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Abstract. FORM is a symbolic manipulation system, which is especially advantageous for
handling gigantic expressions with many small terms, as often occurs in real problems in
perturbative quantum field theory. In this work we describe some main features of FORM,
such as the preprocessor and $-variables with emphasizing on benefit of metaprogramming, and
introduce a new feature: a topology generator.

1. Introduction
The theoretical particle physics community has needed complicated and cumbersome
computations based on perturbative quantum field theory in order to precisely predict or explain
observable quantities that have been measured in experiments. Nowadays the cutting-edge
research often requires symbolic calculations that can never be performed by hand and thus it
is common to use computer algebra systems. FORM [1, 2, 3, 4] is one of such software programs
that has been used for formula manipulation especially in big calculations. Other computer
algebra systems that have been used in theoretical particle physics include SCHOONSHIP [5, 6, 7],
REDUCE [8] and GiNaC [9] as well as versatile systems like Mathematica and Maple. FORM is
advantageous for handling gigantic mathematical expressions that do not fit inside the physical
memory of computers; its dedicated sorting algorithms, which utilize sequential access to hard
disk drives, enable users to manipulate huge expressions on disks efficiently. There are also
parallel versions of FORM with POSIX Threads [10] and MPI [11], so that users benefit from
modern multicore computer architecture.

2. Daily FORM coding
Here we try to provide some pedagogical examples of FORM programs for beginners. In FORM,
one of the basic operations is replacing a part of each term by using pattern matching. Typically,
users first define expressions to be manipulated and then write code with pattern matchings in
order to specify how they want to manipulate their expressions.

Let us look at our first example in Listing 1. The first 2 lines declare objects that we will
use in this example: a (commuting) function fib and a symbol n. Functions in the FORM
language are not functions in the mathematical sense or those in other program languages;
they just mean objects that can have zero, one or more arguments. The third line defines our
input expression, which has a term of the fib function with a numeric argument, representing
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Listing 1. A simple program to compute Fibonacci numbers.

 CFunction fib;
 Symbol n;
 Local F = fib(10); * Find the 10th Fibonacci number.

 repeat id fib(n?{>=3}) = fib(n - 1) + fib(n - 2);
 id fib(2) = 1;
 id fib(1) = 1;

 Print;
 .end

a Fibonacci number. The goal of this small program is to evaluate Fibonacci numbers in the
input. The next 3 lines specify the manipulations to be applied for each term. The symbol n
with a question mark followed by a constraint n?{>=3} in the left-hand side of the id statement
at Line 4 is a wildcard for a pattern matching. If a term has a part matched to this, then the
corresponding part will be replaced in the right-hand side with an adequate substitution for n,
which is the famous recursion relation of Fibonacci numbers. We repeat this replacement while
all fib functions have (integer) arguments greater than or equal to 3. Then fib(2) and fib(1)
are identified with 1 in a such way that all Fibonacci numbers with positive integer arguments
are eventually all reduced to numbers. Running FORM with this example prints F = 55.

It is well known that the naïve use of the recursion relation of Fibonacci numbers is highly
inefficient because of the exponential growth of the number of evaluations. If one gives the input
F = fib(30) for the above example, then it leads to generating 832040 terms. This still works
though it may take more time and FORM starts to print a longer statistics in its output. FORM
has a set of sort algorithms for terms in a hierarchical way based on the merge sort, which
works relatively well even on disk storage. This is why FORM is advantageous for manipulating
extremely huge expressions that cannot fit in physical memory. The longer statistics in the case
of fib(30) indicates that FORM enters a new stage of sorting.

The first example never works with F = fib(1000) because of its huge number of evaluations.
Instead, we will see the next program (Listing 2), which utilizes memorization on Fibonacci
numbers.

For this purpose, we use two very powerful features of FORM:
• The preprocessor: this processes preprocessor instructions starting with # and manipulates
the input text before sending it to the compiler. It provides preprocessor variables
and their substitutions into the text, conditional branching, loop constructs, procedures
(subroutines), and eventually provides a functionality of metaprogramming.

• $-variables: variables starting with $ to store small expressions (expected to fit in physical
memory), which can be accessed both in compile-time (i.e., by the preprocessor) and run-
time.

The idea of the program in Listing 2 is as follows. The first half of the program, up to
.sort at Line 12, searches for the fib function from the input expressions, and determines the
maximum argument. Once the maximum argument is known and stored into the preprocessor
variable N at Line 13, then we build a pre-computed table for Fibonacci numbers up to N with
an explicit memorization during their calculations. This is performed only once in compile-
time. In run-time, all we need is to apply the pre-computed table for all fib functions, as at
Line 24. If there is no fib at all in the input, then the code to build the table and apply it is
discarded due to the #if. . . #endif construction. In this way, a result of one part of a FORM
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Listing 2. An improved program to compute Fibonacci numbers. The preprocessor and
$-variables are used to determine the maximum argument of fib functions in run-time and
efficient evaluation of Fibonacci numbers with explicit memorization in compile-time.

 CFunction fib;
 Symbol n;
 * User input: suppose we don't know the maximum value.
 Local F = fib(1000);

 * Find the maximum argument.
 #$nmax = 0;
 if (match(fib(n?$n)));
 $nmax = max_($nmax, $n);
 endif;
 ModuleOption local, $n;
 ModuleOption maximum, $nmax;
 .sort

 #define N "`$nmax'"
 #if `N' > 0
 * Build a pre-computed table.
 CTable sparse, check, fibtab(1);
 Fill fibtab(1) = 1;
 Fill fibtab(2) = 1;
 #do i = 3, `N'
 #$value = fibtab(`i' -1) + fibtab(`i' - 2);
 Fill fibtab(`i') = `$value';
 #enddo
 * And use the table.
 id fib(n?) = fibtab(n);
 #endif

 Print;
 .end

program can change the program flow in another part of the program via the preprocessor. Such
small optimizations by metaprogramming make a difference when one has to process very big
expressions consisting of millions or billions of terms.

3. Recent developments
FORM version 4.2.0, released in July 2017 and presented in the previous ACAT workshop [12],
has introduced many new features, the development of which were inspired by realistic
physics problems solved by Forcer [13] and local R∗ operations [14] as well as diagram
manipulations [15]. We have recently released a minor update, FORM version 4.2.1, in February
2019. It contains several fixes for bugs and performance issues, appeared in running big
programs. For example, many annoying crashes related to compressions were fixed.

For detailed instructions for installation of the up-to-date version, please refer to the Wiki
page https://github.com/vermaseren/form/wiki/Installation.

https://github.com/vermaseren/form/wiki/Installation
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Listing 3. A program to generate 2-loop self-energy topologies in the φ3 theory.

 Vectors Q1,...,Q99;
 Vectors p1,...,p99;
 Set QQ: Q1,...,Q99; * for external lines
 Set pp: p1,...,p99; * for internal lines
 #define NLOOPS "2"
 #define NLEGS "2"
 Local F = topologies_(`NLOOPS',`NLEGS',{3,},QQ,pp);
 Print +sss;
 .end

4. Further developments
In computing an amplitude in perturbative quantum field theory, one may encounter problems
in graph theory in many ways:

(i) One needs to enumerate and generate all possible Feynman diagrams for an amplitude.
(ii) When one uses libraries to evaluate Feynman integrals, usually one has to bring diagrams

to a notation of topologies that is compatible with the libraries. This requires pattern
matching for graphs.

(iii) Some tricks in computing Feynman integrals require elaborate implementations of
algorithms in graph theory. For example, the local R∗ operations require determination
of ultraviolet and infrared subdivergences originated from subdiagrams.

For the first case, to generate Feynman diagrams, one may use a diagram generator such as
QGRAF [16] (written in Fortran), the graph generator [17] of GRACE [18] (written in C) and
FeynArts [19] (written in Mathematica). For the second and third cases, however, they occur
during symbolic computations for each diagram, thus one may prefer to implement them in
a computer algebra system. This tends to be a quite non-trivial and tedious task. Typically
computer algebra systems have their own languages as domain-specific languages, specialized for
some tasks, which cannot be expected to have expressivity that general-purpose programming
languages may have. It is also problematic that the performance of implemented algorithms
may not be so excellent in a comparison with implementations in a low-level language like C.
Hence it would be very convenient and useful if a computer algebra system provides fast and
optimized graph routines for users. It seems natural and relatively easy for FORM (written in C
and C++) to incorporate the graph generator of GRACE.

Although graph libraries available in FORM are still at the planning or developing stage, we
have already shipped the version 4.2.1 with an experimental function topologies_ to generate
vanilla topologies1. The topologies_ function takes 5 arguments, specifying the number of
loops inside generated topologies, the number of external legs, possible degrees of vertices and
two sets of vectors representing external lines and internal lines. Listing 3 is an example to
generate 2-loop self-energy topologies consisting with 3-point vertices. Listing 4 is its output,
which can be visualized as Figure 1. The result is a set of terms and each term represents one
topology. Each topology is a product of node_ functions and each node_ function stores the
vertex ID and a set of coming momenta. Table 1 shows the number of generated topologies and
the timings for self-energies with varying the number of loops, up to the 7-loop level.
1 The topologies_ function is provided only for an experimental purpose and could be deprecated in future
versions.
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Listing 4. The output of the program of Listing 3.

 F =
 +
 node_(0,-Q1)
 *node_(1,-Q2)
 *node_(2,Q1,-p1,-p2)
 *node_(3,Q2,p1,-p3)
 *node_(4,p2,-p4,-p5)
 *node_(5,p3,p4,p5)
 +
 node_(0,-Q1)
 *node_(1,-Q2)
 *node_(2,Q1,-p1,-p2)
 *node_(3,p1,-p3,-p4)
 *node_(4,p2,p3,-p5)
 *node_(5,Q2,p4,p5)
 ;
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Figure 1. Topologies represented by the output of Listing 4. The circled numbers correspond
to the first arguments (vertex IDs) of node_ functions.

Table 1. Elapsed time for generating topologies. All timings were measured on a Windows
laptop.

NLOOPS the number of topologies Timing
2 2 < 0.01s
3 10 < 0.01s
4 64 < 0.01s
5 519 0.05s
6 4999 0.75s
7 55758 10.12s
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5. Summary
As efficient symbolic manipulation is important for the HEP community and others, FORM
has evolved with new features as well as bug fixes and improvements. A recent milestone
of this evolution was the release of version 4.2.1. We are working on another new feature,
graph generations, and others. We hope that these efforts will lead to a release of the
next version, shortly. The source code of FORM is hosted on GitHub and available from
https://github.com/vermaseren/form.
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