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Abstract. We study generalized (doubled) structures in 2D-dimensional Born geometries in
which T-duality symmetry is manifestly realized. We show that spacetime structures of Kahler,
hyperkéhler, bi-hermitian and bi-hypercomplex manifolds are implemented in Born geometries
as generalized (doubled) structures. We find that the Born structures and the generalized
Kahler (hyperkéhler) structures appear as subalgebras of bi-quaternions C x H and split-tetra-
quaternions H x SpH. We investigate the nature of T-duality for the worldsheet instantons in
Born sigma models. This manuscript is based on the original paper [1].

1. Introduction

It is well-known that the target space of two-dimensional N' = (2,2) string sigma models
composed of chiral multiplets is Kahler, admitting the complex structure J. On the other hand,
the target space of N’ = (2,2) models by chiral and twisted chiral multiplets is the bi-hermitian
manifold which is characterized by two commuting complex structures (J4,J_). Indeed, these
geometries are related by the T-duality transformations [2,3]. Similarly, there are T-duality
relations between hyperkéhler and bi-hypercomplex geometries in N/ = (4,4) models. The
hyperkaher geometry has complex structures J* (a = 1,2, 3) satisfying the SU(2) algebra. The
bi-hypercomplex geometry has a set of commuting complex structures J¢ and J* (a = 1,2,3).
They satisfy the SU(2) algebra independently.

The idea on the geometric realization of manifest T-duality has been studied in generalized
geometry [4]. Given a D-dimensional spacetime manifold M, the generalized tangent bundle
TM is defined by the sum of the tangent and the cotangent bundles TM = TM & T*M. In
this context, the complex structures of spacetime are realized on TM as generalized complex
structures [5].

There is a deep connection between generalized geometry and the doubled formalism on a
2D-dimensional doubled space M. Double field theory (DFT) defined on M is a reformulation
of supergravity that make T-duality be manifest [6]. T-duality symmetry is linearly realized
as global O(D, D) transformations in the doubled space M. The general rules of T-duality
transformation for (hyper)Kéhler, bi-hermitian and bi-hypercomplex structures of spacetime M
have been studied in the doubled formalism [7].
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In the following, we discuss geometries of the doubled space and their relations to the T-
duality transformation of complex structures. We also discuss a possible application of the
T-duality covariantized complex structures by focusing on worldsheet instantons.

2. Double field theory and Born geometry

We first introduce double field theory (DFT) [6]. The fundamental fields of DFT are the
generalized metric H sy and the generalized dilaton d. They are defined in the 2D-dimensional
doubled space M. The doubled coordinate XM, (M = 1,...,2D) on M is decomposed as
XM = (X*,X,), (u=1,...,D) where X* and X,, may be the Kaluza-Klein and the winding
coordinates, respectively. The generalized metric and the generalized dilaton are parameterized
as

— B,,g"° By, Bu,q" B .
Har () = (9 Bt Pt ) e - e )

where g,,,, By, and ¢ are D-dimensional (anti)symmetric matrices, ¢ is a real function on M.
We note that Hysn is an O(D, D) element. On the other hand, d is invariant under the O(D, D)
transformation. The well-known Buscher’s rule of T-duality transformations of fields are derived
from an O(D, D) rotation of H;n and the invariance of d.

The DFT action is given by

SDFT = /d2DX 6_2d%(H7 d)a (2)

where Z(H, d) is a function of H and d defined by

RM,d) = AHMN 0p10nd — O ONHMY — AHMN 9y dONd + 400 HM N Ond

1 1
+ gHMN(?MHKLﬁN’HKL - §HMN8MHKL8K”HNL. (3)
Here we have introduced the doubled derivative dy; = %. The doubled indices M, N, ... are
raised and lowered by the O(D, D) invariant metric 15,5 and its inverse n™~. They are given
by
(0 4 MmN _ [ 0 o*y
NMN = (6/1,1/ 0 > ) n - 5HV 0 . (4)

The action defined in (2) is invariant under the global O(D, D) transformation. In addition, the
action is invariant under the DFT gauge transformations. They are the O(D, D) covariantized
diffeomorphism and the gauge transformation for the B-field. All the quantities in DFT, namely,
the generalized metric, the generalized dilaton and the gauge parameters, satisfy the following
constraints,

OndMx =0, oy x M = 0. (5)

Here * are any fields and gauge parameters in DFT. In (5), the first condition corresponds to
the level-matching condition of closed strings. On the other hand, the second one is specific to
DFT. This is called the strong constraint.

The D-dimensional physical spacetime M is defined by a hypersurface in the 2 D-dimensional
doubled space M. This is obtained as a solution to the constraints (5). It is obvious that a
trivial solution is given by the DFT fields Hpsn, d and gauge parameters that depend only
on X#. Therefore a hypersurface X, = const., parameterized by X* defines a D-dimensional
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physical spacetime. Then the matrices g, (X), B, (X) and ¢(X) in (1) are identified with the
spacetime metric, the NSNS B-field and the dilaton in the D-dimensional spacetime. It is easy
to show that the DFT action (2) in this case reduces to that of the bosonic part of type II
supergravities in D-dimensions,

S = / AP X /=ge 2 | R + 4(8¢)? — %(HC"*))2 . (6)

Here R is the D-dimensional Ricci scalar and H®) = dB is the field strength of the B-field.
From this result we can say that DFT is, in a sense, a reformulation of supergravity in such a
way that T-duality becomes a manifest symmetry.

We next introduce the geometry of the doubled space M.

3. Born and generalized complex structures
The doubled space M has specific geometry characterized by Born structures [8-10].

3.1. Born geometry

An endomorphism on T M is called the doubled structure. The doubled space M in DFT has
the doubled structures Z, J and K. They are called the almost complex, the chiral, and the
para-hermitian structures, respectively. The triple (Z, J, K) satisfies and algebra given by

—7? = J%=K? = 19p, TJK = —14p,
{,7}={J.K} ={K, I} =0. (7)

Here {,-} represents the anti-commutator. This is known as the algebra of split-quaternions
SpH. Given the structures Z, J and K, we have the decompositions;

IT=Hlwx=—wg'H, JT=n""H=H'y,  K=n"'ox=wcln, (8)

where H and 7 are the generalized and the O(D, D) invariant metrices given above and wy is an
almost symplectic structure. The triple (n,wi,H) here is known as the Born structure. They
are explicitly given by 2D x 2D matrices;

0 6, 2B,, —6," 9oy — Bung® Boy  Biyg®
NMN = < 5“1/ 6 > ) (O‘)/C)MN = < 5;;:1/ O/J > D 7-[MN - < e _gul;)poV v ZZV .
9)

The other structures are given by

1p B —gh
™ ML, _ g v ’
N ( K)LN g,ul/ + Bupgp BO’V _B;Lpgpy
M ML —9""Bpy g
= H p— ,
J N n LN < G — BypgpoBaV B,u,pgpy

oM, 0
,CMN _ nML(wlC)LN = ( 2Bp,z/ 75H,/ > . (10)

With these parametrization, we can show that Z, J and K indeed satisfy the algebra (7). We
call the expressions (9), (10) the standard representation.

The property of the para-hermitian structure K defines a D-dimensional physical spacetime
M as follows. Since K2 = 1,p it defines I = +1 eigenbundles L, Land TM =L&L. When K
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is an integrable structure on T'M, then the involutive bundle L C T'M defines a foliation in M.
This introduces D-dimensional subspaces called leaves F C M such that L = T'F. When the
basis of L is given by 0,, = %, then the local coordinate of the leaves F is X*. The same is true

for the K = —1-eigenbundle L = TF. When L is integrable, the coordinate of the corresponding
base space F is X u and the decomposition of the doubled coordinate XM = (XH, X ) that we
have introduced in section 1 is now justified. Then a leaf in F, specified by )N(M = const., is
identified with a D-dimensional physical spacetime M. Note that after we solve the constraints
(5), and make g,,,, B, ¢ be functions of X*, then they are the spacetime metric, the B-field and
the dilaton on a leaf in F.

In the following in this section, we set B = 0 in double structures for simplicity. The B-field
is easily introduced through the B-transformation;

A AP = B AcB, eB:(é (1’) (11)

for any doubled structure A.

3.2. Doubled space and generalized geometry

We here study the relation between the doubled structures on 7'M and endomorphisms on the
generalized tangent bundle TM = TM ©T*M. The O(D, D) invariant metric 7 in T M enables
us to define a map TM = L@ L — L*® L*. Here L*(L*) is the dual vector space of L(L). This
induces the following maps;

¢T L — L*, ¢~ : L — L*. (12)

With these relations, it is natural to identify L with L*. Therefore we now introduce maps
called natural isomorphisms [8-10];

dt:TM — Lo L, d :TM — Lo L* (13)

Then, after solving the strong constraint, a slice )N(u = const., T M is identified with the
generalized tangent bundle TM @ T*M on the D-dimensional base space M by the natural
isomorphisms. In the following, we consider a leaf M C F and always identify doubled structures
on T'M with generalized structures on TM. Note that doubled and generalized vectors are
explicitly identified as

V =VMoy = VH9, + V,0" = V =VH9, + V,dX*. (14)
In the following, we assume that the D-dimensional spacetime M admits the integrable

complex structure J and its associated closed two-form w = —gJ. Then M is a Kéhler manifold.
Given (J,w) in M, we define the following doubled structures;

J 0 0 —wt
a=(0 %) a=(0 ) (15)

where J* is the adjoint of J. These are called the generalized complex structures on TM [5].
It is easy to show that J; and J, commute with each other. In addition, we find that their

product
J=gge={ O Ty (0 9] (16)
At W 0 ~\g O
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becomes the chiral structure given in (10). The structures Jy, J, and J obey the following
algebra;

~Ji=-J2=7J*=1sp, J1TJuT = lap,
[jjajw]:[jwaj]:[j7jj]:0' (17)

Here [-, ] is the commutator. This is known as the algebra of the bi-complex numbers Cs.

3.8. Hypercomplex structures in doubled space
We next discuss the relation between the generalized complex and the Born structures in the
doubled space. As we have shown, they satisfy the algebras of split-quaternions SpH in (7)
and bi-complex numbers Cy in (17). We look for the algebra that contains (7) and (17) as
subalgebras.

We find that the structures (Z, 7, K) and (J;, J,,) together with the extra doubled structures

01 8). =% ), -

form the appropriate algebra known as bi-quaternions C x H. The followings are the subalgebras
of C x Hj;

(1) (CZ : (]-QD)jJajw;j)a \7} = «73 = _]—2Da \72 = ]-QD ; Commutativea
(ii)) Co : (12p,Js,Z,P), J} =72 = —1yp, P? = 15p ; commutative,
(iii) Co : (12p,J7,K,Q), j} = Q% = —1yp, K2 = 15p ; commutative,
(iv) SpH : (12p,T,J,K), I? = —13p, J? = K? = 15p ; anti-commutative,
) SpH : (12p,J,P,Q), Q> = —13p, J? = P? = 15p ; anti-commutative,
(vi) SpH : (12p, Ju, K, P), J2 = —13p, K? = P? = 15p ; anti-commutative,
Y H : (12p,J0,Z,Q), J2 = Q® = 7?2 = —15p ; anti-commutative.

Here “(anti-)commutative” means that any two of structures other than 15p (anti-)commute.
We note that the algebra of split-quaternions (iv), (v) and (vi) given above defines a Born
structure. This algebra is isomorphic to Clifford algebras SpH ~ Clyo(R) ~ Cl;1(R). The
algebra of quaternions (vii) defines a hypercomplex structure on the doubled space M. It is
Clp2(R) in the language of Clifford algebra. The algebra of bi-complex numbers (i), (ii) and
(iii), which defines a generalized Ké&hler structure, is identified with the Clifford algebra C;(C).

Therefore geometries having the doubled structures of bi-quaternions represent a T-duality
covariant realization of a spacetime admitting Kéahler structures. Similar discussions hold in the
cases of bi-hermitian, hyperkéahler and bi-hypercomplex manifolds. The results are summarized
in Table 1.

4. Born sigma models and instantons
In this section, we study the T-duality covariant doubled sigma model called the Born sigma
model.

4.1. Born sigma models
The Born sigma model is defined as a two-dimensional sigma model whose target space is a
2D-dimensional Born manifold M. The action of the Born sigma model is given by

1
S = 4/ [HMNdXM A xdXN — QMNdXM VAN dXN] . (19)
b))
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Algebras of hypercomplex numbers

Structures on T M

Generalized Kahler

bi-complex numbers (4)

Kahler (J,w)

Generalized Kahler

bi-complex numbers over C (8)

bi-hermitian (Ji,w4)

Generalized hyperkéahler

split-bi-quaternions (8)

hyperkéahler (J%, w®)

Generalized hyperkahler

split-bi-quaternions over H (32)

bi-hypercomplex (J§,w%)

Born

split-quaternions (4)

Born + generalized Kahler

bi-quaternions (8)

Kahler (J,w)

Born + generalized Kéhler

bi-quaternions over C (16)

bi-hermitian (Ji,wy)

Born + generalized hyperkéhler

split-tetra-quaternions (16)

hyperkéhler (J¢, w®)

Born + generalized hyperkéhler

split-tetra-quaternions over H (64)

bi-hypercomplex (J¢,w$)

Table 1. The doubled structures on TM ~ TM @& T*M and their algebras and dimensions [1].

Here X stands for the two-dimensional worldsheet in the Minkowski signature, XM = (X*, X,)
is the local coordinate of M, * is the Hodge star operator in the worldsheet 3, Hsn is the
generalized metric in M and Q;ny = —Q s is an anti-symmetric constant matrix. It is manifest
that the action (19) is invariant under the following O(D, D) transformations;

dxM — OM yaxV,

Hyun — (Ot)MPHPQOQN, Qun — (Ot)MPQPQOQN, O e O(D,D).

(20)
The topological term is given by QpydXM A dXN = —2dXH A df(u [11,12].
The action (19) in the standard parametrization, is given by
1 .
S=17 /E [(g,w — Byupg”’ Boy)dXH Ad X" + Byyg?dXH A xdX,
— g" B,,dX,, A *dX" + g"d X, A *dX,

1 ~

—i—/dX“/\dXM. (21)
2 Js

As in the case of DFT, the Born sigma model (19) contains extra degrees of freedom. In
order to obtain a physical theory which contains degrees of freedom D, we impose constraints.
First, the background field Hj/n satisfies the constraints (5). Then all the background fields
now depend only on X*. In addition, the ordinary string sigma model whose target space is a
D-dimensional physical spacetime, is obtained by imposing the following chirality condition;

dxM = gM . « axV. (22)
By using the explicit representation (10) together with the B-transformation (11) for the chiral
structure J, the above chirality condition (22) is expanded and it is possible to solve d.X,, as

dX, = gu *dX"” + B,,dX". (23)

Using this result, we now remove the winding coordinate d.X , from the action (21). We find

1
S = 2/(gw,dxﬂ/\*dXVJrBWdX“AdX”). (24)
>

This is nothing but the action for the ordinary string sigma model.
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4.2. Doubled instantons

We then study the instantons in the Born sigma model. From now on, we assume the Euclidean
spacetime and worldsheet and *> = —1. Since the complex structure is necessary for the
worldsheet instantons in ordinary string sigma models, we focus on the spacetime of the bi-
hermitian manifold. Since the generalized metric Hasny is positive-definite in the Euclidean
space, we perform the Bogomol’'nyi completion of the first term in the action,

1 1
S /HMN (dXM + TMp dXP) A *(dXN + TN dXQ> + 5 /(wi)MNdXM A dXY
> ii / (wa ) prvdXM A dx, (25)

where

Jr = leB <J+ +J- _(wjrl $w1)> e B

2 wy Fw-  —(JLEJ)
1
= e (Tn £ Tr 4 T 7 T )P (26)
are doubled structures in the Born manifold M satisfying J? = —15p. The fundamental two-

forms associated with J1 are defined by wi = HJ+. It is obvious that the bound is saturated
when the map X : 3 — M satisfies the following doubled instanton equations;

dxXM 4+ gMy « dxN = 0. (27)

In the following, we only consider J without loss of generality. The doubled instanton equations
(27) are decomposed as

1 1
= (dXM +(TP)My dXN) +3 (dXM 4 (TE)My « dXN)
1 1
+ 5(dXM + (T2 )My *dXN) - 5(dXM + (T8 )My « dXN) —0. (28)
Using the chirality condition (22), we have the following equation from (28);
dX* —ixdX* =0. (29)
This means that the solutions to the instanton equations are given by the holomorphic functions

as is well-known. In this case, we recover the bound in the ordinary worldsheet instantons that
are defined by Ji;

, .
Sp=+3 / (W) d X™ A dXY + % / B, dX" AdXY

1
= :|:2/(w)u,,dX“/\dX”+

% / B, dX* AdX”. (30)
5. Conclusion
In this manuscript, we showed the T-duality covariant generalized (doubled) structures that
contain (hyper)Kahler, bi-hermitian and bi-hypercomplex geometries of spacetime.

In DFT, the spacetime metric g,,, the NSNS B-field and dilaton ¢ are packaged into the
generalized metric Hsny and the generalized dilaton d. It is known that the natural O(D, D)
structures of DFT are introduced in the Born geometry on the 2D-dimensional doubled space



XII International Symposium on Quantum Theory and Symmetries (QTS12) IOP Publishing
Journal of Physics: Conference Series 2667 (2023) 012066  doi:10.1088/1742-6596/2667/1/012066

M. Assuming the strong constraint, there are natural isomorphisms that allow us to identify
the doubled tangent bundle 7'M and the generalized tangent bundle TM. Using the generalized
Kahler structure (Jy, J,,) on T M, the Kéhler structure on the physical spacetime M is organized
into the T-duality covariant quantities. We showed that the generalized (doubled) structures
satisfying the algebra of bi-quaternions C x H contain the subalgebras that define the Born and
the generalized complex structures. These results are extended to the cases for bi-hermitian,
hyperkahler and bi-hypercomplex manifolds.

We then introduced the doubled sigma model known as Born sigma model. The target space
of the Born sigma model is the doubled space M admitting the Born and the generalized Kéahler
structures. The Born sigma model has manifest T-duality by definition. The action is given
by the generalized metric Hysn and a topological term. The physical condition defined by the
chiral structure J is imposed to obtain the ordinary string sigma model. We showed that the
Bogomol'nyi completion is possible in Euclidean space and wrote down the doubled instanton
equations. They are defined by the doubled complex structures J+. These equations reproduce
the ordinary worldsheet instanton equations. In the original paper [1], we have discussed that
the instantons in the bi-hermitian geometries. We have shown that they are represented by a
linear combination of instanton equations defined by the bi-hermitian structures (Ji,wy). This
analysis can be applied to the hyperkéhler and the bi-hypercomplex cases. Details are found in
the original paper.
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