index with the identity
matrix, completes this diagrammatic notation. It does not modify the
tensor, and it is therefore represented as a straight line that goes from
the index i to j.

The wavefunction of a quantum many-body system of N d-level par-
ticles is [139, 37]

|ψ〉 =
∑

i1,...,iN

Ci1,...,iN |i1〉 ⊗ · · · ⊗ |iN 〉, (3.2)

where ik = 0, ..., d − 1, k = 1, . . . , N . The wave function’s coefficients
Ci1,...,iN can be understood as a rank-N tensor. By decomposing this
tensor in a network of smaller contracted tensors (Figure 3.2)—a tensor
network—it is possible to reduce the exponential scaling of the num-
ber of parameters with the number of particles to a polynomial one,
O(poly(N)poly(χ)) [37], where χ is the bond dimension, i.e., the rank of
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Figure 3.1: Diagrammatic representation of tensors. (a) Diagrammatic
representation of rank-0, -1, -2, and -3 tensors, where each tensor is a
shape with legs representing the indices. (b) Diagrammatic representa-
tion of matrix multiplication (3.1).

the contracted indices of the tensors. These indices are called virtual or
bond indices, and they represent the entanglement among the elements of
the system and, hence, the quantum correlations. The bond dimension,
the number of tensors, and the network structure bound the entangle-
ment entropy of the quantum state following an area law [37, 140] and
targeting the corner of relevant states of the Hilbert space, hence de-
termining the possible applications of the tensor network. Figure 3.3
illustrates different tensor networks. Matrix product states (MPS) re-
produce a one-dimensional lattice model, and projected entangled pair
states (PEPS) [141] represent two-dimensional lattices. More complex
applications resort to tree tensor networks (TTN) or the multi-scale en-
tanglement renormalization ansatz (MERA). The tensor network dia-
grammatic representation is helpful in practical applications since it fa-
cilitates working with tensor contractions involving multiple indices for
networks with numerous tensors and complex connections.

An interesting property of tensor networks is their gauge freedom [72],
meaning that different tensors can give rise to the same state for a given
network structure. Thus, the quantum state is invariant under the intro-
duction of a pair of matrices XX−1 = I between two contracting indices
of the tensor network (Figure 3.2), enabling the search for the optimal
size tensors that minimize resources.

Besides choosing the most appropriate gauge, the order of the con-
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Figure 3.2: General quantum state (3.2) as an MPS. The number of
indices of the original tensor is the rank of the tensor, and each index
corresponds to the physical index of a tensor of the tensor network. The
matrix X accounts for the gauge freedom of the tensor network, meaning
that the contraction of different tensors can represent the same quantum
state.

Figure 3.3: Principal types of tensor networks. The figure depicts matrix
product states (MPS), projected entangled pair states (PEPS), tree ten-
sor network (TTN), and multi-scale entanglement renormalization ansatz
(MERA).

tractions plays a determinant role in the performance of tensor network
algorithms since it affects the number of operations and, consequently,
its cost. For example, Figure 3.4 shows two different ways of contracting
a three-tensor network to obtain the same result. Order (a) involves two
O(dχ3) contractions, while in order (b), the first contraction is O(dχ4)
followed by a O(χ4) contraction. In most cases, order (a) is more effi-
cient, as it involves lower-order contractions as normally χ� d. Finding
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Figure 3.4: Contraction of a three-tensor network. Order (a) leads to
lower-order contractions than order (b).

the optimum contraction path is key to minimizing the cost of tensor
network algorithms, especially as the number of tensors and indices in-
creases. Greedy search algorithms are often employed to approximate
such paths for complex contractions. However, many practical imple-
mentations usually involve the subsequent application of the same con-
traction patterns, allowing the exact determination of the optimum path
in advance and thus avoiding the additional overhead of search algo-
rithms.

3.3 Matrix product states

Matrix product states (MPS) are one of the most extended tensor net-
works due to their simplicity and versatility. They are one-dimensional
tensor networks formed by rank-3 tensors representing the elements of
the system, as depicted in Figure 3.5. In quantum applications, the free
indices {ik}k=1,...,N are called the physical indices and correspond to the
physical degrees of freedom of the Hilbert space of a one-dimensional
d-level system. The bond indices αk and βk bound the entanglement
entropy of the quantum system as S ≤ logχ, where χ is the maximum
bond dimension. Then, for χ = 1, there are no correlations among the
connected tensors and S = 0, representing a product state. The entropy
saturates to S = logχ for the maximally entangled state. The general
dependence of MPS entropy is S = O(logχ), meaning that MPS verify
a one-dimensional area law independent of the number of sites of the
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Figure 3.5: N -site MPS with open boundary conditions. The sites in
the extremes of the MPS—sites one and N—are represented by just two
indices, as the extreme bond indices have bond dimension 1.

tensor network [37].
To represent a general quantum state (3.2) as an MPS, let us decom-

pose the tensor Ci1,...,iN into N rank-3 tensors, following the procedure
in Ref. [37]. The first step is to apply the Schmidt decomposition to
the subspaces of the first index and the remaining N − 1 indices, which
allows us to rewrite the total system as a bipartite system

|ψ〉 =
min(d,χ)∑
α1=1

λ[1]α1 |τ
[1]
α1 〉 ⊗ |τ [2...N ]

α1 〉 , (3.3)

where the Schmidt coefficients are λ[1]α1 , and |τ [1]α1 〉 , |τ
[2...N ]
α1 〉 are the corre-

sponding left and right Schmidt vectors. Then, the left Schmidt vector
is rewritten in the local basis |i1〉

|ψ〉 =
d∑

i1=1

min(d,χ)∑
α1=1

Γ[1]i1
α1 λ[1]α1 |i1〉 ⊗ |τ [2...N ]

α1 〉 , (3.4)

where Γ[1]i1
α1 corresponds to the change of basis |τ [1]α1 〉 =

∑
i1 Γ

[1]i1
α1 |i1〉. The

Schmidt decomposition iteratively acts on the subsequent subsystems
until each site’s tensor is obtained in the local basis for each particle
(Figure 3.6). This leads to the quantum state representation

|ψ〉 =
∑
{i}

∑
{α}

(Γ[1]i1
α1 λ[1]α1Γ

[2]i2
α1α2λ

[2]
α2 ...λ

[N−1]
αN−1 Γ

[N ]iN
αN−1 ) |i1〉 ⊗ |i2〉 ⊗ ...⊗ |iN 〉 ,

(3.5)
where the sum over each index in {i} and {α} runs up to their respective
allowed values. Grouping the tensors as Aikαk−1,αk

= Γ[k]ik
αk−1αkλ

[k]
αk results in

an MPS with open boundary conditions representing the general quan-
tum state in Eq. (3.2),

|ψ〉 =
∑
{i}

∑
{α}

(Ai1α1A
i2
α1,α2 . . . A

iN
αN−1) |i1〉 ⊗ |i2〉 ⊗ ...⊗ |iN 〉 . (3.6)
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Figure 3.6: Rewriting a quantum state as an MPS. Iterative application
of the SVD to decompose a tensor as an MPS for a 3-site example.

The decomposition of the MPS in terms of the Schmidt coefficients
facilitates obtaining the entanglement entropy of any bipartition. For
a density matrix ρµ with eigenvalues {pµ}, the associated entropy is
S({pµ}) = −

∑
µ pµ log(pµ). The eigenvalues of the density matrices of

the subsystems are defined as pµ = |λµ|2, thus the decay of the Schmidt
coefficients determine the entanglement entropy of the system.

One possible Schmidt decomposition can be obtained through the
singular value decomposition (SVD) [142]. Given an m × n matrix C,
the SVD factorizes it as

C = USV †. (3.7)

In its compact version, U and V † are, respectively, an m × max(m,n)
complex unitary matrix whose columns are the eigenvectors of CC† (left-
singular vectors) and a max(m,n) × n complex unitary matrix whose
columns are the eigenvectors of C†C (right-singular vectors). S is a
rectangular diagonal matrix with positive real numbers on the diagonal,
which correspond to the singular values of C.

The first step to obtaining the Schmidt decomposition via the SVD
is to reshape the rank-N tensor Ci1,...,iN as a matrix C = Ci1,j , j =
{i2 . . . , iN}, which represents the coefficients of the bipartite system

|ψ〉AB =
∑
i1,j

Ci,j |i1〉A |j〉B , (3.8)

where {|i1〉A}, i1 = 0, . . . , dA − 1, and {|j〉B}, j = 0, . . . , dB − 1, are the
basis of the subsystems with Hilbert spaces HA and HB, respectively.
Then, applying the SVD to the state in Eq. (3.8) and reorganizing terms
leads to

|ψ〉AB =
χ∑
α=1

λα

dA∑
i1

Ui1,α |i1〉A
dB∑
j

V †
α,j |j〉B =

χ∑
α=1

λα |α〉A |α〉B , (3.9)

where the singular values of C, S = λαI, correspond to the Schmidt
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coefficients, and the basis elements of each space are

|α〉A =
dA∑
i1

Ui,α |i1〉A , |α〉B =
dB∑
j

V †
α,j |j〉B . (3.10)

This first SVD of C produces the first tensor A1 = U i1α1 of the MPS,
which is a left partial isometry, i.e., (Ai11m,l

)†Ai11m,j
= δj,l, as depicted in

Figure 3.7(a). The iterative application of the SVD on the remaining
system leads to the complete tensor representation in the so-called left
canonical form, in which all tensors except AN , i.e., the last tensor, are
left partial isometries. In the canonical form [79], each bond index corre-
sponds to the labeling of Schmidt vectors in the Schmidt decomposition
of the quantum state across that index [37], storing all the information
of the MPS in a single tensor. The canonical form simplifies some MPS
operations, like the calculation of the norm and the expectation value of
local operators (Figure 3.7(c)-(d)), which involve contracting the MPS
with its conjugate transpose. In this case, all contractions result in the
identity, except for the Nth tensor, reducing the computation to the
contraction of this tensor and its conjugate transpose for the norm, and
similarly, by applying the local operator ÔN in the middle of the tensors,
for the expectation value of a local operator. The canonical form largely
decreases the order of the contraction, from O(Nχ3d) to O(χ2d) for the
norm and similarly for the expectation value. In addition, the canonical
form is also more stable and less prone to numerical errors arising from
the contractions.

The canonical form is not unique, and the tensor network gauge free-
dom enables us to obtain the most appropriate one for each operation.
For instance, it is possible to obtain the right canonical form, in which all
tensors except the first one are right partial isometries (Figure 3.7(b)),
or mixed forms with left and right partial isometries with respect to a
concrete center of the MPS. Given a general MPS, it is possible to obtain
the canonical form with respect to a desired site by iteratively perform-
ing the SVD on two contracted sites to obtain the needed left and right
partial isometries, as depicted in Figure 3.8.

The Schmidt decomposition provides a means to approximate a quan-
tum system by removing the Schmidt coefficients with the least weight
in the states, resulting in a new quantum state with an error arising from
the truncation of such coefficients. In practice, only the non-zero coeffi-
cients are considered, or a set λα > λmin with a minimum value λmin as a
threshold. This reduces the bond dimension of the tensors to the number
of elements retained, leading to a number of order O(Ndχ2) parameters.
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3.3. Matrix product states

Figure 3.7: Canonical form for MPS. (a) Left partial isometry. (b) Right
partial isometry. (c) Scalar product of an MPS in canonical form. (d)
Expectation value of local operator Ôk for an MPS in canonical form
with respect to site k.

This scaling achieves exponential memory compression compared to the
standard vector representation if the bond dimension χ does not grow
exponentially with the system size. The SVD is thus a useful tool for
MPS truncation, allowing control of the tensors’ size. In practice, highly
accurate results can be obtained with relatively low bond dimensions,
as demonstrated in the solution of static and time-dependent PDEs in
chapters 5 and 6.
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Figure 3.8: SVD for MPS canonical form. The SVD was applied on two
MPS sites to obtain the tensors to construct the canonical form.

3.4 Matrix product operators

The mathematical representation of a general operator Ô in the basis
{|i1, . . . , iN 〉} is

Ô =
∑
ik,i

′
k

Oi1,...,iNi′1,...,i
′
N
|i′1, . . . , i′N 〉〈i1, . . . , iN |, (3.11)

Similarly to a quantum state (3.2), it is possible to rewrite a quantum
operator as a net of one-dimensional tensors, known as matrix product
operator (MPO). The expression of an MPO with open boundary condi-
tions is [143]

Ô =
∑
ik,i

′
k

∑
βk

W
i1,i′1
β1

[1]W i2,i′2
β1,β2

[2]...W iN ,i
′
N

βN−1
[N ]|i′1, . . . , i′N 〉〈i1, . . . , iN |.

(3.12)
where we have used that Oi1,...,iNi′1,...,i

′
N

=
∑
βk
W

i1,i′1
β1

[1]W i2,i′2
β1,β2

[2]...W iN ,i
′
N

βN
[N ].

MPOs are formed by rank-4 tensors, each with two bond and two physical
indices.

The MPS-MPO contraction is equivalent to applying a quantum op-
erator on a quantum state. The MPS and MPO are contracted through
the physical indices, resulting in a new MPS where the bond dimension is
the product of the bond dimensions of the original MPS and the MPO.
Figure 3.9(d) shows this operation, which results in a new MPS with
bond dimension χ2. This quadratic growth of the bond dimension leads
to an exponential scaling as successive operations accumulate, making it
necessary to introduce bond dimension truncation algorithms to avoid
excessive computational costs.
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3.5 Finite precision algebra

The combination of MPS and MPO with a set of basic operations con-
stitutes an algebra that operates similarly to matrix-vector operations.
This MPS-MPO algebra—which we originally introduced in Ref. [49]—is
one of the primary bases of this thesis since it enables the extension of
algorithms initially designed for a vector algebra to the MPS-MPO rep-
resentation. Therefore, this algebra constitutes a fundamental tool for
creating quantum-inspired algorithms in chapters 5 and 6.

Figure 3.9 depicts the basic operations of the MPS-MPO algebra.
It consists of three linear operations: (i) the scalar product 〈ψA|ψB〉
(Figure 3.9(a)), (ii) the matrix-vector multiplication as MPO-MPS con-
traction (Figure 3.9(c)), and (iii) the scalar multiplication, performed by
multiplying the MPS/MPO tensors by the corresponding scalar weights.
These operations combine to create new operations, like the computa-
tion of expectation values in Figure 3.9(b). In addition to these standard
linear operations, we include a nonlinear one, the elementwise vector
multiplication, i.e., the multiplication of two MPS (Figure 3.9(d)). This
operation is commonly performed in numerical analysis, in which poten-
tial operators are diagonal and, hence, can be applied to a function as
an elementwise multiplication of their vector elements. Even though the
canonical form is not necessary to perform these operations, its use is
advisable to reduce the cost of some of them, like the computation of
the norm and the expectation product of quasilocal operators, and to
increase the numerical stability.

The described algebra is equivalent to the vector algebra since the
operations are exact, i.e., only limited by finite computer precision. How-
ever, applying an MPO onto an MPS, Ô |ψ〉, or computing the expecta-
tion value 〈ψ|Ô |ψ〉, are tasks that, when implemented naively, lead to
a polynomial increase in the tensors sizes. The consecutive application
of exact MPO and MPS operations scales exponentially with χ, render-
ing them intractable in practice due to the order of operations O(χ4)
and the memory requirements. Then, even though it is possible to per-
form numerically exact operations within the tensor network formalism,
it is necessary to truncate their bond dimension to keep the size of the
problem manageable for current computers. Conventional variational
methods can reduce the bond dimension’s growth. These methods de-
fine the problems of approximating a state or a linear combination of
states as optimization tasks, searching for the best approximating MPS
with a given bond dimension or a maximum error.

Let us introduce a variational truncation algorithm [144] to approxi-
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Figure 3.9: MPS-MPO finite precision algebra operations. (a) Scalar
product of two MPS. (b) Expectation value of an MPO for an MPS
state. (c) Application of a quantum operator Ô on a quantum state
|ψ〉, Ô|ψ〉, as an MPO-MPS contraction. (d) Contraction of two MPS
resulting in an MPS.
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Figure 3.10: MPS one-site variational truncation algorithm. Diagram-
matic representation of one step of the algorithm to minimize Eq. (3.13)
with respect to a single tensor.

mate an MPS quantum state |ψ〉 with bond dimension χψ by projecting
it in the subspace of MPS with bond dimension χϕ, MPSχϕ

, such that
χϕ < χψ. This algorithm targets the minimization of the distance

argminϕ∈MPSχϕ
d(ψ, ϕ) = ‖ψ − ϕ‖2 = 〈ψ|ψ〉+ 〈ϕ|ϕ〉 − 2<(〈ψ|ϕ)〉. (3.13)

This expression constitutes a bilinear function with respect to any tensor
in |ϕ〉, resulting in a functional that can be efficiently optimized via an
iterative algorithm.

Figure 3.10 depicts one step of the one-site MPS truncation algo-
rithm. Let us start by writing the MPS in canonical form, which is main-
tained through the algorithm’s iterations to enhance its performance.
Then, in each step, the algorithm performs a local optimization of the
MPS, variationally optimizing the tensor parameters while keeping the
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rest fixed. The new optimized site D is the one that minimizes the dis-
tance in Eq. (3.13)

∂

∂Di
αβ

d(ψ, ϕ) = ∂

∂(D∗)iαβ
d(ψ, ϕ) = 0. (3.14)

To obtain D, it is necessary to compute the partial derivatives

∂

∂(D∗)iαβ
〈ψ|ϕ〉 = U iαβ ,

∂

∂(D∗)iαβ
〈ϕ|ϕ〉 = Di

αβ , (3.15)

where U is constructed from the contraction of the left environment L,
the right environment R and C. This results in the new expression of
the minimized tensor Di

αβ = U iαβ . The canonical form plays a key role
in this algorithm, simplifying the computation of the norm of the new
state and reducing numerical instabilities. This optimization is repeated
on all sites until a sweep of the entire MPS is completed. Subsequently,
the algorithm assesses the error in the MPS distance (3.13), and sweeps
are repeated until convergence or until the maximum number of sweeps
is reached.

An improved version with a two-site local optimization enables a
more stable and efficient implementation of variational truncation algo-
rithms, adapting the bond dimension at each step using the SVD. This
implementation is included as part of the SeeMPS [51] library.

The logic behind this variational scheme extends to the approxima-
tion of the linear combination of MPS states by modifying the minimiza-
tion condition to

argminϕ∈MPS

∥∥∥∥∥ϕ−
L∑
l=1

αlψl

∥∥∥∥∥
2

, (3.16)

where now the solution is a weighted linear combination of the solution
for each state

Di
α,β =

L∑
n=1

αnU
(n)i
αβ . (3.17)

While the exact linear combination of MPS is possible via the direct
sum of their tensors, it results in a new MPS with an increased bond
dimension equal to the sum of the tensors of the original states. The
variational algorithm in Eq. (3.16) provides an effective method to ap-
proximate linear combinations of MPS—and MPO when rewritten as an
MPS—, constituting an efficient tool for performing sums and subtrac-
tions within the finite precision MPS-MPO algebra.
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Similar truncation strategies have been developed in the context of
DMRG [108], but a crucial difference is in that the optimizations de-
scribed above the states under consideration do not share any tensors
with the target states, Ô |ψ〉 , |ψ〉 or |ψl〉. Consequently, by using L
matrix product states of bond-dimension χ, it becomes feasible to imple-
ment an optimization that in DMRG would require environments of size
L× χ and operations that scale as L2 times worse, in general [109].

This truncation algorithm completes the MPS-MPO algebra, allow-
ing practical applications by reducing the MPS bond dimension and en-
abling an efficient performance of sums and subtractions of MPS. Even
though the MPS-MPO operations are exact up to machine precision, the
truncation of these constructs introduces an error, hence finite precision.
However, for applications with a suitable entanglement structure, such as
the ones in chapters 5 and 6, the error from replacing the MPS and linear
combinations with smaller bond dimension approximations is acceptable
in favor of higher memory efficiency

3.6 Representation of functions as MPS

While tensor networks were originally developed in the area of quantum
many-body physics to represent quantum states, they can also approxi-
mate other tensor structures, such as linear operators [38]. The quantum
register representation of functions (2.3) directly translates to this for-
malism by mapping the physical dimension of the tensors to the qubits
of the quantum register (Figure 3.11(a)). Then, each site encodes in-
formation corresponding to a specific order of significance of the binary
encoding of the coordinates (2.2), where the leftmost site encodes the
most significant digit, hence the information corresponding to the coars-
est grid. The expression of the MPS representing a function is then
derived accordingly as

|f (n)〉 =
∑
{s}

∑
{α}

(As1α1A
s2
α1,α2 . . . A

sn
αn−1) |s1〉 ⊗ |s2〉 ⊗ ...⊗ |sn〉 , (3.18)

where s denotes the physical indices instead of i to match the quantum
register notation. Each tensor Askαk−1,αk

∈ C2×χk−1×χk has a bounded
size, with dimensions χk−1, χk that depend on the entanglement con-
tent. Provided the bond dimension is kept under bounds, the whole
representation requires only polynomial many resources O(n2χ2), as op-
posed to the exponential number of resources of the most common vector
representation of functions.
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Figure 3.11: MPS representation of functions. (a) Equivalence of a n-
qubit quantum register and a n-site MPS. (b) MPS elements for the 1D
f(x) = x function with χ = 2. The figure depicts the non-zero tensors’
element of the MPS. Middle tensors (II) are rank-3 tensors, while the
first (I) and last (III) tensors have rank-2. If the tensor equals a delta
function, it is represented as a straight line.
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To ease the understanding of this encoding of functions as MPS,
let us consider the representation of one of the most basic functions,
f(x) = x, which can be written as an MPS with bond dimension χ = 2.
Figure 3.11(b) depicts the non-zero components of the MPS, showing
that a change in the bond index from 0 to 1 corresponds to adding the
binary component of the coordinate associated with the given site. For
instance, let us construct the coordinate xs with s = (s1, s2, s3),

xs =
(
1 a+∆x22s1

)(1 ∆x2s2
0 1

)(
∆x20s3

1

)
= a+∆x

3∑
k=1

sk2n−k,

(3.19)
which recovers Eq. (2.2) for n = 3. This function is the basis for un-
derstanding the MPS representation, which relies on a binary encoding
of the coordinates in the physical indices. This is because the function
f(x) = x is equivalent to the position space grid for the general definition
of functions.

When using MPS to represent functions, the error arising from the
truncation of the singular values adds to the common errors in numerical
analysis, such as truncation or round-off errors. Understanding this MPS
truncation’s effect is crucial to choosing a suitable truncation tolerance
for function representation tailored to each problem. If the tolerance
is too small, the benefit from MPS compared to tensors will be mini-
mal, but excessively large tolerances can result in significant errors. Fig-
ure 3.12(a) shows a normalized Gaussian function with varying levels of
error truncation tolerance, defined by the minimization distance (3.13).
This formulation ensures that the truncation criteria for the SVD and
the truncation algorithms in Section 3.5 are identical. Other criteria can
be chosen, such as absolute or relative error of the singular values. The
results show that the higher the tolerance, the worse the function approx-
imation. Higher truncation of the singular values leads to a higher error
in the approximation of the original vector function f(x) by the MPS
function f(x)MPS, ‖f(x)− f(x)MPS‖, as depicted in Figure 3.12(b). The
Gaussian function has a bounded bond dimension (Figure 3.12(c)); as
the number of qubits increases, the bond dimension remains constant for
a fixed tolerance. This implies that there is a maximum bond dimension
necessary to encode this Gaussian function as an MPS, and hence a limit
to the memory requirements to encode it up to a certain precision, allow-
ing a memory gain with respect to the vector representation, as discussed
in Chapter 5.

The efficient representation of functions as MPS is key for quantum-
inspired numerical analysis. The MPS encoding of the position space
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Figure 3.12: MPS representation of Gaussian function. (a) Gaussian
representation with different levels of truncation tolerance (3.13), where
NE stands for numerically exact. (b) Norm-2 error ‖f − fMPS‖2 scaling
with the number of qubits n, i.e., sites. (c) Maximum bond dimension
χmax scaling with the number of qubits n. The tolerance for the simpli-
fication algorithms’ convergence is NE.

coordinates (Figure 3.11) enables the exact construction of functions,
such as the exponential ex, which is a product MPS, or the sine and co-
sine functions, which are linear combinations of exponentials and can be
computed via the linear combination truncation algorithm in Section 3.5
or the exact direct sum and later simplification. Similarly, it is possible
to encode the momentum space coordinate p (2.20) as an MPS with bond
dimension χ = 2 to extend this MPS-MPO algebra to spectral applica-
tions. There exists no general recipe for constructing functions as MPS.
The most straightforward approach involves the direct construction of
the MPS from the vector representation using the SVD, but this limits
the maximum number of sites to the capacity of the vector encoding.
To overcome this limitation, interpolation techniques, such as Cheby-
shev series [145, 52] or TT-cross interpolation [146, 147], offer an MPS
approximation of the desired function.

To express multidimensional functions as MPS we assign a set of MPS

74



3.7. Representation of operators in an MPS-MPO framework

sites to each dimension, similar to the quantum register case. In the MPS
formalism, the map of the coordinates to the sites determines the entan-
glement of the resulting MPS [38], playing a role in the bond dimension of
the represented function and the associated computational requirements.
The straightforward order (A) distributes the sites sequentially, first by
coordinate, then by significance. An alternative encoding—order (B)—
involves sorting sites by significance first, concentrating the largest scales
in neighboring sites in the MPS. For example, for a two-dimensional func-
tion with three qubits per dimension, the resulting orders would be

Order A:|s1s2〉 → |s11〉|s21〉|s31〉|s12〉|s22〉|s32〉, (3.20)
Order B:|s1s2〉 → |s11〉|s12〉|s21〉|s22〉|s31〉|s32〉. (3.21)

Although not all functions are appropriate for an MPS representation
due to bond dimension requirements, tensor networks have been success-
fully applied for a variety of numerical analysis problems, such as the
solution of PDEs [44, 45, 38, 46] or interpolation [146, 147, 38]. García-
Ripoll [38] showed that for a Grover-Rudolph-like state [48] representing
a highly differentiable function, adding new qubits entails a vanishingly
small amount of entanglement. Jobst [39] extended this to functions
with fast-decaying Fourier coefficients, establishing a theoretical bound
for the bond dimension.

3.7 Representation of operators in anMPS-MPO frame-
work

The MPS-MPO framework can also represent numerical analysis oper-
ators in function space. As in the quantum register representation in
chapter 2, we distinguish two types of linear operators: differential and
potential operators.

An MPO representation for differential operators can be recovered in
many different ways. Two of them are based on the spectral techniques
and finite-difference approximations discussed in section 2.2. Let us focus
on approximating the second order derivative ∂2x since this differential
operator is present in the static and time-dependent PDEs studied in
chapters 5 and 6.

The spectral method approximates the differential operator ∂2x as

∂2xf(x) =
1√
N

N/2−1∑
l=−N/2

p2eiplxf̃(pl). (3.22)
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While the Fourier space operator p can be represented as an MPO with
bond dimension χ = 2, a naive construction of the QFT’s MPO from its
quantum register representation leads to a bond dimension linear in its
number of sites n. This bond dimension’s scaling, together with the suc-
cessive MPO-MPS contractions and simplifications, renders the method
costly. A careful consideration of the bit reversal operation results in
a more efficient implementation, as was shown in Ref. [148]. The spec-
tral method could be extended for general differential operators G(∂x) as
long as they can be efficiently represented in the MPS-MPO framework
in momentum space.

The finite difference representation of the differential operator ∂2x re-
lies on the displacement operators Σ±

|∂2xf (n)〉 '
1(

∆x(n)
)2 (Σ̂+ − 2I+ Σ̂−

)
|f (n)〉 . (3.23)

This operation can be efficiently written as an MPO of weighted displace-
ments with fixed bond dimension χ = 3, hence reducing the cost in the
approximation of derivatives with respect to the spectral method. How-
ever, the finite difference method’s accuracy scales polynomially with the
discretization size, leading to an error significantly larger than spectral
techniques. In chapter 6, we extend the Hermite Distributed Approx-
imated Functionals (HDAFs) [149] to an MPS-MPO framework. This
results in a new method to approximate functions of derivatives with
pseudospectral accuracy and a reduced cost similar to the finite differ-
ence approximation.

In the position basis, the multiplication by a continuous potential
function V (x) is a diagonal operator

V̂ (x) :=
2n−1∑
s=0

V
(
x(n)s

)
|s〉〈s| . (3.24)

This operator is a diagonal matrix in function space, and hence, it could
be reduced to a vector, substituting the matrix-vector multiplication with
an elementwise vector multiplication. When represented as an MPS fol-
lowing the encoding in Figure 3.11(b), the operator’s application on the
function would be performed as the contraction of two MPS as depicted
in Figure 3.9(d), hence reducing its cost from O(Nd2χ4) to O(Ndχ4).
The MPS representation of diagonal operators enables the use of the
Chebyshev and TT-cross interpolation techniques for its construction.
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Chapter 4

Quantumnumerical analysis for
static PDEs

Numerical analysis is a powerful tool that, via the solution of linear
equations, ordinary differential equations (ODEs), and partial differen-
tial equations (PDEs), assists progress both in basic science—e.g., design
of photonic materials, understanding of elasticity, modeling black holes—
and engineering. Despite significant advances in the theoretical under-
standing of PDEs, solving them remains challenging. For instance, the
design of superconducting quantum computers depends on accurately
modeling superconducting qubits, couplers, and measurement devices,
which involve multidimensional, nonlinear Hamiltonian PDEs. These
equations are particularly difficult to solve due to the increasing com-
plexity associated with both the number of variables—which drives up
memory requirements—and the inherent difficulty of the equations them-
selves. Indeed, specialized libraries [150, 151, 152], which rely on state-of-
the-art sparse matrix diagonalization techniques, restrict the complexity
of the superconducting circuits due to memory limitations.

Quantum computers’ potential to achieve exponential advantages in
both data encoding—i.e., memory—and computational performance of-
fers the possibility to enhance solving Hamiltonian PDEs and similar nu-
merical analysis problems. This results in the field of quantum numerical
analysis, which uses quantum computers to tackle mathematical prob-
lems such as linear systems of equations [153, 154, 155] and partial differ-
ential equations [156, 157]. Quantum algorithms for numerical analysis
traditionally focus on a fault-tolerant scenario, with proposals [5, 7, 8]
based on the Harrow-Hassidim-Lloyd (HHL) [9] algorithm for linear sys-
tems of equations, or using quantum amplitude estimation (QAE) [17]
techniques [12], among others. However, since quantum computers have
not yet reached this stage, the scientific community has researched hy-
brid quantum numerical analysis algorithms [24, 23, 25, 26, 27, 28, 31, 32,
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33, 29, 30, 34, 35, 36] that combine the power of (imperfect) NISQ [18]
devices with classical computers. This includes, for instance, variational
algorithms and approximate techniques, such as error mitigation and
iterative phase estimation, to compensate for the imperfections. These
proposals motivated us to create a new quantum algorithm for numerical
analysis: a variational quantum algorithm for solving static Schrödinger-
type Hamiltonian PDEs (4.1) [46].

This chapter aims to develop a variational quantum algorithm for
solving static Schrödinger-type Hamiltonian PDEs (4.1) to address the
simulation of superconducting circuits. This method was originally pro-
posed in Ref. [46] and constitutes the first work of this thesis. The
quantum Fourier analysis techniques in chapter 2 are the basis for the
creation of this algorithm. These are combined with new suitable varia-
tional ansätze (Section 4.3) for the representation of functions and their
symmetries as quantum circuits and global and gradient-based classical
optimizers. The results showcase the high-precision of quantum Fourier
analysis techniques for representing functions and operators in a quantum
register, achieving low infidelities, even up to O(10−4) under the effect
of noise sources for a small number of qubits. However, the impact of
noise sources and the limited number of measurements of current quan-
tum computers restrain the performance of the Fourier techniques. This
opens new avenues for using more efficient quantum-inspired algorithms
to take advantage of this encoding in chapter 5.

4.1 Application: superconducting qubits

Just as bits are classical computers’ fundamental building blocks, qubits
play the same role in quantum computers. This technology is still in
development, and one of the principal bets for its implementation relies
on superconducting qubits. Superconducting qubits are quantum circuits
that exhibit quantum phenomena such as energy quantization, reversible
unitary evolution, quantum superposition, and entanglement [3]. The
main components of superconducting circuits are capacitors, inductors,
and Josephson junctions [158], leading to various qubit designs such as
the charge qubit [159], the transmon qubit [1], and the three Josephson
junction flux qubit [2]. Superconducting qubits require extremely low
temperatures—typically on the order of millikelvin—to operate effec-
tively. These ultra-low temperatures suppress decoherence and thermal
fluctuations, preserving the fragile quantum states essential for quantum
computation [3].
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The Kirchoff analysis of a superconducting electrical circuit results
in a set of ordinary differential equations for intensity, voltage or flux
variables, with an associated Lagrangian and Hamiltonian due to their
conservative nature. The quantization of the circuit—justified because of
the superconductor’s coherent nature and low operation temperature—
leads to a quantum version of the Hamiltonian. The dynamics and static
properties of the circuit can now be described with a set of static or time-
dependent PDEs for the collective wavefunction. The time-independent
Schrödinger equation gives the energy levels of the qubit

Hf(x) = Ef(x), (4.1)

where E is the energy associated to the state f(x) for the Hamiltonian
operator

H = D(−i∇) + V (x). (4.2)

The complexity of the eigenvalue problem in Eq. (4.1) grows expo-
nentially with the circuit size. When addressing these equations with tra-
ditional numerical analysis techniques—e.g., finite differences, finite el-
ements, or spectral methods—the problem’s size grows exponentially, too
fast for ordinary computers and standard diagonalization techniques [150,
151, 152].

To address this challenge, we propose a new variational quantum al-
gorithm: the variational quantum PDE solver [46], specifically designed
for solving static Schrödinger-type Hamiltonian PDEs, as described in
section 4.4. This algorithm encodes the PDE into a parameterized quan-
tum circuit, with a classical optimizer variationally modifying the cir-
cuit’s parameters to minimize the Hamiltonian energy, represented as a
cost function. The encoding relies on the quantum register representa-
tion of functions and operators in chapter 2, combined with new quantum
ansätze to represent functions and their symmetries.

As a benchmark for the method, we solve the Hamiltonian PDE of
three of the most studied superconducting circuits: the LC-resonator,
the transmon, and the flux qubit. Note that these benchmarks are all
one-dimensional problems, but, as discussed in section 2.4, the quantum
register representation, and consequently, the variational quantum PDE
solver, can be generalized to higher-dimensional problems.

Let us first analyze the simplest quantum circuit: the LC-resonator
(Figure 4.1(a)). It consists of a superconducting resonator—parallel in-
ductor L and capacitor C—coupled to a constant voltage source. In
the absence of charge bias, its Hamiltonian PDE in terms of the phase
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variable φ is
H = −EC∂2φ + 1

2
ELφ

2, (4.3)

where EC = 2e2/C is the capacitive energy with e the elementary charge,
and EL = Φ2

0/(8Lπ) is the inductive energy with Φ0 the flux quanta.
This is equivalent to a quantum harmonic oscillator with frequency ω =
1/
√
LC and mass m = ℏ2/(8EC), whose Hamiltonian is given by

H = − ℏ2

2m
∂2x +

1
2
mω2x2. (4.4)

Therefore, the LC resonator has exact solutions

fn(x) =
(
β2

π

)1/4 1√
2nn!

e−β
2x2/2Hn(βx), (4.5)

where β =
√
mω/ℏ and Hn is the Hermite polynomial of order n. For

ℏ = ω = m = 1, the exact ground state of the one-dimensional quantum
harmonic oscillator is

f0(x) =
1

π1/4
e−x

2/2, (4.6)

which is a trivial Gaussian (Figure 4.2(a)). The corresponding eigenen-
ergies are given by En = (n+ 1

2), with ground state energy E0 = 0.5.
The existence of an analytic solution, together with its simplicity and

many applications—molecular vibrations [160], quantum optics [161],
etc—besides superconducting quantum circuits, make the quantum har-
monic oscillator equation a convenient choice to calibrate the accuracy of
the Fourier encoding and the variational solution of the PDE. From now
on, we will use the more general quantum harmonic oscillator formulation
to study this example.

The study of the harmonic oscillator serves as a basis for the transmon
qubit [1], a simple nonlinear version of the LC circuit. As depicted in
Figure 4.1(b), the transmon qubit combines a superconducting island
coupled to a ground plane via a Josephson junction with an externally
controlled voltage source [3]. The Hamiltonian PDE of a superconducting
transmon qubit [1] without charge offset is[

−4EC∂2φ − EJ cos(φ)− E
]
f(φ) = 0, (4.7)

where the phase variable is periodic over the interval φ ∈ [−π, π). The
model’s parameters are the Josephson energy EJ and the capacitive en-
ergy EC . The transmon operates in the regime EJ/EC ≳ 50 [162]. The
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Figure 4.1: Superconducting circuits. (a) LC-resonator with an inductor
L in parallel with a capacitor C, gate capacitor Cg and voltage source
V . (b) Transmon qubit with junction’s energy EJ , junction’s capac-
itance CJ , coupling capacitance Cg and voltage source V . (c) Three
Josephson-junction flux-qubit with two equal junctions with EJ , CJ and
one modulable junction with αEJ , αCJ , α ∼ 0.7− 0.8.

eigenfunctions of the transmon qubit PDE are the Mathieu functions,
i.e., the analytical solutions of Mathieu’s differential equation, given by

d2

dx2
y(x; q) + (a− 2q cos 2x)y(x; q) = 0. (4.8)

Thus, the eigensolutions and eigenergies for a transmon without charge
offset are [3]

ψn(φ) =
1√
2
mek(n,0)

(
φ+ π

2
; EJ
2EC

)
, (4.9)

En = MA(r, q), (4.10)

where MA(r, q) is the Mathieu characteristic function for even functions
and meν+2k(z; q) are the Floquet functions, with ν + 2k being the char-
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acteristic exponent of the function after a period π. The index k is a
function expressed as (valid for all values except 2ng) [3]

k(n, ng) = −round(ng) +
1
4
(−1)floor(ng)[−1 + (−1)n(1 + 2n)]. (4.11)

The functions round(x) and floor(x) correspond to the nearest integer to
the real number x and the integer immediately below x, respectively. In
our benchmarks ng = 0, since there is no charge offset.

In the large limit of EJ/EC , it is possible to expand the problem
around φ = 0,

H = −4EC∂2φ + 1
2
EJφ

2, (4.12)

which turns the transmon qubit Hamiltonian into a harmonic oscillator
with

ℏ2

2m
∼ 4EC ,

1
2
EJ ∼ 1

2
mω2, (4.13)

and effective frequency ℏω =
√
8ECEJ . Hence, the transmon ground

state (Figure 4.2(b)) can be approximated by a Gaussian function in
some operational regimes, with

ψ(φ) ∝ exp
[
−1
2

(
φ

a0

)2
]
, a40 =

8EC
EJ

. (4.14)

This Gaussian approximation fails to capture the nonlinear contributions
and does not consider the periodicity of the function f(φ). Due to this
periodicity, the definition interval of the position space is fixed to 2π.

Let us introduce a third superconducting circuit: the three-junction
flux qubit. This consists of a superconducting loop with three Josephson
junctions, with a lumped-element model, as shown in Figure 4.1(c) [2].
This is a more complex model whose ground state is not a Gaussian and
cannot be approximated by one, hence constituting a more challenging
problem for our method. The one-dimensional reduction of the three-
junction flux qubit leads to the Hamiltonian PDE [163][

− Ec
1
2 + α

∂2φ − EJ [2 cos(φ)− α cos(2φ)]− E

]
f(φ) = 0, (4.15)

which has no analytical solution. The small junction size takes typi-
cal values α ∼ 0.7 − 0.8. In this case, the inductive potential V (φ) =
−EJ(2 cos(φ)−α cos(2φ)) creates two minima, leading to a ground state
delocalized between those minima (Figure 4.2(c)). The gap between the
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Figure 4.2: Ground state of Hamiltonian benchmark problems. (a) The
quantum harmonic oscillator. (b) The transmon qubit. (c) The flux
qubit.

model’s ground and first excited states is smaller than that of the trans-
mon, thus requiring better estimates of the energy functional to distin-
guish the ground from the excited states.

The ground states of the circuit models and their associated PDEs—
quantum harmonic oscillator, transmon qubit, and flux qubit—are sim-
ple, infinitely differentiable functions. As sketched in Figure 4.2, these
ground states can also be formulated as real, symmetric, and even wave-
functions. These properties, together with the fact that these solutions
also vanish to zero towards the limit of the interval, make them appropri-
ate for the Fourier representation techniques in chapter 2 and the circuit
ansätze in section 4.3.

4.2 Quantum numerical analysis

Since the inception of quantum computing, researchers have investigated
their application to solve complex mathematical problems. One of these
applications was the encoding and manipulation of discretized functions
as states of the quantum register [47, 48]. These new techniques opened
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the possibility of using quantum computers to assist in numerical anal-
ysis tasks. There are many applications of quantum numerical analysis,
such as the solution of linear systems of equations [9], matrix diagonal-
ization [164], and interpolation [165]. Due to their ubiquitous nature in
science and engineering, a promising application of quantum computers
has been the solution of differential equations. One of the first quan-
tum speed-ups in this field was proposed by Kacewicz, solving initial-
value problems for ordinary differential equations (ODEs) using quan-
tum amplitude estimation (QAE) [17] as a subroutine within a classical
method [12]. This proposal has led to exciting new quantum algorithms
based on QAE for the Navier-Stokes PDEs [13, 14] and the Burger’s equa-
tion [15], and an improved version based on Chebyshev points tested for
the heat and convection-diffusion equations [16]. Leyton and Osborne
also developed an algorithm for gate-based quantum computers to solve
nonlinear ordinary differential equations using a quantum implementa-
tion of the Euler method [166].

The creation of the Harrow-Hassidim-Lloyd (HHL) algorithm [9] for
solving linear systems of equations proportionated a potential tool for
developing quantum algorithms for PDEs. Notably, the HHL algorithm
is a primitive that can implement many traditional methods to solve
systems of coupled differential equations. Berry [5] led the development
of these methods, transporting the quantum speedups of the HHL al-
gorithm to the solution of ODEs, combining it with the Euler method
and quantum simulation. This approach was upgraded, improving its
precision [7] and extending it to PDEs [8]. This technique can be used
together with the finite-element method [6] and spectral methods [8], and
is suitable for a variety of linear problems: the Poisson equation [10], the
heat equation [11] and the wave equation [167, 168], which is successfully
simulated in Ref. [169]. These ideas, when combined with the Carle-
man [170] or the quantum nonlinear Schrödinger linearization [171], also
extend to weakly nonlinear differential equations. Additionally, alterna-
tives based on hardware-efficient Taylor expansions [172], Runge-Kutta
methods on quantum annealers [173], and the intrinsic dynamics pro-
vided by continuous-variable quantum computers [174] also stand out.

The previous methods are fault-tolerant quantum algorithms. An al-
ternative approach that might be more suitable for current imperfect
quantum computers would be to adopt a model of hybrid quantum-
classical computation, where the quantum computer assists with tasks
such as encoding the solution to a complex problem, and the classical
computer provides an optimization algorithm that brings this encod-
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ing closer to the sought state. This approach, known as “variational
quantum algorithms” [175, 22] (VQAs in short), constitutes the basis
for many applications of quantum computers in domains such as con-
densed matter and quantum chemistry [175, 176, 177, 178], quantum
optimization [179, 180, 181, 182, 183, 184], and quantum machine learn-
ing [185, 186, 58, 187, 188, 189, 190, 191, 192, 193, 194, 195]. What
follows is a presentation of VQAs that provides a background focusing
on applications to numerical analysis. See Ref. [22] for more informa-
tion on this topic. VQAs combined with the variational encodings from
section 4.3 are a central tool for our study of a solver for Hamiltonian
PDEs (4.1), discussed later in Section 4.4.

Let us suppose a time-independent Hamiltonian Ĥ with a non-degenerate
spectrum bounded from below, with greatest lower bound E0. The ex-
pectation value of Ĥ and a normalized quantum state |ψ〉 verifies

〈ψ| Ĥ |ψ〉 =
∑
n

|cn|2En = |c0|2E0 +
∑
n>0

|cn|2En

= E0 +
∑
n>0

|cn|2(En − E0) → 〈ψ| Ĥ |ψ〉 ≥ E0,
(4.16)

where |ψ〉 is expressed in the basis of eigenstates of Ĥ, {|φn〉}, as |ψ〉 =∑
n cn|φn〉. To minimize the separation between 〈ψ| Ĥ |ψ〉 and E0, we

aim to minimize the coefficients |cn|2. Since the form is non-negative,
this process effectively reduces the distance between |ψ〉 and the ground
state.

Then, by allowing |ψ〉 = |ψ(α)〉, i.e., for the state to be a parame-
terized ansatz, the variational method constitutes a systematic approach
to find the approximate eigenenergies and eigenvalues of Ĥ [196]. This
method is particularly effective for low-energy states, and the choice of
ansatz is crucial to correctly targeting the solution’s subspace of the
Hilbert space. For the state to converge to the ground state, c0 =
〈φ0|ψ〉 6= 0, i.e., the state |ψ〉 must have a nonzero superposition with
the ground state of Ĥ.

The variational method can be utilized in quantum computing by
employing variational trial states created within a quantum computer.
Variational quantum algorithms (VQAs) [22] are algorithms that use a
family of parameterized quantum circuits to optimize a cost function over
the set of states that can be created by those circuits. When the cost
function is the Hamiltonian of some problem, the variational quantum
eigensolver (VQE) [175] provides, by virtue of the variational principle,
an estimate of that Hamiltonian’s ground state energy. Figure 4.3 depicts
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Figure 4.3: Variational quantum eigensolver scheme. The quantum com-
puter encodes the problem ansatz and computes the values for the cost
function. In contrast, the classical computer performs the optimization,
which minimizes the cost function value obtained from the quantum com-
puter measurement.

the basic working scheme of VQAs. The hybrid quantum algorithm oper-
ates by tuning the parameterized quantum circuit towards the solution
of a complex problem, whereby the tuning’s responsibility is typically
the role of a classical optimization algorithm executed in a conventional
computer. The main elements of VQAs are listed below.

• Variational quantum circuit. A quantum circuit
∣∣∣f (n)θ

〉
pa-

rameterized by the angles of the rotational quantum gates θ =
(θ1, ..., θn). It is also known as circuit ansatz, and its structure,
number of parameters, and qubits depend on the concrete problem
to solve. A non-parameterized circuit can precede it to initialize
the circuit to a desired state.

• Cost function. The minimization objective function of the prob-
lem C(θ). Its minimum is either the problem’s solution or the
quantum state that best approximates it. The cost function is usu-
ally some metric whose value is computed from the measurements
of the quantum circuit.
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• Classical optimizer. The process of classical optimization entails
minimizing the cost function by adjusting circuit parameters until
convergence. The update rule for generating new parameters dur-
ing each iteration depends on the optimizer chosen. This election
is optimal for each application.

Among classical optimizers, one may distinguish between gradient-
based and gradient-free optimizers. Gradient-based optimizers—which
rely on gradient computations to determine the direction and magnitude
of parameter updates—are a common choice in VQAs due to their effi-
ciency and fast convergence for smooth landscapes. When choosing an
optimizer, it is essential to consider the number of quantum circuit eval-
uations, leading to options such as Simultaneous Perturbation Stochas-
tic Approximation (SPSA) [197], which only needs two evaluations per
step. More complex methods, such as adaptative moment estimation
(Adam) [198], may result in more precise solutions at the cost of more
evaluations. The gradient computation can also be improved using the
parameter shift rule [199, 200], which allows for an analytical gradient.
State-of-the-art optimization techniques, such as automatic differentia-
tion [201], are also considered, aiming to maximize the cost-accuracy
relation of the implementations.

VQAs generated significant interest in the early stages of NISQ com-
putation, as an algorithm that can be cheaply implemented in hybrid
quantum computers and could potentially provide an advantage over
classical alternatives—e.g., thanks to the exploring and sampling capa-
bilities of the quantum circuit in an exponentially large Hilbert space.
One of their primary applications is searching for ground and excited
states of quantum and even classical Hamiltonians, which are crucial in
physics and chemistry. VQE [175] plays a very relevant role, addressing
the challenge of minimizing the energy E(θ) = 〈ψ(θ)|Ĥ|ψ(θ)〉 of a given
system Hamiltonian H. In most applications, the Hamiltonian is a linear
combination of Pauli gates and the energy is a linear combination of its
expectation values, which can be efficiently evaluated in a quantum com-
puter with polynomial resources [22]. In practice, these Hamiltonians are
usually sparse, leading to a polynomial cost with the system size for the
cost function [22]. This scheme can be extended to other problems, such
as the computation of excited states [202, 203, 204]. VQE, and VQAs in
general, have been very popular to tackle problems in condensed matter
and quantum chemistry [176, 177, 178], in which dealing with many-body
systems with classical techniques becomes rapidly unfeasible.

Despite the considerable effort in developing VQAs, these algorithms
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face significant challenges, which are one of the leading research focuses
in this field. These challenges can be summarized in three key con-
cepts [22]: (i) trainability, (ii) efficiency, and (iii) accuracy. Trainability
accounts for the ease of the ansatz to fit the data. To maximize trainabil-
ity, choosing a suitable ansatz for each problem and a good set of initial
parameters for the training is critical, thereby avoiding the algorithms
getting stuck in local minima. These strategies may help elude barren
plateaus [205]—areas with flat gradients in the search space—, prevent-
ing the algorithms from finding the true minima of the cost function.
Gradient-free optimizers, though generally less efficient than gradient-
based optimizers, do not suffer from barren plateaus. Another issue is
efficiency, which is related to the number of measurements of the quan-
tum circuit. The more measurements made, the closer the results are
to the actual expectation value of the operators, according to the law of
large numbers. However, access to NISQ devices is limited, leading to
a limited number of measurements, which may be insufficient. Finally,
we are also battling the accuracy obtained with these techniques. As
mentioned, hardware noise is an issue to consider. However, for some
applications, VQAs have shown noise resilience [20, 21] since the change
experienced in the parameter landscape can still lead to an optimum set
of parameters if the barren plateaus are not considerably increased. It
is also possible to resort to error mitigation techniques [206, 207, 208] to
reduce the effect of noise in these algorithms.

While developing VQAs presents challenges, the exploration of meth-
ods to address them, along with the potential enhancements with existing
quantum devices, has led to an increasing interest in its use for quantum
numerical analysis algorithms for the NISQ era. As in standard VQAs,
a variational quantum circuit encodes the solution to a complex problem
(an ODE or PDE in our case) and the circuit’s parameters are adjusted
through a learning process that optimizes a loss function. In some cases,
the variational form encodes the complete function [24, 23]. In contrast,
in others, the variational circuit acts as a quantum neural network that,
given the right coordinates, outputs a prediction for the function under
study [25, 26]. These VQAs may work with both nonunitary [24, 27, 28]
and nonlinear differential equations [23, 209]. Some applications include
the solution of the Poisson equation [31, 32], the advection-diffusion equa-
tion [33], the Feynman-Kac equation [29] and other stochastic PDEs [30],
the heat equation [34], and fluid dynamics [35, 36]. Other approaches
tackle the problem from a machine learning perspective, combining quan-
tum algorithms with machine learning techniques [210, 211].
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In this context, we create a novel VQE to solve Hamiltonian PDEs:
the variational quantum PDE solver [46]. As described before, the al-
gorithm’s definition requires us to introduce the problem encoding, vari-
ational circuits, cost function, and the hybrid quantum-classical opti-
mization stages. As opposed to many VQAs for PDEs [23, 34, 210, 31,
29, 209], which rely on the finite difference approximation, our proposal
uses spectral methods reducing the error in operator representation and
enabling efficient encoding via the quantum Fourier transform. This en-
coding also accurately approximates denser grids without increasing the
number of optimization parameters via Fourier interpolation.

Standard VQAs for PDEs typically rely on general hardware-efficient
ansätze [25, 32, 30, 29, 36], which are not optimized for function encoding
and require the exploration of the complete Hilbert space. Other alter-
natives have been proposed, such as MPS-based variational circuits for
better function representation [23, 209], but the function’s entanglement
still limits them. Inspired by the work of Zalka [47] and Grover and
Rudolph [48]—focused on discretizing non-negative probability distribu-
tions in quantum registers—, we have developed a more suitable ansatz
for function representation that is exact up to discretization. This ansatz
is further enhanced by a novel quantum circuit that encodes the symme-
tries of the functions, decreasing the scaling of parameters. Finally, we
integrate the quantum problem encoding with different classical optimiz-
ers to effectively solve a range of Hamiltonian PDEs in superconducting
circuits, leveraging quantum computers to model their very components.

4.3 Quantum circuits for numerical analysis

This section introduces a series of quantum circuits that can be combined
with VQEs to solve static PDEs. Mapping continuous functions to a
quantum register state (Chapter 2) is the first step in solving numerical
analysis problems in a quantum computer. However, in practical appli-
cations, the functions must be encoded as a set of quantum gates. These
gates construct parameterized quantum circuits acting as variational an-
sätze for encoding the functions. Choosing the right ansatz is essential
for the success of the problem, and factors like problem constraints and
the nature of the solutions determine it. Thus, it is reasonable to design
an ansatz suitable for function representation with an adequate balance
of expressibility and trainability.

The RY ansatz [179], also known as real amplitudes ansatz, which
is vastly used in VQE applications [176], allows testing the performance
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of the quantum register representation for a general scope ansatz. This
circuit, suitable for representing real states, searches for them in the
entire Hilbert space. Then, the solution of the PDE is reachable within
the search space of the RY ansatz as long as it is real. A new ansatz
tailored to the representation of functions—inspired by the one proposed
in Refs. [47, 48]—has the potential to take advantage of the Fourier
encoding of functions in a quantum register. Moreover, including the
symmetries as a set of gates added to the quantum circuit decreases the
number of parameters necessary to represent a function and, hence, the
cost of adding extra gates, their implementation, associated errors, and
optimization difficulty. Finally, the Fourier interpolation quantum circuit
can refine the function’s representation by combining the QFT (2.18)
with the addition of auxiliary qubits. These circuit ansätze fulfill the
requirements for encoding the ground states of the benchmark PDEs in
section 4.1.

4.3.1 RY ansatz

The RY ansazt is a general multi-purpose ansatz that pertains to the
class of hardware efficient ansätze. This quantum circuit originates in
chemistry applications [176]. Still, its large expressibility and chaotic na-
ture, which allows a parameter search through the whole Hilbert space,
make it suitable for more tasks, such as machine learning and optimiza-
tion problems [212, 213, 214], and the solution of PDEs [36]. The RY
ansatz’s reachability motivates its use for encoding functions in quantum
numerical analysis applications.

The RY ansatz combines layers of local, real-valued parameterized
RY rotations with controlled-NOT (CNOT) gates, leading to the cir-
cuit depicted in Figure 4.4(a). This ansatz results in a parameterized
quantum state∣∣∣f (n)θ

〉
=

n−1∏
q=0

RqY

(
θdepth+1
q

) depth∏
d=1

n−1∏
c=0

∏
c<t

CNOTc,t
n−1∏
q=0

RqY

(
θdq

) |0〉⊗n ,
(4.17)

where the parameters are the rotation angles of theRY (θ) = exp(−iθσy/2)
gates. In this ansatz, the number of parameters scales linearly with the
number of qubits, preventing its cost from exploding with the circuit size.
However, when initialized with random parameters, the likelihood of a
nonzero gradient along any reasonable direction to a certain precision de-
creases exponentially as the number of qubits increases, leading to train-
ability issues due to barren plateaus in the parameters landscape [215].
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Figure 4.4: Variational representation of one-dimensional smooth func-
tions. (a) RY ansatz of depth one, with full entanglement over three
qubits. (b) ZGR ansatz to represent a function f(x) with three
qubits. (c) Ansatz to represent an (anti)symmetric function g(x) =
(sgnx)λf(|x|), where Uf encodes f(x > 0).

91



Chapter 4. Quantum numerical analysis for static PDEs

4.3.2 Zalka-Grover-Rudolph (ZGR) ansatz

The proposals of Zalka [47] and Grover and Rudolph [48] to discretize
non-negative probability distributions in a quantum register motivate a
better-suited ansatz for the representation of functions, exact up to the
discretization. In the original proposal, conditional rotations of the least
significant qubits based on the state of all previous qubits approximate
such probability distributions,

∣∣∣f (n)θ

〉
=

1∏
i=n−1

2i−1−1∏
zi=0

exp[iθi(zi)σyi |z〉〈z|)] |0〉
⊗n , (4.18)

where zi is an integer constructed from the i first qubits z = s0s1 · · · si−1,
and θi(zi) is a set of angles chosen to represent the given function. This
process constructively obtains the desired state, where the state of a qubit
with low significance i is determined by controlled rotations defined by
the more significant qubits j ∈ {0, 1, . . . , i− 1}.

These ideas lead to the Zalka-Grover-Rudolph (ZGR) ansatz, where
these conditional rotations are combinations of σy rotations and CNOT
gates (see Figure 4.4(b)). A slightly more efficient version, where a sim-
ilar number of angles parametrizes rotations, is given by

∣∣∣f (n)θ

〉
=

1∏
i=n−1

2i−1−1∏
zi=0

eiθiziσ
yCNOTzi XOR (zi−1),ie

iθ00σ
y
0 |0〉⊗n . (4.19)

The most significant bit active in zi XOR (zi − 1) acts as control qubit
for the CNOT gate with target qubit i. This ansatz has an exponential
scaling of the number of parameters with the number of qubits, but still
constitutes a valuable choice as (i) it is more accurate than the RY ansatz
since it is tailored to represent highly differentiable smooth functions, (ii)
in practice it gets incredibly close to the exact construct, but does not
require additional NOT gates, and (iii) it illustrates the required ordering
of conditional operations, from high to low significant qubits.

4.3.3 Symmetrization of variational circuits

The in-circuit symmetrization of the function significantly reduces the
parameter scaling of the previous ansätze. This technique enables the
construction of the negative part of the function—f(x), x < 0— by
reflecting the function encoded for x > 0
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Given a function with reflection symmetry, f(x) = (−1)λf(−x), with
λ = 0, 1, and a symmetric discretization of the space

x(n)s = −Lx
2

+
(
s+ 1

2

)
∆x, (4.20)

its quantum circuit encoding satisfies

〈1s1 . . . sn−1|fλ〉 = (−1)λ〈0s̄1 . . . s̄n−1|fλ〉. (4.21)

Equation (4.21) shows a relation between positive coordinates xs > 0 and
negative coordinates xs < 0 that can be embedded into the variational
circuit as shown in Figure 4.4(c). First, a Hadamard gate acts on the
most significant qubit, constructing a quantum superposition where the
most significant qubit encodes the values of the function for xs > 0
(s0 = 1) and xs < 0 (s0 = 0). Then, an ansatz encodes the positive values
coordinates in the n− 1 least significant qubits. Finally, a set of CNOT
gates reverses the function’s orientation in the negative coordinates (4.21)
and sets the right sign for the encoded state. Using this circuit, it is
possible to encode an n-qubit function with an (n−1)-qubit ansatz, thus
halving the number of parameters.

There are other proposals of symmetrization methods, such as the
one in Ref. [216]. In this work, a projector operator creates a symmetry-
adapted VQE. However, the nonunitarity of the projection operator re-
quires classical postprocessing. In this section’s approach, the sym-
metrization is obtained by adding one qubit to the circuit and a small
number of single- and two-qubit gates, constituting a fully coherent ap-
proach that does not require postprocessing.

4.3.4 Fourier interpolation quantum circuit

This interpolation circuit computes the Fourier interpolation (Section 2.3)
of the discretized function represented as a quantum state

∣∣∣f (n)〉. The
integration of the Fourier interpolation circuit with the previous ansätze
(Section 4.3) leads to up to doubly exponentially decaying representation
error in the number of qubits of the approximation, allowing an increase
in the number of points for the function representation without increas-
ing the number of parameters for the optimization. This helps to avoid
potential issues with trainability and reduces the cost of obtaining the
result.

Figure 4.5(a) represents the quantum circuit to interpolate a func-
tion |f (n)〉 encoded in an n-qubit quantum register. This circuit is the
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quantum version of Fourier interpolation described in section 2.3 and ap-
pendix A. The first step of the circuit is applying the QFT (2.18) on such
register, leading to the Fourier space function |f̃ (n)〉. Then, the padding
algorithm adds 2m+n−2n zeros on the momentum space function by first
adding an m-qubit register, and hence 2m+n− 2n points to the represen-
tation of the function. The operation Usym correctly orders the zeros in
the state, considering the anomalous encoding of the momenta (2.20). It
consists of a series of CNOT gates with the most significant qubit of the
original register as control and the new qubits of the auxiliary register as
targets. This operation maps the original discretization with 2n points
to the intervals s ∈ [0, 2n−1)∪ [2n+m−2n−1, 2n+m), so the new points are
added in the middle states. Finally, the inverse QFT acting on the whole
(n+m)-qubit register transforms the function back to position space, re-
sulting in the interpolation function codified in the circuit’s amplitudes.
This algorithm can be written as∣∣∣f (n+m)

〉
= F̂−1Ûsym

(
|0〉⊗m ⊗ F̂

∣∣∣f (n)〉) =: Ûn,mint

∣∣∣f (n)〉 . (4.22)

Quantum Fourier interpolation is exponentially more efficient than its
classical version. From the point of view of operations, the QFT uses
O((n+m)2) quantum gates, which is exponentially less than the O((n+
m)2n+m) operations required by the fast Fourier transform. Incidentally,
this advantage comes from the exponential compression provided by the
quantum register, where a vector that takes N elements in a classical
register requires only log2(N) qubits to be represented.

Fourier interpolation also extends to momentum space as

f̃(p) ∝
2n−1∑
s=0

eipxs〈s|f (n)〉, p ∈ [−Lp/2, Lp/2). (4.23)

The operation applies the QFT on the registers encoding the original
n-qubit function and the m auxiliary qubits (Figure 4.5(b)) as∣∣∣f̃ (n+m)

〉
= F̂n+m

[
|0〉⊗m ⊗

∣∣∣f (n)〉] . (4.24)

In this case, the bounds for the momentum space remain unchanged,
while the position space grid is enlarged from x ∈ [a, b) to x ∈ [a, a +
2mLx), setting all those extra points to the same value that the function
takes at the boundary.

The QFT circuit is the basis of quantum Fourier interpolation. The
circuit is a combination of Hadamard gates and two-qubit conditional
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Figure 4.5: Quantum Fourier circuits. (a) Algorithm to recreate a finer
interpolation in position space |f (n+m)〉 adding m qubits to a previous
discretization

∣∣∣f (n)〉 . (b) Algorithm to recreate a momentum space dis-
cretization with n +m qubits from

∣∣∣f (n)〉 . (c) 3-qubit QFT, where the
control phase rotation CRk has a rotation angle θk = 2π/2k.

rotations (Figure 4.5(c))

QFT(|s0s1 . . . sn−1〉) =
1√
2n

(
|0〉+ e2πi [0.sn−1]|1〉

)
⊗
(
|0〉+ e2πi [0.sn−2sn−1]|1〉

)
⊗ · · · ⊗

(
|0〉+ e2πi [0.s0s1...sn−1]|1〉

)
.

(4.25)

The previous expression uses the fractional binary notation [0.s0 . . . sn−1] =∑n−1
k=0 sk2−k−1.

4.4 Variational quantum PDE solver

As we showed in Ref. [46], the quantum register representation in chap-
ter 2 and the variational circuit encodings from section 4.3 may be com-
bined with conventional VQE algorithms to implement a solver for static
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Figure 4.6: Variational quantum PDE solver. A quantum computer ini-
tializes two quantum circuits in the states

∣∣∣f (n)θi

〉
and

∣∣∣f̃ (n)θi

〉
. The values

of the measurements from the quantum computer estimate the expec-
tation values of the V̂ (x) and D̂(p), thereby approximating the energy
functional E[θ]. A classical computer uses these estimates to iteratively
update the parameters of the variational quantum circuit until conver-
gence.

Schrödinger-type Hamiltonian PDEs (4.1). Rewriting the Hamiltonian
PDE (4.1) as a lower-bounded Hamiltonian operator

H = D(−i∇) + V (x) ⩾ E0, (4.26)

leads to a variational representation of the problem, where E0 is the
minimum energy, i.e., the ground state energy. This reformulation al-
lows the transformation of solving a PDE into a problem that admits
a variational formalism, being reduced to seeking the ground state E0.
The result of this variational search is equivalent to the solution of the
diagonalization problem of H to find the minimum eigenvalue. While
the variational quantum PDE solver is suitable for the multidimensional
case, we will restrict to one-dimensional PDEs for the sake of simplicity.

The general scheme of the algorithm is depicted in Figure 4.6 and
it comprises the following elements: (i) a map between states

∣∣∣f (n)〉
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of a quantum register with n qubits and bandwidth-limited continuous
functions f(x); (ii) the realization that given

∣∣∣f (n)〉 , the QFT creates
a state

∣∣∣f̃ (n)〉 = F̂
∣∣∣f (n)〉 that encodes the classical Fourier transform

f̃ = Ff of the encoded function f(x); (iii) a quantum algorithm that uses∣∣∣f (n)〉 and
∣∣∣f̃ (n)〉 and suitable representations of position and momentum

operators x̂ and p̂, to estimate the energy functional E[f ] = (f,Hf) with
polynomial resources as

E[f ] =
〈
f̃ (n)

∣∣∣ D̂(p)
∣∣∣f̃ (n)〉+ 〈f (n)∣∣∣ V̂ (x)

∣∣∣f (n)〉 ; (4.27)

(iv) a variational quantum circuit W (θ), with θ ∈ Rk, which creates
parameterized states of a quantum register with n qubits

∣∣∣f (n)θ

〉
=

W (θ) |00 . . . 0〉 (Section 4.3); and (v) a classical optimization algorithm,
such as constrained optimization by linear approximation (COBYLA),
simultaneous perturbation stochastic approximation (SPSA), or adapta-
tive moment estimation (Adam), that finds the parameters θ that mini-
mize the cost function E(θ). Ingredients (i) and (iv) map the variational
ansatz W (θ) to the set of bandwidth limited functions fθ(x) and their
energies E[fθ] := E(θ) for the given PDE. Quantum algorithms (ii) and
(iii) estimate the energy E(θ) for each set of parameters. Finally, the
classical algorithm (v) interacts with the quantum algorithms (i)-(iv) to
obtain the best approximation fargminθE(θ) of a solution f0 to Eq. (4.1),

f0 ≤ argminf 〈f |Ĥ|f〉 ≤ fargminθE(θ). (4.28)

A quantum representation Ĥ(n) = D̂
(
p(n)

)
+ V̂

(
x(n)

)
of the Hamil-

tonian differential operator (4.2) enables solving the Hamiltonian PDE (4.1)
using the map between the states of a quantum register and the space of
bandwidth-limited differentiable functions. As introduced in section 2.2,
the position V (x̂) and differential D(p̂) operators are given by

V̂
(
x(n)

)
:=
∑
s

V
(
x(n)s

)
|s〉〈s| , (4.29)

D̂
(
p(n)

)
:= F̂−1∑

s

D
(
p(n)s

)
|s〉〈s| F̂ , (4.30)

using the spectral method to approximate the differential operator. This
reformulation of the problem allows transforming the search for the sta-
tionary solutions of the PDE (4.1) into the search for the eigenstates of
the Ĥ(n) operator, admitting a variational formalism.
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Then, a dense variational family of unitary operatorsW (θ) acting on
n qubits defines a continuous family of trial states

∣∣∣f (n)θ

〉
:= W (θ) |0〉⊗n

(Section 4.3), which a classical optimizer updates by the minimization of
a cost function

E(θ) :=
〈
f
(n)
θ

∣∣∣ Ĥ(n)
∣∣∣f (n)θ

〉
. (4.31)

The optimum parameters θ0 := argmin E(θ) lead to the continuous
function associated with the quantum state

∣∣∣f (n)θ0

〉
that approximates

the solution.
The variational quantum PDE solver obtains these optimum param-

eters by combining a classical optimizer to minimize E(θ) with a quan-
tum computer or simulator that provides an approximate E(θ). Thus, in
practice, for a finite number of measurements, it is unfeasible to obtain
E(θ), but a randomized estimator ĒM that results from a finite setM of
measurements. This estimator is the “energy” obtained as the sum of the
expectation values of the potential V̄M and differential D̄M operators,

E(θ) := ĒM +O

( 1√
M

)
with ĒM := V̄M + D̄M . (4.32)

The expectation values are computed separately in two quantum circuits
encoding

∣∣∣f (n)θ

〉
and

∣∣∣f̃ (n)θ

〉
:= F̂

∣∣∣f (n)θ

〉
and measuring those states in

the computational basis. This result is probabilistic, with errors that
decrease with the number of measurements according to the law of large
numbers, ∆V̂ /

√
M and ∆D̂/

√
M for the potential and differential op-

erators, respectively. Better algorithms could be constructed by using
amplitude estimation over approximate implementations of the unitary
operator exp(−iĤ∆t), but this requires an infrastructure and a precision
of gates that is not presently available.

Because of the association of continuous, infinitely differentiable func-
tions f(x) with quantum states

∣∣∣f (n)〉, Eq. (4.31) gives us the exact value
of the functional E[f (n)] = (f (n), Ĥf (n)). This means that the variational
algorithm finds a strict upper bound on the exact eigenvalue E0 and the
errors of the method can only be due to the expressive power of the vari-
ational ansatz and the capacity of f (n)(xs) to approximate the solution
f(x).

Similarly to other VQAs, the variational quantum PDE solver is also
suitable for approximating excited states. A possible approach is to
modify the cost function to minimize the overlap with the previously
found eigenstates [202]. Finally, Ref. [217] implements a related method
for solving the harmonic oscillator equation and engineering Gaussian
states in quantum circuits.
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4.5. Numerical solution of Hamiltonian PDEs

4.5 Numerical solution of Hamiltonian PDEs

In this section, we evaluate the effectiveness of the variational quantum
PDE solver for static equations discussed in section 4.4. We focus on
a subset of problems—specifically, the superconducting circuits in sec-
tion 4.1—to study its performance and suitability for NISQ devices. Our
study begins with an analysis under ideal conditions (Section 4.5.2), i.e.,
error-free quantum circuits, but considering limitations arising from the
finite number of measurements. We then extend the study to real-world
scenarios by examining the algorithm’s behavior under noise sources
present in current devices (Section 4.5.3 ).

The figures of merit in section 4.5.1 assess the method’s accuracy
in computing the ground state and energy of the quantum harmonic
oscillator, transmon, and flux qubit PDEs. Although this approach
could be extended to excited states, we focus on the ground state as
it provides the simplest and most direct benchmark. The variational
ansätze in section 4.3—the ZGR and RY ansätze, with depths 1, and
1 and 2, respectively—encode the problem for quantum circuits from 2
to 6 qubits. The code for the simulations is based on IBM’s Python
library QISKIT [218], using three classical optimizers for the minimiza-
tion: COBYLA, a gradient-free method; SPSA, a stochastic optimizer
with a numerical gradient; and Adam, which we combine with an analytic
estimate of the gradient [199, 200].

4.5.1 Figures of merit

This benchmark studies the algorithms’ performance based on the ac-
curacy of the energy evaluation and the determination of the solution.
More figures of merit, such as time or cost function evaluations, could be
considered. However, the goal is to test both the trainability and accu-
racy of the proposed techniques, constituting a proof of concept of the
theoretical bounds for precision (Section 2.5) and the capability of quan-
tum computers to tackle these problems. Thus, the proposed metrics
are sufficient for this purpose, and improvements in the application to
minimize the time and cost of the algorithms can lead to further studies.

First, the fidelity F [ψ1, ψ2] := |〈ψ1|ψ2〉|2 between two quantum states
|ψ1〉 , |ψ2〉—which is restricted to the values F ∈ [0, 1] since quantum
states are normalized—determines the error in the approximation of the
solution. The first option is to consider the fidelity between the vari-
ational states produced by the optimization W (θopt) |0〉 , with the dis-
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cretized solution using the same number of qubits
∣∣∣f (n)〉,

F (n) :=
∣∣∣∣〈f (n)∣∣∣W (θopt)

∣∣∣0〉⊗n∣∣∣∣2 . (4.33)

Even though this equation leads to an arbitrarily small error in the ap-
proximation of the discretized solution, it gives no information regarding
the continuous function that is the true solution to the problem, f(x). In
order to provide a more uniform metric for all grids, we introduce an esti-
mate of the L2 error of the function on the continuum limit, associating to
each discretization a continuum limit via Fourier interpolation. We call
this figure of merit the continuous fidelity. For a sufficiently large number
of points for its discretization, one must consider limm→∞ f (n+m) ≈ f(x),
and compare it with the Fourier interpolated (4.22) approximation of the
resulting approximation,

F∞ := lim
m→∞

∣∣∣∣〈f (n+m)
∣∣∣Un,mint W (θopt)

∣∣∣0〉⊗n∣∣∣∣2 . (4.34)

This determines the extent to which information from the continuous ex-
act solution can be recovered from its discretized approximation resulting
from the optimization.

Figure 4.7 shows the infidelities 1− F (n) and 1− F∞ obtained with
the ZGR ansatz and the best optimization method, as well as the best
numerical approximation using a finite grid with 2n points. The fidelity
computed over the discretized state overestimates our knowledge of the
solution, with F (n) ⩾ F∞, especially for small grids, in which the num-
ber of initial points is too small for the interpolation to obtain a high
fidelity. Since we implicitly work with continuous functions unambigu-
ously defined over the grid points, the continuous fidelity offers a better
representation of the information recovered. This is because Fourier in-
terpolation accurately approximates the values outside the original grid
as it is mathematically consistent with using the Fourier transform for
approximating the derivatives. Thus, the simulations’ plots will depict
the median of the infidelities 1−F∞ over 100 repetitions of each simula-
tion with different initial states or trajectories for our later figures, and
the error bars will be the standard deviation around the mean. Moreover,
F∞ uses m = 12−n extra qubits, which already gives a good converged
measure.

We choose the relative error ε in the computation of the energy to
gauge how well the method estimates the properties of the solution to
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Figure 4.7: Comparison of the infidelity figures of merit for the har-
monic oscillator for the numerical limit. The figure depicts the median
and the standard deviation around the mean of 100 repetitions of the
simulations using the ZGR ansatz. The theoretical infidelity 1 − F t is
the infidelity of the theoretical 2n-point wavefunction interpolated up to
212 points and the theoretical 212-point wavefunction. The n-qubit in-
fidelity 1 − F (n) (4.33) is the infidelity of the n-qubit function obtained
from the optimization and the 2n-point theoretical function. The con-
tinuous infidelity 1 − F∞ (4.34) is the infidelity of the n-qubit function
interpolated up to 212 points and the 212-point theoretical function

the PDE. This error is given by

ε =
∣∣∣∣Etn − Eopt
E1 − E0

∣∣∣∣ , (4.35)

where Etn is the theoretical energy obtained over a grid with 2n points,
Eopt is the optimal energy derived by the algorithm, and E1 −E0 is the
energy difference between the lowest and first excited solutions of the
PDE (4.1). This figure of merit is dimensionless and fits the natural
energy scales of the problem, allowing us to compare different PDEs.
In idealized applications, ε and 1 − F∞ should be proportional to each
other, but this is not always true in real-world quantum computers, as
the simulations demonstrate.

4.5.2 Ideal simulations

This section studies the performance of the variational quantum PDE
solver for approximating the solution of three Hamiltonian PDEs—quantum
harmonic oscillator, transmon, and flux qubit—in an ideal quantum cir-
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cuit with no errors other than the quantum fluctuations in the measure-
ment.

Harmonic oscillator

First, the algorithm tackles the most straightforward problem, the one-
dimensional quantum harmonic oscillator model from section 4.1. In this
case, for a position space symmetrically defined around the origin, the
Nyquist-Shannon theorem determines the optimum interval for each n,
Lx ≈

√
2π2n, maximizing the accuracy in both position and momentum

space.
Figure 4.8 shows the simulation results for the three ansätze and op-

timizers considered. Figures 4.8(a)-(c) depict the continuous infidelity1
1−F∞ (4.34) of the optimal state, including the lowest infidelity 1−Ft
obtained with the best approximation on the same grid, that we use
as a reference. Figures 4.8(d)-(f) show the relative error in the estima-
tion of the energy (4.35) for those solutions. We conclude that the best
optimizer is ADAM, closely followed by SPSA. Both methods overcome
COBYLA due to their tolerance to the intrinsic uncertainty in estimating
the energy. However, Adam’s accuracy is higher than that of SPSA, even
for the same ansatz. This is because SPSA uses a stochastic estimate of
the cost function’s gradient with errors amplified by small denominators,
while our Adam implementation uses an analytic estimate based on the
parameter-shift rule [199, 200].

Figure 4.9 shows the best result according to the infidelity for each
ansatz, concluding that the ZGR ansatz is the best variational ansatz
for this problem with a limited number of measurements. This ansatz is
designed to represent continuous functions [47, 48], where every rotation
builds on the previous ones in a smooth, easily differentiable fashion,
with no loss of information. The ZGR ansatz limits the Hilbert space for
the parameter search and hence targets quantum states more suitable
for encoding this type of function. The RY ansatz is a general purpose
one, therefore ideal for many applications, but more complicated to op-
timize for a concrete implementation. In this ansatz, the search space
is less restricted, and the influence of different qubits and layers is more
inefficiently transported by the layers of entangling unitaries, resulting
in the vanishing of gradients [215]. Moreover, as the number of qubits
increases, the accuracy decreases. This occurs due to the increasing num-
ber of parameters with the number of qubits, decreasing the trainability

1We use the notation F = F∞.
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Figure 4.8: Results of the simulations for two, three, four, five, and six
qubits with 8192 evaluations for the harmonic oscillator. The simula-
tions compare the ZGR and the RY ansätze with depths 1 (RY1) and 2
(RY2) and the COBYLA, SPSA, and ADAM optimizers. (a) Continuous
infidelity (4.34) with n+m = 12. (b) Rescaled energy ε̄ (4.35).
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Figure 4.9: Lowest infidelity results of the simulations for two, three,
four, five, and six qubits with 8192 evaluations for the harmonic oscil-
lator. The figure represents the best optimizer for each ansatz—ZGR
and the RY ansätze with depths 1 (RY1) and 2 (RY2). (a) Continuous
infidelity (4.34) with n+m = 12. (b) Rescaled energy ε̄ (4.35).

of the ansatz due to the barren plateaus and the trapping in local minima,
showing a more chaotic nature for the RY ansatz.

Figure 4.9 shows that the number of measurements limits the preci-
sion of the energy estimation. Even a limited number of measurements
achieves low infidelities, in the range 10−3 − 10−5, below what is ex-
pected from the statistical uncertainty in evaluating the cost function.
Figure 4.10(b) shows this behavior. It depicts one of the optimization
trajectories of the Adam method for the ZGR ansatz and n = 3. A
dashed line represents the evaluation of the cost function as returned
by the simulation ĒM (θ), surrounded by a colored band estimating the
statistical uncertainty for M = 8192 measurements. Without any uncer-
tainty, this trajectory and error band must be compared to the actual
energy computed for the same parameters E(θ). The associated rela-
tive error ε̄ ' 5 × 10−3 is one order of magnitude below the statistical
uncertainty, illustrating the power of stochastic optimization. This opti-
mization also obtains a high fidelity in the approximation of the solution
(Figure 4.10(a)). Even with a low number of qubits, i.e., n = 3 corre-
sponding to an 8-point grid, it is possible to obtain a good approximation
of the continuous exact solution using interpolation. Since the interpola-
tion interval has non-strictly periodic conditions, small Gibbs oscillations
appear in the boundary.

The error in estimating the energy of the Hamiltonian PDE (4.1)
decreases with the number of evaluations following the law of large num-
bers. Decreasing this error leads to a more precise computation of the
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Figure 4.10: Simulation run for the Adam optimizer and the ZGR ansatz
for three qubits for the harmonic oscillator. (a) Absolute value of the
theoretical and optimization wavefunctions (βx is a dimensionless coor-
dinate where β =

√
mω/ℏ). (b) Value of the energy for each iteration.

Figure 4.11: Results for the harmonic oscillator simulation with vary-
ing evaluations. The simulation uses the Adam optimizer and the ZGR
ansatz for 8192 and 32768 evaluations. (a) Continuous infidelity (4.34)
with n+m = 12. (b) Rescaled energy ε̄ (4.35).

cost function, positively affecting the algorithm’s performance. In Fig-
ure 4.11, the number of evaluations increases, effectively showing that
it limits the precision of the computation of the expectation value (Fig-
ure 4.11(b)). An increase in the number of evaluations by a factor of 4
consequently decreases ε̄ by a factor 2 and also increases the quality of
the solution, as it can be seen in Figure. 4.11(a).

The number of evaluations limits the performance of the variational
PDE solver due to the limitation in the cost function estimation. Ta-
ble B.1 in appendix B displays the exact numerical results of the contin-
uous infidelity for the three ansätze and optimizers considered, including
the numerical limit results combining the exact non-probabilistic stat-
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evector simulator with the L-BFGS-B optimizer. The results in the nu-
merical limit are equivalent to an infinite number of evaluations, remov-
ing this limitation and showing the true potential of our proposal. While
the minimum infidelity is O(10−5) with a finite number of measurements,
it can decrease up to 5 orders of magnitude with a sufficiently large
number of evaluations. This means that the quantum Fourier analysis
techniques can achieve high precision in the representation of numerical
analysis problems in a quantum register, and what limits them is the
finite number of measurements.

Transmon qubit

Harmonic potentials constitute a known problem suitable for testing the
performance of quantum numerical analysis techniques. Nevertheless,
challenging PDEs, such as those presented by superconducting qubit
Hamiltonians, provide a more rigorous test for the proposed method. The
previous analysis can be extended to such PDEs, such as the transmon
qubit equation 4.7—with inductive-to-capacitive energy ratio EJ/EC =
50—, showing the main results in Figure 4.12 and Table B.2. These
results confirm the behavior of the methods shown by the harmonic os-
cillator. The combination of the analytic Adam optimizer and the ZGR
ansatz leads to the best result due to the interplay of an analytic esti-
mation of the gradient and a problem-adapted ansatz. Again, the local
trapping and statistical uncertainty limit the precision, with no simula-
tion achieving the theoretical limit as the number of qubits increases.

The transmon qubit’s fidelity is smaller than the one of the harmonic
oscillator. The analytical ground state of the transmon is the zeroth-
order solution of the Mathieu equation (4.8), which is more complicated
to reproduce than the Gaussian function of the ground state of the har-
monic oscillator (4.6). This function, while periodic, does not strictly
vanish on the boundaries of the definition interval. Moreover, we cannot
maximize the accuracy with the definition of such an interval since the
variable φ is limited to a 2π-interval by definition. Even in the case of
numerical exact optimizations via L-BFGS-B, the infidelities are lower
(Table B.2).

The transmon qubit is a problem of physical interest, motivated by
studying a real quantum system with practical applications. Qubits are
the building blocks of quantum computers, and it is an amenable idea to
use a quantum computing algorithm to study the physics underlying its
main components. We need to increase the number of evaluations to use
this method to compute actual properties of qubits, such as the energies
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Figure 4.12: Results of the simulations for two, three, four, five, and six
qubits with 8192 evaluations for the transmon qubit. The simulations
compare the ZGR and the RY ansätze with depths 1 (RY1) and 2 (RY2)
and the COBYLA, SPSA, and ADAM optimizers. (a) Continuous infi-
delity (4.34) with n+m = 12. (b) Rescaled energy ε̄ (4.35).
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Figure 4.13: Results of the simulations for two, three, four, five, and six
qubits with 8192 evaluations for the flux qubit. The simulations com-
pare the ZGR and the RY ansätze with depths 1 (RY1) and 2 (RY2)
and the COBYLA, SPSA, and ADAM optimizers. (a) Continuous infi-
delity (4.34) with n+m = 12. (b) Rescaled energy ε̄ (4.35).
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Figure 4.14: Absolute value of the ground state of the flux qubit. We
show the theoretical eigenstate and the discretized and interpolated solu-
tion of our algorithm for the four-qubit RY1 ansatz using the L-BFGS-B
optimizer.

and excitation probabilities. The relative errors obtained, 10−2 − 10−3,
are compatible with what can be expected from 8192 shots. To achieve
a relative error below 10−4 (a fraction of a megahertz), one would need
to use about 100-10000 times more measurements in the final stages of
the optimization. While this seems doable, it suggests the need to find
better strategies for the energy evaluation or even the optimization itself.

Flux qubit

The harmonic oscillator and transmon are two equations that produce
very similar wavefunctions. In particular, the transmon can be very well
approximated by a Gaussian in the EJ � EC limit. This motivates
us to explore a physical model, the flux qubit (4.15), which produces
significantly different quantum states. In this case, the Hamiltonian
PDE has no analytic solution, so the representation of the qubit on the
charge basis approximates the ground state solution for the benchmark.
For the simulations, we choose an inductive-to-capacitive energy ratio is
EJ/EC = 50, and a junction size α = 0.7.

Figure 4.13 and Table B.3 show the results of the solution of the
flux qubit equation (4.15). The best performance is obtained for the
ZGR ansatz combined with the Adam optimizer, confirming the previous
observations, even though the ground state of the flux qubit is not a
Gaussian and cannot be approximated by one. Thus, the variational
PDE solver with the quantum register Fourier representation of functions
succeeds at obtaining different types of solutions, as long as they verify
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the conditions in section 4.4.
As shown in Figure 4.14, the double-well structure of the qubit’s po-

tential creates a state resembling the superposition of two Gaussians.
The greater complexity of the flux qubit’s ground state demands more
qubits for an accurate representation. Still, with already four qubits, we
obtain good results of O(10−5) infidelity for the function representation.
On the other hand, the relative errors for the energy of the qubit are
higher, which can be explained by the fact that the ground and first ex-
cited state energies are comparatively closer, requiring a smaller absolute
precision in evaluating the energy to be accurately approximated.

4.5.3 Application to NISQ devices

The study in section 4.5.2 is a noise-free proof of concept demonstration
of our algorithms. It confirms the utility of Fourier analysis to achieve
good accuracies with a limited number of parameters. However, the
study is confined to an ideal model of a quantum computer, fault-tolerant
and without errors in the gates.

VQAs, and hybrid quantum-classical algorithms in general, were de-
signed to work in NISQ devices with faulty gate implementations and
qubits with finite lifetimes. Still, even under these imperfect circum-
stances, variational constructs can be optimized to approach the ideal
limits [21]. What follows is a more realistic study that takes into ac-
count the limitations of NISQ devices, combining the inaccuracies that
may arise from a finite number of measurements with the imperfections
in single- and two-qubit operations and also in measurements.

This study runs the numerical experiments using a simulator of a
real quantum computer, the ibmq_santiago five-qubit quantum com-
puter [218]. This simulator stores the noise model, coupling map, and
basis gates of the quantum computers so that each computation is subject
to identical conditions. The noise model includes the gate error probabil-
ity and gate length for each basis gate and qubit, as well as the readout
error probabilities and T1 and T2 relaxation times for each qubit. For this
device, T1 and T2 are of the order of 100 µs, and the readout probability is
∼ 10−2. The gate error for single-qubit gates is of order 10−3−10−4 with
a gate length of order 10 ns, while both the gate error and length are one
order of magnitude greater for two-qubit gates 2. Using a simulator of a
quantum computer for the numerical experiments avoids depending on
the reduced availability of quantum devices, for which the long waiting

2The results are for the ibmq_santiago calibration with date 17 March 2021.
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times affect the reproducibility of the experiments. Quantum computers
are calibrated daily, modifying the value of the noise parameters and,
hence, the performance of the experiments. Numerical experiments fix
these parameters and reproduce the noise effects accurately.

The choice of ansatz and optimizer can significantly reduce the effect
of noise. The RY ansatz with depth 1 has the least number of gates and
hence noise due to their application and decoherence. Combining this
ansatz with an optimizer with a stochastic nature, such as the SPSA,
is expected to have more noise resilience. Figure 4.15(a) compares the
continuous infidelity in the noiseless and noisy simulations of the most
straightforward problem, the 1D quantum harmonic oscillator. When
measured against the ideal case, the fidelity of the noisy simulations
decreases with the number of qubits due to the more significant number of
gates, which introduce more errors and increase the effect of decoherence
due to the longer circuit time. However, for a small number of qubits n =
3, obtaining a low infidelity of order O(10−4) is still possible, recovering
the exact solution from the noisy measurements.

Though the noisy optimization successfully reconstructs the contin-
uous solution, the error in the estimation of the energy considerably
increases (Figure 4.15(b)). This error is associated with the circuits that
evaluate the energy in position and momentum space. The QISKIT
quantum tomography toolbox gives the resources to confirm this hy-
pothesis. As shown in Figure 4.15(c), the errors in the two circuits can
be quite significant and are larger in momentum space because of the
gates required for the QFT.

Despite the errors in these circuits, obtaining a good estimate of the
solution suggests using error mitigation [219] to improve the quality of
the energy approximation. Error mitigation techniques arise as valuable
tools to reduce the effect of noise in current quantum computers since the
complete removal of noise, i.e., quantum error correction [220], is still not
feasible. One of the most used error mitigation techniques is zero-noise
extrapolation [221], in which the value of the computation is extrapolated
to the zero noise limit by increasing the noise associated with a certain
parameter to have enough points to perform an extrapolation. Let us
consider a simpler noise model dominated by thermal relaxation, where
T1 is a tunable variable. This model still uses the coupling map and
basis gates of the ibmq_santiago five-qubit device. A quantum circuit
encodes the optimal solution for three qubits to perform error mitigation.
Then, it runs 100 repetitions of the simulation with 8192 evaluations
each for different values of T1. The mean energy resulting from these
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Figure 4.15: Ideal (noiseless) and noisy (ibmq_santiago noise model)
optimization for the harmonic oscillator. The simulations use the SPSA
optimizer and the RY1 ansatz with 8192 evaluations. (a) Continuous
infidelity (4.34) with n + m = 12. (b) Rescaled energy ε̄ (4.35). (c)
Circuit infidelity for the position 1− Fx and momentum 1− Fp circuits
for 100 repetitions with 8192 evaluations each.

measurements computes the error ε (4.35). As Figure 4.16(a) shows, if
T1 ⩾ 2.5µs, the energy admits a Taylor expansion of fifth order

E(T1) = E0 +
∑
n

ϵn
1
Tn1

. (4.36)

To further improve the estimation of the energy, we use Richardson ex-
trapolation [221], reaching an error of order ε ∼ 10−2 for state-of-the-art
values of T1 ∼ 50− 100 µs.

The previous problem is a relatively simple model to test the noise
resilience of the proposal. To push the limits of the method harder, let us
apply this technique for the Hamiltonian PDE of the flux qubit (4.15).
The energy spectrum has a smaller gap between the ground and first
excited states than the harmonic oscillator and transmon qubits, and
the solution is a superposition of two Gaussians on two separate wells.
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Figure 4.16: Zero-noise extrapolation results. The simulations are per-
formed for the RY1 ansatz with thermal relaxation and 100 repetitions
with 8192 evaluations for each simulation. (a) Harmonic oscillator (three
qubits). (b) Flux qubit (four qubits).

This higher complexity means more points are needed to achieve a high-
fidelity interpolation. In general, the necessity of more qubits leads to
a higher error in estimating the energy, even under ideal circumstances
(Figure 4.13), due to the larger number of parameters for the optimiza-
tion. Therefore, error mitigation is expected to perform worse than for
the harmonic oscillator.

Figure 4.16(b) shows the results of the noisy simulations with four
qubits for the flux qubit. These simulations use n = 4; hence, the larger
number of gates with their associated errors and the increased circuit
length make this implementation more affected by noise. This fact, added
to the nature of the equation, leads to worse results, as anticipated. The
values of ε admit a fifth-order Taylor expansion only if T1 ⩾ 5µs. Even
with Richardson extrapolation, the method cannot recover the energy for
today’s quantum computers T1, and just for values of 500 − 1000µs we
reach errors of order ε ∼ 10−2. We conclude that larger thermal relax-
ation times in quantum computers are crucial for accurately estimating
complex Hamiltonian ground-state energies.

Despite the high fidelity results theoretically reachable under ideal
circumstances in Section 4.5.2, the results in Figures 4.15 and 4.16 in-
dicate that noise significantly restricts the practical performance of the
variational quantum PDE solver. Noise affects the number of qubits ac-
cessible to achieve a highly accurate representation and larger thermal
relaxation times than those available for current devices are needed to
apply error mitigation techniques. These findings suggest the need to ex-
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plore alternative platforms suitable for encoding functions in a quantum
register.

4.6 Conclusions and future perspectives

The main conclusion of this study is that the Fourier-based quantum reg-
ister encoding in Chapter 2 is a highly efficient technique for representing
functions and differential operators. We tested this representation with a
new variational algorithm to solve static PDEs, leveraging the quantum
register to obtain an error that decreases up to doubly exponentially in
the number of qubits. The variational quantum PDE solver combines
Fourier techniques with state-of-the-art variational principles to solve
problems of interest in designing superconducting circuits. More con-
cretely, we developed newer variational ansätze that are better suited
to describe continuous differential functions, including their symmetries,
and integrated them with different classical optimizers. The specific im-
plementation of variational functions may have a non-favorable scaling.
However, the embedded symmetries in the definition of the quantum cir-
cuits and Fourier interpolation allow a decrease in the number of param-
eters. Fourier interpolation also increases the approximation accuracy of
larger grids with a small number of qubits.

Under ideal circumstances, even small grids reach high accuracies
(10−5 infidelity), which can be increased up to five orders of magnitude
in the infinite number of measurement limit, showing the true potential
of this encoding. Noisy simulations show a decrease in the fidelity and
the reachable number of qubits, as well as the need for error mitigation
to approximate the energy. The restricted number of measurements and
noise sources present in current NISQ devices restrict the accuracy of our
algorithm, as well as the reachable grids due to the limited qubit scaling,
preventing it from taking advantage of the favorable scalings provided
by our quantum Fourier algorithms. These limitations are stronger for
the more complex transmon and flux qubits’ PDEs. For example, the
experimental precision required for the transmon qubit, with errors ε '
10−4, can be costly in a scenario of NISQ computers with limited access
and temporal stability.

An enhancement of classical optimization and the quantum evalua-
tion of properties is needed to achieve this low error. Less demanding
optimization techniques [222] could reduce the evaluation cost, allowing
the solving of higher dimensional problems. The good results obtained
for the RY ansatz with low depth and the more general ZGR ansatz sug-
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gest the possibility of developing simplified ansätze that encode smooth
functions in quantum states with lower circuit depth. Heuristic stud-
ies of the entropy growth with the discretization density [38] support
this possibility, but precise scaling and the ideal structure of the circuit
are still missing. These ideas motivate other works, such as resampling
images [223] in quantum machine learning and loading functions in a
quantum register [224, 225, 226, 60].

Our algorithm can also compute excited states by following the pre-
scriptions in Ref. [202]. It can also tackle general static equations (D̂(∇)+
V̂ (x) − E)f = 0 by working with self-adjoint operators, as is normally
the case when working with Lindblad operators, by analyzing the square
of the equation (D̂(∇) + V̂ (x)−E)†(D̂(∇) + V̂ (x)−E)f = 0. However,
this is limited by the cost of products such as D̂(∇)V̂ (x), which require
a larger number of gates, and this should probably be set aside to error-
corrected quantum computers. Another possibility would be to study
source PDEs and rewrite their solution as a cost function.

Quantum Fourier analysis techniques are also suitable for fault-tolerant
quantum computers. Fourier encoding shows advantageous scalability
with the number of qubits, especially for smooth, highly differentiable
functions in many significant physical problems and other scientific com-
puting domains. An exciting possibility is to combine spectral methods
with quantum simulation tools to tackle initial-value problems, which
appear more demanding than the eigenvalue problems addressed in this
study. Moreover, it would be essential to explore how these methods
can be merged with amplitude estimation to interrogate the properties
of general functions better.

Nevertheless, quantum computing has still not reached the fault-
tolerant era, and while our techniques have many advantages—up to
doubly-exponentially decaying error with the number of qubits, expo-
nential speed-up in the QFT, exponential savings in memory—current
noisy devices limit their profits. Quantum-inspired tensor network meth-
ods for numerical analysis offer an alternative to leverage the quantum
register encoding in the NISQ era. The representation of functions and
operators as matrix product states and operators in sections 3.6 and 3.7,
together with the finite precision algebra in section 3.5, create a suit-
able framework for developing quantum-inspired algorithms for numeri-
cal analysis. This framework constitutes one of the main contributions of
this thesis, leading to methods to solve static and time-dependent PDEs
in Chapters 5 and 6, respectively.
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Chapter 5

Quantum-inspired solution of
static PDEs

This chapter introduces new and existing quantum-inspired optimiza-
tion and diagonalization techniques for solving static partial differential
equations (PDEs) using matrix product states (MPS). In chapter 4, we
presented the problem of the solution of Hamiltonian PDEs

Hf(x) = [D(−i∇) + V (x)]f(x) = Ef(x), (5.1)

where E is the energy of the Hamiltonian operator H, and V (x) and
D(−i∇) are the potential and differential operators, respectively. Sec-
tion 4.4 proposed a novel variational quantum algorithm to solve this
problem. However, access and accuracy constraints of current quantum
computers restrict the potential of the highly efficient encoding of func-
tions and operators in a quantum register described in chapter 2.

The limitations of quantum computers nowadays have led to seeking
quantum-inspired alternatives. Ewin Tang and colleagues have proposed
numerous quantum-inspired algorithms that effectively dequantize their
quantum counterparts, demonstrating the utility of these techniques in
practical applications such as recommendation systems [227], principal
component analysis [228], linear [229] and stochastic regression [230],
and developing a sampling-based sublinear low-rank matrix arithmetic
framework for dequantizing quantum machine learning [231].

The high memory compression and efficiency of tensor networks make
them a compelling tool for quantum-inspired algorithms. Initially de-
signed to study quantum many-body systems with low entanglement
requirements, tensor networks’ expressive power has been successfully
used in other fields. These include optimization algorithms [232, 233]
and machine learning [234], such as unsupervised and supervised learn-
ing [235, 236, 237, 238, 239, 240], generative modeling [237, 130, 241],
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reinforcement learning [242, 243], and the design of quantum circuits for
machine learning [129], among others.

Numerical analysis can benefit from the memory compression of ten-
sor network methods. In Ref. [38], García-Ripoll shows that MPS consti-
tute an efficient and compact representation of highly differentiable mul-
tidimensional functions, which may accelerate numerical tasks—ranging
from interpolation to solving PDEs. Later, Jobst and colaborators [39]
derived a mathematical bound for the error of the MPS representation
of classical data with a sufficiently quickly decaying Fourier spectrum,
showing that such data can be efficiently represented with a reduced
bond dimension. In both previous works, the representation of func-
tions as MPS is an extension of the quantum register encoding in chap-
ter 2, codifying the state of each qubit in a physical index of the MPS
as illustrated in section 3.6. Combined with the MPO representation
of operators and a basic set of operations and truncation algorithms,
this approach leads to a finite-precision algebra (Section 3.5) suitable
for developing quantum-inspired algorithms. Using this algebra, MPS
constitute an efficient formalism to benefit from the quantum register
encoding described in chapter 2.

MPS quantum-inspired numerical analysis overlaps with the field of
tensor trains (TTs) and quantized tensor trains (QTTs), which were in-
dependently developed in applied mathematics [127]. The initial focus
of using these tensorial representations for functions was reducing the
scaling with the number of dimensions using their factorization to cor-
relate degrees of freedom along different spatial dimensions. This fac-
torization is the exact structure of certain multidimensional many-body
wavefunctions [244] in the functional tensor train (FTT) expansion of
a multidimensional function [137]. These techniques have successfully
solved a variety of numerical analysis problems, such as stochastic prob-
lems [245, 246, 247], the Hamilton-Jacobi-Bellman equations [40, 41,
42], high-dimensional nonlinear PDEs [43], and the Schrödinger equa-
tion [248].

QTTs aim to prevent the exponential growth of the tensor size in
the FTT by discretizing the coordinates and codifying them into tensor
indices [55], either through binary encoding (as discussed in chapter 2),
or using a tensor to represent all the coordinates for a given function di-
mension. Similar encodings have been developed in a quantum-inspired
context. Ref. [38] presents a battery of quantum-inspired numerical anal-
ysis problems, such as Fourier sampling, interpolation, differentiation,
and integration of PDEs. Analogous proposals have successfully solved
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some specific problems, such as the solution of nonlinear Schrödinger
equations [44] and turbulence problems [45].

This chapter explores the solution of Hamiltonian PDEs (5.1) us-
ing MPS. In these applications, sophisticated, highly nonlocal MPOs
encode PDEs, while MPS—in the QTT encoding—approximate the so-
lution to those equations. The previous chapter (Chapter 4) focused on
solving one-dimensional, physically motivated PDEs, specifically, super-
conducting qubit Hamiltonian PDEs. However, the limitations of current
quantum computers prevent the variational quantum PDE solver from
successfully addressing multidimensional problems. This chapter aims
to solve multidimensional PDEs via quantum-inspired techniques. The
numerical experiments tackle the harmonic oscillator PDE, as its well-
behaved known solution allows for a fair comparison of the quantum-
inspired methods.

The following sections provide a detailed description of the contri-
butions presented in Ref. [49], a key element of this thesis. This study
introduces five algorithms for finding the lowest eigenstates of the static
Schrödinger Hamiltonian equation (5.1): explicit imaginary-time evolu-
tion, conventional and optimized steepest gradient descent, an explicitly
restarted Arnoldi method, and a power method. All these algorithms
are global optimization methods based on the MPS-MPO finite-precision
algebra presented in section 3.5. The solution of the harmonic oscilla-
tor PDE (4.4) in up to two dimensions on a regular grid with up to 230
points benchmarks these algorithms against the density matrix renormal-
ization group (DMRG) method and an Arnoldi-like vector-based solver.
The analysis shows that MPS-based methods exponentially outperform
vector-based exact diagonalization regarding memory efficiency. How-
ever, imaginary-time algorithms have a higher cost due to their calibra-
tion requirements. The interpolated Arnoldi-like and DMRG algorithms
asymptotically outperform the other MPS-based methods and exact di-
agonalization, providing significant time and memory usage advantages.
In addition, the problem of the solution of a Hamiltonian PDE is indeed
the search for the minimum eigenvalue. Thus, the algorithms of this
chapter are also suitable for performing general optimization problems as
long as they are amenable to an MPS encoding. Finally, the advantages
found for MPS methods for resolving Hamiltonian PDEs support ap-
plying this finite-precision algebra to more complex numerical problems,
such as the time evolution of an expansive state discussed in chapter 6.
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5.1 Hamiltonian PDEs algorithms

This section introduces the new global optimization algorithms to solve
static, Schrödinger-type PDEs (5.1) using MPS proposed in Ref. [49].
Initially intended to find the lowest eigenvalue of a Hermitian operator
represented as a matrix, these optimization methods have been adjusted
for the MPS-MPO representation of functions and linear operators, em-
ploying the finite-precision algebra for its implementation.

First, explicit methods—Euler, improved Euler, Runge-Kutta, and
Runge-Kutta Fehlberg—address these PDEs via imaginary-time evolu-
tion [103, 104, 97, 249]. This Schrödinger-like equation converges to the
lowest eigenstate of a Hermitian operator in the infinite imaginary-time
limit. Imaginary-time evolution is a key ground-state search technique.
Some notable MPS approaches include the time-evolving block decima-
tion (TEBD) algorithm [103, 104, 97] and the time-dependent variational
principle (TDVP) [105, 106, 107]. However, explicit methods incur an
extra cost due to the calibration of the imaginary-time step and are also
numerically unstable.

To avoid the inconveniences of imaginary-time evolution, we propose
alternative techniques that directly minimize the energy functional

E[ψ] =
(〈ψ|H|ψ〉

〈ψ|ψ〉

)
(5.2)

of the desired PDE (5.1)

|φ0〉 = argmin|ψ〉E[ψ]. (5.3)

The optimization parameter is the state ψ, and different strategies try
to provide the optimal search directions to decrease E[ψ]. One of the
most representative techniques is gradient descent, which searches for
the optimal state following the opposite direction of the gradient of the
cost function. Representing its update rule in a Krylov subspace im-
proves this algorithm and paves the path for presenting Krylov-based
methods, specifically explicitly restarted Arnoldi iteration and power it-
eration. The Arnoldi iteration results in an enhancement of the opti-
mization due to adding new search directions, as many vectors of the
Krylov subspace are considered.

The section ends by introducing the density matrix renormalization
group (DMRG) [87, 88]. DMRG arose as a ground-state search algo-
rithm for quantum many-body physics problems and was later adapted
to a variational MPS formulation [91, 250, 142]. This MPS algorithm is
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also suitable for solving Hamiltonian PDEs (5.1) by understanding them
as a ground-state search problem. Indeed, renormalization group meth-
ods have already been used for numerical analysis applications [98, 44].
Unlike the new algorithms introduced in this section, DMRG—as well
as the previously mentioned TEBD and TVDP—works locally on each
tensor. DMRG directly expresses the energy as a nonlinear function of
all tensors that is sequentially optimized. The MPO representing a PDE
is generally highly entangled; hence, global optimization algorithms are
better suited to solve them. Due to the widespread use of DMRG, it
acts as a benchmark for the global optimization methods in the numeri-
cal simulations in sections 5.2 and 5.3.

5.1.1 Imaginary-time evolution

The Schrödinger equation describes the evolution of a quantum state
ψ(x, t)

iℏ∂tψ(x, t) = Hψ(x, t) → ψ(x, t) = e−iHt/ℏψ(x, 0). (5.4)

The exact evolution operator is a decaying exponential U(t,H) = e−itH/ℏ,
where t is the time and H is the Hamiltonian of the system. Imaginary-
time evolution introduces an imaginary-time variable t→ (−iβ), β ∈ R,
leading to the expression

∂βψ(β) = −Hψ, (5.5)

for ℏ = 1. Then, in the infinite imaginary-time limit, the solution con-
verges to the ground state φ0 of the Hermitian operator H

φ0 = lim
β→∞

1
N

|ψ(β)〉 = lim
β→∞

1
N
∑
n

e−βEnφn, (5.6)

where {φn} is the basis of eigenstates of H, H has a non-degenerate
gapped spectrum with eigenvalues En, E0 < E1 ≤ E2 ≤ E3 . . . , and
N is the normalization constant. Equation (5.6) holds provided that
the initial state ψ(β0) has a non-zero overlap with the ground state φ0.
Initial symmetric states may improve convergence since they have zero
overlap with odd eigenstates.

It is possible to construct the MPO of this evolution operator directly.
However, while the MPO representation of H may be efficient, its expo-
nential will have an exponentially large bond dimension in general [251].
Therefore, an efficient method is needed to construct an MPO to approxi-
mate U . One of the first proposals is the time-evolving block decimation
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(TEBD) algorithm [103, 104, 97]. The TEBD algorithm decomposes
the evolution into n small time steps ∆t. It simplifies the operator via
the Suzuki-Trotter decomposition of each unitary step U(∆t,H). This
method is well-suited for Hamiltonians with nearest neighbor interac-
tions, where two parts compose the Hamiltonian, i.e., H = Hodd+Heven.
These parts act on the odd and even sites of the MPS, respectively, al-
lowing for the approximation of the exponential evolution in layers of
two-site odd and even operators. Higher-order Suzuki-Trotter decom-
positions reduce the error at the expense of increasing the algorithm’s
complexity and cost. Different approximations of the evolution operator
lead to other methods. The MPO W I,II method [249] generalizes the
Euler approximation of the exponential operator and applies it as a local
operator. Another alternative is the time-dependent variational principle
(TDVP) [105, 106, 107], which relies on the tangent space representation
of MPS to search for the optimal update of the quantum state for each
evolution step.

Given the long-range correlations and potentially multiple layers of
tensors within MPOs in numerical analysis (refer to the QFT MPO
in [38]), it is relevant to look for methods that can be approximated using
the finite-precision techniques. Explicit methods appear to be well-suited
algorithms for this task. These methods rely on the Taylor expansion

ψk+1 = ψk +
∑
p

1
p!
(−∆βH)p∂

(p)ψ

∂β(p) , (5.7)

where the order of truncation p leads to different approximations of the
evolution operator. In practice, most approaches choose an order of up to
four, which provides a sufficiently accurate approximation at a reasonable
implementation cost.

1. Euler method. This is an explicit, first-order Taylor approximation
of the evolution, with a local error, i.e., one-step error, O(∆β2) and
simple update with a fixed time-step βk = k∆β

ψ0 = ψ(β0),
ψk+1 = ψk −∆βHψk, for k = 0, 1, . . . , N − 1.

(5.8)

2. Improved Euler or Heun method. This is a second-order, fixed-step
explicit method that uses two matrix-vector multiplications and two lin-
ear combinations of vectors to achieve a local error O(∆β3)

ψk+1 = ψk −
∆β
2

[v1 +H(ψk −∆βv1)] , with v1 = Hψk. (5.9)
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Figure 5.1: Theoretical study of Runge-Kutta methods. (a) Local error
of the fixed-step Runge-Kutta methods for the one-dimensional quantum
harmonic oscillator (4.4) 6-qubit discretization as a function of ∆β. (b)
Contraction ratio rm of the one-dimensional quantum harmonic oscilla-
tor (4.4) 3-qubit discretization for ∆β. The different line styles corre-
spond to the methods used: theoretical evolution (solid), Euler (dash-
dotted), improved Euler (dotted), and Runge-Kutta (dashed).

3. Fourth-order Runge-Kutta method. This algorithm achieves a local
error O(∆β5) using four matrix-vector multiplications and four linear
combinations of vectors

ψk+1 = ψk +
∆β
6

(v1 + 2v2 + 2v3 + v4), with (5.10)

v1 = −Hψk,

v2 = −H
(
ψk +

∆β
2
v1

)
,

v3 = −H
(
ψk +

∆β
2
v2

)
,

v4 = −H (ψk +∆βv3) .

4. Runge-Kutta-Fehlberg method. The Runge-Kutta-Fehlberg (RKF) al-
gorithm is an adaptative step-size solver [252] that integrates a solver
with an error per step O(∆β5) with an error estimator O(∆β6) to dy-
namically determine a suitable ∆β that maintains the error within a
specified tolerance level. The RKF method requires a good initial ap-
proximation of the step size, which a lower order, and hence, cheaper,
method may provide. Its cost entails six evaluations of matrix-vector
multiplication, six linear combinations, and potential repetitions of evo-
lution steps for rejected step sizes.

The higher the order in the previous methods, the better the approx-
imation of the imaginary-time evolution. However, this comes at a cost:
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increasing the number of MPS-MPO operations. This leads to longer
execution times and more error accumulation due to the successive MPS
truncations. Two crucial ingredients for the performance of all methods
include the calibration of the approximation order and the time step.

Explicit methods are unstable because they lack converging approxi-
mations of the eigenvalues. These algorithms only converge for a region
of values of the time step ∆β, where the exponential of the relevant
eigenvalues is well approximated. The local error, which measures the
error of the approximated solution for one step, is determined by the
method’s order p as O(∆βp+1) (Figure 5.1(a)). A smaller ∆β leads to a
better approximation of the imaginary evolution. However, since it does
not directly target the minimum energy solution, it does not necessarily
describe a better optimization path. We are interested in ground state
convergence, so we set a convergence criterion for the step size ∆β based
on the contractivity of all eigenvalues above the ground state. The opti-
mal step size is that for which all the basis states, except for the ground
state, converge faster to zero, as determined by the contraction ratio rm
for each energy level m,

rm = λm(β,Em)
λ0(β,E0)

, m > 0, (5.11)

where λn(β,En) is the eigenvalue of the evolution operator for the nth
energy level and imaginary time β.

For the exact imaginary evolution, limβ→∞ rm = limβ→∞ e−β(Em−E0) =
0, since Em > E0 for m > 0. However, Runge-Kutta methods approxi-
mate this exponential evolution, and the optimal choice of the time step
∆β to minimize the number of steps to convergence depends on the
method’s order and the problem’s spectrum. More precisely, the eigen-
values of the approximate transformation Wp(∆β,H) ' U(∆β,H) +
O(∆βp+1), λ′(∆β,Em), may deviate from the contracting limit
|λ′(∆β,Em)/λ′(∆β,E0)| < 1 due to an improper calibration of ∆β, lead-
ing to a divergence of the method. Figure 5.1(b) shows the contrac-
tion ratios rm ≤ |1| of the energy levels corresponding to the quantum
harmonic oscillator (4.4) 3-qubit discretization for a range of values of
∆β. Higher-order methods provide a more accurate approximation of the
exact imaginary-time evolution for small step size values, as expected.
Lower-order methods, such as Euler, can achieve smaller contraction ra-
tios and faster convergence to the ground state for larger∆β than higher-
order methods, which better approximate the imaginary evolution path.
This indicates the possibility for other paths better suited for energy
minimization, like those in the next sections. In practice, estimating the
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optimum imaginary time step or ensuring stability for a given choice is
unviable since it implies knowing the spectrum of the problem to solve.

Another approach to solving the problem of imaginary-time evolution
is to use implicit methods, which are generally more stable than explicit
ones. For example, the Crank-Nicolson formula, (1+∆Hβ/2)ψk+1 = (1−
∆Hβ/2)ψk, can be implemented using conjugate-gradient solvers [38].
However, they may involve a high and uncontrolled cost per step, which
does not compensate for their potential advantages in this concrete ap-
plication.

Alternative imaginary-time evolution techniques propose to use the
Suzuki-Trotter approximation to separately apply the potential V (x̂)
and the differential D(−i∇) terms [253]. However, this approximation
is only beneficial if the separate application of the operators is more effi-
cient, which is not the case for nonlocal MPOs arising from PDEs. Other
options are second-order differencing, Chebyshev polynomial expansion,
and Lanczos propagation schemes [253], and the use of real-time evolu-
tion techniques [104], with a cost similar to the optimization algorithms
introduced in the following section. Finally, while the implementation
of Runge-Kutta methods to approximate the time evolution within the
DMRG algorithm [98] has also been explored, the advantages of the
finite-precision algebra approach described in section 3.5 also pertain in
this context.

5.1.2 Gradient descent

The explicit methods in Section 5.1.1 are inherently prone to numerical
instability and require step calibration, posing challenges in practical
implementation. However, these challenges can be overcome by methods
that minimize the energy functional of the PDE (5.3).

One of the most extended optimization routines is gradient descent.
Gradient descent updates the approximation of the solution by a displace-
ment along the opposite direction of the gradient, which is the direction
of the fastest energy decrease. One step of this optimization method is
given by

ψk+1 = ψk +∆β δE
δψ

, with δE

δψ
= (H − 〈H〉 I)ψ, (5.12)

where 〈H〉 = 〈ψ|H|ψ〉. The step ∆β < 0 determines how far to move
along the direction of the functional gradient δE

δψ . MPS-based machine
learning methods [254, 255, 232] already use gradient-descent, and in this
context, the step ∆β is usually known as the learning rate.
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It is possible to analytically compute the optimal∆β to minimize (4.1),
avoiding the problem of step calibration that affects imaginary-time evo-
lution methods in section 5.1.1. By substituting the update rule (5.12)
in the cost functional (5.2) and minimizing with respect to ∆β

∆β− =
〈H ′3〉 −

√
〈H ′3〉2 + 4 〈H ′2〉3

2 〈H ′2〉2
, with H ′ = H − 〈H〉 I. (5.13)

Rewriting the optimal step size in terms of the expectation values of
〈H〉, 〈H2〉 and 〈H3〉 reduces the computational cost of gradient descent
to two matrix-vector multiplications and one linear combination.

Appendix C includes a detailed derivation of Eqs. (5.12) and (5.13).
The gradient descent method enables a global update of the MPS, and
the cost function can be adapted to solve other types of PDEs, such as
source PDEs (see Appendix D), which are too expensive for DMRG-like
algorithms.

5.1.3 Improved gradient descent

Enhancing gradient descent by recasting it as a Krylov subspace method
is possible. A Krylov subspace of order L, i.e., with L vectors generated
by the linear operator H ∈ CN×N, with L < N , is defined as the vectorial
subspace

KL = lin{|ψk〉 ,H |ψk〉 , . . . , HL−1 |ψk〉}. (5.14)

Krylov methods operate within this subspace to iteratively approximate
the solution. They are considered one of the most effective modern di-
agonalization routines, featured in popular libraries like ARPACK [256].

Gradient descent’s update rule (5.12) can be written in a Krylov
subspace with L = 2 as

ψk+1 = v0ψk + v1ξk = (1− 〈H〉∆β)ψk +∆βHψk, (5.15)

where the state is now a linear combination of the elements of such
Krylov basis with coefficients v0 = (1 − 〈H〉∆β) and v1 = ∆β. Let us
generalize this method by searching the optimal vector vT = (v0, v1)
that leads to the steepest descent at every step. A reformulation of the
energy minimization in this two-dimensional Krylov subspace results in
its expression as the ratio of two quadratic forms

E[χ] = E(v) = v†Av
v†Nv

, (5.16)
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with Hermitian matrices

A =
(

〈ψ|H|ψ〉 〈ψ|H|ξ〉
〈ξ|H|ψ〉 〈ξ|H|ξ〉

)
=
(

〈ψ|H|ψ〉 〈ψ|H2|ψ〉
〈ψ|H2|ψ〉 〈ψ|H3|ψ〉

)
, and (5.17)

N =
(

〈ψ|ψ〉 〈ψ|ξ〉
〈ξ|ψ〉 〈ξ|ξ〉

)
=
(

〈ψ|ψ〉 〈ψ|H|ψ〉
〈ψ|H|ψ〉 〈ψ|H2|ψ〉

)
. (5.18)

The minimum of the cost function (5.16) satisfies

δE

δv∗ = 1
v†Nv (Av− E(v)Nv) = 0, (5.19)

and hence the optimal direction v corresponds to the solution of the
generalize eigenvalue problem

Av = λNv, (5.20)

where the minimum eigenvalue λ = E(v) gives the optimal energy for
the k-th step. The generalized eigenvalue problem (5.20) can be solved
analytically and numerically, providing both a new estimate of the en-
ergy and a new state |ψk+1〉. This method is equivalent to the gradient
descent in section 5.1.2, but the implicit normalization improves the nu-
merical stability. The normalization matrix N is relevant for the MPS
implementation since the truncation error affects the orthogonality of
the basis.

5.1.4 Arnoldi iteration

Let us extend the previous approach to higher-dimensional Krylov sub-
spaces using an update rule

ψk+1 =
L−1∑
m=0

vmH
mψk. (5.21)

This equation describes an Arnoldi method [257] that estimates the en-
ergy functional using two matrices, A (5.17) and N (5.18), containing
the matrix elements of H and the identity computed in the Krylov basis
of order L. The restriction of the maximum number of Krylov vectors
nv limits the cost of the algorithm, and in practical applications, a lim-
ited number of vectors is enough to obtain high accuracy, as shown in
section 5.3 for the nv = 5, 10 implementation. Solving Eq. (5.20) returns
the coefficients vk ∈ CL of the Krylov basis. Then, an upgraded version
of the Arnoldi method restarts the basis using the new approximation
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ψk+1 to construct it. This particular implementation of the Arnoldi it-
eration is known as an explicitly restarted Arnoldi iteration. An early
restart may avoid divergences due to an ill-conditioned matrix N when
the method is close to convergence. Adding a memory factor γ = −0.75
in the update the optimization step |ξk+1〉 = (1 − γ) |ψk+1〉 + |ψk〉 [258]
may also improve convergence.

The computation of the expectation values to construct the matrices
A (5.17) and N (5.18) and the linear combination of the optimization
step (5.21) dominate the cost of the algorithm. For our problem (4.1),
the cost of solving the generalized eigenvalue problem (5.16) is negligible
due to the small dimension of the Krylov basis.

Different applications already benefit from the Lanczos and Arnoldi
methods for MPS states. Combining these methods with DMRG allows
computing dynamical correlation functions [259], which can be improved
with the adaptive Lanczos-vector method [260, 261]. In the context of the
variational DMRG, Lanczos and Arnoldi methods [108, 109] are used to
evolve quantum states. In contrast to the proposed techniques, DMRG-
like approaches may lead to larger bond dimension MPS. Additionally,
in the same spirit as this work, Chebyshev filter expansions [262] are
employed as iterative schemes for approximate diagonalization around
regions of the spectrum.

5.1.5 Power method

The power method, also known as power iteration, finds the largest eigen-
value λmax = ‖H‖ (in absolute value) and the corresponding dominant
eigenvector (H − λmax)φmax = 0 of a linear operator H. This algorithm
can be modified to find the smallest eigenvalue λmin (in absolute value),
making it adequate for solving the ground state search problem in (5.1).
Let us first introduce the original algorithm, as its derivation is easier
to understand, facilitating the comprehension of the lowest eigenvalue
search.

The algorithm starts with a random vector ψ0—for faster conver-
gence, an approximation of the desired eigenvector φmax—and iteratively
approximates the solution by the recurrence relation

ψk+1 =
Hψk

‖Hψk‖
, (5.22)

which constructs the Krylov basis. The method assures convergence
to the dominant eigenvector λmax = ‖Hφmax‖ in the limit of infinite
iterations under two conditions: (i) |λmax| > |λm|, ∀λm 6= λmax, and (ii)
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〈ψ0|φmax〉 6= 0. To illustrate this, let us rewrite the recurrence relation
((5.22)) as

ψk+1 =
Hk+1ψ0

‖Hk+1ψ0‖
. (5.23)

This expression can be written in terms of the Jordan canonical form of
H, H = PJP−1, where J is an upper triangular matrix with a diagonal
of eigenvalues (counting multiplicity) and upper diagonal of ones, and P
is the column matrix of the eigenvectors and generalized eigenvectors of
H. Thus, if λmax is non-degenerate, the first column of P corresponds
to its eigenvector φmax. Then,

ψk =
Hkψ0
‖Hkψ0‖

= (PJP−1)kψ0
‖(PJP−1)kψ0‖

= PJkP−1ψ0
‖PJkP−1ψ0‖

. (5.24)

Expressing ψ0 as a linear combination of the columns of P , ψ0 = cmaxφmax+∑N−1
i=1 ciφi

ψk =
(
λmax
|λmax|

)k cmax
|cmax|

φmax + 1
cmax

P
(

1
λmax

)k∑N−1
i=1 ciei

‖φmax + 1
cmax

P
(

1
λmax

)k∑N−1
i=1 ciei‖

. (5.25)

Hence, in the limit of an infinite number of iterations k

ψk = eiϕk
cmax
|cmax|

φmax
‖φmax‖

+ rk, (5.26)

where eiϕk = (λmax/|λmax|)k, and ‖rk‖ → 0 as k → ∞. Equation (5.25)
shows that if conditions (i) and (ii) are not verified, then the sequence
does not converge to the eigenvector corresponding to the largest eigen-
value. This convergence is geometric, with ratio |λmax/λ1|, and hence
depends on the spectral gap between the first two dominant eigenvalues,
so the larger the gap, the faster the convergence.

The product of the operatorH on ψk and its normalization dominates
the cost of one iteration of the power method, with no linear combination
of states to obtain the new approximation of the solution.

To find the smallest eigenvalue λmin in absolute value of a non-
negative operator H, the inverse power method uses the shifted and
inverted operator (H − ϵ)−1, designed so that

∥∥(H − ϵ)−1∥∥ = |λmin|−1

for ϵ = 0. The new recurrence relation

ψk+1 =
H−1ψk

‖H−1ψk‖
(5.27)
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involves solving the linear equation Hξ = ψk and normalizing ψk+1 =
ξ/ ‖ξ‖ . Given our intention to solve this equation using MPO (or combi-
nations of them) of significant complexity, rather than utilizing a DMRG-
like solver, we opt for a conjugate gradient method, bringing the power
method closer to a gradient descent algorithm. This includes an added
cost for the power method, with one matrix multiplication and two linear
combinations per conjugate gradient method’s iteration.

5.1.6 Density matrix renormalization group

The density matrix renormalization group (DMRG) algorithm was orig-
inally proposed by White [87, 88] as a ground-state search algorithm in
the context of quantum many-body physics. In its later reformulation for
MPS [91, 250, 142], the MPS acts as variational ansatz for the minimiza-
tion of the energy functional E[A] = 〈ψ|H|ψ〉

〈ψ|ψ〉 , where A are the constituent
tensors of a family of MPS states |ψ[A]〉. This approach has been fur-
ther extended to the calculation of excited states [263, 264], dynamical
systems [265], and the real-time evolution of quantum systems via time-
dependent DMRG (tDMRG) [110, 111, 266]. In this chapter, the energy
functional is the Hamiltonian in (5.1), and thus, its minimization yields
the solution to static Schrödinger-type Hamiltonian PDEs.

As opposed to the rest of the methods in this section, DMRG per-
forms a local optimization of the MPS sites. This algorithm rewrites the
energy functional E[A] in terms of all the constituents tensors {A1, A2, . . . ,
AN}. From the perspective of a single site, the expression is a quotient
of quadratic forms

E[Ai] =
∑
αn,αn+1,in

∑
βn,βn+1,jn A

in ∗
αn,αn+1H̄

in,jn
αn,αn+1,βn,βn+1

Ajnβn,βn+1∑
αn,αn+1,in

∑
βn,βn+1,jn A

in ∗
αn,αn+1N̄

in,jn
αn,αn+1,βn,βn+1

Ajnβn,βn+1

,

(5.28)
with tensors H̄ and N̄ that can be deduced from the operator H and all
other tensors in the quantum state |ψ〉. The tensors Ajnβn,βn+1

are repre-
sentations of a quantum state |ψ(n)〉 =

∑
βn,βn+1,jn A

jn
βn,βn+1

|βnjnβn+1〉
in a Hilbert space, and the tensors H̄ and N̄ as Hermitian operators in
that space

E[ψ(n)] = 〈ψ[n]|H̄n|ψ[n]〉
〈ψ[n]|N̄n|ψ[n]〉

. (5.29)

Therefore, the solution of the eigenvalue problem H̄n|ψ[n]〉 = λN̄n|ψ[n]〉
leads to the minimum energy with respect to the given site.
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This process is iteratively repeated on successive sites, following a
similar methodology to the truncation algorithm in section 3.5. DMRG is
also suitable to vary the size of the tensors by optimizing two-site tensors
|ψ(n)〉 ∼ Ajnβn,βn+1

A
jn+1
βn+1,βn+2

|βn, jn, jn+1, βn+1〉, and using the singular
value decomposition to determine the optimal size for βn+1 on each site.

The DMRG algorithm is included for completeness in the benchmarks
in sections 5.2 and 5.3 as a diagonalization algorithm that directly opti-
mizes the MPS tensors given a generic MPO structure. This enables a
comparison of MPS local versus global optimization for solving PDEs.

5.2 Method calibration and comparison

Let us compare the MPS algorithms introduced in section 5.1 to deter-
mine the most efficient method to solve static Hamiltonian PDEs (5.1).
This comparison relies on the one-dimensional quantum harmonic oscil-
lator PDE with m = ω = ℏ = 1(

−1
2
∂2x +

1
2
x2
)
ψ = Eψ, (5.30)

which was introduced in section 4.1. The Gaussian ground-state of the
harmonic oscillator equation is adequate for an MPS representation [38,
39], enabling a fair comparison of the methods and the evaluation of the
quantum register encoding in a framework of limited precision.

This benchmark resorts to the second-order finite difference method
(Section 3.7) to approximate the differential operators. Its MPO repre-
sentation has a bond dimension χ = 3. This, along with the reduced
bond dimension of the potential operator, results in an MPO with lim-
ited entanglement amenable to both global and local optimization algo-
rithms, allowing a comparable analysis of state-of-the-art DRMG versus
the global optimization methods in Section 5.1

The domain of equation (5.30) is defined as x ∈ [−L/2, L/2), with
L = 10, and ∆x = L/2n, where n is the number of sites of the MPS,
i.e., qubits of the corresponding quantum register. We use the SElf-
Explaining Matrix-Product-State (SeeMPS) [51] library (Chapter 7) to
implement this problem—as well as the solution of the 2D Hamiltonian
PDE in section 5.3 and the evolution problem in Chapter 6. The SeeMPS
library includes the algorithms resulting from this thesis and enables an
accessible introduction to MPS and quantum-inspired algorithms.

The study uses four figures of merit to analyze the proposed methods:
(i) the difference ε = |E0 −En| between the exact eigenvalue E0 and the
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Euler Improved
Euler Runge-Kutta RKF Gradient

descent IRArnoldi

Cost 7 14 28 43 13 6(nv−2)+13
nv−1

Table 5.1: Cost of the MPS-MPO finite-precision methods. The cost is
estimated as a function of the number of MPO-MPS multiplications and
MPS linear combinations.

estimate En using n qubits, (ii) the 1-norm distance ‖φ0 − ψn‖1 between
the approximate solution ψn and the exact ground state discretized on
the same grid φ0, (iii) the standard deviation of the energy on the final
state

σ =
√
〈ψn|H2|ψn〉 − 〈ψn|H|ψn〉2, (5.31)

and, (iv) the infidelity with respect to φ0

1− F = 1− | 〈φ0|ψn〉 |2. (5.32)

It is not fair to compare these figures of merit based on the num-
ber of iterations, as the numerical methods have different costs asso-
ciated with their MPS operations. The more expensive operations are
the application of an MPO on an MPS and the linear combination of
MPS. Table 5.1 gauges the cost as the number of MPS combinations
and MPO-MPS multiplications of each algorithm. All methods have a
constant cost except for the Arnoldi method, which depends on the size
nv of the Krylov basis. The numerical experiments will consider different
basis sizes since this choice is heuristic—as in similar state-of-the-art di-
agonalizers (ARPACK [256], Matlab [267], Scipy [268]). Although these
values provide an approximate idea of the cost of the methods, they dis-
miss the cost of less expensive operations and do not allow an equitable
comparison with DMRG and the Power iteration. A better approach is
to use the CPU time to quantify the algorithms’ costs.

The explicit imaginary-time evolution methods (Section 5.1.1) precise
calibration of their optimal step size ∆β. Since the solution to the prob-
lem is known, a standard classical optimization routine approximates
the optimal step size by minimizing the steps to reach a fixed error in
the approximation of the ground state energy. This calibration supposes
an extra cost for imaginary-time evolution methods, multiplying the to-
tal cost by the number of executions performed in the optimization. In
addition, this is not possible for practical problems since it implies know-
ing the solution. Still, we use it in this benchmark to provide the best
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Figure 5.2: Figures of merit—approximation error, norm-1 distance,
standard deviation, and infidelity—versus execution time for the har-
monic oscillator PDE. The one-dimensional PDE is defined over the in-
terval x ∈ [−L/2, L/2), with L = 10, using a discretization with n = 8
qubits and ∆x = L/2n. We plot (a) the absolute error ε in the estima-
tion of the eigenvalue, (b) the norm-1 distance, (d) the infidelity (5.32)
with respect to the numerically exact solution, and (c) the standard de-
viation (5.31) of the Hamiltonian over the computed eigenstate.

possible scenario for these methods, enabling a fair comparison of all
algorithms introduced in Section 5.1.

Figures 5.2(a)-(d) show the values of the figures of merit (i)-(iv) as a
function of the CPU execution time when using an 8-qubit discretization
and numerically exact truncation operations of the MPS for the norm-
2 distance tolerance (3.13). These plots exhibit that all methods reach
similar accuracy once convergence is achieved, regardless of the figure of
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Figure 5.3: The one-dimensional PDE is defined over the interval x ∈
[−L/2, L/2), with L = 10 and a discretization of n qubits, ∆x = L/2n.
The execution time to estimate the Hamiltonian’s lowest eigenvalue with
an error ε < 10−10 is averaged over ten runs.

merit. Therefore, the subsequent discussion will focus on the error in
approximating the energy ε. This representation favors the imaginary-
time evolution methods since they use the optimal time step ∆β, but
they do not consider that this optimization process increases the total
time by one order of magnitude, rendering the other methods preferable.

Let us analyze the performance scaling by examining the execution
time to achieve ε < 10−10 against the number of qubits (Figure 5.3).
Most imaginary-time evolution algorithms perform worse than the other
techniques, except the Euler method, which behaves similarly to the
improved gradient descent (or Arnoldi with nv = 2) without including
the calibration time. DMRG, Arnoldi, and gradient descent are the best-
performing methods. Among these, DMRG presents the best resource’s
scaling and, when applicable, is the best option.

The simulations in Figures 5.2 and 5.3 use a numerically exact pre-
cision tolerance, allowing an arbitrary bond dimension. Figure 5.4(a)
shows that the methods remain stable when imposing more strict trun-
cation tolerances, with a higher error due to the loss of information of
the truncation, as we observe in the decrease in the bond dimension (Fig-
ure 5.4(b)). The solution of the 1D quantum harmonic oscillator (4.4) is a
Gaussian, and due to its smooth and bandwidth-limited nature, it needs
a considerably small bond dimension χ for a highly accurate representa-
tion [162, 39] (Figure 3.12(c)), evidencing the efficient approximation of
highly differentiable functions with MPS/QTT.

The findings presented in this section conclude that all methods
achieve similar accuracy upon convergence, but the time to convergence
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Figure 5.4: Energy error ε and maximum bond dimension χ for different
truncation tolerances for the harmonic oscillator PDE. Results for differ-
ent truncation tolerances in the MPS-MPS and MPO-MPS operations
for an Arnoldi diagonalization with nv = 3 vectors and a discretization
of n = 8 qubits. NE stands for numerically exact, indicating that the
truncation tolerance is the machine precision of floating point operations.
(a) Error in estimating the energy ε. (b) Maximum bond dimension χ
of the resulting MPS solution.

varies for each of them. The inherent calibration of explicit imaginary-
time methods renders them inefficient compared to the other proposed
methods. Among all algorithms, the fastest convergence of DMRGmakes
it the best option as long as the entanglement of the MPO is adequate
for this local optimization. In situations where DMRG is unsuitable for
the given problem, Arnoldi iteration stands out as the most appropriate
algorithm, and its efficacy can be enhanced by heuristically selecting the
optimal number of vectors nv.

5.3 Benchmark: squeezed harmonic oscillator

This section studies the suitability of MPS methods as an alternative to
state-of-the-art Arnoldi and Lanczos diagonalization packages based on
matrix-vector multiplications—ARPACK [256] and Primme [269, 270].
The analysis focuses on the use of the best-performing Hamiltonian PDE
solvers—Arnoldi iteration and DMRG—to solve a more demanding prob-
lem: the two-dimensional quantum squeezed harmonic oscillator PDE,
which increases the entanglement needs for the MPS representation [38].
The Hamiltonian of the multidimensional squeezed harmonic oscillator
is given by

H = − ℏ2

2m
∇2 + 1

2
mx†Ax. (5.33)
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Figure 5.5: Single execution energy error with the number of iterations
for the squeezed harmonic oscillator PDE. (a) Error in the approximation
of the ground state energy ε with the number of steps for the squeezed
harmonic oscillator with n = 9 qubits per dimension with arbitrarily
large bond dimension for numerically exact truncation in the squared
norm of the singular values and simplification and linear combination
algorithms. (b) Error in the approximation of the ground state energy
ε with the number of steps for the squeezed harmonic oscillator with
n = 8 qubits per dimension for the Arnoldi method with nv = 10 for the
vector and MPS implementation with arbitrarily large bond dimension
and maximum bond dimension χ = 100.

This reduces to the one-dimensional equation (5.30) of the previous sec-
tion for A = ω2. For the more complex two-dimensional squeezed case,
the matrix A contains some degree of correlation. The Hamiltonian rep-
resents a two-dimensional squeezed harmonic oscillator, rotated an angle
θ and squeezed a factor σmin/σmax, where

A = OT (θ)
(

1/σ4max 0
0 1/σ4min

)
O(θ), (5.34)

with the orthogonal transformation

O(θ) =
(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)
. (5.35)

For this matrix and m = 1, the ground state energy is given by

E0,0 =
1
2

( 1
σ2max

+ 1
σ2min

)
. (5.36)

The harmonic oscillator is a gapped problem with a non-degenerate
spectrum, making it suitable as a benchmark for proof of concepts and
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comparison performance. However, due to the correlations, its complex-
ity increases exponentially, making it challenging for standard classical
approaches.

The parameters chosen for numerical simulations are a rotation an-
gle θ = π/4 and a large squeezing σmin/σmax = 0.5. As the PDE is now
multidimensional, a suitable qubit ordering must be chosen. In this case,
the qubits are ordered sequentially, first by coordinate and then by sig-
nificance, following order A in Ref. [38]. Again, the truncation tolerance
is set to the numerically exact machine precision according to the square
norm difference, both for the SVD truncation and the simplification and
linear combination algorithms.

Analogously to section 5.2, let us start with the scaling of the error
in the approximation of the ground state energy ε with the number of
iterations for a fixed number of qubits. Figure 5.5(a) displays the error
decrease for the different methods considered for a problem discretized
with n = 9 qubits per dimension. Given enough iterations, all methods
achieve low errors, but Krylov-subspace methods require more steps to
converge, both in the MPS and vector representations. Indeed, for a
sufficiently small truncation tolerance, vectors and MPS follow a sim-
ilar path up to a point in which the MPS truncation leads to slightly
faster dissipation. Setting the truncation tolerance does not set a fixed
maximum for the bond dimension, and some implementations need more
restrictions to obtain a reasonable implementation cost. Figure 5.5(b)
inspects the effect of limiting the maximum bond dimension for the MPS
tensors. The MPS implementation no longer follows the exact trajectory
but converges to a low error ε = 10−11. Despite the larger number of
iterations, reducing the bond dimension can speed up the cost per step
and accelerate the total execution time.

To compare the scaling of resources with the number of qubits, let
us consider a problem with n = 3 qubits per dimension and a tensor
size χ = 100, as depicted in Figure 5.6. This benchmark adds the Power
iteration since it is usually included as a ground base for Krylov-subspace
methods. The asymptotic execution time of MPS-based Krylov methods
is better than the one of their vector counterparts, which is confirmed by
the slope of the relative execution time for large problems (Figure 5.6(a)).
This better performance results from the smaller memory requirements of
the MPS representation, as its scaling is algebraic instead of exponential
in the vector representation.

In this implementation, DMRG continues outperforming the Krylov-
based methods in memory and time, demonstrating an exponential ad-
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Figure 5.6: Results of the solution of the squeezed harmonic oscillator
equation (4.4). (a) Relative time. (b) Relative steps.

vantage in the execution time. This exponential speedup arises in the
nonlocal approach in the DMRG optimization. DMRG is a “local” op-
timization method for MPS, minimizing the energy functional for each
pair of neighboring tensors. From a mathematical perspective, the renor-
malization of DMRG acts like a sort of interpolation. The sweeps from
qubit 0 up to qubit 2n−1 are equivalent to solving the problem along the
X and the Y directions, starting with the longest length scales first and
refining the solution within each sweep and between consecutive sweeps.

This understanding inspired us to upgrade the Krylov-based method
with a similar strategy to decrease its cost. This approach reuses previous
solutions, using finite differences interpolation of the n-qubit per dimen-
sion MPS solution to obtain the initial approximation for the (n+1)-qubit
problem. When using interpolation (Figure 5.7(a)), the problem also be-
comes solvable for the Arnoldi iteration since the initial approximation
improves with each increase in the number of qubits. This upgrade is
particularly beneficial for the more expensive larger qubit problems, as
now they need a few iterations to converge. All methods have similar
accuracies, demonstrating the capacity of MPS to obtain high-precision
solutions. After this enhancement of the solution technique, the MPS-
based Arnoldi is more competitive with DMRG in terms of execution
time.

MPS are advantageous in scenarios that enable memory compres-
sion while maintaining high accuracy, allowing for more efficient han-
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Figure 5.7: Squeezed harmonic oscillator results using finite difference
interpolation (5.33). (a) ε. (b) Memory. (c) Theoretical error |En−E∞|.

dling of larger problems than vector-based approaches. As illustrated in
Figure 5.7(b), in this application, the vector implementation shows an
exponential growth of memory requirements, reaching the limitations in
memory of our resources at the number of n = 14 qubits per dimension.
In contrast, the MPS algorithms saturate at a modest memory size that
fits in any computer, allowing us to explore sizes of up to n = 15 qubits
per dimension—i.e., a 230 ' 109 points grid—using around 100 Mb of
practical memory (code and data) in a desktop computer. Memory com-
pression is related to the maximum bond dimension achieved by each
method. The maximum bond dimension of the solution is bounded (Fig-
ure 5.8(a)), as in the 1D Gaussian in section 5.2. However, the maximum
bond dimension reached during the solution depends on the operations
of each method, as shown in Figure 5.8(b). This bond dimension is
higher for a larger Krylov basis but still within a reasonable value for its
implementation.

To complete this study, Figure 5.7(c) shows the error |En−E∞| in the
approximation of the exact analytical energy of the ground state (5.36),
where En is the discrete solution with n qubits and E∞ is the exact
eigenvalue of the PDE in the continuum limit. The second-order finite
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Figure 5.8: Maximum bond dimension scaling with the number of qubits
n per dimension for the 2D squeezed harmonic oscillator interpolation
experiments. (a) Maximum bond dimension of the solution for each
method χsol. (b) Maximum bond dimension reached for each method
χmethod.

difference formulas limit the accuracy of the methods. Their error scales
algebraically with the discretization size O(∆x2) and thus exponentially
with the number of qubits, which agrees with Figure 5.7(c). The plot
also includes results obtained using the Lanczos library PRIMME [269].
However, neither this library nor all other vector methods could provide
a solution for n = 15 qubits per dimension, which the MPS algorithms
successfully obtained.

5.4 Conclusions and future perspectives

This chapter studies the solution of Hamiltonian PDEs using quantum-
inspired algorithms, following the MPS-MPO representation described in
sections 3.6 and 3.7. The analysis introduces new global optimization al-
gorithms based on the limited-precision algebra in section 3.5, using two
different techniques: imaginary-time evolution (Runge-Kutta methods)
and approximate diagonalization (gradient descent, power iteration, and
restarted Arnoldi iteration). These methods are benchmarked against
state-of-the-art DMRG and Arnoldi vector-based implementations, ex-
ploring their asymptotic performance and practical resources in small
and large problems.

The main conclusion is that MPS-based algorithms outperform vector-
based algorithms, showing exponential advantages in memory and, thus,
enabling grid sizes beyond the memory limitations of standard diagonal-
ization algorithms. When considering current quantum hardware, the
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results also show that these methods perform better than the variational
quantum algorithm in chapter 4, achieving better accuracy and avoiding
issues such as barren plateaus, noise, and limited access to devices and
also benefitting from an exponential advantage in memory with respect
to the standard classical methods.

Among tensor network methods, imaginary-time evolution appears
less efficient than a self-calibrated gradient descent. Furthermore, Arnoldi
iteration significantly improves gradient descent, allowing a more stable
implementation in the limited precision MPS algebra at a small cost. For
PDEs that admit a small MPO representation, DMRG is excellent at
optimizing the state, performing exponentially better than vector-based
methods, even in time. When DMRG is not a suitable choice, Krylov
subspace methods combined with interpolation can be applied to more
complex MPOs, maintaining the exponential advantage in memory.

This work also paves the path for numerous avenues of optimization
and generalization. Upgrading our state-of-the-art Python implementa-
tion, the SeeMPS [51] library, to a C++ implementation can lead to a
10x speedup according to preliminary tests. Then, MPS would be com-
petitive with Arpack/PRIMME at even smaller sizes. Another possibility
is to parallelize the construction of the Krylov basis and finite-precision
algebra operations in the Arnoldi iteration. There are also possible im-
provements in these algorithms in terms of accuracy and stability, allow-
ing their extension to more applications, such as diagonalization in other
areas of the spectrum, computation of excited states, and the incorpo-
ration of symmetries. A possible improvement is substituting the finite
difference method with a more precise spectral method based on Fourier
interpolation [38] and an exponentially more efficient encoding of deriva-
tive operators [46]. This method requires the application of the QFT
and its inverse MPO, and hence an MPO representation with a reason-
able bond dimension scaling with the number of qubits, which may be
implemented following the prescriptions in Ref. [148]. Other alternatives
are pseudospectral methods, such as the Hermite Distributed Approxi-
mate Function (HDAF) [271], which can achieve spectral accuracy with a
limited bond dimension, as it is shown for the evolution problem in chap-
ter 6. These upgrades will allow us to address more complex PDEs, such
as those present in superconducting circuits, where quantum-inspired al-
gorithms may provide a suitable alternative to overcome the memory
limitations of state-of-the-art techniques [150, 151, 152].

These quantum-inspired algorithms are also suitable for other PDEs,
such as source PDEs (Appendix D), as long as the equation can be recast
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as an optimization problem. The good performance shown by these diag-
onalization methods motivates their application besides numerical anal-
ysis. One possibility is the study of many-body physics problems. These
techniques can be combined with other methods designed for long-range
interactions, such as Chebyshev expansions [272], the generalized TDVP
algorithm [273, 274], the MPO W I,II method [249], and the variational
uniform matrix product state (VUMPS) [275] algorithm, that combines
the DMRG and MPS tangent space concepts. Other studies [276] indi-
cate a possible link between these quantum-inspired techniques and ma-
chine learning in the context classification via physical neural networks
based on d-level quantum systems (qudits).
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Chapter 6

Quantum-inspired solution of
time-dependent PDEs

Time-dependent partial differential equations (PDEs) play a fundamen-
tal role in Physics, modeling a vast range of phenomena across different
areas. Prominent examples include the wave equation, the Schrödinger
equation, and the Navier-Stokes equation. Each is a time-dependent
PDE that governs essential processes such as wave propagation, quan-
tum state evolution, and fluid dynamics, respectively. Encouraged by
the MPS exponential advantages in chapter 5, this chapter introduces
the quantum-inspired methods presented in Ref. [50] to address such
equations, focusing on quantum mechanics’s time evolution problem.

The solutions we developed are motivated by rather paradigmatic
(and challenging) problems in the evolution of quantum systems. More
precisely, we center the discussion on levitodynamics, a field within op-
tomechanics that studies the control of levitated nano and micro-objects
in vacuum [4]. Levitodynamics has experienced steady growth in the past
decade [277, 4], driven by its unexploited potential for both fundamental
research and practical applications, ranging from sensing and metrology
to exploring novel quantum phenomena and complex systems [4]. Some
practical experiments require an expansion of the particle’s wavefunc-
tions [278, 279, 280] by multiple orders of magnitude. This expansion
imposes a severe constraint on the numerical methods used, which must
be able to capture both the initial state of the macroscopic particle and
the whole expansion. The MPS time evolution techniques developed in
this chapter provide an asymptotic acceleration of the problem due to
their associated memory compression.

In this study, we focus on the phenomenon of quantum quenching and
explore two distinct potentials: a harmonic potential, which has a known
analytic solution and serves as a benchmark, and a double-well potential
commonly found in experimental settings. Following this, section 6.2 in-
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troduces a highly efficient and accurate MPO representation of functions
of derivatives provided by a novel extension of the Hermite Distribut-
ing Approximating Functionals (HDAF) to the MPS/QTT formalism
(Section 6.2). We combine this technique for approximating differential
operators with a series of global time evolution algorithms for MPS to
solve the time-dependent PDE. The explicit methods in section 5.1.1
and the restarted Arnoldi iteration in section 5.1.4 are adapted for real-
time evolution. Two new methods are introduced: the implicit Crank-
Nicolson and the trotterized split-step method. A numerical analysis
of the quantum quench problem on up to 220 points demonstrates that
HDAF has greater accuracy than conventional finite difference techniques
with similar implementation costs. Paired with the split-step method,
it constitutes an efficient method to solve time-dependent PDEs with
comparable error scaling and run time to Fast Fourier Transform (FFT)
vector methods while offering a significant memory advantage.

6.1 Wavefunction's expansion of a levitated nanopar-
ticle

Exploring quantum mechanics in the macroscopic world is an exciting
new challenge that is becoming a reality in the laboratory [281]. Super-
conducting quantum computers, the Micius satellite [282] for quantum
communication experiments at more than 1000 km and ETH’s 30-meter
quantum link [283] are just some advances of quantum technologies in
larger scales. A particularly interesting research area is levitodynamics—
see Ref. [4] for an extensive review on the topic—, which explores nano
and microparticles levitated in a vacuum through optical or radiofre-
quency forces [277, 4]. Levitodynamics focuses on massive macroscopic
objects, with a length scale of 10−4 − 10−7m, enabling new research
directions in sensing and metrology, physics of complex systems and
novel quantum physics [4]. As stated in Ref. [4], the future of levi-
todynamics ranges from more practical applications, such as creating
commercial sensors and inertial navigation systems, to the detection of
astrophysical signals—gravitational waves [284], dark matter, and dark
energy [285, 286, 287, 288, 289]—and the study of quantum gravity using
the entanglement of two levitated particles via their mutual gravitational
interaction [290, 291].

Levitodynamics offers the possibility to enhance our understanding
of quantum superposition. The goal is to prepare macroscopic quantum
superpositions of nanoparticles containing billions of atoms [4], which
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could open the path to new research lines like the creation of highly
precise sensors [292, 293] and the study of the interplay of quantum me-
chanics and gravity for macroscopic quantum superposition states [294].
Generating macroscopic quantum superpositions requires highly pure
states spread coherently over significant distances. These conditions
can be achieved through ground-state motional cooling, followed by ex-
panding the wavefunction via dynamic control of the trapping poten-
tial [295, 296, 297, 278, 279, 280, 298, 299]. This results in a spatial
expansion of the wavefunction of up to five orders of magnitude, ideally
reaching the particle’s size (≈ 10−7m).

The quantum quench process is suitable for obtaining macroscopic
quantum superposition in a levitodynamics context. In this process, an
abrupt change in a quantum system’s Hamiltonian drives the system
out of equilibrium [300, 301]. This causes the system, which was origi-
nally in a stationary state of the initial Hamiltonian, to evolve according
to the new Hamiltonian, reaching a new equilibrium or exhibiting com-
plex dynamics. Going back to levitodynamics, to achieve such macro-
scopic quantum superposition states, the particle is initially ground-state
cooled in a tight harmonic potential, and then, this potential is modified
to a wide anharmonic potential [279, 280]. This causes the evolution
of the particle, following a dramatically large wavefunction’s expansion.
Current experimental approaches have achieved expansions of a factor
24 [278], but future developments require expansions of several orders
of magnitude [4]. Numerical simulations are essential for designing and
understanding these experiments. However, the dramatic increase in the
wavefunction’s definition space complicates solving the evolution prob-
lem with standard PDE solvers, even for techniques tailored to this simu-
lation [279]. This complexity arises due to memory constraints associated
with the expanding space, increasing the necessary number of discretiza-
tion points during evolution.

The challenge posed by studying macroscopic quantum superposition
opens the venue for quantum-inspired MPS methods to solve it. This
problem is governed by a time-dependent PDE, the Schrödinger equation

i∂tψ(x, t) = Hψ(x, t) =
(
− ℏ2

2m
∂2x + V (x, t)

)
ψ(x, t), (6.1)

which describes the particle’s evolution during and after a quantum
quench process. In experiments, we expect a sudden change in the
strength of the potential that traps the nanoparticle. The trapping po-
tential will be described as harmonic at a low energy limit. The quench
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then reflects in a discontinuous change of the trapping frequency from
ω0 to ωH at time t = 0 given by

V (x, t) =
{1

2ω
2
0x

2, t ≤ 0,
1
2ω

2
Hx

2, t > 0.
(6.2)

Assuming the wavefunction at time t = 0 starts in the ground state of
the original trapping potential Hamiltonian,

ψ(x, t = 0) =
(
ω0
π

)1/4
exp

(
−1
2
ω0x

2
)
, (6.3)

its evolution is prescribed according to

ψ(x, t) =
(
ω(t)
π

)1/4
exp

(
−
[
ω(t)
2

+ iβ(t)
]
x2
)
, (6.4)

ω(t) = ωH

(
ωH
ω0

cos2(ωHt) +
ω0
ωH

sin2(ωHt)
)−1

, (6.5)

β(t) = ω(t)
4

(
ωH
ω0

− ω0
ωH

)
sin(2ωHt). (6.6)

Appendix E shows the analytic derivation of equations (6.4)-(6.6).
Figure 6.1 depicts the harmonic potential (6.2) and its associated

solution (6.4) for ω0 = 1, ωH = 0.1. For ωH < ω0, the potential increases
its width (Figure 6.1(a)), leading to a consequent increase of the width
of the solution shown in Figure 6.1(b). The solution (6.4) is a complex
Gaussian with width σ(t) = 1/

√
ω(t) that describes a periodic process

with period T = π/ωH . For ωH < ω0, the wavefunction expands during
the first half of the period, going from the initial width σ0 = 1/√ω0 at t =
0, which coincides with the minimum width σmin, to the maximum one
σmax = √

ω0/ωH at time t = 0.5π/ωH . The expansion ratio is quantified
by σmax/σmin = ω0/ωH . Thus, the frequency ratio dictates the total
amplification of the wavefunction’s spatial extent

The harmonic trap quench already poses interesting challenges, such
as the wavefunction’s size change by an arbitrary number of orders of
magnitude. It is thus a useful problem to explore and calibrate the pre-
cision of the MPS techniques developed in sections 6.2 and 6.3 to address
the time evolution problem. However, this wavefunction is not particu-
larly interesting from an experimental point of view because, although
the particle is delocalized, the state cannot be interpreted as a macro-
scopic superposition of two well-distinguishable states.

Let us consider anharmonic potentials, which are of interest for the
creation of macroscopic quantum superpositions [4, 295, 296, 297, 302,
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Figure 6.1: Harmonic and double-well potential quantum quench. (a)
Harmonic potential (6.2) with ω0 = 1 and ωH = 0.1. (b) Harmonic
quantum quench solution (6.4) with ω0 = 1 and ωH = 0.1. (c) Double-
well potential (6.7) with ω0 = 1, ωH = 0.1, u = 1, and σ = 1.

303, 280, 278, 298, 299]. In this case, analytical solutions are usually
unknown. This occurs, for example, in the case of a double-well potential
that combines a harmonic term with an anharmonic Gaussian term

V (x, t) =
{1

2ω
2
0x

2, t ≤ 0,
1
2ω

2
Hx

2 + u exp(−x2/2σ2), t > 0.
(6.7)

For small values of u, the harmonic expansion behavior dominates the
wavefunction’s evolution, with the Gaussian bump at x = 0 acting as
a perturbation, as depicted in Figure 6.1(c). This allows us to use the
results of the harmonic quench analysis as a basis for studying the double-
well potential. When u > 0, the Gaussian part of the potential is ex-
pected to symmetrically separate the expanding wavefunction, causing
the wavefunction’s evolution to deviate from the Gaussian form (6.4)
and form a state with a two-peaked probability density. Both in the
harmonic and the double-well case (for a weak non-harmonic potential),
the ratio of the frequencies determines the expansion of the wavefunc-
tion as σmax/σmin = ω0/ωH . In contrast, the Gaussian potential u and
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σ parameters determine the barrier’s width and height.

6.2 Hermite distributed approximating functionals for
MPS

6.2.1 Distributed Approximating Functionals

Distributed approximating functionals (DAFs) [149, 304] are resolutions
of the identity that can be used to accurately approximate operators.
Hoffman originally introduced them to address the time-dependent
Schrödinger (6.1) equation as a technique to approximate the free prop-
agation of wave packets by a coarse-grained, highly banded matrix oper-
ator. Standard methods to represent the free propagator rely on the
Fourier transform, transforming the propagator to momentum space,
in which it is a diagonal operator. DAFs avoid extra transformations
by only requiring a single representation of the problem, creating a
sparse representation of the propagator in coordinate space. Due to
their well-tempered property, DAFs have similar accuracy for on and off-
grid points, having no “special points” [305]. This property makes DAFs
an approximate identity kernel that has been successfully extended to
approximate functions and their derivatives [305].

We will focus on the first and most used DAF: the Hermite DAF
(HDAF). HDAF approximates a function as a sum of even Hermite poly-
nomials weighted by a Gaussian function

δM (x;σ) =
exp

(
−x2
2σ2

)
√
2πσ

M/2∑
m=0

(
−1
4

)m 1
m!
H2m

(
x√
2σ

)
, (6.8)

where Hm(x) = (−1)mex2 dm

dxm e
−x2 is the m-th Hermite polynomial. This

expression depends on two terms, σ and M , which determine the width
of the Gaussian filter and the maximum order of the Hermite sum, re-
spectively. The HDAF kernel enables to approximate a function f(x)
as [305]

f(x) ≈
∫
dx′ δM (x− x′;σ)f(x′), (6.9)

reproducing the Dirac delta distribution in the σ/M → 0 limit.
Rewriting the HDAF formula (6.8) in terms of the analytic expression

of the Hermite polynomials leads to

δM (x;σ) = 1√
2πσ

M/2∑
m=0

1
m!

(
−σ

2

4

)m
∂2m

∂x2m
exp

(
− x2

2σ2

)
. (6.10)
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This new form is useful for operating with the HDAF and obtaining
different approximations. Since Eq. (6.10) is infinitely differentiable, it
is possible to approximate the action of the derivative as

D

[
∂

∂x

]
f(x) ≈

∫
dx′D

[
∂

∂x

]
δM (x− x′)f(x′). (6.11)

This expression leads to an approximation of the l-th order differential
operator given by

δ
(l)
M (x;σ) =

( −1√
2σ

)l exp (−x2
2σ2

)
√
2πσ

M/2∑
m=0

(
−1
4

)m H2m+l
(

x√
2σ

)
m!

. (6.12)

An interesting concrete example of a differential operator is the free
propagator T (t) = e−

it
2 ∂

2
x . Applying T (t) to Eq. (6.10) results in an

approximation to the propagator, where the kernel is

δ̃M (x− x′;σ, t) = T (t)δM (x− x′;σ)

=
exp

(
−(x−x′)2

2σ2
t

)
√
2πσt

M/2∑
m=0

(
−σ2

4σ2t

)m H2m
(
x−x′√
2σt

)
m!

.
(6.13)

The action of the propagator on the HDAF kernel spreads the original
Gaussian with variance σ2 to a new Gaussian with variance σ2t = σ2+ it

Expressions derived from the resolution of the identity provided by
HDAF maintain a well-tempered nature with similar accuracy as long as
their Fourier transform lies under the “HDAF plateau”, i.e., the eigenval-
ues of the Fourier transform of Eq. (6.8), λM,σ verify 0 ≤ λM,σ ≤ 1 [306].

Unlike the Delta function, the HDAF kernel is generally a bandwidth-
limited, infinitely smooth function and hence can be used for the dis-
cretized approximation of functions and operators. We use the midpoint
rule quadrature to define a discretized version of HDAF that, given a
function f(xk) defined on a discrete set of points xk, accurately recon-
structs a function f(x),−∞ < x < ∞ [305]. In the event of an equal
grid spacing ∆x and a kernel function of the distance between points,
the HDAF approximation becomes

fapp(x) =
N−1∑
k=0

∆xδM (x− xk;σ)f(xk). (6.14)

In this case, the HDAF operator turns into a Toeplitz matrix, i.e., a
diagonal-constant matrix. This enables an efficient implementation, only
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storing N values, where 2N − 1 is the total bandwidth. Moreover,
Eq. (6.14) becomes a convolution, and its computation in momentum
space reduces to the multiplication of a diagonal matrix due to HDAF’s
Toeplitz nature [305]. In addition, due to the decaying nature of the fil-
ter, practical applications require a limited number of points, leading to
a highly banded structure of the HDAF kernel. This banded structure is
controlled by σ/∆x, but it cannot be arbitrarily decreased since a mini-
mal number of diagonals is needed to discretize the integral accurately.

Similarly to Eq. (6.8), the differential operator approximation (6.12)
and the propagator in (6.13) are Toeplitz matrices with a highly banded
structure. This leads to a representation of the derivative in position
space with a similar structure and application to the standard finite dif-
ference technique, avoiding the complexity of the Fourier spectral method
while achieving pseudospectral accuracy.

6.2.2 MPO representation

The approximations of the identity and functions of derivatives provided
by HDAF are Toeplitz matrices and, hence, suitable for an MPO repre-
sentation as weighted displacements of the quantum register. The corre-
sponding MPOs are

K̂ = ∆xδM (0;σ)I+
2n−1∑
i=1

∆xδM (i∆x;σ)
(
Σ̂+i + Σ̂−i

)
, (6.15)

K̂(l) = ∆xδ(l)M (0;σ)I+
2n−1∑
i=1

∆xδ(l)M (i∆x;σ)
(
Σ̂+i + (−1)lΣ̂−i

)
, (6.16)

K̂t = ∆xδ̃M (0;σ, t)I+
2n−1∑
i=1

∆xδ̃M (i∆x;σ, t)
(
Σ̂+i + Σ̂−i

)
, (6.17)

where the symmetry or antisymmetry of δ(l)M has been used, where l is
even or odd, respectively.

6.2.3 Heuristic parameter estimation

Carefully tuning the HDAF’s parameters is key to obtaining an efficient
and accurate approximation. The errors of the HDAF approximation
have two main sources: the approximation of the function f(x) by a
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Figure 6.2: HDAF approximation of a normalized Gaussian function.
The initial Gaussian has a standard deviation of one and zero mean and
is defined in an interval L = 16σmax. (a) Error ε (colormap) and bond
dimension (white lines) of the HDAF approximation as a function of the
maximum degree of the Hermite polynomial M and the ratio σ/∆x for
n = 14. (b) Error ε and maximum bond dimension χmax scaling with
the number of qubits for M = 42 and σ/∆x = 3.

Hermite polynomial of order M under the extent of a Gaussian envelope
and the midpoint rule to approximate the infinite sum. While the HDAF
approximates the Delta distribution for σ/M → 0, it is not possible in
practice to indefinitely increase M or decrease σ. For a more oscilla-
tory integrand, a higher value of σ/∆x will be needed for the Gaussian
envelope to cover an adequate number of nodes and attain satisfactory
integration accuracy. For a fixed and sufficiently large value of M , it is
possible to estimate the value of σ as [50]

σ = max(σM , σmin,
√
t). (6.18)

The first term,

σM = ∆x√
2π

M/2∑
m=0

(−1
4

)m H2m(0)
m!

, (6.19)

makes the reconstruction optimal for a fixed M , since perfect recon-
struction is achieved when the M zeros of the HDAF match the grid’s
zeros, with only the origin term contributing [304]. The second term,
σmin = 3∆x, is heuristically set to ensure convergence of the quadra-
ture’s midpoint rule. Finally,

√
t minimizes the spatial extent of the

effective variance of the propagator.
Let us heuristically study the practical accuracy of the HDAF method

for approximating a normalized Gaussian function with a standard devi-
ation of one and zero mean. Figure 6.2(a) shows the approximation error
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Figure 6.3: HDAF approximation of a one-step evolution under a har-
monic oscillator potential of a normalized Gaussian function. The initial
Gaussian has a standard deviation of one and zero mean and is defined
for a fixed number of qubits n = 14 in an interval L = 16σmax. The
harmonic oscillator for the evolution has parameters m = ℏ = 1 and
ω = 0.01. (a) ∆t = 0.001, (b) ∆t = 0.01, (c) ∆t = 0.1 (d) ∆t = 1.0.

ε =
√∑

i |fapp(xi)− f(xi)|2∆x and the maximum bond dimension of the
simplified HDAF MPO χmax as a function of the HDAF parameters—M
and σ/∆x—for a fixed number of qubits n = 14, for which the method
has already converged. As the value of σ/∆x increases, so does the accu-
racy until convergence for σ/∆x ⪆ 2.5 and a relatively small number of
M ≈ 30, since for these values, the errors of the quadrature are avoided.
The increase of σ/∆x leads to a less banded matrix and, consequently,
a potentially larger maximum bond dimension for a sufficiently large M .
In practice, a value of M ≈ 40 and σ/∆x = 3 is enough to achieve
spectral accuracy with a significantly reduced bond dimension χmax = 9.
For fixed values M = 42 and σ/∆x = 3, the error ε and the bond di-
mension χmax converge as the number of qubits increases, as depicted
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Figure 6.4: Error ε in the second derivative approximation of a Gaussian
function with standard deviation one and zero mean for varying qubits.
The results consider approximations with and without round-off error
correction. (a) Finite differences. (b) HDAF.

in Figure 6.2(b). Thus, there is a minimum discretization for which the
HDAF approximation achieves its maximum accuracy, which saturates
the bond dimension, allowing the approximation of functions on finer
grids without increasing the cost.

Figure 6.3 illustrates that the error profile is similar when considering
the time evolution under a harmonic oscillator potential (6.2) with m =
ℏ = 1 and ωH = 0.01 for ∆t = 0.001, 0.01. As the time step increases, so
does the bond dimension, modifying its behavior and leading to a larger
bond dimension for smaller σ/∆x for ∆t = 1, and a stable value for the
optimum error area. Still, the bond dimension is amenable for practical
implementations, allowing for large time steps while maintaining machine
precision accuracy

In addition to the mentioned errors, the round-off error in standard
differentiation techniques is also found in the HDAF approximation. This
error bounds the accuracy of differentiation methods since it establishes
the minimum grid spacing approximable and the accuracy determined by
the truncation errors of the method. The MPO implementation of both
the finite difference and HDAF approximation of derivatives provides a
very efficient manner to deal with this issue. Once the minimum ∆x is
achieved, the MPO can be extended to denser grids by adding extra idle
sites, maintaining the accuracy without increasing the complexity of the
operator.

Figure 6.4 shows the accuracy of the finite difference and HDAF
differentiation with and without round-off error correction for approx-
imating the second derivative of a Gaussian function with a standard
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deviation of one and a mean zero. Both finite difference and HDAF
are affected by significant round-off errors. When the method obtains
maximum accuracy, the number of qubits can be fixed to correct the
round-off. Then, the error is only reduced due to the decrease of ∆x,
since the norm-2 different error depends on ∆x1/2. HDAF achieves faster
convergence than finite difference, increasing convergence speed with M .
For M = 60, the error is larger than for M = 40 due to the heuristic
cutoff σ/∆x = 3, and a slightly smaller error could be achieved with
more precise fine-tuning.

6.3 Time evolution algorithms

Section 6.1 introduced the problem of the time evolution of a levitated
particle. The Schrödinger equation (6.1) governs this evolution, and its
formal solution can be expressed as the repeated action of a possibly
time-dependent unitary operator U(t) on an initial state ψ(x, t = 0),

ψ(x, t) = U(t)ψ(x, 0) = e−iHtψ(x, 0). (6.20)

The Schrödinger equation is a time-dependent PDE, and MPS and
MPO can encode this problem to tackle it from a quantum-inspired per-
spective. When dealing with time-dependent PDEs, quantum dynamics
simulations can be performed using tensor networks methods that com-
bine Fourier techniques with Trotter expansion [307, 308], or Chebyshev
propagation schemes [309]. Other methods involve employing one-step
implicit time integration with an ALS-type solver or a global space-
time formulation to address multi-dimensional parabolic problems [310].
These quantum-inspired techniques have been expanded to other do-
mains, for example, kinetic simulations of collisionless plasmas through
the Vlasov-Poisson equation [311].

To address the quantum quench problem in section 6.1, the PDE
operators require global evolution schemes independent of the locality
of interactions. This section presents a selection of time-evolution meth-
ods with an MPO-MPS implementation: explicit–—Euler, Improved Eu-
ler, and fourth-order Runge-Kutta methods—–and implicit Runge-Kutta
methods, restarted Arnoldi iteration, and the split-step method. All
previous methods are suitable for a finite difference and HDAF approx-
imation of the differential operator. HDAF’s propagator approximation
also enables the split-step method by approximating the unitary operator
U(t) for brief periods of time. The n-site MPS/QTT representation of
both the Hamiltonian H or the unitary operator U(t) enables accessing
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exponentially dense grids with 2n discretization points in space, which
may lead to advantages regarding the vector representation.

6.3.1 Runge-Kutta methods

Runge-Kutta methods use the Taylor expansion of the state’s dependence
on time, up to p-th order around a given moment tk, to approximate its
time evolution with a local error, i.e., one-step error, that scales alge-
braically with the expansion order as O(∆xp+1).

Section 5.1.1 provides an overview of the most extended explicit
methods in an imaginary-time context. Substituting the imaginary time
β by the real-time t using β = it leads to the real-time evolution algo-
rithms. As an example, the Euler method would be

ψ0 = ψ(β0),
ψk+1 = ψk − i∆tHψk, for k = 0, 1, . . . , N − 1.

(6.21)

In addition to explicit methods, implicit methods should be consid-
ered since they may increase stability. Our studies include the Crank-
Nicolson method, a second-order algorithm based on the trapezoidal rule
that combines the Euler method and its backward version evaluated on
the k and k + 1 iterations, respectively. Thus, the state at the k + 1
iteration is approximated as(

I+ i∆t
2
H

)
ψk+1 =

(
I− i∆t

2
H

)
ψk. (6.22)

Matrix inversion methods may solve the system of equations in its matrix-
vector implementation. In the MPS-MPO framework, adaptations of
techniques like conjugate gradient descent can approach this problem.

6.3.2 Restarted Arnoldi iteration

Adapting the restarted Arnoldi iteration to approximate the evolution
operator on a Krylov basis for a brief period of time is possible. Sec-
tion 5.1.4 describes the original method, which constructs a Krylov basis
{vi}i=1,...,nv of nv elements and computes the matrices of the expectation
value of the operator H and its norm—A and N , whose matrix elements
are 〈vi|H|vj〉 and 〈vi|vj〉, respectively— to find the minimum eigenvalue
of H. These matrices are now used to approximate the exact exponential
evolution as

ψk+1 = e−i∆tN
−1Aψk, (6.23)
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where ψk is expressed using the Krylov basis. The number of Krylov
vectors limits the error of the approximation of the exponential operator,
which scales with O(∆tnv). Therefore, even a few vectors—nv = 5, 10—
can provide a highly accurate approximation. Since only a small number
of vectors is needed, the matrix inversion and exponentiation cost in
Eq. (6.23) is reduced compared to the MPO-MPS operations. Indeed,
the number of vectors for an accurate approximation remains constant
with system size, avoiding exponential scaling.

6.3.3 Split-step method

Split-step methods rely on an approximate decomposition of the Hamil-
tonian exponential into a series of exponentials that can be computed
efficiently. The first-order method uses the Lie-Trotter product formula
to approximate the evolution operator as

U(∆t) ≈ e−i∆tD(−∂2x)e−i∆tV (x), (6.24)

with an order two error in time O(∆t2). Higher order expansions, such
as the Suzuki-Trotter formulas [312, 313], decrease the error scaling with
the time step. The third-order decomposition provides a common ap-
proximation given by

e−i∆t(D(−∂2x)+V (x)) ≈ e−i∆tV (x)/2e−i∆tD(−∂2x)e−i∆tV (x)/2

+O(∆t3).
(6.25)

While a third-order error commonly suffices for practical applications,
higher-order schemes can be constructed at the expense of introducing a
larger number of exponential operators [314], increasing the implemen-
tation cost.

The split-step (6.25) algorithm usually resorts to the Fourier spectral
method to approximate the action of the free propagator exp(−i∆tD(−∂2x)),
but the HDAF formalism permits the efficient alternative of applying the
free-propagator approximation (6.13) directly in the coordinate represen-
tation. This avoids the extra application of two operators: the Fourier
transform and its inverse.

The potential propagator exp(−i∆t2 V (x)) is diagonal in the coordi-
nate basis. When no exact representation is available, it can be efficiently
approximated using TT-cross interpolation as discussed in Ref. [52]. This
technique is more efficient than series expansion techniques, such as the
Chebyshev expansion, in this context [52].
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6.3.4 One-step study

To approximate the evolution of the quantum state ψ(x, t), the previous
methods are iteratively applied over small time intervals ∆t. This study
enables determining the most advantageous methods while avoiding the
high cost of performing the complete evolution for expansion ratios of
interest, which may involve thousands of steps.

As it has been previously advanced, the evolution of a quenched state
under a harmonic potential (6.2) has a known analytic solution (6.4),
which makes it a suitable benchmark for the methods before moving
onto potentials of experimental interest. This problem enables the esti-
mation of errors in the wavefunction for different algorithms, differenti-
ation methods, grids, and time steps.

We study the expansion of a quantum state as we reduce the trap-
ping frequency of the harmonic potential by a factor ωH/ω0 = 0.01. This
results in a 100-fold quantum state expansion, increasing its standard de-
viation from σ0 to σmax = 100σ0. The problem is defined for the domain
x ∈ [−L/2, L/2) with L = 16σmax to capture the maximum expanded
wavefunction. The initial state is derived from a tightly confined po-
tential. Hence, the initial wavefunction is narrowly concentrated around
x = 0. This confinement sets a lower bound for the grid discretization
and number of qubits to represent the initial and final state accurately.
It is essential to consider that loading a function that is mostly zero out-
side a narrow interval is challenging for MPS, requiring us to pad the
function with zeros to compensate for the possible sampling or repre-
sentation errors of TT-Cross or Chebyshev methods on the tails of the
exponential.

This benchmark focuses on the accuracy and performance of the time
evolution algorithms in section 6.3 measured using three figures of merit:
(i) the function norm-2 difference

ε =
√∑

i

|ψ(xi,∆t)− ψ̃(xi,∆t)|2∆x, (6.26)

measures the accuracy of the methods—where ψ(xi,∆t) is the analytic
solution for t = ∆t, and ψ̃(xi,∆t) is the one-step state approximated by
the method—, (ii) the run time, and (iii) the maximum bond dimension
χmax.

The solution of time-dependent PDEs involves two discretizations
—position x and time t—that must be independently analyzed. For a
fixed domain, the number of qubits, i.e., points, determines the spatial
discretization. Section 6.2.3 already compares the performance of the
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finite difference and HDAF approximation of derivatives, demonstrating
the exponential advantage of the error scaling with the number of qubits
for the latter. To test if this performance extends to the solution of
PDEs, the methods use the finite difference approximation with filter
nine in Ref. [315] to enhance noise suppression, and the HDAF MPO
with M = 40 and σ computed using Eq. (6.18). Both techniques use
periodic boundary conditions, with the operators defined on a grid with
n = 18 qubits (262144 points).

For a fixed spatial discretization size ∆x, the errors in approximating
the differential operators remain constant. This allows us to compare
the performance of the finite difference and HDAF techniques for time
evolution. The trade-off in the error ε (6.26) and the run time scal-
ings with ∆t for both implementations of the methods in section 6.3
determines the most efficient differentiation technique. Figure 6.5(a) il-
lustrates that when using HDAF to encode the Hamiltonian operator,
the error converges to the scaling predicted by each method for larger
time steps, where the MPS truncation error is negligible compared to the
time evolution algorithm’s error. For shorter times, the MPS accuracy
limits the performance, leading to a maximum accuracy plateau, with
an error similar to the one imposed by finite precision in standard vector
algorithms. In contrast, the truncation error inherent in the finite dif-
ference method restricts the accuracy, resulting in an error that exceeds
the HDAF plateau, rendering the finite difference method less accurate
for the same grid resolution. Appendix F provides a detailed analysis of
the numerical scaling of ε with ∆t for these numerical simulations.

The bond dimension of the states and operators determines the cost
of the contractions, which dominates the MPS algorithms’ run time. Fig-
ures 6.5(c)-(d) depicts the run time scaling with ∆t, which is similar for
both finite difference and HDAF approximations due to the comparable
bond dimension of both differentiation techniques. Considering the ex-
ponential improvement in accuracy for the harmonic quantum quench’s
benchmark example and the similar cost, HDAF constitutes a more ad-
vantageous technique for approximating derivatives than the finite differ-
ence method. From now on, we will focus on the HDAF implementation
of the PDE numerical methods.

The election of the most efficient time evolution method requires
finding the balance between accuracy and run time. The method’s error
scales algebraically in ∆t, with an increasing exponent with the method’s
order. On the other hand, high-order methods require more operations
and, hence, larger run times. When using MPS for their implementa-
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Figure 6.5: Harmonic quantum quench one-step evolution for a range of
∆t and a fixed number of qubits n = 18. (a) Error ε (finite difference).
(b) Error ε (HDAF). (c) Run time (finite difference). (d) Run time
(HDAF). The run time is averaged over ten runs.

tion, the impact of the MPS truncation should be considered since this
error can accumulate with the successive MPS-MPO operations and con-
sequent simplifications, which may lead to high-order methods being less
accurate than their vector counterparts. To avoid this issue, our exper-
iments used a low truncation tolerance that enabled similar accuracies
to the vector implementation with exponential memory savings, as it
will be later discussed in Figures 6.7 and 6.6. As a consequence of the
tolerance chosen, the highest-order method, i.e., the Arnoldi nv = 10
method, shows the best performance in accuracy, enabling larger step
sizes. Other lower-order methods— fourth-order Runge-Kutta, Arnoldi
nv = 5, and split-step–, while less precise, still reach similar accuracies
for a considerable ∆t range. The smaller order of the Euler method and
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Figure 6.6: Number of qubits n scaling of the split-step one-step evolution
for vector-based—HDAF and FFT— and different tolerance MPS-based
HDAF for ∆t = 0.0001. (a) Error ε. (b) Run time. (c) Maximum bond
dimension χmax . The run time is averaged over ten runs.

the conjugate gradient implementation in the Crank-Nicolson method
restrict the error obtained beyond the intrinsic MPS truncation error.

Although the Arnoldi method with nv = 10 achieves the best error
scaling, its run time is significantly slower—by two orders of magnitude—
compared to the split-step method. As a result, even with smaller time
steps ∆t, the split-step method offers a more favorable trade-off between
computational cost and accuracy. Moreover, extremely high accuracy
may not be required in practical applications, allowing for larger time
steps. Therefore, the split-step method with the HDAF approximation of
the propagator is the optimal choice for studying the expansion problem.

Having identified split-step as the most efficient MPS method, we
compare it with two vector-based alternatives: the HDAF split-step vec-
tor implementation and the standard fast Fourier transform (FFT) split-
step. Figure 6.6 analyzes the scaling of split-step MPS and vector-based
implementations with the discretization size for a fixed time step ∆t.
The MPS method considers different values of the truncation tolerance
for the SVD and the simplifications of the finite precision algebra, mea-

160



6.3. Time evolution algorithms

10−4 10−3 10−2 10−1 1
∆t(s)

10−15

10−13

10−11

10−9

10−7

ε

MPS HDAF tol = 10−32

MPS HDAF tol = 10−28

MPS HDAF tol = 10−24

MPS HDAF tol = 10−20

MPS HDAF tol = 10−16

Vector HDAF

Vector FFT

Figure 6.7: Error ε scaling with time step ∆t for the split-step one-step
evolution for vector-based—HDAF and FFT— and different tolerance
MPS-based HDAF for n = 20.

sured as the norm-2 difference ‖ψ − ϕ‖2 between the original state |ψ〉
with bond dimension χψ and the one projected in the subspace of MPS
|ϕ〉 with bond dimension χϕ, MPSχϕ

, such that χϕ < χψ.
First, Figure 6.6(a) shows the error ε scaling, demonstrating that the

MPS tolerance determines the split-step accuracy. The method achieves
numerical precision comparable to the vector implementation for toler-
ances of order O(10−28) or smaller. Moreover, the error scaling shows
that a discretization with ∆x ≈ 10−1 suffices for HDAF to converge well
above the finite difference approach. When considering the run time
(Figure 6.6)(b)), the FFT is more efficient than the vector-based HDAF,
and MPS perform asymptotically better than vector approaches, as they
present an exponential scaling of time with the number of qubits due to
the exponential increase in the number of points. The rise in tolerance
slightly increases the run time for the MPS implementation while main-
taining a similar scaling for a one-step implementation. Previous and
forthcoming simulations use a tolerance of 10−28 for the SVD truncation,
while a tolerance of O(10−16) for the simplification algorithm. Finally,
Figure 6.7 shows that the MPS error ε scaling with the time step ∆t
presents a similar behavior to the vector-based implementation for tol-
erances smaller than 10−28. Increasing tolerances limit the accuracy for

161



Chapter 6. Quantum-inspired solution of time-dependent PDEs

smaller time steps. As the time step grows, so does the truncation of the
methods, allowing larger tolerances.

6.4 Quantum quench evolution

Section 6.3.4 compared the performance of a selection of MPS methods
for solving time-dependent PDEs. More concretely, it benchmarked the
one-step time evolution of a particle in a harmonic trap experiencing
a sudden weakening of its frequency, whose analytic solution is known.
The split-step method combined with the HDAF approximation of the
propagator demonstrated the best trade-off between accuracy and im-
plementation cost, motivating its use in problems of physical interest.
This section shows the utility of this method for the complete evolu-
tion of a particle in a quantum quench process under various potentials.
First, section 6.4.1 extends the one-step harmonic potential simulations
to the complete expansion of the wavefunction. The known analytic so-
lution enables the assessment of the method’s accuracy as the successive
steps accumulate their error, both for MPS and vector implementations.
Then, section 6.4.2 introduces a new potential, the double-well potential
presented in section 6.1.

6.4.1 Harmonic expansion

First, let us address the complete expansion of the wavefunction of a par-
ticle in a harmonic potential (6.2) that is 100 times weaker than the trap
that confines the initial wavepacket. The simulation results in a 100-fold
expansion of the wavefunction, accurately modeled using a discretiza-
tion using 220 = 1048576 points or n = 20 qubits for x ∈ [L/2, L/2)
with L = 16σmax. Initially, the quantum state is in the ground state of
the Hamiltonian for t = 0 with frequency ω0 = 1. This corresponds to
a real-valued Gaussian function tightly localized around x = 0. Follow-
ing a sudden potential weakening, the trapping frequency decreases to
ωH = 0.01, causing the harmonic trap to relax. The state evolves accord-
ing to the new potential, leading to an expansion of the wavepacket until
tf = 0.5π/ωH , at which the Gaussian solution (6.4) reaches its maximum
width. Let us consider three values for the time steps ∆t = 0.01, 0.1, 1
and a final time tf = 158, so it fits all time steps.

Figures 6.8(a)-(b) depict the scaling of the error ε (6.26) with the
time t of the evolution for the MPS HDAF and vector FFT implemen-
tations of the split-step method, respectively. It is worth noting that
regardless of the implementation, the methods exhibit similar algebraic
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Figure 6.8: Particle’s wavefunction expansion in a harmonic quantum
quench (6.2). The simulation uses the MPS split-step methods with
HDAF differentiation and a state-of-the-art FFT split-step to solve this
problem with a frequency ratio ωH/ω0 = 0.01, final time tf ≈ 0.5π/ωH =
158 and n = 20. Figures (a)-(c) show the error scaling with the evolution
time, and figures (d)-(f) show the run time scaling with the evolution
time.

scalings (see Appendix G), which can be attributed to the expected lin-
ear accumulation from a symplectic integration algorithm on a periodic
Hamiltonian system [316]. This shows that the error accumulation of the
MPS method is negligible compared to the vector FFT split-step.

Figures 6.8(c)-(d) gauge the implementation cost as the run time
scaling with the evolution time t. This scaling is close to linear for the
FFT algorithms, as the problem size fixes the cost of each step, and the
total run time is the sum of individual evolution steps. For the MPS
implementation, the growth of the bond dimension of the expanding
wavefunction leads to a scaling slightly above linear. This increase in
bond dimension results in higher memory requirements and costs for the
MPS and MPO operations than the one-step example.
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Figure 6.9: Pointwise error and maximum bond dimension χmax of a
particle’s wavefunction expansion in a harmonic quantum quench (6.2).
The simulation uses the split-step methods with HDAF differentiation
and a state-of-the-art FFT split-step to solve this problem with a fre-
quency ratio ωH/ω0 = 0.01, final time tf ≈ 0.5π/ωH = 158 and n = 20.
(a) Pointwise error |ψ(x, t)− ψ̃(x, t)| of the maximum width solution ap-
proximated by the methods ψ̃(x, t) with respect to the analytic solution
ψ(x, t) (6.4). (b) Maximum bond dimension χmax for each time step.

Figure 6.9(b) studies the evolution of the maximum bond dimension
χmax with time t. The chirping of the wavefunction leads to an increase
in bond dimension, which reaches the minimum values for the initial and
final times, for which the imaginary phase is zero (or almost zero since
t ≈ 0.5π/ωH), i.e., the state is a real Gaussian. The numerical methods
show similar behavior, with the bond dimension increasing with the ab-
solute value of the phase β(t) of the analytic solution (6.4). Larger time
steps lead to lower bond dimensions due to the larger error of the ap-
proximation. Still, these methods can accurately reproduce the evolution
with a reduced memory cost. This chirping is inherent to the physical
setting; hence, the numerical methods may not present this behavior for
alternative applications.

In Figure 6.9(a), the pointwise error of the maximum width state for
the particle expansion is depicted as |ψ(x, t)− ψ̃(x, t)|. Here, ψ̃(x, t) rep-
resents the approximate solution obtained through numerical methods,
and ψ(x, t) is the analytic solution (6.4). Both versions of the split-step
method exhibit similar error patterns, with differences observed at the
boundaries of the interval for the larger step size, potentially due to er-
rors associated with the MPS representation. Nevertheless, Figure 6.8
shows that the total error ε of the memory-compressed solutions obtained
using the MPS HDAF split-step method meets the high accuracy of the
vector spectral method while achieving similar run times and avoiding
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Figure 6.10: Particle’s wavefunction expansion in a harmonic and double-
well quantum quench (6.7). The simulation uses the MPS split-step
method with HDAF differentiation to solve this problem with ωH/ω0 =
0.01, u = 1 and σ = 1, ∆t = 0.1 and n = 20. A and B stand for
the deepest points of the double well potential. (a) Harmonic oscillator
potential V (x, t) (6.2) for t > 0. (b) Wavefunction density |ψ̃(x, t)|2
for harmonic quantum quench. (c) Double-well potential V (x, t) (6.7)
for t > 0. (d) Wavefunction density |ψ̃(x, t)|2 for double-well quantum
quench.

the multiple MPO operations of the standard MPS spectral method.
This renders the HDAF MPS operators a suitable alternative to spectral
methods for solving time-dependent PDEs.

6.4.2 Double well potential

Sections 6.3.4 and 6.4.1 studied the MPS numerical methods for a prob-
lem with a known solution, enabling a thorough benchmark of the al-
gorithms, spatial discretization, time steps, and truncation errors. This
information can now be used to analyze a problem of physical interest:
the evolution of a levitated particle after the sudden change from a har-
monic to an anharmonic double-well potential described in section 6.1.
This is a relevant problem in levitodynamics, where similar anharmonic
potentials are used for creating macroscopic quantum superposition, a
problem that has been explored both experimentally and computation-
ally [4, 295, 296, 297, 302, 303, 280, 278, 298, 299].

The weakening of the harmonic potential in section 6.4.1 led to an
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Figure 6.11: Run time and χmax of a particle’s wavefunction expansion
in a double-well quantum quench (6.7). The simulation uses the MPS
split-step method with HDAF differentiation to solve this problem with
ωH/ω0 = 0.01, u = 1 and σ = 1, ∆t = 0.1 and n = 20.

expansion of the particle’s wavefunction. Introducing an anharmonic
term modifies this behavior, resulting in a particle in a quantum su-
perposition of two macroscopically distinguishable states associated with
positions far away in the experiment’s left or right halves.

For this particular simulation, the double-well potential is an open
harmonic trap divided by a small Gaussian perturbation (6.7), using
u = 1 and σ = 1, and a trapping frequency that is once more 100
times smaller than the initial particle trap. For the harmonic trap (Fig-
ure 6.10(a)), the new frequency 0.01 = ωH < ω0=1 weakens the potential
and thus the wavefunction’s confinement. This potential causes an ex-
pansion of the wavefunction’s probability density |ψ̃(x, t)|2, achieving the
maximum width for a time t = 0.5π/ωH , as predicted by the analytic so-
lution (6.4) and depicted in Figure 6.10(a). The double-well potential in
Figure 6.10(c) adds a repulsive anharmonic Gaussian term since u > 0,
separating the larger potential in two wells, with a barrier around x = 0.
Figure 6.10(d) reveals multiple cycles of collapse and revival dynamics of
the double-well quantum quench’s evolution, a consequence of adding the
anharmonic term. The Gaussian term creates a barrier in the potential
that divides the probability density into two localization peaks traveling
in opposite directions, achieving the desired superposition. On the other
hand, the harmonic term maintains the confinement and determines the
evolution’s period tf = 0.5π/ωH ≈ 157.1, coinciding with the maximum
wavefunction spread.

The Gaussian barrier also alters the behavior of the state’s bond di-
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mension, which no longer follows a cyclic pattern, as in the case of the
harmonic potential (Figure 6.11). Instead, it seems to saturate, decreas-
ing the linear scaling of the run time as the system evolves.

6.5 Conclusions and future perspectives

This chapter introduced an MPS numerical method to simulate the time
evolution of a levitated particle under a sudden change in its potential.
This is a numerically challenging problem due to the chirp and rapid
oscillations in the phase and the large expansion of the particle’s wave-
function. The proposed algorithm combined a novel HDAF encoding
of differential operators in an MPS/QTT framework with global evolu-
tion schemes independent of the locality of interactions. This is a highly
efficient technique for solving the time evolution problem, achieving pseu-
dospectral accuracy matching the vector alternatives, with exponential
advantages in memory and competitive execution times.

The study benchmarked a selection of quantum-inspired methods to
solve time-dependent PDEs: explicit and implicit Runge-Kutta methods,
restarted Arnoldi iteration, and a split-step method. In particular, the
HDAF operator enables the split-step method by approximating the free
propagator unitary operator, which standard finite difference schemes
cannot efficiently approximate.

First, the method’s performance is assessed for a sudden weaken-
ing of a harmonic potential whose analytic solution is known. When
used with HDAF, time evolution techniques surpass their finite differ-
ence implementation in precision while maintaining a comparable cost.
Furthermore, the split-step method offers the most balanced combina-
tion of precision and cost and demonstrates that it is competitive with
state-of-the-art FFT vector implementations.

When considering one or more expansion cycles, the HDAF’s split-
step method accurately reproduced the behavior of both the harmonic
and anharmonic potentials. This allowed for exponentially efficient func-
tion encodings and moderate simulation overheads despite the chirp in-
herent to the problem. Larger expansions will require considering uni-
tary transformations to avoid the effect of the chirp on the increase of
the bond dimension.

Though the implementation cost of the MPS and FFT implementa-
tions is similar, only the MPS algorithm can scale up these grid densities
to more dimensions due to the exponential scaling of memory of vector-
based alternatives. MPS’s favorable memory scaling, combined with the
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pseudospectral accuracy and reduced cost of the HDAF approximation,
motivate the further development and optimization of these routines for
higher-dimensional systems. Indeed, the developed techniques could be
extended to the density matrix formalism to consider the effect of imper-
fections in the system, which is crucial for attaining the minimal decoher-
ence necessary for the unitary expansion of the wavefunction and creating
methods for the effective creation of a macroscopic superposition. [317, 4].
In addition, this technique can be used for other time-evolving systems
or time-dependent PDEs in general.

Finally, the implementation of these techniques relies on the SElf-
Explaining Matrix Product State (SeeMPS) [51] library (see Chapter 7).
This library is based on Python, and the run time prefactors could be
improved by low-level optimizations and C/C++ backends, among other
alternatives.
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Chapter 7

SElf-ExplainingMatrix-Product-
State library

The SElf-Explaining Matrix-Product-State (SeeMPS) [51] library consti-
tutes a simple introduction to implementing MPS algorithms. Its goal
is to provide a user-friendly and highly flexible code to facilitate under-
standing of these techniques and their adaptation to the user’s needs. It
is based on Python 3 and sped up via Cython, enabling rapid prototyping
and testing before dwelling on more advanced and optimized versions of
the algorithms. This said, the library has been used in some heavy-duty
simulations involving tens and hundreds of qubits [38, 49, 52, 50].

This library groups the MPS algorithms presented in this thesis, and
it is used to obtain the results in chapters 5 and 6. It enables the represen-
tation of quantum states and operators as MPS and MPO and supports
the execution of fundamental algorithms like the density matrix Renor-
malization group (DMRG) and time-evolving block decimation (TEBD).
In addition to general quantum many-body tools, the SeeMPS library is
specifically designed for numerical analysis operations. The library in-
cludes the instruments to create the MPS-MPO finite precision algebra
described in section 3.5, which acts as a basis for developing quantum-
inspired algorithms. SeeMPS uses this algebra to solve PDEs via differ-
ent interpolation and differentiation methods combined with algorithms
for the two problems studied in previous chapters: global optimization
(chapter 5) and evolution (chapter 6) of MPS. These functionalities of
the SeeMPS library have been created as a result of this thesis, and they
are shown in Figure 7.1 together with some complementary ones. This
chapter briefly summarizes how to use the SeeMPS library for quantum-
inspired applications.
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Figure 7.1: Functionalities of the SeeMPS library in this thesis. The
SeeMPS library includes tools for the general MPS-MPO representation
of quantum states and most extended algorithms. This thesis enlarges it
for quantum-inspired numerical applications, including MPS-MPO finite
precision algebra, differentiation, interpolation, and solution of partial
differential equations.

7.1 Function and operator representation

The MPS-MPO finite precision algebra in section 3.5 enables the de-
velopment of quantum-inspired algorithms for numerical analysis. The
first step is to represent functions as MPS following the prescriptions of
section 3.6, i.e., mapping the binary encoding of functions in an n-qubit
quantum register to an n-site MPS.

Let us encode a Gaussian function f(x) = e−x
2/2 as an MPS1. The

Space class creates the function’s domain by proving the number of
qubits per dimension and its corresponding interval.
from seemps.analysis.space import Space
n = 8
interval = [-5,5]
space = Space([n], [interval])

1The MPS representation of functions does not need functions to be normalized,
as opposed to the quantum register encoding.
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Then, the from_vector method of the MPS class constructs the MPS
corresponding to the vector representation of the function, where the
physical dimension of the sites of the MPS will always be two due to the
binary encoding.
import numpy as np
from seemps.state import MPS
f = np.exp(-space.x[0]**2/2)
f_mps = MPS.from_vector(f, [2]*n, normalize=False)

The from_vector method is the most straightforward way of load-
ing a function to an MPS from its vector representation. It uses the
SVD with a truncation strategy that can be modified to obtain an exact
state representation. However, the method is limited by the capacity
of the vector representation to encode the function. SeeMPS also in-
cludes function-loading MPS techniques that avoid this problem by di-
rectly creating the MPS. In Ref. [52], Rodríguez-Aldavero introduced a
function loading technique based on Chebyshev expansion and compared
it against TT-cross interpolation and multiscale interpolative construc-
tions. These techniques were added to the library as part of the previous
work.

The SeeMPS library includes the representation of predefined func-
tions as MPS. These functions, such as the constant, exponential, sine,
and cosine functions, are objects of the MPS class and are exactly con-
structed from the corresponding list of rank-3 tensors provided to the
class. These functions also correspond to diagonal potential operators,
which can be applied as an MPS multiplication or recast as MPO.

The MPO class provides the MPO encoding of operators. These op-
erators can be exactly constructed either as a list of rank-4 tensors or
approximated through basis expansions, such as the Chebyshev expan-
sion, which relies on polynomials that are exactly representable as MPO.

7.2 Basic operations

The finite precision algebra in Section 3.5 allows working with MPS and
MPO similarly to the elements of the standard matrix-vector algebra in
numerical analysis applications. This algebra includes basic operations,
such as multiplication, addition, and subtraction. The symbols corre-
sponding to these operations are overloaded in the MPS and MPO classes,
facilitating its use. In addition, the MPS is automatically truncated to
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avoid undesirable growth of the bond dimension. This truncation can be
modified to the needs of the problem.

For example, we can create the MPO corresponding to the exponen-
tial function for the previously defined Space.
from seemps.analysis.operators import exponential_mpo
op = exponential_mpo(n, interval[0], space.dx[0])

Then, the overloaded algebraic symbols allow us to construct a new MPS
as the linear combination of the original one and the application of the
operator on it.
new_f_mps = op @ f_mps
combined_state = 0.1 * new_f_mps - 3 * f_mps

It is possible to operate with MPOs similarly, enabling the construction
of more complex operators, such as Hamiltonians, and representations of
different PDEs.

7.3 Differentiation

The SeeMPS library includes three differentiation techniques: finite dif-
ference (Section 2.2.2), Fourier spectral method (Section 2.2.2), and
Hermite Distributing Approximating Functionals (HDAF) (Section 6.2).
While the finite difference and Fourier methods are commonly used in
quantum-inspired applications for numerical analysis, HDAF constitutes
a novel technique for approximating functions of derivatives in this con-
text.

As an example, let us approximate the first derivative of the previ-
ously defined Gaussian function using the finite difference method.
from seemps.analysis.finite_differences import

smooth_finite_differences_mpo

op_diff = smooth_finite_differences_mpo(n, order=1, dx=space.dx
[0])

df = op_diff @ f_mps

7.4 Interpolation

There are two interpolation techniques in the SeeMPS library: finite dif-
ference and Fourier interpolation, both introduced in Section 2.3. Since
the implementation steps are similar, let us focus on the finite difference
interpolation for an example.
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We present the necessary steps to interpolate the defined Gaussian
function. This function is defined in a space with 2n points, i.e., n
qubits/sites for the MPS representation. The goal is to interpolate it to
a representation with m = n + 1 qubits, doubling the number of grid
points. Since the function and the Space instance are already created, it
is only necessary to apply the function for finite difference interpolation
to obtain the interpolated function.
from seemps.analysis.interpolation import

finite_differences_interpolation

f_int_mps = finite_differences_interpolation(f_mps, space)

7.5 Representation of partial differential equations

It is possible to represent as MPOs by combining the differentiation
techniques in Section 7.3 with the representation of potential operators.
As an example, let us encode the Hamiltonian of the one-dimensional
quantum harmonic oscillator

H = −1
2
∂2x +

1
2
x2, (7.1)

which we studied in chapters 4, 5, and 6.
The following function creates the MPO for this PDE using a finite

difference approximation of the differential operator. We will construct
the Hamiltonian using the previously defined Space.
from seemps.analysis.operators import x_to_n_mpo
a, dx = space.a[0], space.dx[0]
potential = 0.5 * x_to_n_mpo(n, a, dx, n=2)
derivative = -0.5 * smooth_finite_differences_mpo(n, order=2,

dx=dx)
H = (potential + derivative).join()

7.6 solution of partial differential equations

The SeeMPS library contains the global optimization and evolution al-
gorithms to solve the Hamiltonian and evolution PDEs in chapters 5
and 6. These algorithms are: explicit methods—Euler, improved Eu-
ler, Runge-Kutta, and Runge-Kutta-Fehlberg—and the implicit Crank-
Nicolson method, gradient descent, power method, explicitly restarted
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Arnoldi iteration, and split-step schemes. It also includes the DMRG
algorithm for the optimization problem.

As an example, let us solve the harmonic oscillator (7.1) Hamilto-
nian PDE Hf(x) = Ef(x). We use the DMRG algorithm, but the im-
plementation of the global optimization algorithms is analogous. Since
the Hamiltonian MPO is already defined, only providing it to the dmrg
function outputs the optimization solution.

from seemps.optimization import dmrg
result = dmrg(H)

The functions for resolving PDEs admit different parameters, such as the
initial guess, truncation strategy, and number of iterations. This enables
the optimization of the parameters for each application.

7.7 Conclusions and future perspectives

This thesis significantly contributed to developing the SElf-Explaining
Matrix Product State (SeeMPS) [51] library by its extension to numeri-
cal analysis problems. We have introduced around 12 new interpolation,
differentiation, optimization, and evolution algorithms that rely on a
novel MPS-MPO finite precision algebra (Section 3.5). Chapters 5 and 6
demonstrate the effectiveness of these methods for solving static and
time-dependent PDEs, showing the versatility of the SeeMPS library.
This general framework lays the groundwork for more general optimiza-
tion and time-dependent problems as long as they are amenable to an
MPS representation. The predefined functions and operators and the
function loading methods [52] support this extension by facilitating the
encoding of new problems into the library. Additionally, implementing
finite precision algebra by overloading standard matrix-vector operations
for addition and multiplication enables a straightforward adaptation of
common vector techniques to this formalism.

Despite the favorable memory and time scaling of quantum-inspired
numerical analysis methods shown in chapters 5 and 6, their performance
can be enhanced by upgrading the SeeMPS library. We chose Python
due to its popularity and user-friendly nature to broaden the library’s
accessibility. However, as an interpreted language, Python may impose
limitations in the algorithms’ run time. Preliminary tests indicate that
migrating the code to C++ could yield significant performance improve-
ments. Furthermore, parallelizing MPS operations could substantially
reduce computation time for heavy computations.
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Future upgrades of the SeeMPS library, together with adding more
numerical techniques—such as the efficient implementation of the quan-
tum Fourier transform [148]—will pave the path for further applications.
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Chapter 8

Conclusions and outlook

“Too many scholars think of research as purely a cerebral pursuit. If we
do nothing with the knowledge we gain, then we have wasted our study.
Books can store information better than we can—what we do that books
cannot is interpret. So if one is not going to draw conclusions, then one

might as well just leave the information in the texts.”

— Brandon Sanderson, The Way of Kings

This thesis introduced quantum and quantum-inspired methods for
effectively solving partial differential equations (PDEs). PDEs are preva-
lent in many fields, including the modeling of quantum systems, where
traditional methods face computational challenges. We developed a series
of algorithms that efficiently represent functions and PDEs as quantum
states and operators, achieving significant memory compression and time
savings while maintaining high accuracy.

We first leveraged the quantum register properties to resolve Hamil-
tonian PDEs via a variational quantum algorithm, integrating Fourier-
based encoding with new ansätze to represent functions and their sym-
metries. This algorithm solved the harmonic oscillator and supercon-
ducting qubits PDEs with low errors in approximating the ground state
and its energy. Our variational quantum PDE solver [46] and related
approaches [24, 23, 25, 26, 27, 28] inspired new variational proposals in
quantum numerical analysis, such as generalized differentiation rules [25]
and state preparation (function loading) techniques [318, 224, 225, 226,
60]. Quantum Fourier interpolation has also been successfully applied
beyond numerical analysis to interpolate quantum encoded images [223].

Despite efforts to develop efficient hybrid algorithms for PDEs, state-
of-the-art quantum computers limit their performance. We showed that
even a simple harmonic oscillator PDE faces accuracy and scalability
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challenges due to current quantum computers’ noise sources. These con-
straints also extend to similar approaches [23, 24].

As an alternative, we explored quantum-inspired algorithms using
matrix product states (MPS) to harness the computational efficiency
of quantum techniques in classical settings. The success in the solu-
tion of PDEs of quantum-inspired [44, 45] and quantized tensor trains
(QTTs) [319, 320, 310] techniques led us to develop global optimiza-
tion MPS algorithms for the solution of Hamiltonian PDEs. By map-
ping the qubits to the tensors of an MPS, we extended the encoding
of functions in a quantum register to this formalism [38]. Using this
idea, in Ref. [49], we created a new MPS-MPO finite precision algebra
that acted as a basis for quantum-inspired algorithms. These MPS al-
gorithms showed an asymptotic exponential advantage in memory and
time savings compared to standard vector approaches while maintain-
ing similar accuracy, solving multidimensional Hamiltonian PDEs out
of the scope of our quantum proposal. Similar approaches rely on local
optimization techniques [44, 45]—density matrix renormalization group
(DMRG) [87, 88, 89, 90, 91]—, which we show suitable for PDEs with lim-
ited entanglement. However, general matrix product operators (MPO)
for PDEs are highly entangled, and the global algorithms proposed in
this study—combined with interpolation techniques—are generally bet-
ter suited to address this complexity.

We further applied these techniques to more complex, time-dependent
PDEs, such as the time evolution of a dramatic expansion of the wave-
function of a levitated particle under a sudden weakening of its poten-
tial [279, 278]. This problem is of great interest in levitodynamics [4], as it
is the basis for studying macroscopic quantum superposition. In Ref. [50],
we incorporated global time evolution algorithms with a pseudospectral
method to represent functions of derivatives, obtaining pseudospectral
accuracy at a cost comparable to finite difference approximations, which
suffer from higher errors. In addition, MPS methods achieved similar cost
and accuracy to spectral vector techniques, with exponential memory ef-
ficiency. This demonstrated the potential for MPS-based algorithms to
solve more intricate PDEs with higher grid resolutions. However, chal-
lenges such as bond dimension scaling due to the wavefunction’s chirping
remain in specific cases and may be addressed through unitary transfor-
mations.

The created MPS-MPO finite precision algebra constitutes an effi-
cient framework for numerical analysis. All the MPS techniques devel-
oped in this thesis are contained in the SeeMPS [51] library. This library
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includes, but is not limited to, the MPS-MPO finite precision algebra,
numerical differentiation, interpolation, and optimization and evolution
algorithms. The combination of these functionalities with function load-
ing algorithms [52] makes the SeeMPS library a powerful tool for creating
quantum-inspired algorithms for numerical analysis.

Although this thesis showed the potential of MPS PDE solvers, its
scope was limited to PDEs tractable by classical methods. This is partly
due to the time limitations of this project and the unforeseen challenges
from the combination of numerical methods with MPS approximations,
with bond dimension truncation errors adding to the usual discretization
errors and machine precision. It is important to consider the interplay
among these errors when designing quantum-inspired algorithms for nu-
merical analysis, adapting the created methods to an MPS framework,
and combining this with a careful study of the algorithm’s parameters to
ensure convergence. Despite the limitations of our study, the advantages
demonstrated by MPS algorithms motivate future research avenues to
improve these methods and expand their applications to more complex
and diverse problems.

The first step would be to enhance the SeeMPS library. Prelimi-
nary tests indicate that upgrading from Python to a C++ implemen-
tation can lead to a 10x speedup, with further improvements through
parallelization of MPS operations. The library could also benefit from
efficiently implementing spectral methods following Ref. [148]. The im-
proved algorithms’ run time and accuracy would enable them to solve
higher-dimensional problems or denser grids. For instance, it would be
possible to develop a quantum-inspired library to diagonalize general su-
perconducting circuits that serves as an alternative to state-of-the-art
software [150, 151, 152], restrained by the limitations of sparse matrix
diagonalization. In the evolution of a levitated particle, using the den-
sity matrix formalism—a multidimensional problem—will model the ef-
fect of imperfection, better approximating the experimental settings. In
addition, given the good performance of the MPS techniques in this the-
sis, we believe that these methods will also become useful in the study
of many-body physics problems, joining other techniques used for long-
range interactions [273, 272, 249, 274].

The physically inspired problems in this thesis open the door for fur-
ther applications. MPS optimization could be extended to solve general
non-hermitian static PDEs using self-adjoint operators, which is common
when working with Lindblad operators. Furthermore, these techniques
apply to source PDEs reformulated as a cost minimization and general

179



Chapter 8. Conclusions and outlook

optimization problems as long as they can be encoded as a Hamilto-
nian MPO. MPS time-dependent PDE solvers could find applications
in finance via the solution of the Black-Scholes equation [321], fluid dy-
namics, and reaction-diffusion equations. Indeed, similar problems have
already been tackled from a quantum-inspired perspective [322, 323, 45],
expanding tensor networks beyond quantum physics and sparking in-
creasing interest, extending from academia to industry. However, most
of these studies are heuristic, and an in-depth analysis of which prob-
lems are appropriate for this formalism remains a necessary task. Some
efforts have already been made to formalize the bond dimension bounds
of certain functions, and the results in this thesis corroborate them.

Even in a future with fault-tolerant quantum computing, tensor net-
works will continue to be useful in low-entanglement scenarios and for
problems unsuitable for quantum algorithms, such as those that do not
meet the unitarity and normalization requirements. Therefore, the de-
velopment of tensor-network quantum-inspired methods remains an im-
portant long-term task.

This thesis contributes to studying and developing quantum-inspired
methods, particularly in a numerical analysis context. The MPS-MPO
finite precision algebra is a highly efficient tool for creating such algo-
rithms. This efficiency has been demonstrated through a series of global
algorithms to tackle static and time-dependent PDEs, showing exponen-
tial memory compression and asymptotic time savings with respect to
standard vector techniques while matching its accuracy. Although many
applications of this thesis are still amenable to vector techniques, the
results prove the suitability of MPS methods and encourage their appli-
cation for higher dimensional problems or denser grids. Finally, future
enhancement of the SeeMPS algorithm will reduce the run time and
memory scaling of MPS operations, enabling finite precision algebra to
approximate more complex problems and explore new quantum-inspired
applications.
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Conclusiones y perspectivas

Esta tesis ha introducido métodos cuánticos y de inspiración cuántica
para resolver de manera efectiva ecuaciones en derivadas parciales (EDPs).
Las EDPs son comunes en muchos campos, incluyendo la modelización
de sistemas cuánticos, donde los métodos tradicionales enfrentan desafíos
computacionales. Desarrollamos una serie de algoritmos que representan
funciones y EDPs como estados y operadores cuánticos, logrando una
compresión significativa de memoria y ahorro de tiempo, manteniendo
una alta precisión.

Primero, aprovechamos las propiedades del registro cuántico para re-
solver EDPs Hamiltonianas mediante un algoritmo cuántico variacional,
integrando codificación basada en Fourier con nuevos ansätze para rep-
resentar funciones y sus simetrías. Este algoritmo resolvió las EDPs del
oscilador armónico y de los qubits superconductores con bajos errores en
la aproximación del estado base y su energía. Nuestro resolutor varia-
cional de EDPs cuánticas [46] y otras propuestas relacionados [24, 23, 25,
26, 27, 28] inspiraron nuevos algoritmos variacionales en análisis numérico
cuántico, como reglas de diferenciación generalizadas [25] y técnicas de
preparación de estados (carga de funciones) [318, 224, 225, 226, 60]. La
interpolación cuántica de Fourier también se ha aplicado con éxito más
allá del análisis numérico para interpolar imágenes codificadas cuántica-
mente [223].

A pesar de los esfuerzos para desarrollar algoritmos híbridos eficientes
para las EDPs, los ordenadores cuánticos actuales limitan su rendimiento.
Demostramos que incluso una simple EDP de oscilador armónico enfrenta
desafíos de precisión y escalabilidad debido a las fuentes de ruido de los
ordenadores cuánticos actuales. Estas limitaciones también se extienden
a técnicas similares [23, 24].

Como alternativa, exploramos algoritmos inspirados en la computación
cuántica utilizando estados producto de matriz (MPS) para aprovechar la
eficiencia computacional de las técnicas cuánticas en contextos clásicos.
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El éxito en la resolución de EDPs mediante técnicas de inspiración cuán-
tica [44, 45] y trenes de tensores cuantizados (QTTs) [319, 320, 310] nos
llevó a desarrollar algoritmos de optimización global MPS para la resolu-
ción de EDPs Hamiltonianas. Al mapear los qubits a los tensores de un
MPS, extendimos la codificación de funciones en un registro cuántico a
este formalismo [38]. Usando esta idea, en Ref. [49], creamos un nuevo ál-
gebra de precisión finita MPS-MPO que sirvió como base para algoritmos
de inspiración cuántica. Estos algoritmos MPS mostraron una ventaja
exponencial asintótica en memoria y ahorro de tiempo en comparación
con los enfoques vectoriales estándar, manteniendo una precisión similar,
resolviendo EDPs Hamiltonianas multidimensionales fuera del alcance de
nuestra propuesta cuántica. Métodos similares se basan en técnicas de
optimización local [44, 45]—grupo de renormalización de matriz densi-
dad (DMRG) [87, 88, 89, 90, 91]—, que demostramos ser adecuadas para
EDPs con entrelazamiento limitado. Sin embargo, los operadores de pro-
ducto de matriz (MPO) generales para EDPs están altamente entrelaza-
dos, y los algoritmos globales propuestos en este estudio—combinados
con técnicas de interpolación—son en general más adecuados para abor-
dar esta complejidad.

Aplicamos además estas técnicas a EDPs más complejas y dependi-
entes del tiempo, como la evolución temporal de una dramática expansión
de la función de onda de una partícula levitada bajo un debilitamiento
repentino de su potencial [279, 278]. Este problema es de gran interés en
levitodinámica [4], ya que es la base para estudiar la superposición cuán-
tica macroscópica. En Ref. [50], incorporamos algoritmos de evolución
temporal global con un método seudoespectral para representar funciones
de derivadas, obteniendo precisión seudoespectral a un costo comparable
a las aproximaciones de diferencias finitas, que sufren de mayores errores.
Además, los métodos de MPS lograron un coste y precisión similares a las
técnicas vectoriales espectrales, con una eficiencia exponencial en memo-
ria. Esto demostró el potencial de los algoritmos basados en MPS para
resolver EDPs más intrincadas con resoluciones de malla más altas. Sin
embargo, en casos específicos, desafíos como el escalado de la dimensión
de enlace debido al “chirp” de la función de onda aún persisten, y podrían
abordarse mediante transformaciones unitarias.

El álgebra de precisión finita MPS-MPO creada constituye un marco
eficiente para el análisis numérico. Todas las técnicas MPS desarrol-
ladas en esta tesis están contenidas en la biblioteca SeeMPS [51]. Esta
biblioteca incluye, entre otros, el álgebra de precisión finita MPS-MPO,
diferenciación numérica, interpolación, y algoritmos de optimización y
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evolución. La combinación de estas funcionalidades con algoritmos de
carga de funciones [52] hace de la biblioteca SeeMPS una herramienta
poderosa para crear algoritmos de inspiración cuántica para el análisis
numérico.

Aunque esta tesis mostró el potencial de los resolutores de EDPs
basados en MPS, su alcance se limitó a EDPs tratables mediante méto-
dos clásicos. Esto se debe en parte a las limitaciones de tiempo de este
proyecto y a los desafíos imprevistos derivados de la combinación de
métodos numéricos con aproximaciones MPS, donde los errores de trun-
camiento de la dimensión de enlace se suman a los errores habituales de
discretización y precisión de máquina. Es importante considerar la inter-
acción entre estos errores al diseñar algoritmos de inspiración cuántica
para el análisis numérico, adaptando los métodos creados a un marco
MPS y combinándolos con un estudio cuidadoso de los parámetros del
algoritmo para garantizar la convergencia. A pesar de las limitaciones
de nuestro estudio, las ventajas demostradas por los algoritmos MPS
motivan futuras líneas de investigación para mejorar estos métodos y
expandir sus aplicaciones a problemas más complejos y diversos.

El primer paso sería mejorar la biblioteca SeeMPS. Las pruebas pre-
liminares indican que actualizar de Python a una implementación en
C++ puede llevar a un aumento de velocidad de 10 veces, con mejo-
ras adicionales a través de la paralelización de las operaciones MPS.
La biblioteca también se beneficiaría de implementar métodos espec-
trales de manera eficiente siguiendo Ref. [148]. El tiempo de ejecución
y la precisión de los algoritmos mejorados les permitiría resolver proble-
mas de mayor dimensión o mallas más densas. Por ejemplo, sería posi-
ble desarrollar una biblioteca de inspiración cuántica para diagonalizar
circuitos superconductores generales que sirva como una alternativa al
software de vanguardia [150, 151, 152], limitado por las restricciones
de la diagonalización de matrices dispersas. En la evolución de una
partícula levitada, el uso del formalismo de matriz densidad—un prob-
lema multidimensional—modelará mejor el efecto de las imperfecciones,
aproximándose más a los entornos experimentales. Además, dado el buen
rendimiento de las técnicas MPS en esta tesis, creemos que estos méto-
dos también serán útiles en el estudio de problemas de física de muchos
cuerpos, uniéndose a otras técnicas utilizadas para interacciones de largo
alcance [273, 272, 249, 274].

Los problemas inspirados en la física en esta tesis abren la puerta a
nuevas aplicaciones. La optimización MPS podría extenderse para re-
solver EDPs estáticas generales no hermíticas utilizando operadores au-

183



Chapter 8. Conclusions and outlook

toadjuntos, algo común al trabajar con operadores de Lindblad. Además,
estas técnicas se aplican a EDPs fuente reformuladas como problemas de
minimización de costo y de optimización general, siempre que puedan
codificarse como un MPO Hamiltoniano. Los solucionadores MPS de
EDPs dependientes del tiempo podrían encontrar aplicaciones en finan-
zas mediante la resolución de la ecuación de Black-Scholes [321], dinámica
de fluidos y ecuaciones de reacción-difusión. De hecho, problemas simi-
lares ya han sido abordados desde una perspectiva de inspiración cuán-
tica [322, 323, 45], expandiendo las redes tensoriales más allá de la
física cuántica y generando un creciente interés, que se extiende desde
la academia hasta la industria. Sin embargo, la mayoría de estos estu-
dios son heurísticos, y un análisis en profundidad sobre qué problemas
son apropiados para este formalismo sigue siendo una tarea necesaria.
Ya se han hecho algunos esfuerzos para formalizar los límites de la di-
mensión de enlace de ciertas funciones, y los resultados en esta tesis los
corroboran.

Incluso en un futuro con computación cuántica tolerante a fallos, las
redes tensoriales seguirán siendo útiles en escenarios de bajo entrelaza-
miento y para problemas inadecuados para algoritmos cuánticos, como
aquellos que no cumplen con los requisitos de unitariedad y normal-
ización. Por lo tanto, el desarrollo de métodos de inspiración cuántica
basados en redes tensoriales sigue siendo una tarea importante a largo
plazo.

Esta tesis contribuye al estudio y desarrollo de métodos de inspiración
cuántica, particularmente en un contexto de análisis numérico. El álge-
bra de precisión finita MPS-MPO es una herramienta altamente eficiente
para crear tales algoritmos. Esta eficiencia se ha demostrado a través de
una serie de algoritmos globales para abordar EDPs estáticas y dependi-
entes del tiempo, mostrando una compresión exponencial de memoria y
ahorros asintóticos de tiempo respecto a las técnicas vectoriales estándar,
mientras iguala su precisión. Aunque muchas aplicaciones de esta tesis
aún son abordables mediante técnicas vectoriales, los resultados prueban
la idoneidad de los métodos de MPS y animan su aplicación para prob-
lemas de mayor dimensión o mallas más densas. Finalmente, la mejora
futura del algoritmo SeeMPS reducirá el tiempo de ejecución y la escala-
bilidad de memoria de las operaciones MPS, permitiendo que el álgebra
de precisión finita aproxime problemas más complejos y explore nuevas
aplicaciones de inspiración cuántica.
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Appendix A

Fourier interpolation
Fourier interpolation is a very efficient method for interpolating peri-
odic bandwidth-limited functions. Section 2.3 introduces this method
and its general implementation. This appendix provides a mathematical
explanation of how the steps taken in that section lead to interpolation.
Additionally, we include a Python code to implement this method.

The process of Fourier interpolation can be divided into three steps,
which are explained below.

1. Fourier transform of the original function
The first step involves transforming the original function f(xs),
with s = 0, . . . , N − 1, into momentum space using the discrete
Fourier transform (DFT)

f̃(pl) =
1√
N

N−1∑
s=0

e−2πils/Nf(xs), l = −N/2, . . . , N/2− 1, (A.1)

where l is the momentum (or frequency) index.

2. Zero padding in Fourier space
To increase the resolution of the function in position space, we ex-
tend the grid from N points to M points, where M > N , typically
with N = 2n,M = 2m, matching the quantum register encoding.
The original DFT coefficients f̃(pl) are defined only for l in the
range −N

2 ≤ l ≤ N
2 − 1. We extend these Fourier coefficients

by adding zeros for frequencies outside this range to achieve higher
resolution in position space. The extended Fourier coefficients g̃(pl̃)
are given by

g̃(pl̃) =


√

M
N f̃(pl̃) for − N

2 ≤ l̃ ≤ N
2 − 1,

0 otherwise,
(A.2)

where l̃ is the momentum index for the extended grid in Fourier
space and

√
M/N is a rescaling factor that ensures that the am-

plitude of the function is preserved after interpolation.
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3. Inverse Fourier transform to obtain the interpolated function
The inverse Fourier transform leads to the interpolated function

f (I)(x̃s̃) =
1√
M

M
2 −1∑

l̃=−M
2

g̃(pl̃)e
2πil̃s̃/M , s̃ = 0, 1, . . . ,M − 1 (A.3)

Here, s̃ represents the index for the interpolated grid in position
space, with the new grid points x̃s̃ = −Lx/2 + s̃∆x̃, where ∆x̃ =
∆xNM , resulting a denser grid after interpolation.

The code below shows a Fourier interpolation Python code. Shifts of the
function are performed to order the Fourier coefficients correctly.
def fourier_interpolation(f, M):

""" 1D Fourier interpolation.

Parameters
----------
f: numpy.ndarray
Function to interpolate.
M: int
Number of points of the final function.

Return
------
Fourier interpolated f with M points.
"""
N = f.size
F = np.fft.fftshift(np.fft.fft(f, norm='ortho'))
F_padded = np.pad(F, (int((M-N)/2), int((M-N)/2)), mode='

constant', constant_values=
0)

return np.sqrt(M/N)*np.fft.ifft(np.fft.ifftshift(F_padded),
norm='ortho')
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Appendix B

Numerical results of the ideal
simulations of the variational
quantum PDE solver

This appendix shows the numerical results of Section 4.5.2.
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Appendix B. Numerical results of the ideal simulations of the
variational quantum PDE solver
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Appendix C

Optimum learning rate for
gradient descent

The optimum learning rate ∆β of the gradient descent algorithm update
rule (5.12) can be analytically computed. This transforms the gradi-
ent descent into an adaptative-step method that maximizes the energy
decrease at each step, with no need for an accurate initial approxima-
tion, as opposed to adaptative-step Runge-Kutta-Fehlberg (section 5.1.1)
method.

The first step to compute ∆β is to obtain the functional derivative
of the cost function. The variation of any function f by an infinitesimal
quantity ε in an arbitrary direction given by the arbitrary function η(x⃗)
is represented by

δf(x⃗) = εη(x⃗). (C.1)

Hence, the variation of a functional F [f ], which in this context is defined
as a “function of a function”, is caused by the variation of f by a quantity
δf ,

δF := F [f + δf ]− F [f ] = F [f + εη]− F [f ]. (C.2)

Evaluating δF using the Taylor expansion of F [f + εη] in powers of ε
leads to

F [f + εη] = F [f ] + dF [f + εη]
dε

∣∣∣∣
ε=0

ε+ 1
2
d2F [f + εη]

dε2

∣∣∣∣
ε=0

ε2 + . . .

=
N∑
n=0

1
n!
dnF [f + εη]

dεn

∣∣∣∣
ε=0

εn +O(εN+1). (C.3)

By definition, the n-th order derivative of F with respect to ε is

dnF [f + εη]
dεn

∣∣∣∣
ε=0

=
∫
dx1...dxn

δnF [f ]
δf(x1)...f(xn)

η(x1). (C.4)
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Thus

δF := F [f + εη]− F [f ] = dF [f + εη]
dε

∣∣∣∣
ε=0

ε+O(ε2)

= ε

[∫
dx1

δF [f ]
δf(x1)

η(x1)
]
+O(ε2). (C.5)

Let us apply this formula to obtain the energy functional E[ψ] (5.2).
First, the energy functional is rewritten as

E[ψ + εη] = 〈ψ|H|ψ〉+ ε〈ψ|H|η〉+ ε∗〈η|H|ψ〉+ ε∗ε〈η|H|η〉
〈ψ|ψ〉+ ε〈ψ|η〉+ ε∗〈η|ψ〉+ ε∗ε〈η|η〉

. (C.6)

Differenciating the previous expression with respect to ε and evaluating
it a ε = 0 leads to

dE[ψ + εη]
dε

∣∣∣∣
ε=0

= 〈ψ|H|η〉+ ε∗〈η|H|η〉
〈ψ|ψ〉+ ε〈ψ|η〉+ ε∗〈η|ψ〉+ ε∗ε〈η|η〉

− 〈ψ|η〉+ ε∗〈η|η〉
(〈ψ|ψ〉+ ε〈ψ|η〉+ ε∗〈η|ψ〉+ ε∗ε〈η|η〉)2

× (〈ψ|H|ψ〉+ ε〈ψ|H|η〉+ ε∗〈η|H|ψ〉+ ε∗ε〈η|H|η〉)
∣∣∣∣
ε=0

= 〈ψ|H|η〉
〈ψ|ψ〉

− 〈ψ|η〉
〈ψ|ψ〉2

〈ψ|H|ψ〉. (C.7)

As 〈ψ|ψ〉 = 1, the functional derivative of the energy is

δE

δψ
= (H − 〈H〉I)ψ. (C.8)

Therefore, the exact step for the descent algorithm is given by

ψn+1 = ψn +∆β δE
δψ

= ψn +∆β(H − 〈H〉I)ψ, (C.9)

and the expression for E(∆β,H) is

E(∆β,H) = 〈H〉+ 2∆β〈(H − 〈H〉I)2〉+∆β2〈(H − 〈H〉I)H(H − 〈H〉I)〉
1 + ∆β2〈(H − 〈H〉I)2〉

,

(C.10)
where we have used that 〈(H −EI)〉 = 0. Minimizing Eq. (C.10) results
in

∆β± = 〈(H − 〈H〉I)3〉 ±
√
〈(H − 〈H〉I)3〉2 + 4〈(H − 〈H〉I)2〉3
2〈(H − 〈H〉I)2〉2

, (C.11)
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where the optimum step size is

∆β− =
〈H ′3〉 −

√
〈H ′3〉2 + 4 〈H ′2〉3

2 〈H ′2〉2
, with H ′ = H − 〈H〉 I, (C.12)

as ∆β < 0 for the displacement in ψ to be made in the opposite direction
of the gradient δE

δψ . All the terms in Eq. (C.12) can be written in terms
of the expectation value of H and its powers.
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Approximate diagonalization for
other PDEs
It is possible to modify the cost functional in Eq. (5.2) to approximate
other types of PDEs by rewriting them to be the solution of the opti-
mization. A suitable extension is the solution of PDEs with a source
term g(x),

Df(x) = g(x), f(x), g(x) ∈ CN . (D.1)

Let us define the cost functional C[f ],

C[f ] =‖ Df(x)− g(x) ‖2, (D.2)

leading to an update rule

fn+1 = fn +∆βD†(Df − g) = fn +∆βD†w, (D.3)

with optimum ∆β

∆βopt = − 〈w|DD†|w〉
〈w|DD†DD†|w〉

. (D.4)

This equation is of great importance due to its multiple applications.
Relevant PDEs such as Poisson’s equation and the heat equation are
source PDEs and many mathematical models are reduced to these equa-
tions, with applications in various fields, such as the Black-Scholes equa-
tion [324] in finance, or applications in the magnetic resonance imag-
ing [325].
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Appendix E

Analytic solution of a harmonic
quantum quench
Section 6.1 introduces the concept of quantum quench in the context of
levitodynamics. For a change in a harmonic potential, Eqs. (6.4)-(6.6)
describe the evolution of the wavefunction. These equations are obtained
through the expectation values of the x̂ and p̂ operators and functions of
them.

Let us start by assuming that the state at t = 0 is the ground state
of the initial Hamiltonian with frequency ω0, i.e.,

ψ(x, t = 0) =
(
ω0
π

)1/4
e−

ω0x
2

2 , (E.1)

and that the state ψ(x, t) at time t is given by

ψ(x, t) =
(
ω(t)
π

)1/4
e−z(t)x

2
, where z(t) ∈ C, z(t) = ω(t)

2
+ iβ(t).

(E.2)
Then, obtaining the expressions of ω(t) and β(t) leads to solving the
quench dynamics.

To obtain ω(t), let us start by computing the expectation value of
x2(t)

〈x̂2(t)〉 =

√
ω(t)
π

∫
x2e−2<(z(t))x2dx = 1

2ω(t)
, (E.3)

where we have used that σ(t) = 1/
√
ω(t) and

〈x̂2〉 =
∫
x2

1
N 2 e

− x2
σ2 dx = σ3

√
π

2N 2 . (E.4)

The value 〈x̂2〉 can also be calculated from

d

dt
x̂(t) = −i[x̂, Ĥ], (E.5)
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where ℏ = 1. This expression allows obtaining x̂(t), and hence the ex-
pectation value 〈x̂2(t)〉 to substitute in Eq. (E.3) and compute ω(t).

The first step is to introduce the Hamiltonian Ĥ = p̂2

2 + 1
2ω

2
H x̂

2 in
Equation (E.5)

d

dt
x̂(t) = −i

[
x̂,
p̂2

2
+ 1

2
ω2
H x̂

2
]
= − i

2
[x̂, p̂2]

= − i

2
([p̂[x̂, p̂] + [x̂, p̂]p̂) = p̂.

(E.6)

Analogously for p̂

d

dt
p̂ = −i

[
p̂,

1
2
ω2x̂2

]
= −ω2

H x̂. (E.7)

Equations (E.6) and (E.7) form a system of equations that leads to

d2

dt2
x̂ = d

dt
p̂ = −ω2

H x̂ → d2

dt2
x̂+ ω2

H x̂ = 0, (E.8)

As expected, x̂(t) follows the equation of motion of the harmonic oscil-
lator, whose solution is given by

x̂(t) = x̂(0) cos(ωHt) +
p̂(0)
ωH

sin(ωHt). (E.9)

We can use this expression to compute the expectation value 〈x̂2(t)〉

〈x̂2(t)〉 = 〈x̂2(0)〉 cos2(ωHt) +
〈p̂2(0)〉
ω2
H

sin2(ωHt)

+ 1
ωH

(〈x̂(0)p̂(0)〉+ 〈p̂(0)x̂(0)〉) cos(ωHt) sin(ωHt).
(E.10)

The next step is calculating the expectation values in Equation (E.10).
Since these values will be used in later expressions, we will compute them
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for a general time t and then substitute for t = 0. This leads to

〈x̂2(t)〉 =

√
ω(t)
π

∫
x2e−2<(z(t))x2 dx = 1

2ω(t)
, (E.11)

〈p̂2(t)〉 =

√
ω(t)
π

∫
e−z

∗(t)x2
(
−∂2x

(
e−z(t)x

2))
dx

=

√
ω(t)
π

2z(t)
∫
(1− 2z(t)x2)e−2<(z(t))x2 dx = ω(t)

2
+ 2β(t)2

ω
,

(E.12)

〈x̂(t)p̂(t)〉 =

√
ω(t)
π

∫
e−z

∗(t)x2x
(
−i∂xe−z(t)x

2)
dx

= i

√
ω(t)
π

2z(t)
∫
x2e−2<(z(t))x2 dx = i

z(t)
ω(t)

,

(E.13)

〈p̂(t)x̂(t)〉 =

√
ω(t)
π

∫
e−z

∗(t)x2
(
−i∂x

(
xe−z(t)x

2))
dx

=

√
ω(t)
π

(−i)
∫
(1− 2z(t)x2)e−2<(z(t))x2 dx = i

z(t)
ω(t)

− i.

(E.14)

For β(0) = 0 with ω(0) = ω0

〈x̂2(0)〉 = 1
2ω0

, 〈x̂(0)p̂(0)〉+ 〈p̂(0)x̂(0)〉 = 0, 〈p̂2(0)〉 = ω0
2
. (E.15)

Substituting in Equation (E.10) leads to

〈x̂2(t)〉 = 1
2ω0

cos2(ωHt) +
ω0
2ω2

H

sin2(ωHt). (E.16)

and combining this expression with Equation (E.3) results in

ω(t) =
(

1
ω0

cos2(ωHt) +
ω0
ω2
H

sin2(ωHt)
)−1

, (E.17)

The next step to obtain the evolved state ψ(x, t) is to determine β(t).
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Figure E.1: Analytic expression of the parameters of the harmonic os-
cillator quantum quench. Analytic solution the quantum quench evolu-
tion under a harmonic potential (6.2) with ω0 = 1 and ωH = 0.1. (a)
σ(t) (6.5). (b) β(t) (6.6).

Combining Eqs. (E.13) and (E.14)

〈x(t)p(t)〉+ 〈p(t)x(t)〉

= −2β(t)
ω(t)

=
(
−ωH〈x2(0)〉+

〈p2(0)〉
ωH

)
2 sin(ωHt) cos(ωHt),

(E.18)

which leads to

β(t) = ω(t)
4

(
ωH
ω0

− ω0
ωH

)
sin(2ωHt). (E.19)

Once the expression of ω(t) (E.17) and β(t) (E.19) are known, we
can obtain the evolution of the quantum state from Eq (6.4). Fig-
ure E.1 shows the evolution of σ(t) and β(t) for a particle expansion with
ωH < ω0. The system expands during the first time of the period from a
Gaussian with σ0 = 1/√ω0 at t = 0, which coincides with the minimum
width σmin, to the maximum one σmax = √

ω0/ωH at time t = 0.5π/ωH .
The maximum width Gaussian overcomes the one of the ground state
of the new Hamiltonian with frequency ωH . Then, it continues evolving
until the initial state, following a periodic process. The imaginary phase
β(t) (Figure E.1(b)) also changes periodically, being zero at the initial,
middle, and final points of the period, i.e., the states corresponding to
the maximum and minimum widths are real.
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Appendix F

One-step ε scaling with ∆t

Figures 6.5(a)-(b) show a fit for the error ε with ∆t for the methods in
Section 6.3, for the finite difference and HDAF derivative approximation,
respectively. Tables F.1 and F.2 contain the concrete numerical data of
the fit ε = C∆tp.

Method C p

Euler 2.29× 10−2 1.99
Improved Euler 3.37× 10−2 3.14
Runge-Kutta 2.20× 10−2 4.18
Crank-Nicolson 8.87× 100 3.44
Arnoldi nv = 5 2.04× 10−3 3.79
Arnoldi nv = 10 7.88× 10−4 4.45

Table F.1: Function error ε (6.26) fit, ε = C∆tp, for each method for a
n = 18 discretization and finite difference approximation of the deriva-
tive.

Method C p

Euler 2.13× 10−2 2.00
Improved Euler 2.88× 10−2 3.00
Runge-Kutta 2.21× 10−2 4.97
Crank-Nicolson 2.52× 10−1 3.73
Arnoldi nv = 5 1.02× 10−3 4.92
Arnoldi nv = 10 1.16× 10−5 9.11
Split-step 4.94× 10−7 2.96

Table F.2: Function error ε (6.26) fit, ε = C∆tp, for each method for a
n = 18 discretization and HDAF approximation of the derivative.
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Appendix G

Harmonic quantum quench
evolution scaling
Figure 6.8 shows the error ε scaling and run time T of the harmonic
quantum quench evolution with time for a n = 20 discretization. Ta-
bles G.1-G.4 contain the concrete numerical data of the fits ε = Ctp and
T = Ctp.

∆t C p

0.01 5.89× 10−11 0.71
0.1 6.00× 10−9 0.70
1.0 6.65× 10−7 0.68

Table G.1: Function error ε (6.26) fit, ε = Ctp, for the split-step HDAF
MPS method, using different step-sizes ∆t and n = 20.

∆t C p

0.01 5.89× 10−11 0.71
0.1 6.00× 10−9 0.70
1.0 6.65× 10−7 0.68

Table G.2: Function error ε (6.26) fit, ε = Ctp, for the split-step FFT
method, using different step-sizes ∆t and n = 20.

∆t C p

0.01 3.19 1.35
0.1 0.44 1.34
1.0 0.03 1.42

Table G.3: Run time fit, T = Ctp, for the split-step HDAF MPS method,
using different step-sizes ∆t and n = 20.
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Appendix G. Harmonic quantum quench evolution scaling

∆t C p

0.01 7.66 1.00
0.1 0.82 0.99
1.0 0.09 0.95

Table G.4: Run time fit, T = Ctp, for the split-step FFT method, using
different step-sizes ∆t.
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