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Abstract

In this thesis we apply the methods of partition functions to massive su-
perstring spectra and the moduli spaces, or spaces of zero-energy configu-
rations, of supersymmetric QCD gauge theories.

In the first part of this thesis we consider the massive covariant pertur-
bative superstring spectra of compactifications of the type I open super-
string preserving 4, 8 or 16 supercharges. There are an enormous number
of ways in which the required amount of symmetry can be obtained, but
here we concentrate on the ‘universal’ states that are present in every pos-
sible compactification preserving that amount of supersymmetry. For each
super-Poincaré representation we derive the multiplicity generating func-
tion, or the power series counting the number of times that representation
occurs at each mass level, and from these we derive empirically the stable
pattern or leading Regge trajectory that these multiplicity generating func-
tions approach in the limit of large spin. For the mathematically tractable
and phenomenologically relevant case of 4 supercharges we also derive these
power series analytically and see that they agree with the empirical ones.

In the second part we introduce the type of partition functions called
Hilbert series, which count the number of algebraically or linearly inde-
pendent polynomials at each graded level of a graded algebraic structure
such as a (graded) ring, module or ideal. In supersymmetric gauge the-
ories the algebraic structure is the chiral ring which is generated by the
gauge-invariant operators of the theory. The specific theories we consider
are supersymmetric generalizations of QCD, or SQCD, with exceptional or
related (by sequence or folding of the Dynkin diagram or Higgsing) gauge
groups with specified numbers of flavours of matter in specific representa-
tions. We show, as for theories with classical gauge groups, that the moduli
spaces are Calabi-Yau manifolds and also demonstrate relations between the
Hilbert series of SQCD theories related by Higgsing on one or more flavours

of matter in specific representations.
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1 Introduction and Outline

In this section we will set the scene for this thesis by introducing string
theory and supersymmetric gauge theory which are the central themes of
the two main sections. We will not present a complete introduction to the
subjects, but rather set the scene by describing some of the historical origins
of the theories; this discussion will largely follow chapter 1, section 1.1 of
[53]. We will then discuss how they flow into the more specific subjects
discussed in this thesis.

The current understanding of physics is predicated on quantum field the-
ory, which is quantum mechanics with observables being functions of the
spacetime coordinates. It has been known since Maxwell’s time that the
electromagnetic interaction can be described by a quantum field theory, in-
deed a gauge theory mediated by the photon, which is massless and charge-
less. This theory is called quantum electrodynamics, or QED. However, the
weak and strong interactions presented further challenges to being described
in such a way.

The weak interaction, as observed in beta decay (both 3~ and 81) and
electron capture, was originally proposed as being described by the inter-
action of four fermions at the same spacetime point, or a current-current
interaction. However, this is not renormalizable, because it requires a cou-
pling constant of mass dimension -2. The difficulty with making it a gauge
theory was that it is a short-range interaction and the gauge bosons would
have to be massive; however massive gauge bosons could only be produced
as a result of spontaneous symmetry breaking, where the vacuum state of
the theory does not possess the full symmetry of the Lagrangian. In this
specific example, a scalar doublet H = (Zﬁ) (with H standing for Higgs) is
introduced along with a potential V/(H) which has a minimum on the circle
|H| = v for some v; we have to fix the vacuum, so we pick H = (2) and
break the SU(2) x U(1) symmetry down to U(1) following the procedure
outlined in [41].



It was not known that renormalizability was preserved when the theory
underwent spontaneous symmetry breaking, but 't Hooft proved that it
was, making the theory consistent. Therefore the electromagnetic and weak
interactions were unified, and both described by (the same) quantum field
theory.

The ‘strong interaction’ originally referred to the interaction between pro-
tons and nucleons, together called nucleons, in atomic nuclei, which is medi-
ated by pions, which have mass around 100 MeV; however this is now often
referred to as the ‘residual’ strong interaction, with the strong interaction
being that between quarks. Though the gauge group is the non-abelian
SU(3), the gauge bosons, or gluons, are massless (though six of the eight
are charged) and the theory is easily described by a QFT, though since (6
of 8 of) the gluons are charged, confinement occurs and quarks are never
observed free but only in combinations of 3 quarks (baryons), 3 antiquarks
(antibaryons) and one of each (mesons). The theory of the strong inter-
action is called quantum chromodynamics (as the degrees of freedom are
called colours), or QCD for short.

The electroweak and strong interactions were grouped together as the
Standard Model. However, the scalar particle (or rather weak isospin SU(2)
doublet of particles) were still to be discovered, and the origin of fermion
masses still needed explaining.

Neutrinos have only ever been observed left-handed, and antineutrinos
right-handed, which is why they were originally assumed to be massless,
because massive particles can always be Lorentz transformed into a frame
in which their helicity would be reversed. Therefore, left-handed electrons
and neutrinos were grouped together in an SU(2) weak isospin doublet with
hypercharge, which is the charge under the U(1) of the Standard Model,
Y = —1, while right-handed electrons form a weak isospin singlet with
Y = —2 (we have Q = I3 + %Y, where I3 is the third component of isospin,
weak or other). The theory is not parity-invariant.

Although quarks have always been considered to be massive, not that
they have ever been observed free, the same construction was used, grouping
the left-handed quarks (u,d), (¢, s) and (¢,b) into isospin (not weak here!)
doublets with ¥ = % and assigning the right-handed ones to singlets with
hypercharge equal to twice their charge.

The kinetic term in the Dirac Lagrangian does not mix the left- and



right-handed parts of the Dirac field, as we can see by the expansion of ¥
However, an explicit mass term would mix them and is therefore forbidden,
since they transform in different representations of the (weak) isospin SU(2).

Wy = Wy = JU(1—35” = L 8(1 +75) (1)
Therefore, ¥ ¥, = 0 and similarly for the right-handed part.

The Higgs field must form a doublet of the (weak) isospin SU(2) so that
its Yukawa-like interaction term with the left- and right-handed quark or
lepton fields is a (weak) isospin singlet.

The Higgs mechanism, which breaks the SU(2) x U(1) gauge symmetry
of the electroweak part of the Standard Model to the electromagnetic U(1),
which is a combination of the I3 (the Cartan subalgebra U(1) of (weak)
isospin) and the hypercharge, also gives rise to fermion masses via sponta-
neous symmetry breaking with the masses proportional to the VEV of the
Higgs field. The Standard Model was completed when the Higgs boson was
discovered in 2012 at the LHC, having mass 126 GeV.

However, it was clear that the Standard Model could not describe all
of fundamental physics. The first and most immediately obvious problem
is that it does not include gravity, which is clearly an essential part of
any fully unified theory. In any case, a quantum theory of gravity is not
renormalizable, having short-distance divergences. We will leave this for
now and discuss the other issues first.

Firstly, the theory is very arbitrary: why do these specific patterns, called
multiplets, of masses and charges of particles occur? Indeed there are as
many as 19 free parameters! Secondly, some parameters have values much
smaller than they would be expected to; why this is is not known and it
does not seem natural. A specific example is the difference of 17 orders
of magnitude between the electroweak (Higgs) scale and the Planck scale
at which quantum effects should be observed in gravitational interactions;
this is known as the hierarchy problem. Other issues are the cosmological
constant problem wherein the theory predicts a value an enormous 10'%°
times larger than the limits set by current observations, the fact that the
theory does not account for either the ‘dark matter’ that makes up a quarter
of the universe or the ‘dark energy’ that makes up another 70%, and the

fact that the gauge couplings of the three interactions do not all meet at
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the same value at any energy, which is necessary for unification to occur.

A more specific problem is the ‘solar neutrino problem’, where only one
third of the expected number of (electron) neutrinos were detected coming
from the Sun in two separate experiments at detectors in South Dakota
and in Japan. It was proposed that this could be resolved by the neutrinos
‘oscillating’ between the three types (electron, muon and tau neutrinos),
however this is only possible if the neutrinos have mass. While this has
been proven to be true by other experiments too, their masses are known to
be extremely low, several orders of magnitude below those of the charged
leptons, leaving the problem of explaining the origin and order of magnitude
of their masses. It has been proposed that these low masses result from a
‘see-saw’ mechanism whereby a term in —M I/_IC%VR, with M large and where
the superscript ¢ denotes charge conjugation, is added to the Lagrangian
and this leads to two particles, one the neutrino with mass ~ m2M ~!, where
me is the charged lepton mass, and one of mass ~ M, however owing to the
low mass of the neutrino itself particles of mass M should be far too heavy
to observe at the LHC.

Returning to more general (still non-gravitational) issues with the stan-
dard model, three ways have been proposed to resolve them. One is grand
unification, in which the three gauge groups of the standard model are
combined into one, usually SU(5), SO(10) or Eg (it must have complex
representations); this gave an accurate prediction of the weak mixing an-
gle and the bottom/tau mass ratio. Another is extra dimensions, in which
the theory is defined on a spacetime containing more than four dimensions.
This was originally introduced by Kaluza and Klein to combine gravity and
Maxwell’s electromagnetic theory into one theory in which the fifth, and
compact, dimension contained the electromagnetic information. In current
theories there are usually more than one extra dimension, and they can be
small or large. The reduction to the required four dimensions can be done
in many different ways giving many different four-dimensional theories.

For the third way, we first note that the Coleman-Mandula ‘no-go’ the-
orem states that it is not possible to extend the Poincaré, or Lorentz plus
translations, group or algebra to include an ‘internal’ symmetry group ex-
cept in the trivial way; however it was discovered (actually by two groups
in the USSR before Wess and Zumino’s ‘official’ discovery) that this could

be circumvented by allowing the algebra to be extended to a ‘graded alge-
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bra’, or ‘superalgebra’, in which fermionic generators and anticommutation
relations were allowed. This graded algebra was called supersymmetry, or
the super-Poincaré algebra.

In supersymmetric theories, each particle has a superpartner of opposite
type (boson/fermion) but (if the symmetry is unbroken) the same mass.
Supersymmetry provides a solution to the hierarchy problem, because the
divergences from the Feynman diagrams cancel, at least partially accounts
for dark matter (but not dark energy) as consisting of the lightest supersym-
metric particle (LSP), which is necessarily stable owing to conservation of
R-parity (standard model particles have even R-parity and their superpart-
ners have odd R-parity), and reduces the discrepancy in the cosmological
constant (though only to 10%°1).

However, supersymmetry creates its own difficulties. Firstly it must be a
broken symmetry, since superpartners are not observed in nature. Secondly,
it has been predicted to be broken at the TeV scale at which signatures
should be visible at the LHC, but no superpartners have been observed yet,
which suggests that either the breaking scale must be higher or that super-
symmetry does not actually occur in nature. In the latter case, those current
theories which make use of it, of which there are many, must be completely
re-thought and alternative solutions sought to the hierarchy problem and
other shortcomings of the (non-supersymmetric) standard model. We will
however in this report assume that supersymmetry does occur in nature and
ignore issues relating to its breaking.

We will now revisit the problem of the absence of gravity from the Stan-
dard Model.

We know that a quantum field theory of gravity is not renormalizable,
because the graviton has spin 2 and that like the 4-fermion interaction orig-
inally proposed for the weak interaction it would have a coupling constant
of mass dimension -2. As with the 4-fermion interaction theory, this is
interpreted as though the current theory, where the Einstein-Hilbert ac-
tion is the only term present, is an effective theory valid only below some
scale, in this case the Planck scale, and there is a need for new physics at
higher energies. One possibility is that the divergence is an artefact of the
perturbative expansion about 0 and is absent when the theory is treated
exactly. In renormalization group language of QFT, this would mean the

theory would have a non-trivial UV fixed point. Another way is to soften
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the interaction by smoothing it out in space and time. We do not know
if the theory has a UV fixed point, but there is a historical precedent for
concentrating on the second option, namely the resolution of the 4-fermion
weak interaction to a gauge theory mediated by massive bosons.

However, working out how to smooth out the theory is very complex,
because by Lorentz invariance a smearing in space also means one in time
and this could violate causality along with unitarity and other properties.
There is only one way to smooth out the divergences while keeping Lorentz
invariance, and this is string theory, with objects extended in one spacetime
dimension, though they may be open, with ends, or closed, in a loop. This is
the only case where both the spacetime and internal degrees of freedom can
be kept under control, as quantizing membranes, with 2 extended spatial
dimensions, gives rise to a continuous spectrum.

String theory, through the presence of the graviton, has (quantum) gravity
built in, while in other theories, such as loop quantum gravity, it must be
treated separately and bolted on piecemeal. String theory also gives rise
to extra dimensions (as we will see, superstring theory is constrained to
have 10 dimensions, with bosonic string theory having 26!) and GUT gauge
groups (at least through heterotic string theory) and allows chiral gauge
couplings, and also has no free parameters except the string scale. It is a
unique theory, in which consistency forbids adding terms to the Lagrangian
by hand. String theory also has the benefit that multiple Feynman diagrams
in the various QFTs correspond to the same string interaction.

String theory has its issues too. Although it is a unique theory, it has
a vast (10°%0) set of possible vacua, called the landscape. Also, a non-
perturbative formulation has not been fully described. However, progress
has been made with the discovery of D-branes, which were initially sub-
spaces on which open strings can end, and the various duality relations
(S-, T- and U-duality, the last of which is the union of the first two) re-
lating the five consistent superstring theories with each other and with an
11-dimensional theory called M-theory. S-duality relates strong and weak
coupling, and T-duality relates compactification at large and small radii.
(The D is for Dirichlet, which describes boundary conditions on the po-
sitions of the endpoints of open strings rather than their momenta; the
latter are called Neumann. A D-brane with p spatial dimensions is called a

Dp-brane.)
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The extra dimensions also mean that to get the observed four dimensions
of nature, one must compactify to small size or otherwise make invisible the
other six (or 22!). One can do this in two ways; other than compactification,
the other is the brane-world scenario where matter and the forces other than
gravity are described by open strings and their ends are constrained to lie on
D-branes, while gravity is described by closed strings which can escape from
the branes, which could account for its great weakness relative to the other
forces. These branes must have 3 spatial dimensions and are therefore D3-
branes. We will not discuss brane-world scenarios further in this report but
rather concentrate on compactification as the means to reduce the visible
dimensionality of spacetime.

Another issue is that although in principle string theory amplitudes re-
quire fewer calculations than QFT ones, in practice they are very difficult
to calculate. In 1997, Maldacena discovered [64] the AdS/CFT correspon-
dence, which is a specific case of a more general gauge/gravity duality. In
the general duality, a gravity theory in d + 1 dimensions dual to gauge the-
ory in d dimensions; normally we say that the gravity theory is in the bulk
and the gauge theory is on its boundary. In the specific case of AdS/CFT,
AdS? x X104 i5 dual to a CFT in d — 1 dimensions probing the singularity
of the cone over X'0=¢. The CFT is usually represented by D(d — 2)-branes
and X10=¢ is a Sasaki-Einstein manifold, or one over which the cone is a
singular Calabi-Yau (for d odd) preserving only some of the supersymmetry
(one quarter, or 8 supercharges, for d = 5), although it could be S19~7 with
the cone being R"~¢ preserving all 32 supercharges. The same structure
exists with M-theory, with 11 instead of 10 and M2-branes corresponding
to AdSy x X7.

Having introduced the generalities of string theory and supersymmetric
gauge theory, we will now discuss the specifics of this thesis, which are
the use of partition functions in both superstring theory and a type of
supersymmetric gauge theory called supersymmetric QCD, or SQCD. (QCD
without the ‘super’ is the theory of the strong interaction; here, as well as
adding supersymmetry, we generalize it to allow any gauge group and any
number of flavours of matter which can be in any representation of the gauge
group as long as they do not give rise to an anomalous theory.)

Partition functions are a tool borrowed from statistical mechanics where

they are used to derive expressions for quantities such as temperature and
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chemical potential in terms of derivatives the partition function; they have
been applied to (super)string theory to obtain expressions for these quan-
tities applied to black holes. They are like a trace of exp(—SH), where (3
is the reciprocal of the temperature (times a constant) and H is the Hamil-
tonian which has an expression in terms of raising and lowering operators,
over all the states in the Fock space of the theory, which is built up by
acting repeatedly with raising operators on the ground state.

In the supersymmetric gauge theories that we discuss in the second part
of the thesis, if when the fully unrefined Hilbert series, the gauge theory
name for a partition function (though, as we will see, not all partition
functions are Hilbert series), is written as a rational function the numerator
is palindromic, the moduli space is a Calabi-Yau manifold [T}, 2, [3].

Most partition functions in the literature are unrefined and simply count
the states at each level, which is specified by the mass, number of fields, etc.
However, we can get more information about the states that comprise each
level, and the representations of the characteristic group(s) of the theory in
which they transform, by refining the spectra. We introduce new fugacities
that distinguish the states from each other and, knowing the group and
the map between Dynkin labels and fugacities, decompose each level into
representations.

As well as in the contexts discussed here, refined partition functions,
although for finite groups, are used in investigating moonshine conjectures,
where they are variously known as twining characters [66, [67] and twisted
elliptic genera [68, [69] [70]. There are also so-called McKay-Thompson series
[65], which are not ‘refined’ series in the true sense as they are modular forms
in a single variable, though they are obtained similarly to refined series by
replacing the dimensions of finite group representations with the characters
of a specific group element in each corresponding representation.

This thesis is divided into three parts, one short and two long. The first,
short, section introduces some of the mathematical preliminaries that we
will use in the other two sections. We discuss algebraic structures (rings,
modules, ideals) with (possibly multi) gradings (different to those of graded
Lie algebras in the sense of supersymmetry), Hilbert series which are parti-
tion functions counting the number of (algebraically or linearly) independent
polynomials at each graded level, the different types of symmetric polyno-

mials and the identities relating them, the plethystic formalism with the
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bosonic and fermionic plethystic exponential and logarithm, finite and Lie
group characters, Haar measures that enable one to integrate over a whole
Lie group manifold via the simpler integration over the maximal torus, in-
variant theory and Molien’s sum formula for finite groups and the (Molien-
)Weyl integral generalizing this sum formula to Lie groups.

The second part, or the first ‘main’ section, discusses perturbative string
spectra. We begin this part of the thesis by introducing string theory from
action principles, following [53 [54]. We quantize the string, concentrat-
ing on the light-cone method, though we also discuss two other methods of
quantization called old covariant quantization and BRST quantization. We
derive the zero-point energy and from that the condition on the number of
dimensions using all three methods, demonstrating the last two because the
derivation is more rigorous and less heuristic in these cases. Returning to
light-cone quantization, we then introduce the use of plethystics to obtain
refined string spectra based on [§], concentrating on the bosonic and type
I superstring, without the Chan-Paton factors at the ends, though we do
discuss closed type II superstring spectra, obtained by tensoring two type I
superstrings together and imposing level matching, incorporating the Chan-
Paton factors into type I superstrings, and the heterotic string, and (briefly)
compactification of one spatial dimension on a circle as in [56]. Having
demonstrated properties of the spectra, both bosonic and superstring, such
as stable patterns, which we will define, we then move on to a systematic
treatment of superstring spectra, following [7], concentrating on the open
type I superstring, again without the Chan-Paton factors, in compactifi-
cations with 4, 8 and 16 preserved supercharges. We discuss methods by
which those numbers of supercharges can be obtained, but we concentrate
on the universal states present in all such compactifications.

The second part of the thesis relates to Hilbert series of supersymmetric
QCD theories with exceptional gauge groups. Hilbert series are similar
to partition functions but here they are used to count not string states
for a given mass level but rather gauge-invariant quantities with a given
number of fields of each type ((anti)fundamental, adjoint, spinor etc). One
starts with the basic fields in the specified representations of the gauge and
global symmetry groups, takes symmetric products (antisymmetric if they
are fermionic) to arbitrary levels using a formalism called plethystics (here

taking the plethystic exponential), imposes any F-term relations specified
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by a quantity called the superpotential (which is zero in SQCD hence there
are no F-term relations, but most SUSY gauge theories do have them),
and obtains an expression for the gauge-invariant quantities by integrating
over the gauge group using the Haar measure. This gives the Hilbert series
for the theory; one can then take the plethystic logarithm (here with only
global symmetry group representations) to obtain explicit expressions for
the generators, relations and higher syzygies of the theory, which determine
whether the moduli space is freely generated (only generators), a complete
intersection (generators and relations) or neither (there are higher syzygies).
The Hilbert series itself, in unrefined form, can also be used to determine
whether the moduli space is Calabi-Yau, if it has a palindromic numerator
when expressed as a rational function in a specific form. We derive the
Hilbert series for exceptional and related groups with specified numbers of
flavours of matter in specified representations, and derive relations between
the Hilbert series that relate to Higgsing of the group and/or folding of the
Dynkin diagram. Some Hilbert series are harder to obtain than others, but
it is often the case that two different SUSY gauge theories give the same
Hilbert series, this is called duality (examples include Seiberg duality); it is
often useful to use known dualities to conjecture new ones when it is known
to be ‘hard’ to compute the Hilbert series for one theory and ‘easier’ to
compute that for the actual or conjectured dual theory. We do not discuss

Seiberg or other duality in this thesis, apart from a discussion at the end.
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2 Symmetric polynomials and the

plethystic programme

In this section we introduce the machinery that we use in the two main
sections of this thesis. We start by introducing the algebraic preliminaries
such as rings and modules, and then we discuss first the concept of sym-
metric polynomials and that they form an algebraic structure called a ring,
and then their five different types, also introducing antisymmetric polyno-
mials, in the latter part because of the need to use them to define Schur
polynomials, which are the last type of symmetric polynomial to be intro-
duced and the most difficult to visualize. We then introduce the concept
of characters of group representations, which simplify representation the-
oretic computations greatly, and how they differ between Lie groups and
finite groups, though they are conceptually the same. We then return to
the symmetric polynomials and derive identities for those in two variables in
terms of those in each variable separately, and then introduce the plethys-
tic programme, a formalism for generalizing this (anti)symmetrization and
enabling results to be obtained through other methods such as residues
and (Taylor/Laurent) series expansion. We finish by introducing the Haar
measure and (Molien-) Weyl integral, which are used to generalize Molien’s
sum formula for Hilbert series for finite groups to Lie groups, using the fact
that any element of a Lie group is conjugate to an element of its maximal
torus which is generated by the Cartan subalgebra and thus has the same

character.

2.1 Preliminaries

In this section we will introduce some of the algebraic preliminaries that we
will use in the rest of this thesis.

A ring R is an algebraic structure endowed with two binary operations:
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addition, under which the elements of the ring form an abelian group, and
multiplication (which is not necessarily commutative), with both left and

right multiplication being distributive over addition:
a(b+c)=ab+ac V abceR (2.1)

We normally suppress the . symbol for rings (but not for modules which we
will describe later). If every non-zero element of the ring has a multiplicative
inverse, the ring is a field.

A graded ring R is a ring with a grading:

R = P®; R; (2.2)

r; € R;, i € Rj = ;€ Ri+j (2.3)

A module M over a ring R, called an R-module, is an algebraic structure
endowed with addition and (left) multiplication by elements of the ring,
which is again distributive over addition of elements of the module. A
trivial example of an R-module is of course the ring R itself.

An ideal I is a subset of a ring with the following property: if a,b € I and
r,s € R, ra+ sb € I. An ideal is called finitely generated if every element
can be written as a linear combination of finitely many basis elements, and
principal if only one such element is required. It is freely generated if said
linear combination is unique. The ring itself is trivially an ideal of itself.

Like rings, modules and ideals can be graded, with the multiplication
being an element of the ring times an element of the module or ideal.

A Hilbert series is a power series that counts elements in a graded ring,
module or ideal, weighted by the grading. For a freely generated structure,
the Hilbert series, when expressed as a rational function of two polynomials,

has numerator 1.

2.2 Symmetric polynomials

In this section we present a brief introduction to the symmetric polynomials.
Much of this section and Section is based on [23], which is a simplified
version of the introductory parts of [45].

For a set of variables x;, symmetric polynomials are those which remain
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invariant under the symmetric group .S,,, where n is the number of variables,
in particular they do not change under exchange of two variables x; and x;
for i # j. The symmetric group is generated by these two-variable swappings
which are called transpositions.

The symmetric polynomials form a ring which is called A in [23]. There
are five types of symmetric polynomials, of which the first three are as

follows:

e the complete (or full) symmetric polynomials h,(x), which are sums

of every possible product of n of the x;, not necessarily distinct:

o) = > ] (2.4)

1<ii<...<in<m j=1

e the elementary symmetric polynomials e, (x), which are sums of every

possible product of n distinct x;:

en(x) = Z H Ty (2.5)

1<i1<...<in<m j=1

e the power sum symmetric polynomials (or Newton polynomials) p,(z),

which are sums of the n-th powers of the x;:
pa(x)=> 2y (2.6)

All these polynomials can be generalised to a general partition A\, e.g.
() = [ o (2.7)
i=1

and the same for e)(x) and py(x).

The fourth type of symmetric polynomials are the monomial symmetric
polynomials, which can only be defined in terms of partitions rather than in-
tegers, though a partition can of course consist of only one integer. They are

sums of every possible product of the z; with a particular ‘shape’ specified

20



by a partition A, explicitly this can be written as

max) =Y. [« (2.8)

ijFig.J#k J

The final type of symmetric polynomials are the Schur polynomials, which
can also only be defined in terms of partitions. They are denoted sy(x).

They are defined as

det(m?ﬁn*j*l)”

ij=1
. 2.9
det@?_]_l)%:l 29

S)\(X

The denominator is called the Vandermonde determinant A(z). n denotes
the number of x; and A must not have more than n non-zero entries here oth-
erwise the matrix must be extended with zeroes and hence the denominator
would be zero.

To visualise Schur polynomials, take the Young diagram corresponding to
the partition A and write down all possible semi-standard Young tableaux
for that diagram, i.e. all tableaux with all entries between 1 and n and
increasing weakly from left to right across a row and strictly from top to
bottom down a column, and then take the sum of all terms which are the
product of all the z; for each entry i in the tableau.

As we will see in Section Schur polynomials are characters for repre-
sentations of unitary groups U(n) where n is the number of ;.

All five types of symmetric polynomial form a basis for the ring of sym-
metric polynomials A as defined in [23], with those where |A| = n forming
a basis for the n-th graded piece A,, where A = @, A,.

There are invertible matrices, not all both integer and with integer in-
verses, which allow one to convert between the types of symmetric polyno-

mials. For example, we have
sa(x) = Z MMy, (X) (2.10)
sl =1 A|

where m,),, are called the Kostka numbers.
We will return to symmetric polynomials in Section but for now we
will leave them behind and instead first introduce Lie groups and their

representations and characters.
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2.3 Lie groups, representations and characters

A Lie group is a continuous group with the structure of a manifold.

A Lie group G is generated by its corresponding Lie algebra g, which con-
sists of elements 7%, 1 < a < dim(G) with commutation relations [T%, T?] =
i fOT° where f2 are called the structure constants. For an abelian group
the structure constants vanish. The dimension d = dim(G) is the total
number of generators.

The rank r = rank(G) is the dimension of the maximal torus of the group,
which is generated by the maximal commuting subalgebra, which is called
the Cartan subalgebra. The maximal torus is isomorphic to U(1)". The
elements of the Cartan subalgebra can be relabelled as H;, 1 < i < rank(G),

and the other elements of the group written in terms of roots E,:

[H;, Hj] = 0 (2.11)

[Hi, Ea] = OéiEa (2.12)

[Ea, Eg] = NapEarts (2.13)
[Ea: E—o] = oM (2.14)

where N,z vanishes if a + 3 is not a root.

The weights of a given root are determined by their commutators with
the H;. The roots corresponding to the Cartan subalgebra have zero weight
in any basis. The non-zero roots, of which there are d — r of them, can be
divided into positive and negative roots, with the negative of a positive root
being negative and vice versa. In a Cartesian basis, the positive roots are
those for which the first non-zero entry is positive; one can then choose r of
those positive roots to be the simple roots, in terms of which the positive
roots can all be expressed using only positive (integer) coefficients.

A Lie group can be described by its Dynkin diagram, which consists of
nodes linked by 0, 1, 2 or 3 lines, with an arrow pointing to the shorter
root in the cases of 2 and 3 lines, which determine the relations between the
roots. These are displayed in the Cartan matriz, whose entries are given by,

in terms of the simple roots,

2(041', Oéj)

Ay =
T (a), )

(2.15)
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with «; and «; the i- and j-th simple roots and (.,.) an inner product to
be defined later. It is usually the case however that the diagram is drawn
first (which is especially useful when the Dynkin basis, as defined later, is
used for the roots and weights), and the Cartan matrix written down later.
The diagonal entries are all 2; the off-diagonal entries are 0 when the roots
corresponding to the row and column are not linked by any lines, both -1
when linked by one line, and -1 and -(the number of lines) when lined by
more than 1 line, with the more negative number in the row corresponding
to the longer root.

The Dynkin diagram is constrained by the fact that the simple roots must
be linearly independent, and this leads to a restriction to the observed fam-
ilies A, By, Cn, D, and exceptional cases Eg, E7, Eg, Fy, Go. The subscript
n, or the number of nodes in the Dynkin diagram, is equal to the rank of
the group.

There are two bases commonly used to write down the roots of the group

and weights of its representations:

e The Dynkin basis, where the i-th simple root «; is specified by the
i-th row of the Cartan matrix, the ¢-th fundamental weight w; by the
Cartesian basis vector e; and the inner product (in a weight basis) by
(o, B) = ;Gy;p; (where o is the i-th component of «, not the i-th
simple root here, and the indices are summed over) where Gj; is given
by

Gij = (A—l)ij(aj’;‘j) (2.16)

where A;; is the Cartan matrix.

e The Cartesian basis, where the inner product is the usual Cartesian
one, the simple roots are chosen to fit the Cartan matrix and the

fundamental weights are chosen so that

dij(aj, aj)

; (2.17)

(ai7wj) =

where (o, 3) is the usual Cartesian inner product.

In the Dynkin basis, the rows of the Cartan matrix represent the simple
roots. The remaining positive roots can be built up iteratively; when the

i-th entry of a positive (simple or other) root is negative, the roots obtained
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by progressively adding the i-th row of the Cartan matrix to the ‘original’
root are added to the list of positive roots (if not already present) and
the process repeated with these new roots. The process stops for a given
‘original’ root when a root has no negative entries. The highest root, which
is unique, is the one at the highest level, i.e. the one for which the number
of simple roots that must be added to the zero root to arrive at it is the
greatest.

The Cartesian basis is most commonly used with groups in the U(N) (but
not SU(N)), SO(N) and Sp(N) families.

A representation of a Lie group is specified uniquely by the Dynkin la-
bels of its highest weight. There is one Dynkin label for each node of the
Dynkin diagram. Each label represents the coefficient of the corresponding

fundamental weight in the highest weight A of the representation:
T
A=Y nw (2.18)
i=1

where w; are the fundamental weights. In the Dynkin basis A; = n;.

Given the highest weight of a representation, all the weights, with their
multiplicities, can be constructed by the reverse of the construction of the
positive roots from the simple ones, progressively subtracting simple roots
until no further subtractions are possible. In this construction, the number

of times the i-th simple root «; has to be subtracted from a given weight X is

given by the i-th entry in the weight in the Dynkin basis and 2 ((o/c\iiji))’ with
the usual Cartesian inner product, in the Cartesian basis. All progressive
subtractions are added to the list of weights (if not already present) and the
process of subtraction of simple roots repeated on these new weights.

This construction only gives the weights, not their multiplicities; these
can be calculated by assigning multiplicity 1 to the highest weight A and
progressively calculating multiplicities of lower weights (as determined by
‘level’, i.e. the numbers of simple roots that must be subtracted from A to
give a specified root A; here, as opposed to the construction of the positive
roots, lower roots have higher level) in terms of those of higher weights using

Freudenthal’s recursion formula, which is given by

(A+pA+p) = A+pA+0))na =2 > > maska(A+ka,a) (2.19)
acAL k>1
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where n is the multiplicity of weight A (the highest weight A is understood
here) and p is half the sum of all the positive roots, which is equal to the
sum of the fundamental weights. This construction is outlined in [24].

In the next subsection we will introduce characters, which simplify calcu-
lations involving group representations and enable them to be manipulated

algebraically.

2.3.1 Characters of group representations

The character of a group representation is taken as the trace of the matrices
representing each element of the group. By cyclic invariance of traces, the
character is the same for every element of a conjugacy class, i.e. the set of
all group elements conjugate to a given element g, [g] = {hgh~';h € G}.

There are a finite number of irreps of a finite group; by Schur’s lemma the
number of irreps is the same as the number of conjugacy classes of elements,
and the squares of their dimensions add up to the dimension of the group.

The identity element is always in a conjugacy class by itself. For an
abelian group, the same is true of every element.

For Lie groups, every element is conjugate to a (not necessarily unique)
element of the maximal torus and hence the character can be expressed in
terms of a number of parameters given by the rank of the group. These
parameters are called chemical potentials in analogy to the term used in
statistical mechanics; their exponentials are called fugacities. (Sometimes
fugacities are called chemical potentials in an abuse of notation.) In this
thesis and the papers on which this thesis is based and took its inspiration
from, [7, 8, 1, 2, 3], fugacities are preferred, though chemical potentials are
used directly in older literature such as [10].

The above construction of all the weights of a group representation, with
their multiplicities, can be converted into a character by, for each weight,
adding a term corresponding to each fugacity raised to the power of the
corresponding entry in the weight, multiplied by the multiplicity. However,
having defined fugacities, we can now introduce the Weyl character formula,
which (at least in principle) simplifies the two-step method of constructing

a character of a representation to one step:

Zw(_l)lwlzw(AﬂJ)
zP Ha(l - Z_a)

xc(A) = (2.20)
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where z; are fugacities, w is a Weyl group element (a product of Weyl re-

flections w = wq, . . . Wy, Where w, takes a general weight 3 to 8 —2 Egzg% a),

and we define z® = []\_, 2.

By the Peter-Weyl theorem [30], a class function for a Lie group can be
decomposed uniquely in terms of the characters of its irreps.
For a finite group, the number of occurrences of each irrep R; in a general

representation R is given by the following formula:

ni(R) = |Cl¥| S il (o) xa(ls)) (2.21)

9]

where [g] is the conjugacy class of elements containing element g (summed
once per class, not per element!), x;([g]) is the character of representation
R; taken over [g] and xr([g]) is the same for R. Since the number of irreps
of a finite group is finite, the number of occurrences of each irrep in a general
(reducible) representation can be easily calculated using this method. The
decomposition theorem, both existence and uniqueness, follows from the
(weighted, by the sizes of the conjugacy classes) orthogonality of characters
of different representations.

For a Lie group G this generalizes to

ni(R) = / A (%)% (%) xR (%) (2.22)

where dug(z;) is the integral over the group manifold. Because there are
dim(G) parameters defining a general element of the group, we use the
fact that any element is conjugate to an element of the maximal torus
to rewrite the integral in terms of a parametrization of this torus. We
must therefore ‘weight’ the integral by the Jacobian of a general element of
the adjoint representation in terms of the fugacities. This factor is called
the Haar measure and is defined later in Section and also in [9]. This
decomposition is discussed in [19].

For a Lie group, the number of irreps is infinite and so this method can-
not really be used to decompose a character of a general representation into
those of the group’s irreps. We instead decompose the representation by pro-
gressively finding the highest weight with the highest norm, calculating the
character of the irrep with this highest weight by either the Weyl character

formula or the previous construction, subtracting it (with its multiplicity)
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from the general reducible representation and repeating the process. We
do, however, use this method to determine the number of singlets in a rep-
resentation, as we do when we consider symmetrizations of representations
of both a gauge symmetry group and a global one, which we do in the next
section. (We integrate over the gauge group to find gauge singlets, and then
decompose into representations of the global group by progressive subtrac-
tion.) We discuss finding gauge singlets, also called invariants, further in

Section R2.71

2.4 Symmetric polynomial identities for product

groups

Sometimes one wishes to (anti)symmetrize representations of two (or more)
different symmetry groups, usually a gauge group and a global group or a
non-simple (not counting U (1)) gauge group. In this section we will discuss
the case of two U(IN) symmetry groups (not necessarily the same N); we
will leave the discussion of their decomposition into representations of other
groups, called ‘plethysm’, to Section

There are several very useful identities that express either the full or ele-
mentary symmetric polynomial in two (or more in one case) sets of variables
as sums of products of those in the variables separately.

The first identity expresses a plethystic exponential of a product group
representation in terms of the complete symmetric polynomials of one sub-

group representation and the monomial symmetric polynomials of the other:

1—zy;
ij Wi

[ =3 h®m) (2.23)
A

If counting of the number of fields in the product group representation is
required, a t can easily be inserted in the denominator (1 — tx;y;) and each
summand on the RHS multiplied by ¢ where |)| is the integer of which A
is a partition.

This is easy to see by inspection, for each \; fix the (different for each i)
y; that is raised to the power \; and sum all terms in the series expansion
with that power of y;. It is easy to see that this is hy,(x), and their product
over all i is hy(x). The function of y; is m)(y). This identity also holds
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with x and y reversed.
The second identity expresses the PE of the product group representation

as a sum of products of Schur polynomials of the subgroup representations:

[ =3 55 (2.24)
A

1 — 2y,

1,]

The proof of this is rather involved and described in [23]. It involves ex-

1
1—ziy;

panding the determinant det( )1<i,j<n, row and column reduction and
factorizing out the Vandermonde determinant A(z) = [[,;(z; — ;) for
both x and y.

To obtain an expression for HZ]':1(1 — z;y;)" " in terms of Schur poly-
nomials in both x and y, one can first see easily by inspection that the
determinant of the matrix of terms (1 — z;y;)~! with i and j between 1 and
n must have denominator H?J:l(l — x;y5), which is symmetric in the z;
and y;, and that the numerator must be antisymmetric in both and there-
fore proportional to the Vandermonde determinants A(x) and A(y), i.e.
[[}-;j(zi — ;) and the same for y;. By row and column manipulation, it is
shown in [23] that

oL\ __AXAY)
! <1 B xiyj)i,j:l [15;-1 (1 — iy;) (2.25)

i.e. the numerator is the product of the two Vandermonde determinants with
no additional factor. To obtain an expression in terms of Schur polynomials,
one must expand each term (1—x;y;) ™" as Y57 (z;y;)%, keeping the same
exponent in each row of the matrix (we label rows by ¢ and columns by j).

Substituting this into the determinant, one gets

det (11x%>n = 3" det ((my)®)" (2.26)

N .
ij=1 ;>0 J

n

S [ etden (4,

-
d;>0i=1 J

= AX)A(Y) ) sa(x)sa(y)

A

To explain the last derivation, firstly the d; have to all be different to give a

non-zero result in the determinant in the second row; then rearrange them
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into d such that d} > ... > d,,(> 0). The y-determinant is therefore given
by (—=1)%™) A(y)sx(y) where \; = d} — n + i and o is the permutation of
the d; that gives the d;. (One can see that A, with trailing zeros removed,
is a partition of some number [A| = Y7 | A;.) One can then see that the
coefficient of A(y)s(y) is similarly A(x)sx(x), hence the formula. Dividing
out by A(x)A(y) we can put this into the form

17 1& “ o) Y sax)sn(y) (2.27)
1,j= % N

which is the desired result.
There is a third identity which expands the PE of a product group rep-
resentation in terms of the power sum symmetric (Newton) polynomials of

the subgroup representations:

/L?]

11 e > Zl)\PA(X)pA(Y) (2.28)
A

1—zy;

where z) =[] k4! when ) is rewritten as 17 ... k% .. ..

Unlike with the previous two expressions, this one can be generalized to
representations of products of three or more groups rather than being re-
stricted to two. It is easy to see that py(xy) = pa(x)pa(y). However, we
will have to leave its derivation till the next section once we have intro-
duced the tools for doing so. These are grouped together into the plethystic

programme, which we introduce now.

2.5 Introduction to plethystics

As well as the examples of massive (super)string partition functions and
SQCD Hilbert series covered in this thesis, this finds applications in other
quiver gauge theories including instanton moduli spaces [42],[71], brane tiling
theories [39, 26, 28], 29, [30, B3], finding invariants of finite groups and con-
verting between single- and multi-trace partition functions counting BPS
operators [22], [19], etc.

The plethystic exponential (PE) is used to symmetrize (finite or infinite)
power series to arbitrary orders.

Suppose first that the argument of the PE function is a polynomial (which
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is usually a generalized or Laurent polynomial when the gauge and/or global
symmetry group is not U(N), though in this case we have to treat it, and
the PE, as a ‘formal’ power series rather than a ‘real’ polynomial) in one
or more variables; that way each term is a monomial. In the first step of
the derivation of the PE formula we temporarily replace each term with
a generalized fugacity X;,1 < i < n for a series of n terms. (To explicitly
show symmetrization to each order separately, we introduce another fugacity
t counting the number of terms; such counting fugacities, which denote U(1)
charges, are used in most if not all applications of plethystics. When used
to go from single- to multi-trace partition functions counting BPS operators
and back for finite numbers of fields [22], the ‘counting’ fugacity is called
v.)

The totally symmetric product of a sum of n terms X; to order k is given
simply by hi(X;) as given above. This is the same as the Schur polynomial
sx(X;) where X is the single-row partition [k] whence by the aforementioned
visualization of Schur polynomials in terms of semi-standard Young tableaux
the correspondence can be easily seen. The PE can thus be written as

PE it}g] = itkhk(Xi) (2.29)
=1 k=0

It is simple to see that

E

hi(X1, Xoy o) =Y X{hp_j(Xa, ... (2.30)
=0

and substituting into the expression for the PE, one obtains

n oo k
ZtXi] =D OX{t T hy_j(Xa, . ) (2.31)
=1

k=0 j=0

PE

Resumming j and k — j (relabelling as k) from 0 to infinity, one then gets

PE

f:tXi] = (1—tX1)_1§O:tkhk(X2,...) (2.32)
=1 k=0

o
=2

= (1-tX,)"'PE
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and repeating the process one obtains the final expression

n

itXi] =[Ja-tx)" (2.33)
=1

i=1

PE

This expression generalizes very simply to any function that can be ex-
pressed as a Taylor series, even an infinite one, in one or more variables. In
some of the examples in [19,[22], it is a rational function and the explicit Tay-
lor expansion is not used, though there we only calculate symmetrizations
to low orders, not the full PE. As with the ‘usual’ exponential function, the
exponential of the sum of two functions is the product of the exponentials
of the functions by themselves.

To show the relations with power sum symmetric (Newton) polynomials
(and their generalization to functions with possibly non-terminating Taylor
series, the Adams operator Adams*(f(X;)) = f(XF)) and also to derive the
form of the inverse operation, the plethystic logarithm (PL), we take the
log of the PE and Taylor expand:

ZtXi] = =) log(l—tX;) (2.34)
o th Xk
= 2.2

i k=1
_ itkpk(Xi)
k

log PE

k=1

00 Lk '
exp (Z w> (2.35)

k=1

PE

£

For a general function f(X;), this can be written as:

X Lk k
log PEtf(X:)] =) tf(kX) (2.36)
k=1
X Lk k
PE[f(x)] = exp(}) D) (2.37)
k=1

We wish to bring the log form to the desired form of simply ¢, X;.
It is easy to see that for each prime p, one must subtract log PE [tPp,(X;)];

this removes all terms for which & is prime or a prime power (with only one
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prime factor), but ‘over-corrects’ in the case where k has more than one
prime factor, indeed for k = p; ... p, it leaves the terms in pi(X;) as having
coefficient —(r — 1).

One corrects this for products of two (distinct) primes p; and py by adding
log PE [tP*P2py, 1, (X;)] back into the sum, but one sees that we then have
to subtract back out terms in products of three distinct primes, and so on.

There is a function, the Mébius function p(n), which returns (—1)" when
n is a product of r distinct prime factors and 0 when n is divisible by a
square of some number. Using this function, we can write the expression
for the PL (still taken to be of the PE) as follows:

Z tXi] ] = — Z i p(k)log(1 — t* XxF) (2.38)
‘ k=1

A A

oo oo kL X
= DD k)

i k=11=1

DI IDWICE D P

PL |PE

We can now generalize the PL to take an arbitrary function of an arbitrary
number of variables as an argument, as long as it takes the value 1 when all

(or certain combinations of) fugacities are set to 0:

PE {5t x) = 37 HNoBU (X 230
k=1

There is an analogue of the plethystic exponential for fermionic operators
called the fermionic plethystic exponential (PEp) which is defined in the
same way as the PE except that only products of distinct X;, which sum
to totally antisymmetric products, occur in the final product. The totally
antisymmetric product of a sum of n terms X; to order k is given simply
by er(X;) as given above. This is the same as the Schur polynomial sy (X;)
where ) is the single-column partition [1¥]. Again this can be seen by
visualizing the Schur polynomial in terms of semi-standard Young tableaux.

The fermionic PE can thus be written as

=1 k=0
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By the same steps as for the PE, we obtain

n

itXi] = [ +tx3) (2.41)

i=1

PEg

In exponential form, generalized to a general function argument f(X;) of
a possibly infinite number of X;, we have the same expression as for the

‘ordinary’ PE except for the insertion of a (—1)**! factor:

PE [(1, X)) = exp (Z (O, X) ) (2.42)

k
k=1

The inverse is published in [36]. To derive the inverse, we do not work with
the log form of the PE directly, but rather note that

PE[f(t,X:)] = [ [ PEr [F(#* X7")] (2.43)
r=0

and we therefore have for the inverse

PLp[f(t,X))] = > PL[f(t.X) (2.44)
r=0

= k) log( (#27F, X4))
=22 k

k=1 r=0

The PLp is not used in this thesis or indeed as yet in any other literature,

but the other formulae find extensive use.

2.6 Haar measure

The Haar measure, as derived in [9], is the conversion factor that enables
one to integrate over the whole group, of dimension dim(G) for a group G,
by the simpler integration over the maximal torus, of dimension rank(G).
It uses the fact that any group element is conjugate to an element of the
maximal torus and they therefore have the same character. Schematically

it is the Jacobian of the group manifold over the torus. For a group G
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parametrized by fugacities z;,1 <1 < rank(G), it is given by

rank(G) dZ rank(G)
dpug = — : 1- i 2.4

where « denotes a root (i.e. a weight of the adjoint representation), «;
denotes the ith entry in the weight o in the Dynkin basis, 20 is the Weyl
group, or the subgroup of the isometry group of the root system generated
by reflections in hyperplanes perpendicular to the roots, and C' is the unit
circle. (As mentioned before, a different (non-Dynkin) basis are used in
[1L 2] in the case of SO(N,) and Sp(N,.) gauge groups; however the method
still works if the same basis is used throughout the integration.)

A simpler Haar measure is derived in [76] and used in [3] where the
product is only over the positive roots and there is no division by the order

of the Weyl group:

rank(G) dz: rank(QG)
/dug = H % i 1-— H 2 (2.46)
=1

2.7 Invariant theory and the Molien-Weyl integral

Before we introduce invariant theory, we must recall that we often, as here,
misuse the term ‘representation’ to mean the (vector) space on which ele-
ments of the group act, when in actual fact the word should instead be used
to refer to the matrices representing the group elements.

Because antisymmetrization of a representation will always lead to a sin-
glet at a level equal to the dimension of the representation, there will always
be a completely antisymmetric invariant; this is not the case for symmetriza-
tion, so there will not always be a totally symmetric invariant, they are not
present for the A, = SU(n + 1) and C,, = Sp(n) families.

A general invariant is specified by an object I with two or more indices
which remains the same under multiplication by elements of the relevant
representation(s) of the group, with each multiplication being by the same
element. This definition holds for both Lie and finite groups. Simple ex-
amples of invariants in which each index represents an object of the same

representation are the trace of SO(N), the symplectic trace of Sp(N) and
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the epsilon tensor of SU(N) and SO(N).

It is possible to have invariants where the indices do not all represent
objects in the same representation, for example a fundamental and an anti-
fundamental or (anti)fundamentals and an adjoint. In this case the elements
of the group are not the ‘same’ as such but are the exponentials of the same
linear combination of the generators of the group, which differ between
representations but always have the same structure constants (i.e. commu-
tation properties). These are called intertwiners and are discussed in [36].
The simplest example of an intertwiner is the delta function of SU(N) and
FEg with one fundamental and one antifundamental index.

To get the spectrum of gauge-invariant operators (in terms of representa-
tions of the global symmetry group), one must project the representations
of the gauge group generated by the plethystic exponential onto the triv-
ial representation. There is a general formula from [20] which gives the
number of occurrences of any given (irreducible) representation in a sum
of representations; one multiplies the sum by the conjugate of the desired
representation (which is as specified above) and integrates the product over
the whole group; this uses the fact that the product of an irrep with its
conjugate always contains exactly one singlet, while the product with an
irrep other than the conjugate never produces a singlet. In this case, since
the desired representation is the trivial one, so is the conjugate irrep and
hence one can simply integrate over the whole group.

For a given irreducible representation R, the number of occurrences of
R in a (possibly reducible) representation R’ (which is usually a tensor
product) is given by (as in [19]) for a finite group and for a Lie
group. In this section, we are considering the number of invariants, so R is
the singlet representation.

For a finite group with a representation given by matrices acting on a
vector space of dimension n, the invariants can be obtained explicitly for a
general polynomial argument f((x)), where x = (x1,...,2,) is an element

of said vector space, using the Reynolds operator:

R(f(x)) = Kl;‘ 3" fg(x)) (2.47)

geG

There is a theorem discussed in [22] and [0] that states that the maximum
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degree of a primitive invariant is the order of the group, meaning that we
do not have to go to too high a degree to find all the invariants.
Molien’s sum formula, quoted in [22] and derived in [6], gives the Hilbert

series of the invariants of (a specific representation p of) a finite group:

1 1
H(t) = @l gezé A7)0 (2.48)

where p(g) is the matrix corresponding to element g in the representation
p.

The plethystic logarithm of H(t) gives the (number of) primitive invari-
ants and (if present) relations and higher syzygies.

It is possible to ‘refine’ this series by replacing the multiplication by
by multiplying by diag(t1,. . .,tgim(,)), which is outlined in [22]. This does
not always give a PL in which every term is an integer, however (though
they can when the moduli space is toric), so the invariants cannot always
be assembled into representations of SU (dim(p)).

The (Molien-)Weyl integral is the generalization of Molien’s sum formula
to Lie groups. The plethystic exponential can be thought of as the determi-
nant. Any matrix is conjugate to a diagonal matrix and such conjugation
always leaves the identity invariant. We will not present a general formula

here, but rather leave the details to the relevant sections.
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3 Introduction to string spectra

3.1 String theory preliminaries

In this section we largely follow the procedure of light-cone quantization
described in chapter 1 of [53] for the bosonic string and chapters 10 and
11 of [54] for the type I and heterotic superstrings respectively, though for
space reasons we omit some details.

We start by considering the point-particle action. We could write this
with X0 fixed as being time, but we instead introduce some extra redun-

dancy and write the action in a parametrization-invariant form:
Spp = /dT(—X“Xu)l/Q (3.1)

This is not in a convenient form to work with, because of the square root.
To remedy this, we introduce an auxiliary variable called a tetrad (so called
because it was originally used in four-dimensional gravity theories, though
it is now also used in other-dimensional theories, where it is more commonly
called by its German name of D-bein for D dimensions, here a 1-bein or

einbein). Our new action is
Spp = /dTT]lX‘uXM — nm? (3.2)

We see that solving the Euler-Lagrange equation for the tetrad brings us
back to the original action.
Generalizing the point-particle action to an extended object with one

spatial dimension, we have the Nambu-Goto action

Sna = / drdo(—dethg)'/? (3.3)
where hgp = 0, X" 0p X,
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This time, unlike in the point-particle case, we remove the square root by
introducing not a tetrad (or 2-bein, zweibein) as such, but an auxiliary
metric v, (with inverse v*), with Minkowski signature. This gives the
Polyakov action (which was not discovered by Polyakov, though he worked

out its properties):
Sp = /drda(—’y)l/Q'yabaaX“Gqu (3.4)

This has the symmetries of D-dimensional (spacetime) Poincaré invariance
X'*(r,0) = AyXY(1,0) + a* and 2-dimensional (world-sheet) diffeomor-
phism (diff) 7/, (c¢) = ~vap(c¢) and Weyl invariance 7., = exp(2w(T, 0))Yab-

Again, solving the Euler-Lagrange equation for the auxiliary metric brings
us back to the Nambu-Goto action. However, we usually keep the extra
redundancy, both for ease of use and also because the Polyakov action,
and its point-particle analogue, can be used for massless particles, but the
Nambu-Goto action and Sy, cannot.

In the light-cone quantization described in chapter 1, we rewrite indices
0,1 by +,-, defining new coordinates X+ = %(X0 + X1!), and denote the
other indices by 7,2 < i < D — 1. The Minkowski metric, with (— +...+)
signature, now has components n*~ = n~" = —1. We then set X+ = 7,
which is easier to work with than keeping the original coordinate system
and metric and setting X° = 7. We show that we can fix the worldsheet
metric to be Minkowski too. From chapter 2 onwards, we Wick rotate the
worldsheet metric to Euclidean form, and work with complex coordinates.

Poincaré invariance forces X#(7,0) to be periodic in o. Other periodic-
ities are possible if we relax Poincaré invariance in some spacetime dimen-
sions, as occurs for constructions such as D-branes, orbifold compactifica-
tions etc. We do not consider those further here.

After a long calculation, and imposing the commutation relations [af,,, ol ]
mo Om,—n, we arrive at the following expression for the mass of an open

string state:
1 D—-1 oo 1 ‘ ‘
m? = o Z Z <Nm + 2n) where Ny, |) = o', o) (3.5)
1=2 n=1

We see that there is a divergent zero-point energy from the constant term.
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In regular QFT, we usually discard this term, but in string theory we renor-
malize it. We do this using zeta-function regularization. The Riemann zeta

function is defined as, for Re(z) > 1,

((z) =) _n7" (3.6)

This has a simple pole at z = 1 with residue 1 but can otherwise be ana-
lytically continued into Re(z) < 1. By the following formula from [59], we
have

C(z) = QZWZ’lsin(%ﬂz)P(l _ )¢ —2) (3.7)

We see, knowing that ((2) = %2, that ((—1) = —<. This must be multiplied
by %, from the factor in lj to give —i, and one term added for each of

the D —2 oscillators from 2 < ¢ < D —1 to give a zero-point energy, which is

the mass of the ground state of the theory in units of the string scale o/~ 1,

of —%. Bosonic string theory therefore has a tachyon, i.e. a particle of
negative mass-squared, in more than 2 dimensions.

The states at the first excited level are given by o ;|0;k) for2 <i < D—1
and, by the commutation relations have mass % (1 + %) = 2264; D We

know that for massless states, the spatial momentum cannot vanish so the

little group, which leaves the momentum invariant, is SO(D — 2) (observe
for the case of p, = (K, FE,0,...)), but for massive states we can have
pu = (m,0,...) so the little group is SO(D —1). There are only D — 2 states
at the first excited level, so they can only transform in a representation of
SO(D —2) and so they must be massless, and therefore D is constrained to
be 26. The normal ordering constant, which is the mass of the ground state
in units of o/, is -1, taking it to be additive rather than subtractive.
This is a rather unrigorous derivation of the conditions on the number
of dimensions of the bosonic string and the normal ordering constant. (In
regular quantum field theory, the infinite zero-point energy is usually just
discarded.) We will work with this method of quantization because the
group(s) in which the raising operators, which build up the Fock space of
quantum states, transform is most easily shown by this method, but first we
will discuss more rigorous derivations of this condition based on more covari-
ant methods of quantization. In all cases the actual commutation relations

are the same, though with all D oscillators considered rather than just the
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D — 2 transverse ones and the spacetime metric in its original Minkowski
form rather than the Euclidean restriction to the transverse space.

Firstly we have old covariant quantization. To do this, we recall that in-
variance of the action under variation of the (world-sheet) metric, whether
Minkowski or Euclidean (as in the Wick-rotated theory described from
chapter 2 onwards in [53]), gives rise to a conserved (world-sheet) energy-
momentum tensor 7% which is symmetric and traceless. Fixing the gauge
means that the vanishing of 7% does not hold as an operator equation, so
instead it must be imposed as a constraint on the matrix elements between
physical states.

This is equivalent to imposing that the Virasoro lowering operators L,, +
Aéy0,m > 0 annihilate physical states, with A being an as yet undefined
(additive) constant. To see this, we now pass to complex coordinates on
the world-sheet, defining w = ¢ + i and w = ¢ — i7 and from them we
obtain z = ¢~ and z = ¢"”. In this coordinate system the integral over
o from 0 to 27 is replaced by integration on a circle centred on the origin.
In complex coordinates the traceless condition on 7% means it has only
zz and zZZ components, and its conservation means these are respectively
holomorphic and antiholomorphic, so we can write T'(z) and T(%).

The Virasoro operators are defined in terms of the energy-momentum

tensor as follows:

o0

T(z) =Telz) = zf-t? (3.8)
L= f Az 2" HT(2) (3.9)

and similarly for L, in terms of T(2) = T:s(2) for the other half of the
closed string. The condition that all Virasoro operators annihilate physical

states is too restrictive, so by Hermiticity, LL = L_,, we have

Ly|phys) = 0, n>0 (3.10)
(Lo + A)|phys) = 0 (3.11)

States obtained by the action of L_,, on any state are called spurious, and
are clearly orthogonal to any physical state by Hermitian conjugation; if

they are themselves physical, they are called null. States that differ by a

40



null state correspond to the same physical state, so the Fock space does not
consist of ‘states’ as such but of equivalence classes or sets of states differing
by a null state, with each class denoted by one representative state. We see
that for us to obtain the same spectrum as in the light-cone case (not fixing
zero-point energy or dimensions in the latter case), we must have A = —1
and 26 dimensions. We see that A is the zero-point energy.

Secondly we have BRST (Becchi-Rouet-Stora-Tyutin) quantization. In
order to do BRST quantization, we must first fix the gauge using the
Faddeev-Popov procedure borrowed from gauge theory. In string theory
the gauge fixing introduces two new fields, one symmetric and traceless
with two lower indices and the other with one upper index, which are then
made fermionic (‘ghosts’). This is described in [53], heuristically in chapter
3 and more rigorously in chapter 5. The ghosts also form a CFT, with their
own energy-momentum tensor.

There are ‘large’ gauge transformations which cannot be specified in such
a form and indeed are orthogonal to all those that can, these are called
moduli. These are not the same as the massless scalars that define the
parameters of a general string compactification, or those that parametrize
the vacua of a supersymmetric gauge theory, which are also referred to as
moduli.

In BRST quantization, physical and null states are called closed and ezact
respectively, and there is again a cohomology. Closed states are annihilated
by the BRST charge, denoted @p, and exact states are given by @Qp|) for
some state |) and are necessarily closed by the fact that Q% = 0. Each
‘state’ in the Fock space is again an equivalence class of closed states whose
difference is exact.

We will now have a brief diversion into operator products, the central part
of the machinery of CFT. Recalling that the path integral of a total (func-
tional) derivative is zero, we see that taking a total derivative inside a path
integral with insertions gives relations between the derivative of the inser-
tion and the insertion multiplied by the derivative of the action. This may
give rise to singularities in the product of two operators as their positions
approach each other, as in chapter 2 of [53]. The energy-momentum tensor
T(z), and its antiholomorphic analogue T(Z), may be built out of the funda-
mental fields of the CF'T, or they may be fundamental fields themselves, and

their operator products are defined in terms of their constituent fields. The
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central charge is twice the coefficient of (z — w)~? in the operator product
expansion of T'(z)T (w).

BRST quantization forces the dimension of the bosonic string to be 26
because this is the only case for which the BRST charge squares to zero,
i.e. is nilpotent. We obtain this from the operator product of two BRST
currents, which are built out of combinations of components of the ghost
and matter CFTs.

The Weyl anomaly, which is a condition on the tracelessness of the energy-
momentum tensor (T = —5R, for ¢ the central charge of the theory and
R the Ricci scalar, is derived in two ways, one from the variation of the
energy-momentum tensor and the other from the vacuum partition function,
in chapter 3 of [53]), requires the total central charge of the theory to vanish,
this is 1 for every spacetime dimension and -26 for the ghost bc CFT giving
D — 26 in total.

We will now move on to the superstring. String amplitudes always contain
an even number of fermions, so the periodicity conditions also allow the
boundary conditions to be antiperiodic. The sector in which the fermions
are periodic is called the Ramond (R) sector, and that in which they are
antiperiodic is called the Neveu-Schwarz (NS) sector.

Taking 6 as 0 in the R-sector and % in the NS sector, we send n —n — 0
in the sum and obtain the answer i — %(20 —1)2, again using zeta-function

regularization, this time of the Hurwitz zeta function which is defined as

o0

((z,0) =) (n+a)" (3.12)
i=0
This formula reproduces Riemann’s when a = 1.

Expanding out the expression for the Hamiltonian, and hence the mass,
we see that the sign of the zero-point energy is reversed from the bosonic
case, so we have, again multiplying by %, i for each periodic fermion and
— 4 for each antiperiodic fermion. (Antiperiodic bosons contribute +.)
In the R sector, the zero-point energy of the fermionic oscillators cancels
that of the bosonic ones; in the NS sector, we get in total —% for each of
the D — 2 directions transverse to the light cone.

In the NS sector, the states at the first excited level are given by wi_1/2 |0; k)

for 2 <i < D — 1 and, by the commutation relations have mass
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: (% + %) = 10=D " Again, the little group is SO(D — 2) for massless

o’ 160/
states but SO(D — 1) for massive states. There are only D — 2 states at
1
E.
Again this can be determined by more rigorous methods, i.e. the vanishing

the first excited level, constraining D to be 10, with zero-point energy —

of the Weyl anomaly and the nilpotency of the BRST charge. In this case we
also have central charge % from the fermionic oscillators in each spacetime
dimension, and superconformal bosonic ghosts § and v making up a SCFT
with central charge 11. This reduces to %D — 26+ 11 = 0 giving D = 10.

In the R-sector we have zero modes which generate spinor representations
of SO(8). Picking one ground state which is annihilated, say, by % —
ip? 1 for 1 < i < 4, by acting with the ¥?* 4 1?1 we obtain two spinor
representations, the 8 obtained by acting an even number of times with
these raising operators and the 8 obtained by acting an odd number of
times.

The GSO projection keeps states whose world-sheet fermion number is
even. The NS ground state at mass level —% is odd because of ghost modes,
and in the R-sector we pick one SO(8) spinor, usually the 8, to have even
fermion number and the other odd. The fermionic oscillators are all odd,
so their action flips the odd/even parity of a given state. In type ITA string
theory, we keep the right-moving R-sector states whose world-sheet fermion
number is odd, keeping the even condition on the NS sector states.

As regards old covariant quantization, we also have operators G,, with
the moding of n being the same as that of the oscillators, i.e. half-odd
integers in the NS sector and integers in the R sector. G,, must annihilate
physical states for n > 0, reducing the two SO(1,9) 16-dimensional spinors
generated by the R-sector zero modes, here considering all 10 Minkowski
modes, to the same 8-dimensional ones of SO(8) as in the light-cone case.

The 6 internal dimensions can be replaced by a general superconformal
field theory with ¢ =9 (¢ = 9 for the right-handed component of a closed
string). The normal ordering constant as derived earlier remains the same.
We do this in all three cases of the superstring that we consider, though
we see that in the case of 8 supercharges two of the internal dimensions
are toroidal so we consider 6-dimensional Minkowski spacetime with a ¢ =
6 SCFT on the remaining 4 internal dimensions, and in the case of 16
supercharges all 6 internal dimensions are toroidal so we treat this case as

10-dimensional Minkowski spacetime.
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In these case, we must use BRST quantization to calculate its spec-
trum. This is done explicitly for the first massive level of the 4, 8 and
16-supercharge universal (to be defined later) superstring spectra in [15] and
[37], and the partition functions are calculated in [12] in the 4-supercharge
case and [II] in the 8-supercharge case.

We have derived these conditions from the worldsheet (S)CFT, without
recourse to spacetime properties. The open bosonic string contains a mass-
less vector (gauge) field, which must couple to a conserved current; simi-
larly the closed bosonic string contains a massless second-rank symmetric
traceless tensor field, which must couple to a conserved second-rank sym-
metric traceless tensor source, of which the only one present is the energy-
momentum tensor. These conditions impose that the theory must have
spacetime gauge and coordinate invariance respectively. The timelike and
longitudinal oscillators of the string are removed by world-sheet coordinate
(diff) invariance; from the spacetime point of view, it is the spacetime gauge
and coordinate invariance that remove these two oscillators. Spacetime su-
persymmetry also appears in a rather round-about way, in the construction

of null states in the R sector of the open type I superstring.

3.2 Introduction to string spectra

We will now return to the light-cone formalism.

We will start with [§], and then move on to the systematic treatment
described in [7].

We denote the characters by the sums of the products of the fugacities

raised to the power of the corresponding Dynkin labels. For the represen-
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tations discussed in this section we have the following characters:

S Z 23% z z z z 1
[1,0,0,0]8(2):zl+—2+374+73+74+72+71+7
Z1 Z9 Z4 z3 Z324 z9 Z1

z 212 z z z z 1

0,0,1,0](2) = 25 + 2 L4 L 2L =0 =2 58, 2
z3 Z9 Z4 21 2124 29 23

z 21% z z z z 1

0,0,0,1]g() = 24+ 2+ LB 2L 38 =2 2, 2
Z4 Z9 z3 Z1 Z123 Z9 Z4

2

_, 1
[1,0,0,000()) =y1 + 2492 ¢ 9 B8 B2 0, -
Yy Y2 Y3 Yi Y Y2 U1

0,0,0,1)o(7) = ya + 22 4 LR L LA B I OB B
Ya Y3 Y2 Y4 Y1 Y2Yysa Y194
1

+:l/1:l/4 y2y4+g+%+ Y2 I Y3 +yi4_|_

Y3 Y1Y3 Ya Y2 Y1Y4 Y2Y4 Y3 Y4

9
- Zi+1 Z11712 | 211

[1,0,. Jau(d) =21+ > T+ =24 2
i— C <10 212

9
z z Z 1
LAz, 210 +Z i L
11 A11R12 ST Al AL
10 y y
, Z 1
[1707 ]25(,@) =y + ax + 12 +1
i— i Y11
y 10 ” 1
+3 + e

Yie i ¥i+1 W1

(3.13)
(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

When going between SO(2n) = D,, and SO(2n + 1) = B,, representations,
as we do here for n = 232 in both the bosonic case (D = 26) and the

2
superstring (D = 10), there is a mapping from z; to y;:

Yi=2, 1<i1<n—2, Yp1=2n—12n, Yn = 2n

__ Yn-—1

and the inverse mapping is 2,1 = o= with z; = y; for all other 3.

(3.20)

We will start with the simplest case of the bosonic string in 26 dimensions,

though our reference [§] begins with the open type I superstring.

There is one raising operator o, for each transverse direction 7,2 < i <
m bl

D — 1 and each level m € Nsg. These combine to give an argument for the
plethystic exponential of [1,0, .. Jaa(zi) 35—y ¢™ = ([1,0,.. Jos(y:) — 1) 7%
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The zero-point energy, in units of o/~1, is -1.

17

Zbos(‘]a yz) =PE ([1’0’ . ']25(yi) - 1) 1—g¢

(3.21)
There is a general argument, outlined in [I0], that this series does not
give negative coefficients of any representation of SO(25) at massive levels,
despite there being one in the PE.

It is possible to calculate each level using Mathematica, but we did it
using self-written Java and LiE [5] programs.

To generate a given level n in the bosonic case, or the bosonic part of a
type I or heterotic superstring spectrum, we start by finding all partitions
A of n. We then rewrite each partition A = [A1,...] as 1™ ...i" ... where
n; is the number of occurrences of ¢ in A, and take the tensor product of
the symmetrizations of [1,0,0,0]s = [1,0,0,0]g — 1 in the superstring cases
or [1,0,...Ja4 = [1,0,...]25 — 1 in the bosonic case to orders n; for each i.
Summing over all partitions of n, we obtain the n’th level of the bosonic
partition function, and we obtain the whole partition function by adding
together each level weighted by ¢™.

Up to mass level 9, the bosonic partition function is given by, assuming

representations are of SO(25) unless stated:
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1
Zbos Zg—l- [1,...]24+q[2,...]

A(3,..]+[0,1,.. D+ (4,.. ]+[2.. ]+ [1,1,..]+1)
¢ ([5,.. ]+ 3. ]+ [2,1,.. ]+ [1,1,..]+1,...]+[0,1,...])
6, ]+ 4. JF[31,. )+ B, 20, )22, ]+ [ ]
[ ]+100,2,...]4+[0,0,1,...] + 1)

([ B AL A B 203, 22,1 ]
[ AL 2, ) 200, ] (1,0, ] 421, 4 2[0, 1, )

¢ ([8,..]+[6,..]+[5,1,..]+[5,..]+[41,..]+3[4,...]+23,1,.. ]
+2B J+12,2,. ] +2[2,1,...]+[2,0,1,..]+4[2,.. ]+ [1,2,..]
+3[1,1,.. ]+ [1,0,1,.. ]+ 2[1,...] +2[0,2,..] +[0,1,...] +[0,0,1,...] +2)
+¢3(9,.. ]+ [7,.. ] +[6,1,..]+[6,..] +[5,1,..]+3[5,...] +2[4,1,.. ]
+2[, .. +[3,2,...] +3[3,1,...] +[3,0,1,...] +5[3,...] +[2,2,.. ]
+502,1,...]4+[2,0,1,...]+3[2,...] +2[1,2,...] +4[1,1,...] + 2[1,0,1,.. ]
+4[1,...]+1[0,3,...]+1[0,2,...]+[0,1,1,...] +4[0,1,...] +[0,0,1,...])
+¢” (10, )+ [8,.. ]+ [7,1,.. ]+ [7,..] + [6,1,...] +3[6,...] +2[5,1,...]
5..]+[4,2,..]+3[4,1,..] +[4,0,1,...] +6[4,..]+[3,2,..]
3,1,...]+[3,0,1,...] +5[3,...] +3[2,2,...] +6[2,1,...] +3[2,0,1,...]
2, )+ [1,3,..]+3[1,2,..] +[1,1,1,..] +7[1,1,...] +2[1,0,1,.. ]
1,...]+4[0,2,...]+[0,1,1,...] +3[0,1,...] +2[0,0,1,...]
+[0,0,0,1,...] +3)

+3
+5
+8
+4]

We see stable patterns emerging as the coefficients of [ng,...] remain the
same as both the mass level and n; are increased by 1. Fixing na, ..., the
number of ny for which this is the case increases as the lowest level of agree-
ment does. To explain them, we must first introduce multiplicity generating
functions, which are the generating functions for the multiplicities at each
mass level of a specific representation. To demonstrate stable patterns, we

show the multiplicity generating functions for [3,...], [4,...] and [5,...]:
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Zios = -+ 3, N+ 0"+ ¢ +2¢° +2¢" +5¢° +5¢" + ..
AP+ P+ 3+ 280 +6¢° +..)
+05,..(¢" +¢° +¢" +3¢*+3¢") + ...

We see that the coefficients of ¢™ in the MGF for [3,...] agree with those
of ¢"*! in that for [4,...] up to the terms in ¢% and ¢” respectively (i.e.the
first 4 coefficients), and the MGFs for [4,...] and [5,...] agree in the first
5 coefficients. This suggests that as n — oo, the MGF's of [n,...] approach
¢"~ ! multiplied by a constant polynomial that we refer to as a stable pattern,
with the first disagreement, which is subtracted from the stable pattern,
occurring at ¢®". This is called the first subleading Regge trajectory.

Similar patterns occur when the second and subsequent Dynkin labels are
not all zero. We will define stable patterns (or leading Regge trajectories),
subleading Regge trajectories and multiplicity generating functions more
rigorously in the next section.

For the open type I superstring, we start by defining the following func-
tions in terms of the raising operators which transform in the vector repre-

sentation of SO(8) in each case:

Zp =PE [13(1[1,0,0,0]8} ~PE [13([1, 0,0,0]y — 1])} (3.22)
Zv(f) = PEp [12[1, 0,0, 018] — PEy qu(u,o,o,()]g ~ 1])] (3.23)
In the NS sector, we have f = +¢'/2, and in the R sector we have f = +¢; we
take appropriate linear combinations of the two in order to impose the GSO
projection. In particular, in the NS sector the zero-point energy is —% and
we keep terms with integer powers of ¢ (after multiplying by ¢~/2); in the
R sector we keep the action of an even number of positive-energy oscillators
on [0,0,0,1] and an odd number on [0,0,1,0] (Z is the full partition function
with both bosonic and fermionic modes, and note that Zp(—q) = ZBTI and

[0,0,0,1]s +[0,0,1,0]s = [0,0,0,1]9):
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Zns = 57 (20 = Ze(=a')) (3.24)
Zn = 5(00,0,0,1)s (Zrpla) + Zr(~a)

+[0,0,1,0]s (Zr(q) — Zr(—q))) (3.25)

Z = ZB(ZN5+ZR) (326)

1
= 5([0,0, 0,1]s —[0,0,1,0]s)

+2n (Zns+ 510.0.0.102r(0)) 3.27

We see that the product of Zp and Zr(q) gives even coefficients of all repre-
sentations at all massive levels, because the arguments of the two functions
are the same [§], and hence we have no fractional terms at massive levels in
Z. The argument from [I0] that there are no negative coefficients at massive
levels applies here too.

We calculate level n of the R-sector of the fermionic or heterotic part
explicitly as we do the for the bosonic case but with antisymmetrization.
In the NS-sector, we find all partitions into half-odd integers, or into odd
integers. (Since the zero-point energy is —%, we find partitions of n + %
into half-odd integers or of 2n 4 1 into odd integers to give an integer total
level, though in the 4- and 8-supercharge cases we also need to find those
of n or 2n respectively, since we must multiply by the partition function of
the internal dimensions before taking the GSO projection. In the heterotic
NS case we keep integer levels, since the zero-point energy is -1; we do not
discuss heterotic cases with reduced supersymmetry in this thesis.)

To get the total bosonic and fermionic partition function at a given level n,
which can be a half-odd integer in the NS case, we sum all tensor products of
bosonic and fermionic levels with total level n. The total partition function
is the sum of this for all levels weighted by ¢, or simply the tensor product
of the two partition functions. The same applies when ‘internal’ partition
functions are included.

To get the true level, we must add the zero-point energy, which is -1 for
the bosonic string and the NS sector of the heterotic string, —% for the NS
sector of the type I superstring, 0 for the R sector of the type I superstring
and 1 for the R sector of the heterotic string.
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We see that the massive levels of the open type I superstring decom-
pose into a product of the massive supermultiplet, [2,0,0,0]g+[1,0,0, 1]g +
[0,0,1,0]g, with another term. The ‘factored’ spectrum, up to level 9, is
listed in [§]. As in the bosonic case, we see stable patterns emerging as the
coefficients of [ny, ng, ng, n4] remain the same as both the mass level and ny
are increased by 1. Fixing ns, ng and ng4, the number of ny for which this
is the case increases as the lowest level of agreement does.

We can tensor two open type I strings together and apply level matching
to get the type II strings, in which the massive levels are the same in both
the type ITA and type IIB cases. We can also easily obtain the complete
closed and open type I spectrum, obtaining the closed (torus and Klein
bottle) part by taking the graded symmetric square (symmetric for bosons,
antisymmetric for fermions and simply the product of ‘cross’ terms) and
the open (annulus and Mobius strip) part by incorporating the Chan-Paton
factors of SO(32) into the partition function, [2,0,...] + 1 (symmetric) for
odd mass levels and the adjoint [0, 1,0,...] (antisymmetric) for even ones,
following chapter 6 of [53]. The first few levels are shown in [§] in both
cases.

We can do the same for the heterotic string, either the SO(32) case where
all 32 heterotic oscillators are in the same (R or NS) sector at the same time
or the Fg X Eg where there are two sets of 16 oscillators in each of which
all oscillators must be in the same sector but the two sets can be in differ-
ent sectors. Again GSO projections must be applied. Multiplying by the
10-dimensional bosonic partition gives the heterotic side of the partition
function, and the overall closed partition function can be obtained by ten-
soring with the type I partition function and level-matching, similarly to the
type II case. (It is usually easier to calculate heterotic spectra, especially
in the Fg x Eg case, using the bosonic construction outlined in section 11.6
of [54].)

The first few levels of the heterotic strings of both types are listed in [§].
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3.3 Systematic treatment of type I superstring

compactifications

In this section, and the next chapter, we return to the open type I super-
string and its compactifications which preserve some or all of the supersym-
metry.

There are many ways of compactifying the superstring to preserve a de-
sired amount of supersymmetry.

The amount of supersymmetry in a 10D theory is reduced by a factor
of four, or % of the supersymmetry is broken, by compactification on a
Calabi-Yau 3-fold. The spinors 4 = [0,1,0] and 4 = [0,0,1] of the SO(6)
on the internal space decompose under the SU(3) holonomy to 3 +1 =
([1,0] + [0,0]) and 3 + 1 = ([0, 1] + [0,0]) respectively.

Similarly compactification on a CY 2-fold, of which there is only one
non-trivial example, K3, reduces the spinors [1,0] and [0, 1] of the SO(4) =
SU(2) x SU(2) on the internal space decompose under the SU(2) holonomy
to [1] and 2[0], preserving (or breaking) half of the supersymmetry. (It
is a general rule that compactification on a CY n-fold, of which the only
other relevant case is compactification of M-theory on a CY 4-fold down

2177 of the supersymmetry, here reducing the

to 3 dimensions, preserves
32 supercharges down to 4 or N3q = 2, because the spinor and conjugate
spinor of SO(2n) together decompose under SU(n) into the sum of all the
antisymmetric k-th rank tensors with 0 < k£ < n, and the first and last of
these are singlets.)

We can also compactify superstring theory on orbifolds, which are quo-
tients of compact manifolds (usually tori) by finite groups; these can be
thought of as singular limits of Calabi-Yau manifolds. K3 necessarily has
2nd Betti number by = 22 (or Hodge number h;; = 20) and we see in
[74] that this is reproducible by compactification of 4 dimensions on T2
orbifolded either by Zo or Zs. In [35], several examples, with the Euler
number, given by y = Y27 (=1); = Siico(=1)"hij = 2(h1y — h2,1)
with the last step coming from Hodge duality, equal to twice the number of
generations of chiral matter in the fundamental of Eg minus the number of
generations of antichiral matter in the antifundamental.

Reducing the dimension of space is also possible using D-brane systems.

Non-geometric compactifications, such as Gepner models, are also possi-
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ble as ways to reduce the supersymmetry; we see, again in [35], that the 3°
Gepner model is equivalent to compactification on the quintic CY 3-fold.

However, in this thesis, we concentrate on the universal states that are
present in all compactifications preserving the desired amount of supersym-
metry.

Having seen both Regge-like behaviour, in that the first mass level at
which the [k, 0, ...] representation occurs in the spectrum is k plus a con-
stant (-1 in the bosonic and ‘unfactored’ superstring cases and +1 for the
‘factored’ superstring), and manifest supersymmetry, in that the massive
levels of the superstring can be written as a tensor product of the fun-
damental massive supermultiplet of the theory and another term, we now
investigate this systematically for the cases of 4, 8 and 16 preserved su-
percharges. We start by using the methods we have described to derive
the partition functions for the spacetime dimensions, then we form the ap-
propriate products with the spectra of the internal dimensions obtained by
conformal field theory methods.

The choice of 4, 6 and 10 dimensions is natural as these are the max-
imal dimensions in which it is possible to have theories with 4, 8 and 16
supercharges respectively. The dimension of the minimal spinor in d di-
mensions is 219211 divided by 2 if either a Majorana (not symplectic) or
Weyl condition can be imposed or 4 if both can be simultaneously imposed.
A Majorana condition can be imposed if d = 0,1, 2, 3,4mod8 and a Weyl
condition if d = 2mod4.

Spinors of SO(1,3) can have a Majorana property, but not Weyl, hence
the R-symmetry group is (S)U(Nyq), special for Nyg = 4 (because there is no
need for CPT conjugation), those of SO(1,5) can be symplectic Majorana
and Weyl so there are two types and the R-symmetry group is Sp(Nsq,1.) X
Sp(Ned,r), where Sp(1) = SU(2) and Sp(2) = SO(5), and those of SO(1,9)
are Majorana-Weyl so there are again two types and the R-symmetry is
SO(NMoa,.) x SO(Niog,r), vanishing except in the Type IIB case.

When we compactify the Ngg = (1,0) theory on 2 dimensions, the little
group SO(5) decomposes to SO(3) x SO(2) and the SO(2) = U(1) joins
with the SU(2) = Sp(1) R-symmetry to give U(2), which is the R-symmetry
in the Mg = 2 case. When we compactify the Njgg = 1 theory on 2
dimensions, the little group SO(9) decomposes to SO(7) x SO(2) and the
latter is the U(1) R-symmetry, Ngg = 1. Compactifying on 4 dimensions,
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it decomposes to SO(5) x SO(4) and the latter is the SU(2) x SU(2) =
Sp(1) x Sp(1) R-symmetry, Ngg = (1,1); compactifying on 6 dimensions
it decomposes to SO(3) x SO(6) and the latter is the SU(4) R-symmetry,
N4d =4.

We see that the existence of 8 supercharges in 4 dimensions, or Ny = 2,
gives rise to an internal worldsheet theory in two parts, one of which has
N3g =2 and ¢ = 3 and the other has Moy = 4 and ¢ = 6. The first of these
corresponds to two toroidally-compactified dimensions. In the case of 16
supercharges in 4 dimensions, or Ny = 4, the internal worldsheet theory
consists of three Nog = 2 and ¢ = 3 parts, so all 6 compact dimensions are
toroidal. Therefore we can calculate the spectra with 4, 6 and 10 spacetime
dimensions and reduce via toroidal compactification if required. The orig-
inal version of [7] treated all three theories as 4-dimensional theories and
then assembled the higher-dimensional theories via decomposition of the 4-
dimensional R-symmetry into SO(d — 4) and the residual R-symmetry, but
the method used in the current version and in this thesis is more convenient.

In this thesis, we ignore the compactification-dependent Kaluza-Klein and
winding modes. Thus, determining the lower dimensional spectra becomes
a group theoretical problem of branching the associated Lorentz and R
symmetry groups.

Since we can easily infer the spectra of type IIA/B closed superstring
theories with twice the number of supercharges from our open string results
by tensoring two copies together and level matching, we will not do this
here.

We devote most attention to the My = 1 case, since this is both the most
mathematically tractable and, since chiral matter is only possible in this
case, the only phenomenologically relevant case. It is expected that this
case would, after supersymmetry breaking, give rise to phenomenologically
interesting string solutions at low energies with the spectrum of certain
extensions of the supersymmetric Standard Model.

It is known [37] that amplitudes involving standard model gluons and
either 0 or 2 quarks (the number must be even since they are fermions) are
independent of the model of compactification and their signatures could be
observed at the LHC if the string scale is low enough (in the TeV range),
as is the case in compactifications with large extra dimensions. No such

signatures have been observed so far, however. By contrast, those involving
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4 or more quarks leave model-dependent signatures.

The involvement of massive (string) states in scattering amplitudes be-
tween massless states has a precedent in weak decay, where the W- and
Z-bosons are, except in top quark decay, heavier than the decaying parti-
cles. This is permitted by Heisenberg’s uncertainty principle and explains
the short range of the interaction.

In our computations we do not grade the states by their fermion numbers,
in other words we add the spectra of fermionic states to the bosonic ones
rather than subtracting them. As we will see, this leads to partition func-
tions which are not modular-invariant. As expected from supersymmetry,
the spectra vanish if a grading by fermion number is introduced.

Open string states carry Chan-Paton factors at their endpoints, which are
attached to D-branes. In oriented string theories, the Chan-Paton degrees of
freedom transform in the adjoint representation of the group; in unoriented
theories the representation depends on the mass level, as shown in chapter
6 of [53]. We do not include these factors in our partition functions.

We start, in Section by developing the foundations for refined super-
string partition functions. Using light-cone quantization, we compute the
SO(D — 1)-covariant spacetime partition functions in the bosonic, NS and
R sectors. We then, in Section describe the universal spectra of the
internal dimensions, adapting those from [12] in the 4-supercharge Nyg = 1
case and [I1] in the 8-supercharge Ngg = (1,0) case to our requirements,
and in Sections [4.4] and tensor them together with the partition
functions of the spacetime dimensions to give overall partition functions
which are super Poincaré covariant. Factoring them into super-Poincaré
multiplets, we can then obtain multiplicity generating functions, where we
choose a representation and count, for each mass level, the number of times
the representation occurs at each level, as opposed to grouping by mass level
and counting how many of each representation there are in the spectrum at
that level. These power series are what give rise to the stable patterns, also
called (leading) Regge trajectories, which we derive both analytically and
empirically, from the tabulated data up to mass level 25, in the Ny = 1
case, seeing that they agree, and empirically in the 8- and 16-supercharge

cases.
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4 The covariant perturbative

superstring spectrum

4.1 Spacetime partition functions

This section reviews the construction of a refined partition function for
the oscillator modes of the world-sheet fields 0X*, " which form a su-
permultiplet on the world-sheet and carry an SO(1,d — 1) vector index
pu=0,1,...,d — 1. The quantization, whether lightcone, old covariant or
BRST, removes the u = 0,1 modes leaving D —2 modes which form a vector
representation of the SO(D — 2) massless little group, although since mas-
sive particles with D-dimensional timelike momentum form representations
of the massive little group SO(D — 1), the dependence on y; necessarily
arranges into characters of this group.

We introduce one fugacity y; for each pair of oscillators 9X?, X% +!
and their (world-sheet) fermionic superpartners 2, 4?1 and we take two
linear combinations X'+ * having charges 42 respectively under the
Cartan generator corresponding to that fugacity and 0 under all other Car-
tan generators. This differs from the last section in which we used Dynkin
labels for the powers of the fugacities in each term in the character ex-
pansion. We normalize the charge under the i-th Cartan generator to £2
rather than +1 so that the weights of spinor representations have (odd)
integer charges under all the Cartan generators rather than half-odd integer
charges.

Recall that we define the character of a representation of a group as the
sum of terms consisting of products of the fugacities raised to powers spec-
ified by the charge of each weight under the Cartan subalgebra generator

corresponding to that fugacity. We therefore see that the vector represen-
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tation of SO(D — 1) decomposes into those of SO(3) as follows:

(D-2)/2 1 (D—-2)/2 .
[1,0,..Jsop-1)(#) = E: (y§4*§§)+4»: E: [ﬂsomﬂyﬂ‘*§([)*4)

i=1 @ i=1

(4.1)
In the SO(D —1) characters, § refers to the vector of all 1(D —2) fugacities
yi, and in the SO(3) case to one specific SO(D — 1) fugacity, with the sum
(in the character of the vector) or product (in the partition function and
the character of the spinor representation) being taken over all SO(D — 1)
fugacities. This would not be the case if we used Dynkin labels. Therefore,
we will first calculate the spectra in the 4-dimensional case with 2 direc-
tions perpendicular to the lightcone (or not removed by the physical/null
or closed/exact cohomology in old covariant or BRST quantization respec-
tively), and then build those in the D > 4 case as products of (D — 2)
copies of the D = 4 spectra.

In the 4D case, we will first consider the contribution to the refined parti-
tion function made by the bosonic oscillators, then that from the fermionic
ones in both the NS and R sectors. We will then multiply them together to
get the full spacetime NS- and R-sector partition functions, and also quote
these in unrefined form, and we will finish this section with a discussion of
obtaining D > 4 spectra from products of 4D ones.

We recall that the character of the [n] representation of SO(3) (or SU(2)),

of dimension n + 1, is given by:

n/2

ly= > v* (4.2)

k=—-n/2

There is one bosonic raising operator for each positive integer mode and each

direction transverse to the lightcone, so the contribution of the lightcone
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bosons to the refined partition function is given by

Xo Day) = PE[([2,-D(a+@+P+¢" +...)]
. _ q
- rr @, - 1L,
s 1 1
_ _ (4.3
nHl (1—92q") (1—y2¢") (0% d)oolay % @) )
1 NIC))
frg —1q 12 — 44
q1z(y —y )ﬁl(ygjq) (4.4)
where the g-Pochhammer symbol (a, ¢), and (a,q) are defined by
n—1 ]
(@ =](0-ad"), (65000 = [J(1 - ad") (4.5)
k=0 k=0

and our conventions for the Dedekind eta and the Jacobi theta functions

areE
00
nq) = q= 1:[ 1-¢") = q31(q; 9o (4.6)
Ii(yq) = —igs(y? —y ?) 10_0[ 1—¢")(1—yg") (1 -y 'q"), (47)
n=1
9a(y,q) = ¢35y +y 2 f[ (1-¢") (1 +yg"(A+y'q"), (48)
9s(y,q) = ﬁ(l —¢") (L+yg" ) (1 +y '), (4.9)
n=1
Day,q) = ﬁ(l —q") (L—yg" )1 =y~ "), (4.10)
n=1
where here and throughout the thesis we define
y = exp(2miu) , q = exp(2miT) . (4.11)

!These conventions are related to, for example, those adopted in Appendix A of [73]
by y = exp(2wiv), q = exp(2miT). We refer the reader to this reference for further
properties of such functions.
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In terms of an infinite sum, the Jacobi theta functions can be written as

Z q% m—a/2)? —urb )(m—a/?) 7 (4.12)
meEZ
where
=90, =09, a=9[, da=0[]. (4.13)
Explicitly, the first few terms in the power series of X B (3)( y) can be
written in terms of SO(3) characters [k], as
e Nay) = 14 a(2ly =D+ ¢4y + (2l + [6))
+ q*([0]y + 2[4]y + [8]y) + " (2[2], + [4], + 2[6], + [10],)
+ q°(2(0), + [2]y + 3[4]y + 2[6], + 28], + [12],)
+ q7(4[2]y + 3[4]y + 4[6], + 2[8], + 2[10], + [14],) + .(4.14)

We see that only even-labelled representations of SO(3), i.e. those with
integer spin, occur, at least up to this order, as we expect from the form of
and which is masked by the theta function expression.

From such a power series, we are motivated to rewrite as an infinite

sum of the form
o0

= [klyfilg) (4.15)

k=0
for some function fx(q) which depends only on ¢ and not on y. We know
that this is possible, because X B 0@ )(q,y) is invariant under y < y~! and
the characters [k],, k > 0 form a complete basis of functions invariant under
this interchange. The use of this form of the partition function will become
clear later.

In order to do so, we rewrite (4.3)) using the g-binomial theoremﬂ as

2(m n) 0

4,y quq @ qm+”=:§j[k]yfk(q>. (4.16)

m=0n= 0 ’ k=0

The g-binomial theorem can be shown to be true combinatorically; the co-

efficient of 2™ can be shown to consist of the contributions ¢2=i=1* summed

n

2 . . 1 _ oo z
The version we use states that —s— =377 =—.
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over all partitions A = (A1,...) consisting of no more than n terms, some
of which may be zero, which is equal by transposition to the sum of the
contributions for all partitions in which all the \; are less than or equal to
n, which is given by (¢;q),;*. To obtain , we multiply together two
such expansions, one with z = ¢y? and the other with z = qy~2.

Before we proceed further, we state an identity that we are going to use
many times later. From and the residue theorem, we find that

do.n for m=0,

3Ol = Omlnsa)  form#0,

where the Haar measure dugo(s) is given by

11 d _
[ ansow® = [ansv =554 -y @)
-

(A simpler Haar measure, in which the division by 2, which is the order of
the Weyl group of SO(3), and the multiplication by (1 — y~2) are omitted,
was introduced in [3] and was used in old versions of [7], but we reverted
to the more conventional form for the current version.) We prove by

expanding out the integrand:

11 dy

= A fym—n—2 +ym—n+ym+n7ym+n+2)
22m ly|=1 Y

/ dusom) (y) y™" [y

(4.19)
There are no odd y powers in , so only integer spin representations
occur, i.e. fory1(q) = 0 for all k, and the expressions for for(q) are given as

follows:
forla) = / dusom @) 20 (¢, y)2k],

— q
_ Z <1 - qn+k+1>

= (6 D)@ Dtk

2n+k

= ()2 (~1)"H 1 — g2t (4.20)
n=1

Our SO(3) character expansion of the bosonic partition function is thus as
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follows:
SO . n n(n—
Xz Da.y) = (g:9) 22 M1 — g2y g ren g, . (4.21)
k=0

Note that the pattern Yo%, (—1)"~1g"¥[2k], ..., where the ... ellipsis does
not depend on y and k, is described in section 6 of [10] as an alternating
sequence of additive and subtractive Regge trajectories of slope %, with the
power of ¢ on the z-axis and k on the y-axis. This is the source of the stable
patterns as described in the previous section in bosonic string theory. We
will calculate these explicitly later in this section for the spacetime spectra,
both bosonic and combined bosonic and fermionic in both the NS and R
sectors, and the main focus of this thesis is to investigate such patterns,
if they occur, for the superstring spectra that we will consider later. (Our
heuristic treatment of the Mjgq = 1 case with 16 supercharges shows that
they do.) These patterns, or the leading Regge trajectory at least, are
called stable because, as m — 0o, more and more coefficients, i.e. the first
m, of the multiplicity generating function for [2m] match those of the stable

pattern.

Multiplicities of representations [2m| and their asymptotics

Let us determine the multiplicity of irreducible SO(3) representations [2m]
at each mass level. Recall the orthogonality of characters with respect to

the Haar measure:

/ Ao )mlynly = Smn - (4.22)

From (4.21)), we find that the generating function of the multiplicity of [2m)]
is equal to fon,(q):

MOGP® 2m)iq) = / dusoes) (v) 2ml,x s’ (g, )

1
_ QZ 1 —q ) qin(n—l)qnm(4.23)

Asymptotics as m — oco. The expression (4.23) found for multiplicity

generating functions greatly simplifies in the limit m — oo of large spin and
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mass level. In order to compute an asymptotic formula in this regime, we
apply Laplace’s method to our question. Since 0 < ¢ < 1, the terms in
the series peak sharply near the n = 1 term as m — oo. Therefore, it is

expected that for any € > 0

1+ €]
1
MY 2mlig) ~ (0052 Y (1" 1= "2 Dg oo

n=1

(4.24)

Now let us write n = 1 + ¢, where ¢ is small compared with 1. Note that
1
gz =1 4 508 )t +O(F%) . (4.25)
Substituting the leading term of this power series into the right hand side

of (4.24) and extending the region of summation to oo, we find that the

®3)

leading behaviour of M (X*ZO ,[2m]; q) is given by

MO 2mlig) ~ (40):2 Y (—1HL - ¢t 2D
t=0

o "1 —q)? (1—q¢"tm)

= @D gy (1t ) (14 )
B S B
= (¢"19)a0 R — 00 . (4.26)

The higher order corrections can be computed by taking into account the
subleading terms of . Note that the next to leading term of is of
order O(¢*™logq). Thus, asymptotic formula reproduces the exact
result up to O(g>™~1).

Interpretation and stable pattern. We can extract some information
about bosonic string states from .

e The representation [2m] appears first time in the bosonic partition
50(3)

function x5 " (¢,y) at mass level ¢".

e The multiplicities of [2m] at levels ¢, for 0 < ¢ < m — 1, are
independent of m. We refer to a set of these numbers as a stable
pattern for bosonic string theory. The generating function for such a

stable pattern can be determined by taking a formal limit m — oo in
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(4.26):

o0

Tim g MG 2mlig) = (5 0)2 = [[0-d"? (@27)
k=2

=1+2¢°> 4 2¢% + 5¢* + 6¢° + 13¢° + 1647 + 30¢% + 40¢° + 664'°
+ 90g" + 142¢"? + 192¢" 4 290¢™* + 396¢"° + 575¢'6 + 782¢""

+ 1112¢™® + 15004 + 2092¢%° + 2808¢*" + 3848¢*% + 5132¢**
+0(¢*) . (4.28)

We do not actually need to calculate the explicit asymptotic expression
to derive this stable pattern, but can instead simply read it off as the
n = 1 term in the series in . Note that terms with low orders in
this power series are in agreement with the data presented in Table
6b of [10]. In actual fact terms match up to level ¢*™ inclusive, i.e.
for £ = m as well as for 0 < ¢ < m — 1, because the second Regge

2m—+1

trajectory starts at level ¢ on account of %n(n —1)=1forn=2.

2m

The exclusion of level ¢“™ occurs because of taking the asymptotic

expression.

4.1.1 The NS sector in d =4

Under NS boundary conditions, there is one raising operator for each pos-
itive half-odd integer and each transverse direction, so the worldsheet su-

perpartners ¢ of the lightcone bosons contribute

fs(ay) = PEr (2, - D1
= ﬁ(l+y2q"_1/2)(1+y_2q”_1/2) (4.29)
n=1
1 2
- q24§37(71(/q;q) (4.30)

to the spacetime partition functions. We shall rewrite this function as an

infinite sum by means of Jacobi’s triple product identity, which is another
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way of expressing (4.30)) :

oo o
H (1—2®)(1 422" )1 42217 = Z ™ (4.31)

m=—00

Applying identity 1) with z = ¢*/2 and z = y2 to 1’ we obtain

fns(ay) = Z g™ (4.32)
= (@)Y 2™ (1 - ¢3)[2m], (4.33)
m=0

where (4.33)) can be obtained by applying (4.17) and the orthogonality of
the characters to (4.32)) as follows:

S dusos) (y) fns(a y)[2k]y
= (g; Q)_l [Zﬁzo qm2/25m,k - ;La_wq 2/25—771,k~+1
1.2 1 2 1 1 1
= (¢ 0w (q2k — gzt ) = (ga)F?" (1 —¢"3) . (4.34)
Let us combine the bosonic partition function with the NS-sector con-

tribution. Using (4.3), (4.33) and the multiplication rule [2m] - [2k] =
Zf"";: \[21], we find that

4 10312, q
oo D(ay) = XX @y s(ay) = —igSy -y 3<y2 .35)
191(y ,q
o0 o0 1
= (g9 Z (D" M1 —¢mr2)(1 - g")?
m=0n=1
) - [e'e) k+m
xRN gk N 2] (4.36)

k=0 t=|k—m]|

We can manipulate this expression in order to rewrite it as y p- o frmn(q)[2K],

for some function fi;,,(q). In order to determine this function, we use the
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orthogonality of characters:

k'+m

Semn(@) = / dpsos) (y Z > 20, 2K
=0 l=|k'—m]|
nlk—m| _ n(k+m+1)
_ 9 q
_ — . (4.37)

We could alternatively do this by rearrangement of the inequalities to ex-

press the range of k in terms of £ and swapping the order of the sums over
k and £:

(>k—m = k</{+m
>m—-—k = k>m-—/{

(<k+m = k>l-m (4.38)

We then relabel k <> ¢, giving the same expression for fi;,,(q). Therefore,
we obtain, by either method,

s ey = @02 Y S (=11 - g1 - )

m=0n=1

« [n(n—1)4+m?] Z ”‘k m| _ (k+m+1)) [Zk] . (439)
k=0

We emphasise that the SO(3) irreducible representations with odd Dynkin
labels do not appear in the partition function Xﬁg(g)(
pected on account of their absence from both (4.3]) and (4.29)), but is masked

by the theta function expression in (4.35)).

q,y). This is as ex-
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In terms of a power series in ¢, the first few terms are given explicitly by

Xns Navy) = 1+ ¢2([2] — 1) + q[2] + ¢*/2(10] + [4]) + ¢*([0] + 2[4])
+¢°/2(202) + [4] + [6]) + ¢*(3[2) + [4] + 2[6])
7”(2[0] +2[2] + 4[4] + [6] + [8])
g*(3[0] + 3[2] + 5[4] + 2[6] + 2[8])
9/?([0] 7[2] + 4[4] + 6[6] + [8] + [10])

¢°([0] + 9[2] + 7[4] + 7(6] + 2[8] + 2[10])

+ q11/2( 6[0] + 8[2] + 13[4] + 7[6] + 6[8] + [10] + [12])

+ ¢5(8[0] + 11[2] + 17[4] 4 11[6] + 8[8] + 2[10] + 2[12])

+ ¢"3/2(4]0] + 20[2] + 19[4] + 18]6] + 9[8] + 6[10] + [12] + [14])
+ ¢7(6[0] 4 26[2] + 25[4] 4 25[6] + 13[8] 4 8[10] + 2[12] + 2[14])
... (4.40)

As in the bosonic case, we see hints of a stable pattern emerging here too,
one for the integer powers of ¢ and one for half-odd integer powers.

Setting y = 1, we obtain the unrefined partition function

2
o0 1_|_ n—1/2
XSg(S)( ey=1 = 3’ gy fxs(ay) = H (ﬂqn>

n=1

_ _1/893(1,

— (0)20s(1q) = gD (4.41)
n(q)®

In a previous version of [7] we derived this by replacing the characters [2m)]

by their dimensions (2m + 1) in the refined partition function, but in the

current version and here we derive it more directly and simply.

Multiplicities of representations [2j] and their asymptotics

Similarly to the bosonic partition function, we can read off the generating
function for the multiplicities of the representations [2j] at different mass

levels of the NS superstring

1 - - m+2y im > n— n
MO 121 0) = (@03 Y (1—g™ )™ Y (-1 (1 - ¢")
m=0 n=1
x gD (gqrliml _ gnGtmt1)y (4.42)
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Asymptotics as j — oo. In this limit, we have |j — m| ~ j — m for a
finite m. Futhermore, the summand as a function of n is sharply peaked
near n = 1, and so we can determine the leading behaviour of the sum over

n using Laplace’s method as follows (where € > 0):

Z(_l)nfl(l B qn)q%n(nfl)(qn(jfm) _ qn(j+m+1))
n=1

1+ €] A .
~(1—-4q) Z [qn(]_m) - qn(]+m+1)} for e > 0
1

€

S
I

—_
+

—

—

~(1—-gq) [q”(j_m) — q”(jJ“mH)} for e > 0

(]

1

~(1—gq)

NER

{q(tJrl)(jfm) _ q(t+1)(j+m+1)}

t=

=¢"(1-q)

o

1— q2m+1

(=g )=

(4.43)
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Therefore, we find that

2 (1= g2m+1) (1 q§+m)

MOa®, 12,0) ~ (@036 (1 — [ S gt

m=0
340 l-aq S %m1)2—7 2 1im
~ (@) Ty [Z +)(1 q*)]
~ (G0 D (1) [Z(—l)”l(l —q") {q"0 — gD}
m=0 n=1
= (@a)x'¢(1—q)

14+ ql—l—] m (1 + qj m) -4 Z 1 + q1+3+m) (1 + q2+J+m)

[ 0o —m+ 22 (1 q2+m) 00 qm+m72 (1 q2+m) ]

0

(q’ q) 3(]] 1 _?3 Z q—m+’” ( q%-km) 7qz qm+% (1 qé-‘rm)]
m=0
— (0 —3qj(1—Q)
- (Q7Q)oo (1+q]~)2
(1+24-¢)+ (1 —-q)¥300,v/q) (1+2y/q—q)—(1—¢)93(0,/q)
2./q 2./q
= (@0 “<1q>219 (Lg) +0(¢¥™) (4.44)
= (60 d 2 (15,7 ) Vslla q :

Note that asymptotic formula reproduces the exact result up to the
order ¢% -3, We emphasise that the representation [2j] appears first time
at mass level ¢’ ~3. One can also see this by observing that for j > m,
the lowest term in the power series for given m,n is at mass level nj +

3 [(m —n)? —n] and minimizing over m this gives a lowest term at level

n(j — l) so we do get an alternating sequence of Regge trajectories of the
same slopes = and a stable pattern, this time from j — 5 to 2j — 5, in the
same way as we do in the bosonic case.

In [10], the individual n summands of are interpreted as an alter-
nating sequence of additive and subtractive Regge trajectories of slope %

In the notation of equation (6.2) of that reference, the M(XNS( ) ,[24], q) are
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expanded as

SO(3 . . . .
MO 2q) = @5 — PR + B — ..

[e.9]

= S ()1 () . (4.45)

(=1

Setting |j—m/| = j—m in (4.42)) leads to the following asymptotic expressions
for the Té\lsi

() = (@ 0)2 a2 (1 —a) Y 20 (1 — g™ +2) (1 - ¢*™+) (4.46)

The stable pattern. The generating function of the stable pattern can be
determined by projecting the sum in (4.45)) to the first term (or, equivalently,
by taking the limit j — c0):

Jlim. g IMOETP 125, 9) = 75(q)
= (¢;9):3¢7 (1 — ¢)*05(1, q) (4.47)

= (2 + 2q + 8¢% + 14¢3 + 34¢* + 58¢° + 120¢° + 204¢" + 378¢% + 632¢°
+1096¢'° + 1786¢'! + 296842 + . . )
1
t (1 g+ 6¢% +9¢° + 24¢* + 42¢° + 88¢° + 151¢7 + 2878
q

+ 480¢° + 846¢"° + 1388¢"" + 23264¢'% + .. ) . (4.48)

Note that terms with low orders in the power series (4.48) are in agreement
with the data presented in Table 6¢ of [10].

4.1.2 The R sector in d =4

The R sector fermionic oscillators have zero modes and so the ground state
is degenerate, forming a spinor representation of the (massive) little group
since the oscillators are % times the generators of the Clifford algebra. In
the D = 4 case, the two weights in the spinor representation have charges
+1 under the single generator of the Cartan subalgebra and so contribute
y + v~ to the refined partition function. For the positive-energy modes,

there is one mode for each positive integer and each direction transverse to
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the lightcone. Therefore, the R sector of the worldsheet superpartners 1’

of the lightcone bosons contributes

fr(a,y) = (y+y ")PEp {([2]11 — 1) E q]
= w+y HJ[a+vPMA+y %" (4.49)
n=1
19 g
-1 n(q) (450)

to the spacetime partition function. Again, it will turn out to be beneficial

to rewrite this function as an infinite sum. We proceed as follows. Replacing

z by xz in (4.31]), we obtain

00 +o0o 5
H (1—2®)(1+222)(1 + 22271 = Z gmtmym (4.51)

m=—o00
Using the identity
o oo
[[a+a>2 ) =@+ [+, (4.52)
n=1 n=1
we arrive at
00 400 m2+m m+1/2
(22 4+ 272) H (1+2%"2)(1 + 2?27t = m=—oco & . (4.53)

Hn 1(1 - x2n>

Applying identity 1) to 1D with z = ¢*/? and 2z = y?, we have

—+00
frley) = (o)t D, g Hgmmth?

m=—00

= (¢9)x Y 2™ — ™Y 2m + 1],

= ¢ Bgod Y @ -gmE)m),, (454)

mEZZo"r%

where the second equality follows from (4.17)) and the orthogonality of the
characters.

Let us combine the bosonic partition function with the NS-sector con-
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tribution. Using (4.3)), (4.49) and the multiplication rule [2m + 1] - [2k] =

1
ij:ﬁ2 1 [2]], where [ sums over half-odd integers, we find that
= 'rn—§
S0(3) S0(3) : 1, 92(4%, )
X 0,Y) =X ¢y fr(¢y) = —ily —y ™) o——5—= 4.55
R (@Y)=xp (¢:9)[r(2:Y) ( )ﬂl(yQ,q) (4.55)
— q*% (¢:9)% Z Z _ m+1)(1 _ qn)Qq%n(nfl)Jr%(er%)z
m=0n=1
00 k+m+3
x> g™ > (20
k=0 €:|k7m77|
=4 (@0 Z Z — " (1 = g") g D)’
m=0n=1
x Y (gl — g EmER)y ok 417 (4.56)
k=0

Again, this can be rewritten as > ;- o femn(q)[2k + 1], for some function
Jrmn(q) (different to the one for the NS sector). In order to determine this

function, we use the orthogonality of characters:

k'+m
Srmn(@) = /d”50(3) ank Z [24), 2k + 1],
0 =k—m|

qn\k—m| _ qn(k+m+2)

= , 4.
— (4.57)

We could alternatively do this by rearrangement of the inequalities to ex-

press the range of k in terms of ¢ and swapping the order of the sums over
k and £:

1 1
Ezk—m—g == k§€+m+§
1 1

1
(<kimtg = kzl-m—g (4.58)

We then relabel £ — ¢ — 3 (taking [2¢] to [2¢ + 1] to emphasize the odd
Dynkin label; the form with ¢ € Z~g + % however makes rearrangement of

the inequalities easier) followed by k <> ¢, giving the same expression for
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(this) frmn(q). This resembles (4.39)) up to a shift in the summations over
m, k by :I:l We emphasise that SO(3) irreducible representation with even

Dynkin labels do not appear in the R sector partition function X (3)(q, Y).

This is easily seen from .

In terms of a power series, the first few powers of the partition function

are explicitly given by

xr P ay) = 1)+ 203)g + 21+ [3] + [5])q” + (4[1] + 4[3] + 4[5] + 2(7])¢’
+ (6[1] + 10[3] + 8[5] + 4[7] + 2[9])¢*
+ (12[1] + 18[3] 4 16[5] + 10[7] + 4[9] + 2[11])¢°
+ (22[1] + 32[3] + 30[5] 4 22[7] + 10[9] + 4[11] + 2[13])¢°
+ (36[1] 4 58[3] 4 56([5] + 40[7] + 24[9] + 10[11] + 4[13] + 2[15])¢"
¥ .. (4.59)

Again we see hints of a stable pattern arising.

Setting y = 1, we obtain the unrefined partition function
WPy =1)=2 H (1 J_FZ > = ¢ ¥ (g:)302(L, ) = ﬂ;g;;;f) (4.60)

Again for simplicity we derive this directly rather than via the refined par-

tition function, which we did in an earlier version of [7].

Multiplicities of representations [2j + 1] and their asymptotics

The generating function for the multiplicities of the representations [2j + 1]

at different mass levels are

MxEC® 125 +1],9)

[ee) o
_1 — Lim+1)2 1
= ¢ (g9 Y (1= g )gEm D" N (-1 (1 = g)gan Y
m=0 n=1
x (qi=ml — gnlitme2)) (4.61)

in close analogy to (4.42)). In fact, one can obtain the above formula by
shifting m — m + % and j — 5+ % in D and multiply by an overall

factor qfé .
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Asymptotics as j — oo. Similarly to the NS-sector, we find that the
leading behaviour of M(Xlio(S), 27 +1],¢q) is

M (Xﬁo(g) (2] +1],q)

1-— > Lim—1)2_1
~ + 5(m=3)°—3 _2m+2 _m+1
05 (05 9) qU(Hq] Z : 2 (1-¢"") (1—¢ )]
3q] 8(1_Q)
G9) oo — 7 3
~ w2
% [Zq—m+;(m+;)2 (1 m+1 2 qu+ L(m+3) o m+1)]
3(1] 8(1_(1)
G9)oo — 7 3
= (3 0)o0 0t a)

{4 30-an0n}-{a - ja- qwz(o,ﬂ}]

Oo\»—‘

= (¢a)d~ <11+q]> 92(1,q) +O(q¥) . (4.62)
Note that the representation [2j + 1] appears first time at mass level ¢/ and
the asymptotic formula reproduces the exact result up to the order ¢%—1.
This time, we observe that for j > m, the lowest term in the power series
for given m,n is at mass level nj + %(m —n)(m — n + 1) this time having
a minimum over m of nj so we again get an alternating sequence of Regge
trajectories of slopes % and a stable pattern, this time from j to 25 — 1.
The Regge trajectories can be obtained explicitly from the expansion of

M(X§O(3)7 [27 + 1], ¢) in powers of ¢/ as

MGG 25 +10,0) = R — ¥ + ¥R — ...

1)1 ¢ 77(q) - (4.63)

[
HME%

The |j —m| = j —m asymptotics yield the following expressions for the ¢’th

Ramond trajectory Tﬁ:

o
_ _1 1 1_p2
7)) = (G2 5 (1—q")> @07 (1 — ™) (1 - ¢ 4.64)
m=0
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The stable pattern. The generating function of the stable pattern can
be determined by taking the limit j — oo:

lim ¢ M(x2C® | (25 +1],q) = 7R(q)

J—00

= (g:9)2q (1 - ¢)*¥a(1,q) (4.65)
=2 +4q + 10¢°® 4 24¢> + 48¢* 4+ 96¢° + 184¢° + 3364 + 600¢° + 1048¢°
+ 1784¢0 4 29844 + 4912¢'% + 7952¢"3 + 127044 + 20048¢"°

+ 31256¢'% 4+ O(¢'") . (4.66)

Note that terms with low orders in the power series (4.66)) are in agreement
with the data presented in Table 6d of [10].

4.1.3 Bosonic partition function in d > 4

The bosonic partition function in d = 2n + 2 space-time dimensions can be

written as
SO(2n+1 s q
where ¥ = (y1,...,yn). Because the character of the vector representation

[1,0,...,0] of SO(2n + 1), after subtracting 1, is given by the sum of the
SO(3) characters [2],, — 1 for 1 < A < n, the PE can be written as the

product of n copies of the 4D partition function as follows:

SO(2n+1 — q a
Xy ® (g, 7) = PE 1_2([2}%—1)]
qk:l
= X (ya) . (4.68)
A=1

We substitute (4.21)) into this:

SO(2n+1 —
G2 (g, )

—zNn - na— n n ln naA—
= (92" Y > [t = gy grakataratrazigg ),
A=1

EEZZOEEZSO

(4.69)
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For our purpose of resolving the SO(2n+1) content of the partition function,
the aim is to rewrite (4.69) in the form

SO@2n+1), - B,SO(2n+1
WO (@ = S (e Ay GRS () (470)
A1>>A >0
where the summations run over highest weight vectors X = (A1, ..., ) €
Z"™ subject to inequalities Ay > --- > X\, > 0. We can convert these into

SO(2n + 1) Dynkin label notation [a1, ..., ay] by

a; = A—A+1, 1<i<n
an = 2\, (4.71)
or equivalently
n—1 1
i = Zaj—l—ian, 1<i<n
j=1
1
An = 0n (4.72)

Since (4.67)) involves only the vector representation and the PE generates
symmetrizations of the representation, spinor representations of SO(2n+1)

do not appear in X%O(Q"H)(q, J):

B-S0n+1)

Mt} (D=0 A €Z (4.73)

In general, Gfl’ffg\inJrl)(q) can be interpreted as a generating function for
the multiplicities of the SO(2n+1) representation (Ag, ..., Ay) in the bosonic
string partition function. In subsequent sections, unless stated otherwise,
the \; may be all integers or all half-odd integers. This differs from the

treatment in [7] where the two cases are treated separately.

Some useful relations between SO(2n + 1) and SO(3)

representations

In general, the character of the irreducible representation (A1, ..., A, ), whether
the \; are all integers or all half-odd integers, of SO(2n + 1) is given by the
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Weyl character formula, which in our basis is:

in—iti —2(\j+n—iti "
det <yj?(kz+ +h J; 2(Ni+ +2)>
— ,j=1
(A, Ap)y = D e I\” : (4.74)
det (yj 2 — Y; 2 )
ij=1

We can derive this expression by observing that any single Weyl reflection, in
this basis, now taking (A1, ..., A,) to be a general weight rather than neces-
sarily a highest weight, either sends A\; — —\; for one ¢, swaps the positions
of two \;, or swaps the positions of two \; and reverses the sign of both,
which can be taken to be a combination of one of the second type of reflec-
tion and two of the first type. The Weyl vector (p1,...,pn) = %ZaeAJr a,
where A is the set of roots and A is the set of positive roots, is given by
pi =2(n—i+3). (We later use A for the function that converts between
SO(3)™ and SO(2n + 1) representations and p for the conversion factor be-
tween the Haar measures.) Substituting into the Weyl character formula,
we obtain the determinants in both the numerator and denominator as in
(4.74).

Also, the Haar measure for SO(2n + 1) can be written as

[ usoenin(@ = [ duso @)+ [ dusow(um) @, (475)
where
. 1 9 _ _ _
p(i) == TI O—vivHa—u "y (1 — Yy 2) (1—9%y7) - (4.76)
T 1<i<j<n

In order to obtain compact formulae for the multiplicity generating functions

Gi’?ﬂog\inﬂ)(q), we have to convert the SO(3) character products in (4.69

into a basis of (A1,...,\,)y, i.e. we have to find the A coefficients in the

basis transformation

[T2kal, = D> AQw.. A2k, 2k0) (M-, An)g - (477)
A=1 A1>.. > A >0

In general, according to (5.10) of [10], it can be shown that the coefficients
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in this basis transformation are given by
A(/\h ooy Ang 2k, 72kn) /dNSO(2n+1)( ) (/\17 R An)ﬂ H [2kA]yA

1 n A—0o
=~ ) sen(o H9|2>\: Mo B (Foya)

= Z det (6320707 (ko)) | (4.78)

A,B=1
where the function 0! (k) is defined as

1 ifm<k<n,
0 (k) = (4.79)
0 otherwise .

Following [I0] but using fugacities y; instead of chemical potentials 64, we
prove this formula as follows. We note that the Haar measure of SO(2n+1)
is equal to the square of the denominator in the Weyl character formula
(4.74), so we substitute it into the first line of and rewrite it as
an integral over products of SO(3) Haar measures, which we re-obtain by
factoring them out of the two determinants converting each matrix element

into a character:
AN, ooy A 2k, .0, 2ky) (4.80)

— % H / dpso) (ya)[2kaly,

x det ([ i+ m =)y, det (200 — D)ly,)_,
1

== D sgn(or)sgn(o2)

" 01,0265,
< T [ som 02l 20 = 21(4) + ey a0~ 92(4))s,
(4.81)

This identity holds for A; and k; either all integers or all half-odd integers;
A(...) vanishes when )\; are all integers and k; all half-odd integers or vice
versa.

Thus, Eq. (4.78) implies the following expansion rule for SO(3) character
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products in terms of SO(2n + 1) characters in Dynkin label notation: (\;
are all integers for 1 < ¢ < n — 1, but A\, can be either an integer or half
an odd integer, in which case k4 are all integers or all half-odd integers

respectively)

H 2aly, = > [l1,. . ln1, 2]y

lezz,,

XA (2ky, ..., 2kp b+l + ..o+l b+ ooy, ) (4.82)

The inverse decomposition formula follows from the SO(2n + 1) Haar mea-

sure (4.75):

(01, b1, 2005 = H 2k aly
ez, A<t

X (£1—{—fz—{—...—l—én,gg—i—...+£n,...,€n;2]{31,...,2]€n) , (483)

where p(i) is defined as in (4.76) and £ = (¢4, ..., £,). This can be derived
by simple manipulation of (4.82)) as follows, with ¢; and ¢, all integers for

1 <i <n—1 and the same conditions (integer or half-odd integer) on ¢,
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and ¢/, as on the ky:

/ Ao (@) T[] 2kaloalls. - 00y, 2005
A=1

= /dM50(2n+1)(37) D [l 1, 25

XA(2k17~~-72kn;€1+€2+---+£n7£2+--~
X[llv'--a %—1725%]27
=A(2k1, . 2k O+ 0+ 0, 0+

n
Multiply both sides by H [2k 4]y, and sum over ky:

A=1
n

( dpso@ns+1) (¥

ka A=1
,0(_’)[ | R %—1?2641]?7
Z (21, .. 2k O + U5+ 4 0, 0 +

ka

and the final step is trivial, just divide by p(7).
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H2kAyA ey fn—1,
A=1

=D (H (/ d#50<3>(yA)[2kA]yA> p(F)[l7, -

+lny oy ly)
) (4.84)
25;1]37) H[Qk’B]yB
B=1
: ;_1’2&}@') 1 12k5)ys
B=1

A O ) T 12k Aly
A=1

(4.85)



Generating function for the multiplicities

According to (4.69)), the bosonic spacetime partition function in 2n + 2

dimensions depends on Lorentz fugacities through the factor

ST AR A 2K, 2k, ) gk

K1y ko >0

- 2n+Aps—A—B n niki+..4nnkn

= Z det(e\)\A_A+B\ (kA))A,leq .
ki,....,kn>0

n

2n+A4—A—B k
— det Z q;‘rgw‘ (ka)qmaka

ka0 A.B=1

n—B-1 "

n
= H q"cPo=CH) get Z gnaka . (4.86)
ka=B—1

C=1 A,B=1

Let us apply this to (4.69) to compute foﬂo/(\?ﬂ)(q). For \y > --- >

An > n — 1, the argument in the absolute value is non-negative and so

Z A()\l, ey A 2k, ., an)qn1k1+...nnkn

k1:~~~7kn20
n
= [ I (@ =)t —gmete) (4.87)
A=1 1<B<C<n

for \y>--->A,>n—-1.

This formula can be derived by column-reducing to get the (A, B)-th matrix
element (for B < n) to equal ¢"A(B=1 4 ¢na(?n=B=1) and then splitting
the determinant into the sum of 2"~! determinants, labelled by an integer
p,0 < p < 277! — 1, with each element in the B-th column containing
either the lower or higher power depending on whether the B — 1-th bit (we
choose from the right) of p in binary is 0 or 1. Each determinant factorizes
into the product of the Vandermonde determinant and a (different for each
term) Schur polynomial both with the specialization y4 — ¢*4, weighted
by the sign of the permutation required to bring the powers into downward
ascending order. We can show that the sum of these gives rise to the product
of (1 —¢"c*"B); that of (¢"¢ — ¢"#) is the Vandermonde determinant.

It is pointed out by [10] and can be checked directly that the contribution

from A, < n — 1 to the bosonic string partition function is zero. Therefore,
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we have

B,SO(2n+1
Gy ()

q q —2n Z H nA 1 —q A)Qan()\AfA+1)+%TLA(TLA71)
neZ A=1

< [ @ —-q¢=)0-qete), (4.88)
1<B<C<n

forall A\q,...,A\p € Zand \{ > ... > A\, > 0.

4.1.4 The contributions from the NS and R sectors in d > 4

The contribution from the NS sector can be obtained by taking a product

of n copies of (4.39):

SO( 2n+l

n
XNS H XNS Q7 ya)
>
VAL

n
—3n Z H nA+1 ( o quJr%) (1 . an) «
meLL, ALy A=1
n

o
q%[nA(nA—l)-i-m,%\] Z H nAlkA mal| _ nA(kA+mA+1)) 2kaly, - (4.89)
kezy, A=1

Similarly for the contribution from the R sector, the product of n copies of
(14.56)):

2 (g, 5) = TT x5 (g5 9a)

A=1

=q % q7 3n Z Z H nA—l—l _qu—l—l)(l_an)X

m€Z>O nEZ A=1

q%[nA(nA 1)+ mAJr Z H nA|k:A mal (kA+mA+2)) [QkA‘FHyA

(4.90)

80



The unrefined partition functions can be written as

n _as¥3(1,q)"
e (g (=1} = LD (1.91)
n(q)
SO(2n+1) 292(1, )n
Avi=1}) = ——3—. 4.92
XR (¢, {yi = 1}) (@) (4.92)

4.2 Internal SCFT on the compact dimensions

We can replace the remaining 6 dimensions of spacetime by any worldsheet
superconformal field theory with ¢ = 9. The internal SCFT can be quantized
using the BRST method.

It is shown explicitly in chapter 18 of [54] that the SCFT description of
four- and six dimensional string compactifications with Nyg = 1, Nyg = 2
or Ngqg = (1,0) spacetime SUSY, the last of which can be compactified on
a 2-torus to the second, comprises universal sectors with enhanced Ny =
2,4 worldsheet SUSY [54, [I5]. The purpose of this section is to collect
the associated charged characters, starting from the expressions given in
[12, 11] but adapting the dependence on fugacities s,z and z of the internal

symmetries to the R symmetries of the spectrum.

4.2.1 N,q =2 worldsheet superconformal algebra at ¢ =9

The internal SCFT universal to any four dimensional string compactifica-
tion with N3y = 1 spacetime SUSY has Ny = 2 worldsheet SUSY. The
resulting model independent partition function receives contributions from
characters of the Nog = 2 superconformal algebra with central charge ¢ = 9.
Its representations are characterized by the conformal weight h and the
U(1) charge ¢ of their highest weight state. The representations needed to
describe Nyg = 1 compactifications have (h,¢) = (0,0) in the NS sector and
(h,l) = (%, %) in the R sector. (In our partition functions we normalize the
U(1) charge to 1 in the R sector for the purpose of the power of the U(1)
fugacity in the partition functions, i.e. we multiply it by %)

We will not discuss the details of the internal SCFT here; they can be
found in [12], although we use a different U(1) charge (more correctly the
SCFEFT splits into two parts and there are therefore two U(1) charges in
the theory; [12] refines the spectrum with a fugacity s raised to the power
of (a multiple of) only the first U(1) charge, while we use a (diagonal)
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combination of the two which is BRST-invariant, which is required in order
to generate spacetime symmetries, including the R-symmetry), and [15],
where we obtain the first massive level explicitly via BRST quantization.
We first calculate what is called the Verma module, which is constructed
by the action of raising operators of the (super)Virasoro algebra on the
highest weight state, on which the action of lowering operators vanishes and
Ly has eigenvalue h as above. (This is different to string partition functions,
where the states are built up .) From the (super)Virasoro algebra, outlined
for the various cases in [53, 54} [12] 11], the action of any raising operator,
bosonic or fermionic, wth mode —n raises the eigenvalue of Ly by n. The
Verma module can be irreducible, or it can contain null states which are
orthogonal to all other states in the module, so these must be removed.
In [II] this is done by finding the lowest null state and then iteratively
constructing null states from lower null states; this construction leads to
an alternating sum as we ensure each null state is only subtracted out once
from the Verma module. The action of raising operators on null states leads
to further null states, so the total partition function can be written as this
alternating sum times the partition function of the original Verma module.
The internal partition function is calculated by taking the trace of ¢,
refined by s raised to the power of the U(1) charge (or by rank(G) fugacities
each raised to the power of the corresponding Cartan subalgebra charge for
a general R-symmetry group GG). We do not incorporate the factor of g/
as in [53 54, [12] because the total central charge of the theory, including

spacetime dimensions and (super)ghosts, is zero.
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The NS-sector

The internal character in this sector is given by

PP 2P

Nog=2,c=9 S0O(3)
XNS o i—o(@:8) = (1 — q@)x (¢,1)
NS,h=0,(=0 NS z% (1+ qp_%)(l N qp+%)

qp2 +p— % §2p

= (9 (1—q)03(1,9) Y (4.93)

pEZ (1+ qpié)(l + Q‘H%)

5 i PP
=(;0) o (1 = q)U3(1,q) ¥ 52
- p=0 TPl 4P 2)

(4.94)
where we have introduced the notation
n -no. >0
sy=d 5T " (4.95)
1 :n=0

to compactly represent the fugacity dependence. Explicitly to the first few

orders we have

14+ q+ (24 52)¢% % + B+ 52)8° + (44 52)¢%% + (6 + 252)¢°

+ (10 + 482)q"/? + (15 + 652)q* + (20 + 852)¢”/% + (28 + 1252)¢°
+ (42 4 1955 + 54)¢" /% + (59 4 2759 + 254)¢°

+ (78 + 3652 + 254)¢™/% + (107 + 5lsy + 3s4)¢" + O(¢**/?) ,
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The unrefined internal character (i.e. setting s to unity) can be rewritten in

terms of modular functions as follows:

2+p_l
Nog=2,c=9 -3 q° 2(1—q)
NS h—0.0=0(@ s = 1) = (¢;0)sV3(1, q) E —
- pez (L+¢” 2)(1+¢Pt2)

) 1 1
= (4;9):393(1,9) ) ¢° —~
h I;Z L+¢7%2)  14¢73

2 2p+1
. qp ]_ —q D
= (g:¢)203(1,9) > ¢ 1=a") T )
A

o Y (¢ o)

PEZ

a(1.47) — aHa(1,6D)] . (4.96)

_ q1/g U3(1,q)
n(q)?

The R-sector

The internal character in this sector is given by

2.1 2p—1
Nog=2,6=9 N SO(3) g s
XRhs/si=se(@8) =1 —axg (a0, ny YR
pEZ
p*—§ §2r—1
= (q:9)23(1 — 1 1 4.
PEL
q(er%)2 _ %

-3
— ()2 (1 — g1
(Qa Q)oo ( q)ﬁQ( 7q) pZO S2p+1 (1 + qp-l-l)(l + q_P)
(4.98)
Explicitly to the first few orders we have

51+ 2510 + 6519 + (253 + 1451)¢> + (4s3 + 30s1)¢"
+ (1083 + 6251)q° + (24s3 + 12251)¢° + (503 + 230s1)q" + O(¢®) .
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The unrefined internal character can be rewritten in terms of modular func-

tions as
Nog=2,c=9 —319 1 qPQ_%(l — Q)
XR,h:?)/S,Z:?)/Q(q’ s = 1) - (Q7Q)oo 2( 76.0}% (1 + qp)(l + qpfl)
-3 2 . 1 1 1
— 7 19 17 D p 8 —
(q Q)oo 2( Q)ng (1+qp 1+qz71>
2 1
5 ¢" PTE(1— g
= (¢:9)s V2(1, g
w2000 L
_ (q;Q)go3792(17Q) Z (q(P*%)Qfg N qp2—%)
PEZL

= q_1/419727261];3) |:192(17q2) - q1/4793(1?q2):| :

(4.99)

Some features

Let us discuss some properties of the above internal characters.

e We have normalized the U(1)p differently from [12] such that all in-
teger powers of s occur. According to the infinite sums within
and , even powers so), firstly occur along with q7’2+p*1/27 i.e. in
the NS sector at mass level p? + p — 1, except when p = 0 when the
levels are 0 and —% respectively. (The difference comes from the zero
point energy which is —% for a 10D (total) theory in the NS sector,
which is not incorporated into these characters). Odd powers sa,_1 of
the U (1) fugacity, on the other hand, firstly show up at power qp2_1,

which is their mass level in the R sector.

e The unrefined internal R character (4.99) can be derived from the NS
counterpart (4.96)) by exchanging ¥ and 93 and multiplying by an

overall factor ¢—3/8.

e Both of the unrefined internal characters (4.96) and (4.99)) are not

modular invariant. This can be seen from the modular transformation
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qr G=e 2T
7-92 (17q~) = 194(17q>\/ii7— N (q~) = W(Q)\/TZT y
93(1,4) = 93(1, q)v/—iT . (4.100)

We will make use of these transformations later when we come to calculate
the total numbers of states at each level in the combined spacetime and

internal partition functions.

4.2.2 N3 = 4 worldsheet superconformal algebra at ¢ = 6

As stated, but this time not derived, in chapter 18 of [54], the existence
of eight supercharges in four or six dimensional spacetime implies that the
universal part of the internal SCF'T contains a sector with central charge ¢ =
6, enhanced Nog = 4 worldsheet SUSY and SU(2) Kac Moody symmetry
at level 1. The ¢ = 6 representations contributing to the NS sector and
R sector of Nyy = 2 and Ngg = (1,0) spectra are characterized by values
(h,?) = (0,0) and (h,?) = (i, %), respectively, of the conformal weight h
and the spin ¢ with respect to the SU(2) Kac Moody symmetry. (As with
the U(1) charge in the 4-supercharge case, our SU(2) is not the same as
that in [I1]; again the CFT splits into two pieces each with their own SU(2),
[11] uses the first one, while we use a (diagonal) linear combination of the
two, again because of the need for BRST invariance in order to generate the
R-symmetry.) Again the first massive level is obtained explicitly by BRST
quantization in [15].

The second sector of the internal SCFT describing Ny = 2 supersymmet-
ric string compactifications has central charge ¢ = 3 and N5y = 2 worldsheet
SUSY. This corresponds to two toroidally compactified dimensions with
spectrum the same as for two spacetime dimensions. In the Ngg = (1,0)
case, they are two spacetime dimensions and the two cases are related by

toroidal compactification on those two dimensions.

The NS-sector

The internal character in this sector is given by, written in the first line treat-
ing each SU(2) weight separately (almost as though we are considering it as
a U(1)), in the second line (using (4.17)) as a sum of SU(2) representations
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times terms independent of r and in subsequent lines its explicit expansion

to low orders:

g3 9
Nag=4,c=6 50(3 m2 2 — 7
XNgdh OCZ 0(q7 ) XNS )q7 Zq? +47" ﬁ
meZ 1+ q 2
o] _ B kil
= (6:0<05(1,9) ) _[2k a Q)l(l 1 2)3 L (4.101)
= (l+d )1+ 2)

= [0] + [2lrg + (2] + [0])g** + (12} + 2[0],)¢” + (2[2], + 2[0],)¢*/?
(4[2) + 2(0],)¢® + ([4] + 5[2) + 4[0],)q""* + (2[4] + 6[2], + 7(0],)q"
(2[4, + 10[2], + 8[0),)¢°* + (3[4] + 16[2],- + 9[0], )¢

(64), + 21[2], + 15[0],)g"/* + (9[4], + 27[2], + 23[0],)¢°

(12[4], + 39[2], + 27[0],)¢"*/2 + (6], + 17[4], + 56[2],- + 33[0],-)¢"

O(q 15/2) '

+ o+ o+ o+ +

The unrefined internal character for the NS-sector can be written as

Nog=4,c=6 93(1,9)2 . -
XnSheomo(GT=1) = ql/S% [1—2i¢"3p (HZ,7)] , (4.102)

where p(u,7) is an Appell-Lerch sum defined in (4.104)); for our purpose,
we have

1 + 7 . i q%m2—§1§
o < 5 ,7’) = —53(0) 2omez LT (4.103)

where we have used the fact that 9 (62“(1+7)/2, q) = ¢ 1/895(1,q).
The Appell-Lerch sum is defined as follows [16]E|

elimu ewim(m-{—l)r—‘r?mmu
— m
plum) = —5oms D V" T s (4.104)
’ meZ
where
y = exp(2miu) , q = exp(2miT) . (4.105)

3The notation in this thesis and that in Proposition 1.4 of [I6] can be related as follows.
Our notation is on the left hand sides of the following equalities: u(u,q) = u(u,u, q),
and Y1 (u, 7) = —H(u, 7).
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The R-sector

The internal character in this sector is given as follows. Again the first line
treats each SU(2) weight separately, the second line is written (again using
(4.17)) as a sum of SU(2) representations times terms independent of  and

the subsequent lines are its explicit expansion to low orders:

-2
Nog=d,c=6 . _ ,S0(0) 2m+1 q" —r Im24im
BT = e T e Gt
meZ
© k+1
_1 _ 1-qg)(1—¢q 1323
= ¢ 5(g;9)>0a(1,9) Y 2k + 1], 1~ a)( ) 43k (4.106)

= T+ M)A+ )7
= [y +2[1rq + (2[3) + 4[1))¢” + (4[3) + 10[1),)¢’
(10[3], + 20[1])¢" + (2[5] + 22[3], + 38[1],)¢°

_|_
+ (6[5], + 44[3], + 72[1],)¢® + (14[5], + 86[3], + 130[1],)q" + O(¢®) .

The unrefined internal character for the R-sector can be written as

Nag=4,c=6 192(]#(]) q" —1 1
XR,QI;izi,Z:%(q” =1)= Z 3+

- on(@? A \1+gm
- S
= q—l/gﬁi]((lq’)%y 120" fu(1/2,m)] , (a107)
where we havd]
(1/2,7) = =g s B (4.108)

where we have used the fact that ¥1(—1,q) = ¥2(1, q).

Some features

e Characters [n], of SU(2)g follow the same highest weight notation as
for SO(3), i.e. we have [1], = r+r~! for the fundamental representa-
tion and [n], = Z;:Zuz 72k in the general spin n/2 case. Again, the
infinite sum representations allow to read off the lowest level where in-

dividual SU(2)g representations contribute: Integer spin representa-

4This function is also closely related to the function hz(q) introduced in [T} [T3] [T4].
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tions [2k], firstly occur at ¢**/2tF=1/2 i e, at mass level k2/2+k—1/2,
except for [0], first occurring at ¢° or mass level 0. (Again the actual
mass level of first occurrence in the NS sector is this plus —%, the zero
point energy in the NS sector which we have not incorporated into
these characters.) Spinorial representations [2k + 1], on the other
hand, firstly show up at ¢**+3)/2 ie. at mass level k(k + 3)/2.

e Observe that the unrefined internal characters in both NS and R sec-
tors involve Appell-Lerch sums, which are mock modular forms. Since
the characters and are holomorphic in ¢, it is immediate that they are

not modular invariant.

4.3 Spectrum in N,;; = 1 supersymmetric

compactifications

This section opens up the main body of this work where the SCEFT ingre-
dients introduced so far are applied to counting universal super Poincaré
multiplets in the perturbative string spectrum. We start with the phe-
nomenologically relevant and mathematically most tractable Ny = 1 su-
persymmetric scenario. Its SCFT description requires the internal sector
with enhanced Nyq = 2 worldsheet SUSY introduced in subsection [.2.1]
independently on the compactification details. The BRST invariant comple-
tion of the internal current takes the role of the U(1)r symmetry generator.
Lorentz quantum numbers enter through the partition functions and
of the spacetime SCEFT for the dX* and ¥* oscillators, expressed in
terms of characters of the massive little group SO(3) in four dimension.
The universal part of the Ny = 1 spectrum is built from both spacetime
oscillators and internal operators. On the level of its partition function
XN4d:1(q; Y, ), this amounts to forming a GSO projected product of NS-
and R characters from the spacetime- and internal SCFT, see and
for the latter. In a power series expansion in ¢, the coefficient of
the n’th power ¢" comprises characters for the Ny = 1 super Poincaré
multiplets occurring at the n’th mass level with m? = n/a/. The aforemen-
tioned massive supercharacters are functions of SO(3) fugacity y and U(1)g

fugacity s.
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The fundamental Ny, = 1 multipletﬂ consists of 2 real bosonic degrees of
freedom and a Majorana fermion with 2 real fermonic on-shell degrees of
freedom after taking the Dirac equation into account. The two real bosonic
degrees of freedom can be complexified to yield a complex scalar and its
complex conjugate; they transform as a singlet under the little group SO(3)
and each of them carries opposite R-charges +1 and —1. On the other hand,
the two real fermonic degrees of freedom transform as a doublet under the
little group SO(3) and each of them carries zero R-charge. Thus, these 2+2

states yield the character
ZWNyg=1) = [y +(s+sh). (4.109)

Any other massive representation of Ny = 1 super Poincaré is specified by
the little group SO(3) quantum number n and the U(1)r charge @ of its
highest weight state or Clifford vacuum. Its SO(3) x U(1)gr constituents

follow from a tensor product:

Q] = ZWNw=1)s%ml, = s, (1, + (s +s))L110)
_ s ([n+1] + (s+s1)[n] + n—1]) for n > 1
s@([1] + (s+s71)[0]) forn =10

The super-Poincaré character [n, Q] corresponds to 4(n + 1) states of spin

"TH, 5 and (if n # 0) ”T_l that can be generated from a Clifford vacuum

with spin n/2 and U(1)g charge @ + 1@ Note that @ is even whenever the
maximum spin quantum number n + 1 is.
In this setting, we find the (GSO projected) Ny = 1 partition function

N4d: N4d:

N4d:1(q;y75) = XNS ! ’GSO (q;y,s) +XR ! ‘GSO (Q;yas) 7(4111)

X

where GSO projection removes half odd integer mass levels a'm? € Z — %

from the NS sector and interlocks spacetime chirality with U(1)r charges

5As we shall see below, the fundamental multiplet does not appear on its own in both
massless and massive spectra. Representations appearing in the massive spectrum
arise from certain non-trivial products with the fundamental multiplet.

In this terminology, the first label of [n, Q] refers to the average spin of the SO(3)
irreducibles. We deviate from the common practice that supermultiplets are referred
to through the highest spin therein. The supercharacter [3,0] = [4] +[2] + (s+s1)[3],
for instance, describes U(1)r neutral bosons of spin two and one, and two massive
gravitinos of opposite U(1)r charges.
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in the R sector. We can capture this projection through the following ﬂ
(Note: before imposing the GSO projection, we must multiply the overall
NS sector partition function by q_% corresponding to the zero-point energy

in this sector.)

Nig=1
xng' laso (9) =
I 1| so@s Nag=2,c=9 SO(3)/ _2mi Noa=2,c=9 ; 2mi
54 Xas a:y) XNEh=0.1=0(@3 8) — Xag (e y) XN =0 =o€ G 5)
Nia=1 1 s0@3 Noa=2,6=9 .
W eso (@) = 5 @ y) X s o (@) (4.112)

In order to compactly represent the leading terms in a power series expan-
sion of the partition function XN4d:1, let us introduce the shorthand

[n,0] Q=0
which exploits that U(1)r charges +@Q always appear on symmetric foot-
ing. The pairing of supermultiplets with opposite (nonzero) U(1)r charges

combines Majorana fermions as they appear in the fundamental multiplet

"The formula for the GSO projected R sector is reliable for positive powers ¢=! only

and inaccurate at the massless level: The coefficient of qO in Xﬁf“:l laso is %(y +
y~ 1 (s4s71) instead of the desired value ys+ (ys)~*. One can just add to the former
1y —y ")(s — s7") to compensate this mismatch. This artifact of the mismatch
between massive and massless little groups does not affect the main focus our analysis
— the massive particle content. Indeed, the character ys corresponds to the left-handed
gaugino and the character (ys)~' corresponds to the right-handed gaugino; they carry
opposite R-charge +1 and —1 and opposite helicities +1/2 and —1/2.
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(4.109) to Dirac fermions. The content of the first Ny = 1 levels reads

_ _ 1 _ _
N1 (gry,8) = <y2+y 2+ 5 Wy Di(s+s 1)) ¢°

4 massless states

+ ([3,0] + [0,+1]) ¢

24 states at level 1

+ ([5,0] + [3,0] + 2[2,+1] + 2[1,0])¢?
104 states at level 2

+ ([7,0] + [5,0] + 3[4,+1] + 5[3,0] + 2[2,£1]

+ [1,£2] + 5[1,0] + 3[0,£1])¢* + O(¢*) .
(4.114)

subleading orders up to mass level eight are summarized in Table The
explicit form of the vertex operators at mass level oneﬁ can be found in
section 5 of [15] (equations (5.3) to (5.6) for bosons and equations (5.14) to
(5.18) for fermions) in the RNS framework.

Character multiplicities up to mass level 'm? = 25 are gathered in table

[4:2] and in the tables of appendix

4.3.1 The total number of states at a given mass level

In this subsection, we focus on the total number of states present at a given
mass level and derive the novel asymptotic formula . These numbers
can indeed be obtained by adding up the dimensions of representations
presented in table[d.I] Our aim here is to compute such numbers analytically

and asymptotically for large mass levels.

8Let us discuss about the states at the first mass level. The 24 total states consist of

the following multiplets:

(1) the massive spin 3/2 multiplet [3,0]: it contains a massive spin 2 field with
5 on-shell degrees of freedoms (OSDOFs), a massive spin 1 field with 3 OSDOFs, a
massive spin 3/2 field with 4 OSDOFs, and a Dirac fermion with 4 OSDOFs; so we
have 848 real OSDOFs in total

(2) the massive spin 0 multiplet [0, £1]: the two constituents [0, 1] and [0, —1]
of the massive scalar multiplet correspond to two massless chiral fields, ® and d (not
complex conjugate to each other) at Q@ = +1. The opposite Q-charges are necessary
to form an invariant mass term ®® in the superpotential. This multiplet contains 4
+ 4 real OSDOFSs coming from two complex scalars plus two Majorana fermions; the
latter are equivalent to one massive Dirac fermion. Note that the spin 0 multiplet is
also referred to as two spin 1/2 multiplets in [I5].
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o’m? | Representations of Njg = 1 super Poincaré ]

1 3,0] + [0, £1]

2 5,0] + [3,0] + 2[2,£1] + 2[1,0

3 7,0] + [5,0] + 3[4,+1] + 5[3,0] + 2[2,£1] + [1,£2] + 5[1,0] + 3[0,+1]

4 9,0] + [7,0] + 3[6,x1] + 7[5,0] + 4[4, £1] + 2[3,£2] + 12]3,0]
+11(2,£1] + 2[1,£2] + 12[1,0] + 3[0,+1]

5 [11,0] + [9,0] + 3[8,£1] + 7[7,0] + 5[6,x1] + 2[5, £2] + 17[5,0] + 18[4,£1]
+6[3,£2] + 31[3,0] + 20[2,+1] + 6[1,+2] + 28[1,0] + [0,+3] + 15[0,+1]

6 [13,0] + [11,0] + 3[10,%+1] + 7[9,0] + 5[8,£1] + 2[7,£2] + 19][7,0]

+21[6,+1] + 8[5,%2] + 45[5,0] + 39[4,+1] + 15[3,42] + 72[3,0]
+3[2,£3] + 58[2, 1] + 171, 2] + 64[1,0] + 21 [0, +1]

7 [15,0] + [13,0] + 3[12,1] + 7[11,0] + 5[10,1] + 2[9,2] + 19[9,0] + 22[8, 1]
+8[7,2] + 51[7,0] + 49[6,1] + 22[5,2] + 108[5,0] + 4[4,3] + 105 [4, 1]
+43[3,2] + 166[3,0] + 5[2,3] + 115[2,1] + 38[1,2] + 136 [1,0] + 6[0,3]
+66[0,1]

8 [17,0] + [15,0] + 3[14,1] + 7[13,0] + 5[12,1] + 2[11,2] + 19[1iL,0]
+22[10,1] + 8[9,2] + 53[9,0] + 52[8,1] + 24[7,2] + 125[7,0] + 4[6,3]
+135[6,1] + 62[5,2] + 254[5,0] + 10[4,3] + 223[4,1] + 101[3,2] + 357[3,0]
+21[2,3] + 274[2,1] + [1,4] + 89[1,2] + 289[1,0] + 7[0,3] + 112[0,1]

Table 4.1: The content of the first eight Ny = 1 levels.

The starting point is the unrefined partition function obtained by setting
the fugacities y and s in (4.111)) to unity. The total number of states N,

at the mass level m can be read off from the coefficient of ¢"* in the power

series of YNi=1(q;y = 1,5 = 1).
Supersymmetry implies that

XN aso (g = 1,5 = 1) = xN9=! |gso (gy = 1,s = 1) . (4.115)

which can, of course, be checked directly using (4.112)), (4.41)), (4.60)), (4.96])
and (4.99)). Since the formula for the R sector is simpler, we proceed from
there.

M gy = 1,5 = 1) = 28" aso (Gy=1,5 = 1)
S0(3 Nog=2,c=9 o
= Xr ( )(q,y = 1)XR,21§1=3/§,£=3/2(‘1’ s=1)
_1492(1,q)?
_ —174V2(1, ¢ {19 2y 1/4 2
=q 2(1,q%) — ¢ /"93(1,¢%)
n(q)®

(4.116)
Indeed, the power series of XN4d:1(q;y = 1,s = 1) in ¢q reproduces the

numbers presented in the first column of Table[£.13] We mention in passing

that xV44=1(q;y = 1, s = 1) is not a modular form.
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The number of states at each mass level and its asymptotics

The number of states at the mass level m can be computed from

1 A9 Npg=1,. 1 ._
Nm:Tm’ Ay X gy =1,s=1), (4.117)

where C is a contour around the origin.

Let us compute the number of states Ny, in the limit m — oco. Since the
integrand of is sharply peaked near ¢ = 1, we need to examine the
behaviour of XN4d:1(q;y =1,s=1)as ¢ — 17. The ¢ — 1~ regime in

question is related to the easily accessible ¢ — 0 limit
n(q) ~ ', O3(lg)~1,  V4(l,q)~1, q—0 (4.118)
through modular transformation q = €27 — § = e~ 27/7:
o-function : ¥4 (1,3) = Va(L, )V it ~ ——(1 — q)/20(1, q)
V2T

= 192(17(]) ~V 27T(1 - q)_1/27 q— 1~ ) (4119>

Yz-function : Y3 (1,q) = V3(1,q)V—it ~ L(1 — q)%95(1, q)
V2T

= V3(1,q) ~ V2r(1 — q)~ V2, g— 1", (4.120)
unction: (@) = n(a)V 7 ~ —=(1-0)"" (0
= n(g) ~ V2r(1 - q)7*exp <617;2gq), qg—1,
(4.121)
Hence, we have
Do(1,¢%) ~ 93(1,¢%) ~V2r(1 —»)~ V2, g—=17, (4.122)

and soas ¢ —> 17,

M gy =15 = 1) ~ 2m) 21— 9)* (1 = g1 - ¢*) /2
2

X exp <— T ) . (4.123)

log q
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Hence, as m — oo,

Ny ~ (27)3/2 L

2mi fi o (1—q)*(1— ¢ (1 —¢*) /2

q

X exp <_lc7>rg2q —mlog q) . (4.124)

Observe that the argument of the exponential function has a critical value
at qo = exp(—m/y/m); this is the saddle point. The direction of steepest
descent at this point is the imaginary direction in q. We deform the contour
C such that it passes through ¢ = ¢¢ and tangent to this direction. The
leading contribution comes from expansions around ¢ = qg in the steepest

descent direction. Writing ¢ = goe®?, we have

Ny ~ (20)732(1 = g0)*(1 — gi/ ) (1 = )12

1
X 7 _edQexp (—

7T2

—_— 10 + 1 0

~ (2m) (1 = q0)?(1 — g/ )(1 — )2

1 € 3/2
x e2™Vm = [ qgexp (—m 62 + 0(93)> . e>0
2T ™

—€

~ (2m) (1 = qo)2(1 — g/ M) (1 — @)1 22V

1 00 3/2
X / 6 exp <—m 02>
21 J_ o T

~ B%mfz exp (2mv/m) | m — 00 . (4.125)

4.3.2 The GSO projected NS- and R sectors

In what follows, we compute analytic expressions of the refined partition

function XN“d:l(q; y,s) and discuss its asymptotic behaviour.

The NS sector
Let us write the partition function xﬁ{édzl laso (¢;y,s), defined in (4.112)),
as

[c NG o)

XN aso (@ys) =D D [2k]ys* FS(q) (4.126)
k=0 p=—00
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where the function Flyg(q) follows from (]4.39[), (]4.93[) and (]4.112[):

FNS(g) = (:9)55(1 — WIZ 1) (1 — ¢)g(2)

« Z(qn|kfm| o qn(k+m+1))
m=0

" lq%m2 (1- qm+%)193(17€1) _ym? (1 +qm+ 2)94(1, q)
2 (1+¢"2)(1+¢"*7) (1—¢"2)(1—g"*?)

(4.127)

This expression can be simplified further in the asymptotic limit & —

co. In this limit, ¢"*=™ ~ ¢"*=m) and the dominant contribution in
the summation over n comes from n = 1. The summation over n can be

asymptotically evaluated as follows (assume that m is finite):

oo

D11 = gl (g g

n=1

~ Z n+1 n)qn(k—m)(l - qn(2m+1))

q’“(l—q) (1-¢*) i
(1+¢h)*

g™ (1-g"h} . (4.128)

The summation over m can be evaluated by considering

S o (1) (7)< 7h0 -t

m=0
(4.129)
Z(_l)mq%mLm <1 +qm+%> (1 q2m+1) g ;(1 — )9a(L,q) .
m=0
(4.130)
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In such a limit, the function Flyg(q) becomes

1 _ 2 3 1—g¢q
F ~ A 6 1— 3 _p°+p+k I
k,p( ) 2(Q7 Q)oo ( q) q 2 (1 + qk)4
" 03(1, ) B d4(1, )
(L+¢2)(1+¢"2)  (1—q" 3)(1—q*3))

_ 2 _3
(4:9)0(1 — g)*q” TPHh—2

1,9)? 1,q)?
y Us(1,9) _ U4(1,q) 7 ks o0 |

1+ ¢ 2)(1+¢"3)  (1—¢”7)(1—¢"F2) ]

1RO | =T

(4.131)

The R sector

Similarly the partition function xﬁ/“d:l laso (¢;y,s), defined in (4.112)), can

be written as

X! laso (@:v, s Z Z 2k +1),s¥ ' FR(q),  (4.132)

k=0 p=—o00

where the function F, ,Sp(q) follows from (]4.56[), (]4.97[) and (]4.112[):

¢
(1+¢P)(1+qr71)

X S = )

5
1

FE @) = 5 (@050 ) 92(1,9)

3
Il
—

q2(MT3)* (1 — gmtLy(grlk—ml _ gnlktm+2)) (4.133)

o

0

3
]

In the limit £ — oo, this function can be simplified further. The summation

over n can be asymptotically evaluated as follows (assume that m is finite):

o0

D11 = gl (g g )

n=1

~ Z n-l—l n)qn(k—m)(l _ qn(2m+2))

qk(l_Q) (1_‘1 ) {q—m (1

2m+-2
REwL )}

(4.134)

—4q

I

97



and the summation over m can be computed as follows:

3 gz (1 ) (1= 22 = (1= q)9a(1,q) . (4.135)

m=0

Therefore, we have the following asymptotic formula:

2 _5
FR (@) ~ Lggos & 100 (1= )
RPN (T gp) (14 g 1) (1 + gF)
2 ,é
¢ @7 TFTI(1—¢)3
(14¢P) (1 4¢P~ 1)

4192(17 Q)Q

92(1,q)% , k — oo . (4.136)

;(q, @)oo

Combining both sectors

Combining the NS- and R contributions from the previous subsections gives

rise to the following SO(3) x U(1)g covariant partition function

XM= (gsy, s) = le\\%d laso (qsy78)+xﬁf4d laso (¢;9,s)

= Z Z (24 Jys™ Ns(q) + [2k + 1], %! FISP(Q))

k=0 p=—o0
o0 o0 (o ¢]
= 2K] | FRG (@) + > sopFpn(a) | + 26+ 11D sop1Fio(@) ¢
k=0 p=1 p=1

(4.137)

where s, is defined by . Even though the FES and Fkljp functions are
known, the representation (4.137)) of the overall partition function does not
make Nyg = 1 SUSY manifest to all mass levels. In order to do so, we have
to combine SO(3) x U(1)g representations to supermultiplets and

rewrite aﬂ

M= gy, 5 ZZnn QI M (M= [n,Ql,q) . (4.138)

n=0 Q=0

This introduces a multiplicity generating function M(XN4d:1, [n,Q],q) for
the supermultiplet [n, Q] appearing in the partition function yV4=!. To

9The symmetry of (4.137) under s — s~ ! guarantees that M(XN4d:17[[n, Ql,q) =
M(XNMII, [n, —Q], q), so we shall henceforth assume that @ > 0.
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lighten our notation in the subsequent steps, we shall use the shorthand
Gnq(a) == MO, [, Q] q) - (4.139)

By comparing (4.137)) with (4.13§]), it is immediate that

GgmgQ(q) = G2n+172Q+1(q) =0 s for all n > 0 and Q > 0. (4.140)

Recurrence relations

In order to relate the supersymmetric multiplicity generating functions G, ¢
to their SO(3) x U(1)g relatives FES and F,E‘p, we use to rewrite
in terms of characters of irreducible SO(3) characters and the fu-
gacity s as

N4d=1(

X ¢y, S)

= [0] [(01,0 +2Go,1) + Z 52 (Gopg-1+ G129 + G0,2Q+1)}
=1

o0

+ ) [2K] [(G%—I,O + 2Gak,1 + Gogt1,0) (4.141)
k=1

+ > 520 (Gap—120 + Gor2g-1 + Gar2g+1 + G21<:+1,2Q)}
=1

(o@)
x Y 5201 (Garag-1+ Garr120-2 + Gorr120 + Garp22g-1) , (4.142)
o1

where Gy, ¢ is a shorthand notation for G, g(q).
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Comparing (4.137)) with (4.141)), we have the following relations:

2Go.1(q) + Gro(g) = Fp(a) (4.143)
Gor—1,0(q) + 2Gos,1(q) + Gors1,0(0) = Frg(q) . k>1 (4.144)
Go20-1(q) + Go2g+1(a) + G12q(0) = F5(a) . Q>1 (4.145)
Gar-120(q) + Gor20-1(q) + Gor2g+1(@) + Gari120(0) = Fro(a) |

Q> 1 (4.146)

Gak20-1(0) + Garr120-2(0) + Gat1.20(0) + Garr220-1(0) = Figla)
k>0,Q>1. (4.147)

These relations are useful for computing a multiplicity generating function
for a representation Jodd, even] (or [even,odd]) when the one for opposite
parity is known. However, the recursion is not powerful enough to directly
determine all the G}, o in terms of F) ,?IE and F; ,f?p. The following subsection

follows an alternative approach to determine the G, .

4.3.3 Multiplicities of representations in the Ny =1

partition function

Our aim in this subsection is to factor out the fundamental Ny = 1 super
Poincaré character Z(Nyy = 1) = [1], + s + s~ and to compute explicitly
the multiplicity generating functions G, g(q) for [n, Q] in

N gy, ) = Y [1,QIGn0(q) - (4.148)
n=0 Q=—o0

Using the second equality of (4.110) and orthogonality of SO(3) x U(1)gr

representations, we have

M(XN4d:17 IIn7 Q]]? Q)
N4d=1(

ds 1Y, S
$5 [ s (s O AT A )

Gn,Q(q)
_ 1
2w
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where C is a contour in the complex s-plane enclosing the origin. In order to

proceed, we use the geometric series expansion of the inverse Z(Nyg = 1)@

o0 m

1 1 1 [1]
— = E 1™ Y .(4.151
1y +(s+s71)  s+s71q4 Sﬂgl m:O( ) (s 4 s—1)m+l ( )

In what follows we consider the contributions from XN4d laso (g;y,$)
and XR |GSO (¢;y, s) separately and then add up these results to yield
the overall multiplicity generating function defined by (4.148]),

M (M=t [, Q] q)
= MO |aso, [ QL @) + M(xy* =" |aso, [1, Q1. q) , (4.152)

where xN&% " |aso are given by (4.126) and (4.132).

Multiplicities in the NS-sector

The series expansion of (Z(Nyg = 1))~! leads to the following NS sector

contribution to the multiplicity generating function of the supermultiplet

[, Q]

M(Xj]\\%d " aso, [7. Q] q)

Nyg=1
1 / n]y L X' laso (439 5)
" 2mi Hsoe sQ 1]y + (s+s71)

" 1 ds 2P
_ Z Z Z NS (@) 5= o ﬁ:lﬁ s s@(s + s LymT1

m=0 k=0 p=—o0

< [ duso®) ol 117 (24, (4.153)

We shall henceforth take C to be a circle centred at the origin with the
radius 1 — ¢, with 0 < € < 1. The quantities in the curly brackets can be

ONote that m can also be written in another way as follows:
1 oo
M Grsn — 20" (4.150)
Y

0

3
I

However, we shall not take this approach, since otherwise this would lead to tensor
products in (4.155) and (4.156) which are harder to evaluate in comparison with our
current approach.




computed as follows:

1 j{ ds s2P
270 Jigj=1—e 5 s9(s +s71)mHL
(—1)%@_’”_2”_1)(%(QjL"fn*Qp*l)) for @ —modd and Q +m >2p+1
0 otherwise ,
(4.154)

and

Tont1 (m, %m +n— k:) if m is even
0 if m is odd
(4.155)

/dMSO(?))(y) [Zn]y[l]g[Qk]y = {

m Tonso (m,im+n+1 —k) if mis odd
/dMSO(S)(?J) 2n + l]ymy [zk]y = " ( ? 2 )

0 if m is even ,
(4.156)
where
m m
non=(7) - (7). o

We can derive (4.155)) as follows, using (4.17)) in the first step:

[ oy (w) L2, 1524,

oo (S (1)) meon) 32

p=[n—k|
B m B m
 \Um—|n—k| gm—n—k—1
m

“(on-t) (=) w258

as required, and similarly for (4.156)). Note that (4.154)), (4.155)) and (4.156])

are in perfect agreement with the selection rule

vf3

Il
=)

M (M= [20,2Q], q) = M= [2n + 1,2Q + 1],¢) =0 . (4.159)
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The nonzero multiplicities of [2n,2Q + 1] and [2n + 1, 2Q)] receive the fol-

lowing NS sector contributions:

M(le\\lféd ! ‘GSO? [[271, 2Q + 1]]7 Q)

oo oo Q+m

= Z Z Z (=1 PE(g) (Q +27:;_ p) Tont1(2m,m+n—k) ,

k=0 m=0p=—o00
(4.160)

M(XNéd ! ‘GSOa [[2n+ 172Q]]7Q)
oo oo Q+m

=22 2 (1)Q_m_pFl§z§(Q)(Q+m_p>T2n+2(2m+1,m+n+1 — k).

k=0 m=0 p=—o0 2m +1

(4.161)

Multiplicities in the R-sector

Similarly to the NS-sector, the generating function for the multiplicity of
the representation [n, @] in the function X/P\(“d:l lcso (¢;y, s) is given by

M(Xﬁ/“d lasos [[7% Ql,q)

Nig=1
— [n]y  xg*™ laso (¢:9,8)
: duso(s) 0 X —
T omi S| 1—e s 1], + (s+s71)
2p—1

1 ds S
_ZZZ 27”%5|1655Q(8+5 Dym+1

m=0 k=0 p=—0o0

< [ dusos)(v) (15126 + 1), (1.162)

with 0 < e < 1,

1 ]{ ds g2l
27 Jis=1—c 8 sQ(s +s71)m Tl
(—1)2(@-m=2p) (%(Q+n’fb”‘*2p)) for @ — m even and Q +m > 2p

0 otherwise ,
(4.163)
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and

m Tont1 (m,dm+n—k—1) if mis odd
/dNSO(s)(y) [2n], (1] [2k 4+ 1], = (m 3 5)

0 if m is even ,

(4.164)
Tonto (m, %m +n— k) if m is even
0 if m is odd ,

(4.165)

[ dsoy @) 2+ 1,172k + 1), =

where T),(m, k) is defined as above, and can again be derived similarly to

(4.158)), and the zeros once again confirm the selection rule (4.159)).
The multiplicities of [2n,2Q + 1] are given by

M(X/P\{/4d:1 ‘GSO) [[271, 2@ + 1]]> Q)

oo oo Q+m B
£ (1)

k=0 m=0 p=—o0
X Topi1(2m+1,m+n—k). (4.166)

The multiplicities of [2n + 1,2@Q] are given by

M(X/p\(“d:1 laso, [2n + 1,2Q], q)
oo oo Q+m (

=22 2L CUETTTEG
k=0

m=0 p=—0o0

Q+m-—p

9, >T2n+2(2m, m+n—k).

(4.167)

Combining the NS and R sectors

Now we can assemble the NS- and R sector results to obtain the full mul-

N4d=1(

tiplicities of the representation [n,Q] in x q;y,s). First, it is clear

that

Gan20(q) = Gant1,20+1(q) = 0. (4.168)
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The nonzero multiplicities of [2n,2Q + 1] and [2n + 1, 2Q)] are most conve-

niently presented in terms of the shorthands

m[2n,2Q+1ﬂ (m7 P, k; C])

e +m —
= (=1)@mP F,§§(q)<Q om p>T2n+1(2m,m+n—k)
R Q+m—p+1
- 1 - 1
Fk,p(Q)< om + 1 )Tgn+1(2m+ ,m+n k)] (4.169)

m[@n—i—l,QQﬂ (m,p, k;q)

e (_1\Q—m—p NS Q+m—p _
= (-1) Fk,p(q)< om + 1 >T2n+2(2m+1,m+n+1 k)
R Q+m-—p
+Ep@| 7y ) Tens2(2mm 40— k) (4.170)

for the contributions M. (m, p, k; ¢) of individual terms in the m, p, k triple
sum to the multiplicity generating function. The result for [2n,2Q + 1]

supermultiplets is

oo oo Q+m

Gon2011(0) =D > > Mpnag+1y(m,p, ki q)

k=0 m=0p=—o00

Z [Z {m[2n,2Q+l]] (m,—p—1,k;q) + 2m[[zn,z(ngll] (m+p,p, k; Q)}
k=0m=0 L p=0

Q-1
+ Mzn,2q+17(m, m+p+ 1, k; Q)] : (4.171)
=0

hS]

whereas the multiplicities of [2n + 1,2Q)] are given by

oo oo Q+m

Gont120(0) = Y Y D> Mpat120)(m,p,k;q)

k=0 m=0 p=—o00

= Z [Z {m[[2n+1,2Q]] (m, —p — 1, k;q) + Mp2n41,201 (M + , 0, k3 q)}
k=0m=0 L p=0
Q-1
+ D Mpngr00)(mym +p+1,k5q) | - (4.172)

p=0
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4.3.4 Asymptotic analysis for the multiplicities

This subsection is devoted to the multiplicity generating function Gy, g(q)
in the limit n — oco. We shall present analytic expressions for their n —
oo asymptotics whose derivation is defered to appendix [£.A] The method
essentially relies on identifying the dominant contribution to the triple sums

in (4.171) and (4.172)). The end result for multiplicity generating functions
Gn,q(q) reads

(1—g)%q"
2(¢; 9),
(1-q)%" 2
2(¢;9)% (1 +q)
q(Q+1)2+i(1 —q)
(1+¢9) (1+¢9F1)

Gan12Q(q) ~ F(g:Q), n— oo, (4.173)

Gon,20+1(q) ~

92(1,9)% — F(q,Q) — F(q,Q + 1)

(4.174)

with the function F(q, @) given by

F(g:Q)
= 02(1,0)° ¢ (v, Q) + (- )1~ (01 (va, Q) + 7 'wi (2. Q)]
+03(1,0)° | — 4" Pua(v2. Q) + (~1(1 — )(02(v7. Q) + w2V, Q)|

+ 794<17 q)2 [ql—Qu2<_\/a’ Q) - (_1>Q(1 - q)(’l)?(_\/a’ Q) + quQ(_\/(L Q))} :
(4.175)
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The three pairs of functions u;,v; and w; correspond to the three summa-

tions in (4.171)) and (4.172):

1 — g*ptaQ+6

1+ q2p+2)(1 + q2p+4) )

i@ =370

p=0
s 2 1 — gtpHiQ+4

us(q, Q) =Y ¢*P Y — — - (4.176)
= (1 +g?PH1)(1 + ¢2PF3)

1Q/2]  o(p—1y2 2\2p
P 1+ A% (Q
0(g,Q) = ) (14 ¢2r=2)(1 + ¢%) (2P>

p=0
[1,Q+1, 2p — Q <1+q>2]
X3F2 ) )
p+1/2, p+1 4q

[Q/2] 2p? 2)2
_ 1+ 1+¢)* [ Q
v2(q, Q) = Z (1 + g2 1) (1 + g2 1) ( >

= 2p+1
XgFQ[LQJrl, 2p+1-Q (1+q)2} (4.177)
p+1, p+3/2 ’ 4q ’ '
oo Q-1 1,142(1+m+p)2—2m 2\2m (Q—1—p
(—1)P*lq P 1+gq
w1(q,Q)= Z ( ) ( 2m )

(1 + q2(m+p)) (1 + q2(1+m+p)) ’

-1 3)\2_ 2m+1 /O—1—
Q (_1)p+1q2(m+p+2) 2m (1—|—q2) m (%Hmp)

(1 + q1+2m+2p) (1 + q3+2m+2p)

(4.178)
Note that the leading orders in the power series are
2
Gant120(q) ~ ¢"TCT Gopagii(q) ~ T g — 0 (4.179)

i.e. the supermultiplet [2n+ 1,2Q)] firstly occurs at mass level n+Q(Q +2)
whereas the [2n, 2Q+1] multiplet firstly occurs at mass level n+Q?+3Q+1.

For reference, we list the leading ¢ powers for the G, g regime for
some small values of the U(1)r charge, obtained by expansion of
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and (4.174)): firstly for even values ) € 2Ny

Gani1.0(q) ~ ¢ (1 + ¢+ 7¢* +19¢% + 53¢* +133¢° + 3284¢° + 75247
+1689¢% + 3635¢° + 0(¢*?)) ,

Gani12(q) ~ ¢"3(2 4 8¢ + 24¢% + 73¢° + 187¢* + 467¢° + 10904°
+2457¢7 + 5314¢% + 0(¢")) ,

Gani1.4(q) ~ ¢"8(2 4 10q + 36¢* + 110> + 306¢* + 773¢° + 18614°
+ 4245¢7 4+ 9327¢% + O(¢")) ,

Gant1.6(q) ~ ¢ (2 + 10q + 38¢* + 124¢° + 352¢* + 928¢° + 2282¢°
+5335¢" 4+ O(q®)) , (4.180)

and secondly for odd values Q € 2N — 1

Gon1(q) ~ " (34 5q + 22¢® + 53¢ + 150¢" + 345¢° + 836¢° 4 1824¢"
+4011¢% + 0(¢9)) ,

Gon3(q) ~ q" (4 + 11q + 46¢* + 117¢° + 331¢* + 7844° + 1876¢°
+4133¢" + O(¢%)) ,

Gons(q) ~ ¢ ™4 +12q + 55¢% + 150¢> 4 437¢* + 1078¢° + 26404°
+5951¢" + O(¢%)) ,

Gon7(q) ~ ¢"™2(4 +12q + 56¢% + 159¢> + 474¢* + 1197¢° + 29944°
+6882¢" 4+ O(¢®)) . (4.181)

Note that the general formula greatly simplifies at U(1)g charges Q = 0
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{;a ~0)°q 2 (w(VD)a(1,0) ~ [ua(vD)Pa(1,0)* — ua(~v@)Va(1.0)°] )

+i(11_+qq)3q_1192(1,q)2}, n— 0o (4.182)
1— 3 n+1
Gt~ C
. 9s(L,g® ¥l }_1 I,
' {<1+q—%><1+q%> TErRITEr
_sl+4gq 9 5 )
- Ql_q(m(\@ﬁz(lm = [u2(vV@)9s(1,9)° = ua(=v/@)¥a(1, ) ])]

(4.183)

where u;(q) = u;(q;0), see the first subsection of appendix

4.3.5 Empirical approach to N;; = 1 asymptotic patterns

In the previous subsection, we have derived the large spin asymptotics for
multiplicity generating functions Gy, (¢) of individual Nyg = 1 multiplets
(at finite @ while k — o0), the main results being and ({4.174). The
asymptotic formulae can be viewed as the supersymmetric generalization
of truncating the infinite sum expression for the SO(3) multiplicity
generating function in the d = 4 bosonic partition function to its n = 1
term. In [10], this n = 1 term is interpreted as the leading (additive) Regge
trajectory of unit slope, followed by an infinite tower of sister trajectories
of fractional slope and alternating sign.

Let us borrow some notation from equation (6.2) of [10] and expand the
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G,0(g) in an infinite series of trajectories 7;:

Gont120(9) = ¢"11%(q) — " 13°0) + ¢*"13%0q) — ...
o
= ()" %) (4.184)
/=1

P9 — @) + P9 e) -

Gon2q+1(q) =4q" 1
S
— 2 1
_ (_1)6 1 qﬁn TE Q+ (Q)
/=1

It is not obvious that the patterns observed in [10] for non-supersymmetric
theories persist for the counting of super-Poincaré multiplets, i.e. that the
spacetime partition functions of the reference preserve the nested structure
in after multiplication with the internal characters. At any rate,
all our Nyg = 1 data suggests that both of TEQ(q) and TEQH(q) are power

series in ¢ with non-negative coefficients. Our analytic results (4.173]) and
(4.174) identify the first coefficient functions 71 (q) in (4.184)):

— )25
%) = (12(61?21)%0?(%@) (4.185)
20 () (1-g)% >

2(¢;9)%(1 +q)
q(Q+1)2+i(1 —q)

“a+@ 0+ qQ+1)192(1,q)2 - Fl(q,Q) - F(g,Q+1)

(4.186)

The methods presented in appendix and applied in the previous sub-
section are not suitable to extract subleading Regge trajectories 1/>2(q), i.e.
Nig = 1 analogues of n > 2 terms in the sum . Instead, we shall
rely on an empirical approach, more specifically on explicit results obtained
from a supercharacter expansion of the partition function up to the
25th mass level.

As an illustrative example, let us first of all investigate the family of Q@ = 0
supermultiplets: The following table gathers [2n + 1, 0] multiplicities in
the first 25 levels. Numbers marked in red directly correspond to the lead-
ing trajectory 79(q) whereas those in blue are additionally affected by the
subleading trajectory 73 (q). Given the leading trajectories , our data
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¥ S5 ¥ ¥ #* #* * #* * * *
| T | O® = T T E || R |58
L= = = = = s 2 = | 2| =2 | s
1 0 1 0

2 2 1 1 0

3 5 5 1 1 0

4 12 12 7 1 1 0

5 28 31 17 7 1 1 0

6 64 72 45 19 7 1 1 0

7 136 166 108 51 19 7 1 1 0

8 289 357 254 125 53 19 7 1 1 0

9 588 757 557 302 131 53 19 7 1 1 0
10 1175 1548 1200 675 320 133 53 19 7 1 1

11 2293 3100 2482 1479 726 326 133 53 19 7 1
12 4399 6053 5028 3106 1611 744 328 133 53 19 7
13 8267 11620 9910 6373 3422 1663 750 328 133 53 19
14 15325 21855 19173 12713 7098 3557 1681 752 328 133 53
15 27949 40496 36322 243856 14297 74238 3609 1687 752 328 133
16 50306 73846 67720 47539 28216 15061 7564 3627 1689 752 328
17 89367 132860 124161 89401 54430 29909 15394 7616 3633 1689 752
18 || 156930 | 235871 224479 165210 | 103182 58054 30687 15530 7634 3635 1689
19 || 272424 | 413879 | 400257 | 300837 | 192109 | 110702 59786 31021 15582 7640 3635
20 || 468130 | 717909 705032 539962 | 352279 | 207282 | 114437 | 60567 | 31157 | 15600 7642
21 796410 | 1232463 | 1227214 | 956883 | 636445 | 382179 | 215074 | 116183 | 60901 | 31209 | 15606
22 || 1342531 | 2094716 | 2113394 | 1674933 | 1134836 | 694090 | 398007 | 218848 | 116965 | 61037 | 31227
23 || 2243232 | 3527456 | 3602086 | 2899342 | 1997955 | 1243836 | 725457 | 405910 | 220597 | 117299 | 61089
24 || 3717405 | 5887668 | 6081317 | 4965411 | 3477396 | 2200438 | 1304682 | 741559 | 409698 | 221379 | 117435
25 || 6111615 | 9745995 | 10173766 | 8420331 | 5986079 | 3847540 | 2316123 | 1336712 | 749501 | 411448 | 221713

Table 4.2: Nyg = 1 multiplets at U(1)g charge Q =0

from table [4.2| can be used to determine the following subleading behaviour

for Q = 0 multiplets:
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Goni10(q) ~ ¢" (14 q+7¢> +19¢% + 53¢* + 133¢° + 328¢° + 752"
+ 1689¢° + 3635¢° + 7642¢'° + 15608¢"! + 31235¢'2
+61115¢"3 + 117513¢" + 221927¢"° + 4127784¢" + 756372¢""
+ 1367753¢"® + 2441849¢'% + 4309132¢° + 7520092¢*!
+ 12989357¢%% + 22216885¢% + 37651970¢%** + 63252874¢%° + .. .)
— " (24 8¢ + 267 + T8¢3 + 214¢* + 548¢° + 13304¢° + 3080¢"
+ 6872¢% + 14832¢° + 31102¢'Y + 63574¢" + 12702042
+ 248590¢"% + 4775044 + .. )
+ @3 (1 4+ 4g + 19¢° + 61¢3 + 187¢" + 503¢° + 12944¢° + 3113¢”
+ 7217¢% + 16036¢° + 345844¢'° + .. )
— ¢"2 (24 10q + 38¢% + 124¢> + 364¢" + 978¢° + 2476¢° + .. )
+ PP (L +4q+21°+ 7243 +..) + ..., n — oo (4.187)

The first term linear in ¢"™ simply reproduces (4.182) for TQZO(q) whereas

higher powers of ¢" allow to read off subleading ngo(q) to certain order in

q:

270 = q(2+ 8¢+ 26¢% + T8¢ + 214¢* + 548¢° + 1330¢° + 30804”
+ 6872¢% + 14832¢° + 31102¢'° + 635744
+ 248590¢'3 + 477504¢™ + .. ) (4.188)
2% = q(144¢+19¢% + 61¢° + 187¢"* + 503¢° + 1294¢° + 31134"
4 7217¢% 4 16036¢° + 345844¢'° + .. ) (4.189)
7970q) = ¢ (2+10q + 38¢% + 124¢° + 364¢* + 978¢° + 2476¢° + . ..)
(4.190)
20 = P +49+212 +72¢5+..) (4.191)

Determining higher order terms in the TéQ>:20<q) would require O(¢?%) parts
of , this is where we stopped the e;cplicit evaluation.

Similarly, the [2n + 1,2] and [2n, 1] multiplicities up to level ¢*° as tab-
ulated in appendix determine the associated 7;(q) coefficients to the
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following orders:

972(g) = ¢ (24 11¢ + 37¢° + 114¢° + 319¢* + 822¢° + 2000¢° + 46454
+10354¢® + 22317¢° + 46702¢'° 4 95210¢*" + 18965642 + .. .)
272(q) = ¢ (24 8¢+ 33¢% + 104¢° + 310" + 826¢° + 2093¢° + 49914
+11454¢% +..)
272(g) = ¢ (1+5¢+22¢° + 77¢° + 237¢* + 664¢° +...)
272 g) = ¢ (3+12¢+49¢ +..) (4.192)
97 q) = 144+ 15¢% +50¢° + 143¢* + 379¢° + 947¢% + 224447 + 5103¢°
+11196¢° 4 23804¢'° + 49252¢* 4 99465¢'% + 19652243 + 380719¢'* + ...
97Ng) = 14 5q+422¢% + 70¢% + 212¢"* + 568¢° + 1458¢° + 34964"
+8093¢® + 179364° + . ..
97Ng) = 146¢+ 24¢> + 83¢® +252¢* + 698¢° + . ..
27Ng) = 146g+25¢°+... (4.193)

Note that the analytic result (4.173) for 72(q), 7{(g) was used as an extra
input, in addition to the explicit results for the first 25 mass level, to make

a few more orders of the subleading Téé2(q) accessible. Some more leading
and subleading TEQ for larger values of () are given in 1)

4.4 Spectra in compactifications with 8

supercharges

In six dimensional Minkowski space, the minimal realization of SUSY in-
volves eight supercharges. They form two left- handed Weyl spinors of
SO(6) which are related through an SU(2)g R symmetry. Our notation
for such minimally supersymmetric theories in d = 6 is Ngg = (1,0). Su-
perstring compactification subject to Ngg = (1,0) SUSY are described by
a universal SCFT sector with ¢ = 6 and Nyg = 4 SUSY on the worldsheet,
see subsection for details. In addition, the SCFT introduces SO(5)

quantum numbers for the massive string states through a six dimensional

spacetime sector for which the methods of subsections [4.1.3| and 4.1.4] are

applicable.
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The fundamental multiplet of Mgy = (1,0) theories consists of 848 states
Z(Nsa = (1,0)) = [1,0] + [2]r + [1]r[0,1] . (4.194)

where [p]r is the character of the p+1 dimensional representation of SU(2)g.
Generic multiplets follow through the tensor product with some SO(5) x
SU(2)r representation with little group quantum numbers [n1,ns] and R

symmetry content [k]r. This leads to the general supercharacter
[[nl,ng;p]] = Z(Nﬁd = (1,0)) : [p]R [nl,ng] . (4.195)

The partition function capturing the universal spectrum of six dimensional
Nsa = (1,0) compactifications is obtained thorugh a GSO projected product
of internal yN2¢=%4¢=6(g: 1) characters (with SU(2)g fugacity r) defined by
as well as and SO(5) spacetime characters (4.89) and (4.90)).
The GSO projection removes half odd integer mass leves from the NS sector
and enforces the R spin field to be a left handed SO(6) spinor, therefore

(again needing to multiply by q_% in the NS case to incorporate the zero-

point energy):

Noa=0 (g ) = N0 so (7 r) + = aso (g:7,7)
=" Jaso (¢:7.r) = %q_% [ (a 9) XNE e (@)
— e U ) R (i) ]
X/p\{/ﬁd:(l’o) laso (¢;9,7) = %X§O(5)(q; ) Xﬁf’zﬁzzf/’izil/Q(q; ). (4.196)
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The power series expansion of (4.196]) starts aﬁ

2
WNea=(10) (g7 p) = (ﬁ oy ys s rH Yi+Y; > ¢’
=1

Vv
8 massless states

+  [1,00]¢ + ([2,0;0] + [0,2;0] + [0,1;1])¢?
——
80 states at level 1 512 states at level 2
+ ([3,0;0] + 2[1,0;0] + [0,0;0]
+ [1,2;0] + [0,2;0] + [0,0;2] + 2[1,1;1] + [0,1;1]) ¢* + O(q*) -
(4.197)

The ¢=6 coefficients are listed in table[4.3] further information on the particle
content up to level 25 is tabulated in appendix

[ @/m? | representations of Ngq = (1,0) super Poincaré

1 1,0;0

2 2,0;0] + [0,2;0] + [0,1;1]

3 3,0;0] + 2[1,0,0 +[[000}]+[[1 0] + [0,2:0] + [0,0,2] + 2[L, ;1] + [0, 1;1]

1 1,0:0] + 3[2,0:0] + 2[L0;0] + 2[0,0;0] + [2,2:0] + 2[1,20] + 4[0,20
+2[1,0;2] + [0,2;2] + 3[1,1;1] + 4[0,1;1] + 2[2,1;1]

5 [5,0:0] + 313,0:07 + 412,0;0] + 9T1,0;0] + 3[0,0:0] + [3,2:0] + 2[2,2,0]
+7[1,2;0] + 6[0,2;0] + [0,4;0] + 3[2,0;2] + 3[1,0;2] + 3[0,0;2] + [1,2;2]
+300,2;2] + 2[3,1;1] + 4[2,1;1] + 9[1,1;1] + 8[0,1;1] + [1,3;1] + 4[0,3;1]
+[0,1;3]

6 [6,0,0] + [4,2;0] + 2[4 ;1] + 3[4,0,0] + 2[3,2:0] + 4[3, ;1] + 3[3,0:2]
F5[3,0;0] + [2,31] + [2,22] + 8[2,2;0] + 12[2,1;1] + 4[2,0:2] + 14[2,0;0]
+[1,4;0] + 5[1,3;1] + 6[1,22] + 13[1,2;0] + 2[1,1;3] + 23[1,1;1] + 9[1,0;2]
4 12[1,0;0] + 40,4;0] + 90,3; 1] + 9[0,2:2] + 19[0,2;0] + 3 [0, 1;3]
+18[0,1;1] + 4[0,0;2] + 8]0, 0;0]

7 [7,0;0] + [5,2;0] 2[5,1;1] + 3[5,0;0] + 2[4,2;0] + 4[4,1;1] + 3[4,0;2]
15[4,0;0] + [3,3;1] + [3,2;2] + 8[3,2;0] + 13[3,1;1] + 5[3,0;2] + 17[3,0;0]
+[[2,4;0]]+5[[2,3;1]]+6[[2,2,2]]+16[[2,2,0]]+2[[2,1;3]]+31[[2,1;1]]+17[[2,0;21]
+24[2,0;0] + 5[1,4;0] + 15[1,3;1] + 161,2;2] + 38[1,2;0] + 7[1,1;3]
£51[1,1;1] + [L,0; 1]+2o[[1021]+35[[100]]+[[051]]+3[[042]]+9[[040]]
+2[0,3;3] + 26]0,3;1] + 22[0,2;2] + 34[0,2;0] + 7[0,1;3] + 39]0, 1; 1]
+[0,0:4] + 13[0,0;2] + 13 [0,0;0]

Table 4.3: Ngg = (1,0) multiplets occurring up to mass level 7

1 Again, there is a subtlety in applying (4.196) to the massless R sector, see the footnote
before (4.112). However, this can be fixed easily: one can simply add to it %(yl -
yr ) (y2 — ¥y V)(r —771) to get the correct massless character in R sector.
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4.4.1 The total number of states at a given mass level

In this subsection, we compute the total number of states present at a
given mass level through the unrefined partition function, i.e. by setting
the fugacities y1,y2 and r in to unity. The total number of states
N,, at the mass level m can be read off from the coefficient of ¢"* in the
power series of XNﬁd:(l’o)(q; {yi=1,r=1}).

We follow the analysis presented in subsection [£.3.1] The unrefined par-

tition function is given by

- Nisa=(1,0
M=) (g by = 1 = 11) = 23" g0 (Gy =1,5 = 1)
SO(5 Nog=4,c=6 e
=i gy = 1D xS plar =1)

SO(3 Nog=4,c=6 o
=2’ Pa {y = )Xy plar = 1)

4
- ql/Sﬁi]((l(;)%) [1 — 2iq" 8 (1/2, 7)} :
(4.198)

Indeed, the power series of XNGd:(l’O)(q;{yi = 1,r = 1}) in ¢ reproduces

the numbers presented in the second column of Table Note that
XNGd:(LO)(q; {yi = 1,r = 1}) is not a modular form, since the Appell-
Lerch sum is a mock modular form and it is not added by a suitable non-

holomorphic component to be modular.

The number of states at each mass level and its asymptotics

The number of states at the mass level m can also be computed from

1 d
N, = 9

= 5 gt X ey = L =13 (4.199)

where C is a contour around the origin.

Now let us compute an asymptotic formula for the number of states IV,,
at a mass level m when m — oo. We focus on the limit ¢ — 1~ and proceed
in a similar way to subsection

Let us first examine the leading behaviour of p(1/2,7) as ¢ — 17 or
7 — 0. Using the second point of Proposition 1.5 of [16], we find that

1 1 1 1 1
" il EOTIRRY =— . 4.2
V=T <27’7 7'> <2’T> 21 (4:200)
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Let us consider u (%, —%) as ¢ — 17 or equivalently 7 = ie as e — 0. It

follows from the definition of Appell-Lerch sum that

) 1 i/ (27) ” e—imm?/T
pl—,—=]=- D Y wry E (_1) —2mim/T+mi/T
2r° T 01 (e2mi/(27), e=2mi/T) 1—e frem
meZ
m/(2€)
e —T7/€ )
~ g X (2077 r=ie e 0F
3T
_ 9 B 4.201
Zexp< 46) ) ( 0 )

where in the second ‘equality’ only m = 0, 1 in the infinite sum contribute to
the leading behaviour and we have used the fact that 9 (e>7/(27) ¢=27/7) =
—ie™/ (49 as 7 = ie, € — 0. Hence, to the leading order, one can neglect
the first term in in comparison with 1/(2¢) on the right hand side
and so

1 1
= ~ — - 17 . 4.202
i(37) vz @ (4.202)

Therefore it follows from (4.198)) that, as ¢ — 17,
_ 1 892(1,9)4
6a=(10) (g {1 — 1.1 — /821, 4 ( _ 1/8)
XM g{yi=1r=1})~q 1—q
(g:{ 1) ML

_ 32
~ (21) (1 — ) (1 — )2 exp (—QIqu) , (4.203)

where we have used (4.121]) and (4.119). Hence, as m — oo,

dg 1/8 5/2 < 37
— (1-— 1-— exp | —
§ L a—a =0 e (5

52]‘ §

—mlog q>4.204)

The saddle point is at qg = exp (—77\/5/ v 2m) and the steepest descent
direction is the imaginary direction in q. We proceed in a similar way to
(4.125) by writing ¢ = goe’? and using Laplace’s method to obtain

1 > 1 /2
N~ (2m) (1 = q™) (1 = o)™ o~ / df exp <_7r\/;m3/202>

97
~ o172

m /% exp (7r\/ 6m> , m — 0o . (4.205)
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4.4.2 The GSO projected NS and R sectors
The NS sector

From (4.291)), the partition function of the GSO projected NS sector is

e Jaso (Gys) = > [2kaly, [2kay (2] FYS, ,(0) o (4.206)

k1,k2,p=0

where the function F, Eg(q) is given by
_ 1,240,
FSep(@) = (g; Q)oog(l — q)qz" P!

1.2 nA _
% Z Z H nA+1 an)quAJr(Q)(an\kA my| _an(kA+mA+1))

1 (1 — qp-i-l)ﬁg(l Q) _ mA+%
30 s gh LA
2

(14 ¢P72)0a(1, a) [T +am™t5)] . (4.207)

2 2 2
+ (—1)matmer ;
(1—g” 2)(1—g"2) 45

Asymptotics. This expression can be simplified further in the asymptotic

limit k1, ko — oco. Using (4.128]), we have

Z H nA+1 (1— an)q(n{‘)(an\kA*mAl _ an(kA+mA+1))

nez? A=1
q)? - (1 _q2kA+2) 2ma+1
—ma (1 _ 2ma
T ooy ooy
and using (4.130]) we have

Z H gimi—ma ( qu+%) (1= @™ty = g7 (1 — )03(1, q)?

mezd , A=1

(4.209)
2 2 1, 2 1
Z H(—l)mAqimA_mA (1 + qu+§) (1 _ q2mA+1)
meLs , A=1
= ¢ '(1-¢)*a(1,9)*, (4.210)
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Therefore we arrive at an asymptotic formula for F,gska p(q) when k1, ko —

00:
1
1 _ 12 _ (1—¢Pt2)
Fis p(0) ~ 5 (0:0)5 (1 — q) 2P P — —93(1,¢)°
L+ 51 +gH)
1
1 + p+§
+ (_1)]?2 ( 1 g ) 3 194(1761)3 ) kla k2 — 00 .
(1—g"72)(1—¢""2)
(4.211)
The R sector
The partition function of the GSO projected R sector is
Nsa=(1,0
g™ L0 1 as0 (g:v,9)
oo
= Y [Rki+ 1y 2k + e+ 1) 4, ,(0) (4.212)
k1,k2,p=0
where F,f; ko p(q) is given by
_ 1208, 8 1 (1=¢"T)0(1,9)
FR — (- 0)=2(1 — g)gzP +3r—% « = ’
khkz,p(Q) (qv(I)oo ( Q)q 8 X 9 (1 n qp)(l i qp+2)
2
<303 TLDm - grygd s (s)
REZ? meZZZO A=1
% (an“CA*mA‘ _ an(kA+mA+2))(1 _ qu+1) (4213)

Similarly to the NS sector, an asymptotic formula for F,SIS,Q p(q) when
ki, ko — o0 is given by

(1—g¢"*h)
(1+gP)(1 +¢7+2)

1 _ 1,2,3 _3
(@) ~ 5@ Q)01 — q)°ger tapthithe=g

Fy ko 192(1,(])3 ’

(4.214)
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4.4.3 Multiplicities of representations in the Ng; = (1,0)
partition function

Combining the contributions from the NS and R sectors, we have

= - Neq=(1,0 - Noa=(1,0 7
Moa=0) (ge 7 1) = R =E oo (g7, 7) + 2™ Jaso (¢ 7,7)
o
= Y (2Rl Rklul2p) B, ,(0)
k17k27p:0

o [2k -+ 1]y, 26 + 20+ 1]y FR g (0) - (4215)

Making SUSY manifest amounts to rewriting the partition function as

X‘MGd:(I’O) (q, g, T‘) = anmazo Z;io [[n17 na; p]] Gn1,ﬂ2,p(q) ) (4216)

and the aim is to compute explicitly a multiplicity generating function

Gy nap(4)-
Before proceeding further, we observe the selection rule

Gn1,2n272p+1(q) =0, Gn1,2m+1,2p(q) =0. (4.217)

It follows from that [k1]y, [k2]y, [p]» with odd (respectively even) val-
ues of p only enter with a product of two representations with both odd
(resp. even) ki and kp. According to (4.82)), the product [ki]y, [k2],, with
both odd (resp. even) k; and ko decomposes into only spin (resp. non-spin)
representations of SO(5). In other words, a spin (resp. non-spin) represen-
tation only comes with an odd (resp. even) value of p, and hence (4.217))
follows.

Nﬁd:(lvo)(

The multiplicity of [n1,ng;p] appearing in x q;y,r) can be de-

termined as follows:

. XNGd:(lvo) (q, _” r)

Gninop(q) = /dMSU(z)(T)[P]r/dMSO(5)(y)[n17n2]g ZWNar = (LO)G.1)
NS R

= Gyngp(@) + Gy p (@)

Nea=(1,0) (. ;7

X (g;9,7)
= [ ansue (bl B s Z(Noa = (1,0))(7.7)
(4.218)
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where

[2k1] | [2ka)y, 2 ]T -
Xkl,g/zo Z(Nea = (1,0))(, )Fkl:kw’@’ (4.219)

(%MAQZ/MwmmMr/Mw@@WmM

[2k1 + 1]y, [2k2 + 1]y, 20" + 1],
P> i ) [ R

(4.220)
k1,k2,p'>0

and the inverse of the character of the fundamental multiplet in (4.194)) can
be written as a geometric serieﬁﬁ similar to (4.151))

,,,2

TY Yy
(1 T yly2) <1 + T;) (1 + 712) (14 ry1y2)
= Z (—1)mtmatmatma, 24ma+ms-tmatma

[Z(Nga = (1,0))(7,7)] " =

mi,...,mq>0

% yl_m1+m2 m3+m4y2—ml m2+mz+my . (4223)

12Note that this can also be rewritten as
[Z(Noa = (1,0))(7,7)] " = r* PE[s]0, 1] gl withs=—r
= > (=)™ 20,m]y . (4.221)
m=0

where in the last equality we have used the fact that Sym™|0, 1] = [0, m].
13 After [7] was published, a new formula for the inverse of the fundamental super-Poincaré
multiplet was found:

-1 _ 1
Z(Nea = (1,0)) " = ((r4+7=1) + [y o) ((r +r=1) + [1]%)

L5

= Z T+T )lmm+2 Z (m;— 1> [m QP]yl[ - 217] (4.222)

O

While it is more complex to use than (4.151]) for the N4q = 1 case, it shares its property
of being symmetric under r < r~ .
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Some useful identities

Before we proceed further, let us derive some useful identities for the ele-

mentary building blocks of G, p, p. The first one follows from (4.17):

To(w; p1,p2) i= /dMSO(E‘,)(T) r[p1lr[p2]r

6:01 P2 forw =0
T ) 1 —iitp2—Ip1—p2]) 5 5 f 0
2 2p=0 (Ot 2p+lp1—pa| — Ofwl.2p+2+ip1—pal) o w #
(4.224)
Next, we are interested in the following integral:
Z(w; k; M) = /dMSO(5)(?7) Y Yy 2 [Rly, [Raly, [n1, naly - (4.225)

We compute this using the decomposition formula , together with
(4.224). In what follows, we assume that E,ﬁ € ZQ>0 and w € Z2. (Here,
as i, the k4, the £’y and ny can be integers o} half-odd integers (in-
dependently of each other, though the two k4 must be of the same type as

must the two £y, while in [7] we consider the cases separately.)
Z(w; 2k1, 2k2; 01, 2n2)

2
= A(ny +ng,ng; 2k, 2k5) [ [ Zo(wa; 2ka, 2Ky) (4.226)
ot A=1

where from (4.78))

2
A, Agi 2k1,2k) = 350, . det (0(‘;4*_/*;;‘;'3 (ko A))>AB:1 (4.227)
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Multiplicity generating function

The NS- and R sector contributions to the multiplicity generating function

for the representation [n1,ng;p] can be rewritten as

4 ] .
Clomp(@ = Y (~D)Z=™ Y Ty(Wa(ii), p, 2) (4.228)
mi,...,m4 >0 p'>0
X Z T(Wa(h); 2k1, 2ka; n1, mig) Flg’skmp, (q)
k1,k2>0
4 ] .
GR @)= D> ()Z=™ Y L(Wi(i),p,2p' + 1) (4.229)
mi,...,mq>0 p’'>0
x> T(Waii); 2k + 1, 2k + 13m1,m2) Fit 4 0(q)
k1,k2>0
where we define
Wi(m) = 24+ m1 +ma +m3 +my ,
Wa (1) = (—m1 + ma — m3 4+ ma, —m1 — ma + mz + my) . (4.230)

As stated in (4.218)), the multiplicity of the representation [ni,ns;p] in
the Ngqg = (1,0) partition function is given by

S
Gn17”2,1)(q) = Gg],ng,p(q) + GS],TLQ,])((])

= Y pEam Yy [IO(W1(771);]07 2p')

ma,...,ma 20 p'20

X Z T(Wa(m); 2Ky, 2ka; 1, ng) F,i\fk%p,(q)

+Zo(W1 (’r?l),p’ 2p/ + 1) Z I(Wg(ﬁl), 2k1 + 1,2k + 1;mq, ’I’Lg) Fli,kz,p' (q)j| .
k1 k>0
(4.231)

4.4.4 Empirical approach to Ng; = (1,0) asymptotic patterns

In this subsection, we follow the lines of subsection and investigate
the large spin asymptotics of multiplicity generating functions Gy, i ,(q) for
universal Ngg = (1,0) supermultiplets [n, k;p]. Similar to the Ny = 1
strategy, the G, ,(q) are expanded in powers of ¢" where n denotes the

first Dynkin label that we loosely identify with the spin. The coefficients

123



Tf P(q) of (¢")* turn out to be power series with non-negative coefficients

which enter with alternating sign (—1)¢1:

k, k, k,
Grpp@) = "7 () — ") + " m57(q) — ...

= Y (-1 () (4.232)
/=1

In spacetime dimensions higher than four, the analytic methods of sub-
section [4.3.4] are no longer efficiently applicable. We could not find an
asymptotic formula for resembling and for the large
spin regime of the Ny = 1 multiplicity generating functions. Hence, we
determine the 7'? ?(q) including the leading trajectory Tf P(q) from our data
found by expanding the partition function up to mass level 25. The
multiplicities of [n, 0; 0] multiplets are shown in the following table data
for nonzero values (k,p) = (2,0), (0,2) and (1,1) can be found in appendix
[4B2] Table entries marked in red are only affected by the stable pattern
sz’ﬁ(q) whereas the blue numbers arise from anf Pq) — (12”75C P(q), i.e. by

including the (subtractive) subleading trajectory.

Levels of first appearance

Let us firstly determine the level of first appearance for various families
{[n, k;p], n=0,1,...} of Ngg = (1,0) supermultiplets with second SO(5)
Dynkin label k£ and R symmetry quantum number p fixed. It is identical
to the leading ¢ power of the multiplicity generaing function Gy p(q) or
its expansion coeflicients Tf P(q) defined by . The following table
gathers the mass levels a/m? < 25 where the first instance of a {[n, k; p], n =
0,1,...} member can be found:

We observe that, roughly speaking, the level of first appearance for super-
multiplets [n, k; p] depends linearlyﬁ on the SO(5) Dynkin label k& (with
slope %) but quadratically on the R symmetry spin p/2, in agreement with
the final remark in subsection £.2.21

' The linear k dependence can be partially understood from the A1,2 dependence in .
However, the bosonic string suggests that an SO(5) representation [n, k] is delayed by
two levels under k +— k + 1 whereas the observations from table 5] clearly show a
delay of three levels per k — k-+1. Even though we cannot give a detailed explanation
on analytical grounds, it is clear that this extra delay in mass level must be due to

the worldsheet fermions, see e.g. (4.89) and (4.90).
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3+ $* F* $* F* F* 3 3 3 3+ 3 $*
R S = ™ = = = & = ' = 5 =
- ° ° ° ° ° ° ° ° ° 2| =
sl 2 = = 2 = 2 =& =] 2|2 ¢%
1 0 1 0
2 0 0 1 0
3 1 2 0 1 0
1 2 2 3 0 1 0
5 3 9 1 3 0 1 0
6 8 12 14 5 3 0 T 0
7 13 35 27 17 5 3 0 1 0
8 30 58 63 29 s 5 3 0 I 0
9 53 135 116 82 32 s 5 3 0 1 0
10 || 107 213 265 153 83 33 18 5 3 0 1 0
11 | 193 505 503 358 172 o1 33 18 5 3 0 1
12 [ 376 918 1044 696 103 178 92 33 18 5 3 0
13 [ 670 | 1803 | 1975 | 1474 801 123 181 92 33 18 5 3
11 | 1246 | 3269 | 3887 | 2839 | 1711 816 129 | 182 92 33 18 5
15 || 2220 | 6136 | 7235 | 5687 | 3355 | 1824 | 866 | 432 | 182 92 33 | 18
16 || 4005 | 11015 | 13691 | 10754 | 6784 | 3605 | 1870 | 872 | 433 | 182 | 92 | 33
17 || 7025 | 20052 | 25041 | 20649 | 13021 | 7348 | 3718 | 1890 | 875 | 433 | 182 | 02
18 || 12407 | 35469 | 45971 | 38304 | 25243 | 14213 | 7606 | 3764 | 1896 | 876 | 433 | 182
19 || 21469 | 63030 | 82532 | 71226 | 47411 | 27774 | 14790 | 7720 | 3784 | 1899 | 876 | 433
20 || 37182 | 109838 | 147906 | 129443 | 89013 | 52547 | 29015 | 15048 | 7766 | 3790 | 1900 | 876
21 || 63492 | 191293 | 260818 | 234646 | 163536 | 99387 | 55177 | 29600 | 15162 | 7786 | 3793 | 1900
92 || 108142 | 328527 | 457957 | 418298 | 299140 | 183903 | 104797 | 56431 | 29859 | 15208 | 7792 | 3794
93 || 182254 | 562391 | 794256 | 741061 | 538495 | 338749 | 194850 | 107476 | 57016 | 29973 | 15228 | 779
24 || 306007 | 952431 | 1369976 | 1299438 | 963344 | 613928 | 360467 | 200360 | 108738 | 57275 | 30019 | 15234
95 || 509309 | 1605996 | 2330762 | 2261945 | 1702039 | 1105604 | 656324 | 371692 | 203052 | 109324 | 57389 | 30039
Table 4.4: Ngg = (1,0) multiplets with SO(5) quantum numbers [n,0] and
SU(2)g spin 0
-
’J,p,kHO‘1‘2‘3‘4‘5‘6‘7‘8‘9‘10‘11‘12‘13‘14‘15‘16‘17‘
0 1 2 5 8 11 11 17 20 23
1 2 1 7 10 13 16 19 pp) %
2 3 1 7 10 13 16 19 Gp) %
3 5 7 10 13 16 19 22 %
1 7 8 10 13 16 19 22 %
5 9 11 14 17 20 23
6 || 11 2 15 13 21 27
7 14 16 19 22 %
8 || 17 13 20 23
9 20 22 %5
10 | 23 21

Table 4.5: Mass level where the [0, k; p] multiplet of Ngg = (1,0) firstly oc-
curs. Empty spaces indicate that the representations in question
do not occur at levels < 25.
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Explicit formulae for the Tf P(q)

Let us now list the leading terms in TE’O((]), T;’O(q)77‘?’2(q) and Tgl’l(q)’ ob-

tained through the entries of table and its (k,p) # (0,0) relatives dis-
played in appendix This allows to reconstruct the large spin asymp-
totics of the multiplicity generating functions G, ,(q) via (4.232)).

e SO(5) Dynkin labels [n — o0, 0] and SU(2) g representation [0]
700%g) = 140g+ 3¢ +5¢° + 18¢* + 33¢° + 9245 + 18247 + 433¢°

+876¢° + 1900¢" + 3794¢"" + 77964 + 15238¢"* + 30049¢"*
+ 57465¢'° 4 1097730 + 205349¢'" + 382249¢"® 4 7005204 + . ..

20g) = q(1+4q" +10¢% + 30¢° + 76¢* + 190¢° + 449¢5 + 1035¢7
+ 2298¢" 4 4999¢° + 10580¢'° + 21976¢™! + 44727¢* + 89543¢" + ..))
%g) = q(1+q+10¢2 +23¢° + 81¢"* + 194¢° + 531¢° + 12327+
+2967¢% 4 6586¢° + .. .)
79%q) = ¢ (1+5q+16¢% +53¢° + 153¢* + 41745 +...)
5q) = F(+q+11d+..) (4.233)

e SO(5) Dynkin labels [n — o0, 2] and SU(2) g representation [0]

29) = ¢ (1+2q+8¢% +17¢° + 52¢* + 117¢° + 293¢° + 64547

+1468¢® + 3119¢° + 6667¢'° + 13674¢" + 27913¢'2 + 5544643
+ 109165¢'* + 210717¢" + 40271446 + 757889¢"" + 1412208¢*® + .. )

%) = ¢ (1+4qg+ 14¢% + 41¢° + 118¢" + 306¢° + 764¢° + 18184"
+ 4191¢® 4 9344¢° + 20318¢'° + 43083¢*! + 89493¢'2 + 18223943 + .. )
20q) = ¢°(3+9¢+40g% + 114¢° + 345¢* + 890¢° + 2297¢° + 5481¢7
+12871¢% +...)
29q) = ¢8(1+5q+23¢% +79¢° + 251g* + 7170 +...)
2%g) = ¢®(3+10g+48¢" +...) (4.234)
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e SO(5) Dynkin labels [n — 00,0] and SU(2) g representation [2]

72(q) = ¢*(3+5q+ 20¢% + 464> + 128¢* + 288¢° + 696¢° + 1513¢"
+ 3354¢% + 7025¢° + 14707¢*° 4 297364 + 59679¢*? + 116933¢*>
+ 226900¢'* + 432515¢"° + 816089¢'¢ + .. )

2(q) = 2 (1+3¢" +13¢% + 37¢% + 109¢* + 285¢° + 727¢° + 1737
+ 4050¢° + 9075¢° + 19868¢° 4 42302¢* + 88278¢'% + .. )

m2(q) = ¢ (1+2q+13¢% + 37¢% + 124¢* + 331¢° + 906¢° + 22334¢"
+ 5456¢° +...)

92(q) = (24 7q+29¢% + 9247 + 2821 + ..)

g = ¢ (1+3¢+18¢*+...) (4.235)

e SO(5) Dynkin labels [n — oo, 1] and SU(2) g representation [1]

7 q) = ¢ (2+4q+13¢% + 35¢° + 89¢" + 216¢° + 508¢° + 11454
+ 25216 4 5402¢° 4 11320¢'° 4 23238¢'! + 468564 + 92850¢'3
+ 181217¢" + 348612¢"° + 661792¢'° + 124078647 + .. )

7 (q) = ¢ (1+4q+13¢% + 43¢ +122¢" + 323¢° + 814¢° + 1962¢”
+ 4550¢° + 10233¢° + 2237040 + 47718¢'* + 99574¢*% + .. )

Nq) = ¢*(1+5q+ 21¢% + 70¢% + 211" + 584¢° + 1529¢° + 379847
+..)

i q) = ¢ (1+6q+24¢% +85¢° +...)

) = @+..) (4.236)

Further Tf P (q) are listed in 1’ They suggest that the Tf ?(q) expansion
(4.232) coverges more quickly with larger values of k£ and smaller values of

p.

4.4.5 Four dimensional N,; = 2 spectra

In order to determine universal string spectra with N3y = 2 SUSY, we shall
now compactify two dimensions of minimally supersymmetric NVgg = (1,0)
theories on a T2. This preserves all the eight supercharges and the internal

~

rotation symmetry becomes an R symmetry factor of SO(2)r = U(1)g.
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Hence, the dimensionally reduced theory in d = 4 spacetime dimensions
enjoys Nyg = 2 SUSY and R symmetry SU(2)g x U(1)g = U(2)g. The

fundamental Ny, = 2 super Poincaré multiplet encompasses 8+8 states,
Z(Nia = 2) = 2]y + [21,[0]y + (z* + 272 [0], + (= + 2~ D[] [1], (4.237)

where z denotes the U(1)g fugacity. The tensor product of with
a Clifford vacuum in some SO(3) x SU(2)r x U(1)pg representation yields
a family of supermultiplets characterized by three quantum numbers — n
for SO(3) spin, m for SU(2)g spin and p for U(1)g charge. The resulting
16(n + 1)(m + 1) states are described by the supercharacter |E|

[n;m,pl = Z(Nig=2)- 2" [m];[n], . (4.243)

The position of the semicolon in the arguments of the supercharacter allows
to distinguish N3y = 2 multiplets [-;-, -] from Ngg = (1,0) multiplets [-, -; -]

The universal partition function of M3y = 2 scenarios is obtained through

15 The simplicity of the SO(3) tensor product [2m]-[2k] = Zfilzim‘ [2]] allows for compact

closed formulae for the SO(3) x SU(2)r x U(1)r decomposition of a general Ny = 2
supercharacter:

[nim,p] =2 {[m]- [n+2] + [m]-[n—2] + [m+2].[n] + [m—2],[n] + 2[m], [n]
+ @@+ ) ml ] + (z+z2 ) (m+ 1 + [m—1)) (n+1] + [n—1]) }
(4.238)

This generic character formula (4.238]) holds for values n,m > 2 of the Clifford vac-
uum’s SO(3) x SU(2)r spin quantum numbers and specializes otherwise:

[n;0,p] =2 {[n+2] + [n—2] + [2-[n] + 142" +2"%)[n]

+ (z+z )l (n+1] 4+ [n-1])}, n>2 (4.239)
[0;m,p] =2° { [m],-[2] + [m]-[0] + [m+2)[0] + [m—2]-[0] + (z°+27%)[m].[0]

+ (z+z ) (Im+ 1 + [m-1])[1]}, m > 2 (4.240)
[0;0,p] =2" { 2] + [2-[0] + (z*+2"")[0] + (z+2"")[1-[1]} (4.241)
[51,p] =27 { (1. [3] + [B-[1] + 2+2"+27")[1]. [1]

(z+271) (120 2] + [20-[0] + [2] + [0]) } (4.242)

We observe the general selection rule that either none or all of n, m, p are odd, hence,
there is no need to consider [1;0,p] or [0;1, p].
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GSO projection of the following character products:

XM= (gsy,m,2) = XRE2 Jaso (G951 2) + xR laso (@:y,7,2)
A4 Jaso (¢y,7,2) = %(f% [ (05 9) XNt i (@ 7) X5 (a3 2)
— e (€M g y) G o (T ) xRS (g 2) ]
X817 Jaso (¢y,7,2) = %xﬁa(?’)(q;y) X (@) xi V(g 2)

(4.244)

Its symmetry under reversal p — —p of U(1)gr charges motivates the defi-

nition

[nym,£p] = { [[n;m’p£njrm’ﬂgﬁm’ 7l i i 8 : (4.245)
then the power series expansion of starts likelﬂ
XN gy, 2) = <y2 ty P %(y + yl)[llz[l]r> q°

8 massloss states
+([2;0,0] + [0;0,£2]) ¢
80 states at level 1
+ ([4;0,0] + 2[2;0,£2] + [2;0,0] + [1;1,£1] + [0;0, 4] + 2[0;0,0] ) ¢*
512 states at level 2
+ ([6;0,0] + 2[4;0,£2] + [4;0,0] + 2[3;1, £1] + 2[2;0, £4] + 2[2;0, £2]
+ 6]2;0,0] 4+ 2[1;1,43] + 3[1;1,+1] + [0;2,0] + [0;0, +6]
+ 4[0;0,£2] + 2[0;0,0]) ¢* + O(q*) (4.246)

The vertex operators occurring in the three multiplets of the first mass level
have been constructed in [15], see equations (6.3) to (6.11) of that reference
for bosons and equations (6.22) to (6.30) for fermions. The content of the
first five levels is summarized in table

16 Again, there is a subtlety in applying the above formula to the massless R sector; see
the footnote before (4.112)). However, this can be fixed easily: one can simply add to
it 2(y—y ")(z—2"")(r —r7") to get the correct massless character in R sector.
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[ o’'m? [ representations of N3q = 2 super Poincaré
1 2;0,0] + [0;0,£2]
2 4;0,0] + 2[2;0,%2] + [2;0,0] + [1;1,%1] + [0;0,%4] + 2[0;0,0]
3 6;0,0] + 2[4;0,£2] + [4;0,0] + 2[3;1,£1] + 2[2;0,+4] + 2[2;0,+2] + 6[2;0,0]

+2[1;1,43] + 3[1;1, +1] + [0;2,0] + [0;0,46] + 4]0;0,+2] + 2[0;0,0]

4 [8;0,0] + 2[6;0,+2] + [6;0,0] + 2[5 1, £1] + 2[4;0,£4] + 3[4;0, £2] + 8[4;0,0]
+3[3;1,£3] + 6[3;1,£1] + [2;2,£2] + 3[2;2,0] + 2[2;0, 6] + 3[2;0, £4]
+12[2;0,£2] + 11[2;0,0] + 2[1;1,+5] + 5[1;1,43] + 10[1; 1, £1] + 2[0;2, £2]
+10;2,0] + [0;0,+8] + 5[0;0,£4] + 4[0;0,2] + 11[0;0,0]

5 [10;0,0] + 2[8;0,£2] + [8;0,0] + 2[7; L, £1] + 2[6;0,£4] + 3[6;0, £2] + 8[6;0,0]
+3[5;1, 3] + 7[5 1, £1] + [4;2, 2] + 4[4;2,0] + 2[4;0,£6] + 4[4;0, +4]
+16[4;0,+2] + 17[4;0,0] 4+ 3[3;1,45] + 11[3;1,£3] + 21[3;1, £1] + [2;2, +4]
+702;2,+2] + 8[2;2,0] + 2[2;0,+8] + 3[2;0,46] + 15[2;0,£4] + 23[2;0, +2]
+38[2;0,0] + [1;3,£1] + 2[1;1,£7] + 6[1;1,£5] + 16 [1;1, £3] + 28[1;1, £1]
+3[0;2,+4] + 4[0;2,£2] + 9[0;2,0] + [0;0,+10] + 5[0;0,%6] + 6 [0;0, £4]
+21[0;0,+2] + 16 [0;0,0]

Table 4.6: Nyg = 2 multiplets occurring up to mass level 5

Comparison with the partition function of the Ngg = (1,0) an-
cestor theory (and table clearly demonstrates that the six dimensional
viewpoint gives a more streamlined handle on the spectrum in terms of fewer
supermultiplets. This is why we do not provide an asymptotic analysis and

data tables for the universal Ny = 2 spectrum like we did for the d = 6
ancestor in subsection [£.4.4) and appendix

4.5 Spectra in compactifications with 16

supercharges

This section is devoted to maximally supersymmetric type I superstring
compactifications on even dimensional tori where all the sixteen super-
charges are preserved. The methods introduced in subsections and
are applied to decompose the partition function of the (9X?,¢¢) CFT
describing d = 10,8, 6,4 spacetime dimensions into characters of the little
group SO(d—1). The d = 10 case takes the role of the ancestor theory for 16
supercharges, so its spectrum will be analyzed in particular detail. In the re-
maining cases d = 8, 6,4, dimensional reduction converts part of the higher
dimensional Lorentz symmetry into an internal R symmetry, i.e. we branch
the ten dimensional little group into SO(9) — SO(d — 1) x SO(10 — d)g.
In this process, individual Lorentz fugacities y; with k > %(d — 2) are rein-
terpreted as R symmetry fugacities ryg.

Before looking at individual dimensionalities in detail, let us fix the nota-
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tion for describing supersymmetric spectra with R symmetries: Characters
of the spacetime little group SO(d — 1) are denoted by [aq,...,a,] with
fugacities y1,...,yn, and n = %(d — 2) whereas those of the R symmetry
SO(10—d) g receive an extra subscript [by, ..., by] g with fugacities r1,...,ry
and £ =5— g. Our notation for supercharacters makes use of double brack-
ets [ai,...,an;b1,...,b¢] enclosing the SO(d — 1) x SO(10 — d)r quantum
numbers of the highest weight state. The semicolon between a, and b;
separates spacetime from R symmetry Dynkin labels and eliminates any

ambiguity about the spacetime dimension under consideration.

4.5.1 Ten dimensional N;y; = 1 spectra

In this subsection, we want to revisit the results of [§] on SO(9) covariant
partition functions for ten dimensional open string excitations and examine
further symmetry patterns. The minimal massive N1gg = 1 SUSY multiplet
encompasses SO(9) representations of a spin two tensor, a three-form and

a massive gravitinolz]
Z(Nlod: 1) = [2707030] + {070)170] + [Loaoa 1] . (4247)

This is precisely the particle content of the first mass level, its vertex op-
erators can for instance be found in equations (2.8), (2.9) and (2.22) of
[15].

The generic multiplet is obtained as a tensor product of Z(Njpg = 1)
with some SO(9) representation and therefore described by the following

Nioq = 1 supercharacter:
[[al’a2’a3’a4]] = Z(Nl()d = 1) ' [a‘laa‘27a’37a4] (4248)

This is the basic building blocks of the refined ten dimensional partition

function. The latter can be obtained through standard GSO projection of

"Note that Z(Nioq = 1) is denoted by Zg in [8].
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the spacetime CFT

XN0= (g ) = AN oo (7)) + v [aso (¢ 9)
N, . 1 1. 5009), - SO(9
e laso (6:7.7) = 54 s @) — xns (€ ig ) ]
S 1 sow©), -
X" laso (¢:7.7) = 3 XR (7). (4.249)

where y S( )(q;g’) and Xli ® )(q, ) are given by d4 89[) and d4 90I)

In a power series expansion in ¢, the coefficient of the n’th power ¢"

comprises the super Poincaré characters of the n’th mass level m? = n/a/ E

4 4
— —5 1
X/\/lodfl(q;y) = E y] + y] 5 H Y + yj ¢’ + [0,0,0,0] ¢

—_——
256 states at level 1

16 massless states
+ [1,0,0,0]¢* +([2,0,0,0] + [0,0,0,1])¢*
2304 states at level 2 15360 statoes at level 3
+([3,0,0,0] + [1,0,0,1] + [1,0,0,0] + [0,1,0,0]) ¢* + O(¢°) .
(4.250)

The supermultiplets up to level eight are listed in table[f.7and the complete
first 25 mass levels can be found in table [4.8] and appendix

The total number of states at a given mass level

The total number of states at a given mass level m can be read off from
the coefficient of ¢™ in the partition function xV104=1(g; /) when the SO(9)
fugacities ¥, ...,ys4 are set to unity. The function XMOFl(q; {yi = 1}) is
referred to as the unrefined partition function. From , and

8Note the usual subtlety about the massless R sector which was explained in the footnote
before (4.112). One can simply fix this by adding 3 ([0,0,0, 1]so(s) — [0,0,1,0]s0(s)) =
1 [T, (y: —y; ") to the present result and obtain the correct answer; see also (3.16) of
[8]. The 1[1,0,0,0]s factor in the massive sector of the aforementioned (3.16) exactly
matches our formula at any positive ¢ power.
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[ o’'m? [ representations of N7gq = 1 super Poincaré

1 0,0,0,0

2 1,0,0,0

3 2,0,0,0] + [0,0,0,1

1 3,0,0,0] + [1,0,0,1] + [1,0,0,0] + [0,1,0,0

5 4,0,0,0] + [2,0,0,1] + [2,0,0,0] + [1,1,0,0] + [1,0,0,1] + [0,1,0,0]
+[0,0,1,0] + [0,0,0,1] + [0,0,0,0]

6 [5,0,0,0] + [3,0,0,1] + [3,0,0,0] + [2,1,0,0] + [2,0,0,1] + [2,0,0,0] + 2[1,1,0,0]
+1[1,0,1,0] + 2[1,0,0,1] + 2[1,0,0,0] + [0,1,0,1] + [0,1,0,0] + [0,0,0,2]
+210,0,0,1]

7 [6,0,0,0] + [4,0,0,1] + [4,0,0,0] + [3,1,0,0] + [3,0,0,1] + [3,0,0,0] + 2[2,1,0,0]
+12,0,1,0] + 3[2,0,0,1] + 3[2,0,0,0] + [1,1,0,1] + 2[1,1,0,0] + [1,0,1,0]
+|Il707072]:| + 4[[1707071]] + 2[1707070]] + [[0’27070]] + 2[[0717071] + 2[[0717070]]
+3[0,0,1,0] + [0,0,0,2] + 2[0,0,0,1] + 2[0,0,0,0]

g [7,0,0,0] + [5,0,0,1] + [5,0,0,0] + [4,1,0,0] + [40,0,1] + [4,0,0,0] + 2[3, 1,0, 0]
+1[3,0,1,0] + 3[3,0,0,1] + 4[3,0,0,0] + [2,1,0,1] + 3[2,1,0,0] + [2,0,1,0]
+[2,0,0,2] + 5[2,0,0,1] + 3[2,0,0,0] + [1,2,0,0] + 3[1,1,0,1] + 5[1,1,0,0]
+4]1,0,1,0] + 2[1,0,0,2] + 7[1,0,0,1] 4+ 5[1,0,0,0] + [0,2,0,0] + [0,1,1,0]
+40,1,0,1] + 5[0,1,0,0] + [0,0,1,1] + 2[0,0,1,0] + 3[0,0,0,2] + 4[0,0,0,1]
+[[0’ 7070]]

Table 4.7: N1gq = 1 multiplets occurring up to mass level eight
SUSY[T_g], we have
YN0 (g {y; = 1)) = 208 |aso (g3 {yi = 1))
2(1, ¢)* T (1+dm\°
= - =16]] —) . (4.252)
n(q) S \l—g¢

The coefficients in the power series of this formula reproduces the third
column of Table It also agrees with (5.3.37) of [57]. Note that

XNlodzl(q; {yi = 1}) is not a modular form.

The number of states at each mass level and its asymptotics

The number of states at the mass level m can be determined by

1
- 2mi

dq

N, — = X
" cqmtl

Noa=1(g: {y; = 1})

where C is a contour around the origin.

(4.253)

Now let us compute an asymptotic formula for the number of states IV,,

9The agreement of GSO projected partition functions for NS and R sectors follows from

Jacobi’s abstruse identity:

¥s(1,9)" —Ya(1,q)" —V2(1,9)" = 0.
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at mass level m when m — oo. Note that a similar discussion can be found
in subsections 4.3.3 and 5.3.1 of [57]. For completeness, let us go over some
details here. We focus on the limit ¢ — 1~ and proceed in a similar way to

subsection The asymptotic behaviour (4.119) and (4.121)) of ¥2(1, q)

and 7(q), respectively, leads to

272

_logq

N0t (g {y; = 13) ~ (1—q)*exp < ) g 17 (4.254)

1
(2m)*
Let us now combine (4.253)) with (4.254). As m — oo,

1 1 dg 4 272
Np~——— ¢ — (1-— ——— —ml . 4.255
g 2m.j£ . (1—q) eXp< ogg o84 (4.255)
The saddle point is at gy = exp (—m / %) and the steepest descent direction
is the imaginary direction in q. We proceed in a similar way to (4.125| by

writing ¢ = goe’® and using Laplace’s method to obtain

1 1 /€ 272
N,, ~ 1—qo)*=— [ do - m(if+1
- a'y [ dve (— 2 ot ogw)) >0
1 5 1 o) m3/2 5
~ = 27v/2 >7 a0 L
" exp<7r m 27T/—oo exp( o
1 —\ 1 2V
1 S
~ mmill/étezﬂ' 2m s m — OO . (4256)

For example, for m = 100, the exact value for Nygg is 1.59 x 103? and the
value from (4.256) is 1.83 x 1032 ; the error is approximately 15 %.

The GSO projected NS and R sectors

In this section we compute the contributions from the NS and R sectors
to the partition function given in (4.249). Here we consider the refined

partition function, i.e. the fugacities y’s are kept explicit.
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The NS sector. From (4.249) and (4.89), the partition function of the
GSO projected NS sector has the structure

Nioa=1 4
X laso (@) =g Fib k(@) TTas [2Raly,  (4.257)

where the functions F,gsk4(q) are given by

P @ =(@al* > Y

AELY MELL,
4
% H(_l)nA+l(1 . an)q%mi'f'("QA)(an‘kA*mA‘ _ an(kA+mA+1))
4 4
[T —gqmats) + (~pymitmmismi TT (14 gmats)| . (4.258)

A=1 A=1

The R sector. From (4.249) and (4.90)), the partition function of the
GSO projected R sector is

Nioa=1 4
Xe'" laso (6,8) = Lgeg, FE (@) TTazy[2ka + 1]y, ,(4.259)

where the function F,ﬁ k, (@) is given by

1 1 _
B (@) = 5072 (60057

4
x 3 S TLDmM - gmathy(a - gragalmar) ()

— 4 = 4 _
MELL , A€y A=1

4
% H(anlkA—mAl — gratkatmat2)y (4.260)
A=1

Multiplicities of representations in the Njgy = 1 partition function

Combining the contributions from the NS and R sectors, we have

N9 (g ) = XA laso (@7) + xR laso (4:9)
4 4
= > (B0 [T 12kalys + FE [T 284+ 11y ) - (4.261)
kezd A=1 A=1
Rezd,
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Supersymmetry implies that this partition function can be rewritten as

N10d=1(

X q; g) = ﬁ€Z4>0 [[nla n2,ns, n4]] Gnl,ng,ng,ml (CI) ) (4262)

and the aim is to compute explicitly a multiplicity generating function

Gn1,n27n3,n4 (Q)

The multiplicity of [n1,ne, ng,n4] appearing in Xde=l(

q;9) can be de-

termined as follows:

Nioa=1( - 7
X (4;9)
Gy ngnsna (@) = /d,ugo(g)( )[n1,n2,n3,n4]y Z(N1oa = 1)(7) ’
NS R
= Gn1 nz,ng,n4( ) + Gn1,n27n37n4 (), (4.263)
where
Ggls,ng n3, n4(Q) /d'uso(9)( )[nl’n2’n3’n4]
4
2/€A
A= 1 NS
o F , 4.264
Z Z(Nipa = 1)( ) Fieoka @ ( )
kezt >0
Gty manana (@) = / ditso(o) (9) 1, n2, n3, naly
QkA + ]
» Z T, ARR L) (4.265)

Z(Noa = 1)(¥)

74
kezZ >0

The inverse of the character of the fundamental multiplet in (4.247) can be
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written as a geometric serie”)| similar to (4.151)) and (4.223)

[Z(N1oa = 1) (i, 7)]

yi

Ya Y1Y4 Yay4 Y1Y2y4 Yy3ya Y1ysy4
(1 gai) (1 ) (g ) (1 o) (0 ) (0 2
1

(1 N %) (1 + y192y3Y4)

_ Z (_1)2?:1mjyzf':l(*l)jmjyZ?:l(fl)L(ijl)/Qjmj
= : >
mezl,
8 (_)LG+3)/4) . 448 ‘
xyy Uy (4.267)

Some useful identities

In this section, we derive some useful identities that will be put into use
later. Once we plug the series expansion (4.267)) of the inverse Z(Nigq = 1)
into the integrand of (4.263)), the elementary contributions to multiplicity

generating functions G, n,.ns.n, are integrals of type

4
J (W ki) := /dMSO(g)(ﬂ)[nl,nzm&M]g H yatlkaly, - (4.268)
o

As usual, we consider the cases of k4, k’y, wa and n4 (independently) integer
or half-integer together, which are treated separately in [7]:

T (@ 2k, 2kas na,. . 2ma) =Y A(Xnei 2K, 2K))
K

4
< [ Jo(was2ka, 2k}y) (4.269)
A=1
2ONote that this can also be rewritten as
oo 1/2
Z(Nioa = D)(@)] " = tim (PE[s[0,0,0,1]3)"/* = | 3= (~1)"Sym™[0,0,0,1];
m=0
(4.266)
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where s = (n1 + na + n3 + ng,ne + n3 + ng,n3 + ng,ng). Recall from

[78) that

N 4
AKX 2k, .. 2ks) = L3 g, det (9‘8;%‘ 25 (ko A)))A  (4210)

Multiplicity generating function

The NS- and R sector contributions to the multiplicity generating function

for the representation [ni,ng2,n3, n4]] can be rewritten as

8
GEE--.,M(Q) = ﬁzeZSZO(_l)ZFl ! Zﬁezéo
x J(W(r); 2k1, ..., 2ka; ) FYS | (q) | (4.271)
8
GR @)= mez80(—1)zj:1 ! Zﬁezgo
X J(W () 2kt + 1, 2ks + 1371) FE | (q) (4.272)
where
8 8
— [ S =1my, SO (=)D,
7=1 7j=1
8
D ()l 4+ij : (4.273)
Jj=1 j=1

As stated in (4.249)), the multiplicity of the representation [ni, ng, ns, n4]
in the Nqgq = 1 partition function is given by

Gn, ,N2,M3,14 (Q)
= Y (= Y [j(ﬁ/(m);zkl,...,zk4;ﬁ) NS ()

— 8 —
meZZO keZéo

+ T(W (1) 2k + 1., 2ke + 1;7) B (0)] - (4.274)

4.5.2 Empirical approach to Ny, = 1 asymptotic patterns

In this subsection, we proceed like in subsections [4.3.5] and [£.4.4] to obtain

large spin asymptotics of multiplicity generating functions G, ;4 .(q) for

Nioq = 1 supermultiplet [n,z,y, z]. The supermultiplet content of the first

25 mass levels is used to determine the g expansion of the leading coefficients
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7,7 (q) defined by:

Gnay:(q) = "1 (q) — QQnTg’yVZ(Q) + ¢ () — ...

f: ) T (g) (4.275)

(=1

Again, the 7, 7Y% (q) are found to be power series in ¢ with non-negative
coeflicients.

Having d > 4 spacetime dimensions makes the analytic methods of sub-
section [£.34] inefficient, i.e. we did not find a manageable asymptotic for-
mula for . Hence, we compute the 7,%%(¢) at £ < 5 on the basis
of an O(¢?3) expansion of the partition function . The multiplicities
of [n,0,0,0] multiplets are shown in the following table and analo-
gous data tables for [n,z,y, 2] at nonzero values of z,y,z can be found
in appendix 4.B The numbers marked in red match with the lead-
ing trajectory contribution ¢"7"¥*(¢q) whereas blue numbers correspond

to ¢"11%*(q) — ¢*"15"**(q) including one subleading trajectory.

Levels of first appearance

The mass level where some [0, z,y, z] multiplet firstly occurs can be stud-
ied by inspecting the leading power of the multiplicity generating function
Go,2,y,-(q) and therefore 7,°Y"*(¢). The following table [4.9| gives an overview
of this mass level threshold for various values of z,y, z

For all supermultiplets [0, z,y, 2] considered in table the level of
first appearance is delayed by three whenever the second Dynkin label is
incremented as x — x + 1. This suggests to look for a similar linear effect
of y » y+1and z — z+ 1. Up to the two exceptions [0,0,0,0] and
[0,0,0, 1], the data in the tables shows that the value y of the third Dynkin
label increases the level of first appearance by 6y.

The influence of the last Dynkin label z is much more difficult to probe
without any explicit multiplicities beyond level 25 at hand. If an asymptoti-
cally linear relation between z and the level of first appearance of [0, z, y, z]
exists, then it certainly admits even more exceptions than in the y — y +1
case. The onset of [n,0,0,4], [r,0,0,5] and [n,0,0,6] multiplets at levels
14, 19 and 24, respectively, suggests that an increment z — 2z + 1 delays
the [0, z, y, z] multiplet by five levels — at least in the regime of sufficiently
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+* +* +* H* +* H* +* H* +* H* +* +* +* +* +*
o - I R - - I e - I = = R =
slzlsl=slslsls|slel=s]l=s|2|=s|s]2]t
N =] =] (=] =] =] (=] =] =] =] =] ~ ~ ~ ~ ~
“D b b “D “O b a@ “O b “D £ L £ £ L
= = = = = = = = = = = 2 22| 2
1 1 0
2 0 1 0
3 0 0 1 0
4 0 1 0 1 0
5 1 0 1 0 1 0
6 0 2 1 1 0 1 0
7 2 2 3 1 1 0 1 0
8 1 5 3 4 1 1 0 1 0
9 3 5 9 4 4 1 1 0 1 0
10 3 12 10 11 5 4 1 1 0 1 0
11 8 15 23 14 12 5 1 1 1 0 1 0
12 8 30 31 31 16 13 5 4 1 1 0 1 0
13 19 41 61 45 36 17 13 5 4 1 1 0 1 0
14 22 77 89 87 53 38 18 13 5 4 1 1 0 1 0
15 41 109 164 132 104 58 39 18 13 5 4 1 1 0 1
16 57 190 245 244 162 113 60 40 18 13 5 4 1 1 0
17 100 282 426 378 299 179 118 61 40 18 13 5 4 1 1
18 138 471 656 657 473 332 188 120 62 40 18 13 5 4 1
19 235 710 1097 | 1040 830 532 350 193 121 62 40 18 13 5 4
20 336 | 1153 | 1699 1751 1333 938 565 359 195 122 62 40 18 13 5
21 544 | 1750 | 2778 | 2769 | 2263 | 1523 | 1000 583 364 196 122 62 40 18 13
22 799 | 2785 | 4309 | 4561 | 3630 | 2600 | 1635 | 1034 | 592 366 197 122 | 62 40 18
23 || 1261 | 4237 | 6907 | 7201 | 6025 | 4212 | 2803 | 1697 | 1052 | 597 367 197 | 122 | 62 40
24 || 1860 | 6634 | 10700 | 11637 | 9629 | 7034 | 4567 | 2918 | 1731 | 1061 599 | 368 | 197 | 122 | 62
25 || 2895 | 10082 | 16893 | 18301 | 15694 | 11337 | 7662 | 4774 | 2981 | 1749 | 1066 | 600 | 368 | 197 | 122

Table 4.8: Njgg = 1 multiplets with SO(9) quantum numbers [n, 0, 0, 0]

ly, Z| 0 1 2 3 4 5 6 7
0 1432 | 343z | 643z | 10+3x | 14+3x | 1943x | 24+3x
1 5+3x | 84+3x | 1243z | 16+3x | 20+3x | 25+3x
2 11432 | 1443z | 1843z | 22+3x
3 17432 | 204+-3x | 2443z
4 2343z

Table 4.9: First mass level where supermultiplets [0,x,y, 2] of Nigg = 1
firstly occur. Empty spaces indicate that the representations in

question do not occur at levels < 25.
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large values of x,y, z.

On the basis of this reasonning, we conjecture that sufficiently high mass
levels of first occurrence for general supermultiplets [n,x,y, z] are deter-
mined by the following overall prefactor in their multiplicity generating
function:

Gnay:-(q) ~ g e tOys=6 o), x,y, 2 large (4.276)

Note that also the six dimensional Ngg = (1,0) spectrum exhibis an asymp-
totic linear relation between the second SO(5) label k and the level of first
appearance: Table shows that sufficiently high levels of first appearance
for [n, k; p] are delayed by three under k — k + 2.

x?y?’z

Explicit formulae for the 7,"7"(q)

We shall now give the explicit results for a large class of 7,7%"*(g), obtained
through the entries of table 4.8 and its generalizations to (x,y, z) # (0,0,0)
gathered in appendix This reflects large spin information on the

multiplicity generating functions Gy . ,..(q) via (4.275).
e SO(9) Dynkin labels [n — o0, 0,0, 0]
%) = ¢" (1+0g+1¢* + 1¢° + 4¢" + 5¢° + 13¢° + 18¢" + 40¢°

+62¢° + 122¢'° + 197¢* + 368¢'% + 601¢*® + 1070¢™* 4 1767¢*°
+ 3051¢'6 + 5022¢'7 + 8489¢'® + 13897¢'° + .. )

200) = ¢ (1+2¢+ 447 + 9¢° + 18¢* + 36¢° + 70¢° + 133¢7
+249¢® + 460¢° + 836¢'° + 1503¢"" + 2672¢'% 4 4699¢"% + .. )

200y = M1+ 1g 4 5¢% + 9¢° + 26¢* + 48¢% + 112¢° + 21147
+439¢% + 818¢° + ...)

70%) = ' (1+3q+ 84> +20¢° + 48¢* +106¢° + ...)

200 = ¢'(1+1g+6¢>+..) (4.277)
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e SO(9) Dynkin labels [n — o0,1,0,0]

%) = ¢ (1+2¢+3¢° +7¢° + 14¢" + 28¢° + 53¢° + 103¢

+189¢% + 352¢° + 634¢'° + 11464 + 2026¢"% + 3578¢"® + 6209¢**
+10752¢" + 1837846 + 31279¢'7 + .. )

00 = @B (1+2¢+5¢%+ 116 + 26¢* + 54¢° + 114¢° + 2274

+ 449¢® + 863¢° + 1639¢'° + 30504 + 5618¢'2 + 10187¢"3 + .. )

0% = ¥ (2+5¢+ 15¢> + 35¢° + 864" + 185¢° + 403¢5 + 8254
+..)

%) = ¢ (1+3¢+11¢%> +30¢° +...) (4.278)

e SO(9) Dynkin labels [n — o0, 0, 1, 0]

) = ¢ (1+1g+5¢° + 8¢° + 22¢" + 40¢° + 90¢° + 165¢"
+ 338¢% + 619¢° + 1190¢*° + 2149¢*! 4 3969¢'? + 7048¢'3 + 12630¢**
+ 22060¢%° + 38603¢'° + ...)

9 0%g) = ¢°(1+2¢+7¢* +17¢° + 41¢* + 91¢° + 199¢° + 412¢"
+ 841¢% + 1665¢° + 3241¢'° 4 6178¢" + 11611¢'% + .. )

5 %g) = ¢*(1+2¢+11¢%> + 25¢° + Tlg* + 160¢° + 381¢° + 809"
..

%) = ¢ @2+T7¢+23¢4+..) (4.279)

e SO(9) Dynkin labels [n — o0, 0,0, 2]

702%(q) = ¢%(142¢+7¢% + 13¢% + 33¢* 4 66¢° + 143¢° + 27747
+ 559¢% 4+ 1053¢° + 2019¢*° + 3715¢'! + 6859¢'2 + 12338¢*3
+ 221560 + 39043¢"° + .. )

902(q) = ¢7(1+4¢" + 11¢% + 28¢° + 68¢* + 155¢° + 339¢° + 716¢"
+ 1469¢° + 2938¢° + 5755¢'° + 11054¢ + .. )

73%%(q) = ¢ (2+5¢+19¢* + 48¢° + 130" + 301> + 703¢° + 1518¢"
+..)

902) = ¢ (1+44q+ 164> +49¢° +..) (4.280)
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e SO(9) Dynkin labels [n — o0,0,0,1]

7)) = A (1+1¢+3¢% +6¢° + 12¢" + 24¢° + 48¢° + 90¢" + 171¢°
+317¢° + 579¢*° 4 1045¢*" + 187042 + 3299¢'3 + 5777¢'* + 100174
+17222¢%0 + 29370¢'7 + .. )

% q) = ¢*(1+2¢" +5¢% + 13¢° + 29¢* + 62¢° + 130¢° + 2634”
+ 520¢% + 1008¢° + 1916¢*° + 3583¢'! + 6609¢'% + .. .)

200g) = ¢S (1+3¢" +10¢% + 26¢° + 63¢* + 143¢° + 315¢° + 66447
+..)

Mg = (1 +4q+12¢ +356° + ..

20 ) = O+, (4.281)

Further 7,°%%(¢) listed in (4.B.3) support the trend that the 7,°%*(q) ex-
pansion (4.275)) converges more quickly at higher value of z, v, z.

4.5.3 Eight dimensional Ng; = 1 spectra

Starting from this subsection, we consider even dimensional type I super-
string compactifications on 72 tori preserving all the sixteen supercharges.
The highest dimensional example is Ngg = 1 SUSY in eight spacetime di-
mensions.

Let r denote the fugacity with respect to the R symmetry SO(2)rp =
U(1)r and y; the fugacities of the massive little group SO(7), then the
fundamental Ngg = 1 super Poincaré multiplet is described by the super-

character
ZWNza=1) == (*+7710,0,0] + (r*+r73)[0,0,1]
+ (4772 ([0,1,0] + [1,0,0]) + (r+r"1)([1,0,1] + [0,0,1])
+ [2,0,0] + [0,0,2] + [1,0,0] + [0,0,0] (4.282)

which is obtained by branching the SO(9) representations contributing to
the Mg = 1 analogue to SO(7) x U(1)g. The minimal multiplet
(4.282) can be generated from a scalar Clifford vacuum of U(1)g charge
+4, and the generic Ngg = 1 multiplet follows from a Clifford vacuum
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with nontrivial SO(7) x U(1)g quantum numbers’l} This gives rise to the

supercharacter
la1,a2,a3;Q] = Z(Ngg=1)-79[a1,az,a3] . (4.283)

The eight dimensional partition function is obtained from its ten dimen-

sional ancestor (4. 249 by singling out an internal factor Xig(li) within

XNSR( y) = Hk 1XNSR (yk) and reinterpreting its argument as an R-
symmetry fugacity:

g g = g laso (@ 7.7) + xn = laso (¢:7,7)
XNe! aso (¢:7,r) = %q*% [xxs (a9 xag (g r)
— xx (€ g ) xvg P (e*ig ) ]
xw =" laso (g:9r) = %Xﬁom( )X g (4.284)

As with the products of the spacetime and internal partition functions in
the 4- and 8-supercharge cases (4.112)) and (4.196)), we have to take the
product before imposing the GSO projection, in both NS and R sectors.

Let us display the first four coefficients of the power series expansion in

a7

Ngq= 1(

X ¢ Y,7)

l\’)\)—t

3 3
= Zyﬁ% )t Hyﬁyj Y+ | o

16 massless states
+  [0,0,0;0]¢ + ([0,0,0;+2] + [1,0,0;0]) ¢
N———
256 states at level 1 2304 states at level 2
+ ([0,0,0;£4] + [1,0,0;£2] + [0,0,1;+1]
+ [2,0,0;0] + [0,0,0;0]) ¢* + O(q*) . (4.285)

21Recall that the semicolon in [a1,as,as;b] separating the U(1)r quantum number b
from the SO(7) Dynkin labels a1, a2, a3 eliminates potential confusion with Niog =1
supercharacters .

22 Again, there is a subtlety in applying the above formula to the massless R sector; see
the footnote before . However, this can be fixed easily: one can simply add to

it 3 H?:l(y]’ — y;l) (r — 1) to get the correct massless character in R sector.
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The pairing of opposite U(1)r charges £@Q motivates the following short-
hand:

lai, az, a3; Q] + a1, az,a3;—Q]  for Q #0 ,
[a1, az,as;0] for @ =0.
(4.286)
The supermultiplets up to level six are listed in table The branching

process obviously increases the number and diversity of multiplets compared

[[CLl,(lQ,(l?,;:l:Q]] =

to the ten dimensional analogue, cf. table This is why we do not repeat
the higher level analysis carried out for the d = 10 ancestor in dimensionally
reduced settings.

Note that this partition function can also be obtained by branching the
SO(9) representations appearing in the the Njpgs = 1 partition function
into SO(7) x U(1)r representations. In terms of characters, one
simply maps SO(9) fugacities into SO(7) x U(1)r fugacities; a possible

fugacity map is as follows:

z1 = Y1, 22 = Y2, 23 = U3, 24 =5, (4.287)

where z1,...,24 are fugacities of SO(9), y1,y2,ys are fugacities of SO(7)
and s is a fugacity of U(1)g. For example,

1 2 1 2 1 2 1 2

[1,0,0,0=1+ 5 +2i+ 5 +5n+—5+23+5+2
21 25 23 23

R NI NUE Y N

= STy - TY Y s
ity g S

= [17 0, 0; 0]37;5 + [07 0,0; +2]27;s + [0, 0,0; _2]37;5 ) (4'288)

where the notation [b1, be, b3; Q] denotes the SO(7) x U(1) g representation.

4.5.4 Six dimensional Ny, = (1,1) spectra

Six dimensional type I compactifications with sixteen supercharges are said
to possess Ngg = (1,1) SUSY. The spacetime symmetry branches to SO(9) —
SO(5) x SO(4)R, i.e. two Cartan generators of ten dimensional Lorentz

group take the role of R symmetry generators probing fugacities r1,re of
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[ o’'m? [ representations of Ngg = 1 super Poincaré

1 0,0,0;0]

2 0,0,0; £2] + [1,0,0;0]

3 0,0,0;+4] + [1,0,0;+2] + [0,0,1;+1] + [2,0,0;0] + [0,0,0;0]

4 0,0,0;+6] + [1,0,0;+4] + [0,0,1;+3] + [2,0,0; £2] + [1,0,0; £2] + 2[0,0,0; +2]
+[1,0,1; £1] + [0,0,1;+1] + [3,0,0;0] + 2[1,0,0;0] + [0,1,0;0] + [0, O0,0;0]

5 [0,0,0; £8] + [1,0,0;+6] + [0,0,1;£5] + [2,0,0; £4] + [1,0,0;+4] + 20,0, 0; +4]
+{1,0,1;+3] + 2]0,0,1;+3] [3,0,0; £2] + [2,0,0;+2] + 3[1,0,0;+2] + 2[0,1,0; +2]
+[0,0,0; £2] + [2,0,1;+1] + 2[1,0,1;+1] 4+ 3[0,0,1;+1] + [4,0,0;0] + 2[2,0,0;0]
+[1,1,0;0] + 3[1,0,0;0] + [0,1,0;0] + [0,0,2;0] 4+ 4[0,0,0;0]

6 [0,0,0; £10] + [1,0,0;£8] + [0,0,1;£7] + [2,0,0;£6] + [1,0,0;£6] + 2[0,0,0; +6]
+[1,0,1;£5] + 2[0,0,1; £5] + [3,0,0;+4] + [2,0,0;£4] + 3[1,0,0; 4] + 2[0, 1,0; 4]
+2[0,0,0; 4] + [2,0,1;+3] + 3[1,0,1;£3] + 3[0,0,1;+3] + [4,0,0; +2] + [3,0,0; £2]
+3[2,0,0; £2] + 2[1,1,0; £2] + 5[1,0,0; £2] + [0,1,0; £2] + 2[0,0, 2; £2]
+41]0,0,0; £2] + [3,0,1;£1] + 2[2,0,1;£1] + 4[1,0,1;+1] + [0,1,1;+1]
+51[0,0,1; +£1] + [5,0,0;0] + 2[3,0,0;0] + [2,1,0;0] + 4[2,0,0;0] + [1,1,0;0]
+[1,0,2;0] + 5[1,0,0;0] + 5[0,1,0;0] + [0,0,2;0] + 3[0,0,0;0]

Table 4.10: Ngg = 1 multiplets occurring up to mass level six

SO(4)g = SU(2)grx SU(2)g. The fundamental supermultiplet of the Ngqg =
(1,1) super Poincaré group has the following SO(5) x SU(2) g x SU (2) g par-

ticle content:

Z(Nga = (1,1)) [2,0]-[0,0] + [0,2]-[0,0]r + [0,2]-[1,1]r

+ [1,0]-[1,1]r+ [1,0]- ([2,0]r + [0,2]r) + [0,0]-[2,2]r

+ [0,0]- [1,1]r + [0,0]-[0,0]g + [1,1]- ([1,0]r + [0,1]r)

+ [0,1]- ([2,1]r + [1,2]lr + [1,0]r + [0,1]g) (4.289)

Note that the R-symmetry characters [...]g carry a subscript to avoid con-
fusion with the Lorentz symmetry of identical rank.

The most general multiplet follows from by taking tensor products

with SO(5) x SU(2) g x SU(2) g representations, this leads to the superchar-

acter

Z(Nﬁd = (1, 1)) . [al,ag] . [bl, bQ]R (4290)

lai, az; b1, b2]

The six dimensional partition function is obtained from its ten dimen-
4.249 3)

by singling out two internal factor ngR
(¥) = Hi:l Xﬁs (P%) (yx) and reinterpreting their second argument as

within

sional ancestor

S0(9)
XNS,R
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an R-symmetry fugacity:

Vo= (g7 = e Jaso (6.7 + xn ™" faso (4:.7)
e =M Jaso (67,7 = %q’% [evs (a9 e (a7
R SR Gl Pt Gl o)
o= | e (g3, 7) = ;xﬁ‘”"’)(;me ) (g; ) (4.291)

Its q expansion starts likﬂ

Nﬁd (1,1) ( —‘)

2 2 2 2
- nyry] +Z(TJ2'+rJ Hyg-l-y] HTJ+T qo
j=1 J=1 j=1 j=1

[\D\»—t

16 massless states
+ [0,0;0,00g  + ([0,051,1] + [1,050,0]) ¢*
————
256 states at level 1 2304 states at level 2
+ ([0,052,2] + [1,0;1,1] + [0,1;1,0]
+[0,1;0,1] + [2,0;0,0] + [0,0;0,0]) ¢* + O(¢*),  (4.292)

and supermultiplets at higher levels < 5 are listed in table [£.11]

Note that this partition function can also be obtained by branching the
SO(9) representations appearing in the the Njpg = 1 partition function
into SO(5) x SU(2)g x SU(2)g representations. In terms of char-
acters, one simply maps SO(9) fugacities into SO(5) x SU(2)r x SU(2)r

fugacities; a possible fugacity map is as follows:

21 = Y1, 22 = Y2, z3 = T172, z4 = 7"11"2’1 , (4.293)

where 21, ..., z4 are fugacities of SO(9), y1,y2 are fugacities of SO(5), and

23 Again, there is a subtlety in applying the above formula to the massless R sector; see
the footnote before (4.112). However, this can be fixed easily: one can simply add to
it 2 H?zl(yj — yj_l) [T (ri— rj_l) to get the correct massless character in R sector.
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r1,re are fugacities for the two SU(2)r

2

1 1

1

2

, 1 1
2+Z*2+2’3+72

3

Zy

factors. For example,

—&-zi

1 1 _ _
:1+E+y%+?+y§+(7“1—1—7“11)(7“24-7“21)
1 2

= [17 0; 0, O]?];F'i_ [O’ 0; 1, 1]@;? ) (4294)

where the notation [aj, az; b1, by] denotes the SO(5) x SU(2)r x SU(2)r

representation.
[ @/m? | representations of Ngq = (1,1) super Poincaré

1 0,0;0,0

2 0,0;1,1] + [1,0;0,0

3 0,0;2,2] + [L,0;L,1] + [0,1;1,0] + [0,1;0,1] + [2,0;0,0] + [0,0;0,0

1 0,0:3,3] + [1,0;2,2] + [0,1;2,1] + [0,0;2,0] + [0,1;1,2] + [2,0;1,1] + [L,0;1,1]
+2[0,0;1,1] + [1,1;1,0] + [0,1;1,0] + [0,0;0,2] + [1,1;0,1] + [0,1;0,1]
+1[3,0;0,0] + 2[1,0;0,0] + [0,2;0,0]

5 [0,0:4,4] + [L0;3.3] + [0,5:3,2] + [0,0:3,1] + [0,1:2,3] ¥ [2.0:2,2] T [L0:2,7]
+2[0,0;2,2] + [1,1;2,1] + 2[0,1;2,1] + 2[1,0;2,0] + [0,0;2,0] + [0,0;1,3]
+[1,1;1,2) + 2[0,1;1,2] + [3,0;1,1] + [2,0;1,1] + 3[1,0;1,1] + 2[0,2;1,1]
+2[0,0;1,1] + [2,1;1,0] + 2[1,1;1,0] + 3[0, 110}]+2[[1002]1+[[0002]]
£2,1;0,1] + 2[1,1;0,1] + 3[0,1;0,1] + [4,0;0,0] + 2[2,0;0,0] + [1,2;0,0]
+1[1,0;0,0] + 2[0,2;0,0] + 3[0,0;0,0]

Table 4.11: Ngg = (1, 1) multiplets occurring up to mass level five

4.5.5 Four dimensional N,; = 4 spectra

Finally, four dimensional theories with maximal N3 = 4 SUSY follow from
the ten dimensional ancestor through compactification on 7°. The internal
rotation group is identified with the R symmetry SO(6)g, its characters
are denoted by [b1,b2,b3]r. The universal partition function decomposes

into characters of the Ny = 4 super Poincaré algebra, the fundamental one

being

Z(Nia=4) = [0]([0,0,2]r + [0,2,0]g + [2,0,0]r + 2) + [2][0,1,1]R

+ 2[2][1,0,0]r + [4]+ [1]([0,0,1]z + [0,1,0]g + [1,0,1]r + [1,1,0]r)
+ [3] ([0’07 1]R + [07170]R) . (4.295)
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Any other supermultiplet follows by taking a tensor product of (4.295]) with
the SO(3) x SO(6)r representation [n][by, ba, b3]r of the the Clifford vac-

uum,
[[n; bl,bg,bg]] = Z(N4d = 4) . [n] [bl,bg,bg]R . (4.296)

The four dimensional partition function is obtained through the usual pro-

cedure from the ten dimensional ancestor (4.249)), this time we have to

0(3)

interpret three factors of Xis R as carrying R-symmetry fugacities r;:

Mgy, 7)) = xR aso Gy, F) + xm = Jaso (49, 7)
XN laso (giy,7) = %q’i[XNS(3)(q;y)st()(q;F)
— s @) xRS (g ]

Xn = eso (¢:9,7) = %xﬁo(?’)(q;y)xR D(g:7) (4.297)

The power series in ¢ starts With@

3 3
_ 1 _
i gy ry) = Z (0 +05%) + Sy [T05+057) |

j=1

16 massless states
+  [0;0,0,0[¢ + ([0;1,0,0] +[2;0,0,0] ) ¢* + ([0;0,0,0] + [0;2,0,0]
256 state:at level 1 2304 states at level 2
+[1;0,0,1] + [150,1,0] + [2;1,0,0] + [4;0,0,0] ) ¢ + O(g") , (4.298)

the coefficients of ¢* and ¢° can be found in table The explicit vertex
operators from the first level are listed in section 4 of [15].

Note that this partition function can also be obtained by branching the
SO(9) representations appearing in the the Njpgs = 1 partition function
into SO(3) x SO(6)R representations. In terms of characters, one
simply maps SO(9) fugacities into SO(3) x SO(6)r fugacities; a possible

fugacity map is as follows:

Z1 =T, 22 = T2, z3 = T3, 24 =Y, (4.299)

24 Again, there is a subtlety in applying the above formula to the massless R sector; see
the footnote before (4.112)). However, this can be fixed easily: one can simply add to

it 2(y—y™ ") H?Zl(rj - r;l) to get the correct massless character in R sector.
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where 21,...,z4 are fugacities of SO(9), r1,re,r3 are fugacities of SO(6)r
and y is a fugacity of SO(3). For example,
1 2 1 o 1 2 1 2
[1,0,0,0z=1+ 5421+ 5+m+5+23+5+2
1 Z2 ?3 4

1 2 1 2 1 2 1 2
=5+t s+ri+—5+r3+(1+—5+
7’% 1 7’% 2 T% 3 2 Yy

=[0;1,0,0]7y + [2;0,0, 0]z, , (4.300)

where the notation [a; b1, b2, b3] denotes the SO(3) x SO(6)r representa-
tion for which the SO(3) representation is [a] and SO(6) g representation is

[b1,b2,b3] R

o’m? | representations of Nyg = 4 super Poincaré

1 0;0,0,0

2 0;1,0,0] + [2;0,0,0

3 0:0,0,0] + [0;2,0,0] + [10,0,1] + [1;0,1,0] + [2:1,0,0] + [4;0,0,0]

1 0;0,1,1] + 2[0;1,0,0] + [0;3,0,0] + [1;0,0,1] + [1;0,1,0] + [1;1,0, 1]
T[1;1,1,0] + 3[2;0,0,0] + [21,0,0] + [2;2,0,0] + [3;0,0,1] + [3;0,1,0]
+[4;1,0,0] + [6:0,0,0]

5 4[0;0,0,0] + [0;0,0,2] + [0;0,1,1] + [0;0,2,0] + [0;1,0,0] + [0;1,1,1]
+2[0:2,0,0] + [054,0,0] + 3[1;0,0,1] + 3[1:0,1,0] + 2[1;1,0,1
F2[1:1,1,0] + [1:2,0.1] + [1:2,1,0] + 2[2:0,0,0] + 2[2:0,1,1] + 5[2 1,0, 0]
+[2:2,0,0] + [2:3,0,0] + 2[3;0,0,1] + 2[3;0,1,0] + [3;1,0,1] + [3;1,1,0
+3[4;0,0,0] + [4;1,0,0] + [4;2,0,0] + [5;0,0,1] + [5;0,1,0] + [6;1,0,0]
+ [8;0,0,0]

Table 4.12: N3y = 4 multiplets occurring up to mass level 5

4.6 Conclusion

We have investigated model independent superstring states common to all
type I compactifications that preserve Nyg = 1 and Ngg = (1,0) SUSY, re-
spectively, and identified the underlying super Poincaré multiplets at indi-
vidual mass levels. Part of our results are the associated unrefined partition
functions together with their asymptotics for large mass levels, see —
and f. The refined versions of the universal partition
functions are given by and and rewritten in terms of super
Poincaré characters in (4.148)), (4.171)), (4.172), (4.216) and (4.231). More-

over, we have presented dimensional reductions of the universal NVgg = (1,0)
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and Mjpq = 1 spectra to even dimensions d > 4 in subsections
454 and L5.5

Multiplicity generating functions for individual supermultiplets tend to
stabilize in the regime where the spin j (or more generally the first SO(d—1)
Dynkin label) is comparable to the mass level M = o/m?. More specifically,
the validity for the stable pattern roughly ranges between %(M — M) £
J & M — My where the offset My depends on the remaining super Poincaré
quantum numbers of the multiplets beyond the spin. In the mathematically
most tractable My = 1 case, we have derived closed formulae and
for the leading Regge trajectory. In the highest dimensional scenar-
ios with given number of supercharges — Nyg = 1, Ngqg = (1,0) and Nigg = 1
— we extracted both leading and subleading Regge trajectories from explic-
itly computed multiplicities up to level a'm? = 25, see subsections m

144 and [4.5.2]

4.6.1 The number of universal open string states

The following table summarizes their numbers at low levels < 9 in
scenarios with 4, 8 and 16 supercharges, respectively. They are obtained
by expanding the associated unrefined partition functions. For the cases of
4, 8 and 16 supercharges, the exact generating functions are respectively
given by (4.116)), (4.198]), (4.252) and their asymptotics at large mass levels
are respectively given by (4.125)), (4.205)), (4.256|). Roughly speaking, the

number of states increases exponentially with respect to the square root of

the mass level.

[ ao’'m? [ # states for 4 supercharges [ # states for 8 supercharges [ # states for 16 supercharges ]

0 4 8 16

1 24 80 256

2 104 512 2.304

3 384 2.576 15.360

4 1.240 11.008 84.224

5 3.648 41.792 400.896
6 9.992 144.784 1.711.104
7 25.792 465.856 6.690.816
8 63.392 1.409.792 24.332.544
9 149.464 4.050.112 83.219.712

Table 4.13: The number of model independent open string states in com-
pactifications with 4, 8 and 16 supercharges, respectively, up to

mass level a/m? = 9.
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4.A Deriving the asymptotic formulae for NV;; =1

multiplicity generating functions

In this appendix, we derive the asymptotic results on multiplicity generating
function Gy, o(¢) in the limit n — oo presented in subsection m

In what follows, we will exploit the n — oo behaviour of objects T, (m, k) :=
(%) = ()

Tonia(2m+1,m+n+1—k) ~(,2"H )

Tont2(2m,m+n—Fk) ~ (mi?—k) ) (4.301)

assuming that m,k > 0

4.A.1 Warm-up: Multiplicities of [2n + 1,0] and [2n, 1] as
n — oo

In order to get familiar with the asymptotic methods in the Nyg = 1 context,
we shall first of all discuss the large spin regime of supermultiplets with
U(1)g neutral Clifford vacuum.

The multiplicity generating function for the representation [2n+1, 0] can

be written as

(o clENNe Ol o]

Gont10(0) =D D> Mpnsr(m, —p — 1, ki q)

k=0 m=0 p=0

+ Z Z m[[2n+1,0]] (p7 b, ka Q) ) (4302)
k=0 p=0

where the function Mz, 11 20] and Mz, 11,2¢) are defined in (4.169) and
(4.170) and, as n — oo,

Mpont1,00(m, p, ks q) ~ (=1)7"7P FEE(Q) (2%?1) (mi:znjrrllfk)

+E @ (%)) (mi’;”‘k)] . (4.303)

Note that the binomial coefficient (g) increases as (3 increases from 0 to

|a/2] and then decreases as [ increases from [«/2] + 1 to a.
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Observe that My, 11 07(m, —p—1, k; q) is sharply peaked near (m, p, k) =
(0,0,n) for n large. Therefore, the dominant contribution to the first set of

summations in (4.302)) comes from

Mpzn1,0p(m, —p — 1,k q)

ANgE
gk
gk

m=0 p=0 k=0
[e1] [e2] [n(l+es)]

~ Z Z Z M2n+1,01(m, —p — 1, k3 q)

m=0 p=0 k=|n(1—e3)]
any €p,€s,e3 >0, n — 00

~ Z Z Z Mp2n41,01(m, —p — 1, + 05 ), n—oo. (4.304)

m=0 p=0 §=—c0

In the limit of large k, we can use asymptotic formulae (4.131)) and (4.136))
for F,?IS(q) and F,f{p(q). The summation over § from —oo to oo can be

readily computed using the fact that

i q5<mQT5> = Zm: q‘s(QOé) (14 g)"

d=—00 d=—m
0o m+1
2m +1 2m +1
1 ) —m 2m—+1
pu— pu— 1 .
Zq(m—é—i—l) Z q(m—5+1> ¢"(1+4)
d=—00 o=—(m+1)

(4.305)

Next, the summation over m from 0 to oo can be computed using the

following identities:
[e.e]
_ 1+m+p __1_q2p+3
D (=) 1+ )" (—q) P,
2m 1—gq
m=0

> _ l+m+p 1 —g?t?
. m(q 2m+1 o p- 4 4.
S o (NI <o TR s

m=0

Thus, from (4.304]), we find that

[c SlNe e o]

1-q)%q":
Z szu2n+1,o}](m7 —p—1.k;q) = (2(q)q)6

m=0 p=0 k=0

< {u(Vaa(1,0)? = [u2(va)Ws(1,0)? = us(—v/a@)da(1.0)?] } . (4.307)
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where the functions u(q) and uz(q) are defined as follows:

0 . 4
ui(q) = Zqz(p+%)2 21>+_2q - 2pHd)
= (1+¢*F2)(1 + ¢?11)
o0 ) 1— q4p+4
us(q) = ¢*P+Y — - (4.308)
= (14 g1+ ¢ +7)

It remains unclear whether u;(¢q) and uz(g) can be written in terms of known
functions (if this is useful at all). In practice, it is easy to compute the power
series u1(q) and uz(q) up to a high order in q. Moreover, their asymptotic
formulae can be easily derived in the limit ¢ — 0. We shall come back to
this point later.

Let us now examine the second set of summations in . The function
Mi2n+1,01(P, Ps k; q) is sharply peaked near (p, k) = (0,n) for large n. Thus,

Z Zmﬂ2n+1,0]] (0,0, k; @) ~ M2n41,0)(0,0,7;9) , n — 00
k=0 p=0
1 (1-¢q)?° 1 2
= q" " 195(1,¢q)° . 4.309
)% 1+4 2(19) (4.309)

From (4.302), we simply add (4.304) and (4.309) together and obtain the
expression for Q2,+1,0, in agreement with the stable pattern in table

From recurrence relation for G,,q, the asymptotic behaviour of
multiplicity generating functions U(1)g charge @ =1 is given by

Gana(q) = %[FES(Q) — Gan—1,0(q) — Gant10(q)] - (4.310)

Using the asymptotics Ga,—1,0 ~ q*1G2n+17Q as well as (4.182)) for G110
and (4.131) for FNS, we arrive at (4.183)). This also agrees with the stable

n,0

pattern tabulated in appendix

4.A.2 Multiplicities of [2n + 1,2Q] and [2n,2Q + 1] as
n— o0, @ =0(1)

This subsection generalizes the asymptotic results from the @ =0 (or Q =

1) sector to generic U(1)p charges. The multiplicity generating function for
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[2n + 1,2Q] can be written as

Gont1,2¢(q) = [Z {mt[[2n+1,2Q]] (m,—p—1,k;q)

Q-1

+ Mzt 1,2qp (M + P, 0, ks q } + > Mpani12qp(m,m +p+ 1,k CI)] :
—0

3

(4.311)

where the 9y, 1 2¢0) function follows the following n — oo behaviour:

m[[2n+l,2Q]] (m,p,k;q) = (‘UQfmfp

Q+m—p 2m +1 R Q+m—p 2m
Fk’p()< 2m+1 m+n+1-Fk + Fipa) 2m m+n—k

The dominant contribution to Ga,+1,2¢(¢) comes from

oo [e2] [n(1+e1)]

Goni120(0) ~ D> Z [m[[Zn—&—l,ZQ]] (m,—p—1,k;q)

m=0 p=0 k=|n(l—e1)]

+ Sth[[Qn—i-l 2Q] (m +p,p, ka Q)]

0o Q-1 [n(1+e1)]

-I-ZZ Z Miant1,20)(m,m+p+1,k;q) , €1,62 >0 ,mn — o0
m=0 p=0 k=[n(1—e1)]

~ 33 N Parnag(m —p— L+ 6q)

m=0 p=0 d=—o0

+ Mp2n41,201 (M + p,p, 0+ 5 q)

o Q-1 oo
*ZZ Z Mpzni120)(m,m+p+1,n+dq) , n— oo .

m=0 p=0 d=—o0
(4.313)
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The first set of summations can be evaluated as follows:

oo oo oo 1— q 2qn_Q_%
Z Z Z m[[2n+1,2Q]] (ma —p—1,n+4; q) = ( 2(3] Q)G

m=0 p=0 d=—o0

< {ur (V3 Qa(1, 0 ~ [ua(va3, Q)9s(1,0)? — ua(—v/2. Q)a(1,0)?] } .

(4.314)
where
0 2 1 — gl +4Q+6
(g, Q) =y ¢*+3) s el
= (1+¢*PH2)(1 + g2 1)
(o]
1— q4p+4Q+4
= 2p+l . 4.315
Q) ZZ:OQ (1 + ¢ ) (1 + g2 13) ( )

The next set of summations in (4.172]) can be evaluated as follows:

Y N _1Q1_ 3n—%
ZZ Z m[2n+1,2Q]](m+p,p,n+5;q):( )= ( q9)°q

- )6
m=0 p=0 §=—c0 2(% Q)oo

x {o1(v2,Q2(1,0)° + [02(v3 Q)9s(1,0) = va(— /3, Q)a(1,0)%] } |

(4.316)
wherd®]
wa@ = 3 LA (Q) p L QL 2-Q (1)
ne (1+¢%-2)(1+¢%)\2p)° p+1/2, p+1 7 4q ’

p=0
1Q/2] 2p? 2)2
A+q)” (1+¢)* [ Q
v2(q, Q) = Z (14 ¢@2P~1)(1 + g2 +1) <2p + 1>

p=0
L, Q+1, 2p+1-Q (1+4¢)?
p+1,p+3/2 ’ 4q ’

x 35 [ (4.318)

Z5Upon obtaining the hypergeometric functions, we make use of the following identities
for p > 0:

m=0

1+2p+2m 2p+1 p+1, p+3/2

(4.317)

0
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The last set of summations in (4.172]) can be evaluated as follows:

o Q-1 oo

“1)Q(1 — q)3¢gn~ 1
22 2 m[[2n+1,2cz]](m7m+p+1,n+5;q)=( Al : q6) d
m=0 p=0 §=——o0 2(q; 9)S

x {wi(va Q021,90 + o [wa(va, Q)95(1,0)* — wa(—a, Q)9a(1,0)?] | ,
(4.319)

where

Q-1 <_1)p+1q1+2(1+m+p)272m (1 + q2)2m (Qgi—p)
(14 g2(m+p)) (1 + g2(+m+p)) ’

3\2_ 2m+1 (Q—1—
_9 ( 1)p+1q2(m+p+2) (14 %) (Gr2m)
w2(q, @) = ¢ 2 Z Z (1 + g1 T2m+2p) (1 + g3+2m+2p)

(4.320)
Combining the three sets of summations into ([4.172), we have
(1- 0"
292 (g:9)%
{192(1,q)2 [ql ui (v, Q) + (—1)?(1 = ) (v1(v/a, Q) + 4w (v, Q))}
?[-
|

q

Gant120(q) =

+ (1) — 0" Pu2(v/, Q) + (~1)2(1 — ) (12(V4, Q) + ¢*u2(v/4, Q)|

-|-1941q2 1-Qy

Q) = (-1~ Q) (02(~v7 Q) + Puwr(~7 Q)| }
(4.321)

which exactly (4.173]) with the definition (4.175) for the function F(q, @) in
the curly brackets. Note that this formula reproduces (4.182)) when @ = 0.
This allows to quickly infer asymptotic [2n, 2Q) + 1] multiplicities through

the recursion (4.147)) and the asymptotic relations Gan42.20+1(9) ~ ¢Gan20+1(q)
as n — oo:

1

Gan2q+1(q) ~ T+g [FEQH(Q) — Gant120(9) — Gang1,20+2(q)]  (4.322)

The asymptotic formula 1} for F, RQ +1(q) and the definition (4.175)) for
the function F(q, Q) then leads to .
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4.B Data tables for super Poincaré multiplicities

This appendix contains data tables for multiplicities of super Poincaré rep-
resentations up to mass level a/m? = 25. We only display tables for the
ancestor theories with 4, 8 and 16 supercharges, respectively, since these
highest dimensional theories organize the states in the most economic num-
ber of supermultiplets. Particular attention is paid to stable patterns, i.e.
to the asymptotics of multiplicity generating functions for large spins and
mass levels.

Each of the following tables is devoted to family of supermultiplets whose
quantum numbers differ in the first SO(d — 1) Dynkin label and match in
the remaining SO(d — 1) and R symmetry quantum numbers. Rows are
associated with mass levels, and columns are associated with the value of
the first SO(d — 1) Dynkin label to which we loosely refer to as the spin.
Independently of spacetime dimensions and supercharges, the multiplicity
generating functions G (q) tend to stabilize for large values of the spin and
the mass level in the limit where both of them are uniformly increased.
This leading Regge trajectory (corresponding to the 7j(¢) contribution in
, and ) is exact when numbers occur repeatedly along
diagonal lines in the tables, these entries are marked in red.

Moreover, once the asymptotic numbers in red are subtracted from the
data outside the first stable region, further subleading trajectories emerge.
The leftover after this subtraction tends to stabilize along lines where the
mass level grows twice as fast as the spin. This can be understood as the
second Regge trajectory (corresponding to the 74 (¢) contribution in ,

(4.232) and (4.275))) with slope % and subtractive sign. Its region of exact

validity is highlighted in blue.

4.B.1 4 supercharges in four dimensions

The tables in this subsection are based on the Ny = 1 partition function
(4.112)), organized in terms of multiplicity generating functions G, g(q), see

EIH).

158



=23 ||| F |5 |5 |F | =%
S I T O T T O T T - T I R
1 0
2 0
3 1 0
4 2 2 0
5 6 6 2 0
6 17 15 8 2 0
7 38 43 22 2
8 89 101 62 24 8 p 0
9 195 233 152 71 24 2 0
10 411 512 361 176 73 24 8 2 0
11 843 1089 803 430 185 73 24 8 2 0
12 1694 2231 1734 978 456 187 73 24 8 2 0
13 3302 4483 3602 2146 1053 465 187 73 24 8 2 0
14 6336 8758 7304 4525 2343 1079 467 187 73 24 8 2
15 11919 16795 14402 9300 4997 2420 1088 467 187 73 24 8
16 22053 31582 27835 18548 10383 5200 2446 1090 467 187 73 24
17 40173 58428 52685 36227 20921 10878 5277 2455 1090 467 187 73
18 72204 106359 98044 69217 41236 22068 11083 5303 2457 1090 467 187
19 128014 191004 179419 129896 79473 43785 22569 11160 5312 2457 1090 467
20 224337 | 338384 | 323661 239545 150345 84906 44955 22774 11186 5314 2457 1090
21 388651 592391 | 575773 | 435174 | 279322 | 161591 87520 45458 | 22851 11195 | 5314 | 2457
22 666314 | 1025226 | 1011672 | 779119 | 510970 | 301946 167204 | 88696 | 45663 | 22877 | 11197 | 5314
23 || 1131024 | 1755809 | 1756589 | 1377070 | 920804 | 555389 | 313632 | 169841 | 89199 | 45740 | 22886 | 11197
24 || 1902209 | 2976969 | 3017219 | 2404087 | 1637411 | 1006121 | 579053 | 319310 | 171019 | 89404 | 45766 | 22888
25 || 3170935 | 5000934 | 5129359 | 4150179 | 2874993 | 1798156 | 1052851 | 590920 | 321953 | 171522 | 89481 | 45775
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Q = S = > ) = = = = = Ic)
M E| 2| 2|22 2B 2|22 2
1 1 0
2 0 2 0
3 3 3 0
4 3 11 4 3 0
5 15 20 18 5 3 0
6 21 58 39 21 5 3 0
7 66 115 105 49 22 5 3 0
8 112 274 223 135 52 22 5 3 0
9 267 543 521 296 146 53 22 5 3
10 487 1159 1066 698 330 149 53 22 5 0
11 1027 2248 2258 1467 786 341 150 53 22 5 3
12 1872 4483 4465 3133 1682 821 344 150 53 22 5
13 3684 8456 8874 6300 3637 1774 832 345 150 53 22
14 6654 16077 16929 12629 7413 3868 1809 835 345 150 53
15 12430 29505 32174 24376 15014 7960 3961 1820 836 345 150
16 22104 54085 59444 46663 29304 16246 8195 3996 1823 836 345
17 39831 96778 109017 86997 56583 31974 16809 8288 4007 1824 836
18 69495 172263 195931 160521 106459 62184 33250 17045 8323 4010 1824
19 121751 301246 348996 290518 197927 117845 64978 33817 17138 8334 4011
20 208588 523209 612069 520208 360936 220529 123748 66270 34053 17173 8337
21 356951 896281 | 1063839 | 917434 650566 404759 232640 126586 66838 34146 17184
22 601090 | 1524153 | 1825894 | 1601735 | 1154779 | 733851 428967 238668 | 127882 | 67074 34181
23 1008432 | 2562971 | 3106955 | 2761714 | 2027692 | 1310137 | 781160 441385 | 241522 | 128450 | 67167
24 1670909 | 4278549 | 5231334 | 4717314 | 3515675 | 2312784 | 1400641 | 806110 | 447457 | 242819 | 128686
25 2755277 | 7075262 | 8737282 | 7973033 | 6035514 | 4030732 | 2482787 | 1449609 | 818653 | 450315 | 243387
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Ol - I - - =B = = = = = = = =
s sl s & s 2222222 ]2]2
7 0

8 1 0

9 3 2 0

10 9 8 2 0

11 25 24 10 2 0

12 63 65 34 10 2 0

13 145 166 96 36 10 2 0

14 327 387 251 108 36 10 2 0

15 701 870 600 292 110 36 10 2 0

16 1455 1868 1375 716 304 110 36 10 2 0

17 2935 3884 2994 1676 759 306 110 36 10 2 0

18 5784 7830 6304 3717 1804 771 306 110 36 10 2 0

19 11124 15422 12839 7947 4058 1847 773 306 110 36 10 2 0

20 21013 | 29656 | 25499 16409 8787 4188 1859 773 306 110 36 10 2 0
21 38962 55955 49404 32977 18350 9140 4231 1861 773 306 110 36 10 2
22 71109 | 103656 | 93817 | 64563 | 37270 | 19232 | 9270 | 4243 1861 773 306 110 | 36 10
23 || 127858 | 188982 | 174756 | 123758 | 73674 | 39339 | 19587 | 9313 | 4245 | 1861 | 773 | 306 | 110 | 36
24 || 226848 | 339385 | 320180 | 232485 | 142472 | 78301 | 40233 | 19717 | 9325 | 4245 | 1861 | 773 | 306 | 110
25 || 397364 | 601382 | 577497 | 429191 | 269832 | 152411 | 80412 | 40588 | 19760 | 9327 | 4245 | 1861 | 773 | 306
2zl 2| 2|3 | 2|22 |2 |5|5|58|F
212222 |e|i|s|e|lslala]|a

14 0

15 1 0

16 3 2 0

17 10 8 2 0

18 29 26 10 2

19 73 76 36 10 2 0

20 178 195 110 38 10 2 0

21 406 474 294 122 38 10 2 0

22 888 1086 733 338 124 38 10 2 0

23 1876 2382 1711 868 350 124 38 10 2

24 3845 5028 3815 | 2075 914 352 | 124 38 10 2 0

25 7657 | 10304 | 8160 | 4716 | 2222 | 926 | 352 | 124 | 38 | 10 2 0
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2z || T || |R|E|F|F|%|FE
A I N e - - - - R
4 0

5 1 0

6 0 3 0

7 6 5 4 0

8 7 21 10 4 0

9 29 44 37 11 4 0

10 50 122 84 45 11 4 0

11 135 254 227 108 46 11 4 0

12 249 588 498 294 116 46 11 4 0

13 569 1191 1136 668 322 117 46 11 4 0

14 1061 2504 2359 1546 74T 330 117 46 11 4 0

15 2184 4885 4938 3278 1756 775 331 117 46 11 4 0
16 4044 9638 9770 6932 3790 1839 783 331 117 46 11 4
17 7804 18183 19255 13918 8113 4013 1867 784 331 117 46 11
18 14160 34268 36625 27663 16509 8671 4096 1875 784 331 117 46
19 26159 62704 69034 53180 33151 17810 8898 4124 1876 784 331 117
20 46461 114071 126973 100951 64405 36059 18381 8981 4132 1876 784 331
21 82968 203202 231136 187165 123324 70634 37407 18608 9009 4133 1876 784
22 || 144356 | 359209 | 413075 | 342732 | 230632 | 136240 | 73668 | 37982 | 18691 9017 | 4133 1876
23 || 250925 | 624938 730729 616388 425446 | 256624 | 142806 | 75029 38209 | 18719 | 9018 4133
24 || 428144 | 1078397 | 1274031 | 1095794 | 770702 | 476487 | 270343 | 145887 | 75604 | 38292 | 18727 | 9018
25 || 727755 | 1837377 | 2199827 | 1920245 | 1378855 | 868644 | 504339 | 277036 | 147252 | 75831 | 38320 | 18728
ol = - - - - = < = = = = e e
eleleslelslalalalaldlalalala
10 0

11 1 0

12 0 3 0

13 7 6 4 0

14 10 26 11 4 0

15 37 58 46 12 4 0

16 70 163 111 54 12 4 0

17 188 355 305 141 55 12 4 0

18 359 832 696 394 149 55 12 4 0

19 821 1726 1616 931 428 150 55 12 4 0

20 1574 3664 3429 2198 1035 436 150 55 12 4 0

21 3240 7267 7266 4762 2489 1069 437 150 55 12 4 0

22 6100 14444 14582 10210 5493 2597 1077 437 150 55 12 4 0

23 11809 | 27539 28985 20800 | 11934 5800 2631 1078 437 150 55 12 4 0
24 21646 | 52203 55668 41719 | 24651 | 12729 5908 2639 | 1078 437 150 55 12 4
25 40108 | 96213 | 105581 | 80976 | 49997 | 26553 | 13040 | 5942 | 2640 | 1078 | 437 | 150 | 55 | 12
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2 =) S i~ S | e || =¥
> - v v N N =} N -~
3 = = = o A e N O T
[\V) = = =
18 0

19 1 0

20 0 3 0

21 6 4 0

22 11 27 11 4 0

23 || 41 63 | 47 12 | 4]0

24 || 78 | 180 | 120 | 55 [ 12 | 4 | O
25 || 214 | 402 | 336 | 150 | 56 | 12 | 4 | ©

4.B.2 8 supercharges in six dimensions

The tables in this subsection are based on the Mgy = (1,0) partition function

(4.196)), organized in terms of multiplicity generating functions Gy, n, »(q),

see (4.216]).

Q = = ~ & = = > = 3 =) = =
E) » » » » » » » » » » = -
b =) = =) = =) = = =) =) =) S S
1 0
2 1 0
3 1 1 0
4 4 2 1 0
5 6 7 2 1 0
6 19 13 8 2 1 0
7 34 38 16 8 2 1 0
8 81 79 48 17 8 2 1 0
9 156 184 103 51 17 8 2 1 0
10 || 332 378 252 113 52 17 8 2 1 0
11 || 636 813 530 279 116 52 17 8 2 1 0
12 || 1276 1623 1171 604 289 117 52 17 8 2 1 0
13 || 2404 3290 2395 1350 631 202 117 52 17 8 2 1
14 || 4614 6386 | 4962 2816 1427 641 203 117 52 17 8 2
15 || 8537 | 12406 | 9823 5912 3001 1454 644 293 117 52 17 8
16 || 15853 | 23445 | 10436 | 11896 | 6361 3078 | 1464 | 645 203 117 52 17
17 || 28748 | 44075 | 37346 | 23836 | 12913 | 6549 | 3105 | 1467 | 645 203 | 117 52
18 || 52034 | 81247 | 71315 | 46446 | 26104 | 13368 | 6626 | 3115 | 1468 | 645 | 203 | 117
10 || 92579 | 148705 | 133388 | 89732 | 51295 | 27149 | 13556 | 6653 | 3118 | 1468 | 645 | 293
20 || 163950 | 268145 | 247448 | 169908 | 99935 | 53631 | 27607 | 13633 | 6663 | 3119 | 1468 | 645
21 || 286638 | 479693 | 451900 | 318623 | 100744 | 104983 | 54682 | 27795 | 13660 | 6666 | 3110 | 1468
22 || 498178 | 848018 | 818105 | 588270 | 360520 | 201413 | 107347 | 55140 | 27872 | 13670 | 6667 | 3119
23 || 856969 | 1487396 | 1462590 | 1075628 | 670688 | 382510 | 206520 | 108401 | 55328 | 27899 | 13673 | 6667
24 || 1465054 | 2583018 | 2592572 | 1942043 | 1235427 | 715151 | 393379 | 208399 | 108859 | 55405 | 27909 | 13674
25 || 2483037 | 4452127 | 4547623 | 3474093 | 2246578 | 1323605 | 737611 | 308523 | 209953 | 109047 | 55432 | 27912
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Q = = S = I~ = = = % %) = =
) = ° ° = ° ° 2 ° ° ° 2 =
v &, o) £ £, &2 &, o) o) £ & © ©
2 0
3 1 0
4 0 2 0
5 3 3 3 0
6 1 9 1 3 0
7 13 20 17 5 3 0
8 20 50 34 19 5 3 0
9 53 101 93 13 20 5 3 0
10 93 224 192 115 15 20 5 3 0
11| 203 449 446 252 125 16 20 5 3 0
12 | 369 924 903 589 275 127 16 20 5 3 0
13| 743 | 1798 | 1920 | 1241 659 285 128 16 20 5 3 0
14 || 1355 | 3523 | 3792 | 2664 | 1405 683 287 | 128 16 20 5 3
15 || 2585 | 6673 | 7601 | 5410 | 3071 | 1476 | 693 | 288 128 16 20 5
16 || 4662 | 12617 | 14601 | 10981 | 6311 | 3245 | 1500 | 695 288 128 | 46 | 20
17 || 8585 | 23303 | 28083 | 21538 | 13007 | 6741 | 3317 | 1510 | 696 288 | 128 | 46
18 || 15272 | 42800 | 52540 | 41953 | 25810 | 13982 | 6916 | 3341 | 1512 | 696 | 288 | 128
19 |[ 27351 | 77315 | 97864 | 79808 | 50033 | 28012 | 14422 | 6988 | 3351 | 1513 | 696 | 288
20 || 47902 | 138661 | 178789 | 150444 | 97964 | 55666 | 29010 | 14598 | 7012 | 3353 | 1513 | 696
21 || 83950 | 245476 | 324415 | 278690 | 186802 | 107982 | 57944 | 29451 | 14670 | 7022 | 3354 | 1513
22 || 144814 | 431357 | 580136 | 511315 | 349601 | 207363 | 112896 | 58952 | 29627 | 14694 | 7024 | 3354
23 |[ 249137 | 750026 | 1029661 | 925300 | 648055 | 391117 | 217862 | 115197 | 59394 | 29699 | 14704 | 7025
24 || 423589 | 1294613 | 1806340 | 1658994 | 1183895 | 730037 | 412771 | 222852 | 116206 | 59570 | 29723 | 14706
25 || 717200 | 2214733 | 3145140 | 2940833 | 2142556 | 1343353 | 774118 | 423453 | 225163 | 116648 | 59642 | 29733
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o) = = ~ & = = > = ) = = =
3 = = = = = = = = = = 2 -
a3 = 2 2 2 2 3 2 2 2 = =
= = = = = = = = = = = =
1 0
2 1 0
3 1 2 0
4 4 3 2 0
5 8 9 4 2 0
6 18 23 12 4 2 0
7 39 51 31 13 4 2 0
8 82 114 76 34 13 4 2 0
9 165 249 174 85 35 13 4 2 0
10 || 333 519 391 203 88 35 13 4 2 0
11| 652 1064 843 465 212 89 35 13 4 2 0
12 || 1260 2137 1776 1024 495 215 89 35 13 4 2 0
13 || 2396 4202 3645 2203 1102 504 216 89 35 13 4 2
14 || 4499 8128 7330 4609 2399 1132 507 216 89 35 13 4
15 || 8321 | 15488 | 14450 | 9428 5080 2478 1141 508 216 89 35 13
16 || 15236 | 29063 | 28022 | 18898 | 10511 | 5280 2508 | 1144 | 508 216 89 35
17 || 27556 | 53844 | 53451 | 37201 | 21297 | 10997 | 5359 | 2517 | 1145 | 508 | 216 | 89
18 || 49336 | 98540 | 100527 | 71985 | 42376 | 22425 | 11198 | 5389 | 2520 | 1145 | 508 | 216
10 || 87449 | 178260 | 186521 | 137212 | 82828 | 44899 | 22015 | 11277 | 5398 | 2521 | 1145 | 508
20 || 153595 | 319063 | 341843 | 257835 | 159430 | 88321 | 46042 | 23116 | 11307 | 5401 | 2521 | 1145
21 || 267352 | 565412 | 619252 | 478197 | 302417 | 171054 | 90889 | 46533 | 23105 | 11316 | 5402 | 2521
22 || 461595 | 992485 | 1109824 | 876142 | 565992 | 326453 | 176672 | 92036 | 46734 | 23225 | 11319 | 5402
23 || 790578 | 1726764 | 1968850 | 1587104 | 1046065 | 614658 | 338400 | 179255 | 92527 | 46813 | 23234 | 11320
24 || 1343972 | 2979088 | 3459778 | 2844391 | 1910959 | 1142740 | 639492 | 344063 | 180403 | 92728 | 46843 | 23237
25 || 2268336 | 5098709 | 6025145 | 5046950 | 3452679 | 2099666 | 1193279 | 651564 | 346650 | 180894 | 92807 | 46852
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5 = = = = = = = = = | s | = |=|=
) - = - = = - » » » » Ol N
v 2 = 2 = 2 2 = = 22|35 |5)|2
4 0
5 1 0
6 4 1 0
7 9 5 1 0
8 25 13 5 1 0
9 61 38 14 5 1 0
10 142 95 42 14 5 1 0
11 312 238 108 43 14 5 1 0
12 681 536 276 112 43 14 5 1 0
13 1415 1216 642 289 113 43 14 5 1 0
14 || 2009 | 2595 | 1482 680 203 113 13 14 5 1 0
15 5804 5486 3235 1592 693 294 113 43 14 5 1 0
16 11416 11186 6961 3511 1630 697 294 113 43 14 5 1 0
17 21988 22514 14456 7644 3621 1643 698 294 113 43 14 5 1
18 || 41816 | 44165 | 29554 | 16043 | 7924 | 3659 | 1647 | 698 | 204 | 113 | 43 | 14 | 5
19 78176 85560 58907 33146 16736 8034 3672 1648 698 294 113 43 14
20 || 144486 | 162571 | 115712 | 66723 | 34776 | 17016 | 8072 | 3676 | 1648 | 698 | 294 | 113 | 43
21 263440 305182 222926 132356 70428 35473 17126 8085 3677 1648 698 294 113
22 || 475248 | 564283 | 423773 | 257348 | 140501 | 72068 | 35753 | 17164 | 8089 | 3677 | 1645 | 698 | 294
23 847638 | 1031812 | 793186 493656 274795 | 144249 | 72765 35863 | 17177 | 8090 3677 | 1648 | 698
24 || 1497518 | 1863142 | 1466875 | 931993 | 530067 | 283053 | 145893 | 73045 | 35901 | 17181 | 8090 | 3677 | 1648
25 2619670 | 3330628 | 2677934 | 1738092 | 1006402 | 547844 | 286811 | 146590 | 73155 | 35914 | 17182 | 8090 | 3677
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Q =) = S 79 = = = = ‘o =) = = ==
&) @ 2 @ e s > e e s |l |22
v 2 =) =) =) 2 2 2 =) 2 2 = S |23
7 0
8 1 0
9 4 1 0
10 13 5 1 0
11 35 17 5 1 0
12 101 48 18 5 1 0
13 238 140 52 18 5 1 0
14 575 350 153 53 18 5 1 0
15 1285 860 389 157 53 18 5 1 0
16 2834 1983 976 402 158 53 18 5 1 0
17 5972 4467 2279 1015 406 158 53 18 5 1 0
18 || 12413 9647 5213 2395 1028 407 158 53 18 5 1 0
19 || 24997 | 20422 | 11410 | 5513 2434 1032 407 158 53 18 5 1 0
20 || 49629 41963 | 24476 | 12167 | 5629 2447 | 1033 | 407 158 53 18 5 1 0
21 || 96355 84692 | 50910 | 26287 | 12467 | 5668 | 2451 | 1033 | 407 | 158 | 53 18 5 1
22 || 184497 | 167219 | 103990 | 55095 | 27048 | 12583 | 5681 | 2452 | 1033 | 407 | 158 | 53 | 18 | 5
23 || 347237 | 324945 | 207612 | 113323 | 56917 | 27348 | 12622 | 5685 | 2452 | 1033 | 407 | 158 | 53 | 18
24 || 645476 | 620525 | 407840 | 227879 | 117556 | 57678 | 27464 | 12635 | 5686 | 2452 | 1033 | 407 | 158 | 53
25 || 1183084 | 1168737 | 786848 | 450666 | 237343 | 119382 | 57978 | 27503 | 12639 | 5686 | 2452 | 1033 | 407 | 158
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Q = = o ™ = = = = 3 =) = =
) » » » » » » » » » » = o
b & & ) & & & & & & ) g :2'
3 0
4 1
5 3 1 0
6 9 6 1 0
7 22 16 6 1 0
8 54 47 19 6 1 0
9 122 114 57 19 6 1 0
10 || 269 282 147 60 19 6 1 0
11 || 570 628 372 157 60 19 6 1 0
12 || 1182 1397 867 408 160 60 19 6 1 0
13 || 2384 2944 1973 966 418 160 60 19 6 1 0
14 || 4720 6137 | 4285 2249 1002 421 160 60 19 6 1 0
15 || 9164 | 12349 | 9114 4962 2351 1012 421 160 60 19 6 1
16 || 17509 | 24540 | 18781 | 10746 | 5247 | 2387 | 1015 | 421 160 60 19 6
17 || 32937 | 47598 | 37992 | 22468 | 11461 | 5349 | 2307 | 1015 | 421 160 60 19
18 || 61121 | 91162 | 75102 | 46159 | 24208 | 11749 | 5385 | 2400 | 1015 | 421 | 160 | 60
10 || 111963 | 171440 | 146106 | 92470 | 50163 | 24932 | 11851 | 5395 | 2400 | 1015 | 421 | 160
20 || 202707 | 318632 | 279173 | 182328 | 101434 | 51941 | 25220 | 11887 | 5398 | 2400 | 1015 | 421
21 || 362956 | 583695 | 526058 | 352627 | 201679 | 105547 | 52668 | 25322 | 11897 | 5398 | 2400 | 1015
22 || 643253 | 1057824 | 976881 | 672443 | 393429 | 210967 | 107334 | 52956 | 25358 | 11900 | 5398 | 2400
23 || 1120052 | 1894240 | 1792109 | 1262534 | 756265 | 413603 | 215118 | 108061 | 53058 | 25368 | 11900 | 5398
24 || 1963846 | 3350104 | 3247454 | 2341077 | 1431348 | 799141 | 423000 | 216908 | 108349 | 53094 | 25371 | 11900
25 || 3386710 | 5896540 | 5821871 | 4284997 | 2674272 | 1520012 | 819640 | 427160 | 217635 | 108451 | 53104 | 25371
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6 0

7 3

8 9 3 0

9 33 12 3 0

10| 81 15 12 3 0

11| 218 126 18 12 3

12 | 504 345 138 18 12 3 0

13 || 1169 849 393 141 18 12 3 0

14| 2525 | 2025 989 405 141 18 12 3 0

15 || 5415 | 4556 | 2426 | 1037 408 141 18 12 3 0

16 || 11115 | 9997 | 5574 | 2569 | 1049 | 40s | 141 18 12 3 0

17 || 22527 | 21139 | 12502 | 5988 | 2617 | 1052 | 408 | 141 | 48 | 12 3 0

18 || 44383 | 43734 | 26921 | 13577 | 6131 | 2620 | 1052 | 408 | 141 | 48 | 12 | 3 | 0

19 || 86277 | 88152 | 56723 | 29508 | 13994 | 6179 | 2632 | 1052 | 408 | 141 | 48 | 12 | 3

20 || 164309 | 174452 | 116181 | 63019 | 30686 | 14137 | 6191 | 2632 | 1052 | 408 | 141 | 48 | 12
21 || 308983 | 338438 | 233542 | 130513 | 65753 | 31103 | 14185 | 6104 | 2632 | 1052 | 408 | 141 | 48
22 || 571846 | 646421 | 459542 | 264959 | 136982 | 66844 | 31246 | 14197 | 6194 | 2632 | 1052 | 408 | 141
23 || 1046250 | 1215007 | 889787 | 526615 | 279815 | 139729 | 67261 | 31204 | 14200 | 6104 | 2632 | 1052 | 408
24 || 1889540 | 2253670 | 1693826 | 1029156 | 550415 | 286341 | 140820 | 67404 | 31306 | 14200 | 6194 | 2632 | 1052
25 || 3377343 | 4124779 | 3179821 | 1977217 | 1099765 | 574444 | 289091 | 141237 | 67452 | 31309 | 14200 | 6194 | 2632
9 = = S = S = = = =) =) = = = | =

T e ° ° ° ° ° ° sl el el 2lz]|2 2

s | & e | s e s | s ala|le] 22

6 0 0

7 1 1 0

8 2 2 1 0

9 5 10 1 1 0

10| 12 20 15 1 1 0

11 ][ 30 58 38 18 1 1 0

12| 61 125 | 104 14 18 4 1 0

13| 135 | 206 | 245 | 132 a7 18 1 1 0

14| 273 | 613 | 575 | 313 | 139 a7 18 4 1 0

15 || 555 | 1320 | 1260 | 766 | 343 | 142 a7 18 1 1 0

16 || 1087 | 2639 | 2719 | 1704 | 846 | 350 | 142 | 47 | 18 1 1 0

17 || 2115 | 5333 | 5628 | 3792 | 1926 | 877 | 853 | 142 | 47 | I8 1 1| o

18 || 3999 | 10325 | 11477 | 7967 | 4333 | 2008 | 884 | 353 | 142 | 47 | 18 | 4 | 1 | 0

19 || 7521 | 19947 | 22744 | 16616 | 9280 | 4568 | 2039 | ss7 | 353 | 142 | 47 | 18 | 4 | 1

20 || 13858 | 37496 | 44413 | 33421 | 19571 | 9854 | 4651 | 2046 | 887 | 353 | 142 | 47 | 18 | 4

21 || 25303 | 70043 | 84963 | 66421 | 39975 | 20993 | 10091 | 4682 | 2049 | 887 | 353 | 142 | 47 | 18
22 || 45553 | 128294 | 160356 | 128808 | 80349 | 43201 | 21580 | 10174 | 4689 | 2049 | 887 | 353 | 142 | 47
23 || 81270 | 233155 | 297815 | 246711 | 157849 | 87619 | 44657 | 21818 | 10205 | 4692 | 2049 | 887 | 353 | 142
24 || 143279 | 417523 | 546529 | 463836 | 305575 | 173443 | 90956 | 45246 | 21901 | 10212 | 4692 | 2049 | 887 | 353
25 || 250518 | 741533 | 989832 | 861982 | 581093 | 338524 | 180996 | 92425 | 45484 | 21932 | 10215 | 4692 | 2049 | 887
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7 0

8 3

9 6 4

10 25 13 0

11 57 a7 14 4 0

12 152 128 57 14 4 0

13| 338 338 159 58 14 4 0

14| 782 808 1447 169 58 14 4 0

15 || 1644 | 1886 | 1098 481 170 58 14 4 0

16 || 3493 | 4153 | 2657 | 1219 | 491 | 170 58 14 4 0

17 || 7041 | 8937 | 5997 | 2996 | 1253 | 492 | 170 | 58 | 14 4 0

18 || 14124 | 18564 | 13258 | 6912 | 3120 | 1263 | 492 | 170 | 58 4 | 4 | 0

19 || 27430 | 37778 | 28108 | 15522 | 7263 | 3154 | 1264 | 492 | 170 | 58 | 14 | 4 | 0

20 || 52817 | 74981 | 58430 | 33506 | 16489 | 7387 | 3164 | 1264 | 492 | 170 | 58 | 14 | 4

21 || 99411 | 146275 | 118038 | 70651 | 35026 | 16843 | 7421 | 3165 | 1264 | 492 | 170 | 58 | 14
22 || 185238 | 279950 | 234313 | 144914 | 76519 | 36905 | 16967 | 7431 | 3165 | 1264 | 492 | 170 | 58
23 || 330430 | 527948 | 455350 | 291435 | 158361 | 78991 | 37259 | 17001 | 7432 | 3165 | 1264 | 492 | 170
24 || 615770 | 980532 | 871500 | 573877 | 321433 | 164388 | 79973 | 37383 | 17011 | 7432 | 3165 | 1264 | 492
25 || 1102442 | 1798020 | 1640298 | 1111406 | 638384 | 335362 | 166872 | 80327 | 37417 | 17012 | 7432 | 3165 | 1264
Q = = © ™ S = =) = % S|IE|IRT|E|=

3| = ° ° ° ° s |leo|lel=sl|l2l8|22

v 2 2 ez 2 2 e:) 2|22 23|32

0] o

1| 1 0

2] o 2 0

13 5 5 3 0

4| s 16 7 3 0

15 || 27 | 42 | 30 8 3 0

16| 50 | 110 | 74 | 34 8 3 0

17 || 129 | 253 | 212 | 93 | 35 8 3 ] 0

18 || 255 | 581 | 490 | 264 | 97 | 35 | 8 | 3 | 0

19 || 565 | 1258 | 1184 | 648 | 286 | 98 | 35 | 8 | 3 | 0

20 || 1101 | 2674 | 2587 | 1580 | 706 | 200 | 98 | 35 | 8 | 3 | 0

21 || 2258 | 5480 | 5674 | 3580 | 1768 | 728 | 291 | 98 | 35 | 8 | 3 | 0

22 || 4314 | 11042 | 11782 | 7961 | 4056 | 1829 | 732 | 291 | 98 | 35 | 8 | 3 | 0

23 || 8389 | 21690 | 24263 | 16956 | 9193 | 4251 | 1851 | 733 | 291 | 98 | 35 | 8 | 3 | 0

24 || 15646 | 41956 | 48269 | 35421 | 19829 | 9701 | 4312 | 1855 | 733 | 291 | 98 | 35 | & | 3

25 || 29297 | 79620 | 94929 | 71854 | 42078 | 21153 | 9899 | 4334 | 1856 | 733 | 291 | 98 | 35 | 8
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3 0
4 1 0
5 4 1 0
6 9 5 1 0
7 26 15 5 1 0
8 61 42 16 5 1 0
9 140 109 48 16 5 1 0
10 || 311 261 127 49 16 5 1 0
11 || 669 604 318 133 49 16 5 1 0
12 || 1387 1343 756 336 134 49 16 5 1 0
13 || 2833 2883 1726 815 342 134 49 16 5 1 0
14 || 5638 6031 3797 1887 833 343 134 49 16 5 1 0
15 || 11026 | 12313 | 8123 4213 1946 839 343 134 49 16 5 1
16 || 21191 | 24598 | 16912 | 9138 | 4376 1964 840 343 134 | 49 16 5
17 || 40119 | 48224 | 34431 | 19284 | 9563 4435 | 1970 | 840 343 | 134 | 49 16
18 || 74828 | 92024 | 68660 | 39746 | 20332 | 9726 | 4453 | 1971 | 840 | 343 | 134 | 49
10 || 137838 | 176248 | 134437 | 80231 | 42221 | 20759 | 9785 | 4459 | 1071 | 840 | 343 | 134
20 || 250749 | 329537 | 258807 | 158890 | 85837 | 43278 | 20922 | 9803 | 4460 | 1971 | 840 | 343
21 || 451108 | 608030 | 490719 | 309257 | 171219 | 88345 | 43705 | 20981 | 9809 | 4460 | 1971 | 840
22 || 802990 | 1108150 | 917317 | 592528 | 335580 | 176928 | 89404 | 43868 | 20999 | 9810 | 4460 | 1971
23 || 1415399 | 1996715 | 1692631 | 1118817 | 647375 | 348202 | 179445 | 89831 | 43927 | 21005 | 9810 | 4460
24 || 2471579 | 3559576 | 3085506 | 2084291 | 1230561 | 674467 | 353944 | 180504 | 89994 | 43945 | 21006 | 9810
25 || 4278524 | 6282467 | 5561480 | 3834679 | 2307511 | 1287320 | 687192 | 356463 | 180931 | 90053 | 43951 | 21006
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6 0

7 1

8 6 1 0

9 17 7 1 0

10 54 23 7 1 0

11 138 73 24 7 1 0

12 || 341 202 79 24 7 1 0

13 || 797 518 221 80 24 7 1 0

14 || 1795 1254 584 227 80 24 7 1 0

15 || 3879 2912 1441 603 228 80 24 7 1 0

16 || 8183 6485 3410 1507 | 609 228 80 24 7 1 0

17 || 16780 | 14008 | 7731 3509 | 1526 | 610 228 80 24 7 1 0

18 || 33692 | 20414 | 16985 | 8239 | 3665 | 1532 | 610 | 228 | 80 24 7 1 0

19 || 66268 | 60280 | 36213 | 18272 | 8428 | 3684 | 1533 | 610 | 228 | 80 | 24 | 7 1

20 || 128089 | 120877 | 75320 | 39321 | 18782 | 8494 | 3690 | 1533 | 610 | 228 | 80 | 24 | 7

21 || 243471 | 237770 | 153142 | 82512 | 40618 | 18971 | 8513 | 3691 | 1533 | 610 | 228 | 80 | 24

22 || 456134 | 459491 | 305200 | 169218 | 85661 | 41128 | 19037 | 8519 | 3691 | 1533 | 610 | 228 | 80

23 || 842758 | 873960 | 597152 | 340066 | 176532 | 86960 | 41317 | 19056 | 8520 | 3691 | 1533 | 610 | 228

24 || 1537763 | 1638041 | 1149250 | 670793 | 356528 | 179691 | 87470 | 41383 | 19062 | 8520 | 3691 | 1533 | 610

25 || 2773038 | 3028963 | 2178141 | 1301158 | 706690 | 363883 | 180990 | 87659 | 41402 | 19063 | 8520 | 3691 | 1533
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4 0
5 1
6 3 2 0
7 7 7 2 0
8 19 20 9 2 0
9 44 53 27 9 2 0
10 100 130 76 29 9 2
11 215 303 195 84 29 9 0
12 454 675 472 223 86 29 9 2 0
13 925 1453 1084 552 231 86 29 9 2 0
14 || 1854 3036 2403 1302 581 233 86 29 9 2 0
15 || 3630 6184 5144 2948 1387 589 233 86 29 9 2
16 || 6990 | 12327 | 10721 | 6442 3183 1416 591 233 86 29 9 2
17 || 13233 | 24088 | 21797 | 13674 | 7043 3269 | 1424 | 591 233 86 29 9
18 || 24712 | 46250 | 43391 | 28292 | 15133 | 7283 | 3208 | 1426 | 591 | 233 | 6 29
19 || 45490 | 87411 | 84717 | 57218 | 31670 | 15751 | 7369 | 3306 | 1426 | 591 | 233 | 86
20 || 82763 | 162815 | 162618 | 113413 | 64772 | 33187 | 15992 | 7398 | 3308 | 1426 | 591 | 233
21 || 148802 | 299261 | 307244 | 220754 | 129748 | 68318 | 33810 | 16078 | 7406 | 3308 | 1426 | 591
22 || 264749 | 543354 | 572296 | 422630 | 255152 | 137754 | 69852 | 34051 | 16107 | 7408 | 3308 | 1426
23 || 466300 | 975347 | 1051966 | 797014 | 493286 | 272632 | 141358 | 70476 | 34137 | 16115 | 7408 | 3308
24 || 813740 | 1732302 | 1910295 | 1482317 | 939075 | 530438 | 280808 | 142897 | 70717 | 34166 | 16117 | 7408
25 || 1407443 | 3046334 | 3429687 | 2721679 | 1762389 | 1016082 | 548377 | 284429 | 143521 | 70803 | 34174 | 16117
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6
7
8 7 2 0
9 2 10 2 0
10 63 38 10 2
1| 163 109 a1 10 2
12 || 385 295 124 a1 10 2
13 || 879 736 351 127 a1 10 0
14 || 1915 1740 902 366 127 a1 10 2
15 || 4066 | 3931 2202 959 369 127 41 10 0
16 || 8365 | 8576 | 5105 | 2378 974 369 127 a1 10 2
17 || 16851 | 18124 | 11412 | 5604 | 2435 | 977 | 369 127 | 41 10 2 0
18 || 33194 | 37328 | 24640 | 12713 | 5781 | 2450 | 977 | 369 | 127 | 41 0 | 2
19 || 64238 | 75100 | 51777 | 27847 | 13222 | 5838 | 2453 | 977 | 369 | 127 | A4l 10
20 || 122171 | 148039 | 106067 | 59296 | 20185 | 13399 | 5853 | 2453 | 977 | 369 | 127 | 41
21 || 228951 | 286468 | 212660 | 123042 | 62633 | 29695 | 13456 | 5856 | 2453 | 977 | 369 | 127
22 || 422965 | 545251 | 417987 | 249674 | 130948 | 63981 | 20872 | 13471 | 5856 | 2453 | 977 | 369
23 || 771624 | 1022124 | 807305 | 496442 | 267714 | 134322 | 64491 | 20929 | 13474 | 5856 | 2453 | 977
24 || 1390866 | 1889717 | 1534140 | 969373 | 536185 | 275750 | 135671 | 64668 | 20944 | 13474 | 5856 | 2453
25 || 2479819 | 3449211 | 2873001 | 1861540 | 1054472 | 554615 | 279134 | 136181 | 64725 | 29947 | 13474 | 5856
Q = = ™ oo = = = = % =) = = = =
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¥ & & & & & & & & S T e
8 0
9 1 0
10 3 2 0
11 9 8 2 0
12 || 26 25 10 2 0
13| 62 73 34 10 2 0
14 || 148 188 105 36 10 2 0
15 || 332 | 457 | 283 116 36 10 2 0
16 || 721 | 1056 | 717 | 322 118 36 10 2 0
17 || 1511 | 2343 | 1708 | 839 | 333 118 | 36 10 2
18 || 3097 | 5020 | 3902 | 2053 | 880 | 335 | 11s | 36 0 | 2 | o
19 || 6181 | 10457 | 8566 | 4793 | 2183 | 891 | 335 | 118 | 36 | 10 | 2 | 0
20 || 12114 | 21231 | 18249 | 10747 | 5170 | 2224 | 893 | 335 | 118 | 36 | 10 | 2 | 0
21 || 23284 | 42177 | 37794 | 23329 | 11740 | 5302 | 2235 | 893 | 335 | 118 | 36 | 10 | 2 | 0
22 || 44053 | 82157 | 76466 | 49173 | 25807 | 12125 | 5343 | 2237 | 893 | 335 | 118 | 36 | 10 | 2
23 || 82070 | 157249 | 151421 | 101106 | 55044 | 26833 | 12257 | 5354 | 2237 | 893 | 335 | 118 | 36 | 10
24 || 150888 | 296196 | 204293 | 203277 | 114478 | 57629 | 27220 | 12298 | 5356 | 2237 | 893 | 335 | 118 | 36
25 || 273843 | 549904 | 562169 | 400661 | 232669 | 120665 | 53663 | 27352 | 12309 | 5356 | 2237 | 893 | 335 | 118
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4.B.3 16 supercharges in ten dimensions

The tables in this subsection are based on the Njpy = 1 partition function

(4.249)), organized in terms of multiplicity generating functions G, ny.ns.n4(9),

see ([4.262)).
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3 0

4 1 0

5 1 1 0

6 1 2 1 0

7 2 2 2 1 0

8 5 5 3 2 1 0

9 7 9 6 3 2 1 0

10 13 17 12 7 3 2 1 0

11 21 29 23 13 7 3 2 1 0

12 37 54 42 26 14 7 3 2 1 0

13 60 90 " 48 27 14 7 3 2 1 0

14 101 159 137 92 51 28 14 7 3 2 1 0

15 165 268 243 163 98 52 28 14 7 3 2 1 0

16 274 457 422 298 178 101 53 28 14 7 3 2 1 0

17 441 760 732 522 326 184 102 53 28 14 7 3 2 1 0

18 717 1276 | 1248 924 580 341 187 103 53 28 14 7 3 2 1

19 1149 | 2088 | 2121 | 1592 | 1032 608 347 188 | 103 53 28 14 7 3 2

20 1847 | 3443 | 3551 | 2750 | 1801 1092 623 350 189 103 53 28 14 7 3

21 2928 | 5585 | 5929 | 4656 | 3134 | 1912 | 1120 | 629 | 351 189 | 103 53 28 14 7

22 4647 | 9060 | 9790 | 7886 | 5361 | 3351 1972 | 1135 | 632 | 352 189 | 103 53 28 14

23 7310 | 14538 | 16095 | 13160 | 9148 | 5762 | 3464 | 2000 | 1141 | 633 | 352 | 189 | 103 53 28

24 || 11482 | 23301 | 26221 | 21906 | 15414 | 9894 | 5982 | 3524 | 2015 | 1144 | 634 | 352 | 189 | 103 53

25 || 17908 | 36995 | 42535 | 36063 | 25846 | 16754 | 10303 | 6095 | 3552 | 2021 | 1145 | 634 | 352 | 189 | 103
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4 0

5 1 0

6 0 1 0

7 3 1 1 0

8 2 4 1 1 0

9 7 6 5 1 1 0

10 10 15 7 5 1 1 0

11 22 24 20 8 5 1 1 0

12 30 51 33 21 8 5 1 1 0

13 64 85 73 38 22 8 5 1 1 0

14 97 164 125 83 39 22 8 5 1 1 0

15 179 276 249 148 88 40 22 8 5 1 1 0

16 282 502 431 297 158 89 40 22 8 5 1 1 0

17 496 842 803 529 321 163 90 40 22 8 5 1 1 0

18 784 1473 1379 993 578 331 164 90 40 22 8 5 1 1 0
19 1335 | 2449 | 2462 | 1748 1099 602 336 165 90 40 22 8 5 1 1
20 2117 4164 4181 3153 1951 1149 612 337 165 90 40 22 8 5 1
21 3497 | 6853 | 7238 | 5454 | 3559 | 2058 | 1173 | 617 | 338 165 90 40 22 8 5
22 5546 | 11401 | 12131 | 9549 6218 3770 2108 | 1183 | 618 338 165 90 40 22 8
23 8981 | 18557 | 20509 | 16261 | 10990 | 6637 | 3878 | 2132 | 1188 | 619 | 338 | 165 90 40 22
24 || 14141 | 30342 | 33931 | 27794 | 18890 | 11791 | 6849 | 3928 | 2142 | 1189 | 619 | 338 | 165 90 40
25 || 22570 | 48846 | 56288 | 46628 | 32585 | 20406 | 12218 | 6957 | 3952 | 2147 | 1190 | 619 | 338 | 165 | 90
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0
1 0
1 1 0
3 2 1 0
4 6 2 1 0
10 9 7 2 1 0
16 22 12 7 2 1 0
32 40 29 13 7 2 1 0
52 80 55 32 13 7 2 1 0
98 141 115 62 33 13 7 2 1 0
160 267 211 132 65 33 13 7 2 1
286 463 409 249 139 66 33 13 7 2
469 835 733 491 266 142 66 33 13 7 0
805 1431 1351 900 531 273 143 66 33 13 1
1314 2489 2375 1685 985 548 276 143 66 33 2 0
2199 4199 4218 3018 1864 1025 555 277 143 66 7 1
3558 7131 7270 5438 3378 1951 1042 558 277 143 13 2
5837 | 11842 | 12571 | 9530 6148 3560 1991 | 1049 | 559 277 33 7
9361 | 19709 | 21279 | 16701 | 10888 6520 3647 | 2008 | 1052 | 559 66 13
15106 | 32300 | 35990 | 28688 | 19266 | 11624 | 6704 | 3687 | 2015 | 1053 143 33
23999 | 52855 | 59966 | 49138 | 33418 | 20692 | 11999 | 6791 | 3704 | 2018 277 66
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2 0

3 1 0

4 0 1 0

5 1 1 1 0

6 2 2 1 1 0

7 2 4 3 1 1 0

8 4 7 5 3 1 1 0

9 8 12 10 6 3 1 1 0

10 12 22 19 11 6 3 1 1 0

11 20 38 35 22 12 6 3 1 1 0

12 34 66 62 43 23 12 6 3 1 1 0

13 54 113 112 r 46 24 12 6 3 1 1 0

14 89 190 197 142 85 47 24 12 6 3 1 1 0

15 147 318 342 256 158 88 48 24 12 6 3 1 1 0

16 233 532 587 452 288 166 89 48 24 12 6 3 1 1 0

17 376 877 1001 792 517 304 169 90 48 24 12 6 3 1 1

18 603 1438 1686 1376 916 550 312 170 90 48 24 12 6 3 1

19 954 2345 2823 2354 1610 983 566 315 171 90 48 24 12 6 3

20 1511 3795 4684 4003 2789 1740 1016 574 316 171 90 48 24 12 6

21 2383 6105 7716 6745 4795 3037 1808 | 1032 | 577 317 171 90 48 24 12

22 3727 9775 | 12620 | 11265 | 8164 5260 3169 | 1841 | 1040 | 578 317 171 90 48 24

23 5821 | 15552 | 20513 | 18678 | 13782 | 9019 5514 | 3237 | 1857 | 1043 | 579 317 | 171 90 48

24 9050 | 24624 | 33121 | 30757 | 23075 | 15332 | 9498 | 5647 | 3270 | 1865 | 1044 | 579 | 317 | 171 90

25 13998 | 38797 | 53183 | 50273 | 38366 | 25850 | 16217 | 9754 | 5715 | 3286 | 1868 | 1045 | 579 | 317 | 171
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6 0
7 1 0
8 1 1 0
9 4 2 1 0
10 5 5 2 1 0
11 13 9 6 2 1 0
12 21 21 10 6 2 1 0
13 45 38 25 11 6 2 1 0
14 74 78 46 26 11 6 2 1 0
15 143 141 98 50 27 11 6 2 1 0
16 240 269 178 106 51 27 11 6 2 1 0
17 437 477 349 198 110 52 27 11 6 2 1 0
18 731 870 629 389 206 111 52 27 11 6 2 1 0
19 1280 1515 1170 713 409 210 112 52 27 11 6 2 1 0
20 2126 2673 2067 1335 753 417 211 112 52 27 11 6 2 1 0
21 3619 4576 3709 2394 1422 3 421 212 112 52 27 11 6 2 1
22 5952 7867 6438 4328 2563 1462 781 422 212 112 52 27 11 6 2
23 9908 13251 | 11235 7604 4668 2650 | 1482 785 423 212 | 112 52 27 11 6
24 16128 | 22320 | 19168 | 13377 8250 4840 | 2690 | 1490 786 423 | 212 | 112 52 27 | 11
25 26386 | 37038 | 32718 | 23070 | 14611 | 8594 | 4927 | 2710 | 1494 | 787 | 423 | 212 | 112 | 52 | 27
2 S = S ) S o = T | | T | BEIEIR|ITE|IE
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9 0
10 1 0
11 1 1 0
12 4 2 1 0
13 8 5 2 1 0
14 18 12 6 2 1 0
15 34 26 13 6 2 0
16 73 55 30 14 6 1 0
17 135 112 63 31 14 2 1 0
18 261 222 133 67 32 14 6 2 1 0
19 479 428 264 141 68 32 14 6 2 1 0
20 885 815 520 285 145 69 32 14 6 1 0
21 1577 1512 996 562 293 146 69 32 14 6 2 1 0
22 2822 2776 1881 1091 583 297 147 69 32 14 6 2 1 0
23 4922 5005 3482 2067 | 1133 591 298 147 69 32 14 6 2 1 0
24 8567 8930 6366 3865 | 2162 | 1154 595 299 | 147 69 32 | 14 6 2 1
25 14672 | 15706 | 11460 | 7105 | 4054 | 2204 | 1162 | 596 | 299 | 147 | 69 | 32 | 14 6 2
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7 0
8 1 0
9 1 1 0
10 6 2 1 0
11 10 7 2 1 0
12 23 17 8 2 1 0
13 43 36 18 8 2 1 0
14 90 77 43 19 8 2 1
15 162 157 91 44 19 8 2 0
16 312 307 194 98 45 19 8 1 0
17 554 591 385 208 99 45 19 2 1 0
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4.C Large spin asymptotics of super Poincaré

multiplicities

This appendix contains some more data on the large spin asymptotics of
Nig = 1, Ngg = (1,0) and Nygg = 1 spectra. The leading and sublead-
ing Regge trajectories TgQ(q), Tf’p(q) and 7,7Y*(q) are defined through the
expansion (4.184), and of super Poincaré multiplicity gener-
ating functions in terms of ¢" powers (with n denoting the first SO(d — 1)
Dynkin label). They have been computed on the basis of the a/m? < 25

data given in Section

4.C.1 Ny =1 multiplets at SO(3) Dynkin label [n — ]

This appendix contains more data on the asymptotics of universal Ny = 1
multiplets of U(1)g charge @ > 2. The [2n + 1,2Q] multiplicities up to
level ¢%° determine the associated Tg Q(q) coefficients for low charges @ to

the following orders:

184




e U(1)p charge Q = 2:

972(g) = ¢ (24 11¢ + 37¢° + 114¢° + 319¢* + 822¢° + 2000¢°
+ 4645¢" + 10354¢° + 22317¢° + 46702¢'° + 952104
+ 1896564 + .. .)

97) = *(2+ 8¢+ 33¢7 + 104¢° + 310¢" + 826¢° + 2093¢°
+4991¢" +11454¢% + ..)

972(q) = ¢ (1+5q+22¢° + 77¢° + 237¢" + 664¢° + ...)

7'5Q:2(q) = ¢"(3+12¢+49¢* +...) (4.323)

e U(1l)g charge Q = 4:

974 ) = ¢®(2+ 14q + 57¢% + 187¢% + 542¢* + 1438¢° + 3563¢°
+ 8376¢" + 18846¢° + 408664° + .. .)

27 g) = ¢® (2 + 149 + 58¢% + 200¢° + 591¢* + 1612¢° + ...)

7)) = @2+ 13¢+5342+..) (4.324)

27%(q) = " (2+ 14g + 60¢% + 209¢° + 633¢* + ...
7_362:6((1) = ¢ (2+14g+ 64> +...) (4.325)

Also in the [2n,2Q + 1] sector, we can expand the subleading trajectories
2Q+1, .
T>o (9):

e U(1l)g charge Q = 1:

27 g) = 1449+ 15¢% + 50¢° + 143¢* + 379¢° + 94745 + 224447
+ 5103¢® + 11196¢° + 23804¢'° + 49252¢'" + 99465¢*2
+196522¢* + 380719¢ + . ..

97 q) = 145+ 22¢% + 70¢% + 212¢* + 568¢° + 1458¢5 + 349647
+8093¢® + 17936¢° + . ..

T8Nq) = 14 6q+24¢% + 83 +252¢" + 698¢° + ...

9T = 1464256+ ... (4.326)
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e U(1)g charge Q = 3:

2753(q) = ¢*(1+9q+ 3762 + 120¢3 + 347¢* + 922¢° + 22874
+ 5385¢" + 12142¢° + 26395¢° + 55605¢'° + 113973¢* + .. )
973 q) = ¢t (44 17 + 68¢% + 208¢® + 603¢* + 1573¢° + 39194°
+9195¢" +...)
793(g) = ¢ (14 7q+28¢% + 99¢° + 304¢* + 851¢° +...)
™) = @ (2+9¢+38¢+..) (4.327)

e U(1)g charge @ = 5:

975(g) = "0 (1+9q¢ + 43¢% + 1513 + 462¢" + 1277¢° + 3264¢°
+ 7865¢" 4 ...)

(@) = "% (4+20q +89¢% +292¢° +...)

) = (1+9+...) (4.328)

o U(l)g charge Q =T:
g = ¢ (1+9g+...) (4.329)

Note that for all values of the U(1)g charge @ considered here, the leading
g powers of the TZQ (¢) at fixed @ hardly vary with ¢ (at Q = 2, for in-
stance, we can read off 72,75, 72, 72 ~ O(¢%) and 72 ~ O(g*) from )
In particular, the approximate agreement of the leading ¢ powers of 71(q)
and 75(q) supports our claim in the introduction that half of the nonzero

multiplicities exactly match with the stable patterns.

4.C.2 Ngg; = (1,0) multiplets at SO(5) Dynkin labels [n — oo, k]

For the universal Ngg = (1,0) multiplets [n — oo, k;p] we display some
ngg(q) associated with super Poincaré quantum numbers (k, p) beyond the
examples of subsection 5.4. Bosonic multiplets are characterized by the

following asymptotic behaviour:
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e SO(5) Dynkin labels [n — o0, 2] and SU(2) g representation [2]

22(q) = ¢*(146q+ 19¢% + 60¢° + 160¢* + 421¢° 4 1015¢° + 24004"
+ 5398¢% + 11900¢° + 25371¢'° + 53107¢! + 10850042 + 21807443
+ 430116¢™* + 8361944'° + 160088946 + .. )

22(q) = ¢°(3+13q+49¢% +151¢° + 439¢" + 1166¢° + 2956¢°
+ 7119¢7 4 16566¢° + 372244¢° + 81414¢° + 173493¢" + .. )
22%(q) = ¢%(3+12¢+53¢> + 171¢° + 537¢* + 1486¢° + 3960¢°
+ 9876¢" +...)
22(q) = q"(1+8¢+35¢% + 134¢° + 434¢* + ..
g = ¢ @+..) (4.330)

e SO(5) Dynkin labels [n — 00,4] and SU(2) g representation [0]

%q) = ¢ (1+5q+ 14¢% + 43¢ + 113¢* + 294¢° + 698¢° + 16484"
+ 3677¢% + 8090¢° + 17182¢*° + 35919¢' + 73211¢'% + 14703643
+ 289598¢'* + 562694¢'° + 1076373¢'° + .. )

() = ¢ (1+5q+ 18¢% + 564> + 166¢* + 4464° + 1143¢° + 278747
+ 6549¢° + 14864¢" + 32811¢'° + 70532¢'* + 148268¢*2 + .. )

73%(q) = ¢°(4+ 14+ 61¢% + 184¢° + 561¢* + 1495¢° + 38964°
+9478¢" +...)

(q) = ¢"'(1+8¢+36¢>+131¢° +...) (4.331)

e SO(5) Dynkin labels [n — oo, 0] and SU(2) g representation [4]

4g) = (1 +4g+18¢% + 475 + 142¢* + 353¢° + 88745 + 20494
+ 4692¢% 4 10215¢° + 21942¢'° + 45608¢'" + 93377¢'% + 186790¢"3
+368341¢™ +..)

2Yq) = ¢® (34 10+ 41¢2 + 124¢% + 362¢" + 952¢° + 2424¢°

+ 5811¢" + 13526¢° + 30317¢° + .. .)
9Mq) = ¢ (1+3¢+17¢% +53¢> + 179¢" + 501¢° 4+ 1392¢° + . .)
N e) = ¢ (1+3g+16¢° +53¢° +..) (4.332)
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e SO(5) Dynkin labels [n — 00,4] and SU(2) g representation [2]

2(q) = 7 (3+12¢ + 48¢% + 141¢° + 408¢" + 1052¢° + 2632¢°
+6194¢" + 142004 + 31309¢° + 67467¢'0 + 1414434
+ 290805¢"% + 585447¢'3 + 1159182¢™ + .. )

52(q) = ¢%(3+15q + 63¢% + 206¢° + 623¢" + 1714¢° + 44644°
+11006¢" 4+ 26108¢® + 59679¢° + 132452¢*° + .. )

m32(q) = ¢ (34 16q + T6¢° + 262¢° + 847¢* + 2427¢° + 6599¢°
+..)

%) = ¢2(1+11g+52¢% +...) (4.333)

e SO(5) Dynkin labels [n — o0, 2] and SU(2) g representation [4]

g = ¢844+ 14q + 58¢% + 170¢° + 492¢" + 1264¢° + 3165¢°
+ 743297 + 170124 + 37428¢° + 80496¢'° + 168377¢"*
+ 345433 +..)

g = ¢ (1+11q+ 45¢% +169¢° + 523¢" + 1505¢° + 399245
+10086¢" + 24241¢% + .. )

2 q) = ¢® B+ 15¢+T70¢% +241¢° + 781¢* + ..

) = ¢"°B+15¢+..) (4.334)

e SO(5) Dynkin labels [n — o0, 6] and SU(2) g representation [0]

759(q) = % (1+5¢+ 1847 + 53¢% + 158¢" + 407¢° + 1033¢° + 245247
+ 5686¢° + 126404° + 27521¢'° + 58151¢*! + 120616¢'2 + 244647¢"3
Yo

20 = ¢ (1+5q+18¢% + 57¢% + 173¢* + 473¢° + 12344° + 30604

+ 7308¢% + 16835¢° + .. .)
(q) = ¢ (44 15¢ + 67¢% +209¢° + .. .) (4.335)
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e SO(5) Dynkin labels [n — o0,0] and SU(2) g representation [6]

%) = ¢ (34 8¢+ 35¢% + 98¢ + 291¢* + 733¢° + 1856¢° + 4339¢"
+9987¢% + 21954¢° + .. )

99(q) = ¢'%(1+5¢" + 27¢% + 88¢° + 286¢* + 804> + 2171¢° + ..)

09(q) = ¢ (3+10q + 46¢> + 148¢° + .. .)

) = ¢ (1+3q+..) (4.336)

In addition, let us display some Tf P(q) associated with fermionic supermul-

tiplets:
e SO(5) Dynkin labels [n — o0, 3] and SU(2) g representation [1]
M q) = ¢*(1+45¢+ 16¢% + 49¢° + 134¢* + 343¢° + 840¢° + 19714”

+ 44604¢® + 9810¢° + 21006¢'° + 43952¢"" + 90078¢'? + 181178¢">
+ 358196¢™ + 697195¢'° + 1337468¢'° + .. )

2 q) = ¢ (1+7q+25¢% + 844> + 247¢" + 674¢° + 1733¢° + 4252¢"
+10005¢° + 22774¢” + 503064 + 108276¢" + .. .)

2 q) = ¢7(2+ 11q 4 464> 4+ 158¢° + 486¢" + 1369¢° + 3622¢° + ...)

) = ¢ 2+13¢+57¢ +..) (4.337)

e SO(5) Dynkin labels [n — oo, 1] and SU(2) g representation [3]

%) = ¢° (249 + 29¢% + 864> + 233¢* + 591¢° 4 1426¢° + 3308¢"
+ 7408¢% + 16117¢° + 3417640 + 70842¢! + 143887¢'% + 286959¢"3
+ 562767¢'* + 1086923¢'° + .. )

3(q) = ¢°(2+10g 4 39¢% + 125¢° 4 366¢" + 990¢° + 2530¢° + 6157¢"
+ 1441468 + 32604¢° + 71640¢° + 1533804 + .. )

5(q) = ¢ (1+6q+24¢% + 87¢° + 275¢* + 799¢° + 2168¢° + 5570¢"
+13669¢° + ...)

2() = ¢ (24 9¢+38¢% +135¢° +428¢" +..))

) = ¢ (2+1g+..) (4.338)
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e SO(5) Dynkin labels [n — o0, 5] and SU(2) g representation [1]

N q) = ¢ (14 7q+ 24¢% + 80¢° + 228¢* + 6104° + 1533¢° + 36914"
+ 8520¢% + 19063¢° + 41409¢'° + 87751¢'" + 181781¢'? + 3691344¢"3
+735899¢™ +..))

2Uq) = (1 +7Tq+ 2647 + 9243 + 281¢* + T91¢° + 20904 + 52514
+ 12618¢% + 29264¢° 4 65731¢'° + . ..)

M (q) = ¢ (24 12¢ + 55¢% + 196¢° + 625¢* + 1808¢° +...)

i) = ¢ (@2+150+...) (4.339)

e SO(5) Dynkin labels [n — o0, 3] and SU(2) g representation [3]

3(q) = ¢"(2410q + 41¢% + 127¢° + 369¢" + 977¢° + 2453¢° + 58564
+13474¢% + 29947¢° + 64743¢'° + 136433¢' + 281245¢'? + 568184¢™3
+1127435¢ + ..

53(q) = ¢®(3+18¢+ 75¢ + 252¢° + 762¢* + 2111¢° + 5496¢°
+13580¢" + 32188¢% + 73580¢° + 163122¢*° + .. )

23(q) = ¢”(1+11q+49¢ 4+ 189¢° + 617¢* + 1841¢° + 5079¢° + ...)
(@) = ¢ (3+19¢+84¢* +...) (4.340)

e SO(5) Dynkin labels [n — oo, 1] and SU(2) g representation [5]

71°(q) = ¢ (2+10q + 36¢% + 118¢° + 335¢" + 893¢° + 2237¢"
+5356¢" + 12311¢° + 274064° + 59236¢'° + 1248924 + .. )

°(q) = ¢ (24 13q + 54¢% + 186¢° + 573¢" + 1609¢° + 4237¢°
+10575¢" +...)

73°(q) = ¢ (2+ 10 4 45¢ 4+ 161¢° 4 518¢* + ...

7@ = ¢"(1+6g+26¢°+...) (4.341)

As mentioned in subsection 5.4, the Tf’p(q) expansion (5.42) of Gy, 1 ,(q)
converges more rapidly at large vales of the second Dynkin label £ and

small values of the SU(2)r spin p.
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4.C.3 Nipq = 1 multiplets at SO(9) Dynkin labels
[n— 00,2, y, 2]

Also for N1pq = 1 multiplets [n — oo, z,y, z] we would like to list some more

7,207 (¢q) beyond those of subsection 6.2. We focus on six bosonic families

e SO(9) Dynkin labels [n — o0, 2,0, 0]

%) = ¢ (142 + 66> +11¢° +27¢* + 52¢° + 112¢° + 2124

+ 423¢% 4 787¢° + 149640 + 27244 + 5001¢'2 + 8927¢"3
+15950¢™ + ...

%) = ¢®(1+2¢" + 6% + 14¢° + 34q* + 74¢° + 1615 + 333¢"
+ 680¢° + 1346¢° + 2627¢*° 4 .. )

%) = ¢ (3+7q+23¢% +54¢° + 138¢1 +...)

2000 = P+ (4.342)

e SO(9) Dynkin labels [n — o0, 1,1, 0]

g = ¢ (1+2¢+8¢% +19¢° + 45¢* +100¢° + 217¢° + 4464
+905¢% + 1779¢° + 3440¢'° + 6521¢" + 12181¢'% + 2239643 + .. )

' 0q) = ¢°(1+2¢+9¢° +23¢° + 61¢* +143¢° + 330¢° + 71547
+ 1524¢% + 3128¢° + ...)

0 = ¢ (1+4¢" 4 164> + 464° + 125¢" +...) (4.343)

e SO(9) Dynkin labels [n — o0, 1,0, 2]

79%(q) = ¢ (1+4q+12¢° + 31¢° + 75¢" + 172¢° + 375¢° + 791"
+ 1615¢° + 3225¢° + 6287¢'° + 120444t + 22652¢*% + .. )

02y = "1+ 4q+ 14¢2 + 39¢° + 104¢* + 252¢° + 587¢5 + 13004
+2794¢% + ..)

3% (q) = ¢"3(2+8q+304° +87¢° +...) (4.344)
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e SO(9) Dynkin labels [n — o0, 3,0, 0]

2000 = "1+ 2¢+ 6%+ 14¢° + 32¢* + 69¢° + 147¢° + 2994
+ 597¢% + 1168¢° + 2239¢'0 4 42264 + 7854¢'% + .. )
2% = " (14 2¢+6¢> +14¢° + 35¢" + 77¢° +172¢° + 3614"

+752¢% 4+ 1513¢° + ...)

%) = ¢ (3+8¢+25¢* +63¢° +...) (4.345)

e SO(9) Dynkin labels [n — o0,0,2,0]

20(q) = " (24494 17¢7 4 36¢° + 97¢* + 207¢° + 473¢5 + 963"
+ 20164 + 3957¢° + 7809¢'° + 14838¢' + .. )

2% = ¢ (24 6q +22¢% + 59¢° + 153¢" + 365¢° + 842¢° + 18427
+..)

2q) = ¢ (24504 244> +62¢° +..)) (4.346)

e SO(9) Dynkin labels [n — o0, 2,1, 0]

20 = " (14204 9¢% + 22¢° + 59¢* + 132¢° + 306¢° + 646"
+1369¢% + 27564° + 5514¢"° + 106824 + .. )
%) = ¢ (1+ 20+ 9¢% +23¢ + 63¢" + 150¢° + 357¢° + 7914

+1728¢% +...)

20q) = ¢'9(1+4q+ 184 + 514 +...) (4.347)

and five fermionic families of supermultiplets:
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e SO(9) Dynkin labels [n — o0,1,0,1]

7)) = O (1+3¢+7¢% +17¢° + 37¢* + 79¢° + 162¢° + 32547
+ 635¢° + 1220¢° + 2298¢'° 4 42664 + 7807¢'% + 14110¢"3
+ 25197¢'* + 44530¢° + .. )

N q) = ¢"(143¢+9¢% +24¢° + 57¢* +131¢° + 288¢° + 6104"
+ 1256¢° + 2523¢° + 4957¢'° + 9557¢ + .. )

3% q) = ¢ (2+ Tq+22¢* + 61¢° + 155¢" + 367¢° +835¢° +...)

Mg = P @2+9¢+3142+..) (4.348)

e SO(9) Dynkin labels [n — 00,0, 1,1]

O8g) = 8 (1+4q+ 1062 + 27¢° + 63¢" + 141¢° + 302¢° + 62847
+1264¢° + 2494¢° + 4811¢'° + 9119¢'" + 17005¢*2 + 31260¢'% + .. .)
5N g) = q° (1+5q+ 16¢% + 44¢° + 113¢* + 269¢° + 610¢° + 13304

+ 2804¢°% 4 5748¢° + . ..)
N q) = ¢ (1464 19¢ 4 59¢° 4 160¢* + 404¢° + . ..)
g = M (249¢+..) (4.349)

e SO(9) Dynkin labels [n — 00,2,0,1]

%) = ¢®(143¢+9¢% + 23¢% + 55¢* 4+ 123¢° + 267¢5 + 556"
+ 113245 + 2244¢° + 4362¢"° + 8318¢' + 1561642 + 28873¢° + .. )

2% = ¢ (14 3¢+ 9¢% + 25¢° + 63¢* + 150¢° + 342¢° + 749¢"
+ 1591¢% + 3289¢° + 6640¢'° + .. )

2 q) = ¢ (24 8¢+ 27¢* + 7747 4+ 204¢* + .. (4.350)
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e SO(9) Dynkin labels [n — o0, 0,0, 3]

03(g) = ¢ 24504 15¢2 4 38¢° + 90¢* + 201¢° + 437¢5 + 905"
+ 1838¢% + 3633¢° + 7038¢'° + 13374¢' + .. )

203(q) = ¢" (24 8¢+ 25¢% + 69¢° + 176" + 418¢% + 949¢° + 206947
..

5%%a) = ¢ (3+11g+38¢ +109¢° +..)

03y = P+ (4.351)

e SO(9) Dynkin labels [n — o0, 1,1, 1]

g = ¢ (14 5q+16¢% + 45¢° + 116¢" + 276¢° + 624¢° + 1358¢"
+ 2852¢" 4 5825¢° 4 11616¢'° + 22669¢'! + .. .)

) = ¢'2(145q+17¢> +52¢° + 142¢" + 358¢° + 855¢° + 19504"
+4279¢° +...)

N g) = ¢ (14 7g + 266 + 84¢° 4 243¢* + .. (4.352)

These results confirm that the 7,7*"*(¢) expansion (6.34) of multiplicity gen-
erating functions Gy, z4..(q) converges more quickly at higher values of the

Dynkin labels z,y, 2.
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5 Hilbert series of SQCD with

exceptional gauge groups

In this section we will discuss Hilbert series, which are another type of
partition function, for supersymmetric QCD theories with exceptional and
related gauge groups. We will begin with a short introduction to super-
symmetric gauge theories as a whole, with derivations of the F-term and
D-term constraints, and then specialize to quiver gauge theories, and their
cousins brane tilings, and finally to SQCD. We will leave it till then to dis-
cuss the transition to Hilbert series, although they apply equally to other
SUSY gauge theories, in particular to those with a nonzero (classical) super-
potential which is not the case in SQCD. We will next give a short review
of the currently known results for classical gauge groups with matter in
(anti)fundamental representations, both with and without an adjoint field,
and also for the simplest exceptional group, G2, with an adjoint field present,
before proceeding to the meat of the discussion about the other exceptional
gauge groups, which we introduce and put into context, and other groups
related to the exceptional ones either by sequence of Dynkin diagrams, the

Higgs mechanism, and folding of the Dynkin diagrams.

5.1 Supersymmetric gauge theories

In 4-dimensional non-supersymmetric field theories, the mass dimension of
a scalar field is 1, because the Lagrangian density must have dimension 4 to
match the -4 of the integral (length = mass~!) and the derivative operator,
and of course the mass itself, have dimension 1. By the same argument, that
of a gauge field is also 1, and that of a fermionic field is %

Supersymmetry is a symmetry between bosons, whether they be scalar
fields (of spin - or helicity for massless fields - 0) or gauge (vector) fields

(1) - or gravitons, with spin 2, which are not part of the gauge theories
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we consider here - and fermions, whether their spin is % or % (again we do
not deal with the latter, which are called gravitinos, here, or in gauge the-
ories in general), so in supersymmetric field theories, one must incorporate
both bosonic and fermionic fields, of whichever type, into supersymmetry
multiplets which can be represented by so-called superfields.

We must therefore introduce new ‘superspace’ fermionic (Grassmann) co-
ordinates #®, and its hermitian conjugate #%, with mass dimension —%. (In
extended supersymmetry, i.e. A/ > 1, these have a subscript A from 1 to
N

The summation convention for undotted indices is top left to bottom
right, and for dotted indices it is from bottom left to top right. In A/ =1
supersymmetry, a (complex) scalar field and a (Dirac) fermion can be com-
bined into a so-called chiral superfield; however since off-shell a complex
scalar has 2 degrees of freedom and a Dirac fermion 4, and also for con-
sistency with supersymmetric variations, an ‘auxiliary’ complex scalar F'
must be incorporated into the superfield as the highest (i.e. #0) term. An
antichiral superfield can be constructed in a similar way.

A general superfield can be expressed as [40]

S(z",0%,0%) = ¢+ 0y +0x +00M + 00N + 050V, +000p + 000\ + 0000 D

(5.1)
Certain conditions must exist on the coefficients of each power of § and 6,
which are functions of z*, and their derivatives with respect to x*, for this
to be a superfield. For example, if there is only the ¢ term, it must be a
constant.

This is not an irreducible representation of the supersymmetry algebra;
chiral and antichiral superfields are irreps, and the other types are vector
superfields, which we will consider here, and linear ones, which we will not.
A vector superfield is real, so ¢, V,, and D are real and ¢ = x, p = A and
M = N* (we usually write M £ iN). There are 8 bosonic and 8 fermionic
degrees of freedom.

The matter fields ®;, which are chiral multiplets (in N' = 1) or hyper-
multiplets (in N/ = 2), can transform in any representation of the gauge
and global symmetry groups; the gauge field V¢ is a vector multiplet and
transforms in the adjoint representation of the gauge group and as a singlet

of the global group.
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Supersymmetry transformations are generated by supercharges 9O, and
Q, which are defined as follows in terms of partial derivatives and super-

space coordinates as follows:

Qu = il — " 070, (5.2)
Qs = i0s + 07050, (5.3)

If 0, acts on a superfield, we still have a superfield, but acting with d, or
0s do not give one; one must therefore define new ‘chiral’ derivatives D,
and D which do give a superfield when acting on one. They are defined as

follows:

Do = 0n + ic" Béﬂau (5.4)
Dy = =04 — i68°0%,0, (5.5)

In these expressions we are using a spacetime coordinate x*; we can define
a new spacetime coordinate y* under which the chirality is made manifest

and Dy, is equivalent to O4:
[T} pa i pf
yt =zt +1i6 aaﬁ-é? (5.6)

In this basis, chiral superfields have an expansion solely in powers of 6 and
are independent of §. Antichiral superfields can be defined similarly in terms
of gt = M — 2'90‘0'5 /3’973 and depend solely on 6 in the new basis.

Chiral and antichiral superfields can be written as follows:

D; = ¢; + V204 + 00F; (5.7)
®! = ¢F + V200 + 60F; (5.8)

In both cases there are 4 bosonic and 4 fermionic degrees of freedom. Vector
superfields have 8 of both types.

A Lagrangian density for a supersymmetric gauge theory, just as for a
non-supersymmetric theory, must consist of terms whose variation under
supersymmetry transformations is a total derivative. We know that the
variation of the F-term of a chiral superfield is a total derivative, and the

same for the D-term of a general superfield, because they (excluding the
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superspace coordinates) are the terms with the highest mass dimension and

to get terms of the same dimension from terms of lower dimension, including
1
29
the dimension by 1), and so the Lagrangian density must consist only of

a parameter ¢ with mass dimension —3, we must take a derivative (raising
such terms. The Lagrangian density of a general supersymmetric gauge

theory is specified by three quantities:

e The Kihler potential K (®, ®'), which is a real function of ® and ®f

e The superpotential W (®), which is a holomorphic function of ® and
does not depend on ®f

e The gauge field strength term WiWe**

The Kéahler potential is integrated over all of superspace as it is the D-term
whose variation is a total derivative; the superpotential is integrated over
half of superspace as it is an F-term. Technically, the gauge field strength
term is a D-term, because it is a second antichiral derivative, though it
occurs in the Lagrangian as an integral over half of superspace.

Solving the Euler-Lagrange equations for the auxiliary fields which form
the highest component of each superfield, viz. the F-term in a chiral super-
field and the D-term in a vector superfield, gives the F-term and D-term
constraints respectively. The F-term constraints come from the interaction
between the FF™* term in the Kéahler potential and the Taylor expansion
of the superpotential W (®) about the scalar part ¢, and the D-term ones
from that between the gauge field strength term, which contains the D* D¢
term, and the ®'V?® term from the expansion of ®TedV*7T*® in the Kihler
potential.

Like non-supersymmetric gauge theories, supersymmetric gauge theo-
ries exhibit gauge invariance. Taking ® to 927" ® (and similarly ®' to
@Te*iQAaTTa), where A® is a chiral superfield in the adjoint representation
of the gauge group (so ¢ ® is still chiral), One can choose A® so that the
components of V® that do not contain both # and @ can be gauged away.
This is called the Wess-Zumino gauge and simplifies the expansion of e?V“T"
to go only up to order g2. This is not supersymmetric because taking the
variation under supersymmetry transformations produces terms dependent

on # but not 6 and vice versa, and also because there are 5 bosonic degrees
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of freedom but only 4 fermionic ones; however the variation can be gauged
away by a ‘compensating’ gauge transformation.

The importance of supersymmetric gauge theories increased exponentially
in 1997 on the proposal of the so-called AdS/CFT correspondence [64] - a
special case of the more general gauge/gravity duality - by which a theory
on anti-de Sitter (or other) space in d 4+ 1 dimensions containing gravity
is conjectured to be related to a conformal (or other) field theory in d
dimensions without gravity. Specifically, string theory (type IIA or IIB) on
AdSg41 x X974 is mapped to a conformal (or more general gauge) theory in
d dimensions (usually on a Dp-brane where p = d— 1) probing a Calabi-Yau
singularity on the cone over X?~¢.

The two principal cases in current literature are type IIB string theory
on AdSs x X° where X° is a Sasaki-Einstein manifold which is mapped
to a gauge theory on D3-branes probing a Calabi-Yau singularity on the
cone over X° which is a (singular) Calabi-Yau 3-fold (6 real dimensions) -
in the special case where X?® is simply the 5-sphere S°, the cone is simply
RS and so the theory is simply 4-dimensional A/ = 4 super-Yang-Mills -
and M-theory on AdS; x X7 which is mapped to a Chern-Simons theory on
M2-branes probing a Calabi-Yau singularity on the cone over X7 which is
a CY 4-fold. The former (with a non-trivial SE/CY manifold, so N' = 1)
are investigated - on the gauge side of the correspondence - in [29] and [27],
and the latter in [311 30, 28, 26] [39], and with the special case of X* being
an orbifold of the 7-sphere S” by a finite subgroup G of SU(2), with the
cone being R®/G, in [50]. G is one of the following groups:

o Ay =17y,
e Dy = Dih(k), the dihedral group of order 2k,
e the ‘exceptional’ subgroups of SU(2) called Eg, E7 and FEj.

In all cases the order of the group is the same as the sum of the squares of
the (dual) Coxeter labels of the nodes of the extended Dynkin diagram of

the Lie group of the same name. E|

The Coxeter label of a node is the coefficient of the simple root corresponding to the
node in the linear independence relation between the simple roots, normalized to have
greatest common factor 1. The ‘lowest’ root, i.e. the negative of the highest positive
root, corresponds to the extended node and always has coefficient 1. To get the dual
Coxeter numbers, one multiplies by the norm squared of the root and divides by that
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Recent work in [49] 48] 147, 46] also links gauge amplitudes in d dimensions
with gravity ones in d+ 1 dimensions by showing that supergravity, the low-
energy limit of string theory, is the ‘square’ of super-Yang-Mills theory in
some way and that in the cases of 3, 4, 6 and 10-dimensional SYM the
number of dimensions of the squared theory can be raised by one and N be
halved back to its original value.

The usefulness of this correspondence is that it is (generally) much easier
to calculate scattering amplitudes in gauge theory than in string theory.
There are few examples of direct comparisons of the two methods of cal-
culation, but it is done in [75], where the SO(9) string spectra (as calcu-
lated in the 16-supercharge section of the last chapter) are decomposed into
SO(4) x SO(5) spectra and each of the latter representations ‘lifted’ to the
Kaluza-Klein ‘tower’ of SO(6) representations which contain them in their
SO(5) decompositions, and the gauge calculations done using Polya’s enu-
meration theorem which is similar to the method of calculating invariants
for finite groups described in Section [2.6]

Supersymmetric gauge theories are different from non-supersymmetric
ones in that they always have flat directions in their potential, whether
that comes from the F-terms, the D-terms or both [44]. These correspond
to massless scalars, which are called moduli and span what is known as a
moduli space, and are parametrized by gauge-invariant combinations of the
fundamental fields in the theory. For example, in instanton theories [42],
an instanton of a specific gauge group G is parametrized by its position (4
scalars - it corresponds to the Higgs branch of Dp-branes confined to D(p +
4)-branes), its size (1), its orientation within SU(2) (3) and its orientation
as an SU(2) instanton within G (dim(G) — dim(H) — 3 where H is the
subgroup of G normal to SU(2)). For example, when G = Eg, H = Ex
and dim(G) — dim(H) — 3 = 112 = 4(30 — 2) where 30 is the dual Coxeter
number of Eg. This relation holds for all choices of G.

Moduli spaces also occur in other contexts, for example in string theory
where several dimensions are compactified to finite size [53], the moduli
specify quantities like the sizes of the dimensions and the angles at which

they interact. Moduli spaces in supersymmetric gauge theories form an

of the longest (simple) root; for simply laced groups the Coxeter and dual Coxeter
numbers are therefore the same. The (dual) Coxeter number of the group as a whole
is the sum of those for the nodes, including the extended node.
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algebraic structure called a (chiral, (multi)graded) ring and the dimension of
each (multi)graded piece can be counted in a partition function-like quantity
called a Hilbert series. Our treatment of supersymmetric gauge theories in
this thesis is concerned with these Hilbert series. The dimension of a moduli
space is given by the degree of the pole at ¢ = 1 in the Hilbert series when
all U(1) counting fugacities are identified with each other.

Moduli spaces can be irreducible, or they can have more than one branch.
In N = 2 theories (in 4D), the branch parametrized by the scalars in hy-
permultiplets is called the Higgs branch, while that parametrized by those
in vector multiplets is called the Coulomb branch. In the master space the-
ories investigated in [51] and [52], the Higgs branch is the one for which the
fields generically take non-zero values, while the Coulomb branch generally
has some fields fixed at zero and thus has lower dimension. In these cases
the Higgs branch is itself reducible into a ‘coherent component’ and other
(linear) branches, which may include the Coulomb branch, and the coherent
component can be split off from the linear branches using a technique called
‘surgery’; in other cases such as the one-instanton moduli spaces in [42], it is
reducible into a coherent component and a centre-of-mass part which spans
C2.

We know from [I 2] that the moduli spaces for SQCD theories with
classical gauge groups and matter in (anti)fundamental representations are
irreducible, and we expect the same to be true for those for exceptional
gauge groups and for those for classical gauge groups with matter in non-
(anti)fundamental representations such as spinors. (It is stated (without
proof) in [I] that the (vacuum/mesonic) moduli space of an SU(N,) super-
symmetric QCD theory is irreducible, since it is the symplectic quotient of
the irreducible manifold C™ by a continuous (gauge) group.)

If the numerator of the Hilbert series is palindromic, the moduli space is
Calabi-Yau. We leave it to [II 2, 3] for an explanation. The full (irreducible)
moduli spaces in these cases, and the coherent components of the master
spaces in [51], [52] and the one-instanton moduli spaces in [42], are Calabi-
Yau.

We emphasize that in this thesis we are considering classical moduli
spaces. It is noted in [I] that quantum effects cause a dynamically generated
runaway superpotential, called the ADS superpotential (after Affleck, Dine
and Seiberg) to emerge for SU(N.) supersymmetric gauge theories with Ny
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flavours where Ny < N,, meaning that there is no classical supersymmetric
vacuum; when Ny = N, the form of the gauge-invariant operators and re-
lations are modified by quantum corrections (and the singularity removed)
but their numbers are unaffected, and for Ny > N, the two vacuum mod-
uli spaces coincide. The derivation, following [25], involves first Higgsing
on one flavour, secondly (separately) giving that flavour a mass, comparing
the results and extending to the case of more Higgsed or massive flavours.

The same effect also occurs for SO(N,) and Sp(N.) (with Ny < N+ 1)
gauge groups; following [44], we see that it also occurs for Eg theories with
the critical number of flavours (not considering antiflavours) being 4.

In the next section we introduce a specific type of supersymmetric gauge
theories called quiver gauge theories, and related structures called brane

tilings.

5.2 Quiver gauge theories and diagrams

Quiver gauge theories were originally used to describe the low-energy effec-
tive theories of stacks of branes probing orbifold singularities in type IIA or
IIB string theory, with the nodes denoting stacks of ‘fractional’ branes at
the various ‘states’ of the fixed point and the lines being open fundamental
string states connecting two such stacks, being in the untwisted sector of the
string spectrum if both endpoints lie on the same stack and the twisted sec-
tor if they lie on different stacks. The gauge groups are determined by the
number of fractional branes and the presence and charge of an orientifold
planes; if there is no such plane then all gauge groups are U(N;) for node
i, if there is one then the gauge group corresponding to the stack which is
stuck to the orientifold plane is SO(N;) if the charge is positive and Sp(1V;)
if it is negative, with all others remaining as U(N;).

In the non-SQCD quiver gauge theories considered in [42], all matter fields
transform in the fundamental (or vector) representation of the ‘from’ gauge
group and the antifundamental (or vector) representation of the ‘to’ gauge
group, however once we get away from requiring brane pictures we can gen-
eralize quiver gauge theories to any symmetry groups and representations.

Spin representations of SO(IN) gauge groups can arise out of the fermionic
zero modes of the group. Exceptional groups have no brane interpretation

and, at least for the E-type groups and fundamental representations, are a
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pure M-theory effect [35]; with other exceptional groups and representations
and non-fundamental and non-spinor representations of classical groups it
is not known if they arise even through M-theory.

Quiver gauge theories are described by quiver diagrams, which consist
of lines and nodes. In this thesis, and most of the literature, nodes denote
vector multiplets in the adjoint representations of symmetry groups (usually
circular nodes for gauge groups and square nodes for global groups) and
lines denote hypermultiplets (for A/ = 2) or chiral multiplets (M = 1) in
bifundamental or other (not a singlet of either group) representations of
the symmetry groups of the two nodes which they join; if a line joins a
node to itself, the corresponding multiplet transforms in the adjoint of the
gauge group associated with that node (usually - it may transform in the
(anti)symmetric 2nd-rank tensor representation instead, as in the SO(N)
and Sp(N) cases in [42]) and as a singlet of all other gauge groups. In the
N =1 case the multiplets (treated solely as SUSY multiplets without gauge
group indices) are not self-conjugate before CPT conjugates are added and
so the lines have a direction (except in the adjoint case where it is irrelevant).

In the (4D) N = 4 case the only multiplet with maximum helicity 1 or
less (as is required for gauge theories - gravity theories allow helicities up to
2) is the vector one with maximum helicity 1, so we can only have nodes in
the quiver diagram, there cannot be any lines - the only theory is therefore
pure SYM. (We recall that N3g = 2/Nyq4.)

In the N/ = 2 case we can have both vector- and hypermultiplets with
maximum helicity 1 and % respectively, so we can have both nodes and
lines in the diagram. An N = 4 vector multiplet, necessarily transforming
in the adjoint of the gauge group, decomposes into a vector multiplet and
a hypermultiplet (including CPT conjugates), of course also both in the
adjoint, in N/ = 2, so a N/ = 4 quiver diagram, consisting by necessity of a
node by itself, becomes an N’ = 2 quiver diagram consisting of a node and
a line linking the node to itself. However, a N' = 2 diagram which does not
arise from a N = 4 one can have multiple nodes linked by lines.

N = 1 quiver diagrams also consist of both nodes and lines, but this
time the lines have direction. An N = 2 vector multiplet decomposes into a
vector multiplet and an adjoint chiral multiplet in ' = 1 and a hypermul-
tiplet decomposes into two chiral multiplets, one transforming in the same

bifundamental representation as the original N' = 2 hypermultiplet and the

203



other in its complex conjugate when this is different, so a node becomes a
node and a line linking the node to itself and a line becomes two lines in
opposite directions. An A/ = 4 quiver diagram becomes a node with three
lines all linking the node to itself.

In both AV > 1 cases the quiver gauge theory is uniquely described by the
diagram; this is not the case for N' = 1 quiver gauge theories, which may
have a nonzero superpotential, but this is not specified, at least uniquely, by
the diagram. It can only consist of contributions from closed paths in the
diagram, because these are the only combinations of fields which are gauge-
invariant. The decomposition of an N' = 2 quiver diagram into an N' = 1
one leads to a unique superpotential which consists of the contributions from
all closed paths; however a general N’ = 1 quiver gauge theory can have any
superpotential as long as every term is the contribution from a closed path,
including a vanishing superpotential (as in the SQCD theories which are the
main focus of this chapter and which we describe later, although there are
no closed paths in these diagrams) which is trivially the sum of zero such
terms. The superpotential gives rise to F-term constraints.

Quiver gauge theories can also arise through systems of interacting branes,
with the amount of supersymmetry preserved dependent on the types and
orientations (extended/pointlike directions and angles of intersection) of the
D- and NS-branes present in the theory and the gauge groups dependent
on the number and separation of each type and orientation of brane and
the presence (and charge if present) or absence of an orientifold plane. For
there to be any supersymmetry preserved at all, the number of ‘Neumann-
Dirichlet’ directions (those in which one type of brane is extended and the
other type pointlike) must be a multiple of 4 for all pairs of different types
of branes, and if there are branes of the same type at angles to each other,
certain combinations of the angles must vanish [54].

If every field occurs exactly twice in the superpotential, once with a +ve
sign and once with a -ve sign, then the superpotential is called ‘toric’. In
the next subsection we will discuss structures related to and that can arise
from quiver diagrams if they meet certain conditions, these are called brane
tilings. In these theories the superpotential is always nonzero and is toric

by construction.
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5.2.1 Brane tilings

In quiver diagrams, a node represents a gauge group and a line a field
transforming in the fundamental (or other) representation of the ‘from’ node
and the antifundamental (or other) of the ‘to’ node, with superpotentials
being closed loops in the diagrams, but there is no requirement either to
have or not to have the term corresponding to a specific closed loop in the
superpotential.

By contrast, a brane tiling is like a ‘dual’ of a quiver diagram, with
faces representing gauge groups (closed loops in the quiver diagram can be
thought of as ‘faces’ for the purpose of this dualization), lines fields (as in
quiver diagrams) but thought of as joining two faces rather than two nodes,
and nodes superpotential terms, with white nodes corresponding to positive
terms in the superpotential with the (assumed) trace taken clockwise round
the node, and black nodes negative terms with the trace taken anticlockwise.
Because there are two types of nodes, brane tilings are called ‘bipartite’, and
because all lines must join a white node to a black node, all faces have an
even number of sides.

The physical interpretation of a brane tiling theory is different, but re-
lated, to that of a quiver gauge theory, as described in [38]. There are two
types of NS5-branes, one extended in the 012345 directions and the other
in 012367, both wrapping a 2-cycle on a 4-torus in directions 4567, and D5-
branes (hence they only exist in type IIB string theory) extended in 0123
and wrapping the torus in the 46 directions and a holomorphic curve in
the 57 directions. The NS5-branes intersect with the D5-branes, reducing
the N' = 4 supersymmetry to a chiral N/ = 1 theory. This picture can be
T-dualized on the 4- and 6-directions turning the D5-brane into a D3-brane
and the NS5-branes into pure geometry (specifically a (singular) Calabi-
Yau 3-fold), which is where the relation to quiver diagrams comes in. The
fundamental (F1) strings stretch between two ‘stacks’ of D5-branes which
are actually the same stack but are separated by their intersection with an
NS5-brane. All gauge groups are the same by anomaly cancellation, U(N)
for N D5-branes. We also see in [3§] that the normalization of the R-charge
of the superpotential to 0 and the requirement that the theory be super-
conformal (the beta function vanish) relates elegantly to the Euler number

of the brane tiling vanish as must occur on a torus.
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Only quiver diagrams that can be made ‘periodic’ correspond to brane
tilings, and then the periodic quiver has to be able to tile a plane for it
to be able to be converted into a brane tiling, this arises naturally from
the physical interpretation. The diagram can then be dualized to give a
brane tiling. All brane tilings with up to 8 terms in the superpotential are
enumerated in [29] using a method that first finds all periodic and irreducible
quiver diagrams and then dualizes them to brane tilings. (To extend this
to tilings with 10 or more terms within a reasonable timescale would take
a significant improvement to the algorithm finding them.)

A brane tiling always has a repeated unit, called the fundamental domain;
this is easy to see because the D5-branes are wrapped on a torus and the
NS5-branes intersect this torus.

The Hilbert series of brane tiling theories are not calculated in the same
way as for quiver diagrams, but rather by a different method involving first
calculating ‘perfect matchings’, which are groupings of the edges in the fun-
damental domain so that each perfect matching contains each node exactly
once. Both the F-term and D-term constraints are expressed in terms of
the matrix of perfect matchings; the ‘master space’ or combined mesonic
and baryonic moduli space can be obtained by modding out the entire space
of possible field values by the F-term constraints, and the mesonic one by
modding it out by both the F-term and D-term constraints.

In [31}, 130} 28, 26} 39], brane tilings are adapted to M-theory. The physical
interpretation is again discussed in [38]. Starting with type IIA string theory
and replacing the D5-branes in the type IIB brane tilings with D4-branes,
again compactified on a torus in two of the four spatial dimensions, we
then go to strong coupling where the theory ‘grows’ an extra dimension,
and as this grows to infinite size the theory becomes M-theory, and the
D2-branes that result from T-dualizing on the two toroidal dimensions of
the D4-branes become M2-branes with the geometry from the T-dual of the
NS5-branes which intersect the torus becoming a Calabi-Yau 4-fold with
8 real dimensions. The Hilbert series is calculated similarly to that for a
‘normal’ brane tiling, apart from the added detail of integer Chern-Simons
levels for each gauge group.

In [27] and [32], brane tilings consisting solely of hexagons are related to
orbifolds of C3 by Z, and it is shown that counting them in this way gives

1

the same results as other methods such as toric diagrams with area 5n and
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Hermite normal forms with determinant n.
We will not discuss brane tilings, either the type IIB or M-theory case,
further in this thesis, as they are not relevant to the SQCD quiver gauge

theories whose discussion forms the bulk of the remainder of this section.

5.3 Supersymmetric QCD

The quiver diagram for SQCD theories is very simple. There is one circular
node corresponding to the gauge group and this is joined to one or more
(S)U(N) global symmetry groups corresponding to the number of ‘flavours’
of matter transforming in a specific (irreducible or other) representation of
the gauge group. There may also be a line from the gauge group node to
itself symbolizing an adjoint field.

There are no closed loops in the diagram (not counting the adjoint field
linking the gauge node to itself if present), so the classical superpotential is
ZEero.

Since our focus is on Hilbert series, we will first give an introduction to
these, and then discuss how to transition from a (general, not necessarily

SQCD) supersymmetric gauge theory to a Hilbert series.

5.3.1 Introduction to Hilbert series

A Hilbert series enumerates elements in a graded algebraic structure such as
a ring, module or ideal by grading, with each graded component of grading
i being the number of (algebraically or linearly, which are often the same
thing) independent (Laurent) polynomials of total degree i in the algebraic
structure. In SQCD and other supersymmetric gauge theories the algebraic
structure is the chiral ring consisting of gauge invariant operators.

To define a Hilbert series, one must first define a generating function:
given a function f from Z to Z, the generating function G(z) for f is specified
by

)
G(z)= ) f(i)e (5.9)
i=—o00

For a graded algebraic structure M, the Hilbert series is given by

M=PM; = H(t,M)= i dim(M;)t (5.10)

1=—00
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The dimension is understood to be taken over the field over which the
algebraic structure acts; in most cases it is the field of complex numbers, C,
so the dimension is the complex dimension. In the case of the one-instanton
moduli space covered in [42] quaternionic dimensions are also discussed.

The terms generating function and Hilbert series, and also partition func-
tion, are often used interchangeably, but they are not identical in meaning
and a given generating function or partition function is not necessarily a
Hilbert series. In particular, the generating function counting the number
of partitions of each positive integer is both a generating function and a par-
tition function, but it is not a Hilbert series, because the coefficients tend
to infinity at an exponential rate. The unrefined bosonic string partition
function is just this function raised to the 24th power, divided by the nome
q, so is again not a Hilbert series.

A characteristic property of a Hilbert series is that it is usually (in partic-
ular, in all cases expounded on here) expressible as a rational function, the
denominator of which can be written in ‘Euler form’, i.e. as in the following

(showing the form of the whole function):

Q(t)

HOM = Lo

(5.11)
E| There are only a finite number of values of 7 for which a; > 0; this has the
consequence that the coefficients of a Hilbert series never tend to infinity
at faster than polynomial rate. The term is not used in physics literature,
where such series are referred to as partition functions. Hilbert series are
also referred to as Hilbert-Poincaré or simply Poincaré series, however the
naming after Hilbert alone is preferred here [19].

In fact Hilbert series can be expressed in such a form in two different ways

both of which emphasize the fact that they are singular at ¢ = 1, these are

2We will see, however, that in some cases to be seen later the expression of the Hilbert
series with the denominator in Euler form is not in its lowest terms and that the loca-
tions and degrees of the poles are better seen from the expression of the denominator
in which rather than factors of the form (1 — ¢™) we have the minimum polynomial
of €2™/™ for example (1 + t 4 t?) instead of (1 — *). This minimum polynomial is
of degree ¢(n) where ¢ is Euler’s totient function. In most cases, however, the form
with the denominator in Euler form is in its lowest terms and it is certainly easier to
visualize. In this section we will assume this is the case and consider cases where it is
not individually in the relevant sections later.
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called Hilbert series of the first and second kind:

e I O Q)
First kind: H(t,M)= -6~ G=0F1+...) (5.12)
Second kind: H(t,M) = () = () (5.13)

[L =)l (1 —t)dimM)(1 4. ..)

where k= Z a; dim(M) = Z b;

In the first form (1+...)ZH(1+t+"‘+ti_l)ai:H(ll__ij) Z

i i
The same is true of the second form replacing a; with b;. Both P(t) and
Q(t) are polynomials with integer coefficients; in the first form, k is the
dimension of the embedding space and in the second, dim(M) is that of the
manifold.

P(1) must be strictly greater than 0; its quotient by the second (14 ...)
gives the coefficient of the leading pole at ¢ = 1 and is the degree of the
algebraic variety, which is the total number of degrees of freedom; Q(1)
however will be 0 if k& > dim(M) strictly as is usually the case.

It is noted in [I] that the expressions often make much more sense if
the powers of ¢ in the (1 — %) terms in the denominator are not all 1 (or
the same), because such expressions give much more information about the
geometry and other properties of the moduli space; in these cases H is said
to be a Hilbert series over a weighted projective space rather than over
an ordinary projective variety. For example, in supersymmetric QCD with
SU(N.) gauge group and Ny flavours, mesons are usually weighted by 2 and
baryons (if they exist) by Ny, because they are multiplicative combinations
of that number of fundamental fields (weighted by 1).

In the next section we will discuss Hilbert series within the context of

supersymmetric gauge theories.

5.3.2 SUSY gauge theories: transition to Hilbert series

To go from a supersymmetric gauge theory to a Hilbert series, the funda-
mental fields of the theory are converted into products of characters of the
global and gauge symmetry groups, including the ‘counting’ U(1)s either as

a separate weighting or embedded into the global group. Because we need to
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take symmetrized products (antisymmetrized if the fields are fermionic, in
which case we consider the sum separately for bosonic and fermionic funda-
mental fields), the sum of all products of characters becomes the argument
of a plethystic exponential.

If a field is ‘frozen’ to zero on a specific branch of the moduli space, such as
the ® field denoting the position of the D3-branes in [42], it is not included
in the argument of the PE.

The F-term constraints, if they are present, are similarly converted into
arguments of a PE to be divided by.

Constraints containing frozen fields are not incorporated into the Hilbert
series, similarly to the frozen fields themselves, but constraints resulting
from differentiating the superpotential with respect to the frozen fields are
included, again as in [42].

This gives the Hilbert series for the F-flat moduli space, or the ‘master
space’ of the theory. Master spaces are investigated for brane tiling theories
in [5I] and [52], though here they are evaluated using a different method
involving ‘perfect matchings’, and in simpler cases by simple imposition of
the F-term constraints and inspection of which fundamental fields are still
independent and the relations between those which are not.

Imposing the Wess-Zumino gauge on the vector superfield V® makes it
non-supersymmetric since there are now 5 bosonic degrees of freedom in-
cluding the auxiliary field D® and only 4 fermionic ones; this is rectified by
imposing the D-term conditions.

The ‘mesonic’ moduli space is the symplectic quotient of the F-flat moduli
space by the gauge group, or its ‘ordinary’ quotient by the complexification
of the gauge group; dividing out by the imaginary part of this corresponds to
imposing the D-term conditions, and by the real part to imposing gauge in-
variance. (The mesonic moduli space is generated solely by mesonic moduli,
or those built out of traces of the superfields; the master space is generated
both by these and by baryonic moduli, which are built out of determinants
of the superfields.)

Imposition of gauge invariance is done by integration over the gauge group
manifold, i.e. over the maximal torus with weighting by the Haar measure.
This gives the mesonic moduli space (although, in the SQCD cases investi-
gated here, though not in the master spaces covered in [51] and [52], they

may contain baryons).
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We will first review the results for the classical groups, originally published
in [1], [2] and (with an adjoint field, and also for G2) [3], and then present the
as-yet unpublished ones for the exceptional groups, including the case of Go
without an adjoint. We also present results for groups related to exceptional
groups either by following the sequence of removing the rightmost node in
the Dynkin diagram (E5 = Ds), Higgsing and/or folding, and aim to show
relations between the corresponding Hilbert series. In all cases we compute
series for theories both with and without an adjoint field, but we concentrate
on the latter case.

In this work, we do not particularly work with fugacities directly, except
for those of the U(1) charges counting numbers of fields, except when we,
following [1], 2 B8], work with Mathematica and calculate Hilbert series, both
refined and unrefined, by residue methods. When this is the case, we simply
have each fugacity correspond to a fundamental weight and set the power
of the fugacity in each term to be the Dynkin label of that weight as is done
for Gy (with an adjoint) in the last of those papers. For SO(N) groups,
we would use the Cartesian basis when working solely with fundamental
or adjoint representations, but the Dynkin basis when working with spinor
representations, as opposed to in Chapter {4} following [7], where we use
the Cartesian basis, but with all weights doubled (or fugacities squared),
to avoid using half-integer weights, but to maintain the symmetry between
weights and make conversion between SO(3)(P~2/2 and SO(D — 1) easier.

In principle the use of the plethystic programme allows one to calcu-
late the whole Hilbert series, either refined or unrefined, analytically using
either the residue method as in [1], [2] and [3], an alternative method in-
dependent of the number of flavours expounded on in [6], or some other
method. However in practice this is often not the case, owing to memory
or time constraints when either or both of the gauge group and the number
of flavours is large. For the residue method, it can be shown that in the
refined case the number of residues increases as O((3dim(R))™f) for matter
in representation R, and in the unrefined case a similar mushrooming of the
number of terms to be summed occurs because of the need to differentiate
Ny — 1 times (or more even).

An alternative, flavour-independent, method is discussed in [6] where the
plethystic exponential and Haar measure were expanded as power series and

the coefficient of [[;_; z; L for all the gauge group fugacities z; found and
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expanded in terms of products of complete symmetric polynomials h;(t) in
the global symmetry group fugacities t; (treating them as U(N) fugacities
which can then be unrefined to an U(1) fugacity t or split off into ¢ and
SU(N) fugacities). This method reproduces the SU(N) results in [I] and,
using the Cartesian basis, the SO(N) and Sp(N) results in and [2], and
calculates series for G to high order (up to 40, though the fully refined
series is not shown in the paper) and Fy, Eg and E7 up to 3, 4 (antiflavours
of Eg are not considered) and 3 flavours respectively where the moduli space
is a complete intersection, showing the character expansion up to order 8 in
each case. Even this method is limited for the higher exceptional groups,
however, with the problem coming from the dimension, i.e. the number of
power series that have to be expanded, and the size of the Weyl group, or

the number of terms for which coefficients of [[/_; z; *

have to be found,
rather than the rank of the group.

However, in this paper, at least for Fy, Fg and E7 (and B3, D4 and Ds,
which are not exceptional), we will first generate the refined series using a
program written in LiE [5], as in [4], and then convert them to unrefined
series by replacing each character by the dimension of the corresponding
representation. The Haar measure is very complicated and thus a large
number of terms would have to be evaluated if using either of the previ-
ous methods, especially for the refined series of the exceptional groups. In
this method, we see from Section that the symmetrization of a prod-
uct of representations of two different groups to a given order is given by
the sum of the direct products of the plethysms of the two representations
over all Young tableaux with number of boxes equal to the order. (The
antisymmetrization of the product representation is given by the sum of
the direct products of the plethysm of the first representation over a given
Young tableau by the plethysm of the second representation over its trans-
pose.) A sample program is shown in We can only, because of time
and memory constraints, evaluate the refined series up to some finite order.
In this paper, we have gone up to level 24 in the G4 case, 21 in the Fy and
FEg cases and 20 for FEr.

We initially computed series with restrictions on the number of flavours,
i.e. the maximum height of the Young tableau over which the plethysm of
the matter representation is taken, but subsequently switched to a flavour-

independent enumeration of the singlets as in [4] and [6]. The first method
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makes finding invariants easier as one only has to consider representations
of SU(Ny) which can be specified by Young tableaux with no more than Ny
rows, so we convert the results from the second method into the first form
before doing so.

We then use a ‘trial and error’ method to determine the generators, rela-
tions and higher syzygies, also using LiE, finding the lowest ones by inspec-
tion and obtaining the rest by repeatedly generating the whole Hilbert series
generated by the known generators, comparing with the ‘actual’ Hilbert se-
ries, adding in the new generators and re-generating the Hilbert series; how-
ever this is often adequate to determine them fully when the moduli space
is either freely generated or a complete intersection and the generators and
relations are of lower order than that up to which the series is calculated,
and when it is not it is still useful to obtain a great deal of information
about them as is done up to order 18 for Eg (with no antiflavours) and Ex
and order 13 for G in [4]. It is a hard problem, however, to know exactly
how high an order one has to go to to be sure to know the whole Hilbert
series, and it is not known at the moment.

Invariants, relations and higher syzygies that arise at a certain number
of flavours remain in the spectrum as the number of flavours increases,
because they are specified by a Young tableau with Ny rows (where Ny is
the number of flavours of first occurrence) and this is still a valid Young
tableau for higher numbers of flavours.

When performing the plethystic exponential, because the Young tableaux
corresponding to the global symmetry group representation and the plethysm
of the matter representation of the gauge group are the same, the Young
tableaux appearing in the Hilbert series cannot have more rows than the
dimension of the representation of the gauge group in which the matter
fields transform, however many flavours there are. However, as is seen in
[4] for Go, [1] for SU(N) and [2] for SO(N) and Sp(N), it is possible for
relations and higher syzygies to transform in representations of the flavour
group corresponding to Young tableaux with more rows than the dimension
of the matter representation.

To obtain the plethysm of a general representation R of a group G over a
partition A, one follows the procedure explained in [37] and also described
below. This is done in LiE using the plethysm function, which takes a

partition A, a character x (described either by a highest weight or a sum
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of highest weights with their multiplicities) and a group G; an example
program is shown in Section

We consider the representation R temporarily as a representation of

U(dim(R)) and relabel the terms in the character as X;,1 < i < dim(R).
If any weights in R have multiplicity greater than 1, we must introduce
separate temporary fugacities in this step and later on map them back to the
same weight of R. We take the Schur polynomial s)(X) of these temporary
fugacities, map them back to products of powers of the original fugacities
(of G) and lastly decompose this character into characters of irreducible
representations of G. This is shown for A = [2] and R the vector of SO(5)
in [37], and as follows.

The character expansion of the vector of SO(5) is as follows:

SOG), 23 21
X (20) =21+ P 2 T (5.14)

Assigning temporary fugacities X;,1 < ¢ < 5 to the terms in this series,
we recall that the Schur polynomial over X; for the partition [2], sy (X:),
which is the same as the complete symmetric polynomial hs(X;) because

this partition has only one row, writing out all terms explicitly, is

sp(Xi) = X7+ X1 Xo+ X1 X34+ X1 X4+ X1X5 4+ X5 + Xo X3+ X0 Xy
+Xo X5+ X5 + X3 Xy + X3 X5 + X7+ Xy X5+ X2 (5.15)

Substituting the terms in the character into this expression, we obtain

2 4 2
SO(5 z z z
spxine (2) = A+d+a+S+1+2+241
, 25 zi 2
Z2 21 R | 1
+Z2 41+ 5+ —+F+5+5  (5.16)
21 25 21z, 2z 2
We see that the highest weight in the plethysm is [2,0] in Dynkin label
notation; calculating the character of this representation, either via the
one-step Weyl character formula or the two-step construction of the weights
and Freudenthal’s recursion formula, we see that the plethysm decomposes

into the character of the [2,0] representation and a singlet. We write this in
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Dynkin label form as follows:

s (X (2)) = X (1) + Xio) (20 (5.17)
The dimension of the moduli space, which is the dimension of the pole at
t = 1 in the unrefined Hilbert series, is given by the number of matter
degrees of freedom that are not ‘eaten’ when the gauge group G is broken
down to its ‘unbroken’ subgroup H by the Higgs mechanism. This is given
by (>_r Nrdim(R)) — dim(G) + dim(H ), where R sums over all possible
matter representations and Np is the number of ‘flavours’ of representation
R. Usually there are only one or two types of matter fields in a theory,
though cases with 3 types have had their Hilbert series computed in the
case of SU(N) with an adjoint, Ny fundamentals and the same number of
antifundamentals as covered in [3] and the cases covered in this thesis of
SO(8) with vectors, spinors and conjugate spinors or one adjoint and both
types of spinor, and are also discussed in [34].

Since the gauge group is broken progressively for each added flavour of a
given matter representation R until it is broken completely at the number
of flavours at which the moduli space becomes a complete intersection (or
one fewer) and henceforth remains completely broken, the dimension of the
moduli space increases at an increasing rate until this number of flavours is
reached and subsequently increases by dim(R) at each step. This ‘critical’
number of flavours is, except in the case of SO(N) and flavours in the fun-
damental where it is N (and taking a ‘flavour’ to mean both a fundamental

and an antifundamental in the case of SU(N)), given by

L I2(Ad)
crit
N 7

= 712(Rmat) (5.18)

where I%(R) is the second Dynkin index for representation R and the matter
transforms in representation R,,4¢. The second Dynkin index of a represen-

tation R of a group G is given by
Trr(T°T") = f(G)I*(R)6% (5.19)

where Trp is the trace taken over the representation R and 7% (where a is

an adjoint index) is the a-th generator (with the representation understood).
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The trace over the adjoint is usually denoted simply T'r and that over the
(anti)fundamental of SU(N) or Sp(N) or the vector of SO(N) is usually
denoted tr. The factor f(G) is 3 for SU(N) groups to normalize I(R) to
be 1 for the (anti)fundamental; for Sp(NN) it is chosen to set I(R) for the
fundamental to 1, and similarly for SO(N) it is 1, chosen to set I(R) for the
vector to 2. For other groups and representations the Dynkin indices, along
with the dimensions, are shown in Table [5.1] The normalization is chosen
so that the adjoint has as its Dynkin index twice the dual Coxeter number.
(The conventions of [24] and [72], rather than [5], are used to order the
entries. For A, groups the Dynkin index and dimension remain the same
when the order of all entries is reversed.)

The sum of the Dynkin indices of the matter representations given the
aforementioned normalization must be even so that the Zo anomaly is not
violated [3]. This constrains the total number of fundamentals and anti-
fundamentals in SU(NN) SQCD, and the number of fundamentals in Sp(V)
SQCD, to be even, because the Dynkin index of these representations is 1.
We usually only consider SU(N) theories with the same number of funda-
mentals and antifundamentals as in [I] and [3]. The only other common
matter representations that could have odd Dynkin indices are the 2nd-
order symmetric and antisymmetric tensors of SU(N), which have indices
N + 2 and N — 2 respectively and are thus odd for odd N, though since
there are no invariants of the antisymmetric tensor in this case we do not
consider it. The numbers of flavours in theories with SO(NN) or exceptional
gauge groups is not constrained by this anomaly, because the Dynkin index
of any representation is even.

As the number of flavours is increased, the gauge group is further broken
(when the Higgs mechanism is applied on all possible flat directions) and
eventually the number of flavours is such that the gauge group is broken
completely, this normally happens at the aforementioned ’critical’ number
of flavours (or one less flavour in the case of G3), and from then on the
dimension of the moduli space increases by the same amount, i.e. the di-
mension of the matter representation(s), with each added flavour. We see
that the same applies for the dimension of each individual pole and thus can
write a general expression for the unrefined series as a polynomial of degree
linear in the number of flavours divided by a product of terms of the form

(1 — ™)™ where m is also linear in the number of flavours for each n, or
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G R dim(R) IQ(R)
A1 | [1,0,...,0] n 1
An1 | [2,0,...0] n(n 1) n+2
An_1 | [0,1,0,...,0] n(n-1) n—2
An1 | [1,0,...,0,1] n?—1 2n

B, [1,0,...,0] 2n + 1 2

B, [0,1,0,...,0] (2n+1) |4n-—2

B, [0,...,0,1] on on—2

C, [1,0,...,0] 2n 1

Cp [2,0,...,0] n(2n +1) 2n + 2

Ch [0,1,0,...,0] 2n—1)—1|2n—2

D, [1,0,...,0] 2n 2
D, [0,1,0,...,0] (2n —1) 4dn — 4
D, [0,...,0,1] on—1 on—3
D, | [0,...0,1,0] 2n—1 2n=3

Eg 1, 0 0,0,0,0] 27 6

Eg [0,0,0,0,1,0] 27 6

Ej [0,0,0,0,0,1] 78 24

E; ]10,0,0,0,0,1,0] 56 12

Er | [1,0,0,0,0,0,0] 133 36

Fy [0,0,0,1] 26 6

Fy [1,0,0,0] 52 18

G5 0,1] 7 2

Gs [1,0] 14 8

Table 5.1: Dynkin indices and dimensions for groups and representations

discussed in this thesis
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sometimes a product of terms of the form (1 — w;it)m where w, j = 27/7

and k and n are coprime, or of powers of products of such terms which have
integer coefficients but are irreducible over Z. [
We use the following notation to denote the fundamental fields of the

theories:

e Q! for quark fields in the fundamental representation of SU(N), Ga,
Fy, Eg or E7 or the vector representation of SO(N) or Sp(N)

° Qf for antiquark fields where the fundamental is complex and hence
the antifundamental is not the same representation, i.e. SU(N), Eg.
We use tildes rather than bars because this is not the complex conju-
gate of the quark field but rather a separate independent field. (We
do use bars for the complex conjugate, i.e. when discussing D-term

constraints and Higgsing.)

e S for (quark) fields in the spinor representation of SO(N) and the
‘conjugate’ spinor representation of SO(4n) for which both spinor rep-

resentations are self-conjugate

e 5S¢ for (antiquark) fields in the conjugate spinor representation of
SO(4n + 2) where the conjugate spinor is the complex conjugate of

the spinor

e ¢ for fields in the adjoint representation of SO(N), Sp(N), Ga, Fy
and F7 in which the fundamental is self-conjugate, i.e. real (SO(N),
Go and Fy) or pseudo-real (Sp(N) and Er)

e ¢ for fields in the adjoint representation of SU(N) and Eg in which

the fundamental is complex.

In all cases 1, j, ... denote global symmetry group indices and a, b, . .. gauge
group ones.

We use the following symbols to denote ’counting’ (i.e. U(1)) fugacities:

e { to count quark fields

3For example, (1 — %) is expressible as the product (1 —¢)(1 +¢)(1 4+t +t*)(1 —t +1?),
while we also have 1 —t* = (1 —t)(1+t+t?) and 1 —#*> = (1 —1t)(1 +t), and sometimes
the rational function would not be in its lowest terms if expressed in the first form.
For examples see Section @
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e u for antiquarks; this differs from [I] and [3] where £ is used

e v for conjugate spinors when there are all 3 types of field (vector,
spinor, conjugate spinor; in this thesis we will only do this for SO(8))
in the theory (when there are only 2 types of (non-adjoint) matter
field, still for SO(8), we consider them to be spinors and conjugate
spinors but still use ¢ and u, when there is only one type we consider

it to be a vector)
e s to count adjoint fields.

If we ‘merge’ the counting fugacity with a set of SU (V) fugacities to give a
set of U(N) fugacities, we append the subscript i to the counting fugacities.

5.4 Review of results for classical gauge groups

In this section we will set the scene for the results for exceptional and re-
lated gauge groups to come in the next sections with a short review of those
for classical gauge groups with matter in (anti)fundamental representations
both with and without an adjoint field and Gy with fundamental matter
and an adjoint field as discussed in [I], [2] and [3]. We show how to obtain
the character expansion, and then discuss how relations and higher syzy-
gies arise from the character expansion in the cases which are not freely

generated.

5.4.1 SU(N) gauge group without adjoint

The gauge group is SU(N.) and the global symmetry group is U(Ny) x
U(Ny), where N, is the number of colours and Ny the number of flavours.
There are two global groups because there are two types of fields: quarks
transforming in the fundamental of the global symmetry group and the an-
tifundamental of the gauge group and antiquarks which transform in the an-
tifundamental of the global group and the fundamental of the gauge group,
although there are Ny of each.

As we will do with all the cases we consider, we use two methods of
describing the refined Hilbert series; firstly using ¢; for ¢ between 1 and Ny,
the number of flavours, and secondly splitting the U(Ny) into a U(1) part,
described by one counting fugacity ¢, and a SU(N) part, which we describe
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using Dynkin labels. We usually use the second notation, which is more
succinct and explicit in terms of group representations, when describing
character expansions.

In [I], the Hilbert series were first obtained using methods from algebraic
geometry, and later re-derived using the plethystic programme, where we
see that the two methods produce the same results in the cases where the
moduli space is either freely generated or a complete intersection, so we use
the second method to derive the Hilbert series when it is neither.

The moduli space, which is the (chiral) ring whose graded pieces are
counted in the Hilbert series, is parametrized by the gauge-invariant opera-
tors of the theory. For Ny < N, the only possible gauge-invariant operators
are the mesons, defined as M ; = QZQ; with summation over the gauge in-
dices; there are NJ% of them and they transform in the [1,0,...,0;0,...,0,1]
representation of the global symmetry group, and there are no relations be-
tween them so the moduli space is freely generated. (In other theories, such
as instanton theories, there are relations between the mesons, which come
from the superpotential, e.g. in the one-instanton case the meson matrix is
traceless and squares to zero, i.e. is nilpotent of order 2.)

For Ny > N., we also have baryons, defined by

Bh+iNe = ¢M1-ON, Qi}l e le\i,cc, and antibaryons, defined similarly as

Bz'l...iNC = €a;..ay, Q?ll .. QZJ\ZC. (The nomenclature echoes the usage in
standard particle physics, with mesons consisting of a quark and an anti-
quark and (anti)baryons of a number of (anti)quarks equal to the number
of colours; also mesons are contracted with traces and baryons with de-
terminants or fully antisymmetric tensors.) There are (]]\\Z ) of each, giving
N]% + 2(%’; ) generators in total.

There are relations between mesons and (anti)baryons even in this SQCD
case with no superpotential. Firstly, because of the properties of products of
the epsilon tensors, the baryon and antibaryon multiply to give a product
of mesons; there are (]]\\Z)Q such relations: Bil'"iNchlijC. Secondly, for
Ny > N, strictly, dualizing the baryon using the epsilon tensor of the global
group and contracting with a meson vanishes on account of antisymmetriz-
ing over N, + 1 flavour indices, and therefore by necessity over the same
number of colour indices, so it must vanish because there are only N, of the
latter: M.*B = 0, and the same for antibaryons. There are 2N f( Ny ) such

Net1
relations. For Ny = N, the dual baryon and antibaryon (there is only one
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of each) are scalars, so they have no ‘inner’ product with mesons, but their
product is the determinant of the meson matrix: *B*B = det(M).

These gauge invariant operators could be seen simply by inspection, and
as we will see in Section and has been explained in [25], at least for the
case of Ny < N, by consideration of how many generators of the original
SU(N,) gauge group were broken by giving the quark fields vacuum expec-
tation values (VEVs) and therefore how many of the ‘original’ quark fields
were not ‘eaten’ (one field is eaten per broken generator) but rather left as
massless fields in the ‘new’ theory and basically ‘guess’ the representations
of the residual gauge groups in which they transform. For Ny < N, the
gauge group is broken to SU(N. — N¢), the number of broken generators
is N7 =1 — ((Ne = Ny)*> = 1) = 2NyN, — N} and therefore the number
of fields left massless is N, which matches exactly the number of mesons
and is consistent with the fact that these are the only generators and there
are no relations between them. A similar construction applies for the other
classical groups as is seen in [2].

For Ny > N, again following [25], the gauge group is broken completely
so the number of gauge fields left over is 2NN, — N2+1. For Ny = N, this
equals NJ? +1 and is equal to the Nf2 mesons plus the baryon and antibaryon
minus the one relation, but for Ny > N, there are too many relations to
exactly cancel out the extra generators, so we need further back-relations
between the primitive relations and the primitive generators, these are called
higher syzygies.

These higher syzygies are difficult to calculate, so we cannot simply ‘ob-
serve’ them; we need some way of determining them systematically, which is
where the plethystic programme comes in. The plethystic exponential (PE)
is a generator for the symmetrization of the fundamental fields to arbitrary
orders, and the gauge invariant Hilbert series, which can be refined or un-
refined (or partially refined!), is then obtained by integrating over the Haar
measure for the gauge group. The plethystic logarithm (PL) can then be
used to extract the generators, relations and higher syzygies. When we gen-
eralize to the case of exceptional gauge groups, especially the higher ones,
or non-(anti)fundamental representations of classical groups, we even need
to use plethystics to determine the primitive invariants and relations, and
then deduce the residual gauge groups.

As is described in Section the argument for the plethystic exponen-
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tial is the sum of all fundamental fields expressed in terms of characters of
both the gauge and global groups and weighted by any counting fugacities.

Like the ‘usual’ exponential, the plethystic exponential of the sum of two
arguments is the product of the plethystic exponentials of the arguments
taken separately. We will see how this gives the character expansion, and
observe how relations and higher syzygies arise in the case of Ny > NN, for
the refined Hilbert series for SU(N.) gauge group and SU(Ny) x SU(Ny)
global group.

We recall from Section that the symmetrization of the product of two
U(N) fundamentals, here U(Ny) and U(N.) (actually SU(N.) but we will
treat it as U(N,) for now), written in the form of simple sums of fugacities
t;,1 <i < Ny and 25,1 < j < N, to general order k is given by the sum of
the products of the Schur polynomials in the two sets of fugacities separately

with the partition being the same in both cases:

Ny N
SymF(> > tiz) = D salti)sa(z;) (5.20)
i=1 j=1 I\|=k

When working with character expansions, we decompose the U(N) global
group(s) to U(1l) x SU(N) where the U(1) fugacity counts the number
of fields. We usually split off the U(1) counting fugacity by setting t =
(Hf\;l t;)1/N. This can be done by defining new SU(N) fugacities z; = t;/t
and seeing that zy = (Hf\;l ;)71 or using the Dynkin labels of the weights

to determine the powers of the fugacities in each term, with the mapping

being
1 — tz1
t; — t “i ,1<i< N
Zi—1
tn — t/ZN_l (5.21)
Both methods are explored in [IJ. E|
The reverse mapping obtains the (t1,...,ty) powers from those of

4A third approach, which keeps characters ‘symmetric’ in the fugacities, is used in [43].
It treats the U (V) fugacities z; as independent and imposes the SU(N) condition via
a delta function, using the fact that the latter can be expanded as an infinite Laurent
power series: §([[1, 2z — 1) = = > (I, 2)™. This method is not convenient
here though.
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(21,...,2N-1;t) via the matrix (a;j)1<; j<n, where the a;; are given by

N—i C
i = N 1<5<i
N i+1<j<N
1 .
aNi = 1<i<N (5.22)

We do the same thing with the gauge group, though here as the gauge
group is SU(N,) we either absorb the temporary ‘counting’ fugacity into
that for the global group or we ignore it entirely. (We could also describe
this process as simply replacing the temporary (S)U(N) fugacities with the
terms in the character of the global or gauge group representation, which is
called a ‘specialization’, and multiplying by a counting fugacity if the group
is U(N).)

For a group SU(N), the Schur polynomial sy, with the fugacities special-
ized to the terms in the character of the fundamental as above, is just the
character of the representation with Dynkin labels [a1, ag,...,an_1] where
a; = \j— i1 for 1 <i < N—1. (This is not the case for other gauge groups,
where the plethysm is non-trivial.) There must not be more than N rows
in the Young tableau corresponding to the partition. When the field trans-
forms in the antifundamental of that particular (gauge or global) SU(N),
the plethysm is given by the complex conjugate of that of the fundamental,
ie. [an—1,...,a1].

The quark fields transform in the fundamental representation of the first
SU(Ny) in the global symmetry group, the antifundamental of the SU(N.)
gauge group and a singlet of the second SU(Ny) in the global group and
are counted by the U(1) fugacity ¢. The antiquarks transform as a singlet of
the first SU(INy), the fundamental of SU(N.), the antifundamental of the
second SU(Ny) and are counted by u.

The plethystic exponential of ¢[1,0, ... ,O]SU(Nf)1 [0,...,0,1]s(n.), which
denotes the quark fields, is given by, in character expansion,

> (i T i, [n1,ma, .. Jsuwp), - - 2. malsov,)

1;>0,1<i<min(Ny,Nc)
(5.23)

The summation to min(Nys, N;) occurs because Young tableaux with more

rows than this contain antisymmetrizations of either the gauge or global
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group representation to order more than their dimension and therefore van-
ish. (One goes from a partition A to an SU(N) representation as before, i.e.
n; = Ai — Ait1.) When Ny < N, columns with Ny boxes do not contribute
to the SU(Ny) Dynkin labels of (half) the global group, but they do to the
U(1) charge to which power ¢ is raised, which is the integer of which the
corresponding A is a partition, and also to the (N, — Nf)-th (from the left,
Ny-th from the right) SU(N.) Dynkin labels of the gauge group; the same
applies the other way round (the N.-th Dynkin label) for Ny > N.. When
they are equal, columns of length Ny = N, contribute only to the power of
t. (This comes from the fact that the epsilon invariant of SU(N) is not an
invariant of U (), because the determinant of a U(N) matrix is not fixed to
be 1, therefore columns of N boxes can contribute to a U(N) tableau, but
not an SU(N) one, so they must contribute to the U(1) charge instead.)

The PE of the combined gauge/global representation denoting the anti-
quark fields is given by the complex conjugate of this expression, counted
by u and transforming non-trivially in the second SU(Ny):

min(Ns,Ne) |
Z ui=1 Mima,ma, . Jsuwg - mes malsu v,

m;>0,1<i<min(Ny,N¢)
(5.24)

When the two expansions are tensored together, gauge singlets occur when
the gauge group representations in the two terms are conjugates of each
other, i.e. they have the same Dynkin labels but with the order reversed.
When Ny < N, n; = m; = 0 for i > Ny necessarily, and gauge singlets
arise when n; = m; for 1 < 4 < Ny. These correspond to a character

expansion of

N in
Z (tu)2¢:1 ;g [nl, ... 7an—1]SU(Nf)1 [an_1, R ,nl]SU(Nf)2
n;>0,1<i<Ny

(5.25)
We see that ny, does not contribute to the SU(Ny) Dynkin labels, but
only to the overall power of tu, so we can factor the dependence on it out

as follows:

1 Ny—1.

W Z (tu)zi:1 ing

n;>0,1<i<Nj—1

X [nl, - vanfl]SU(th [’rlefl, ey nl]SU(Nf)g (5.26)
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When Ny > N, n; = m; for 1 <i < N.—1, ny, and my, can take non-zero
values but do not have to be equal (because two U(N,) Young tableaux with
different numbers of leftmost columns of N, boxes correspond to the same
SU(N,) tableau), and n; = m; = 0 for i« > N.. This leads to a character

expansion

N .
Z (tu)zzzfl zthancuNcmNc
n;2>0,1<i<N.—1,nn,,mn,>0
X[TL]_, cee 7nchlunNc)0) cee 70]SU(Nf)1
X[O,...,O,mNc,nNc,l,...,nl]SU(Nf)2 (5.27)

When Ny = N, this simplifies to

! Ne -
(1 — tNe) (1 — ude) Z (tu)z_l ing

n;i>0,1<i<No—1

X[n1, .1l suwe) N1, - ] su (v, (5.28)

We have shown how to obtain the character expansion. We will now discuss
how relations and higher syzygies arise from the character expansion in the
case of Ny > N..

For Ny < N., we recall that the character expansion is generated by
the mesonic generators [1,0,...,0;0,...,0,1]tu (with the semicolon sepa-
rating representations of the two SU(Ny) representations); we know that
there are no others, and no relations, but it is easy to check explicitly
that these generate the full expansion. These are also generators for Ny >
N., but we also have two generators [0,...,0,1x,,0,...,0;0,...,0]tY and
[0,...,0;0,...,0,1n,,0,...,0Jule, with the notation denoting that the 1 is
in the N -th position from the left if before the semicolon and from the right
if after, so they are singlets in the case of Ny = N..

We can easily observe that the coefficient of [..., 1n_,...;...,1x.,...JtNeuNe
(or the singlet tVeuNe in the Ny = N, case) (here we simplify the notation;
all unspecified Dynkin labels are zero) in the character expansion is 1; how-
ever it can be constructed from the generators in two ways, firstly as one
of the terms in the N.-th symmetrization of [1,...;...,1]tu, and secondly
as a product of the two baryonic generators, so we must subtract one back
out as a relation. This is the *B*B = det(M) relation when Ny = N, and
its generalization to Ny > N, strictly.
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We also know that, for Ny > N, strictly, the character expansion does
not contain any terms with a non-zero Dynkin index in the N, + 1-th or
any higher position, either from the left if before the semicolon or from the
right if after. However, the product of the meson and the baryon contains a

Vet 1y, which must also be removed as a relation.

term [, AN 41,.ceseeny 1]
This is the M.* B = 0 relation (where the star denotes the Hodge dual). The
M.*B = 0 relation is similar but with the antibaryon. These are the two
primary relations, as we saw earlier.

Following on from the second invariant above, we see at order tVe*242 we
have only two representations in the character expansion: [2,...,1x,,...;...,2]
and [0,1,...,1n,,...5...,1,0]. However, products of two symmetrized mesonic
generators and one baryonic one give the following sum (understanding the

order tVet2y2):

2, AN, 2 L It s 52l 0,1, A, s, 1,0]
L ANt e L0 4 [ ANty e, 1,0)]

The product of the M.*B = 0 relation with another mesonic generator

subtracts the following terms back out (order again understood):

[1, 71Nc+17"'7"'72]+[17 ,1Nc+1,...,...,1,0]—|-[ ’]‘Nc+27"'7"'72]
L Inags e 1,0]
We see that we must add back in [...,1n.42,...;...,2] to get the desired

character expansion. This is our first higher syzygy (only for Ny > N.+1).
The others can be obtained in similar fashion, order by order, though they
can also be obtained, along with the primitive invariants and relations, by
taking the plethystic logarithm of the Hilbert series.

Returning to the expression of the Hilbert series as rational functions,

here are the partially (un)refined and fully unrefined series, calculated using
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Mathematica, for Ay = SU(3) for 3, 4 and 5 flavours:

(3,42) B 1+ tu + t?u? B 1—t3u?
A U R o Y ) S -l e v W3 s
g3 (¢ 1) = L—t+17 = L+t
’ (L= + )81+t +¢2)  (1—12)9(1—3)
1+t ¢

(1—2)8(1 — 3)2

g B2 (¢t u) = (1— )71 —w®) 741 — tu) 12 x
(1 + 4tu — 4t*u 4 10t%0* — 16t°u> 4 6t5u® +
4t3u® — 1603 + 8t9u3 — atut + 24t —

4Tt + 6t1%4 — 16t%u° + 20t°u’ — 418u® —
16t%u8 + 38t0ub — 16t%u’ — 4¢*u” + 20¢7u" —
1661007 + 662u® — 465u® + 26%u® — 46118 +
8t3u? — 16t%u° + 4t°u® + 6t*u'® — 16t7u!0 +

10t10u10 o 4t8u11 + 4t11u11 + t12ul2)

1+ 8%)(1 + 32 + 4% + Tt + 4% + 716 + 447 + 3¢% 4 ¢10)

gt (1) = ( (1—2)12(1 — 13)d
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g2 (u) = (1 — )71 —u®) 7T — tu) 710 x
(14 363 + 5 4+ 9tu + 2t*u — 16t7u + 45t%u? —
75t°u® + 156302 + 15t u? + 3u® + 746303 —
292t%03 + 245t%u3 — 651203 + 2tu? + t*ut —
313t"u* + 595t 104 — 300t13u* + 506100t —
75t2u5 — 45t°u° + 1506535 + 210t —
315610 + 7561765 + ub — 292¢30° 4 731455 —
210945 — 140125 — 35¢15u° 4 50185 —

16tu” — 313t*u" + 1634t 4" — 2090t +
715307 — 351507 + 15820 + 150t°u® +
675t5u% — 2175t M8 + 1650t 4u® — 3156178 +
245342 — 2106547 — 725t + 100¢12° +
7156150 — 300618u° + 595t4ut0 — 2090t w0 +
177510610 + 100t 340 — 140610410 — 65619410 +
15620 + 210656t — 2175650 + 3900t w1t —
2175t 0t 4+ 21061 7wt + 156200t — 65t3u!? —
140542 + 100£°u'? + 1775¢1 202 — 2090¢19u!'? +
595t18u1% — 300t1u'® 4 715¢Tu'3 + 10010413 —
72513013 — 2101661 + 245¢19u13 — 3156550 +
1650t5u — 2175t + 67514 + 1506 7wt +
1562001 — 35001 + 715t%u'® — 2090t %u'° +
1634155 — 313t18u® — 1662 0! 4 5006 —
35¢7u!® — 14010416 — 210¢13416 + 731416416 —
2021916 4+ 224,16 4 7565017 — 31563017 +
210t 4+ 150t 0T — 456 Tt — 7562007 +
50t5u1® — 300t%u'® + 595120 — 313118 4
7518u18 + 2t21u18 o 65t10u19 + 245t13u19 o
202t164,19 1 74419419 4 3122019 4 15¢114,%0 +
15¢140%0 — 75617020 + 4520420 — 1641502 +

2t18u21 +9t21u21 +t16u22+3t19u22+t22u22)
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gOM () = (1 =) A+ 11— £7) 7 x

(1 4+t + 10t% 4 23t3 + 68" 4 135> 4 281¢° 4 446t7 +
695t% + 895t% 4+ 1090¢'° + 1115¢1 + 1090¢'2 + 895t +
695t + 446t"° 4 281¢'6 + 135617 + 68t + 23¢9 +
10620 4 21 4 £22)

We see that, when the series are partially or fully unrefined, that the frac-
tions simplify. For example, there are 25 generators at order tu and 10 each
at orders > and u? for the 5-flavour series, but the powers of (1 —tu), (1—t3)
and (1 — u?) in the denominator are 16, 7 and 7 respectively.

We see immediately that the totally unrefined series, when written in
lowest terms, do not have their denominators in Euler form when the number
of flavours is not 4. We also observe that the difference between the degree
of the denominator and that of the numerator is equal to the number of
degrees of freedom in the fundamental fields, in both the partially refined

(counting ¢t and u degrees of freedom separately) and fully unrefined cases:

g3t u)(t) : 1.3+ 1.0+81=2+33
g3A42)(1.4):101+81+1.2=2+6.3
g A2 (¢t u)(t) - 4.34+4.0412.1 =12+ 4.3
g A2)(41) 1161+ 121 +4.2 =124+ 8.3
g4 (4 u)(t) 1 734 7.0+ 161 =22+ 5.3
gOA (4 4) 11524+ 1.1 4+ 7.3 =22+ 10.3

This can be explained in terms of the form of the Molien-Weyl integral,
where the plethystic exponential contains one factor of a given fugacity
in the denominator for every degree of freedom in a matter field counted
by that fugacity and the Haar measure contains no factors of any global
symmetry group fugacities. We expect it to also be the case when dealing
with fully refined series. (As explained in [I], this also explains why the
numerator is palindromic in the non-freely generated cases; in the freely
generated cases it is trivially palindromic because it is 1.)

We now move on to the other infinite families of (classical) Lie groups,
SO(N) and Sp(NN), which were discussed in [2].
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5.4.2 SO(N) gauge group without adjoint

In the theory with gauge group SO(N.), there is only one type of field,
transforming in the vector (or fundamental) of the gauge group and the
fundamental of the global symmetry group, so the latter is simply U(Ny).
The number of flavours can take any value, because the second Dynkin index
of the vector of SO(NN,.) is 2, which is even.

This time, when using the plethystic exponential and Molien-Weyl inte-
gration analytically, we usually use the Cartesian basis for the weights of the
fundamental, with the weights being +e;, 1 < i < n for N, = 2n (denoted
D,,) and with an extra zero weight for N, = 2n + 1 (denoted B,). The
positive roots are e; = e; for 1 < ¢ < j < n, and for B,, ¢; for 1 <i < n.
(All roots, positive and negative, are expressible as the difference of two
weights of the fundamental, i.e. it is the antisymmetric square.)

Returning to character expansions, the plethysm of the vector of SO(N)
over a given partition A contains exactly one singlet when all the A; for
1 <4< N —1 are even and those for ¢ > N are zero; Ay can be odd or
even, because columns of length NV reduce to singlets and can be cancelled
out; the column of N boxes is an invariant. This leads to a character

expansion of the form, for Ny < N,

N g
Z tzizl 2in; [2711, ey 2an*1]SU(Nf) (529)

n;>0,1<i<Nj

and for Ny = N,

Ne—1
f . )
tzizl 2’Ln¢+Nf’LNf [

Zmzo,lgz‘ng 1, N1 sU(Ny)

1 SV 9,
=7 Lmiz0agisng—1 t==t T alsuy) - (5:30)
and for Ny > N,

Ne—1o. .
Z tzi:l Zini+Nein, [2711, co2nN,—1,nN,., 0, . O]SU(Nf) (5.31)
n;>0,1<i<Nc

We can again derive the generators - [2,...]t* and (for N > N.) [..., 1n,, .. Jt"e
- the relations, [...,2y,,...Jt?" (for Ny > N.) and [1,...,1y,41,.. ]tV t?

(for Ny > N.+1), and the higher syzygies, the first being [2, ..., 1n,+2, .. .tV
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(for Ny > N, + 2), from the character expansion. The generators corre-
spond to M% = 6“1’@262{; (the mesons) and B iNe = ¢21-aNe 211 e QZJX,CL
(the baryons), and the relations to BB = M ... M (schematically) and
M. *B = 0, similar to the SU (V) case but with differences in detail because
there is only one type of fundamental field. For Ny < N, the number of
generators is the number of fields left massless by the Higgsing construction
as in the SU(N) case, and again for Ny > N, the need for higher syzy-
gies can be seen from the over-cancellation of the generators exceeding the
dimension of the moduli space by the relations, and so on...

We observe that the SU(Ny) representations in the character expansion
of the SO(N,) SQCD theory can be obtained by adding the Dynkin labels
of the two SU(Ny) groups in the SU(N.) theory, reversing the order of
the second set of labels, and setting u = t, although only one term is kept
when multiple terms in the SU(N,) expansion coalesce to the same one in
the SO(N,) one, and the same applies with the generators, relations and
higher syzygies (again keeping only one if there are multiples). This relates
to the fact that the quiver diagram can be formed by ‘folding’ that of the
SU(N.) theory, taking the symmetric (orientifold) projection and restricting
the global symmetry group to its diagonal SU(N) subgroup.

Again returning to the expressions of the Hilbert series of rational func-

tions, here are the partially (un)refined and fully unrefined series for SO(3)
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for 3, 4, 5, 6 and 7 flavours, calculated using Mathematica:

g350B) (1)

g0 (1)

g>S0B) ()

g(&50B) ()

(T.50B)) (1)

1—t+1¢2 1+t
(C1+05(1+8)p  (1—t2)6
1—2t4+42 — 283+t 142 +4at3 4+ t2 + 46
ELE (1—t2)9
1— 3t +9t2 — 93 + 9t* — 35 4- 6
(I=t)2(1+1)?
1+ 3t2 + 103 + 6t* + 6t° 4+ 10t6 + 3¢7 + 7
(1—2)12
1 — 4t + 1612 — 2413 + 36t* — 2415 + 1615 — 4¢7 4 18
(1—t)15(1 + 1)1
(1 — 2711 + 6t + 20t3 + 21t + 36t° + 56° + 367 4 215 +

20t° + 610 + ¢12)

1 — 5t + 25t2 — 50t3 + 100t* — 100t° + 100t% — 50t7 + 25¢% — 5¢? 4 10
(1—t)8(1+1)13

(1 — 37181 + 1062 + 35¢% 4 55t* + 1261° + 22060 + 225¢7 +

225t% + 220t° 4 126t10 + 5511 + 35¢12 4+ 10¢13 4 ¢19)

Here they are for By = SO(5) with 5, 6 and 7 flavours:

g P (t)

gOP(t) =

g1 =

1—t+22 =34+ 148

A= OF 0 ~ (1= B)F
1—2t+4t2 — 613+ 9t* — 6¢° + 45 — 2t7 +-¢8

(1= 0)D(1+1)8

1+ t2+t*+6t5 +6 + 8 +¢10

(1 _ t2)20

(1—1)"2(1 4+ )722(1 — 3t + 9t2 — 19t + 39t* — 485 + 565 —
A8t7 + 395 — 19% + 910 — 311 4412

— 2751 + 32 + 6t + 21t° + 1065 + 15¢7 + 15¢° + 10t +

2110 4 6t 4 313 4 ¢19)

Again we observe that the difference between the degree of the denominator

and that of the numerator is equal to the number of degrees of freedom in

the fundamental fields, and again it is the case that when the Hilbert series is

written as a rational function in lowest terms for Ny > N, the denominator

is not in Euler form.
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5.4.3 Sp(N) gauge group without adjoint

Again there is only one type of field, transforming in the vector (or fun-
damental) of the gauge group Sp(IN.) and the fundamental of the global
symmetry group U(Ny), where Ny must be even (and is often written as
2Ny) because the second Dynkin index of the fundamental of Sp(IV.) is 1,
which is odd. We again use the Cartesian basis for the weights of the fun-
damental, with the weights being +e;, 1 < i < N, for Sp(IN.). The positive
roots are ¢; £ e; for 1 < ¢ < j < N, and 2¢; for 1 < ¢ < N.. In this case
all roots, positive and negative, are expressible as the sum of two weights
of the fundamental, i.e. it is the symmetric square.

Returning to character expansions, the plethysm of the vector of Sp(V)
over a given partition A contains exactly one singlet when Ag; = Ag; 1 for all
integer ¢, or alternatively when all the )\;; are even where A is the transpose

of A\. The character expansion is as follows:

Zmin(Nf’NC)Q' .
Z t2-i=1 ml[(),’rll,(),--. 707an*1’0}SU(2Nf) (5.32)
1;>0,1<i<min(Ny,Nc)

with all odd-indexed Dynkin labels being zero.

This also results from folding the SU(N,) quiver diagram, but keeping
the antisymmetric orientifold projection; the global symmetry group is en-
hanced to SU(2Ny).

The generators are [0,1,0,...]t2; there are no baryons since they break
up into products of N, mesons (which are contracted using a symplectic,
i.e. antisymmetric, trace). By inspection, when Ny > N, there is a relation
[...,loNn.12,. . Jt2NeT2 2Netd,
Here are analytic expressions for the Hilbert series for C3 = Sp(3) with

and a second-order syzygy [1,...,lan,+3,...]
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4, 5 and 6 flavours:

1+t2+t4 4+t 1—¢8

(4,C3) ) = —
g (t) (1—¢2)27 (1—¢2)28
(5.Cs) 1+ 6t% + 21t1 + 5610 4 81¢8 + 81¢19 + 56¢12 + 21414 + 6416 4 ¢18
g (1) 2139
(1—-122)
1 — 458 +99¢10 — 55¢12 — 55¢18 + 99420 — 45¢22 4 3
- (1 _ t2)45
g OO (1) = (11— (1 + 152 + 120t* + 680t + 2565¢° + 67770 +

12965¢12 4+ 17775t + 17775t + 12965¢1° + 6777%° + 2565¢22 +
680t%* + 120120 4 1528 4 +39)

From the second form of the 5-flavour series, we see the 45 generators
at order 2 in the [0,1,0,...] representation, the 45 relations at order 8
in the [...,0,1,0] representation and the 99 second-order syzygies in the
[1,0,...,0,1] representation as required, and also the 55 third-order syzy-
gies in the [2,0,...] representation.

Again we observe that the difference between the degree of the denomina-
tor and that of the numerator is equal to the number of degrees of freedom

in the fundamental fields; however here the denominator is in Euler form.

5.4.4 SU(N), SO(N), Sp(N) and G5 gauge groups with adjoint

We only give a simple statement of the results here: the SO(N) series
with one flavour are freely generated (though still with the gauge group
broken completely), those with two flavours and the SU (), Sp(N) and G»
series with one flavour are complete intersections, though with the number
of relations being N rather than 1 in the Sp(N) case, and all series with
higher numbers of flavours are non-complete intersections. We again observe
that the difference between the degree of the denominator and that of the
numerator, in both the (anti)fundamental and adjoint fugacities, is once
again equal to the number of degrees of freedom in the fundamental fields
of that type.

Having set the scene, we now move on to the main part of this chapter of
this thess, which is the Hilbert series of supersymmetric QCD theories with

exceptional gauge groups.
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5.5 Hilbert series for exceptional gauge groups

Having set the scene with an overview of the already-published results for
the classical Lie groups, we will now present new results detailing Hilbert
series of exceptional gauge groups.

We will begin by introducing the exceptional Lie groups, firstly in terms of
composition algebras which we will define, and secondly in terms of Dynkin
diagrams.

A composition algebra A is an algebra with a function n : A — R such
that

Va,b € A,n(ab) = n(a)n(b) (5.33)

When the composition algebra is such that ab=0 = a =0 or b =0, the
function n is called the norm and the algebra is called a (normed) division
algebra [47]. (A division algebra is also one in which division is possible, for
any a and b in A there are unique elements x and y for which a = bx and
a = yb. Unless the algebra is commutative, z and y are not necessarily the
same.) There are four normed division algebras, R, C, H and O, the first
being ordered, commutative and associative, the second losing ordering, the
third commutativity and the last associativity, though it is still alternative
(i.e. associative when two of the three arguments are the same). (At the
next level up we have the sedenions, which do not form a division algebra
because there are cases of two non-zero sedenions multiplying to give zero,
and there are no Lie groups based on them.)

For any division algebra A, the projective space AP" is defined as the set
of points in A1 — 0" identified under (21,..., 2zn11) ~ (21, ..+, AZnt1)
for nonzero \ and z; not all zero in A.

Weighted projective spaces, which are often more useful than ‘ordinary’

ones when describing moduli spaces and Hilbert series as in [1], are defined

similarly: WAP&I:M:%H] for positive integers a; is the set of points in A"+ —
0"*1 identified under (21,...,2541) ~ (A% 21, ..., \%+12,.4) for nonzero A

and z; not all zero in A.
The simple Lie groups, except for Go which is the automorphism group
of the imaginary octonions, are defined as the isometry groups (preserving

distances, i.e. norms (or their square roots), between points) of projective
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spaces as follows:

A, = Isom(CP")
B, = Isom(RP>")
Cn, = Isom(HP")
D, = Isom(RP?")

Gy = Aut(ImQ)
Fy = Isom(OP?)
Ees = Isom((Q x C)P?)
E; = Isom((Q x H)P?)
Es = Isom((0 x O)P?)

Because the octonions are not associative, one can only go up to two levels
in the projective space, thereby giving only a finite number of groups, the
exceptional groups.

Another way of defining the exceptional groups is in terms of Dynkin
diagrams. Fully connected Dynkin diagrams are constrained by the require-
ment that all roots be linearly independent. If there is a triple line between
two nodes, there can be no other nodes, giving Go. If there is a double line,
there can be any number of nodes all joined by single lines and without
branches attached to either node giving B, or C,, when attached to the
long root or the short root respectively, but there can only be one node at-
tached to each by a single line if there are nodes attached to both, giving Fy.
If there are only single lines, there can only be one node (if any) attached to
three other nodes, and the reciprocals of the number of nodes attached to
the central node (including the central node itself) must add up to greater
than 1, giving D,,, Fg, E7 and Ej.

The FE,, groups arise in string theory in two ways:

e as the U-duality groups when type II (A or B) string theory or M-
theory is compactified down to (11—n) dimensions; while the T-duality
group affects only NS-NS fields (the metric, dilaton and Kalb-Ramond
fields), the U-duality group mixes NS-NS and R-R fields. When n is
6 or greater, the extra vector fields formed by dualization of the A,
fields in M-theory or the Kalb-Ramond (B,,) and R-R fields give
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rise to (complex) representations of the (non-compact forms of) the
exceptional groups, and the scalars form representations of their cosets
by their maximal compact subgroups. (The 28 vectors in the n = 7
case are self-dual giving rise to the 56 fundamental representation of
FEr; for n = 8 vectors are dual to scalars so there are no ‘vectors’
as such, and this seems to correspond to the fact that there is no

‘fundamental’ separate from the adjoint for Fjg.) E|

e FEjgx FEg is one of the two possible gauge groups for the heterotic string.
In the fermionic construction, it arises through allowing one set of 16
oscillators to have (NS or R) boundary conditions independently of the
other 16; in terms of SO(16) representations this gives two massless
combinations of 120, the adjoint of SO(16), and 128, the spinor.
Since the massless bosons must be in the adjoint of the gauge group
(whatever that is), there must be a group containing SO(16) whose
adjoint decomposes to give this; this group is Eg, and there are two
copies. In the bosonic construction it is simply one of the only two

even self-dual lattices in 16 dimensions, the other being Spin(32)/Zs.

FEg has been considered as a possible gauge group for a grand unified theory
(GUT), since it contains the standard model gauge group SU(3) x SU(2) x
U(1) (via SU(5) then SO(10) which are also candidate GUT gauge groups)
and has chiral representations. When the Eg x Eg heterotic string theory is
compactified on a Calabi-Yau 3-fold, one of the Eg groups is broken down
to Eg x SU(3) and then to Eg by imposition of the holonomy.

We will now discuss Hilbert series for the exceptional gauge groups, start-
ing with G2 and then moving on to Fy, Eg and E7. (We do not work with

Eg because it has no fundamental other than its adjoint.)

5.5.1 (G5 gauge group

Because the second Dynkin index of the fundamental is even, having the
value 2, Zo anomaly cancellation does not require the number of flavours to
be even, unlike in the SU(N) case, where it is the total number of quark

and antiquark fields that must be even (in all cases investigated so far they

SFor n between 4 and 7, the vectors transform in the [0, ...,0,1,0] representation (using
conventions in [24] and [72]); in all cases the scalars transform in the adjoint of E,
cosetted out by its maximal compact subgroup.
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have been equal so their sum is necessarily even) and the Sp(NN) case where
the second Dynkin index of the fundamental is 1.

We reproduced the results of [6] for up to 4 flavours (the complete in-
tersection case). As for SU(N) and Sp(NN) (but not SO(N), at least with
matter in the vector representation), the first relation occurred at the num-
ber of flavours given by I?(Ad)/I?(Rmat), in this case 4, and at the order
given by I?(Ad), which is twice the dual Coxeter number of G, in this case
8.

The refined series are as follows:

PL(g" %) (1)) = ¢

PL(g®%)(1)) = [2)¢?

PL(gB%) (1)) = [2,0]£* + [0,0]t®

PL(g™%2)(#)) = [2,0,0)t% + 0,0, 1]t3 + [0,0,0]¢t* — [0,0, 0)t*

The unrefined series for up to 10 flavours (we have calculated them up to
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16 flavours) are as follows:

P =
R
Q(S’GQ)(t) = (1—12)6(1 — 3)
(4.Ga) B 1—18 B 1+t
g t) = (1—2)10(1 — )41 — 1) ~ (1 —2)10(1 — 3)4
g = (1) MA =)+ + 36+ 661+ 365+ 70+ 86T+ 715+ 310 +
6t10 +3t11 +t12 +t14)
GO () = (1) 181 —3)10 «

(14 3t2 + 103 4 21¢* + 30t° 4 75t% + 1207 + 165¢° +
220t° + 315¢10 + 330t + 33012 4 3303 + 3151 +
220t + 165¢1¢ + 120417 4 75¢18 4 30¢19 4- 2120 +
10621 4 3t%2 + ¢2)

g(7,G2)<t> = (1-3)"2(1 )18 x
(14 6t% + 22¢3 + 56¢* + 132¢° + 379¢° + 792¢7 +
1539t% + 2912¢7 + 51460 + 7902t + 11641¢'2 +
16220t + 20727t 4 24178t + 2711146 + 28308¢'7 +
27111418 4 2417810 4 20727¢%° + 16220t + 1164132 +
7902t% 4 5146t%* 4 2912t%° + 1539t%° + 79277 +
379t%8 4 132t%% 4 56130 + 22631 4 6132 4 34)

g(S,GQ)(t) = (1—3)726(1 —3)716 x
(1 4+ 10#% + 40t + 125t* + 400t° + 1320t° + 3440t" +
8565t + 20296t + 44146t'° + 87760t 4 165885t1% +
293760t'3 + 484152t + 749168t"° 4 1098065¢1¢ +
1510640t17 + 1953290t 4- 2388256t + 276272320 +
3006160t2! 4- 3088820t** + 3006160t + 2762723t +
238825612 + 195329026 + 1510640t% + 1098065¢%8 +
749168t% + 484152t%° + 29376031 + 165885¢%2 +
87760t3% 4 44146¢3* + 20296t + 8565¢3¢ 4 344037 +
1320638 4 400t3% 4 125¢10 4 40t + 10¢42 4 t14)
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g(9,G2)(t) = (1 #2)730(1 — 3)719

9(10,02)(t)

(14 15¢2 + 65t + 246t* + 975t° + 3665t5 + 11490t” +
34605t% + 97745t° + 254106¢'° + 614670t +

1406060t'2 + 3015525t'3 + 6072051t + 11549384¢15 +
20789430t + 35353485t 7 + 56945075t'8 4 87075099t +
1264014152 + 174199340t% + 228323595¢22 +
284797560t% + 337968425t + 3817198322 +
410741685t2° 4 420953780t%7 + 4107416858 +
381719832t + 337968425t%° + 284797560t +
22832359532 4 174199340t%3 + 126401415¢3* +
87075099t% + 5694507530 + 35353485t37 4 20789430t3% +-
1154938439 4 6072051%° + 3015525¢1! + 14060602 +
614670t% + 254106t + 97745t% + 34605t1¢ +

11490t47 + 3665t*® + 975t + 246t%° 4 65¢51 + 1572 4- t71)
(1— t2)734(1 _ t3)*22 %

(1 + 21% 4 98t3 + 441t* + 2058t° + 87225 4- 319987 +
112497¢% + 368138t7 + 1114707¢'° + 3162468t +
8463202t'2 + 21284768t'3 + 50484807t + 113363042t +
241238152¢10 4 48684628217 + 9338339448 +
1704845582t 4 2964447333120 + 4914491846t +
T776829413t%% 4+ 11754525288t% 4 169794808034 +
23456748996t + 3100954280726 + 3924157308617 +
47552486211t%% 4 55200676926t%° + 61398005196t +
6543882359431 4 6684200529632 + 6543882359433 +
6139800519634 4 5520067692635 + 4755248621130 +
392415730867 4 310095428073 + 23456748996t +
1697948080310 + 11754525288t + 77768294132 +
49144918463 + 2964447333t + 1704845582t%° +
933833944110 4 48684628217 + 24123815218 +
113363042t + 50484807t + 21284768151 4 8463202t°? +
316246815 4 1114707t5 + 368138t%° + 112497 +
31998157 + 8722178 4 205877 4- 441190 4 98¢5 + 21162 4 ¢64)
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Ny | TNy No. No. No. broken | No. unbroken | Unbroken
invariants | relations gens gens gauge group
1 7 1 0 6 8 As
2 14 3 0 11 3 Aq
3 21 7 0 14 0 0
4 | 28 15 1 14 0 0

Table 5.2: Numbers of invariants, relations and broken and unbroken gen-
erators and unbroken gauge groups for Go SQCD theories with
Ny flavours of quarks in the fundamental representation

Those up to 8 flavours could be calculated from the unrefined series up to
order t?* obtained from LiE, since we knew the powers to which (1 — t2)
and (1 —t3) were raised in the denominator given the arithmetic progression
started at 4 flavours; they agreed with those calculated in [6]. Those for 9
and 10 flavours were calculated, with the patterns continuing, and those for
up to 8 flavours checked further, using Mathematica.

As with the SU(3), SO(3) and SO(5) cases checked earlier, the difference
between the degree (as a polynomial) of the denominator and that of the
numerator is equal to the number of degrees of freedom in the matter fields
when the moduli space is not freely generated, i.e. the numerator is not
just 1. Since the power of (1 —¢2) increases by 4 for each extra flavour, that
of (1 —#3) by 3 and the number of matter d.o.f. by 7, that should give an
increase of the degree of the numerator by 4.2 4+ 3.3 — 7 = 10, and this is
indeed the case.

One can express the unrefined series in the following general form:

Pion;—36(t)
(1 — 2)IN;=6(1 — 3)3N; 8

g WG (1) = Ny >4 (5.34)
where Py (t) denotes an as yet unconstrained polynomial of degree N. It
turns out that this polynomial is palindromic, which means the moduli space
of the theory is Calabi-Yau. We were able to calculate the Hilbert series
exactly in Mathematica up to 16 flavours, and in all cases this formula was
satisfied.

The numbers of invariants, relations and broken and unbroken generators

and unbroken gauge groups for a given number of flavours are given in Table

5.2]
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Ny d(2) d(3) deg P(t) | dim(M)
1 1 0 0 1

2 3 0 0 3

3 6 1 0 7

4 10 4 4 14

Ny >4 | 4N; —6 | 3N; —8 | 10N; — 36 | TNy — 14

Table 5.3: Powers of (1 — ") in denominator of unrefined Hilbert series for
G2 SQCD theories with Ny flavours with 1 < Ny < 3 and upper
and lower bounds for 4-flavour case

The dimension of the moduli space, also known as the Krull dimension,
is given by the degree of the pole at ¢ = 1 when the Hilbert series is written

in the form
P(t)

Hn(l _ tn)d(n)

where P(t) is a polynomial with a non-zero value at ¢ = 1 and d(n) are

HS(t) = (5.35)

functions of Ny (or the various Ng in the case of multiple types of matter
field) for each n, taking positive values only for a finite number of positive
n and zero otherwise. The dimension of the moduli space is given by the
sum of the d(n), i.e. Y, d(n).

The rate of increase of the d(n) with the number of flavours follow the
same pattern as that of the dimension of the moduli space, increasing at
an increasing rate until the ‘critical’ number of flavours is reached and at a
constant rate thereafter. We summarize this information in Table 5.3}

We also, following [4], calculated invariants for the case of arbitrary num-
bers of flavours using the ‘trial and error’ approach noted earlier. We found
all the invariants, relations and higher syzygies up to order 24 and for up to
20 flavours, i.e. with no more than 20 rows in the Young tableau. We found
that they agreed with those found in [4] up to order 11, but were different for
orders 12 and 13, which is where [4] stopped. There are over 3000 different
invariants (including relations and higher syzygies) up to order 24, some of
which occur over 8000 times, so we do not list them here, but we summarize
their numbers in Tables [5.4] and the first for invariants and even-order
higher syzygies and the second for relations and odd-order higher syzygies:
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5.5.2 F) gauge group

Because the second Dynkin index of the fundamental is again even, this
time 6, Zo anomaly cancellation does not require the number of flavours to
be even.

We reproduced the results of [6] for up to 3 flavours (the complete in-
tersection case). As for SU(N), Sp(N) and G2 (but not SO(N), at least
with matter in the vector representation), the first relation occurred at the
number of flavours given by I?(Ad)/I?(Ryat), in this case 3, and at the
order given by I?(Ad), which is twice the dual Coxeter number of Fj, in
this case 18.

The refined series are as follows:

PL(gB @) = 2+
PL(gZ™ @) = [2]¢ + 363 + [0)¢*
PL(g®™ (1) = [2,00t2 + [3,0]t> + [0, 2]t* + [0, 1]¢° + [0, 0]t° + [0, 0]t° — [0, 0]¢'8

The unrefined series are as follows:

1
g(l,F4)(t) — 05
1
g®(1) = (1—2)3(1 — 3)4(1 — ¢4)
$() = —_—
(1—t2)6(1 —3)10(1 —t4)6(1 —2)3(1 — t6)(1 — ¢9)
1+

(1 — 12)5(1 — ¢3)10(1 — £4)6(1 — (5)3(1 — 16)

Again, the difference between the degree (as a polynomial) of the denomina-
tor and that of the numerator is equal to the number of degrees of freedom
in the matter fields when the moduli space is not freely generated (here for
3 flavours): 6.2 4 10.3 4+ 6.4 + 3.5 + 1.6 — 3.26 = 9 as required.

The numbers of invariants, relations and broken and unbroken generators
and unbroken gauge groups for a given number of flavours are given in Table
.0l

For the case of one adjoint matter field and nothing else, H is always given
by U(1)**(&), This is always completely broken by the addition of more

matter fields whatever the representation(s), even in the case of 1 flavour
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Ny | 26Ny No. No. No. broken | No. unbroken | Unbroken
invariants | relations gens gens gauge group
1 26 2 0 24 28 Dy
52 8 0 44 8 Ay
3 78 27 1 52 0 0

Table 5.6: Numbers of invariants, relations and broken and unbroken gen-
erators and unbroken gauge groups for Fy SQCD theories with
Ny flavours of quarks in the fundamental representation

of matter in the vector representation of SO(N) in which case the moduli
space is freely generated, and hence the dimension of the moduli space is
given by the sum of those of the non-adjoint matter representations as in
3.

We revisit the empirical observation from the cases of G2 and classical
groups: when the Hilbert series has a non-trivial numerator, i.e. the moduli
space is not freely generated but is instead either a complete intersection or
a non-complete intersection, the degree of P(t) (as a polynomial, i.e. the
highest exponent of ¢ rather than the value of P(t) at t = 1) is given by the
degree of the denominator as a polynomial minus the number of degrees of

freedom, i.e.

degP(t) = (> _nd(n)) — () Nrdim(R)) (5.36)
n=1 R

This is also the case for the Hilbert series of the one-instanton moduli spaces
found in [42], and also those for finite groups in [19] with the number of
‘degrees of freedom’ in the latter case being replaced by the value of N for
which the finite group is a subgroup of SU(N).

In the one-instanton case with classical gauge and global symmetry groups,
the number of degrees of freedom in bifundamental fields is always given by
2kN with the 2 coming from the existence of two types of bifundamental
which are complex conjugate to each other in the (S)U (k) (with gauge group
SU(N), the U(1) from U(N) being absorbed into the gauge U(k)) case and
from the global group being Sp(N) (or C) if the gauge group is SO(k) and
vice versa in the other cases. In the U(k) case there were also two adjoint
matter fields with 2k? degrees of freedom, but this is projected down to

the symmetric 2nd-rank tensor in the SO(k) gauge group case (because it
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contains the centre-of-mass piece), giving k(k + 1) d.o.f., and the antisym-
metric 2nd-rank tensor in the Sp(k) case, giving 2k(2k — 1) d.o.f. We then
subtract twice the dimension of the adjoint, because we have constraints at
order ? transforming in the adjoint; this gives overall differences in degrees
of 2kN for the U(k) case, 2k(N + 1) in the SO(k) case and 2k(N — 2) in
the Sp(k) case. (These are also the dimension of the moduli spaces of these
theories.) In all cases the difference in degree is k times the dual Coxeter
number of the global symmetry group. It is also shown in the same paper
that the same applies, at least for one instanton, for exceptional groups.

The finite subgroups of SU(2) covered were:
o Ay =7y,

e Dy.o = Dih(k), the dihedral group of order 2k, with elements repre-
senting reflections multiplied by ¢ from their Euclidean forms to give

them determinant 1, and

e the exceptional cases Fg, F7 and FEg, for which the degrees of the
numerators were the same as the (dual - for simply laced groups they
are the same) Coxeter number of the corresponding Lie group and the
orders of the group were the same as the sum of the squares of the

Coxeter labels of each node in the extended Dynkin diagram of the

group.

Those of SU(3) covered were the infinite families Z,, x Z,, A(3n?) (including
the Valentiner group A(27), or the case n = 3, covered in [22]) and A(6n?)
and exceptional cases which we will not list here. In all cases listed the
moduli space was a complete intersection.

Because of the computational difficulty involved in calculating Hilbert
series, whether refined or unrefined, in Mathematica by either the residue
method or the method described in [6], we initially tried to calculate it via
the same method by which we calculated the unrefined Hilbert series for Dy
with up to 12 vectors (no spinors or conjugate spinors) and Gy with up to
8 flavours, starting with the character expansion up to some order (24 for
G4 and 22 for Dy), converting each representation to its dimension in the
SU(N) group where N is the number of flavours and summing them for
each order to get an unrefined series, remembering that the powers of the

(1 —t") terms in the denominator increase at the same rate and so does the
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highest power of ¢ in the numerator, multiplying the unrefined series by the
denominator, taking the series up to half the required power and completing
the palindrome, observing that any terms between half the required power
and the order to which terms were taken do fit the palindromic pattern.
This method is limited by the order to which terms were taken, the highest
power in the numerator must not exceed twice this order, hence we could
only calculate up to 12 vectors in D4 and 8 flavours in Go.

We tried to calculate the Hilbert series for Fy with 4 flavours by this
method, but were unsuccessful. We will see why this was the case in the
next few paragraphs.

Following (5.35)), we define the d(n) as in the Gy case, and they have
the same properties as in that case. Because the rate of increase of the
powers of (1 — ") (or at least the minimum polynomials of 27/
the SU(N) and SO(N) cases discussed earlier) increases until the complete

intersection is reached, the values of the various d(n) for gauge group Fj

, as in

with 4 fundamentals must be bounded below by
d(n)\Nf:4 > 2d(n)]Nf:3 - d(n)‘NfZQ (537)

However, they must sum to the dimension of the moduli space, which is
26Ny — 52 = 52. The remaining 8 must be distributed across the various
values of d(n) in some way. They must also be bounded above by the
number of primitive invariants at that order which are relevant to the case
of that number of flavours, i.e. whose Young tableaux (possibly including
leftmost columns of Ny boxes) have Ny rows or fewer, and the upper bound
is the sum of the dimensions of all relevant tableaux with n total boxes. For
orders (i.e. number of boxes) up to 6, these are summarized in Table
One sees that the upper bounds for d(n),2 < n < 6 must be 10, 20, 20, 20
and 20 (from both primitive invariants at order 6) respectively. Calculating
the lower bounds from the values at 2 and 3 flavours, we summarize this
information, and the dimension of the moduli space, in Table [5.8}
Knowing that the d(n) must sum to 52, the combination giving the lowest
possible degree for the polynomial in the denominator, and hence for the
numerator, has d(n) respectively 10, 20, 14, 6 and 2, giving a numerator of
degree 10.2 4 20.3 4 14.4 4+ 6.5 4 2.6 — 26.4 = 74. Half of this is 37, which is

greater than the maximum order to which we calculated the series order by
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Order | Young tableau | SU(4) representation | Dimension
2 2, ] [2,0,0] 10
3 3,...] (3,0,0] 20
4 [0,2,...] [0,2,0] 20
5 [0,1,1,.. ] [0,1,1] 20
6 0,0,2,.. ] 0,0,2] 10
6 2,0,0,1,.. ] 2,0,0] 10

Table 5.7: Young tableaux (in SU (V) representation form) corresponding to
primitive invariants of 4 SQCD theories and the corresponding
representations and dimensions in the case Ny = 4

Ny [ d(2) [ d@3) | d(4) | d(5) | d(6) | deg P(t) | dim(M)
1 1 1 0 0 0 0 2
2 3 4 1 0 0 0 8
3 6 | 10 | 6 3 1 9 26
4 >0 [>16|>11] =6 | >2 ? 52
<10 <20]<20|<20/|<20
Ny>3| ? ? ? ? ? ? 26N, — 52

Table 5.8: Powers of (1 — ") in denominator of unrefined Hilbert series for
Fy SQCD theories with Ny flavours with 1 < Ny < 3 and upper
and lower bounds for 4-flavour case
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order (21), so we could not use this method to obtain the unrefined series.
We did in the end calculate the unrefined Hilbert series for Fy with 4 fun-
damentals using Mathematica (it took 7 days!), and obtained the following

expression:

9(4,F4)(t) _ ((1— t2)10(1 _ t3)16(1 _ t4)14(1 _ t5)8(1 _ t6)4)—1 %
(14 4¢3 + 6t + 12t° + 26t° + 44¢7 + 89¢% + 176" +
314110 4+ 556t + 980t12 4- 1648¢'3 + 2758t + 4544115 +
724310 4+ 11344417 + 1746018 + 26244¢19 + 38812120 +
56332t21 + 80090¢22 + 111820¢23 + 153365t% + 206328t%° +
272824126 + 354492t27 + 45231428 + 5672242 +
699270130 + 8469683 + 1008792t32 + 118142833 +
1360194t34 4 1540076t3° + 1715048t30 4 1877856137 +
2022566138 + 214285630 + 2232850140 + 228870441 +
2307904t%2 + 228870443 4 223285014 + 214285614 +
202256646 + 1877856147 4 17150488 + 1540076149 +-
1360194270 4 11814285" + 1008792t%2 4 846968t>3 +
699270t%% 4 567224t%° 4 452314t°6 4 354492°7 4
272824158 + 20632857 + 15336550 + 111820¢5! + 80090¢52 +
56332103 4 38812t64 4 2624455 + 1746050 + 1134457 +
7243158 4 4544199 4 275870 4 1648t7! + 980t™% +
556173 + 314¢™ + 17617 + 89t76 + 44177 4 26178 +
1267 + 680 4 4481 + ¢84)

As we see, the d(n) are 10, 16, 14, 8 and 4 respectively, giving a numerator
of degree 84.
Recalling the unrefined series for F; with 3 flavours, the case of the com-

plete intersection, we obtained the following general expression for the un-
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Ny a2) a3) (@) a5) d(6) deg P(t) | dim(M)

N;>3 [ 4N; —6 | 6N; —8 | 8Ny —18 | 5Ny — 12 | 3N; —8 | 75N; — 216 | 26N; — 52

Table 5.9: Powers of (1 —¢") in denominator of unrefined Hilbert series for
F; SQCD theories with Ny > 3 flavours

refined Hilbert series of Fy with more than 3 fundamentals:

g NP FD (1)

_ Prsn,—216(t)

B (1-— t2)4Nf—6(1 _ ts)ﬁNf—s(l _ t4)8Nf—18(1 _ t5)5Nf—12(1 _ t6)3Nf—8
(5.38)

and we can complete the last row of Table[5.8] which we do in Table[5.9} The
refined series would have the d(n) equal to the numbers of invariants at each
value of n, giving a numerator of degree 10.2+20.3+20.4+20.54+20.6—26.4 =
276, or 69 in each flavour fugacity. (The [2,0,0,1,...] invariant, which
has 4 rows and therefore does not occur in the 3-flavour case, may not be
required, which would reduce the degree of the denominator, and therefore
the numerator, by 60 to 216 (the numerator), or 54 in each flavour; we will
see later that this is indeed the case.)

We also calculated invariants for the case of arbitrary flavour numbers
using the ‘trial and error’ approach noted earlier. This was done for G, Fg
and E7 in [4], but not for Fy.

e The first order at which constraints occur is 11, which again is equal
to the sum of the highest (9) and lowest (2) orders of generators in the
case of the complete intersection (here 3 flavours). Again, constraints
appear at order 11 at the next flavour up (here 4 flavours), and there
are no invariants at this order with 4 flavours (indeed we do not find

new ones here until we get to 7 flavours).

e There are single-column invariants with 9 and 17 boxes. The column
of 26 boxes is not an independent invariant, but rather a product of

these two invariants.

Table shows the number of invariants of Fj (including second- and
higher even-order syzygies) and Table the number of relations (in-

cluding higher odd-order syzygies) for a specific ‘mass’ level (i.e. number
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of fields) having a specific number of rows (i.e. the minimum number of
flavours at which they appear) in their Young tableaux. The levels are
specified in the first column of the table and the (minimum) number of
flavours in the top row.

We see from the first table that the ‘primary’ invariants follow a diagonal
pattern, with the minimum number of flavours at which a new invariant
appears with a given number of boxes increasing with the number of boxes
until we get the 17-box single column invariant and the 18-box invariant
with a column of 16 boxes; up to order 21 there are no more invariants with
Young tableaux as much as 13 boxes deep! We expect that these latter
‘invariants’ may be higher syzygies and therefore that the former ones may
be all the primary invariants, and therefore the weighted projective space
can be determined in similar fashion to those for SU(N) gauge groups in
[1], though it is necessarily more complicated, however the determination of
the primary relations or first-order syzygies still has some way to go. The
emergence of the relations does begin to follow a diagonal pattern too after
order 18 (twice the dual Coxeter number and the order of the relation in the
complete intersection case at 3 flavours), however. The first second-order
syzygy (linear dependence between primary invariants and relations) occurs
at 6 flavours at order 16 and at orders 17 and above (up to 21 at least) they
occur at 4 flavours which is the lowest number for which the moduli space

is not a complete intersection.

5.5.3 Ls gauge group

Unlike G5 and Fy, the Dynkin diagram of Eg has a symmetry about the
axis containing the 3 and 6 nodes (in the notation of [24] and [72]; in that
of [5] they are the 4 and 2 nodes) and it has complex representations ﬂ the
[1,0,0,0,0,0] and [0,0,0,0,1,0] being complex conjugates of each other.
In this section, we call the first representation the fundamental and fields
transforming in it quarks or flavours (denoted by Q¢ and counted by ) and
the second the antifundamental and fields transforming in it antiquarks or
antiflavours (denoted by Qf and counted by u).

Because the second Dynkin index of both the fundamental and the an-

5This does not always follow from the Dynkin diagram having a symmetry, i.e. for
SO(4n) the two spinor representations are inequivalent but they are self-conjugate, as
is the vector representation of SO(8) where there is a triality between all three.
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tifundamental is 6, Zs anomaly cancellation does not require either the
number of each or the total number to be even. Without loss of generality,
we take the number of flavours to be greater than or less than the number
of antiflavours (we can easily permute ¢t and u if required).

Both the refined and unrefined series are calculated in [6], but only for
the case with no antiflavours. Those for up to 4 total flavours are known,
however.

For the case with no antiflavours, and up to 4 flavours, the refined series,

calculated by inspection of the character expansion, are as follows:

PL(gM0E) (1 u)) =

PL(g®*F)(t,u)) = [3)¢°

PL(g®%F) (1, u)) = [3,0]¢3 +[0,0]t°

PL(gW%Fo) (£ u)) = [3,0,0]t + (0,0, 2]t5 + [0,0,0]t*2 — [0, 0, 0]¢

The unrefined series are as follows:

1

1,0,F, _

g OE) (¢ u) = 1-8
1
(2,0,E6) _
1

(3,0,E) _

g (t,u) (1 — 3)10(1 — ¢6)
24
g0 (1) = =
(1 _ t3)20(1 _ t6>10<1 _ t12)
1+ ¢

(1 — 3)20(1 — ¢6)10

Again, the difference between the degree (as a polynomial) of the denomina-
tor and that of the numerator is equal to the number of degrees of freedom
in the matter fields when the moduli space is not freely generated (here for
4 flavours): 20.3 + 10.6 — 4.27 = 12 as required.

The numbers of invariants, relations and broken and unbroken generators
of the gauge group and the unbroken gauge groups are listed in Table

Because of memory constraints, we were unable to calculate the unrefined
Hilbert series for the 5-flavour case. However, as with the case of F; with
4 flavours where we were able to calculate the unrefined series, we can

calculate lower and upper bounds for the degree of the numerator. As for
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(Nf, Na) 27Ny No. No. No. broken | No. unbroken | Unbroken
+27N, | invariants | relations gens gens gauge gp
(1,0) 27 1 0 26 52 Fy
(2,0) 54 4 0 50 28 Dy
(3,0) 81 11 0 70 8 Ao
(4,0) 108 31 1 78 0 [

Table 5.12: Numbers of invariants, relations, broken and unbroken genera-
tors and unbroken gauge groups for Fg SQCD theories with up
to 4 flavours and no antiflavours

Order | Young tableau | SU(5) representation | Dimension
3 R [3,0,0,0] 35
6 0,0,2,.. ] [0,0,2,0] 50

Table 5.13: Young tableaux (in SU(N) representation form) corresponding
to primitive invariants of g SQCD theories and the correspond-
ing representations and dimensions in the case of 5 flavours and
no antiflavours

Fy, we have, shifting the number of flavours up by one, and defining the

d(n) as in (5.35)):
d(n)|n;=5 2 2d(n)|N;=1 — d(n)|n;=3 (5.39)

Again they must sum to the dimension of the moduli space, which is

27Ny — 78 = 57. The remaining 8 must be distributed across the various
values of d(n) in some way. They must also be bounded above by the
number of primitive invariants at that order whose Young tableaux have
Ny rows or fewer. Only orders divisible by 3 are relevant to the case of Fg
with no antiflavours; for the series up to 4 flavours the only orders to occur
are 3 and 6 (though there is an invariant of order 12 that is absorbed into
the relation, and one of order 9 that arises in the 5-flavour case), and these
are as in Table [£.13t

One sees that the upper bounds for d(3) and d(6) must be 35 and 50 re-
spectively. Calculating the lower bounds from the values at 3 and 4 flavours,
we summarize this information in Table 5.14

We see by inspection that the case giving the numerator of lowest degree
has (1 —3) raised to power 35 and (1 —t%) to power 22 in the denominator,
and this gives a numerator of degree 3.35 + 6.22 — 5.27 = 102. The highest

possible numerator, assuming (1 — #3) and (1 — t%) are the only factors in
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Ny | d(3) | d(6) | deg P(t) | dim(M)
1 1 0 0 1

2 4 0 0 4

3 10 | 1 0 11

4 20 | 10 12 30

5 |>30]>19 ? 57

<35 | <50
Ny>4| ? ? ? 27N, — 78

Table 5.14: Powers of (1 —¢") in denominator of unrefined Hilbert series for
Eg SQCD theories with Ny flavours with 1 < Ny < 4 and upper
and lower bounds for 5-flavour case

the denominator, occurs for the case of denominator (1 — #3)30(1 — ¢6)27,
giving a numerator of degree 3.30 + 6.27 — 5.27 = 117. The refined series
would have degree 3.35 + 6.50 — 5.27 = 270, or 54 in each flavour fugacity.
(We will see in Section that this gives an upper bound of 54 too on
the degree of the numerator in each flavour fugacity in the Fj refined series
with 4 flavours, meaning that the [2,0,0,1,...] invariant plays no role in
the PE/denominator term in this series.)

When we introduce antiflavours, we get the following refined series for up

to 4 total flavours:

PL(gMYE) (tu)) = tu+ 13 4 u® 4 t2u?

PL(g®* B (tu)) = [1]tu+ [3]t3 + [0]u® + [2]t2u® + [0)t*u

PL(gBYEO) (1 u)) = [1,0)tu+ [3,0]¢> 4 [0, 0]u® + [2, 0]t2u® + [0, 2]t u
+[0, 1]t%u* + [0, 0]¢° + [0, 0]t7u® — [0, 0]¢*u®

PL(g®%5) (t,u)) = [1;1]tu+ [3; 0]t + [0; 3]u® + [2; 2]t%u® + [0; 1]t u

+[1; 0]kt 4 [1; 1]¢30® + [0; 0]t u? + [0; 0]t%u® — [0; 0]¢!2u!?
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(N¢, Ny) 27Ny No. No. No. broken | No. unbroken | Unbroken
+27Ny | invariants | relations gens gens gauge gp
(1,1) 54 4 0 50 28 Dy
(2,1) 81 11 0 70 8 Ay
(2,2), (3,1) | 108 31 1 78 0 0

Table 5.15: Numbers of invariants, relations, broken and unbroken genera-
tors and unbroken gauge groups for Fg SQCD theories with up
to 4 total flavours including at least one antiflavour

The unrefined series are as follows:

1
(1 —tu)(1—t3)(1 —ud)(1 — t2u?)
1
(1 —tu)?(1 = 3)4(1 — u3)(1 — t2u?)3(1 — t*u)

gt ) =

gBLE) (8 u) =

gBrE(tu) = (
(1 — 5u2)73(1 — 1) 1(1 — )
g®2E(tu) = (
(1 — tuh)2(1 — 3u3) =41 — thud) L (1 — 648) !

Again, the difference between the degree (as a polynomial) of the denomina-
tor and that of the numerator is equal to the number of degrees of freedom
in the matter fields when the moduli space is not freely generated, as in the
(3,1) and (2,2) cases here:

1—t8Bu) (1 —tu) 31 =) 71001 — )12 = #2u®) 701 — ttu) 6

1—t202) (1 —tw) (1 — 3741 = o®) 7212 = %) 70 (1 — thu) 2

gBbE) (¢ u)(t) : 3.1+ 10.34+1.0+6.2+6.4+3.5+ 1.6+ 1.9 = 18 + 3.27
gBLE) (t u)(u) : 3.1410.04+1346246143241.041.3=6+1.27
g2 (4 u)(t) 41443 +4.0 492424 +21+434+1.4+1.6=12+2.27

The numbers of invariants, relations and broken and unbroken generators
of the gauge group and the unbroken gauge groups are listed in Table
In Table we show the invariants corresponding to each term in the
denominator and their dimensions in the (4,1) case:
We will revisit the issue of the form of partially refined series later in
Section but for now we will still present, in Table the lower and
upper bounds for the powers d(n,m), defined similarly to in , of the

factors in the denominator as in the cases of the fully unrefined series with
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Order(t,u) | Young tableau | SU(4) representation | Dimension
(2,2) 2,.. ] [2,0,0] 10
(3.0) B 3,0,0] 20
(41) 0.2, 0,2,0] 20
(5.2) 0,15, 0,1,1] 20
6.0) 00,2, ] 0,0,2] 10

Table 5.16: Young tableaux (in SU(N) representation form) corresponding
to primitive invariants of Fg SQCD theories and the correspond-
ing representations and dimensions in the case of 4 flavours and
one antiflavour

Ny d(0,3) | d(1,1) | d(2,2) | d(3,0) | d(4,1) | d(5,2) | d(6,0) | deg P(t,u) | dim(M)
1 1 1 1 1 0 0 0 0 4
2 1 2 3 1 1 0 0 0 11
3 1 3 6 10 6 3 1 9,3 30
1 1 1 >9 >16 | >11 >6 >2 7,7 57
<10 | <20 | <20 | <20 | <10
N;>3 1 Ny ? ? ? ? ? 7.7 27N; — 51

Table 5.17: Powers of (1 —"u") in denominator of unrefined Hilbert series
for Eg SQCD theories with Ny flavours with 0 < Ny < 3 and
1 antiflavour and upper and lower bounds for 4-flavour and 1-
antiflavour case

only one type of flavour that we have been investigating so far, because
these are still the same, though we do not as yet know how the notion of
the dimension of the moduli space, i.e. the degree of the pole at ¢t = 1, could
be determinable from even partially refined series:

In this case, the generator of the chiral ring [0,0,2,...] is at order ¢5 and
the generator [2,0,0,1,...] is at order t%u3. Since there are no generators
of the second type in the complete-intersection case (3 flavours and 1 anti-
flavour), we guess for now that it does not occur in the denominator of the
(partially) unrefined series for 4 flavours and 1 antiflavour.

We see that the unbroken gauge group depends only on the total number
of flavours, not whether they are all flavours or some or all are antiflavours.
We do not expect that this should always be the case, however. If we were
to set uw = t in the partially (i.e. distinguishing flavours and antiflavours)
unrefined series to fully unrefine them, we would not obtain the same Hilbert
series as for the theory with the same number of total flavours but with all
being of the same type. The powers of ¢ and u in any term in either the

Taylor series expansion of the Hilbert series or its expression as a rational
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function always differ by a multiple of 3.

The exponents of (1 —t?u?), (1 —t3), (1 —t*u), (1 —t>u?) and (1 —t%) in
the denominators of the unrefined Hilbert series of Eg with Ny flavours and
1 antiflavour are the same as those of (1 —t"), 2 < n < 6 in those of the
unrefined Hilbert series for Fy with Ny flavours. That of (1 —tu) is Ny, and
that of (1 —u3) is 1, and the numerators in the Ny = 3 cases are 1 + t%u3
and 1+ t°. Now, we recall that F} is the unbroken or residual gauge group
when one flavour (or antiflavour) of Eg is given a vacuum expectation value,
each remaining (anti)flavour of Eg decomposes into one fundamental of Fy
and one scalar giving Ny scalars in total, and there is only one (cubic) fully
symmetric invariant of the VEVved (anti)fundamental of Fs. We revisit
this in Section

As we see later, the absence of the (1 — t%u?) term in the denominator
for the (4,1), i.e. 4 flavours and 1 antiflavour, case could reduce the degree
of the numerator of the refined F) series for 4 flavours to 216, or 54 in
each flavour. We also will see that this upper bound also arises from the
5-flavour, no-antiflavour case for Fjg.

We also, following [4], calculated invariants for the case of arbitrary
flavour numbers, with no antiflavours, using the ‘trial and error’ approach

noted earlier. We summarize our results as follows:

e We again found the same invariants as in [4] for each mass level up
to 18, and with there being constraints at orders 15 and 18, we found

the same constraints too.
e We found 28 more invariants at order 21, and 597 (!) constraints.

e The first order at which constraints occur is 15, which again is equal to
the sum of the highest (12) and lowest (3) orders of generators in the
case of the complete intersection (here 4 flavours). Again, constraints
appear at order 15 at the next flavour up (here 5 flavours), and there
are no invariants at this order with 5 flavours (indeed we do not find

new ones here until we get to 8 flavours).

e In this case, the column of 27 boxes is an independent invariant, since
there are no simpler invariants consisting of a single column. We only

need to check this up to order 13.
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Table 5.18: Invariants and even-order higher syzygies of Eg SQCD theories
with no antiflavours arranged by total number of boxes in Young
tableau (down) and minimum number of flavours (across)

10 |11 (12 13|14 | 15
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35199 | 154 | 158 | 103 | 39

Table 5.19: Relations and odd-order higher syzygies of Eg SQCD theories
with no antiflavours arranged by total number of boxes in Young
tableau (down) and minimum number of flavours (across)

Table shows the number of invariants of Eg (including second- and
higher even-order syzygies) and Table the number of relations (in-
cluding higher odd-order syzygies) for a specific ‘mass’ level (i.e. number
of fields) having a specific number of rows (i.e. the minimum number of
flavours at which they appear) in their Young tableaux. The levels are
specified in the first column of the table and the (minimum) number of
flavours in the top row. (Only the results at order 21 are new, those at
lower orders match those in [4].)

We see that the first second-order syzygies occur at order 21, with one each
arising at 5, 6 and 7 flavours. As in the F}y case, there is a diagonal pattern
with the primitive invariants in that the minimum number of flavours at
which new invariants occur for a given order increases with the order, but
in this case there is not an ‘end’ to the primitive invariants and there does

not seem to be one in sight. We expect to have to go to order 33 at least
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before we can confirm the end, though we know there is an invariant with
one column of 27 boxes; the differences with the Fy case are that invariants
occur only at orders divisible by 3 and also that the only single-column
invariant is the one of 27 boxes which is the dimension of the fundamental
representation of g, while in the F) case we have single-column invariants
with 9 and 17 boxes.

We did the same thing with the number of antiflavours fixed at 1, which
was not done in [4].

Tables [5.20, [5.21] [5.22] and show the number of invariants of Eg
(including second- and higher even-order syzygies) and Tables
and show the number of relations (including higher odd-order

syzygies) for a specific ‘mass’ level (i.e. number of fields) having a specific

number of rows (i.e. the minimum number of flavours at which they appear;
note the difference with the Fj case, as here we can have ‘antiflavours’,
or flavours of antifundamentals; in this section the number of antiflavours
is fixed at 1) in their Young tableaux. The levels, with the number of
fundamental fields first and the number of antifundamental fields second,
are specified in the first column of the table and the minimum number
of flavours (of fundamentals) in the top row. (There is also the (1 — u?)
invariant solely in the antiflavour, which we cannot accommodate in these
tables but we state here that it is present.)

There are diagonal patterns similar to in the F) case, but they are less
clear and harder to visualize in this presentation.

Summing the number of invariants of each type for each number of flavour
fields in the invariant over numbers of antiflavour fields, we show in Table
the numbers of invariants and even-order higher syzygies, and Table
[6.29)the numbers of relations and odd-order higher syzygies, for each number
of quark fields.

By inspection, with the exception of the invariant at order tu, the number
of ‘net’ invariants (i.e. primary invariants and even-order higher syzygies
minus primary relations and odd-order higher syzygies) for a given number
of flavours and number of flavour fields in the invariant, summed over the
number of antiflavour fields, is the same for the Fg case with one antiflavour
as for the Fy case. We show this in Tables and for the case
of invariants containing 21 flavour fields (assuming the ‘invariants’ to be

second-order syzygies):
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4 5 6 7 8 9 10
Fy 2nd-order | 191 | 6455 | 36345 | 75147 | 81796 | 57695 | 26850
F relations 0 0 0 1 0 452 1381

Eg 2nd-order | 194 | 6461 | 36414 | 76158 | 86102 | 66124 | 37053
Ejg relations 3 6 69 1012 | 4306 | 8881 | 11584

Table 5.30: Comparison of numbers of net invariants at order 21 in flavours
for Eg with one antiflavour and Fy (part 1)

11 12 13 14 15 16 | 17 | 18 | 19 | 20
Fy 2nd-order | 5681 2 0 0 0 0 010
Fy relations | 2202 | 5336 | 5389 | 2733 | 942 | 245 | 58 | 10
Eg 2nd-order | 18721 | 7379 | 2337 | 997 | 216 | 80 | 36 | 12
Eg relations | 15242 | 12713 | 7726 | 3730 | 1158 | 325 | 94 | 22

| O =D
[e=] Ren)| Ran) Nan)

Table 5.31: Comparison of numbers of net invariants at order 21 in flavours
for Eg with one antiflavour and Fy (part 2)

Though the analysis is too long to present here, the actual invariants
(including relations and higher syzygies), again excluding that at order tu,
also match when those for Fg are summed over the number of antiflavour
fields in the invariant. This is more evidence that suggests the ‘Higgsing’

that we will discuss later in Section [5.6]

5.5.4 F; gauge group

Because the second Dynkin index of the fundamental is again even, this
time 12, Zo anomaly cancellation does not require the number of flavours
to be even.

The refined and unrefined series for up to 3 flavours are known results,
though they are not in [6].

The refined series are as follows:

PL(g(LE?)) — t4
PL(gZE)y = [0 + [4]¢* + [0]¢°
PL(g®E))y = [0,1]% + [4,0]t* + [0, 3]t5 + [2,0]¢® + [0, 0]t'2 + [0, 0]¢*® — [0, 0]¢36
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Ny | 56Ny No. No. No. broken | No. unbroken | Unbroken
invariants | relations gens gens gauge group
1 56 1 0 55 78 FEs
112 7 0 105 28 D,
3 168 36 1 133 0 0

Table 5.32: Numbers of invariants, relations, broken and unbroken genera-
tors and unbroken gauge groups for F7; SQCD theories with up
to 3 flavours

The unrefined series are as follows:

1
(1,E7) —
g 1- ¢4
9(27E7) — 1
(=)L — (1 -8
g(37E7) — 1%
(1 _ t2>3(1 _ t4)15(1 _ t6)10(1 _ t8)6(1 _ t12)(1 _ t18)

1+t
(1 —2)3(1 — t4)15(1 — 6)10(1 — ¢8)6(1 — ¢12)

Again, the difference between the degree (as a polynomial) of the denomina-
tor and that of the numerator is equal to the number of degrees of freedom
in the matter fields when the moduli space is not freely generated (here for
3 flavours): 3.2 4+ 15.4 4+ 10.6 + 6.8 + 1.12 = 18 + 3.56 as required.

The numbers of invariants, relations and broken and unbroken generators
of the gauge group and the unbroken gauge groups are listed in Table

Because of memory constraints, we were again unable to calculate the un-
refined Hilbert series for the 4-flavour case. However, we can again calculate
lower and upper bounds for the degree of the numerator. As for Fy (and

Eg with one more flavour), we have, again defining then d(n) as in [5.35
A(n) |y > 2d(n) v, =s — d(n) =2 (5.40)

Again they must sum to the dimension of the moduli space, which is
56 Ny — 133 = 91. The remaining 28 must be distributed across the
various values of d(n) in some way. They must also be bounded above by

the number of primitive invariants at that order whose Young tableaux have
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Order | Young tableau | SU(4) representation | Dimension
2 [0,1,..] [0,1,0] 6
4 4,...] [4,0,0] 35
6 [0,3,...] [0,3,0] 50
8 [2,0,2,.. ] [2,0,2] 84
12 [0,0,4,. . ] [0,0,4] 35

Table 5.33: Young tableaux (in SU(N) representation form) corresponding
to primitive invariants of E7 SQCD theories and the correspond-
ing representations and dimensions in the case of 4 flavours

Ny [ d@) | d(d) | d(6) | d(8) | d(12) | deg P(t) | dim(M)
1 0 1 0 0 0 0 1
2 1 5 1 0 0 0 7
3 3 15 10 6 1 18 35
4 >5 | >25|>19 | >12 | >2 ? 91
<6 | <35 | <50 <84 | <50
Ny>3| 7 | 7 | 7 | 7 ? 7 56N, — 133

Table 5.34: Powers of (1 —t") in denominator of unrefined Hilbert series for
E7 SQCD theories with Ny flavours with 1 < Ny < 3 and upper
and lower bounds for 4-flavour case

Ny rows or fewer. Only orders divisible by 2 are relevant to the case of E7;
up to 3 flavours we have invariants at orders 2, 4, 6, 8 and 12, and we expect
only these orders and these invariants to contribute to the denominator of
both the unrefined and refined series; though there is an invariant of order
18 that is absorbed into the relation, and three of order 10, two others of
order 12 and yet more of higher orders that arise in the 4-flavour case, we
do not expect them to contribute (i.e. we expect no factors of (1 — t!0)),
just as the [2,0,0,1,...] invariant does not contribute in the case of gauge
group Fy.

The relevant invariants are as shown in Table (.33k

One sees that the upper bounds for d(n) for n equal to 2, 4, 6, 8 and
12 must be 6, 35, 50, 84 and 35 respectively. Calculating the lower bounds
from the values at 3 and 4 flavours, we summarize this information in Table
.34

We see by inspection that the case giving the numerator of lowest degree
has d(n) at 6, 35, 36, 12 and 2, giving a numerator of degree 2.6+4.35+6.36+
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8.12 4+ 12.2 — 4.56 = 264, this is the lower bound. The refined series would
have a numerator of degree 2.6 + 4.35 + 6.50 + 8.84 4+ 12.35 — 4.56 = 1320,
or 330 in each flavour fugacity!

We also, following [4], calculated invariants for the case of arbitrary
flavour numbers using the ‘trial and error’ approach noted earlier. We sum-

marize our results as follows:
e We found the same invariants as in [4] for each order up to 18.

e We found 2686 (!) more invariants at order 20, two of which have a

column of 11 boxes, and 15 constraints.

e The first constraints occur at order 20, which is the sum of the highest
(18) and lowest (2) orders of generators in the 3-flavour case which is
the complete intersection case. 18 is the dual Coxeter number of Fjy.
(The same pattern occurs for Gy (2+4=6), Fy (249=11) and Eg with
no antiflavours (3+12=15).)

e At 4 flavours, only constraints (9 of them) occur at order 20. New
invariants occur at that order at 5 flavours, 75 of them (!), along with
5 more constraints. The final constraint at order 20 emerges at 6

flavours.

e Invariants can only have columns of up to 56 boxes, since this is the
dimension of the fundamental representation of E7;. However, rela-
tions and higher syzygies can have columns with more than 56 boxes.
It would be an extremely time-consuming task to even approach ob-

taining these, however.

e Unlike in the Fg case, since there is a completely antisymmetric in-
variant with 2 boxes, the column of 56 boxes is not an independent

invariant but rather the 28th power of the former.

Table shows the number of invariants of E7 (including second- and
higher even-order syzygies) and Table the number of relations (in-
cluding higher odd-order syzygies) for a specific ‘mass’ level (i.e. number
of fields) having a specific number of rows (i.e. the minimum number of
flavours at which they appear) in their Young tableaux. The levels are

specified in the first column of the table and the (minimum) number of

276



1[2[3[4[5] 6 ] 7 8] 9 [10]11]12
R [0[1]/0/0[ 0| 00 |0]0]O0]O0]oO
4 [1](olojo[ 0] 00 |0]0]0]o0]oO
6] [0[1]/0/0] 0| 0] 0| 0]0]O0]O0]oO
B [0[0|1|/0[ 0| 0] 00| O0]O]O]oO
[Moj[ofofo(3][0] 00 [0 0]0]O0]O
M2j[ofof1(2]5] 10 0] 0]0]O0]o0
M4 [ofofol4]10[ 15| 1 [0 | 0 ]0]O0]O
[16] [0[0|0[5]30] 49 [37 | 4 | 0 |0] 00O
[18] [0 [0 |1 5|60 178 [195 [114| 15 | L | 0 | O
[20] [0 [0 |00 75| 482|879 792|389 |67 | 2 | 0

Table 5.35: Invariants and even-order higher syzygies of E7y SQCD theories
arranged by total number of boxes in Young tableau (down) and
minimum number of flavours (across)

flavours in the top row. (Only the results at order 20 are new, those at

lower orders match those in [4].)

5.6 Higgsing

In ‘normal’ (i.e. non-supersymmetric) gauge theories, the Higgs mechanism
is the breaking of the symmetry group that occurs in the vacuum when
the potential has a minimum at a non-zero value of the matter field(s). It
is often associated with spontaneous symmetry breaking in ¢* scalar field
theories where the mass squared takes on the appearance of being negative
(‘tachyonic’) but actually gives a non-zero vacuum expectation value (VEV)
for the scalar(s).

Before fixing the gauge, the choice of vacuum leads to the appearance of
a number of massless scalar modes called ‘Goldstone bosons’. There is one
for every generator of the gauge group that does not leave the vacuum state
invariant, i.e. every generator that is ‘broken’ by the choice of vacuum. (The
unbroken subgroup is called the ‘stability subgroup’ or ‘little group’, similar
to the case in string theory where it is the part of the Lorentz symmetry that
commutes with the momentum; when the unbroken gauge group is SU(N),
SO(N) or Sp(N) and the matter is in the (anti)fundamental representation,
the little group is the same but with N — 1, when it is in a non-fundamental

representation or the group is exceptional the patterns must be learned, or
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11213456789 ]|10|11]12
20 (0]0]0O|O|O|O|O|O|O] O] O]O
[4 (0]0]0|0O|O0O|O|O|O|O] O] OO
6) (0]0]0|0O|O|O|O|O|O] O] O]O
B (0]0]0|0O|0O|O|O|O|O] O] O]O
[10){0j0[0O|O]O|O]O|O|O| O] O]O
[12]|0of0|0|0|0O|O|O|O|O|O}|O]|O
14/ |0|0|0|0][0O|O|O]|O|O|O}|O]|O
[16)|0|0|0O|0[O0O|O|O|O|O|O|O]|O
[18)|0|0|0O|0|O0O|O|O|O|O|O|O]|O
[200/0|0|0[9|5|1|0|0|0O| 0| O0O]|O

Table 5.36: Relations and odd-order higher syzygies of E7 SQCD theories
arranged by total number of boxes in Young tableau (down) and
minimum number of flavours (across)

‘guessed’ from the number of unbroken generators left over.) One can then
go to ‘unitary gauge’, following the procedure in [41], where the Goldstone
bosons are ‘eaten’ by the massless gauge fields making them massive and
breaking the gauge group to the corresponding little group. There is one
broken generator for every Goldstone boson. Each eaten scalar has 1 degree
of freedom, the massless gauge field D — 2 in D dimensions, and the massive
vector field D — 1, so there is no mismatch.

In supersymmetric gauge theories, the ‘eating’ of a Goldstone boson by a
massless gauge field to give a massive vector field is extended to the eating
of a massless chiral multiplet (in N' = 1) or hypermultiplet (N = 2) by a
massless vector multiplet to give a massive vector multiplet. In both cases
the number of (on-shell) degrees of freedom in the two massless multiplets is
the same (respectively 4 and 8 including CPT conjugates) and the number
in the massive vector multiplet is twice this (including CPT conjugates in
the A/ =1 case but not the N' = 2 case).

In the standard model, the Higgs mechanism also gives rise to fermion
masses. Because neutrinos were only observed in their left-handed form (and
antineutrinos right-handed), the right-handed electron, muon and tau lepton
were assigned to singlets of the ‘weak isospin’ SU(2) part of the gauge group,
while their left-handed equivalents combined with their respective neutrinos
to form doublets. The same procedure was applied to quarks, even though

in this case both members of every isospin (no ‘weak’ here) doublet were
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known to be massive. Left-handed quarks and leptons form doublets of the
SU(2), and the right-handed ones form singlets. Fermion mass terms can
only occur by the interaction of left- and right-handed fermions, which as
they transform differently under SU(2) means explicit mass terms cannot
occur in the Lagrangian; instead, a new scalar (Higgs) field transforming as
a doublet of SU(2) must be introduced to give a gauge-invariant Yukawa-
like term which gives rise to fermion masses when the Higgs acquires its
VEV.

(The true ‘super-Higgs mechanism’ is not merely the supersymmetric
extension of the non-supersymmetric Higgs mechanism, which breaks no
supersymmetry, only the gauge symmetry, but rather spontaneous super-
symmetry breaking by gravitinos eating ‘goldstinos’, which are not the su-
perpartners of Goldstone bosons but arise independently and by a different
process, in supergravity rather than gauge theories.)

Since the scalar potential in a supersymmetric gauge theory can come
from both the F- and D-term constraints, both can give rise to Higgsing of
the gauge group. In SQCD, the (classical) superpotential is zero so only
D-term constraints contribute. The procedure for SU(N) gauge groups is
described in [6].

In [1], the Higgsing is used to ‘derive’ the form of the Hilbert series for
Ny < N, — 1. At a generic point in the moduli space, the VEVs for the
quark and antiquark fields can be rotated to make the top left Ny x Ny
submatrix diagonal and the rest zero; the gauge group SU(N,) is broken
to SU(N. — Ny), its subgroup which commutes with the VEVs, and the

number of broken generators is given by
(N2 = 1) = (N = Nj)? = 1) = 2N;N, - N} (5.41)

Since the number of fundamental fields is 2Ny N, the number that remain
massless after Higgsing is NJ%. These can be parametrized in terms of the

original fields as
My = Qi@ (5.42)

These are not the same ‘type’ of the field as the original fields in that they
are products of more than one of them; this is not inconsistent with the
construction as in [41].

The same procedure is followed in [2] to give the Hilbert series for Ny < N,
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in SO(N,) theories and Ny < N, (or Ny < N.+ 1) in Sp(N,.) theories and
gives gauge-invariant fields of the same type as for SU(N,) (mesonic, i.e.
constructed with traces, although the symplectic trace is antisymmetric).
For higher values of Ny, the gauge group is completely broken leaving a
moduli space of dimension 2NN, — N2 + 1, but the number of invariants,
which now includes baryons (i.e. constructed with determinants), exceeds
the number of generators and so there must be relations between them too,
and when we compute the form of the relations we see they over-cancel the
extra generators so there must be higher syzygies between the relations and
the primitive invariants, and so on...

In [44], the Higgsing of Eg progressively to Fy and Dy = SO(8) (though
not Ay = SU(3)) is demonstrated explicitly by expressing it and its repre-
sentations in terms of its maximal subgroups SU(3) x SU(3) x SU(3) and
SU(6) x SU(2) and their representations. The (anti)fundamental represen-
tation, of dimension 27, can be written as a triplet of three 3x3 matrices, or
as a 6x6 antisymmetric matrix and a general 2x6 matrix, with the elements
of the two being identified appropriately. The VEV can be rotated so that
it takes the form of one of the 3x3 matrices being equal to the identity
with the other two remaining zero, and consequently the 6x6 matrix takes
the form o9 X 13 with the 2x6 matrix remaining zero. This breaks the two
SU(3) x SU(3) corresponding to the un-VEVved 3x3 matrix to their diag-
onal subgroup SU(3) and the SU(6) to Sp(6) (or Sp(3) if one prefers, in
any case it is C3); one sees that Fy has SU(3) x SU(3) and SU(2) x Cs as
subgroups, demonstrating the Higgsing. Similarly giving a VEV to a second
flavour is shown to break one SU (3) to its Cartan subgroup U(1) x U(1) and
C3 to the product of three SU(2); these are the subgroups of D4 ‘normal’
to SU(3) and SU(2) respectively, showing the second Higgsing.

(We can see by inspection that giving a VEV to one single antisymmet-
ric second-rank tensor of SU(2N) does result in a residual gauge group
of Sp(2N), Sp(N) or Cx depending on notation (we will use Sp(N)); the
SU(2N) gauge group has dimension 4N?—1, there are N (2N —1) fundamen-
tal fields and there is one invariant at order N, giving N (2N + 1) unbroken
generators, which is the number of generators of Sp(NN). (Note the second
Dynkin index of this representation is 2N — 2 and therefore even so we can
have theories with only one ‘flavour’ of them.) A second antisymmetric

second-rank tensor, in either the [0,1,0,...,0] or [0,...,0,1,0] representa-
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tion (assume WLOG the first one was in the first of these), decomposes
to a symplectic traceless second-rank antisymmetric tensor and symplectic
trace and the first of these further Higgses Sp(N) down to SU(2)Y, as in
the example above.)

In general, however, Higgsing of exceptional groups, and of classical groups
by matter in non-(anti)fundamental representations, is not demonstrated
explicitly and is usually assumed simply from finding a subgroup of the
original group with the required number of generators (i.e. the unbroken
ones of the original group). We follow this procedure here too, determining
the Higgsing from the invariants (i.e. the Hilbert series).

Higgsing, in principle, involves ‘integrating out’ the broken (i.e. made
massive) generators of the gauge group by flowing to a mass scale much
lower than the mass of the broken generators, which is that of the VEVs
of the fundamental fields of the original theory to which non-zero VEVs
were given. Other than its application in SQCD to determine the number
and form of the gauge invariant and hence still massless new fields, it is also
used in brane tiling theories, where the Higgsing is implemented by removing
one edge from the fundamental domain (as the corresponding field is now
massive) and coalescing the gauge groups corresponding to faces on opposite
sides of the edge. The Higgsing procedure gives rise to a toric diagram
with one fewer external point; however rather than using a ‘trial and error’
method of choosing a point to remove and using the ‘inverse algorithm’ to
go from toric diagram to brane tiling (as opposed to the ‘forward algorithm’
going from brane tiling to toric diagram and Hilbert series), the new perfect
matchings, Chern-Simons levels (in M2-brane theories) and other properties,
and hence the new Hilbert series, are calculated from the new tiling. (Since
there is no inverse algorithm yet formulated for M2-brane theories, this
second method is the only one that can be used for them.)

In these theories the reverse process of un-Higgsing can be easily imple-
mented by adding an edge to the fundamental domain and splitting the
gauge group corresponding to the face into two new ones. (Integrating
out massive fields is also the rationale behind only considering ‘irreducible’
brane tilings, i.e. those in which every node is connected to at least three
other nodes of the opposite colour, because a node connected to only two
other nodes corresponds to a term of order 2 in the fundamental fields and

this would give rise to a mass for those fields, this is described in [39] and
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[29].)

Higgsing is also seen in string theory, in particular in the closed bosonic
string when, in the simplest example, the string is compactified on one
circular dimension of radius R and we have extra massless vector modes

/2 where

and therefore an enhanced SU(2) x SU(2) symmetry when R = «
o’ is the string scale. When R moves away from the critical value, these
extra massless modes gain a mass proportional to (R — o’ 1/ 2) and the gauge
group is broken to U(1) x U(1). This is explained in more detail in [53].
Enhanced gauge groups, and thus Higgsing, also occur for the heterotic
string (of either type), but not for type ITA, IIB or I strings. Yet another
example occurs with gauge theories on D-branes; when initially there are
N branes coincident the gauge group is U(N), but when they are separated
the strings between them gain a mass proportional to the separation of the
two branes on which they end and the gauge group is broken to a product
of U(N;) where i counts the number of different positions of the separated
branes and N; is the number of branes at position x;, with the N; summing
to N.

The smallest classical groups that contain Fy, Fg and E; are SO(26),
SU(27) and Sp(28) respectively and cannot be Higgsed to the corresponding
exceptional groups anyway because the smallest representations that contain
the adjoints of the exceptional groups are the adjoints of the larger groups
and the presence of an adjoint field necessarily Higgses the classical group
down to its maximal torus U(1)" where r is 13, 26 and 28 respectively, and
this does not contain the exceptional group.

In this section, we do not derive the number or form of the gauge invariant
quantities by counting the number of generators of the gauge group broken
by the Higgsing, but rather, inspired by the relations between the Hilbert
series for F) theories with a specified number of flavours and those for Eg
with the same number of flavours and one antiflavour, we compare Hilbert
series for other gauge groups related by Higgsing on only some of their
fundamental fields, i.e. the one antiflavour in these Fg theories.

As opposed to Eg and Fy, however, we will start with the simpler case of
B3 = SO(7) and Dy = SO(8) being Higgsed to G, and G2 being Higgsed
to Ay = SU(3).

We will also demonstrate cases where the Higgsed flavours are not dis-

tinguished in the original Hilbert series from those remaining in the child
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theory, in which case the original series will have to be refined.

The comparisons of Hilbert series for gauge groups related by Higgsing,
along with the classical-group cases where V. is simply reduced to N, — Ny
(with Ny being the number of Higgsed flavours, not the total number), that
we will investigate in this thesis are as follows. We show how the adjoint and
the field(s) being Higgsed on decompose under the branching to the residual
gauge group, giving rise to a number of invariants in the Higgsed fields equal
to the number of scalars in the decomposition of the matter fields but not
the adjoint, and in brackets how any other potentially relevant fundamental
representations of the original group decompose in the residual group. (For
D5 = SO(10) the two types of spinors are conjugate to each other; for
Dy = SO(8) they are both self-conjugate, but we will still call them spinors

and conjugate spinors.)
e B3 to G2 on one spinor
— Adjoint: 21 — 14+ 7
— Spinor: 8 - 7+1
— (Vector: 7 —17)

Dy to Bs on one vector, spinor or conjugate spinor (WLOG vector)
— Adjoint: 28 21+ 7
— Vector: 8, - 7+1

— (Spinor, conjugate spinor: 8;,8. — 8)

Dy to G2 on one each of two types of field
— Adjoint: 28 — 14 + 2.7

— Vector, spinor, conjugate spinor: 8,,8:,8. — 7+ 1

D5 to G2 on two spinors or conjugate spinors (it is not Higgsed at all

by one spinor and goes to Az on one of each type)
— Adjoint: 45 - 14 +4.7+ 3.1
— Spinor, conjugate spinor: 16,16 — 2.7 + 2.1
— (Vector: 10 — 7 4+ 3.1)

Es to Fy on one (anti)fundamental
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— Adjoint: 78 — 52 + 26
— (Anti)fundamental: 27,27 — 26 + 1

FEs to D4 on any combination of two fundamentals or antifundamentals
— Adjoint: 78 —+ 28 + 2.8, + 2.8, +2.8. + 2.1
— (Anti)fundamental: 27,27 — 8, + 85 + 8. + 3.1

FEr7 to Eg on one fundamental
— Adjoint: 133 — 78 +27+27 +1
— Fundamental: 56 — 27 + 27 + 2.1

FEr7 to D4 on two fundamentals
— Adjoint: 133 — 28 +4.8, +4.8; +4.8.+9.1
— Fundamental: 56 — 2.8, + 2.8, + 2.8, + 8.1

F4 to D4 on one fundamental
— Adjoint: 52 — 28 + 8, + 8, + 8.
— Fundamental: 26 — 8, + 8, + 8. + 2.1

G9 to Ay on one fundamental.

— Adjoint: 14 —+ 8 +3+3
— Fundamental: 8 - 3+3+1

When the gauge group is Higgsed to its residual subgroup by all or some
of the matter fields, the non-singlets in the decomposition of the matter
fields cancel out that of the adjoint of the gauge group leaving behind the
adjoint of the residual group and possibly some singlets, and the number
of invariants is the number of singlets in the decomposition of the matter
fields minus the number in the decomposition of the adjoint of the gauge
group.

It is also possible for a group to be partially Higgsed only on one or some
rather than all of the invariants. For example, Fy, Eg and E7 with one
flavour, one flavour and one antiflavour and two flavours respectively can
be Higgsed on only the 2nd-order symmetric invariant (at order t2), the
delta invariant between a flavour and an antiflavour (at tu) and the 2nd-

order antisymmetric invariant (at ¢2) respectively to give By, D5 and Bs
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[34]. There are 1, 2 and 3 vectors left over from the decomposition of the
matter fields that can then further Higgs these gauge groups down to Dy
as is the case for full Higgsing in the first place. We do not consider this

partial Higgsing in this thesis, but we summarize it here:
e FE to D5 on the delta invariant of one fundamental and one antifun-
damental
— Adjoint: 78 — 45+ 16 +16 + 1
— Fundamental: 27 — 16 + 10+ 1
— Antifundamental: 27 — 16 + 10 + 1

e F; to By on the 2nd-rank antisymmetric invariant of two fundamentals
— Adjoint: 133 —+55+2.32+ 11+ 3.1
— Fundamental: 56 — 32 +2.11 + 2.1

e Fy to By on the 2nd-rank symmetric invariant of one fundamental
— Adjoint: 52 — 36 + 16
— Fundamental: 26 - 16+ 9+ 1

The decomposition of E7 to Bs involves an intermediate step to Dg x A1,
where the adjoint decomposes as 133 — (66,1) + (32,2) + (1,3) and the
fundamental as 56 — (32,1) + (12,2). The two spinors of Dg map to the
unique spinor of Bs, the adjoint to the adjoint plus a vector and the vector
to a vector plus a scalar.

We also list below the Higgsings of higher special orthogonal groups by
matter in spinor representations, where there is no general rule as there
is for Higgsing by vector matter and the residual gauge groups have to be

‘guessed’:

e B, to Bz on one spinor (invariant at order 2)
— Adjoint: 36 — 21 + 8+ 7
— Spinor: 16 -8+ 7+1
— (Vector: 9 — 8 +1)

e Bs to A4 on one spinor (invariant at order 4)

— Adjoint: 55 — 24+ 10+ 10+ 1
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— Spinor: 32 —+10+10+5+5+2.1
— (Vector: 11 - 5+5+1)

e Dg to Az on one spinor (invariant at order 4)
— Adjoint: 66 — 35+ 15+ 15+1
— Spinor: 32 — 15+ 15+ 2.1
— (Conjugate spinor: 32 — 20 + 6 + 6)
— (Vector: 12 — 6 + 6)

e D7 to Gy x G5 on one spinor (invariant at order 8)
— Adjoint: 91 — (14,1) + (1,14) + (7,7) + (7,1) + (1,7)
— Spinor, conjugate spinor: 64,64 — (7,7)+(7,1)+(1,7)+(1,1)
— (Vector: 14 — (7,1) + (1,7))

D5 = SO(10) has no single-row invariants in either the spinor or the con-
jugate spinor so it is not Higgsed by one flavour of spinor matter of either
type.

The Higgsing of B4 to B on one spinor must also be broken into two steps,
the first being the decomposition into D4, where the B4 adjoint becomes
28 + 8, the spinor 8, + 8, and the vector 8, + 1. The difference is that
here the second decomposition into B3 does not take the vector of Dy into a
vector plus scalar of B3, but rather one of the two spinor representations of
D, decomposes as such, with the vector and the other spinor of D4 becoming
Bj spinors. Another way to see this is that Higgsing B4 on a vector takes
it to Dy4, under which the By spinor breaks up into one each of the two Dy
spinors and they Higgs D4 down to Ge, while Higgsing By on the spinor
first takes it to Bs; this is further Higgsed to GGo by one spinor but to Az by
a vector, and since progressive Higgsing must be independent of the order,
the By vector must decompose to a Bs spinor (plus scalar).

The Higgsing of D7 to G x G is discussed in [4]. Higgsing D7 on one
vector breaks it to Bg, while the spinor (either one) remains unchanged,
while Higgsing G2 on one fundamental breaks it to As; we deduce therefore
that one spinor of Bg Higgses it to As x Ag. (There are two fully symmetric

invariants, at orders 4 and 8, so the dimensions match; 78 — 64 + 2 = 16.)
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5.6.1 B; gauge group

Bs, or SO(7), is not an exceptional group, but it does have Go as a sub-
group. This is important phenomenologically because when M-theory is
compactified down to 4 dimensions on a 7-manifold, the holonomy group of
the 7-manifold is a subgroup of SO(7), and G is the subgroup that breaks
the spinor of SO(7), the 8, down to a 7 and a singlet. The 32 supercharge
of the SO(1,10) Lorentz group of M-theory decomposes into a 4 x 8 of
SO(1,3) x SO(7), and we require N’ = 1 for a phenomenologically consis-
tent theory. Imposing G2 holonomy on the 7-manifold achieves this, not
that the actual construction of a (compact) such manifold is trivial.

The double cover of SO(7), called Spin(7), is the other important ‘special’
holonomy subgroup according to Berger’s classification of reduced holon-
omy groups, though less important than Gy. The 32 supercharge of the
SO(1,10) Lorentz group of M-theory decomposes into a 2 x (8 + 8.) of
SO(1,2) x SO(8); Spin(7) can be embedded into Spin(8), the double cover
of D4y = SO(8), in three ways, each choosing one of the three 8-dimensional
representations to decompose to a vector plus scalar of Spin(7) and the
other two become spinors. In this context we choose one of the spinors to
decompose into the vector plus scalar, while the other remains a spinor; this
gives one singlet out of 16 total Spin(8) spinor degrees of freedom, preserv-
ing only 1/16 of the supersymmetry, i.e. we have N’ =1 in 3D. (Similarly,
when D4 decomposes to Az = SU(4), i.e. we compactify on a Calabi-Yau
4-fold, one spinor becomes the ‘vector’ 6 plus two scalars and the other
4+4. There are only two singlets out of 16 total degrees of freedom, so 1/8
of the supersymmetry is preserved and we have ' = 2 in 3D.)

The spinor of Bz, which is [0,0,1] in Dynkin notation, has 8 degrees
of freedom. By either taking the plethystic exponential of its character,
weighted by a counting fugacity ¢, and performing Molien-Weyl integration,
or simply by inspection of the singlets in successive symmetrizations, one
sees that there is only one primitive totally symmetric invariant of the spinor

at order 2. The explicit symmetrization is as follows:

15
Sym*[0,0,1]p, = > [0,0,k — 2m]p, (5.43)

m=0

MBS

We see that there is one singlet at every even order, which interestingly is
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the same as for the vector! Converting this to a Hilbert series, we get

g0 (t,u) =

2 (5.44)
The refined series, with the number of spinors, counted by ¢, listed first
followed by the number of vectors counted by u, are as follows for total

number of matter fields up to 5:

PL(gM OBt u)) = ¢

PL(g®%P)(t,u)) = [2)¢°

PL(g®%P)(t,u)) = [2,0)¢>

PL(g%%B3) (¢ w)) = [2,0,0]t2 +[0,0,0]t*

PL(g®%B3) (¢t w)) = [2,0,0,0]t> + [0,0,0,1]t* — [0,0,0, 0]¢*°

PL(g®" ) (t,u)) = [2£* + [0]t*u + [0]u?

PL(g®YB)(t u)) = [2,00t2 + [0, 1]t2u + [0, 0]u?

PL(g* VB (tu)) = [2,0,0]t +[0,0,0]t* 4 [0, 1, 0]t%u + [0,0, 0]t w + [0, 0, 0]u?
—[0,0, 0]t5>

PL(g" P (t,u)) = (0] + [2Ju?

PL(gM3B3) (¢, u)) = [0,0]t + [0, 0% + [2, 0]u?

PL(gMB3) (t u)) = 10,0,0]t2 +[0,0, 1]t2u® + [0, 0, 02w + [2,0,0]u? — [0, 0, 0]t u®

PL(g®2B3)(t u)) = [2;0)t +[0; 1]t2u + [0; 0]t2u® + [0; 2]u?

PL(g®2B3) (4 u)) = [2,0;0]t% + [0, 1; 1]t%u + [0, 1; 0]t%u® + [0, 0; 2]u® — [0, 0; 0]¢%u*

PL(g®3B3)(t,u)) = [2;0,0]t2 +[0;1,0]t%u + [0;0, 1]t2u® + [2; 0, 0]t2u® + [0; 2, 0]u?

—[0;0,0]t*® — [0; 0, 0]t4uS

The (partially, keeping ¢ and w separate) unrefined series, including the
cases for 6 and 7 spinors and no vectors which are not complete intersec-
tions, which were calculated as for those for Gy with 5 to 8 flavours by

unrefining the character expansion and knowing the arithmetic progression
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of the exponents of (1 —t2) and (1 — t*), are as follows:

1

9(1’0733)(@“) = 1=z

1
A

1
R

1
4,0,B _

g( 3)(t,u) - (1 I t2)10(1 _ t4)
g ) (1 —2)15(1 — t4)5 (1 — 2)H(1 — ¢4)5
9(6,0,33)@’“) _ ((1 . t2)18(1 _ t4)9)_1 «

(14 3t% + 12t* + 28¢5 + 57¢% 4+ 78410 4 92¢12 4 78¢1 +
5710 4 28¢18 - 12420 4 3472 4 ¢21)
g(7’0’B3)(t,u) = ((1- t2)22(1 _ t4)13)_1 %
(1 + 6t% + 43t* + 188t° 4+ 701¢% 4 1966¢10 + 4621412 + 8708t + 1381810 +
17976' + 19782t%° + 179761%% + 13818t%* + 870870 +
4621t%8 + 196610 + 701¢3% + 188t34 + 43136 4 638 4 +10)

1
(2,1,B3) _
g = G TR e = )
1
(3,1,B3) —
9 (t,u) (1—2)6(1 — £2u)3(1 — u?)
8,2
gBLBI (1 ) = 1 -t
’ (1 —2)10(1 — ¢4)(1 — £2u)0(1 — t4u)(1 — u?)
1
1,2,B —
g( 3)(t7u) - (1 —t2)(1 —U2)3
1
(1,3,B3) —
g (t,u) (1 — t2)(1 _ t2u3)(1 _ u2)6
4,8
gAB) (1) — 1—17u
’ (1 —¢2)(1 = t2u3)4(1 — t2ut) (1 — u?)10
1
(2,2,B3) —
9 (t,u) (1 —12)3(1 — t2u)2(1 — t2u2)(1 — u2)3
1 — t0y?

(3,2,B3) —
g ) = e )l = ) (1 — a2

(1 — t*u3) (1 — t*ub)
(1 —12)3(1 — t2u)3(1 — t2u?)3(1 — t2u?)3(1 — u?)S

g® P (tu) =

Both the spinor and the vector have second Dynkin index 2 (it is always 2
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for a vector of an SO(N) group, and for a spinor it is the dimension divided
by 4), and the adjoint has Dynkin index 10, which is equal to twice the
dual Coxeter number of SO(7). By the formula, the complete intersection
should occur at 5 total spinors and vectors. As we know from [2], this
does not occur for 5 vectors (but rather at 7), but it does when at least
one fundamental field is a spinor. The first relation should occur at (total)
order 10; this is the case for 5 spinors, for 4 spinors and 1 vector and for 3
and 2 respectively but not for 2 and 3 (where it has order 7, though here
two relations appear and the second is at order 10) or for 1 and 4, where it
appears at order 12 (recall there is no relation for 5 vectors, the relation for
7 vectors has order 14).

In the cases where there is exactly 1 spinor field, with N, vectors (i.e. the
(1, N,) cases), we see that removing the (1 —t2) term from the denominator,
setting ¢ to 1 and then relabelling u as ¢ gives the Hilbert series for G2 with
N, flavours.

Refining them further by setting u = ¢, one can determine the dimension
of the moduli space, which is the order of the pole at ¢ = 1. This is equal to
the number of degrees of freedom in the fundamental fields (8 per spinor,
7 per vector) minus the number of broken generators of the gauge group.
We see that the residual gauge group depends only on the total number of
flavours, not how many are spinors and how many vectors, as long as at least
one is a spinor; this follows from the fact the Higgsing by one spinor gives G
and both spinors and vectors decompose to fundamentals, although spinors
give an extra scalar which accounts for the extra degree(s) of freedom and

the extra dimensions of the moduli space. The fully refined series for the
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complete intersections (5 total spinors and vectors) are as follows:

2 4 6 8
OBy = LHE Ot
(1 _ t2)14(1 _ t4)5

1+¢°

(4,1,B) _
g ) = T ey =

1482+t + 15 +¢8
(1—2)8(1 — 3)6(1 — t4)3
1+ 824 ¢4 415 + 10 + % +¢10
(1—2)8(1 —3)3(1 — t4)3(1 — 15)2
1+
(1 _ t2)11(1 _ t5)4

g2 (tu) =

9(2,3,33)(,57 w) =

g1t ) =

Returning to the partially (un)refined series, in all the cases which are either
freely generated or complete intersections, we can easily combine the U(1)
counting and SU(N) fugacities into U (V) fugacities ¢; (or u; etc), 1 <i <
N, with the character of the fundamental being simply the sum of all the
t;. With the usual Dynkin weights used for SU(N) weights, recall that the
formula for conversion from U(1) x SU(N) to U(N) is as follows:

tz1 — t1 (5.45)
t Zi - ti,l<i<N
Zi—1

t/ZN_l — tN

Both methods are explored in [1] and [2], the first for the character expan-

sion, the second for the initial calculation of the refined series.
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Writing the refined Hilbert series in this new form, we obtain

g0 (t,u)
g0 (t,u)

g OBt )

g®OP) (8, u)
PN

g (t,u)

gt (8, u)

g2 (t,w)

g1 (8, u)

gt (8 u)
X

g2t )
X

e (X0

X

(0

X

1
(1=t = tata)(1 - 13)
1
[Ticicjcs(1 = tity)
1
(IT1<icjca(X = tity)) (1 — tatatsts)
-1, 1
(Ih<icjes(X = tity)) (T 1 <icjcneai<s (L — titjtrts))
1
(1 —83)(1 — tat2)(1 — t3)(1 — tytou) (1 — u?)
1

(H1§i§j§3(1 - tﬂfj))(l — tthU)(l — t1t3u)(1 — tgtgu)(l — u2)

4
A= JItHed T @ —tity) (A — tatatsta) ™"
=1

1<i<j<3
( JI @-ttyw) ") - tatatstau) (1 —u®) 7!

1<i<j<d4

1
(1 =) (1 —uf)(1 — wuz) (1 — u3)
1
(1—-t3)(1 - t2u1u2u3)(n1gz‘§jg3(1 — uu;))
4

A=t Tluha-7"C I (= Puuyu)™)

i=1 1<i<j<k<4
(1 — t2ul’lLQU3U4)_1( H (1 - Uiuj)_l)

1<i<j<4

(1 — t%)_l(l — t1t2)_1(1 — t%)_l(l — t1t2ul)_1(1 — tthUQ)_l

(1 — tltgul’LLQ)_l(l — u%)_l(l — ’LL1UQ)_1(1 — UQ)_I

(1 -aituiu)( [ —tt) ™0 [ Q= titju)(1 = titjus) ™)

1<i<;<3

( JI @ —=ttjurue) ™)@ = uf) ™" (1 = ugug) ™" (1 — uj) ™!
1<i<j<3

1<i<j<3

(1 — Bt3ugugus) (1 — t3t3uiudul) (1 — 3) 711 — t1te) (1 — £3)7?

3
(H(l — tltgui)_l)( H (1 — tthUin)_l)( H (1 — titju1u2u;g)_1)
i=1 1<i<5<3 1<0<5<2
( II @ —wuy)™)
1<i<;j<3
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We see that when we choose one of the t; fugacities (usually the highest
numbered one, i.e. ty, denoting the number of spinors by Ng), remove
(1 — #?) (corresponding to the invariant in the Higgsed spinor) from the
denominator and then set the fugacity to 1, we get Ny — 1 factors in (1 —t;)
for j < Ng; these correspond to the scalars in the decomposition of the
remaining spinors, so removing these and relabelling the u; fugacities u; —
tivn,—1 for 1 < i < N,, we get the Gy Hilbert series for (Ns + N, — 1)
flavours.

We will now consider the case with 1 spinor and 5 vectors, for which we
calculated the Hilbert series using Mathematica. We still list the number
of spinors (here fixed at 1) first, but switch the order of the fugacities, so u
counts the number of spinor fields and ¢ the number of vector fields. This
is to facilitate comparison with the G5 series, where with only one type of

matter field we used ¢t to count them.

g B (1) = (14 3u®t® + 5ut* + utS + sutt” — 5utt® —
u4t10 . 5u6t12 . 3u6t13 _ u8t16)/((1 . t2)15(1 o u2)(1 . t3u2)7)

The (1 — u?) term again corresponds to the symmetric invariant of order 2
of the spinor, and there are no (1 — ¢) terms in the denominator because
there are no further spinors that decompose under G5 into a 7 and a scalar.
Vectors of SO(7) do not decompose under Gg, while the adjoint gives an
adjoint and a fundamental.

We see that the power of (1 — ¢?) in the denominator is not 14, as in
the G9 series, but rather 15, which is the number of invariants of order
2; these transform as a second-rank symmetric tensor of the global SU(5)
with dimension 15. As we will see later, this will cause issues when we con-
sider reversing the Higgsing process (‘un-Higgsing’) and trying to construct
Hilbert series of ‘parent’ gauge groups, in this case B3, in terms of those of
‘child’ groups, here Gs.

Nevertheless, removing the (1—u?) term from the denominator and setting
u to 1 (there are no (1—t) terms) does still result in the Gy Hilbert series for
5 flavours, factoring out a (1 — ¢?) from both numerator and denominator.
The power of (1 —#3u?) in the denominator, 7, is the same as that of (1—13)

for the G case. (This invariant arises because the 3rd antisymmetric power
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of the [1,0,0] vector representation and the 2nd symmetric power of the
[0,0,1] spinor both contain the 35-dimensional [0,0,2]. It transforms in the
[0,0,1,...] representation of the global SU(N,), as for the Gy case.)

Fully unrefining this by setting © = ¢ and thereby identifying vector and

spinor fields, we obtain the following Hilbert series:

g B (1) = (1412 +t* + 3t° + 615 + 3t + 615 + 3t° + 7110 +
Stit 4+ 712 4 3t13 4 61 43¢0 4 6¢16 +
3t17 + t18 + t20 + t22)/((1 _ t2)15(1 _ t5)7)

The dimension of the moduli space is the degree of the pole at t = 1, which
is 22. This is equal to the number of degrees of freedom in the fundamental
fields, 1 spinor and 5 vectors giving 1.8 + 5.7 = 43, minus the dimension of
the gauge group, 21, because the gauge group is completely broken.

The series for 1 spinor and 6 and 7 vectors are given below. Note that in
the 7-vector case, the power of (1—t) is 28, but that of (1+¢) is only 27. We
present two forms of the series, the first in lowest terms and the second with
both numerator and denominator multiplied by (1 + ¢) to remove terms of
order t from both. The power of (1 — t3u?) does follow the same arithmetic
progression as that of (1 —#3) in the Gy case. In all cases, removing the
(1 — u?) term, setting u to 1 and putting the resulting fraction into lowest
terms results in the same Hilbert series as for Gy with N, flavours.

We were unable to obtain the series for 1 spinor and 8 vectors because
of memory constraints; we expect however that the power of (1 + ¢) follows
an arithmetic progression from 5 vectors on, but that of (1 — ¢) continues
to be the dimension of the second-rank symmetric tensor of SU(N,), or the

number of invariants of order 2.
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The series for 1 spinor and 6 vectors is as follows:

g B0 (4 1) = (14 10632 + 15¢* > + 20t%u* + 60t7u? —
70t9u — 21894 + 10t + 45¢1%45 —

196268 — 126¢"3u5 + 105148 + 70¢15u5 —

61Tl — ¢18u0 + 1208 4 6¢13u® — 70¢15u® —

105¢1048 + 12661 7u® + 196t 8u® — 45t20u® —

106218 + 21620010 4+ 70t w10 — 602310 —

2Ot24u10 _ 15t26u12 _ 10t27u12 _

t30ul4)/((1 _ t2)21(1 _ u2)(1 _ 753u2)10)

Here, not only does the power of (1 —#2) in the denominator (21) not match
that in the G9 series with 6 flavours (18), but we have instances, the first
occurring at t°, of there being two terms in the numerator with the same
power of ¢ but different powers of u and therefore there not being a direct
mapping of terms from the G4 series to this series. This makes the process

of reversing the Higgsing, or ‘un-Higgsing’, difficult if not impossible.

1+ 5t%u? — 5150 — 10t7u* — 5% — 1104 +
5695 + 10¢12u8 + 10¢13u8 4 51648 — 194,10 —

5t16u10 o 1Ot18u10 . 5t19u10 + 5t21U12 + t25u14

145t —5t5 — 1067 — 19 + 10¢'2 + 10613 — ¢ —
10t — 519 4 521 4¢P

The series for 1 spinor and 7 vectors is as follows, presented in the two ways
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described earlier:

g B D () = (1 —t + 12 — 2 + 4 — 7 + 15 + 226302 4+ 13¢t%% —
13t°u? + 13t%u? — 13t"u? + 13t3u% — 13t942 +
113t5u* + 216t7u* — 216t53u* — 274190 +

78t10ut — 78ttt 4+ 78t 20t + 190628 +

580¢100° — 5804110’ — 24581218 + 302131’ +
23441145 + 81548 — 29441645 — 8441745 +
11361268 4 4611308 — 461¢t144® — 3655¢154® —
881¢1648 + 8819t 7u® + 3613t1%u® — 7014¢1%5 —
2814t%°u® 4 1506t u® 4 846t %218 — 90t*3u® —
106248 — 6t%u® + 612568 + t27ud + 226010 +
111616010 — 111617010 — 1373¢18410 — 783¢1%010 +
6075200 4 6357t* 100 — 10584122010 —
10584¢%3u!0 4 6357t 2400 + 6075t% 10 —
783t%64,10 — 1373627010 — 111628010 4+ 11169010 +
22t30u10 4 t18u12 + 6t19u12 _ 6t20u12 o

106t2 2 — 90t%2u'? + 846t%u'? + 150614 0% —
2814t%°u'? — 7014t%%u'? + 3613t%7u'? +
8819t%8u'? — 8811222 — 3655t30u'? — 461¢3u'? +
461632012 + 113t33u'2 — 842801t — 294¢P9 14 +
8t30ut 4+ 23441301 4 30263201t — 2458¢33utt —
580634 u!t + 580135 ult + 190304 + 78133416 —
783410 + 7813wt — 27430410 — 216137w 16 +
21633010 4+ 113t3%016 — 13636018 + 1363718 —
13t38u18 + 13t39u18 o 13t40u18 + 13t41u18 +
22t42u18 4 2539u20 - t40u20 4 t41u20 - 7542u20 +

t43u20 _ 7544u20 + t45u20)/((1 _ t2)27(1 _ t)(]. _ u2)<1 _ t3u2)13)

296



g BB () = (147 + 226302 + 35t4u? — 13t1%2 + 113t5u* +
329t7ut — 490t%u* — 19610t + 7813 ut +

190t + 770100 — 3038125 — 2156¢13ub +

2646t1405 + 2352¢15u5 — 286¢10u° — 3781 7uS —

84t1805 + 113t12u® 4+ 5741348 — 4116t5u® —

4536t10u® + 7938170 4 124326184 — 34014198 —

982812048 — 1308t21u® 4 235228 + 756t%3u® —

196t248 — 112t%5u® 4+ 762708 + 1288 + 2215010 +

133¢164,10 — 1484¢"8410 — 21561940 + 5292294, +
12432621410 — 422722419 — 2116833410 —

4227t 4 12432t%5u10 4 5292¢204,10 — 215612 7w !0 —

1484t %410 + 13330410 4 22131410 4 ¢184,12 1

7t19012 — 1126201 — 196t%2u!? + 756t ut? +

2352¢%4u'? — 1308t %542 — 982826412 — 340127 u!? +
12432t% 412 4 7938t%%u!? — 453613002 — 411613 w2 +
574t3u!? + 113634012 — 844281 — 378191 —

286¢30u ' + 2352631014 + 2646432014 — 2156t 0t —

303834 + 770t30uM 4 190£3Tu!M + 7833410 —

19635016 — 490t37u16 4 320¢390,16 1 11341916 —

1313618 4 3574218 4 9044318 | 439,20 | t46u20)/((1 —2)2(1 — w?)(1 — 3u2)13)

Fully unrefining, we obtain the following Hilbert series, in each case pre-
sented first in lowest terms with (1 4 ¢) factors in the denominator and

secondly with all factors in the denominator being of the form (1 —¢") with
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n > 1:

g B0 (¢ 1) = (14 2t + 4¢% + 6t° + 9t* + 225 4+ 51¢° +
90t + 145t° + 210t + 311410 4 482t + 689¢12 +
896113 + 1118t + 1350t + 164216 + 194447 +

2110t 4 2160t 4 2180t%° + 2160t2! + 2110t%2 +
1944t%% 4 1642t + 1350t + 111825 + 8961%7 +
689¢%8 + 482¢%° 4 3117 + 210¢3! 4 1453 + 9033 +
51634 + 22635 4 930 4 6137 + 4438 + 2439 +
/(1= )P+ 1)1 —)")

g B0 (¢ 1) = (1 + % + t* + 10° + 16t° + 107 + 165 + 10¢° +
36t10 + 701! 4 3612 + 1561 4 10¢1° + 60¢10 +

10617 — 136¢1% — 116t — 30¢%° — 40t — 30%2 —

116t%3 — 136t%* + 10t%° + 60t%5 + 10t27 + 15628 +

36t30 4 70t3! 4 3632 4 103 + 16631 + 106 +

16¢%5 4+ 10837 4+ 38 + 19 4 142) /(1 — 2)21 (1 — 19)19)
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g B (1) = (14 4t + 1262 4 283 4 58t* 4 130¢° 4 311¢5 +
713t7 + 152315 + 2996t° + 561140 + 10267t +

1822312 + 31020¢'3 + 50499¢'4 + 78835¢1° + 119213t'6 +
175282t + 249373t'8 4 342255¢19 + 4538102 +
583258121 + 729077t%% 4 885489t% + 1041499t* +
1186222t%° + 1311646t%¢ 4 1410834t%7 + 1476500t%8 +
1499934t%° + 1476500t30 4 14108343 + 1311646132 +
118622233 + 10414993 + 8854893 + 729077136 +
58325837 + 453810138 4 342255¢3% 4 24937310 +
175282t + 1192132 4 78835¢%3 + 50499t + 31020t +
18223140 4+ 10267¢*7 + 5611 4 299614 + 1523t%0 +
713t51 4 311452 4 130t + 58t°* + 28t + 12¢°° +-

457 1 £58) /(1 — 2)B(1 + )31 — £9)13)

g Bl (1) = (14 262 + 3t* + 226° + 39¢° + 45¢7 + 75¢° +
68t + 224t10 4 420t + 360t1% 4 282¢13 + 300t +

334t + 1010410 + 46417 — 1318¢1% — 1562t — 887120 —
662t21 — 742¢%2 — 4256t% — 5217t + 110t 4 2873t%° +
1075t%7 — 349t28 — 142417 + 4074t30 4 9272631 +

407432 — 1424133 — 349t34 4 10753 + 2873136 +

110637 — 521738 — 4256137 — 742¢40 — 662t — 887142 —
1562t — 1318t + 464¢%° + 1010¢%6 + 334¢7 + 300¢%® +
282119 4 360650 4 420651 4 224152 4 68t°3 + 755 +

4555 4 39¢56 4 22657 4 378 4 2450 4 £62) /(1 — £2)27(1 — £°)19)

As with the only partially unrefined series in the 7-vector case, the powers
of (1—t¢) and (1+1¢) in the denominator are different in both cases, though
this time there are extra powers of (1 + ¢). The dimensions of the moduli

spaces are again given by the dimension of the pole at ¢ = 1, which are 29

299



and 36; they are again equal to the number of degrees of freedom in the
fundamental fields (50 and 57 respectively) minus the number of broken
generators, which is again all 21.

For N, > 5, the fully unrefined Hilbert series can be written in the fol-

lowing form:

SOV = s e s (540
This gives a moduli space of dimension 7N, — 13 = 7N, + 8 — 21, and a
(degree of denominator)-(degree of numerator) of 7N, + 8 as required.

As we did for Eg with one antiflavour, we will now calculate invariants for
the case of arbitrary vector flavour numbers, with one spinor flavour, using
the ‘trial and error’ approach noted earlier. We summarize our results as
follows:

Tables [5.37] |5.38] [5.39| and |5.40| show the number of invariants of Bs (in-
cluding second- and higher even-order syzygies) and Tables |5.41} |5.42} |5.43]
and show the number ofrelations (including higher odd-order syzygies)

for a specific ‘mass’ level (i.e. number of fields) having a specific number of

rows (i.e. the minimum number of flavours of vectors at which they appear,
with the number of spinor flavours fixed at 1) in their Young tableaux. The
levels, with the number of vector fields first and the number of spinor fields
second, are specified in the first column of the table and the minimum num-
ber of flavours (of vectors) in the top row. As in the Eg with one antiflavour
case, we cannot accommodate the (1 —u?) invariant solely in the spinors in
these tables, but we understand it is present.

Summing the number of invariants of each type for each number of vector
fields in the invariant over numbers of spinor fields, we show the number of
invariants (including even-order higher syzygies) at each order in the vector-
counting fugacity in Table and the number of relations (including odd-
order higher syzygies) in Table

By inspection, the number of ‘net’ invariants (i.e. primary invariants and
even-order higher syzygies minus primary relations and odd-order higher
syzygies) for a given number of vectors and number of vector fields in the
invariant, summed over the number of spinor fields, is the same for the
Bs case with one spinor as for the Gy case. We show this in Tables [5.47]
and for the case of invariants containing 21 vector fields (assuming the
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5 6 7 8 9 10 11
Go 6th-order | 0 3 15 28 32 29 23
G5 Sth-order | 33 | 1049 | 6086 | 15016 | 22485 | 23980 | 20453
Bs 6th-order | 19 | 361 | 2200 | 6192 | 10445 | 12368 | 11748
Bs 5th-order | 52 | 1407 | 8271 | 21180 | 32898 | 36319 | 32178

Table 5.47: Comparison of numbers of net invariants at order 21 in vectors
for B3 with one spinor and Gy (part 1)

12 13 14 15 16 17 | 18 | 19 | 20

Go 6th-order 15 8 4 2 0 0 0 0 0

Go Sth-order | 14626 | 9210 | 5038 | 2433 | 966 | 318 | 69 9 0

Bs 6th-order | 9387 | 6730 | 4281 | 2531 | 1329 | 654 | 267 | 101 | 26

B3 5th-order | 23998 | 15932 | 9315 | 4962 | 2295 | 972 | 336 | 110 | 26

Table 5.48: Comparison of numbers of net invariants at order 21 in vectors
for B3 with one spinor and Gy (part 2)

‘invariants’ to be second-order syzygies):

Though the analysis is too long to present here, the actual invariants
(including relations and higher syzygies) also match when those for Bs are
summed over the number of spinor fields in the invariant. This echoes
the parallels between Eg with one antiflavour and F; which we discovered

earlier.

5.6.2 D, gauge group

D, is again not an exceptional group, but we recall that it is Higgsed to Bs
by one vector, and by triality, also by one spinor or one conjugate spinor.
It can be decomposed to B3 in three ways, each choosing one of the three
fundamental representations to decompose into a vector and scalar of Bs,
with the other two becoming spinors. If there are more fields of the same
type, they become vectors of B3, with an additional scalar; fields of the

other two types become spinors of Bs:
D4(Nva N57 Nc) — B3(Ns + NC7 Nv - 1)

with the number of fields of each type being permuted if the field being
Higgsed on is actually a spinor or conjugate spinor.

The second Dynkin index of all three fundamental representations is 2,
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for the vector it is defined to be so and for the spinors one can show it either
by triality or by the fact that it is the dimension, which is here 8, divided by
4. That of the adjoint is 12, which is equal to the (dual) Coxeter number.
One expects therefore that the complete intersection would occur at 6 total
flavours and with the relation at total order 12, again except for the case
where all fundamental fields are the same, here WLOG vectors, where we
know it to occur at 8 flavours with the relation at order 16.

The refined series for up to 6 total flavours, or 8 if they are all the same
type (WLOG vectors) are as follows: (note the number of vector fields comes
first, then spinors, then conjugate spinors; though when there are two types

of fields present they are usually considered to be spinors and conjugate
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spinors, though the fugacities ¢ and u are used here rather than u and v)

PL(gMN#00Pa)y - — 2 21 < Ny <7

PL(g®%0P) (¢ w,v)) = [2,0,0,0,0,0,0]t> + [0,0,0,0,0,0,0]t* — [0,0,0,0,0,0, 0]

PL(gMYOP) (¢ wv)) = 2 +u?

PL(gZE0DPI (¢ v)) = [2)2 + u?

PL(g®LOPI (¢ v v)) = [2,018% + u?

PL(g&E0P) (4w v)) = [2,0,00¢% + 0,0, 0]t*u? + u?

PL(g®H P (4w, v)) = [2,0,0,0)t% + [0,0,0, 1]t + u? — [0,0,0,0]t*0u*

PL(gZ20P) (¢ v)) = [2;0]¢% + [0; 2]u? + [0; 0]t>u?

PL(gB320P) (¢ v)) = [2,0;0]t% + [0, 0; 2> + [0, 1; 0]¢%u?

PL(g*20P) (¢ 0)) = [2,0,0;0]t> +[0,0,0; 2Ju® + [0, 1,0; 0]t2u® + [0, 0, 0; 2]t *u?
—[0,0,0;0]t*u* — [0,0, 0; 0]tu*

PL(g330P) (4w, v)) = [2,0;0,00t% + [0,0;2,0lu® + [0,1;0, 1]t2u® — [0, 0; 0, 0]t5u°

PL(gM P (4w 0)) = 2 44 + 0% + tuw

PL(g® b P) (4w 0)) = 2162 + [0]u® + [0]0? + [1]tuw

PL(gGPI (¢ 0)) = [2,0]¢% +[0,0]u? + [0, 0]v? + [1, 0]tuv + [0, 0]t>uv

PL(g*bbP) (4w, 0)) = [2,0,00t% + (0,0, 0]u® + [0, 0,00 + [1,0, 0Jtuv + [0,0, 1]t>uv
+10,0,0]t*u? + [0, 0, 0]t*v? — [0, 0, 0]t*u?v? — (0,0, 0]t3ute?

PL(g®2 P (¢ u,0)) = 250062 + [0; 2u® + [0; 0]0? + [1; 1Jtuv + [0; 0]t%u?

PL(g®2LP) (¢, 0)) = [2,0;0)t + [0,0;2]u® + [0, 0; 0]v® + [1, 0; 1]tuv + [0, 1; 0]t2u?
+10, 0; 1]t3uv — [0, 0; 0]tSutv?

PL(g®22P) (¢ u,0)) = [2;0;00¢% + [0;2; 0Ju® + [0; 0; 202 + [1; 1; 1Jtuw + [0;0; 0)t%u?

+10; 0; 0]t%v* + [0; 0; 0]u?v? + [0; 0; 0]t2u®v? — [0;0; 0]t utv?

The unrefined series, including the non-complete intersection cases for 9,
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10, 11 and 12 vectors but no spinors or conjugate spinors, are as follows:

g(Nv :070,D4)

9(8,0,0,D4) (t, u, ’U)

9(970707D4)

9(1070707D4)

9(11,070,D4)

g12:0.0.D4)

1
- 1<N, <7
1— 10 1448
(1 _ t2)36(1 _ tS) - (1 _ t2)36

L+ ¢ 410+ 1085 4 ¢10 4412 4 11 4410
(1—¢2)H

(1 — %) 7521 + 3t + 6t* + 10° + 60t + 570 + 5612 + 5714 +

6010 + 10¢'8 4+ 6120 + 3¢22 + ¢24)

(1 —#%)7%0(1 4 6% + 21¢* + 565 4 291¢% + 648¢'0 +

1078¢'2 4 156214 + 211266 + 1562¢'8 + 10782 +

648t%2 + 29112 4 56t2° 4 21t%® 4 6¢30 + 132)

(1 —t2)7%8(1 + 102 + 55t* + 2205 + 12105 +

437810 4 1149512 + 24530t + 45695¢16 + 62270¢'8 +

6835420 + 62270t + 45695t%* + 24530t%0 + 11495¢2% +

4378130 + 1210632 + 22034 + 5530 4 103 + +10)
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(1,1,0,D4)(

g t,u,v)

9(2,1,0,D4) (t, u, ’U)

(3,1,0,D4) (

g t,u,v)

(4,1,0,D4)(

g t,u,v)

(5,1,0,D4)(

g t,u,v)

(2,2,0,D4)(

g t,u,v)

(3,2,O,D4)(

g t,u,v)

(4,2,0,D4) (

g t,u,v)

(3,3,0,D4) (

g t,u,v)

(1,1,1,D4)(

g t,u,v)

(2,1,1,D4)(

g t,u,v)

(3,1,1,D4)(

g t,u,v)

(4,1,1,D4)(

g t,u,v)

(2,2,1,D4)(

g t,u,v)

(3,2,1,D4)(

g t,u,v)

g(2,2,2,D4)(

t,u,v)

(1—¢2)(1 —u?)
1
(1—-22)°(1 —w?)
1
(1 —1¢2)5(1 —u?)
1
(1 — £2)10(1 — t4u2)(1 — u?)
1 — ¢10y*
(1 _ t2)15(1 _ t4u2)5(1 _ u2)
1
(1= £2)3(1 — u?)3(1 — t2u?)
1

(1—2)6(1 — u2)3(1 — £2u2)3
(1 — ttut) (1 — t8u?)

(1 —£2)10(1 — u2)3(1 — 2u2)5(1 — thu?)3

1— 645
(1 _ t2)6<1 — u2)6(1 — t2u2)9
1
(1—=t2)(1 —u?)(1 —v?)(1 — tuv)
1
(1—12)3(1 —u?)(1 — v2)(1 — tuw)?

1

(1—=¢2)6(1 — u?)(1 — v?)(1 — tuv)3(1 — t3uw)
(1 — t*u?0?) (1 — tBu?v?)

(1—t2)10(1 —u2)(1 — v?)(1 — tuv)*(1 — B3uv)*(1 — t*u?)(1 — t*0?)
1

(1 —12)3(1 —u?)3(1 — v2)(1 — tuwv)*(1 — t2u?)
1 — t0ute?

(1 —1t2)6(1 — u?)3(1 — v2)(1 — tuw)5(1 — t2u?)3(1 — t3uwv)?

1 — t*utet

(1 =231 —u?)3(1 — v2)3(1 — tuww)8(1 — t2u2)(1 — t202)(1 — u?02)(1 — t2u?0v?)

As with the Bj case, the residual gauge group is the same for any given

total number of fundamental fields, as long as they are of at least 2 different

types; the reason is that Higgsing on one field reduces the gauge group to

Bs, with all other fields of the same type becoming vectors (plus a scalar)
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and fields of other types becoming spinors, and further Higgsing on one
spinor reduces the gauge group to G, and now all fundamental fields of Dy
decompose to fundamentals of Go plus scalars.

Recalling that the number of invariants for Eg with 2, 3 or 4 total flavours
was the same however many were fundamentals and however many antifun-
damentals, we see that this is not the case with 2 total spinors here; there
are three invariants, at order t2, for 2 spinors of the same type, but only 2,
at orders t2 and u?, for one of each type.

The moduli space is the dimension of the pole at ¢ = 1 in the fully unre-
fined series when all fields are identified and counted by the same fugacity
t; it is equal to the number of degrees of freedom in the fundamental fields,
which here is 8 times the total number of fields, minus the number of bro-
ken generators of the gauge group. This is easy to see by inspection for the
freely generated cases and the cases with only one type of field (WLOG only
vectors); for the complete intersections with more than one type of field the

fully refined Hilbert series are as follows:

1+t2+t4+t6+t8+t10+t12
(1 _ t2)15(1 _ t6)5
1+t 16 4410
(1 _ t2)13(1 _ t4)5(1 _ t6)2
14+t +¢8

(1 _ t2)12(1 _ t4)8

1+t4 416 4410
(1= 2)2(1 — 3)3(1 — 5)(1 — 15)

14t 4+ 8
(1 _ t2)10(1 _ t3)6(1 _ t4)2(1 _ t5)2
1+

(1= 2)9(1 — 8)5(1 - t4)3

9(5,170,D4) (t, t, t)

9(472707D4) (t, t, t) —

g(3’3’0’D4)(t, tt) =

S NS

9(372,17134) (t, t, t) —

9(272727[)4) (t, t, t) —

In all cases the moduli space has dimension 20, which is the number of
fundamental fields (48) minus the dimension of the group (28).

Recall that Higgsing of Eg on two total flavours of fundamentals or an-
tifundamentals, or Fj4 on one fundamental, gives D, as the residual gauge
group, and the (anti)fundamental of Eg and fundamental of Fy both decom-

pose under Dy to give a vector, a spinor and a conjugate spinor, plus scalars
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Ny | 24Ny No. No. No. broken | No. unbroken | Unbroken
invariants | relations gens gens gauge group
1 24 4 0 20 8 Ao
48 21 1 28 0 0

Table 5.49: Numbers of invariants, relations, broken and unbroken genera-
tors and unbroken gauge groups for Dy SQCD theories with up
to 2 flavours each consisting of a vector, spinor and conjugate
spinor

to fill out the representation of the parent group. From now on we will only
consider these cases, where the number of vectors, spinors and conjugate
spinors are equal and identified by the same fugacities ¢ or t;. Identifying t,

uw and v in the (1,1,1) and (2,2,2) cases, we have the following refined series:

PL(gMEPI(t 41) = 3¢+ 43
PL(g@22P0 ¢ ¢ 4)) = 3[2]¢% + ([3] + 2[1]))¢* + 3[0]¢* + [0]¢° — [0]¢'2

The unrefined series are as follows:
1
- 2P0 1)
1 —¢12 1415

g P 1) =

B (e )T s Bl (e U R

The numbers of invariants, relations and broken and unbroken generators
of the gauge group and the unbroken gauge groups are listed in Table

The invariants and their form in the 3-flavour case are as shown in Table
.50

One sees that the upper bounds for d(n) for n equal to 2, 3 and 4 must
be 18, 27 and 27 (the latter two 26 and 18 excluding the invariants that do
not occur in the 2-flavour case) respectively. Calculating the lower bounds
from the values at 1 and 2 flavours, we summarize this information in Table
.51k

We were unable to calculate either the refined or unrefined Hilbert series
in the 3-flavour case; from these bounds we know that the minimum degree

of the numerator of the unrefined series, assigning each of the 8 ‘remaining’
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Order | Young tableau | SU(3) representation | Dimension
2 3[2,.. ] 3[2,0] 18
3 3,...] (3,0] 10
3 2[1,1,.. ] 2[1,1] 16
3 [0,0,1,.. ] [0,0] 1
4 3[0,2,. . .] 3[0,2] 18
4 3[1,0,1,.. ] 3[1,0] 9

Table 5.50: Young tableaux (in SU(N) representation form) corresponding
to primitive invariants of Dy SQCD theories and the correspond-
ing representations and dimensions in the case of 3 flavours

Ny | d@) | d@) | d(4) | deg P(t) | dim(M)
1 3 0 0 4
2 8 3 6 20
3 >15|>15| >6 ? 44
1 <26 | <18
Ny;>2| 7 ? ? ? 24N — 28

Table 5.51: Powers of (1 —¢") in denominator of unrefined Hilbert series for
D4 SQCD theories with Ny flavours with 1 < Ny < 2 and upper
and lower bounds for 3-flavour case

poles to the lowest possible order maintaining the bounds, is 2.18 + 3.20 +
4.6 — 3.24 = 48, and the highest is 2.15 + 3.15 + 4.14 — 3.24 = 59. If
we include the [0,0,1] and 3[1,0,1] invariants, the refined series has order
2.1843.27+4.27—3.24 = 153 (51 in each flavour), and if we do not, it has
order 2.18 + 3.26 + 4.18 — 3.24 = 114 (38 in each flavour).

We could try calculating the (refined) Hilbert series through un-Higgsing
of the Hilbert series for As with 6 flavours of both quarks and antiquarks,
identifying fugacities ¢; = u; and then the ¢; in groups of 3. Recall that one
flavour of V4S+C in D4 decomposes to give three each of the fundamental
and antifundamental plus six scalars in Ao, and the adjoint gives the adjoint
of Ay plus three quark-antiquark pairs and two scalars, so the 3-flavour
(V4+S+C) case of Dy corresponds to the 6-flavour case of Ay with 12 added

scalars.
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5.6.3 D5 gauge group

While Dj is not an exceptional group, it follows the ‘sequence’ of exceptional
groups down from FEg by progressively removing the rightmost node in the
Dynkin diagram, drawing them so that the ‘off-line’ node is attached to
the third node from the left. As with the E, groups, it is the group that
arises from Kaluza-Klein toroidal compactification of n = 5 dimensions of
M-theory (or n — 1 = 4 of either type II string theory), though the actual
U-duality group is only its discrete subgroup Dss)(Z) (or Eyn(Z))-

The second Dynkin index of both spinor representations is 4, because
the normalization of the vector to have Dynkin index 2, for any special
orthogonal group, means that the spinors have a value of the dimension of
the representation, which is here 16, divided by 4. That of the adjoint is 16,
which is equal to the (dual) Coxeter number. One expects therefore that
the complete intersection would occur at 4 total flavours of spinors, with
the relation at total order 16.

The refined series, for up to 4 total spinors, are as follows:

PL(g®*P)(t,u)) = (o]t

PL(g®0P9)(t,u)) = [0,2]t*

PL(g*%Ps)(t,u)) = [0,2,01t* — [0,0,0]t'
PL(gOEP9) (1 u)) = tu+ t2u?

PL(g@bP9) (1, u)) = [1tu+ [2]t%u® + [0]¢*

PL(g®bP9) (t,u)) = [1,00tu + [2,0]t2u® + [0, 2Jt* + 2, 0]t°u

—[0,0)t% — [0, 0]¢"%u?
PL(g@2P9) (1, u)) = [1;1)tu+ [2; 2% + [1; 1]t3u® + [0; 0]¢* + [0; 0]u?
+[0; 0]t5% 4 [0; 0]t*ub — [0; 0]t%uS — [0; 0]¢3u®

We see that the relation in the (4,0) case, and the higher of the two relations
in the (3,1) and (2,2) cases, indeed is at total order 16.
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The partially unrefined series are as follows:

g®OP (¢ u) =

11—t
1
iy
1 _ 416 14 ¢4 o 8412

9(4,0,D5)(t’ u) = = — ELI—J?;)”’

1
(1 —tu)(1 — t2u?)

1
(1 —tu)?(1 — t2u?)3(1 — t4)
(1 — t%u)(1 — t12u?)
(1 —tu)3(1 — t2u?)6(1 — t4)6(1 — t5u)
(1 — t5u%) (1 — t3u?)

gBOP (¢ u) =

g(l’l’D5)(t, u) _

gD (tu) =

9(3’1’D5)(t, u) _

9(2727D5)(t’ u) = (1 _ tu)4(1 _ t2u2)9(1 — t3u3)4(1 — t4)(1 — U4)(1 - t6u2)(1 - t2u6)

(14 3u3) (1 + t2u? + t*u? + t5u5)

(1 —tuw)*(1 — t2u?)8(1 — t3u3)3(1 — t4)(1 — ut)(1 — tOu?)(1 — t?ub)

Recalling that the number of invariants for Fg with 2, 3 or 4 total flavours
was the same however many were fundamentals and however many antifun-
damentals, we see that this is not the case with 2 total spinors here; there
is only one invariant, at order t*, for 2 spinors of the same type, but there
are 2, at orders tu and t?u?, for one of each type. There are no invariants at
all when there is only one spinor (of either type); this can be seen from the

general formula for the symmetric power of the spinor, which is as follows:

Sym*[0,0,0,0,1]p, = ¥ [m,0,0,0,k — 2m]p,

As we see, the singlet only occurs for £ = 0.

The dimension of the moduli space is given by the order of the pole at
t = 1 in the fully unrefined (setting u to t) series, and is given by the number
of degrees of freedom in the fundamental fields minus the number of broken
generators of the gauge group. It can be seen by inspection of the partially
refined series, except in the (3,1) case where the relation does not factorize

into terms in the denominator and we must therefore write the series in its
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(Nf,Na) | 16(Ny + Na) No. No. No. broken | No. unbroken Unbroken
invariants | relations gens gens gauge group

(1,1) 32 2 0 30 15 A3
(2,0) 32 1 0 31 14 Go
(3,0) 48 6 0 42 3 A

or (2,1)
(4,0) 64 20 1 45 0 0
(3,1) 64 21 2 45 0 0

or (2,2)

Table 5.52: Numbers of invariants, relations, broken and unbroken genera-
tors and unbroken gauge groups for D5 SQCD theories with up
to 4 total flavours of spinors

fully unrefined form to show the dimension:

(I+2+ 4+ 0+ (1 + 2 + 48 +¢12)

(3,1,D5) _
9 (t1) (1— £2)2(1 — t4)11(1 — ¢6)6

We see the dimension is 19, which is equal to 64 (the number of matter
degrees of freedom) minus 45 (the dimension of Ds which is completely
broken by the Higgsing). This is the same as in the (4,0) and (2,2) cases.

The numbers of invariants, relations and broken and unbroken generators
of the gauge group and the unbroken gauge groups are listed in Table

We see that although the Higgsing on two spinors of the same type gives
a different residual gauge group (G2) to doing it on one spinor of each type
(As = SU(4)), subsequent Higgsing on another flavour of either type of
spinor is the same in both cases (41 = SU(2)). This occurs because either
spinor of D5 decomposes to two G2 fundamentals (and two scalars), and
these Higgs G to Aq, while it would decompose to two flavours (quark plus
antiquark) of As and Higgsing on these would also give A; as the final gauge
group.

We will demonstrate the Higgsing of the (4,0) case on 2 flavours using the
SU(4) x U(1) notation as follows. Higgsing on the fourth flavour, we obtain

using the method outlined in the Bz (with only spinors) case earlier:

e [0,2,0;4] — [2,0;2] 4 [1,1;3] 4+ [0, 2;4] - so no scalars or invariants, as
expected from the fact that Ds is not Higgsed by just one flavour

e [0,0,0;16] — [0,0;12] (relation)

Performing the second Higgsing on the third flavour, we obtain:
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e [2,0;2] — [0;0]+[1; 1]4+[2; 2] - one invariant from Higgsed two flavours,
two scalars from decomposition of one remaining spinor of D5 to two

fundamentals of G5 and two scalars

e [1,1;3] = [1;1]+[2;2] +[0; 2] 4 [1; 3] - two scalars from decomposition

of the other remaining spinor
 [0,2;4] — [22] + [1;3] + [0; 4]
e [0,0;12] — [0; 8] (relation)

We see that we have remaining (3[2] + [0])¢2 + 2[1]t3 + t* — ¢®. Identifying
the fugacities ¢; with t3 and to with ¢4 in the refined series for Go with 4
flavours, which corresponds to the mapping of Dynkin labels from SU(4) to
SU(2) as [n1,n2,ng] — [n1 + ng] (simply discarding na!), we find that the
[2,0,0]t2 +[0,0,1]t2 4 t* — 8 indeed map to this.

Higgsing the (3,1) case on two of the three flavours, we have, doing it on
the third flavour:

e [1,0;1;1] — [0;0;1] 4 [1;1;1] - one scalar from decomposition of re-

maining flavour, discard this in second step

2,0;2;2] — [0;0;2] + [1;1; 2] + [2;2; 2]

[0,2;4;0] — [2;2;0] + [1;3; 0] + [0;4; 0]

[2,0;5;1] = [0;2; 1] + [153; 1] + [2; 4 1]
e [0,0;9;1] — [0;6; 1] (relation)
e [0,0;12;4] — [0;8;4] (relation)
Higgsing again on the second flavour:

e [1:1;1] — [0; 1]4[1; 1] - second scalar from decomposition of remaining

flavour
e [0;0;2] — [0;2]
o [1;1;2] = [0;2] + [1;2]

o [2;2;2] — [0;2] + [1;2] + [2;2]
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e [2;2;0] — [0;0] + [1;0] + [2;0] - one scalar from decomposition of
antiflavour plus one invariant in Higgsed flavours

e [1;3;0] — [1;0] 4 [2;0] - second scalar from decomposition of anti-
flavour

e [0;4;0] — [2;0]

o [0;2;1] — [1;1]

o [1;3:1] = [+ (21

o (241 = [1;1]+ [21] +[3;1]

e [0;6;1] — [3;1] - relation cancels out invariant in last step

e [0;8;4] — [4;4] - relation

We can, after discarding the invariants and scalars, reassemble these latter

into SU(2) representations (taking ¢ — tz,u — t/2):
e 3([0;2] + [1;1] + [2;0]) — 3[2]¢2
o 2([1;2] + [2;1]) — 2[1]¢3
o [1;1] — [0]¢
e [2;2] — [0]¢*
e [4;4] — [0]¢® (velation)

We see that this matches the Higgsing of the (4,0) case on two flavours,
and therefore also matches the Go Hilbert series for 4 flavours (with the
mapping from SU(4) to SU(2) understood).

Higgsing the (2,2) case on the two antiflavours is simple, just set u to
1, one obtains one invariant in the Higgsed antiflavours from [0;0]u?, four
scalars from the decomposition of the flavours from [1;1]tu and the same
Hilbert series as for the other two Higgsings.

The process of un-Higgsing would seem to be particularly hard in this
case, in the case of Higgsing on one flavour and one antiflavour or two
antiflavours there is the difficulty with the antiflavour(s) as we have seen

with Bs, in the case of Higgsing on two flavours there are the issues that
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Order(t,u) | Young tableau | SU(3) x SU(2) representation | Dimension
(2.2) 2... 2] 2,0:2] 18
(2.,6) 0,1,.. 0] 0,1;0] 3
(3.3) 1,1, 1] 1,1:1] 16
(4,0) 0,2,.. 0] [0,2:0] 6
(6,2) [0,3,.. ;0] [0,3;0] 10

Table 5.53: Young tableaux (in SU(N) representation form) corresponding
to primitive invariants of D5 SQCD theories and the correspond-
ing representations and dimensions in the case of 3 flavours and
2 antiflavours

N, d(0,4) | d(1,1) | d(2,2) | d(2,6) | d(3,3) | d(4,0) | d(6,2) | deg P(t,u) | dim(M)
0 1 0 0 0 0 0 0 0 1
1 1 2 3 0 0 0 0 0 6
2 1 1 9 1 1 1 1 14,14 1
3 1 6 > 15 >2 >3 >2 >2 7,7 3
<18 <3 <16 <6 <10
N;>2 1 2N, ? ? ? ? ? 7.7 16N, — 13

Table 5.54: Powers of (1 —¢"u"") in denominator of unrefined Hilbert series
for D5 SQCD theories with Ny flavours with 0 < Ny < 3 and
2 antiflavours and upper and lower bounds for 3-flavour and
2-antiflavour case

the Higgsing must be done twice and also that the SU(2) representations
must be ‘expanded’ into SU(4) ones in some way. We will not discuss this
further here.

Returning to the calculation of Hilbert series with 5 total spinors, we were
again unable to do so using Mathematica because of memory constraints.
Once again, however, we provide in Table the analysis of the lower and
upper bounds based on the lower cases, with the number of antiflavours
(conjugate spinors) fixed at 2 in the first case and 1 in the second case:

The lower and upper bounds for the powers of (1 — ¢t"«™) in the denom-
inator in the (Ny,2) case are shown in Table

Setting u = t, the coefficients of (1 — ?) in the 3-spinor case is fixed at
2N; = 6, that of (1—t%) is between 18 and 29, that of (1—t%) between 8 and
16 (or 20 if the [0,0,1;3] invariant is considered) and that of (1 —®) between
2 and 10. Knowing the moduli space must have dimension 35 = 5.16 — 45,
there must be 6, 18, 8 and 2 at each order with one extra at order 4, 6
or 8; the degree of the numerator must range between 6.2 4+ 18.4 + 8.6 +
2.8 —5.16 + 4 = 72 and 76. (That for 5 spinors and no conjugate spinors
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Order(t,u) | Young tableau | SU(4) representation | Dimension
(2,2) 2,.. ] [2,0,0] 10
(4,0) [0,2,...] [0,2,0] 20
(5.1) 2.0.1,..] 2.0,1] 36

Table 5.55: Young tableaux (in SU(N) x SU(N) representation form) cor-
responding to primitive invariants of D5 SQCD theories and the
corresponding representations and dimensions in the case of 4
flavours and one antiflavour

Ny d(1,1) | d(2,2) | d(4,0) | d(5,1) | deg P(t,u) | dim(M)
1 1 0 0 0 0 2
2 2 3 1 0 0 6
3 3 6 6 6 21,5 19
4 4 >9 >11 > 12 7,7 35
<10 | €20 | <36
N;>3| N 7 7 7 7.7 | 16N; — 29

Table 5.56: Powers of (1 —t"u"") in denominator of unrefined Hilbert series
for D5 SQCD theories with Ny flavours with 1 < Ny < 3 and
1 antiflavour and upper and lower bounds for 4-flavour and 1-
antiflavour case

necessarily has order 35.4 — 5.16 = 60).
For the case with one antiflavour, we have the invariants as in Table
And in Table are the (bounds for the) powers in the denominator:
Similarly, in the fully unrefined case we have powers of (1 — t2) fixed at
Ny =4, of (1 —t*) between 20 and 30 and of (1 — %) between 12 and 36
respectively. With these necessarily adding up to 36, one of the powers must
be reduced by one; supposing it is the power of (1 — #2), the numerator is
of degree 3.2 +20.4 + 12.6 — 5.16 = 78.

5.6.4 Fg gauge group

We have already considered Higgsing of Eg with N; flavours and one an-
tiflavour on the antiflavour, where we remove the (1 — u?) factor from the
denominator, set the antiflavour fugacity u to 1 and remove factors of (1—1t)
(in the partially unrefined case) or (1 —t;) (fully refined) to get the Fy series
with Ny flavours. In this section we will consider Higgsing in more general

theories with either no antiflavours or 2 or more of them, and also Higgsing
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on more than one (anti)flavour, although we have already dealt with the
case of exactly 2 antiflavours in the Dy section, Fg being Higgsed to D4 on
two total flavours.

We have already described the explicit Higgsing in terms of explicit rep-
resentations of Fg fundamentals as three 3 x 3 matrices, corresponding to its
decomposition as its maximal subgroup SU(3)3, and also as a 6 x 6 antisym-
metric matrix and a 2 x 6 matrix, corresponding to that as SU(6) x SU(2),
which is also a maximal subgroup, and how the interaction of the breakings
of the subgroups results in the breaking of Fg to Fy and Dy progressively;
this is described in more detail in [44].

The k-th symmetric product of the fundamental of Eg is given by the

following formula:

L5) L5
Sym*[1,0,0,0,0,0]5, = > [m,0,0,0,k — 2m, 0],
m=0 n=0
This expression shows that we do have symmetric invariants solely in flavours
or antiflavours, the primitive one being of order 3.

This can be expressed in PE form as follows:

1 o o
— +2
PE(t[1,0,0,0,0,0]z,) = =% > Im,0,0,0,n, 0172
m=0n=0
For the Hilbert series, we consider first the case with up to 4 flavours but no

antiflavours. As before, we rewrite the refined series in terms of fugacities
t; for 1 <1 < Ny:

1
(1,0,Ee)y _
g20E)) 1
(1 =) (1 — t3t2) (1 — t123) (1 — 13)
gBOE)) 1

(H1§i§j§k§3(1 — titjty)) (1 — £513)

The invariants at order 3 are as for 3 flavours but with 4, j and k ranging
from 1 to 4 instead of 3; that at order 12 is Hle t3 and the relation at order

24 is T3, t¢, which reduces to a (1 4 [[i_, t?) term in the numerator.
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Because the invariants at order 6 transform in the [0,0,2,...] representa-
tion ([0,0,2] of SU(4) specifically), we cannot list them easily in a product
form similarly to above. (This is not an issue for 3 flavours because it reduces
to [0,0], i.e. the singlet.) They are given by the second symmetric product
of the [0,0,1] representation, i.e. Sym?(titats + titaty + titsty + totsts).

When the theory is Higgsed on one flavour, the factor (1 —t:]”vf) is removed
from the denominator, then ¢y, is set to 1 and terms in (1 —¢;) for 1 <
t < Ny — 1, corresponding to the scalars arising from the reduction of the
remaining flavours to Fy, are removed too.

When Ny = 2 in the original theory, after removing the (1 — ¢3) term
and the one scalar, we are left with one invariant 2 and one #}, which is
the same as in the Fj theory with one flavour. When N; = 3, there are
two scalars and we are left with 3, 4 and 1 invariant at orders 2, 3 and 4
respectively, again as for Fy with one less flavour. In the Ny = 4 case, the
Higgsing results in the following invariants, after removing the (1 —t3) term

and the three scalars from ;2 (here i, j, ... take values 1 to 3):

e t;tj, 1 < j (from t;t;t4) in the [2,0] representation of SU(3), there are
6 of them

o titjty, i < j <k (unchanged) in [3,0] (10)

. t?t?, i < jand t2tjty, i # j # k (cancelling out ¢7) in [0,2] (6) (the

second symmetric power of t1to + t1t3 + t2t3)
. t%t?tk, i # j # k (cancelling out t4) in [0,1] (3)
e t3t3¢2 (unchanged) in [0,0] (1)
o t3t3t3 (cancelling out ¢3) in [0,0] (1)
o t915tS (cancelling out t$) (relation) in [0,0] (1)

InU(4) - U(3),or SU(4) xU(1) — SU(3) x U(1) notation, with the U(1)

charge being the order of the invariant, we have

e [3,0,0;2] — [0,0;0] +[1,0; 1] + [2, 0; 2] + 3, 0; 3]; first term is invariant

of t4, second is scalars

e [0,0,2;6] — [0,2;4] + [0,1; 5] + [0, 0; 6]
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e [0,0,0;4n] — [0,0; 3n], here for n = 3 (invariant) and n = 6 (relation)

We see that, in the freely generated and complete intersection cases, Hig-
gsing of Eg theories with Ny flavours and no antiflavours on one flavour
results in the Fy theory with Ny — 1 flavours.

We will now consider theories with both flavours and antiflavours (still no
more than 4 total). We have already seen the Higgsing on one (anti)flavour
when there is only one of this type of field, so we will not consider this case

further. This time we will write the plethystic logarithm of the series in ¢;

form:
PL(gOEE) (w)) = tu+ 3 + u® 4 t2u?
PL(gZLE) (tu)) = (b + to)u+ 3 + 2ty + t112 + t5 4+ u® + (2 + t1to + t2)u?

2,2
+t1t2u

The first case has already been covered, whether we Higgs on ¢ or u; Hig-
gsing the second on t2 gives rise to the one (cubic) invariant of the Higgsed
flavour, two scalars from the decomposition of the remaining flavour and
the antiflavour, three invariants at order 2, four at order 3 and one at order
4, as required for the F) theory with 2 flavours.

For simplicity we will stick with SU(Ny) (and SU(N,)) notation for the
(3,1) and (2,2) cases:

PL(g®VE) (1 u)) = [1,0)tu+ [3,0]3 4 [0, 0]u® 4 [2, 0]t2u® + [0, 2]t u
+[0, 1]t%u* 4 [0, 0]t + [0, 0]t%u® — [0, 0]t 8w’
PL(g®2F0) (t u)) = [1;1)tu+ [3; 0] 4 [0; 3]u® + [2; 2]t%u® + [0; 1]t u

+[1; 0)tut + [1; 18303 + [0; 0]t u 4 [0; 0]t5ub — [0; 0]t 2wu!?
In the (3,1) case, Higgsing on one of the 3 flavours decomposes the SU(3) x
U(1)(xU(1)) global symmetry group to SU(2) x U(1)(xU(1)):

e [1,0;1;1] — [1;1;1] + [0;0;1]; second term corresponds to scalar in

decomposition of antiflavour

e [3,0;3;0] — [3;3;0] 4+ [2;2;0] +[1;1; 0] + [0; 0; 0]; last term is invariant
in Higgsed flavour, previous one is scalars in decomposition of other

two flavours
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[0,0; 053] — [0;0; 3]

2,052;2] — [2;2;2] + [1;1;2] + [0;0; 2]

[0,2;4;1] — [0;45 1] + [1;3; 1] + [2;2; 1]

[0,1;5;2] — [0;4;2] + [1;3; 2]

[0,056;0] — [0;4; 0]
e [0,0;9;3] — [0;6;3]
e [0,0;18;6] — [0;12;6] (relation)

The first U(1) (the second term) gives the overall power of the t; fugacities,
and the SU(2) (the first term) their breakdown into ¢; and ¢t powers; the
second U(1) (the last term) gives the power of u. Fj only has one type of
fundamental, so we must incorporate the u fugacity into the t¢;; we relabel
u to tn, (here t3). Summing terms with the same sum of the two U(1)

charges into SU(3) x U(1) representations, one obtains:

o [151;1] + [2;2;0] +[0;0;2] — [2,0;2]

[3;3;0] + [050; 3] + [1;1; 2] + [2;2; 1] — [3,0; 3]

2325 2] + [153; 1] + [0;4; 0] — [0, 2; 4]

[054; 1] + [153;2] — [0, 1; 5]

e [0;4;2] — [0,0;6]

[0;6; 3] — [0;0; 9]
e [0;12;6] — [0;0;18] (relation)

These are the same invariants and relations that occur in the F) theory with
3 flavours, as expected.
In the (2,2) case, we Higgs on one of the antiflavours and decompose the
second SU(2) x U(1) to U(1):
e [1;1;1;1] — [1;1;1] + [1;1;0]; second term is scalar in decomposition

of remaining antiflavour

e [3:3;0;0] — [3;3;0]
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e [0;0;3;3] — [0;0; 3] 4 [0; 0; 2] 4 [0; 0; 1] 4 [0; 0; 0]; last term is invariant
in Higgsed antiflavour, previous one is scalars in decomposition of
flavours

o [2:22;2] = [252;2] 4 [2;2; 1] 4 [2;2; 0]

e [0;4;1;1] — [0;4;1] + [0;4;0]

o [1;1;0;4] — [1;1;2]

o [153;1;3] — [1;3;2] + [1;3; 1]

e [0;4;0;4] — [0;4;2]

e [0;6;0;6] — [0;6;3]

e [0;12;0;12] — [0;12;6] (relation)

Since these are the same as in the Higgsing of the (3,1) case on one of the
3 flavours, they again recombine to form the same invariants and relations
as in the Fy theory with 3 flavours, as required.

When considering higher (total) numbers of flavours, unfortunately be-
cause of memory and processor constraints we were unable to calculate
Hilbert series, even the unrefined cases, for any of the cases with 5 total
flavours or more, i.e. any non-complete intersections, unlike in the case of
Bs with one spinor and up to 7 vectors. We do have the unrefined series for
F, with 4 flavours, but not the refined series.

We will now move on to the case of Higgsing on more than one (anti)flavour.
Recall that the residual gauge group is D4. The refined Hilbert series for

the case with no antiflavours are as follows:

PL(g®OF) (t,u)) = [3,01t3 + [0,0]t5
PL(g%%Fe) (¢ w)) = [3,0,0]t> +[0,0,2]t% +[0,0,0]t2 — [0,0,0]¢**
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and when there are antiflavours:

PLg* )t w) =
PLg* )t w) =

[1]tu + [3]t3 4 [0)u® + [2]t*u® + [0]t1u
[1,0)tu + [3, 0> + [0, 0]u® + [2, 0]t*u® 4 [0, 2]t*u
+[0, 1]t%u* + [0, 0]¢° + [0, 0]t7u® — [0, 0]¢**u®
PL(g®%E0) (t,u)) = [1;1)tu+ [3; 0]t 4 [0; 3]u® + [2; 2t%u® + [0; 1]t*u
+[1; 0]t 4 [1; 1]£20® + [0; 0]t*u + [0; 0]t%u® — [0; 0]¢12u!?

Higgsing the (3,0) case on two flavours, the invariants at order 3 give the 4
invariants of the Higgsed flavours, 3 scalars corresponding to the reduction
of the remaining flavour to a vector, a spinor, a conjugate spinor and three
scalars, two invariants at order 2 (#3t2 and t3t3 in the original theory) and
one at order 3 (#3 which remains unchanged). That at order 6, t3t3¢3, reduces
to t2, another invariant at order 2, giving 3 in total, along with 1 at order 3.
This is as in the Dy theory with one flavour of (vector+spinor+conjugate
spinor).

Higgsing the (2,1) case on the two flavours, we get the 4 invariants of
the Higgsed flavours from the [3]t3 term, two scalars from the [1]tu term
(remember u is the fugacity we are keeping, though the SU(2) Dynkin label
relates to t) and one from [0]t*u giving 3 in total, 3 invariants at order 2
from [2]t?u? and one at order 3 from [0]u?, again as in the D4 theory with
one flavour of V4+S+C.

Higgsing the (2,1) case on one flavour and one antiflavour, we get the four
invariants of the Higgsed flavours one each from the first four terms, three
scalars from the first, second and fourth terms, three invariants of order 2
from the second, fourth and fifth terms and one invariant of order 3 from
the second term, again as in the D4 theory with one flavour of V+S+C.

We will not show the various Higgsings of the three Eg theories with
4 total flavours, but they all give the 4 invariants of the two Higgsed
(anti)flavours and the 6 scalars from the decomposition of the two remain-
ing (anti)flavours, and the 9 invariants at order 2, 8 at order 3, 3 at order
4 and one at order 6 and the relation at order 12, which are the same as in
the D, theory with two flavours of V4+S+C, as required.

We will now consider reversing the process and un-Higgsing on Fy series.

Reverting temporarily back to the case with exactly one antiflavour, we
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recall that in the non-complete intersection case of Bs with one spinor and
N, > 5 vectors, the power of (1 —t2) (where ¢ is the vector fugacity) is not
the same as that in the G5 series with N, fundamentals, but rather that of
(1 —t) goes as the dimension of the quadratic invariant [2,...] in SU(N,)
and that of (1+t) goes as 6N,, — 15 for NV, > 5 (as far as we know, i.e. up to
7 vectors). Therefore by analogy we do not expect the powers, of (1 —t2u?),
(1—13), (1 —t*u), (1 —t5u?) and 1 —15, to be the same in the Fg series with
one antiflavour (although that of (1 — ¢3u?) in the Bs series is the same as
that of (1 —3) in the Go series).

We know, however, that they are at least as high, because after removal
of the (1 —u?) and (1 — tu)™/ factors corresponding to the invariant in the
Higgsed antiflavour and the scalars resulting from the decomposition of the
Ny fundamentals under Fy, and setting u to 1, the Hilbert series are the
same (in their lowest terms).

Assuming that they are the same, as our lower bound, we see therefore
that the degree of the numerator in ¢, the flavour fugacity, of the Eg unre-
fined Hilbert series with 4 flavours and 1 antiflavour is at least 84, which is
the degree of the numerator of the unrefined series for Fj flavours; the four
extra powers coming from the (1 — tu)* in the denominator are cancelled
out by the four extra degrees of freedom which become scalars under the
decomposition. As for the degree in u, we have, again as a lower bound,
1.3+4.1+10.24+16.0+14.1+8.2+4.0—1.27 = 30. As for the B3 case with
one spinor, however, we do not expect to be able to do the un-Higgsing.

We will now return to un-Higgsing of Fy theories to Fg theories with only
one type of fundamental field, WLOG flavours. Recall that for Higgsing Ejg
with Ny flavours on one flavour, there is one cubic invariant from the Higgsed
flavour and one scalar from the decomposition of each of the remaining

flavours, and the refined series for I are as follows:

PL(gM (1) = £ 448
PL(gZ™) () = [2]¢ + 33 + [0)¢*
PL(g®™) () = [2,0]t2 +[3,01t> + [0, 2]t* + [0,1]¢° 4 [0, 0]t° + [0, 0]t° — [0, 0]¢®

Q

In the 1-flavour (of Fj) case, the invariant from the Higgsed flavour, the
scalar and the two invariants assemble into a [3] of SU(2) at order 3, as for Eg

with 2 flavours; in the 2-flavour case, the invariant from the Higgsed flavour
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is in the [0;0] representation of SU(2) x U(1) and the scalars are in [1;1] and
these along with the quadratic assemble into a [3,0;3] of SU(3) x U(1), with
the [0;4] becoming a [0,0;6], as for Es with 3 flavours. In the 3-flavour case,
we have the invariant from the Higgsed flavour in [0,0;0] and the scalars in

[1,0;1]; assembling them into SU(4) x U(1) representations, we have
o [0,0;0] + [1,0;1] + [2,0:2] + [3,0:3] — [3,0,0;3]
o [0,2;4] +[0,1;5] + [0,0:6] — [0,0,2; 6]
e [0,0;9] — [0,0,0;12]
e [0,0;18] — [0,0,0;24] (relation)

These are as in the Eg theory with 4 flavours, as required.

For us to be able to un-Higgs the 4-flavour F} case to Eg with 5 flavours,
we would need to know the 4-flavour F4 Hilbert series in its refined form,
which we are not close to at the moment (the numerator has degree 216,
or 54 in each flavour fugacity). We could try to derive this latter series by
un-Higgsing the D, series with 3 flavours of V+S+4C, which as things stand
we would have to obtain itself by un-Higgsing the Ay series with 6 flavours,
identifying quark and antiquark fugacities and then the flavours in groups
of 3.

Un-higgsing to the case of Eg with Ny > 3 or more flavours and 2 an-
tiflavours would have to start from D4 with Ny flavours of V4+S+C and
would face the same problems as with obtaining Eg Hilbert series with Ny

flavours and one antiflavour from those of Fy with N flavours.

5.6.5 F; gauge group

We recall that F~ is Higgsed by one fundamental to Fg, with any remaining
fundamentals being decomposed to a fundamental 27, an antifundamental

27 and two scalars. Recall the E7; refined series:

PL(g(l’E7)) - 4
PL(g@ED)y = [0]¢% + [4]¢* + [0)¢5
PL(g®F))y = [0,1]t2 4 [4,01t* + [0, 3]t° + [2,0]¢® + [0, 0]¢12 + [0, 0]t'® — [0, 0]¢36
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We can write the PL in the 2-flavour case in terms of distinct fugacities 1,

to as follows:
PL(gPEY = t1tg + t3 + 3ty + 1263 + t183 + 3 + 313

Higgsing this on to gives the invariant in the Higgsed flavour, two scalars
resulting from the decomposition of the remaining flavour and one invariant
at order 2, two at order 3 and one at order 4.

We will again use the SU(3) x U(1) notation for the 3-flavour case:

e [0,1;2] — [0;2] + [1;1]; second term is one scalar for each of flavours
1 and 2

[4,0;4] — [4;4] + [3; 3] + [2; 2] + [1; 1] + [0; 0]; last term is invariant in
Higgsed flavour 3, previous term is other scalar for each of flavours 1
and 2

e [0,3;6] — [0;6] + [155] + [2; 4] + [3; 3]

2,0;8] — [2;6] + [1;5] + [0;4]

[0,0;12] — [0; 8]
e [0,0;18] — [0;12]
e [0,0;36] — [0;24] (relation)

Setting u =t in the Ej series with Ny = N,, we get the following series:
PL(gMbE) (¢ 4) = 2 4263 +

PL(g**F6)(1,1)) (12] + [0))¢% + 2[3]¢3 + ([4] + [2] + [0])¢* + 2[1]°
+([2] + [0])¢° + [0]® + [0]¢"2 — [0]¢*

We see that the series resulting from Higgsing of E7 series with 2 and 3
flavours on one flavour are the same as these, as required.
We will again Higgs the series for 3 flavours on 2 of those flavours, where

the residual gauge group is Dy:

e The [0,1] term gives rise to one invariant of the Higgsed flavours (from

tats) and two scalars (from t1t9 and 1t3).
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The [4,0] term gives five more invariants of the Higgsed flavours, four
more scalars, three invariants at order 2 in ¢, two at order 3 and one

at order 4.

The [0,3] term, which is the 3rd symmetric power of (t1t2 + tit3 +
tats), gives rise to one invariant of the Higgsed flavours, two further
scalars, three invariants at order 2 in ¢; and four invariants at order 3.
This completes the 7 invariants on the two Higgsed flavours and the
8 scalars from the decomposition of the remaining 56 of E7 into two

(vector-+scalar+conjugate spinor) flavours of Dy and eight scalars.

The [2,0] term gives rise to 3 invariants at order 2, 2 at order 3 and

one at order 4.

The [0,0] term at order 12 gives rise to one invariant at order 4, that
at order 18 gives one at order 6 and the relation at order 36 gives a
relation at order 12. In total at orders 2, 3 and 4 we get 9, 8 and
3 invariants, as in the Dy theory with two flavours of V4+S+C, as

required.

Considering un-Higgsing on one flavour from Fg with (N, Ny) (they must

be equal) to E7 with Ny + 1 flavours, there is one (quartic) invariant in the

Higgsed flavour and 2N scalars from the decomposition of the remaining
flavours under Fg. In the (1,1) case, 1+t+4t2+t34-t* from the PL augmented

by the invariant and scalars assemble to give a [4] at order %, and the extra

terms ¢ + t3 give [0] at orders t? and t° as required for E; with 2 flavours.

In the (2,2) case, the invariant forms a [0] at order 0 and the four scalars

two [1]s at order 1, so we have:

[0;0] + [15 1] + [2;2] + [3;3] + [4; 4] — [4,0;4]
[1;1] +[0;2] — [0,1;2]

[3; 3] + [2; 4] + [1; 5] + [0; 6] — [0, 3; 6]

[054] + [155] + [2; 6] — [2,0;8]

[0;8] — [0;12]

[0;12] — [0; 18]
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e [0;24] — [0;36] (relation)

These are as in the E7 theory with 3 flavours, as required.

When going to higher number of flavours, for which we know the degree
of the numerator is at least 264 even in the unrefined series (and 1320,
330 in each flavour, in the refined one!), there is also the issue of obtaining
the Eg series for (N, Ny) specifically, rather than some other combination
of 2Ny total flavours, for Ny > 3, since the Higgsing process on Eg with
arbitrary (Ny, N,) leaves no trace of how many of the original fields were
fundamentals and how many antifundamentals, since they both decompose
to the same Fj fundamental under Higgsing on one (anti)flavour, and so on
etc.

We will not discuss the un-Higgsing on two flavours from D4 up to E7

here.

5.6.6 [, gauge group

We recall that F} is Higgsed by one fundamental to Dy, with any remaining
fundamentals being decomposed to a vector, a spinor, a conjugate spinor

and two scalars. Recall the Fj refined series:

PL(gM (1) = £ 448
PL(gZ™) () = [2]¢ + 33 + [0)t*
PL(g®™) (1) = [2,0]t2 +[3,01t% + [0, 2]t* + [0,1]¢° + [0, 0]t° + [0, 0]° — [0, 0]¢®

<

We can write the PL in the 2-flavour case in terms of distinct fugacities t1,

to as follows:
PL(g®F)) = 82 4 b1ty + 12 + 13 + 3ty + 112 + £3 + 1343

Higgsing this on 2 gives the invariant in the Higgsed flavour, two scalars
resulting from the decomposition of the remaining flavour and three invari-
ants at order 2 and one at order 3, as in the D4 theory with one flavour of
V+S+C as required.

As when Higgsing the (3,0) and (3,1) cases for Eg gauge group and the
3-flavour case for E7, we will use the SU(3) x U(1) notation:

e [2,0;2] — [2;2] + [1;1] 4 [0;0]; last term is quadratic invariant in
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Higgsed flavour 3, second term is one scalar for each of flavours 1 and
2

[3,0;3] — [3;3] + [2;2] + [1;1] + [0;0]; last term is cubic invariant in
Higgsed flavour 3, previous term is the other scalar for each of flavours
1 and 2

e [0,2;4] — [0;4] + [1;3] + [2; 2]

[0, 1;5] — [0;4] + [1; 3]
e [0,0;6] — [0;4]

e [0,0;9] — [0;6]

[0,0; 18] — [0;12] (relation)

We obtain the two invariants of the Higgsed flavour, two scalars for each of
the remaining flavours, nine invariants at order 2 transforming in three [2]
representations of SU(2), eight at order 3 in one [3] and two [1]s and three
at order 4 and one at order 6 all transforming in [0]s, plus one relation at
order 12 also transforming in a [0] of SU(2), as required.

Higgsing on two flavours, the reduced gauge group is As = SU(3). We
get the 8 invariants of the two Higgsed flavours (3 quadratic, 4 cubic, one
quartic), 8 scalars from the decomposition of the remaining flavour to three
(3 +3) pairs and eight scalars, and the nine quadratic and two cubic (iden-
tifying quark and antiquark fugacities ¢; and u;) invariants and one relation
at order 6, as required.

We cannot demonstrate Higgsing of F} theories with higher numbers of
flavours, because we have not been able to compute the refined series, which
has a numerator of degree 216 (54 in each flavour) in the 4-flavour case.

We will now consider un-Higgsing on one flavour from Dy with N flavours
of V45+C up to Fy with Ny + 1 flavours. Recall the refined series for Dy:

PL(gMEPI(t ¢ 1) = 3¢+ 43
PL(gZ22P0 @ ¢ 4)) = 3[2]¢% + ([3] + 2[1])¢* + 3[0]¢* + [0]¢° — [0]¢2

There are two invariants from the Higgsed flavour of Fj and two scalars from
each of the Ny remaining flavours. For Ny = 1, we have 2 + 2t + 3t2 4+ 13,
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1+t +12 gives [2]t2, 1+t + 2 +13 gives [3]t3, and t? gives [0]t?, as required
for Fy with 2 flavours. For Ny = 2 we have two scalars in the [0] of SU(2)

and four scalars forming 2[1], so we have:
e [0;0] + [1;1] +[2;2] — [2,0;2]

e [0;0] + [1;1] +[2;2] 4 [3; 3] — [3,0; 3]

[2;2] + [1; 3] + [0; 4] — [0,2; 4]

[153] + [0;4] — [0,1; 5]

e [0;4] = [0,0;6]

e [0;6] — [0,0;9]

e [0;12] — [0,0;18] (relation)

This is as for Fy with 3 flavours, as required.

Again, un-Higgsing D4 with Ny > 3 flavours of V4-5S4-C to Fy with Ny +1
flavours requires knowledge of the refined series in the Dy case. This should
be obtainable by un-Higgsing A, with 3(NN; —1) flavours, indeed the Ny = 3
case should be obtainable via Mathematica since it is the result of Higgsing
the Fy theory with 4 flavours and is therefore necessarily less complex, but

has not been found so far.

5.6.7 G, gauge group

When the theory with Ny flavours is Higgsed on one of them, the gauge
group is broken to Ay = SU(3) and the remaining Ny — 1 flavours each
decompose into one fundamental of As, one antifundamental and one scalar.

We begin by writing the refined series for up to 4 flavours in terms of
U(Ny) fugacities t;:

PL(g"M () = ¢

PL(gZC)(4) = £ +tity + 13

PL(g®9) (1)) = 2 4 ity + tits + 13 + tols + 2 + titots

PL(gWC)(t) = (D tity) + tatats + titots + tatsts + totsts + titatsts
1<i<j<4
—11t5654%
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By inspection, Higgsing on ¢y, gives in each case one invariant in the Hig-
gsed flavour, (N — 1) scalars resulting from the decomposition of the other
flavours and (Ny — 1)? invariants at order 2, and in the case N ;= 4,
2= 2(%) invariants at order 3 and one relation at order 6, as in accor-
dance with the Ay series with Ny — 1 flavours (where each flavour consists
of a quark and an antiquark) identifying each quark fugacity ¢; with the

corresponding antiquark fugacity w;.

5.7 Adjoint SQCD

We will just provide a brief summary of Hilbert series of exceptional gauge
groups with adjoint matter, and SO(N) groups (for N > 7) with spinor
matter. We were unable to obtain any series through Molien-Weyl integra-
tion in Mathematica.

As we know, the Hilbert series of any group with one adjoint and no other
giqk(G)(l —5%)~1 where d; is the dimension of the i-th

Casimir invariant of the group. Adjoint matter therefore always Higgses

matter is given by [|

a group down to its maximal torus U (1)r“"k(G), generated by the Cartan
subalgebra of its corresponding Lie algebra. (This is similar to the effect
that happens in non-SQCD SUSY gauge theories where the scalars in the
vector multiplets, rather than the hypermultiplets or chiral multiplets, are
given VEVs; the group is broken to U (1)”“”’“(@ there too, and this is the
origin of the term ‘Coulomb branch’ for this branch.)

Bs with one spinor and one adjoint gives a complete intersection:

1— t8818

(1—2)(1—s2)(1 —s*)(1 —s0)(1 —2s2)(1 — t2s*) (1 — t256) (1 — t4s6) (1 — t459)

We can use the Higgsing: the spinor Higgses B3 to (G2, under which the
adjoint of B3 breaks down into an adjoint and a fundamental of G5. The
Hilbert series of Gy with one fundamental and one adjoint is a complete

intersection [3]:

1 — 5128
(1—52)(1—s%)(1 —s3t)(1 —£2)(1 — s2t2) (1 — s%2)(1 — s3t3) (1 — s5¢3)
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We see that, removing the (1 — ¢2) term from the denominator of the B
series and setting ¢ to 1, we get the same series as if we set ¢ = s in the
G9 series. We must identify ¢ and s because the adjoint of Bs maps to the
adjoint, counted by s, and the fundamental, counted by ¢, of Ga.

By triality, the Hilbert series of D4 with one spinor (of either type) and
one adjoint is freely generated, and that of two spinors of the same type
and one adjoint is a complete intersection. However, that of one spinor of
each type and one adjoint is a non-complete intersection. We can see this
by Higgsing on, say, the spinor; the adjoint decomposes to the adjoint and
vector of B3 and the conjugate spinor to a spinor of Bs. Higgsing on this
second spinor breaks the adjoint to the adjoint and fundamental of G and
the vector becomes a fundamental; this leads to the Hilbert series for Go
with two fundamentals and one adjoint, which we know to be a non-complete
intersection.

All other cases of Hilbert series of exceptional groups with one adjoint
and some other matter, or of SO(N) groups with spinor matter, are non-
complete intersections. We show this again by Higgsing for By with one
adjoint and one spinor; the spinor Higgses By to B3 and the adjoint breaks
up into an adjoint, a vector and a spinor of Bs, and we saw earlier that this

gives a non-complete intersection.

5.8 Conclusions

In this section of this thesis we have achieved and shown the following;:

e (G theories with 1, 2 and 3 flavours have a moduli space which is
freely generated, for 4 flavours it is a complete intersection, and for
5 or more flavours it is a non-complete intersection. The invariants,
relations and higher syzygies agree with those found in [4] up to order
11 but not at orders 12 or 13, which is the highest order reached in
that paper.

e [ theories with 1 and 2 flavours have a moduli space which is freely
generated, for 3 flavours it is a complete intersection, and for 4 or

more flavours it is a non-complete intersection.

e Ej theories with 1, 2 and 3 total flavours (flavours plus antiflavours)

have a moduli space which is freely generated, for 4 total flavours it
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is a complete intersection, and for 5 or more total flavours it is a non-
complete intersection. This time, the invariants, relations and higher
syzygies found in the cases with no antiflavours agree with those found

in [4] all the way up to order 18, the highest found in that paper.

e F; theories with 1 and 2 flavours have a moduli space which is freely
generated, for 3 flavours it is a complete intersection and for 4 or
more flavours it is a non-complete intersection. Again the invariants,
relations and higher syzygies agree with those found in [4] up to order
18. (Note: these results are known except for Fy with 4 flavours, some
of the higher flavour numbers of G5 and the invariants not mentioned

as being in [4].)

e These results agree with the formula for the ‘critical’ number of (total)
flavours at which the moduli space is a complete intersection (and
freely generated for fewer flavours and a non-complete intersection for
more), which is, except for the cases of SO(N) gauge groups with

matter in the vector representation (where it is N), given by

L I%(Ad)
Ncmt —
! I2 (Rmat)

where I2(R) is the second Dynkin index of a specified representation
R, Ad is the adjoint representation of the gauge group and Ryq: is
the representation in which the matter flavours transform. The second
Dynkin index of the adjoint representation is equal to twice the dual

Coxeter number of the group.

e The invariants found for Fy with Ny flavours agree with those found
for Eg with N; flavours and one antiflavour, excluding the one at
order tu, summed over the number of antiflavour fields (i.e. setting

the antiflavour fugacity u to 1).

e The same relationship exists between Go and Bj with one spinor.
We associate this relationship, in both cases, to the fact that the
antifundamental of Fg, and the spinor of Bs, Higgs the group down
to Fy and G9 respectively.

e However, while the invariants (summed over the number of antiflavour
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or spinor fields) are the same, we cannot use this property to un-Higgs
the simpler theory to the more complex one, because the powers of
(1 —t?) in the denominator are not the same in the B3 and Gy cases

and we expect similar discrepancies between the Eg and F} series.

e We found the same relationship between D4 with Ny flavours consist-
ing of a vector, a spinor and a conjugate spinor, and Fg Higgsed on

Ny flavours and 2 antiflavours.

e We believe that we found all the primitive invariants of Fy; the highest
invariant that seems to be primitive is the 18-box invariant [2, ..., 156, ...
in the notation of Section [5.4.1]

e We also went to order 24 (from 13 in [4]) for G, 21 (from 18) for Eg
(and the same for the case with antiflavours) and 20 (from 18) for E7,
and did up to 21 for B3 with one spinor and any number of vectors,
19 for D4 with V4S+C flavours and 21 for Fg with 2 antiflavours.

The formulae for the Higgsing relations between (partially (un)refined)

Hilbert series are as follows:

g N0t = lim(1—u?)g PN ()
= uhl}gl(l —u?)(1 = v))(1 = tuw) N7 gPoNPLD (3 4y )
g B0 = dim (1 - u?)g PN Ot )
g IAI(@) = lim (1 - w®)(1— tu) Vg END (1 0)
g PN NEND (¢ ¢ 1) = lim (1 — ) (1 = 1) (1 — tut) ™ g EoNs D (¢ 4y)

5.9 Discussion and outlook

Because of memory constraints, we were unable to compute the Hilbert
series, even unrefined, for Fg with more than 4 total flavours, E7 with more
than 3 flavours, Fy with more than 4 flavours (we were lucky to be able to
calculate it for 4 flavours!), B with 1 spinor and 8 or more vectors, Dy with
more than 7 total flavours of matter not all of the same type (vector, spinor
and conjugate spinor) and D5 with more than 5 total flavours of spinor

matter.
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There are two methods we could try to overcome these problems. One
way, as we have seen, is to obtain (refined) Hilbert series by un-Higgsing,
as we have done for the freely generated and complete intersection cases.
However, this method has limitations. Firstly, it requires the refined series of
the ‘child’ theory, which is often itself difficult to obtain. Secondly, in cases
where the parent theory has more than one type of basic field that maps
to the same field in the child theory, added complications arise, especially
when there is only one of one particular type of field in the parent theory,
such as 1 spinor of B3 or 1 antiflavour of Eg.

An alternative method is to try to find an alternative picture of the the-
ory with the same global symmetry group but a different gauge symmetry,
a phenomenon known as duality. Duality occurs in many other areas of
physics, such as T-duality in string theory relating two circular or toroidal
compactifications where the radii satisfy R’ = %, and also in string the-
ory S-duality between strong and weak coupling and U-duality which is the
combination of these two, and the general gauge-gravity duality, of which
the AdS/CFT correspondence is the most important case, of a gauge theory
in d dimensions giving another, usually simpler, picture of a gravity theory
in d+ 1 dimensions. The dualities considered here, though, are between two
gauge theories, usually considered as an electric-magnetic duality, like that
in Maxwell’s theory.

Though it has not been relevant to much of the discussion in this paper,
fields in a supersymmetric gauge theory have a charge under the so-called
R-symmetry, or the R-charge. The R-symmetry group is the subgroup of
the internal symmetry group that does not commute with the supercharges,
i.e. for U(1) R-symmetry group, [R,Qa] = Qa, [R,Qs] = —Q4. The R-
symmetry group is determined by A and by the number of dimensions, e.g.
for 4 dimensions it is (S)U(N) (special for N' = 4) but for 6 dimensions
it is Sp(NL) x Sp(NR), because there are two types of (symplectic Weyl-
Majorana) supercharge. The R-charge is usually used to refer to one specific
U(1) subgroup of the whole R-symmetry.

In simple SQCD theories with only one type of field (or two types which

are conjugate to each other), the R-charge of a matter field is given by,
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where R; is the representation in which the i-th matter field transforms:

(X2 IP(Ry)) — I*(Ad)
> (1)

In the case of one (or two conjugate) types of field, all the R; are the same;

R(Q) =

however if the fields have the same invariants, e.g. when both the vector and
(conjugate) spinor have a quadratic invariant, this formula is used for more
than one type of field, as in [4] for Dg = SO(16). (In brane tiling theories
there may be more than one U(1) subgroup of the R-symmetry group, so
determining which combination is the R-charge may involve a complicated
minimization procedure. In the theories discussed in [42], a toric variety of
dimension 3 always has 3 U(1) charges from the metric, one is the R-charge
and the other two are the other mesonic charges.)

If there is a superpotential, it must have R-charge 2, because the R-charge
of df is -1.

If there exists a gauge-invariant quantity with R-charge less than 2/3, the
theory must have a dual [4].

Seiberg’s original formulation of his duality, as in [77], relates SQCD
with Ny flavours of matter in the fundamental ¢ and antifundamental Q
of SU(N,.), with the fundamentals transforming in the fundamental of one
SU(Ny) and as a singlet of another and the antifundamentals as a singlet
of the first and the antifundamental of the second, for %Nc < Ny < 3N,
to a similar theory with N; flavours of matter in the fundamental ¢ and
antifundamental ¢ of SU(Nf— N.), a meson as a basic field transforming in
the antifundamental of the first SU(NNy) and the fundamental of the second
(rather than as a gauge-invariant combination which is schematically ¢g),
and a superpotential W ~ Mqq.

Seiberg-like dualities for exceptional gauge groups are outlined in [34].
Some of the dualities seem incredible, because they are between non-chiral
SO(N) theories (for 7 < N < 10) and chiral SU(N — 5) ones, but the
resemblances are demonstrated, although as with most dualities they are
not always rigorously defined. Their relevance to exceptional group theories
is that exceptional groups can be Higgsed, including by the partial Higgsing
on only one of their invariants, to SO(N) groups with N between 7 and 11,
and SO(7) is also Higgsed by a spinor to Ga.

In brane-tiling theories, Seiberg duality is the same as toric duality, where
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one brane tiling is ‘dualized’ by moving the nodes of another face and cre-
ating new lines and faces to give another tiling that gives the same toric
diagram when the forward algorithm is applied. As with (un)Higgsing,
though, non-brane-tiling cases are considerably more complicated both to
formulate and to understand.

So far, the duality between two theories related by Seiberg or other duality
is not manifest in the Hilbert series, at least not when calculated classically;
it is stated in [25] that the duality exchanges the classical and quantum
branches, so unless there is a way of calculating quantum moduli spaces
for the dual theory, it is difficult to use. Such a method does exist for
instanton moduli spaces, where the Coulomb branch of 3d N' = 2 gauge
theories on quiver gauge theories specified by quivers in the shape of the
extended Dynkin diagram for a given gauge group, not necessarily simply
laced, is the same as the instanton moduli space for that group, at least for
one instanton [60, [61), 62] 63].

We hope to develop these methods further and use them to calculate
Hilbert series, invariants and other properties that we have not yet been

able to do using the methods discussed in this thesis.

5.10 A sample LiE program

A sample LiE [5] program used to compute the refined Hilbert series is as
follows. This program computes the refined Hilbert series for Fg with 5
flavours and one antiflavour, using t as the fugacity for the flavours and
u for the antiflavour. (In this particular example, as in all examples with

3

exactly one antiflavour, there is a missing generator u° corresponding to a

term (1 — u?) in the denominator, which can be manually added in.)

on monitor

maxobjects 99999999
maxlev=21;

nf=5;

for i = 0 to maxlev do

for part row partitions(i) do
partl=null (nf);

valid=1;
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if (i<=nf) then

for j = 1 to i do parti[jl=part[j] od;

else if (part[nf+1]1==0) then

for j = 1 to nf do parti[jl=part[j] od;

else valid=0;

fi;

fi;

if (valid) then

part2=null(nf-1);

for j=1 to nf-1 do part2[jl=parti[jl-parti[j+1] od;
symm=plethysm(parti,[1,0,0,0,0,0],E6);
uind=null (maxlev+1);

for k = 1 to length(symm) do

repwt=expon (symm, k) ;

if (repwt[2]==0) && (repwt[3]==0) && (repwt[4]==0) && (repwt[5]==0) then
uind [repwt [1]+2*repwt [6]+1]+=coef (symm,k) ;
fi;

od;

for j=1 to maxlev+l do

if (uind[j]) then

print (uind[j]1+" "+part2+" t~"+i+" u”"+(j-1));
fi;

od;

fi;

gcol;

fi;

od;

od;
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