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ABSTRACT

Semiconductor quantum dots are favorable candidates for quantum information processing due to their long coherence time and potential
scalability. However, the calibration and characterization of interconnected quantum dot arrays have proven to be challenging tasks.
One method to characterize the configuration of such an array involves using the Hubbard model. In this paper, we present an efficient
characterization algorithm that efficiently extracts the Hubbard model parameters, including tunnel coupling and capacitive coupling
energy, from experimental stability diagrams. Leveraging the dual-annealing optimizer, we determine the set of Hubbard parameters that
best characterize the experimental data. We compare our method with an alternate, well-established measure of tunnel coupling and find
good agreement within the investigated regime. Our extracted tunnel couplings range from 69 to 517 μeV, and we discuss the limiting
factors of our method.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0215622

I. INTRODUCTION

Semiconductor quantum dots are among the most promising
hardware platforms for quantum information processing. In recent
years, both single and two-qubit operations using electron spins have
been carried out with fidelities above 99%.1 Electron spins in silicon
also have a long coherence time, making them robust to decoherence
effects observed in other solid state systems.2 Furthermore, the fabri-
cation of these devices can be easily integrated with the classical
semiconductor industry, making semiconductor qubit a true candi-
date for scalable quantum computing.

However, calibrating a quantum dot array to a desired
working point has proven to be nontrivial, due to the large parame-
ter space and each quantum dot having unique parameters com-
pared to its neighbors. This makes the characterization of these
devices especially important. To achieve single and two-qubit oper-
ations in a quantum dot array, it is imperative to know the tunnel
coupling between two neighboring quantum dots. Furthermore,
recent works had demonstrated the possibility of simulating the
Hubbard model with a quantum dot array.3,4 To achieve a direct
mapping between a quantum dot array and the Hubbard model, it
is also essential to know the values of the Hubbard model parame-
ters at a given voltage configuration.

One of the primary distinctions of the Hubbard model from
the capacitive model is the account of tunnel coupling between
neighboring sites. Conventionally, the tunnel coupling energy is
extracted from the expectation value of the double dot charge
polarization averaged over a Maxwell–Boltzmann distribution.5–7

This measurement, which we will henceforth label the DiCarlo
method, is performed by measuring the electron temperature and
the polarization linewidth at the desired anti-crossing in stability
diagrams. To obtain an accurate measurement, additional experi-
mental setups are required for measuring the electron temperature;
furthermore, adjustments to the lock-in voltage are needed to bring
out the anti-crossing polarization line on the stability diagram.
Additionally, at the limit of extremely large tunnel coupling, this
method becomes difficult to perform due to the extensive broaden-
ing of the polarization line.

Another parameter in the Hubbard model that is crucial for
studying the coupling between neighboring quantum dots is the
capacitive coupling energy. It has been shown that this coupling
energy can be directly obtained by measuring the length of the
anti-crossing while converting from voltage to energy space with
the appropriate lever arms.8 However, this method is limited to the
low-tunnel-coupling region where the tunnel effect remains small.
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The addition of tunnel coupling distorts and increases the spacing
of the anti-crossings, making the isolation of the capacitive cou-
pling energy difficult through this simple measurement.9

Inspired by the works of Sarma et al., we developed a novel
method that efficiently extracts the Hubbard model parameters
directly from experimental stability diagrams.9–11 As discussed in
Ref. 10, information regarding the Hubbard model is contained in
the geometry of the stability diagrams.34 Building on this work, we
study the possibility of extracting the Hubbard parameters directly
from experimentally obtained stability diagrams with depth and
compare our results, specifically the tunnel coupling measurement,
to the DiCarlo method. We have found an agreement with the
DiCarlo method; however, we will also discuss the limitations of our
method. We demonstrate our method’s ability to extract the capaci-
tive coupling energy in the large tunnel coupling limit, which has yet
to be done solely from the geometry of the stability diagram.

We acknowledge that there has been previous work done on
characterizing and calibrating the state of a quantum dot array
including the measurements of either tunnel coupling or capacitive
coupling energy. For instance, in an earlier work, the authors pro-
posed an automated procedure for tuning the tunnel coupling,12

while in another work, the authors discussed tuning the tunnel
coupling of a quantum dot array.13 However, both papers are dif-
ferent from our approach, where we obtained the tunnel coupling
directly from the curvatures of the polarization lines. Additionally,
although the former mentions fitting the anti-crossing, their fitting
is fundamentally different from our approach, which involves the
Hubbard model.12 In another work, an automated tuning protocol
was proposed.14 While this method differentiates tunnel coupling

with the curvatures of the anti-crossings, its measurements are purely
qualitative and are unable to identify the exact tunnel coupling value.
Two previous works both used a two-site Hubbard model to model a
specific anti-crossing; however, quantitative measurements of the
tunnel coupling were not reported from fitting the anti-crossing
geometry.15,16 In particular, the latter used a two-site Hubbard model
to extract the exact location of the triple points; however, the exact
tunnel coupling was measured from the broadening of the inter-dot
transition line.16 Similar to the works mentioned above, there have
been multiple previous works on the subject; however, these works
have not quantitatively measured the inter-dot tunnel coupling or the
capacitive coupling in the large tunnel coupling regime; furthermore,
their measurements of the tunnel coupling utilize the broadening of
the inter-dot transition line, photon-assisted tunneling, or time-
resolved charge sensing, differing from our approach that solely lever-
ages the geometry of the stability diagrams.8,17–31

II. BACKGROUND

A. Experimental setup

For this paper, we used a device (Fig. 1) with two quantum
dots and an adjacent quantum point contact (QPC), which are
defined by gate electrodes fabricated on top of a Si/SiGe hetero-
structure. The two-dimensional electron gas was formed by a posi-
tive voltage applied to a global top gate located above the gate
electrodes and insulated by a 100 nm layer of aluminum oxide.
Note that the measurements in this paper were performed only
with the two lower dots of the device, while the upper portion was
left completely open. The two lower dots are coupled by barrier gate

FIG. 1. (a) (Left) SEM diagram of the quantum dot array that was used to perform the measurements in this work. The two blue dotted circles are approximately the posi-
tions of the quantum dots, and the QPC is labeled on the left-hand side of the device. (Right) A two-site Hubbard model illustration: the gray line depicts the potential land-
scape of the two dots. The blue and green arrows underneath represent the effects of plunger and barrier gates. In the Hubbard model, plunger gates would be directly
related to the chemical potential of each dot; and the barrier gate is used to tune the coupling energy as well as the tunnel coupling. Conceptually, the charging energies
of the dots correspond to the size of the dots. (b) A large stability diagram in the low-tunneling regime containing multiple anti-crossings. The dark pixels indicate a rapid
change in the current of the QPC. We pick the anti-crossing in the red square as the one to be investigated (this choice is arbitrary). Note that the color bar will be omitted
for the rest of the paper. The charging energies for each dot can be directly measured as the distance between horizontal (red, QD1) and vertical (black, QD2) transition
lines. The cross-capacitances can be measured from the slopes of the transition lines.
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Vb12. The QPC gates are tuned such that the current flowing through
the left channel is sensitive to electron transport in the two dots.

The chemical potential of dot 1(2) was primarily controlled
through plunger 1(2) above the dot (denoted as Vp1(2)). By tuning
the plunger voltages, electrons can hop on and off the dots from the
source and drain reservoirs and in between each dot. Electron tun-
neling was detected as a change in the transconductance signal mea-
sured by a lock-in connected to the QPC, while the lock-in’s
excitation voltage was applied to both plungers. As shown in
Fig. 1(b), electron transport in a double quantum dot can be well
visualized with stability diagrams created from pairwise scanning of
neighboring plungers.

To determine each plunger’s lever arm, we followed the proce-
dure in Ref. 6. We measured the full width at half maximum
(FWHM) of the polarization linewidths for both dots as a function
of fridge temperature T f . For high Tf , the polarization line’s FWHM
becomes proportional to Tf , allowing lever arms to be extracted
from the proportionality constant. The extracted lever arms values
are 0:1+ 0:02 eV=V for both plunger gates to their respective dots.

B. The Hubbard model

Conventionally, it is common to model the dynamics of a
quantum dot array with the capacitive model.32 While this model
captures the effects of Coulomb blockade and the capacitive cou-
pling between coupled quantum dots, it fails to account for the
quantum fluctuation. In order to incorporate the quantum effects
in our models, we need to use the extended Hubbard model, a
model often used to describe interacting particles on a lattice.
To apply the extended Hubbard model to a quantum dot array, we
use the following Hamiltonian:9

Ĥ ¼ �
X
i

μin̂i �
X
i,jh i,σ

tij ĉyiσ ĉ jσ þ ĉyjσ ĉiσ
� �

þ
X
i

Ui

2
n̂i(n̂i � 1)þ

X
i=j

Uijn̂in̂j, (1)

where ĉiσ and ĉyiσ are the fermionic creation and annihilation opera-
tors at site i with spin σ (either " or #); the number operator is
defined as n̂iσ ¼ ĉyiσ ĉiσ ; ϵ is the single-particle energy offset; tij is
the tunnel coupling between dots i and j; Ui is the charging energy
on dot i; Uij is the capacitive coupling energy between dot i and j;
and finally, i, jh i denotes neighboring sites i and j. Putting things in
a broader context—the first term in the Hamiltonian refers to the
single-particle energy offsets; the second term is the hopping term
that describes the tunneling effects between neighboring dots; the
third term accounts for the on-site Coulomb interaction; and the last
term is the inter-site Coulomb interaction. Note that the Hubbard
model at the limit of zero tunnel coupling is completely equivalent
to the capacitive model.10 Also note that in the generic Hubbard
model, there are terms that describe the effects of spin exchange,
co-tunneling, etc.; however, we will discard these extra terms as their
effects are insignificant in our experiment.

Generating stability diagrams from the Hubbard model is dis-
cussed in supplementary material I. In this work, we also developed

a few techniques to speed up the simulation, which are discussed in
supplementary material III.

III. METHOD

In this section, we will discuss the characterization protocols
we have developed as well as the details of the optimization, includ-
ing a discussion on optimizers.

A. Characterization procedures

Here, we provide a brief overview of the entire characterization
procedure. We start with generating a large stability diagram in the
low-tunneling regime and choose a specific anti-crossing as shown
in Fig. 1(b).

We then measure the vertical and horizontal spacings between
the transition lines to obtain the charging energies at low-tunnel cou-
pling. These measurements are taken in the voltage space and are
converted to energy units with the appropriate lever arms. For our
devices, the lever arms are approximately 0:1 eV=V ¼ 100meV=V.
The measured charging energies for dots 1 and 2 are 3:5 and
7:7 meV, respectively.

In these devices, cross-capacitances contribute to the slopes
of the transition lines. Therefore, we can also measure the cross-
capacitances α, β of the two plunger gates from the slopes of the
transition lines in the figure above.33 Here, we find the cross-
capacitances of dots 1 and 2 with respect to plunger gate Vp2 and
Vp1 to be 0.56 and 0.42, respectively. Using the cross-capacitances,
the relations between the raw voltage values and the chemical poten-
tials are defined in Eqs. (1) and (2) in the supplementary material.

Since the cross-capacitance and the charging energy can be
easily obtained from features in the stability diagram, such as the
slope and distance between charging lines, we will keep them as
fixed variables in the optimization. A two-dot Hubbard model
consists of eight free parameters, including two charging energies,
two cross-capacitances, two voltage offsets, the tunnel coupling,
and the capacitive coupling energy. For the rest of the characteri-
zation, we will determine the four remaining parameters, that is,
the capacitive and tunnel coupling, and the two voltage offsets.

Before the optimization, we first zoom into the target anti-
crossing and perform scans with higher resolution at various
barrier voltages. Specifically, we vary the barrier voltage from 0.1 to
0.24 V. All diagrams are taken at 125� 125 resolution across 0.06
(Vp2) and 0.1 (Vp1) meV. These diagrams are shown in Fig. 2.
From these plots, we see an increase in the line curvature as we
increase the barrier gate voltage, suggesting an increase in tunnel
coupling—consistent with what theory predicts.9

The rest of the characterization includes an optimization
process that iteratively compares a simulated stability diagram and
the target stability diagram. The entire optimization procedure is
depicted in Fig. 3.

We start with an experimental stability diagram. After per-
forming a set of thresholding and denoising, we arrive at a binary
graph without the extra features. We first generate a simulated
stability diagram in the same window from a set of guess Hubbard
parameters. We then compare the simulated graph with the target
graph with a cost function that characterizes the difference between
the two diagrams. With the cost function defined, we can then
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FIG. 2. Anti-crossings with barrier voltage values from 0:1 to 0:24 V. The window of the scan is adjusted so that every anti-crossing is roughly at the center of the scan.
The curvatures of the anti-crossings are visibly increasing with increasing barrier gate voltage.

FIG. 3. Optimization demonstration. Starting from the experimental stability diagram, we first perform some thresholding and denoising to remove the unnecessary features
in the stability diagram (including extra lines and corrupted regions). We also convert the z axis values into binary values. Starting from a set of guess Hubbard parame-
ters, we produce a simulated stability diagram in the same window and calculate a cost function that characterizes the difference between the simulated and target
diagram. We then optimize the Hubbard parameters with the dual-annealing optimizer until the optimization converges. On the right, we plot the simulated diagram with
the optimal parameters over the target diagram.

Journal of
Applied Physics

ARTICLE pubs.aip.org/aip/jap

J. Appl. Phys. 136, 044401 (2024); doi: 10.1063/5.0215622 136, 044401-4

© Author(s) 2024

 23 August 2024 11:05:30

https://pubs.aip.org/aip/jap


perform a closed loop optimization to find the optimal value. We
choose dual-annealing as the optimizer, since it has proven to be
effective in escaping local minima (something we have encountered
frequently). Last, a set of optimized Hubbard parameters is output-
ted after the optimization converges.

In this work, we studied an anti-crossing in the multi-electron
regime (six to ten electrons) to minimize the effects of spin-exchange
that are more visible in the (2,0)–(1,1) transition. Furthermore, we
assume that the charging transition in the multi-electron regime can
be described by an effective two-electron model, mapping to the
(2,0)–(1,1) transition (analogous to an artificial atom with two
valence electrons). As Sarma et al. argued in Ref. 10, a fully accurate
calculation would require a multielectron and multiband calculation,
which would be very time-consuming and is currently out of the
scope of this work. Building upon the method developed in this work,
we believe that incorporating a multiband calculation and studying the
effects of the actual electron occupation numbers would be a very
interesting extension.

IV. RESULT

In this section, we present the results of the characterization.
We perform the fitting on all eight plots in Fig. 2 with different
barrier gate voltages. The fitted results are displayed in Fig. 4.

From these plots, we see good correspondence between the sim-
ulation and the experimental data. For these fittings, we assume that
the cross-capacitances and the charging energies remain constant as

we increase the barrier voltage, which proved to be a reasonable
assumption for the regime where we performed the fitting.

We plot the measured capacitive couplings (or coupling energies)
and the tunnel couplings in Fig. 5. We observed that the coupling
energies roughly remain constant in the measured region, while
the tunnel coupling increases exponentially as the barrier voltage
increases. In Fig. 5(a), we plot the measured tunnel couplings
from our method to the tunnel couplings measured from the DiCarlo
method. We found that our results agree well with the DiCarlo
method, confirming the accuracy of this method. At the time of
writing this paper, since there were no known methods for reliably
measuring the capacitive coupling at the high tunnel coupling regime,
we could not verify our electrostatic/capacitive coupling results with
another known method.

We acknowledge that estimating the errors of the fitted
parameters is nontrivial, since an analytical solution does not exist
for such a system. For the scope of this experiment, we consider
the error as a result of the error in measuring lever arms. We have
numerically verified that the 20% error in lever arms results in 20%
errors in all fitted parameters. The error in the DiCarlo method is
estimated from the error in FWHM from the Gaussian fitting of
polarization linewidth. A large discrepancy in the tunnel couplings
between the DiCarlo method and our method is observed at
Vb12 ¼ 0:18V, and we attribute this discrepancy to improper
thresholding and noise inherent in the measurement.

It is important to note that there are a few limiting factors to
this method. In previous experiments, we have found degeneracies
while fitting many parameters, in particular, the cross-capacitances

FIG. 4. Fitted results of anti-crossings with various barrier gate voltages. The simulated result is plotted on top of the experimental data. Green corresponds to the
simulated stability diagram; blue corresponds to the experimental data; and yellow is the overlap between the two.
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and tunnel coupling. As the tunnel coupling is increased, the slopes
of the transition lines between anti-crossings are corrupted by the
increasing curvature; however, the cross-capacitances could
“compensate” this effect during optimization and lead to inaccurate
results. We note that this compensation effect also applies to the
low-tunnel-coupling regime. However, since the quantum effects
are relatively small in the low-tunneling regime, we expect the
extracted cross-capacitances and charging energies to be accurate.
Therefore, we measured the cross-capacitances and charging ener-
gies at the low-tunnel coupling regime and fixed their values
during the optimization. As a result, this method would not be reli-
able if the cross-capacitance/charging energies vary much from the
low-tunnel coupling regime.

Other factors include the polarization linewidth and stability
diagram resolutions. While we found that these factors have minor
effects on the results, they are not as impactful to the results as the
degeneracy we have discussed previously.

V. CONCLUSION

In this work, we have developed an optimization protocol that
extracts the Hubbard model parameters from the geometric features
of experimental stability diagrams. Our method is able to measure
large tunnel couplings, where the DiCarlo method is difficult to
execute. We also demonstrated our method’s ability to measure the
capacitive coupling in this regime, which was only previously
measured in the low-tunnel-coupling limit. This work allows for
future studies on the relationship of the coupling between
quantum dots and the barrier voltages that define their potential
landscape. Furthermore, this model-based fitting approach also
enables fine-tuning of the Hubbard model simulation using
quantum dot arrays. We also note that this method has shown

robustness to experimental noise/limitations such as missing
pixels, wide polarization lines, and low pixel resolutions.

Some future work includes studying whether one could extract
information regarding additional terms in the generic Hubbard
model, such as the spin-exchange and pair-hopping terms. Last, we
believe that this work can be easily generalized to a many-dot array
and shows promise for high automation in the future, which
is essential for the automated calibration of large quantum dot
arrays.

SUPPLEMENTARY MATERIAL

Details regarding the Hubbard model simulations are included
in the supplementary material. The supplementary material also
includes various methods we developed to speed up the simulation
and the cost function definition.
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