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Abstract

In this thesis we apply the methods of partition functions to massive su-

perstring spectra and the moduli spaces, or spaces of zero-energy configu-

rations, of supersymmetric QCD gauge theories.

In the first part of this thesis we consider the massive covariant pertur-

bative superstring spectra of compactifications of the type I open super-

string preserving 4, 8 or 16 supercharges. There are an enormous number

of ways in which the required amount of symmetry can be obtained, but

here we concentrate on the ‘universal’ states that are present in every pos-

sible compactification preserving that amount of supersymmetry. For each

super-Poincaré representation we derive the multiplicity generating func-

tion, or the power series counting the number of times that representation

occurs at each mass level, and from these we derive empirically the stable

pattern or leading Regge trajectory that these multiplicity generating func-

tions approach in the limit of large spin. For the mathematically tractable

and phenomenologically relevant case of 4 supercharges we also derive these

power series analytically and see that they agree with the empirical ones.

In the second part we introduce the type of partition functions called

Hilbert series, which count the number of algebraically or linearly inde-

pendent polynomials at each graded level of a graded algebraic structure

such as a (graded) ring, module or ideal. In supersymmetric gauge the-

ories the algebraic structure is the chiral ring which is generated by the

gauge-invariant operators of the theory. The specific theories we consider

are supersymmetric generalizations of QCD, or SQCD, with exceptional or

related (by sequence or folding of the Dynkin diagram or Higgsing) gauge

groups with specified numbers of flavours of matter in specific representa-

tions. We show, as for theories with classical gauge groups, that the moduli

spaces are Calabi-Yau manifolds and also demonstrate relations between the

Hilbert series of SQCD theories related by Higgsing on one or more flavours

of matter in specific representations.
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1 Introduction and Outline

In this section we will set the scene for this thesis by introducing string

theory and supersymmetric gauge theory which are the central themes of

the two main sections. We will not present a complete introduction to the

subjects, but rather set the scene by describing some of the historical origins

of the theories; this discussion will largely follow chapter 1, section 1.1 of

[53]. We will then discuss how they flow into the more specific subjects

discussed in this thesis.

The current understanding of physics is predicated on quantum field the-

ory, which is quantum mechanics with observables being functions of the

spacetime coordinates. It has been known since Maxwell’s time that the

electromagnetic interaction can be described by a quantum field theory, in-

deed a gauge theory mediated by the photon, which is massless and charge-

less. This theory is called quantum electrodynamics, or QED. However, the

weak and strong interactions presented further challenges to being described

in such a way.

The weak interaction, as observed in beta decay (both β− and β+) and

electron capture, was originally proposed as being described by the inter-

action of four fermions at the same spacetime point, or a current-current

interaction. However, this is not renormalizable, because it requires a cou-

pling constant of mass dimension -2. The difficulty with making it a gauge

theory was that it is a short-range interaction and the gauge bosons would

have to be massive; however massive gauge bosons could only be produced

as a result of spontaneous symmetry breaking, where the vacuum state of

the theory does not possess the full symmetry of the Lagrangian. In this

specific example, a scalar doublet H =
(
H+

H0

)
(with H standing for Higgs) is

introduced along with a potential V (H) which has a minimum on the circle

|H| = v for some v; we have to fix the vacuum, so we pick H =
(

0
v

)
and

break the SU(2) × U(1) symmetry down to U(1) following the procedure

outlined in [41].
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It was not known that renormalizability was preserved when the theory

underwent spontaneous symmetry breaking, but ’t Hooft proved that it

was, making the theory consistent. Therefore the electromagnetic and weak

interactions were unified, and both described by (the same) quantum field

theory.

The ‘strong interaction’ originally referred to the interaction between pro-

tons and nucleons, together called nucleons, in atomic nuclei, which is medi-

ated by pions, which have mass around 100 MeV; however this is now often

referred to as the ‘residual’ strong interaction, with the strong interaction

being that between quarks. Though the gauge group is the non-abelian

SU(3), the gauge bosons, or gluons, are massless (though six of the eight

are charged) and the theory is easily described by a QFT, though since (6

of 8 of) the gluons are charged, confinement occurs and quarks are never

observed free but only in combinations of 3 quarks (baryons), 3 antiquarks

(antibaryons) and one of each (mesons). The theory of the strong inter-

action is called quantum chromodynamics (as the degrees of freedom are

called colours), or QCD for short.

The electroweak and strong interactions were grouped together as the

Standard Model. However, the scalar particle (or rather weak isospin SU(2)

doublet of particles) were still to be discovered, and the origin of fermion

masses still needed explaining.

Neutrinos have only ever been observed left-handed, and antineutrinos

right-handed, which is why they were originally assumed to be massless,

because massive particles can always be Lorentz transformed into a frame

in which their helicity would be reversed. Therefore, left-handed electrons

and neutrinos were grouped together in an SU(2) weak isospin doublet with

hypercharge, which is the charge under the U(1) of the Standard Model,

Y = −1, while right-handed electrons form a weak isospin singlet with

Y = −2 (we have Q = I3 + 1
2Y , where I3 is the third component of isospin,

weak or other). The theory is not parity-invariant.

Although quarks have always been considered to be massive, not that

they have ever been observed free, the same construction was used, grouping

the left-handed quarks (u, d), (c, s) and (t, b) into isospin (not weak here!)

doublets with Y = 1
3 and assigning the right-handed ones to singlets with

hypercharge equal to twice their charge.

The kinetic term in the Dirac Lagrangian does not mix the left- and

9



right-handed parts of the Dirac field, as we can see by the expansion of Ψ̄L.

However, an explicit mass term would mix them and is therefore forbidden,

since they transform in different representations of the (weak) isospin SU(2).

Ψ̄L = Ψ†Lγ
0 =

1

2
Ψ†(1− γ5)γ0 =

1

2
Ψ̄(1 + γ5) (1.1)

Therefore, Ψ̄LΨL = 0 and similarly for the right-handed part.

The Higgs field must form a doublet of the (weak) isospin SU(2) so that

its Yukawa-like interaction term with the left- and right-handed quark or

lepton fields is a (weak) isospin singlet.

The Higgs mechanism, which breaks the SU(2) × U(1) gauge symmetry

of the electroweak part of the Standard Model to the electromagnetic U(1),

which is a combination of the I3 (the Cartan subalgebra U(1) of (weak)

isospin) and the hypercharge, also gives rise to fermion masses via sponta-

neous symmetry breaking with the masses proportional to the VEV of the

Higgs field. The Standard Model was completed when the Higgs boson was

discovered in 2012 at the LHC, having mass 126 GeV.

However, it was clear that the Standard Model could not describe all

of fundamental physics. The first and most immediately obvious problem

is that it does not include gravity, which is clearly an essential part of

any fully unified theory. In any case, a quantum theory of gravity is not

renormalizable, having short-distance divergences. We will leave this for

now and discuss the other issues first.

Firstly, the theory is very arbitrary: why do these specific patterns, called

multiplets, of masses and charges of particles occur? Indeed there are as

many as 19 free parameters! Secondly, some parameters have values much

smaller than they would be expected to; why this is is not known and it

does not seem natural. A specific example is the difference of 17 orders

of magnitude between the electroweak (Higgs) scale and the Planck scale

at which quantum effects should be observed in gravitational interactions;

this is known as the hierarchy problem. Other issues are the cosmological

constant problem wherein the theory predicts a value an enormous 10120

times larger than the limits set by current observations, the fact that the

theory does not account for either the ‘dark matter’ that makes up a quarter

of the universe or the ‘dark energy’ that makes up another 70%, and the

fact that the gauge couplings of the three interactions do not all meet at

10



the same value at any energy, which is necessary for unification to occur.

A more specific problem is the ‘solar neutrino problem’, where only one

third of the expected number of (electron) neutrinos were detected coming

from the Sun in two separate experiments at detectors in South Dakota

and in Japan. It was proposed that this could be resolved by the neutrinos

‘oscillating’ between the three types (electron, muon and tau neutrinos),

however this is only possible if the neutrinos have mass. While this has

been proven to be true by other experiments too, their masses are known to

be extremely low, several orders of magnitude below those of the charged

leptons, leaving the problem of explaining the origin and order of magnitude

of their masses. It has been proposed that these low masses result from a

‘see-saw’ mechanism whereby a term in −Mν̄cRνR, with M large and where

the superscript c denotes charge conjugation, is added to the Lagrangian

and this leads to two particles, one the neutrino with mass ∼ m2
eM
−1, where

me is the charged lepton mass, and one of mass ∼M , however owing to the

low mass of the neutrino itself particles of mass M should be far too heavy

to observe at the LHC.

Returning to more general (still non-gravitational) issues with the stan-

dard model, three ways have been proposed to resolve them. One is grand

unification, in which the three gauge groups of the standard model are

combined into one, usually SU(5), SO(10) or E6 (it must have complex

representations); this gave an accurate prediction of the weak mixing an-

gle and the bottom/tau mass ratio. Another is extra dimensions, in which

the theory is defined on a spacetime containing more than four dimensions.

This was originally introduced by Kaluza and Klein to combine gravity and

Maxwell’s electromagnetic theory into one theory in which the fifth, and

compact, dimension contained the electromagnetic information. In current

theories there are usually more than one extra dimension, and they can be

small or large. The reduction to the required four dimensions can be done

in many different ways giving many different four-dimensional theories.

For the third way, we first note that the Coleman-Mandula ‘no-go’ the-

orem states that it is not possible to extend the Poincaré, or Lorentz plus

translations, group or algebra to include an ‘internal’ symmetry group ex-

cept in the trivial way; however it was discovered (actually by two groups

in the USSR before Wess and Zumino’s ‘official’ discovery) that this could

be circumvented by allowing the algebra to be extended to a ‘graded alge-
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bra’, or ‘superalgebra’, in which fermionic generators and anticommutation

relations were allowed. This graded algebra was called supersymmetry, or

the super-Poincaré algebra.

In supersymmetric theories, each particle has a superpartner of opposite

type (boson/fermion) but (if the symmetry is unbroken) the same mass.

Supersymmetry provides a solution to the hierarchy problem, because the

divergences from the Feynman diagrams cancel, at least partially accounts

for dark matter (but not dark energy) as consisting of the lightest supersym-

metric particle (LSP), which is necessarily stable owing to conservation of

R-parity (standard model particles have even R-parity and their superpart-

ners have odd R-parity), and reduces the discrepancy in the cosmological

constant (though only to 1060!).

However, supersymmetry creates its own difficulties. Firstly it must be a

broken symmetry, since superpartners are not observed in nature. Secondly,

it has been predicted to be broken at the TeV scale at which signatures

should be visible at the LHC, but no superpartners have been observed yet,

which suggests that either the breaking scale must be higher or that super-

symmetry does not actually occur in nature. In the latter case, those current

theories which make use of it, of which there are many, must be completely

re-thought and alternative solutions sought to the hierarchy problem and

other shortcomings of the (non-supersymmetric) standard model. We will

however in this report assume that supersymmetry does occur in nature and

ignore issues relating to its breaking.

We will now revisit the problem of the absence of gravity from the Stan-

dard Model.

We know that a quantum field theory of gravity is not renormalizable,

because the graviton has spin 2 and that like the 4-fermion interaction orig-

inally proposed for the weak interaction it would have a coupling constant

of mass dimension -2. As with the 4-fermion interaction theory, this is

interpreted as though the current theory, where the Einstein-Hilbert ac-

tion is the only term present, is an effective theory valid only below some

scale, in this case the Planck scale, and there is a need for new physics at

higher energies. One possibility is that the divergence is an artefact of the

perturbative expansion about 0 and is absent when the theory is treated

exactly. In renormalization group language of QFT, this would mean the

theory would have a non-trivial UV fixed point. Another way is to soften
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the interaction by smoothing it out in space and time. We do not know

if the theory has a UV fixed point, but there is a historical precedent for

concentrating on the second option, namely the resolution of the 4-fermion

weak interaction to a gauge theory mediated by massive bosons.

However, working out how to smooth out the theory is very complex,

because by Lorentz invariance a smearing in space also means one in time

and this could violate causality along with unitarity and other properties.

There is only one way to smooth out the divergences while keeping Lorentz

invariance, and this is string theory, with objects extended in one spacetime

dimension, though they may be open, with ends, or closed, in a loop. This is

the only case where both the spacetime and internal degrees of freedom can

be kept under control, as quantizing membranes, with 2 extended spatial

dimensions, gives rise to a continuous spectrum.

String theory, through the presence of the graviton, has (quantum) gravity

built in, while in other theories, such as loop quantum gravity, it must be

treated separately and bolted on piecemeal. String theory also gives rise

to extra dimensions (as we will see, superstring theory is constrained to

have 10 dimensions, with bosonic string theory having 26!) and GUT gauge

groups (at least through heterotic string theory) and allows chiral gauge

couplings, and also has no free parameters except the string scale. It is a

unique theory, in which consistency forbids adding terms to the Lagrangian

by hand. String theory also has the benefit that multiple Feynman diagrams

in the various QFTs correspond to the same string interaction.

String theory has its issues too. Although it is a unique theory, it has

a vast (10500) set of possible vacua, called the landscape. Also, a non-

perturbative formulation has not been fully described. However, progress

has been made with the discovery of D-branes, which were initially sub-

spaces on which open strings can end, and the various duality relations

(S-, T- and U-duality, the last of which is the union of the first two) re-

lating the five consistent superstring theories with each other and with an

11-dimensional theory called M-theory. S-duality relates strong and weak

coupling, and T-duality relates compactification at large and small radii.

(The D is for Dirichlet, which describes boundary conditions on the po-

sitions of the endpoints of open strings rather than their momenta; the

latter are called Neumann. A D-brane with p spatial dimensions is called a

Dp-brane.)
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The extra dimensions also mean that to get the observed four dimensions

of nature, one must compactify to small size or otherwise make invisible the

other six (or 22!). One can do this in two ways; other than compactification,

the other is the brane-world scenario where matter and the forces other than

gravity are described by open strings and their ends are constrained to lie on

D-branes, while gravity is described by closed strings which can escape from

the branes, which could account for its great weakness relative to the other

forces. These branes must have 3 spatial dimensions and are therefore D3-

branes. We will not discuss brane-world scenarios further in this report but

rather concentrate on compactification as the means to reduce the visible

dimensionality of spacetime.

Another issue is that although in principle string theory amplitudes re-

quire fewer calculations than QFT ones, in practice they are very difficult

to calculate. In 1997, Maldacena discovered [64] the AdS/CFT correspon-

dence, which is a specific case of a more general gauge/gravity duality. In

the general duality, a gravity theory in d+ 1 dimensions dual to gauge the-

ory in d dimensions; normally we say that the gravity theory is in the bulk

and the gauge theory is on its boundary. In the specific case of AdS/CFT,

AdSd×X10−d is dual to a CFT in d− 1 dimensions probing the singularity

of the cone over X10−d. The CFT is usually represented by D(d−2)-branes

and X10−d is a Sasaki-Einstein manifold, or one over which the cone is a

singular Calabi-Yau (for d odd) preserving only some of the supersymmetry

(one quarter, or 8 supercharges, for d = 5), although it could be S10−d with

the cone being R11−d preserving all 32 supercharges. The same structure

exists with M-theory, with 11 instead of 10 and M2-branes corresponding

to AdS4 ×X7.

Having introduced the generalities of string theory and supersymmetric

gauge theory, we will now discuss the specifics of this thesis, which are

the use of partition functions in both superstring theory and a type of

supersymmetric gauge theory called supersymmetric QCD, or SQCD. (QCD

without the ‘super’ is the theory of the strong interaction; here, as well as

adding supersymmetry, we generalize it to allow any gauge group and any

number of flavours of matter which can be in any representation of the gauge

group as long as they do not give rise to an anomalous theory.)

Partition functions are a tool borrowed from statistical mechanics where

they are used to derive expressions for quantities such as temperature and
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chemical potential in terms of derivatives the partition function; they have

been applied to (super)string theory to obtain expressions for these quan-

tities applied to black holes. They are like a trace of exp(−βH), where β

is the reciprocal of the temperature (times a constant) and H is the Hamil-

tonian which has an expression in terms of raising and lowering operators,

over all the states in the Fock space of the theory, which is built up by

acting repeatedly with raising operators on the ground state.

In the supersymmetric gauge theories that we discuss in the second part

of the thesis, if when the fully unrefined Hilbert series, the gauge theory

name for a partition function (though, as we will see, not all partition

functions are Hilbert series), is written as a rational function the numerator

is palindromic, the moduli space is a Calabi-Yau manifold [1, 2, 3].

Most partition functions in the literature are unrefined and simply count

the states at each level, which is specified by the mass, number of fields, etc.

However, we can get more information about the states that comprise each

level, and the representations of the characteristic group(s) of the theory in

which they transform, by refining the spectra. We introduce new fugacities

that distinguish the states from each other and, knowing the group and

the map between Dynkin labels and fugacities, decompose each level into

representations.

As well as in the contexts discussed here, refined partition functions,

although for finite groups, are used in investigating moonshine conjectures,

where they are variously known as twining characters [66, 67] and twisted

elliptic genera [68, 69, 70]. There are also so-called McKay-Thompson series

[65], which are not ‘refined’ series in the true sense as they are modular forms

in a single variable, though they are obtained similarly to refined series by

replacing the dimensions of finite group representations with the characters

of a specific group element in each corresponding representation.

This thesis is divided into three parts, one short and two long. The first,

short, section introduces some of the mathematical preliminaries that we

will use in the other two sections. We discuss algebraic structures (rings,

modules, ideals) with (possibly multi) gradings (different to those of graded

Lie algebras in the sense of supersymmetry), Hilbert series which are parti-

tion functions counting the number of (algebraically or linearly) independent

polynomials at each graded level, the different types of symmetric polyno-

mials and the identities relating them, the plethystic formalism with the
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bosonic and fermionic plethystic exponential and logarithm, finite and Lie

group characters, Haar measures that enable one to integrate over a whole

Lie group manifold via the simpler integration over the maximal torus, in-

variant theory and Molien’s sum formula for finite groups and the (Molien-

)Weyl integral generalizing this sum formula to Lie groups.

The second part, or the first ‘main’ section, discusses perturbative string

spectra. We begin this part of the thesis by introducing string theory from

action principles, following [53, 54]. We quantize the string, concentrat-

ing on the light-cone method, though we also discuss two other methods of

quantization called old covariant quantization and BRST quantization. We

derive the zero-point energy and from that the condition on the number of

dimensions using all three methods, demonstrating the last two because the

derivation is more rigorous and less heuristic in these cases. Returning to

light-cone quantization, we then introduce the use of plethystics to obtain

refined string spectra based on [8], concentrating on the bosonic and type

I superstring, without the Chan-Paton factors at the ends, though we do

discuss closed type II superstring spectra, obtained by tensoring two type I

superstrings together and imposing level matching, incorporating the Chan-

Paton factors into type I superstrings, and the heterotic string, and (briefly)

compactification of one spatial dimension on a circle as in [56]. Having

demonstrated properties of the spectra, both bosonic and superstring, such

as stable patterns, which we will define, we then move on to a systematic

treatment of superstring spectra, following [7], concentrating on the open

type I superstring, again without the Chan-Paton factors, in compactifi-

cations with 4, 8 and 16 preserved supercharges. We discuss methods by

which those numbers of supercharges can be obtained, but we concentrate

on the universal states present in all such compactifications.

The second part of the thesis relates to Hilbert series of supersymmetric

QCD theories with exceptional gauge groups. Hilbert series are similar

to partition functions but here they are used to count not string states

for a given mass level but rather gauge-invariant quantities with a given

number of fields of each type ((anti)fundamental, adjoint, spinor etc). One

starts with the basic fields in the specified representations of the gauge and

global symmetry groups, takes symmetric products (antisymmetric if they

are fermionic) to arbitrary levels using a formalism called plethystics (here

taking the plethystic exponential), imposes any F-term relations specified
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by a quantity called the superpotential (which is zero in SQCD hence there

are no F-term relations, but most SUSY gauge theories do have them),

and obtains an expression for the gauge-invariant quantities by integrating

over the gauge group using the Haar measure. This gives the Hilbert series

for the theory; one can then take the plethystic logarithm (here with only

global symmetry group representations) to obtain explicit expressions for

the generators, relations and higher syzygies of the theory, which determine

whether the moduli space is freely generated (only generators), a complete

intersection (generators and relations) or neither (there are higher syzygies).

The Hilbert series itself, in unrefined form, can also be used to determine

whether the moduli space is Calabi-Yau, if it has a palindromic numerator

when expressed as a rational function in a specific form. We derive the

Hilbert series for exceptional and related groups with specified numbers of

flavours of matter in specified representations, and derive relations between

the Hilbert series that relate to Higgsing of the group and/or folding of the

Dynkin diagram. Some Hilbert series are harder to obtain than others, but

it is often the case that two different SUSY gauge theories give the same

Hilbert series, this is called duality (examples include Seiberg duality); it is

often useful to use known dualities to conjecture new ones when it is known

to be ‘hard’ to compute the Hilbert series for one theory and ‘easier’ to

compute that for the actual or conjectured dual theory. We do not discuss

Seiberg or other duality in this thesis, apart from a discussion at the end.
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2 Symmetric polynomials and the

plethystic programme

In this section we introduce the machinery that we use in the two main

sections of this thesis. We start by introducing the algebraic preliminaries

such as rings and modules, and then we discuss first the concept of sym-

metric polynomials and that they form an algebraic structure called a ring,

and then their five different types, also introducing antisymmetric polyno-

mials, in the latter part because of the need to use them to define Schur

polynomials, which are the last type of symmetric polynomial to be intro-

duced and the most difficult to visualize. We then introduce the concept

of characters of group representations, which simplify representation the-

oretic computations greatly, and how they differ between Lie groups and

finite groups, though they are conceptually the same. We then return to

the symmetric polynomials and derive identities for those in two variables in

terms of those in each variable separately, and then introduce the plethys-

tic programme, a formalism for generalizing this (anti)symmetrization and

enabling results to be obtained through other methods such as residues

and (Taylor/Laurent) series expansion. We finish by introducing the Haar

measure and (Molien-)Weyl integral, which are used to generalize Molien’s

sum formula for Hilbert series for finite groups to Lie groups, using the fact

that any element of a Lie group is conjugate to an element of its maximal

torus which is generated by the Cartan subalgebra and thus has the same

character.

2.1 Preliminaries

In this section we will introduce some of the algebraic preliminaries that we

will use in the rest of this thesis.

A ring R is an algebraic structure endowed with two binary operations:
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addition, under which the elements of the ring form an abelian group, and

multiplication (which is not necessarily commutative), with both left and

right multiplication being distributive over addition:

a.(b+ c) = a.b+ a.c ∀ a, b, c ∈ R (2.1)

We normally suppress the . symbol for rings (but not for modules which we

will describe later). If every non-zero element of the ring has a multiplicative

inverse, the ring is a field.

A graded ring R is a ring with a grading:

R = ⊕iRi (2.2)

ri ∈ Ri, rj ∈ Rj =⇒ rirj ∈ Ri+j (2.3)

A module M over a ring R, called an R-module, is an algebraic structure

endowed with addition and (left) multiplication by elements of the ring,

which is again distributive over addition of elements of the module. A

trivial example of an R-module is of course the ring R itself.

An ideal I is a subset of a ring with the following property: if a, b ∈ I and

r, s ∈ R, ra + sb ∈ I. An ideal is called finitely generated if every element

can be written as a linear combination of finitely many basis elements, and

principal if only one such element is required. It is freely generated if said

linear combination is unique. The ring itself is trivially an ideal of itself.

Like rings, modules and ideals can be graded, with the multiplication

being an element of the ring times an element of the module or ideal.

A Hilbert series is a power series that counts elements in a graded ring,

module or ideal, weighted by the grading. For a freely generated structure,

the Hilbert series, when expressed as a rational function of two polynomials,

has numerator 1.

2.2 Symmetric polynomials

In this section we present a brief introduction to the symmetric polynomials.

Much of this section and Section 2.4 is based on [23], which is a simplified

version of the introductory parts of [45].

For a set of variables xi, symmetric polynomials are those which remain

19



invariant under the symmetric group Sn, where n is the number of variables,

in particular they do not change under exchange of two variables xi and xj

for i 6= j. The symmetric group is generated by these two-variable swappings

which are called transpositions.

The symmetric polynomials form a ring which is called Λ in [23]. There

are five types of symmetric polynomials, of which the first three are as

follows:

• the complete (or full) symmetric polynomials hn(x), which are sums

of every possible product of n of the xi, not necessarily distinct:

hn(x) =
∑

1≤i1≤...≤in≤m

n∏
j=1

xij (2.4)

• the elementary symmetric polynomials en(x), which are sums of every

possible product of n distinct xi:

en(x) =
∑

1≤i1<...<in≤m

n∏
j=1

xij (2.5)

• the power sum symmetric polynomials (or Newton polynomials) pn(x),

which are sums of the n-th powers of the xi:

pn(x) =

m∑
i=1

xni (2.6)

All these polynomials can be generalised to a general partition λ, e.g.

hλ(x) =
∏
i=1

hλi (2.7)

and the same for eλ(x) and pλ(x).

The fourth type of symmetric polynomials are the monomial symmetric

polynomials, which can only be defined in terms of partitions rather than in-

tegers, though a partition can of course consist of only one integer. They are

sums of every possible product of the xi with a particular ‘shape’ specified
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by a partition λ, explicitly this can be written as

mλ(x) =
∑

ij 6=ik,j 6=k

∏
j

x
λj
ij

(2.8)

The final type of symmetric polynomials are the Schur polynomials, which

can also only be defined in terms of partitions. They are denoted sλ(x).

They are defined as

sλ(x) =
det(x

λj+n−j−1
i )ni,j=1

det(xn−j−1
i )ni,j=1

(2.9)

The denominator is called the Vandermonde determinant ∆(x). n denotes

the number of xi and λ must not have more than n non-zero entries here oth-

erwise the matrix must be extended with zeroes and hence the denominator

would be zero.

To visualise Schur polynomials, take the Young diagram corresponding to

the partition λ and write down all possible semi-standard Young tableaux

for that diagram, i.e. all tableaux with all entries between 1 and n and

increasing weakly from left to right across a row and strictly from top to

bottom down a column, and then take the sum of all terms which are the

product of all the xi for each entry i in the tableau.

As we will see in Section 2.3, Schur polynomials are characters for repre-

sentations of unitary groups U(n) where n is the number of xi.

All five types of symmetric polynomial form a basis for the ring of sym-

metric polynomials Λ as defined in [23], with those where |λ| = n forming

a basis for the n-th graded piece Λn where Λ =
⊕∞

n=0 Λn.

There are invertible matrices, not all both integer and with integer in-

verses, which allow one to convert between the types of symmetric polyno-

mials. For example, we have

sλ(x) =
∑

µ,|µ|=|λ|

mλµmµ(x) (2.10)

where mλµ are called the Kostka numbers.

We will return to symmetric polynomials in Section 2.4, but for now we

will leave them behind and instead first introduce Lie groups and their

representations and characters.
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2.3 Lie groups, representations and characters

A Lie group is a continuous group with the structure of a manifold.

A Lie group G is generated by its corresponding Lie algebra g, which con-

sists of elements T a, 1 ≤ a ≤ dim(G) with commutation relations [T a, T b] =

ifabc T
c where fabc are called the structure constants. For an abelian group

the structure constants vanish. The dimension d = dim(G) is the total

number of generators.

The rank r = rank(G) is the dimension of the maximal torus of the group,

which is generated by the maximal commuting subalgebra, which is called

the Cartan subalgebra. The maximal torus is isomorphic to U(1)r. The

elements of the Cartan subalgebra can be relabelled as Hi, 1 ≤ i ≤ rank(G),

and the other elements of the group written in terms of roots Eα:

[Hi, Hj ] = 0 (2.11)

[Hi, Eα] = αiEα (2.12)

[Eα, Eβ] = NαβEα+β (2.13)

[Eα, E−α] = αiHi (2.14)

where Nαβ vanishes if α+ β is not a root.

The weights of a given root are determined by their commutators with

the Hi. The roots corresponding to the Cartan subalgebra have zero weight

in any basis. The non-zero roots, of which there are d− r of them, can be

divided into positive and negative roots, with the negative of a positive root

being negative and vice versa. In a Cartesian basis, the positive roots are

those for which the first non-zero entry is positive; one can then choose r of

those positive roots to be the simple roots, in terms of which the positive

roots can all be expressed using only positive (integer) coefficients.

A Lie group can be described by its Dynkin diagram, which consists of

nodes linked by 0, 1, 2 or 3 lines, with an arrow pointing to the shorter

root in the cases of 2 and 3 lines, which determine the relations between the

roots. These are displayed in the Cartan matrix, whose entries are given by,

in terms of the simple roots,

Aij =
2(αi, αj)

(αj , αj)
(2.15)
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with αi and αj the i- and j-th simple roots and (., .) an inner product to

be defined later. It is usually the case however that the diagram is drawn

first (which is especially useful when the Dynkin basis, as defined later, is

used for the roots and weights), and the Cartan matrix written down later.

The diagonal entries are all 2; the off-diagonal entries are 0 when the roots

corresponding to the row and column are not linked by any lines, both -1

when linked by one line, and -1 and -(the number of lines) when lined by

more than 1 line, with the more negative number in the row corresponding

to the longer root.

The Dynkin diagram is constrained by the fact that the simple roots must

be linearly independent, and this leads to a restriction to the observed fam-

ilies An, Bn, Cn, Dn and exceptional cases E6, E7, E8, F4, G2. The subscript

n, or the number of nodes in the Dynkin diagram, is equal to the rank of

the group.

There are two bases commonly used to write down the roots of the group

and weights of its representations:

• The Dynkin basis, where the i-th simple root αi is specified by the

i-th row of the Cartan matrix, the i-th fundamental weight ωi by the

Cartesian basis vector ei and the inner product (in a weight basis) by

(α, β) = αiGijβj (where αi is the i-th component of α, not the i-th

simple root here, and the indices are summed over) where Gij is given

by

Gij = (A−1)ij
(αj , αj)

2
(2.16)

where Aij is the Cartan matrix.

• The Cartesian basis, where the inner product is the usual Cartesian

one, the simple roots are chosen to fit the Cartan matrix and the

fundamental weights are chosen so that

(αi, ωj) =
δij(αj , αj)

2
(2.17)

where (α, β) is the usual Cartesian inner product.

In the Dynkin basis, the rows of the Cartan matrix represent the simple

roots. The remaining positive roots can be built up iteratively; when the

i-th entry of a positive (simple or other) root is negative, the roots obtained
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by progressively adding the i-th row of the Cartan matrix to the ‘original’

root are added to the list of positive roots (if not already present) and

the process repeated with these new roots. The process stops for a given

‘original’ root when a root has no negative entries. The highest root, which

is unique, is the one at the highest level, i.e. the one for which the number

of simple roots that must be added to the zero root to arrive at it is the

greatest.

The Cartesian basis is most commonly used with groups in the U(N) (but

not SU(N)), SO(N) and Sp(N) families.

A representation of a Lie group is specified uniquely by the Dynkin la-

bels of its highest weight. There is one Dynkin label for each node of the

Dynkin diagram. Each label represents the coefficient of the corresponding

fundamental weight in the highest weight Λ of the representation:

Λ =
r∑
i=1

niωi (2.18)

where ωi are the fundamental weights. In the Dynkin basis Λi = ni.

Given the highest weight of a representation, all the weights, with their

multiplicities, can be constructed by the reverse of the construction of the

positive roots from the simple ones, progressively subtracting simple roots

until no further subtractions are possible. In this construction, the number

of times the i-th simple root αi has to be subtracted from a given weight λ is

given by the i-th entry in the weight in the Dynkin basis and 2 (λ,αi)
(αi,αi)

, with

the usual Cartesian inner product, in the Cartesian basis. All progressive

subtractions are added to the list of weights (if not already present) and the

process of subtraction of simple roots repeated on these new weights.

This construction only gives the weights, not their multiplicities; these

can be calculated by assigning multiplicity 1 to the highest weight Λ and

progressively calculating multiplicities of lower weights (as determined by

‘level’, i.e. the numbers of simple roots that must be subtracted from Λ to

give a specified root λ; here, as opposed to the construction of the positive

roots, lower roots have higher level) in terms of those of higher weights using

Freudenthal’s recursion formula, which is given by

((Λ + ρ,Λ + ρ)− (λ+ ρ, λ+ ρ))nλ = 2
∑
α∈∆+

∑
k≥1

nλ+kα(λ+ kα, α) (2.19)
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where nλ is the multiplicity of weight λ (the highest weight Λ is understood

here) and ρ is half the sum of all the positive roots, which is equal to the

sum of the fundamental weights. This construction is outlined in [24].

In the next subsection we will introduce characters, which simplify calcu-

lations involving group representations and enable them to be manipulated

algebraically.

2.3.1 Characters of group representations

The character of a group representation is taken as the trace of the matrices

representing each element of the group. By cyclic invariance of traces, the

character is the same for every element of a conjugacy class, i.e. the set of

all group elements conjugate to a given element g, [g] = {hgh−1;h ∈ G}.
There are a finite number of irreps of a finite group; by Schur’s lemma the

number of irreps is the same as the number of conjugacy classes of elements,

and the squares of their dimensions add up to the dimension of the group.

The identity element is always in a conjugacy class by itself. For an

abelian group, the same is true of every element.

For Lie groups, every element is conjugate to a (not necessarily unique)

element of the maximal torus and hence the character can be expressed in

terms of a number of parameters given by the rank of the group. These

parameters are called chemical potentials in analogy to the term used in

statistical mechanics; their exponentials are called fugacities. (Sometimes

fugacities are called chemical potentials in an abuse of notation.) In this

thesis and the papers on which this thesis is based and took its inspiration

from, [7, 8, 1, 2, 3], fugacities are preferred, though chemical potentials are

used directly in older literature such as [10].

The above construction of all the weights of a group representation, with

their multiplicities, can be converted into a character by, for each weight,

adding a term corresponding to each fugacity raised to the power of the

corresponding entry in the weight, multiplied by the multiplicity. However,

having defined fugacities, we can now introduce the Weyl character formula,

which (at least in principle) simplifies the two-step method of constructing

a character of a representation to one step:

χG(Λ) =

∑
w(−1)|w|zw(Λ+ρ)

zρ
∏
α(1− z−α)

(2.20)
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where zi are fugacities, w is a Weyl group element (a product of Weyl re-

flections w = wα1 . . . wαn where wα takes a general weight β to β−2 (β,α)
(α,α)α),

and we define zα =
∏r
i=1 z

αi
i .

By the Peter-Weyl theorem [36], a class function for a Lie group can be

decomposed uniquely in terms of the characters of its irreps.

For a finite group, the number of occurrences of each irrep Ri in a general

representation R is given by the following formula:

ni(R) =
1

|G|
∑
[g]

|[g]|χ̄i([g])χR([g]) (2.21)

where [g] is the conjugacy class of elements containing element g (summed

once per class, not per element!), χi([g]) is the character of representation

Ri taken over [g] and χR([g]) is the same for R. Since the number of irreps

of a finite group is finite, the number of occurrences of each irrep in a general

(reducible) representation can be easily calculated using this method. The

decomposition theorem, both existence and uniqueness, follows from the

(weighted, by the sizes of the conjugacy classes) orthogonality of characters

of different representations.

For a Lie group G this generalizes to

ni(R) =

∫
dµG(zj)χ̄i(zj)χR(zj) (2.22)

where dµG(zj) is the integral over the group manifold. Because there are

dim(G) parameters defining a general element of the group, we use the

fact that any element is conjugate to an element of the maximal torus

to rewrite the integral in terms of a parametrization of this torus. We

must therefore ‘weight’ the integral by the Jacobian of a general element of

the adjoint representation in terms of the fugacities. This factor is called

the Haar measure and is defined later in Section 2.6 and also in [9]. This

decomposition is discussed in [19].

For a Lie group, the number of irreps is infinite and so this method can-

not really be used to decompose a character of a general representation into

those of the group’s irreps. We instead decompose the representation by pro-

gressively finding the highest weight with the highest norm, calculating the

character of the irrep with this highest weight by either the Weyl character

formula or the previous construction, subtracting it (with its multiplicity)
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from the general reducible representation and repeating the process. We

do, however, use this method to determine the number of singlets in a rep-

resentation, as we do when we consider symmetrizations of representations

of both a gauge symmetry group and a global one, which we do in the next

section. (We integrate over the gauge group to find gauge singlets, and then

decompose into representations of the global group by progressive subtrac-

tion.) We discuss finding gauge singlets, also called invariants, further in

Section 2.7.

2.4 Symmetric polynomial identities for product

groups

Sometimes one wishes to (anti)symmetrize representations of two (or more)

different symmetry groups, usually a gauge group and a global group or a

non-simple (not counting U(1)) gauge group. In this section we will discuss

the case of two U(N) symmetry groups (not necessarily the same N); we

will leave the discussion of their decomposition into representations of other

groups, called ‘plethysm’, to Section 2.7.

There are several very useful identities that express either the full or ele-

mentary symmetric polynomial in two (or more in one case) sets of variables

as sums of products of those in the variables separately.

The first identity expresses a plethystic exponential of a product group

representation in terms of the complete symmetric polynomials of one sub-

group representation and the monomial symmetric polynomials of the other:

∏
i,j

1

1− xiyj
=
∑
λ

hλ(x)mλ(y) (2.23)

If counting of the number of fields in the product group representation is

required, a t can easily be inserted in the denominator (1− txiyj) and each

summand on the RHS multiplied by t|λ| where |λ| is the integer of which λ

is a partition.

This is easy to see by inspection, for each λi fix the (different for each i)

yi that is raised to the power λi and sum all terms in the series expansion

with that power of yi. It is easy to see that this is hλi(x), and their product

over all i is hλ(x). The function of yi is mλ(y). This identity also holds
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with x and y reversed.

The second identity expresses the PE of the product group representation

as a sum of products of Schur polynomials of the subgroup representations:

∏
i,j

1

1− xiyj
=
∑
λ

sλ(x)sλ(y) (2.24)

The proof of this is rather involved and described in [23]. It involves ex-

panding the determinant det( 1
1−xiyj )1≤i,j≤n, row and column reduction and

factorizing out the Vandermonde determinant ∆(x) =
∏
i<j(xi − xj) for

both x and y.

To obtain an expression for
∏n
i,j=1(1 − xiyj)−1 in terms of Schur poly-

nomials in both x and y, one can first see easily by inspection that the

determinant of the matrix of terms (1−xiyj)−1 with i and j between 1 and

n must have denominator
∏n
i,j=1(1 − xiyj), which is symmetric in the xi

and yj , and that the numerator must be antisymmetric in both and there-

fore proportional to the Vandermonde determinants ∆(x) and ∆(y), i.e.∏n
i<j(xi − xj) and the same for yi. By row and column manipulation, it is

shown in [23] that

det

(
1

1− xiyj

)n
i,j=1

=
∆(x)∆(y)∏n
i,j=1(1− xiyj)

(2.25)

i.e. the numerator is the product of the two Vandermonde determinants with

no additional factor. To obtain an expression in terms of Schur polynomials,

one must expand each term (1−xiyj)−1 as
∑∞

di=0(xiyj)
di , keeping the same

exponent in each row of the matrix (we label rows by i and columns by j).

Substituting this into the determinant, one gets

det

(
1

1− xiyj

)n
i,j=1

=
∑
di≥0

det
(

(xiyj)
di
)n
i,j=1

(2.26)

=
∑
di≥0

n∏
i=1

xdii det
(
ydij

)n
i,j=1

= ∆(x)∆(y)
∑
λ

sλ(x)sλ(y)

To explain the last derivation, firstly the di have to all be different to give a

non-zero result in the determinant in the second row; then rearrange them
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into d′i such that d′1 > . . . > d′n(≥ 0). The y-determinant is therefore given

by (−1)sgn(σ)∆(y)sλ(y) where λi = d′i − n + i and σ is the permutation of

the d′i that gives the di. (One can see that λ, with trailing zeros removed,

is a partition of some number |λ| =
∑n

i=1 λi.) One can then see that the

coefficient of ∆(y)sλ(y) is similarly ∆(x)sλ(x), hence the formula. Dividing

out by ∆(x)∆(y) we can put this into the form

1∏n
i,j=1(1− xiyj)

=
∑
λ

sλ(x)sλ(y) (2.27)

which is the desired result.

There is a third identity which expands the PE of a product group rep-

resentation in terms of the power sum symmetric (Newton) polynomials of

the subgroup representations:

∏
i,j

1

1− xiyj
=
∑
λ

1

zλ
pλ(x)pλ(y) (2.28)

where zλ =
∏
k k

ikik! when λ is rewritten as 1i1 . . . kik . . ..

Unlike with the previous two expressions, this one can be generalized to

representations of products of three or more groups rather than being re-

stricted to two. It is easy to see that pλ(xy) = pλ(x)pλ(y). However, we

will have to leave its derivation till the next section once we have intro-

duced the tools for doing so. These are grouped together into the plethystic

programme, which we introduce now.

2.5 Introduction to plethystics

As well as the examples of massive (super)string partition functions and

SQCD Hilbert series covered in this thesis, this finds applications in other

quiver gauge theories including instanton moduli spaces [42, 71], brane tiling

theories [39, 26, 28, 29, 30, 31], finding invariants of finite groups and con-

verting between single- and multi-trace partition functions counting BPS

operators [22, 19], etc.

The plethystic exponential (PE) is used to symmetrize (finite or infinite)

power series to arbitrary orders.

Suppose first that the argument of the PE function is a polynomial (which
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is usually a generalized or Laurent polynomial when the gauge and/or global

symmetry group is not U(N), though in this case we have to treat it, and

the PE, as a ‘formal’ power series rather than a ‘real’ polynomial) in one

or more variables; that way each term is a monomial. In the first step of

the derivation of the PE formula we temporarily replace each term with

a generalized fugacity Xi, 1 ≤ i ≤ n for a series of n terms. (To explicitly

show symmetrization to each order separately, we introduce another fugacity

t counting the number of terms; such counting fugacities, which denote U(1)

charges, are used in most if not all applications of plethystics. When used

to go from single- to multi-trace partition functions counting BPS operators

and back for finite numbers of fields [22], the ‘counting’ fugacity is called

ν.)

The totally symmetric product of a sum of n terms Xi to order k is given

simply by hk(Xi) as given above. This is the same as the Schur polynomial

sλ(Xi) where λ is the single-row partition [k] whence by the aforementioned

visualization of Schur polynomials in terms of semi-standard Young tableaux

the correspondence can be easily seen. The PE can thus be written as

PE

[
n∑
i=1

tXi

]
=

∞∑
k=0

tkhk(Xi) (2.29)

It is simple to see that

hk(X1, X2, . . .) =

k∑
j=0

Xj
1hk−j(X2, . . .) (2.30)

and substituting into the expression for the PE, one obtains

PE

[
n∑
i=1

tXi

]
=
∞∑
k=0

k∑
j=0

tjXj
1t
k−jhk−j(X2, . . .) (2.31)

Resumming j and k − j (relabelling as k) from 0 to infinity, one then gets

PE

[
n∑
i=1

tXi

]
= (1− tX1)−1

∞∑
k=0

tkhk(X2, . . .) (2.32)

= (1− tX1)−1 PE

[
n∑
i=2

tXi

]
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and repeating the process one obtains the final expression

PE

[
n∑
i=1

tXi

]
=

n∏
i=1

(1− tXi)
−1 (2.33)

This expression generalizes very simply to any function that can be ex-

pressed as a Taylor series, even an infinite one, in one or more variables. In

some of the examples in [19, 22], it is a rational function and the explicit Tay-

lor expansion is not used, though there we only calculate symmetrizations

to low orders, not the full PE. As with the ‘usual’ exponential function, the

exponential of the sum of two functions is the product of the exponentials

of the functions by themselves.

To show the relations with power sum symmetric (Newton) polynomials

(and their generalization to functions with possibly non-terminating Taylor

series, the Adams operator Adamsk(f(Xi)) = f(Xk
i )) and also to derive the

form of the inverse operation, the plethystic logarithm (PL), we take the

log of the PE and Taylor expand:

logPE

[∑
i

tXi

]
= −

∑
i

log(1− tXi) (2.34)

=
∑
i

∞∑
k=1

tkXk
i

k

=
∞∑
k=1

tkpk(Xi)

k

PE

[∑
i

tXi

]
= exp

( ∞∑
k=1

tkpk(Xi)

k

)
(2.35)

For a general function f(Xi), this can be written as:

logPE [tf(Xi)] =

∞∑
k=1

tkf(Xk
i )

k
(2.36)

PE [tf(Xi)] = exp(

∞∑
k=1

tkf(Xk
i )

k
) (2.37)

We wish to bring the log form to the desired form of simply t
∑

iXi.

It is easy to see that for each prime p, one must subtract logPE [tppp(Xi)];

this removes all terms for which k is prime or a prime power (with only one
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prime factor), but ‘over-corrects’ in the case where k has more than one

prime factor, indeed for k = p1 . . . pr it leaves the terms in pk(Xi) as having

coefficient −(r − 1).

One corrects this for products of two (distinct) primes p1 and p2 by adding

logPE [tp1p2pp1p2(Xi)] back into the sum, but one sees that we then have

to subtract back out terms in products of three distinct primes, and so on.

There is a function, the Möbius function µ(n), which returns (−1)r when

n is a product of r distinct prime factors and 0 when n is divisible by a

square of some number. Using this function, we can write the expression

for the PL (still taken to be of the PE) as follows:

PL

[
PE

[∑
i

tXi

]]
= −

∑
i

∞∑
k=1

µ(k)log(1− tkXk
i ) (2.38)

=
∑
i

∞∑
k=1

∞∑
l=1

µ(k)
tklXkl

i

kl

=
∑
i

∞∑
m=1

∑
k|m

µ(k)
tmXm

i

m
=
∑
i

tXi

We can now generalize the PL to take an arbitrary function of an arbitrary

number of variables as an argument, as long as it takes the value 1 when all

(or certain combinations of) fugacities are set to 0:

PL [f(t,Xi)] =
∞∑
k=1

µ(k)log(f(tk, Xk
i ))

k
(2.39)

There is an analogue of the plethystic exponential for fermionic operators

called the fermionic plethystic exponential (PEF ) which is defined in the

same way as the PE except that only products of distinct Xi, which sum

to totally antisymmetric products, occur in the final product. The totally

antisymmetric product of a sum of n terms Xi to order k is given simply

by ek(Xi) as given above. This is the same as the Schur polynomial sλ(Xi)

where λ is the single-column partition [1k]. Again this can be seen by

visualizing the Schur polynomial in terms of semi-standard Young tableaux.

The fermionic PE can thus be written as

PEF

[
n∑
i=1

tXi

]
=

∞∑
k=0

tkek(Xi) (2.40)
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By the same steps as for the PE, we obtain

PEF

[
n∑
i=1

tXi

]
=

n∏
i=1

(1 + tXi) (2.41)

In exponential form, generalized to a general function argument f(Xi) of

a possibly infinite number of Xi, we have the same expression as for the

‘ordinary’ PE except for the insertion of a (−1)k+1 factor:

PEF [f(t,Xi)] = exp

( ∞∑
k=1

(−1)k+1f(tk, Xk
i )

k

)
(2.42)

The inverse is published in [36]. To derive the inverse, we do not work with

the log form of the PE directly, but rather note that

PE [f(t,Xi)] =

∞∏
r=0

PEF
[
f(t2

r
X2r

i )
]

(2.43)

and we therefore have for the inverse

PLF [f(t,Xi)] =

∞∑
r=0

PL [f(t,Xi)] (2.44)

=
∞∑
k=1

∞∑
r=0

µ(k)log(f(t2
rk, X2rk

i ))

k

The PLF is not used in this thesis or indeed as yet in any other literature,

but the other formulae find extensive use.

2.6 Haar measure

The Haar measure, as derived in [9], is the conversion factor that enables

one to integrate over the whole group, of dimension dim(G) for a group G,

by the simpler integration over the maximal torus, of dimension rank(G).

It uses the fact that any group element is conjugate to an element of the

maximal torus and they therefore have the same character. Schematically

it is the Jacobian of the group manifold over the torus. For a group G
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parametrized by fugacities zi, 1 ≤ i ≤ rank(G), it is given by

∫
dµG =

1

|W|

rank(G)∏
i=1

∮
C

dzi
2πizi

∏
α∈∆

1−
rank(G)∏
i=1

zαii

 (2.45)

where α denotes a root (i.e. a weight of the adjoint representation), αi

denotes the ith entry in the weight α in the Dynkin basis, W is the Weyl

group, or the subgroup of the isometry group of the root system generated

by reflections in hyperplanes perpendicular to the roots, and C is the unit

circle. (As mentioned before, a different (non-Dynkin) basis are used in

[1, 2] in the case of SO(Nc) and Sp(Nc) gauge groups; however the method

still works if the same basis is used throughout the integration.)

A simpler Haar measure is derived in [76] and used in [3] where the

product is only over the positive roots and there is no division by the order

of the Weyl group:

∫
dµG =

rank(G)∏
i=1

∮
C

dzi
2πizi

∏
α∈∆+

1−
rank(G)∏
i=1

zαii

 (2.46)

2.7 Invariant theory and the Molien-Weyl integral

Before we introduce invariant theory, we must recall that we often, as here,

misuse the term ‘representation’ to mean the (vector) space on which ele-

ments of the group act, when in actual fact the word should instead be used

to refer to the matrices representing the group elements.

Because antisymmetrization of a representation will always lead to a sin-

glet at a level equal to the dimension of the representation, there will always

be a completely antisymmetric invariant; this is not the case for symmetriza-

tion, so there will not always be a totally symmetric invariant, they are not

present for the An = SU(n+ 1) and Cn = Sp(n) families.

A general invariant is specified by an object I with two or more indices

which remains the same under multiplication by elements of the relevant

representation(s) of the group, with each multiplication being by the same

element. This definition holds for both Lie and finite groups. Simple ex-

amples of invariants in which each index represents an object of the same

representation are the trace of SO(N), the symplectic trace of Sp(N) and
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the epsilon tensor of SU(N) and SO(N).

It is possible to have invariants where the indices do not all represent

objects in the same representation, for example a fundamental and an anti-

fundamental or (anti)fundamentals and an adjoint. In this case the elements

of the group are not the ‘same’ as such but are the exponentials of the same

linear combination of the generators of the group, which differ between

representations but always have the same structure constants (i.e. commu-

tation properties). These are called intertwiners and are discussed in [36].

The simplest example of an intertwiner is the delta function of SU(N) and

E6 with one fundamental and one antifundamental index.

To get the spectrum of gauge-invariant operators (in terms of representa-

tions of the global symmetry group), one must project the representations

of the gauge group generated by the plethystic exponential onto the triv-

ial representation. There is a general formula from [20] which gives the

number of occurrences of any given (irreducible) representation in a sum

of representations; one multiplies the sum by the conjugate of the desired

representation (which is as specified above) and integrates the product over

the whole group; this uses the fact that the product of an irrep with its

conjugate always contains exactly one singlet, while the product with an

irrep other than the conjugate never produces a singlet. In this case, since

the desired representation is the trivial one, so is the conjugate irrep and

hence one can simply integrate over the whole group.

For a given irreducible representation R, the number of occurrences of

R in a (possibly reducible) representation R′ (which is usually a tensor

product) is given by (as in [19]) (2.21) for a finite group and (2.22) for a Lie

group. In this section, we are considering the number of invariants, so R is

the singlet representation.

For a finite group with a representation given by matrices acting on a

vector space of dimension n, the invariants can be obtained explicitly for a

general polynomial argument f((x)), where x = (x1, . . . , xn) is an element

of said vector space, using the Reynolds operator:

R(f(x)) =
1

|G|
∑
g∈G

f(g(x)) (2.47)

There is a theorem discussed in [22] and [6] that states that the maximum
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degree of a primitive invariant is the order of the group, meaning that we

do not have to go to too high a degree to find all the invariants.

Molien’s sum formula, quoted in [22] and derived in [6], gives the Hilbert

series of the invariants of (a specific representation ρ of) a finite group:

H(t) =
1

|G|
∑
g∈G

1

det (1− ρ(g)t)
(2.48)

where ρ(g) is the matrix corresponding to element g in the representation

ρ.

The plethystic logarithm of H(t) gives the (number of) primitive invari-

ants and (if present) relations and higher syzygies.

It is possible to ‘refine’ this series by replacing the multiplication by t

by multiplying by diag(t1, . . . , tdim(ρ)), which is outlined in [22]. This does

not always give a PL in which every term is an integer, however (though

they can when the moduli space is toric), so the invariants cannot always

be assembled into representations of SU(dim(ρ)).

The (Molien-)Weyl integral is the generalization of Molien’s sum formula

to Lie groups. The plethystic exponential can be thought of as the determi-

nant. Any matrix is conjugate to a diagonal matrix and such conjugation

always leaves the identity invariant. We will not present a general formula

here, but rather leave the details to the relevant sections.
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3 Introduction to string spectra

3.1 String theory preliminaries

In this section we largely follow the procedure of light-cone quantization

described in chapter 1 of [53] for the bosonic string and chapters 10 and

11 of [54] for the type I and heterotic superstrings respectively, though for

space reasons we omit some details.

We start by considering the point-particle action. We could write this

with X0 fixed as being time, but we instead introduce some extra redun-

dancy and write the action in a parametrization-invariant form:

Spp =

∫
dτ(−ẊµẊµ)1/2 (3.1)

This is not in a convenient form to work with, because of the square root.

To remedy this, we introduce an auxiliary variable called a tetrad (so called

because it was originally used in four-dimensional gravity theories, though

it is now also used in other-dimensional theories, where it is more commonly

called by its German name of D-bein for D dimensions, here a 1-bein or

einbein). Our new action is

Spp′ =

∫
dτη−1ẊµẊµ − ηm2 (3.2)

We see that solving the Euler-Lagrange equation for the tetrad brings us

back to the original action.

Generalizing the point-particle action to an extended object with one

spatial dimension, we have the Nambu-Goto action

SNG =

∫
dτdσ(−dethab)

1/2 (3.3)

where hab = ∂aX
µ∂bXµ
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This time, unlike in the point-particle case, we remove the square root by

introducing not a tetrad (or 2-bein, zweibein) as such, but an auxiliary

metric γab (with inverse γab), with Minkowski signature. This gives the

Polyakov action (which was not discovered by Polyakov, though he worked

out its properties):

SP =

∫
dτdσ(−γ)1/2γab∂aX

µ∂bXµ (3.4)

This has the symmetries of D-dimensional (spacetime) Poincaré invariance

X ′µ(τ, σ) = ΛµνXν(τ, σ) + aµ and 2-dimensional (world-sheet) diffeomor-

phism (diff) γ′ab(σ
c) = γab(σ

c) and Weyl invariance γ′ab = exp(2ω(τ, σ))γab.

Again, solving the Euler-Lagrange equation for the auxiliary metric brings

us back to the Nambu-Goto action. However, we usually keep the extra

redundancy, both for ease of use and also because the Polyakov action,

and its point-particle analogue, can be used for massless particles, but the

Nambu-Goto action and Spp cannot.

In the light-cone quantization described in chapter 1, we rewrite indices

0,1 by +,-, defining new coordinates X± = 1√
2
(X0 ± X1), and denote the

other indices by i, 2 ≤ i ≤ D − 1. The Minkowski metric, with (−+ . . .+)

signature, now has components η+− = η−+ = −1. We then set X+ = τ ,

which is easier to work with than keeping the original coordinate system

and metric and setting X0 = τ . We show that we can fix the worldsheet

metric to be Minkowski too. From chapter 2 onwards, we Wick rotate the

worldsheet metric to Euclidean form, and work with complex coordinates.

Poincaré invariance forces Xµ(τ, σ) to be periodic in σ. Other periodic-

ities are possible if we relax Poincaré invariance in some spacetime dimen-

sions, as occurs for constructions such as D-branes, orbifold compactifica-

tions etc. We do not consider those further here.

After a long calculation, and imposing the commutation relations [αim, α
j
n] =

mδijδm,−n, we arrive at the following expression for the mass of an open

string state:

m2 =
1

α′

D−1∑
i=2

∞∑
n=1

(
Nin +

1

2
n

)
where Nin|〉 = αi−nα

i
n|〉 (3.5)

We see that there is a divergent zero-point energy from the constant term.
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In regular QFT, we usually discard this term, but in string theory we renor-

malize it. We do this using zeta-function regularization. The Riemann zeta

function is defined as, for Re(z) > 1,

ζ(z) =

∞∑
i=1

n−z (3.6)

This has a simple pole at z = 1 with residue 1 but can otherwise be ana-

lytically continued into Re(z) ≤ 1. By the following formula from [59], we

have

ζ(z) = 2zπz−1sin(
1

2
πz)Γ(1− z)ζ(1− z) (3.7)

We see, knowing that ζ(2) = π2

6 , that ζ(−1) = − 1
12 . This must be multiplied

by 1
2 , from the factor in (3.5), to give − 1

24 , and one term added for each of

the D−2 oscillators from 2 ≤ i ≤ D−1 to give a zero-point energy, which is

the mass of the ground state of the theory in units of the string scale α′−1,

of −D−2
24 . Bosonic string theory therefore has a tachyon, i.e. a particle of

negative mass-squared, in more than 2 dimensions.

The states at the first excited level are given by αi−1|0; k〉 for 2 ≤ i ≤ D−1

and, by the commutation relations have mass 1
α′

(
1 + 2−D

24

)
= 26−D

24α′ . We

know that for massless states, the spatial momentum cannot vanish so the

little group, which leaves the momentum invariant, is SO(D − 2) (observe

for the case of pµ = (E,E, 0, . . .)), but for massive states we can have

pµ = (m, 0, . . .) so the little group is SO(D−1). There are only D−2 states

at the first excited level, so they can only transform in a representation of

SO(D− 2) and so they must be massless, and therefore D is constrained to

be 26. The normal ordering constant, which is the mass of the ground state

in units of α′−1, is -1, taking it to be additive rather than subtractive.

This is a rather unrigorous derivation of the conditions on the number

of dimensions of the bosonic string and the normal ordering constant. (In

regular quantum field theory, the infinite zero-point energy is usually just

discarded.) We will work with this method of quantization because the

group(s) in which the raising operators, which build up the Fock space of

quantum states, transform is most easily shown by this method, but first we

will discuss more rigorous derivations of this condition based on more covari-

ant methods of quantization. In all cases the actual commutation relations

are the same, though with all D oscillators considered rather than just the
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D − 2 transverse ones and the spacetime metric in its original Minkowski

form rather than the Euclidean restriction to the transverse space.

Firstly we have old covariant quantization. To do this, we recall that in-

variance of the action under variation of the (world-sheet) metric, whether

Minkowski or Euclidean (as in the Wick-rotated theory described from

chapter 2 onwards in [53]), gives rise to a conserved (world-sheet) energy-

momentum tensor T ab which is symmetric and traceless. Fixing the gauge

means that the vanishing of T ab does not hold as an operator equation, so

instead it must be imposed as a constraint on the matrix elements between

physical states.

This is equivalent to imposing that the Virasoro lowering operators Ln +

Aδn,0, n ≥ 0 annihilate physical states, with A being an as yet undefined

(additive) constant. To see this, we now pass to complex coordinates on

the world-sheet, defining w = σ + iτ and w̄ = σ − iτ and from them we

obtain z = e−iw and z̄ = eiw̄. In this coordinate system the integral over

σ from 0 to 2π is replaced by integration on a circle centred on the origin.

In complex coordinates the traceless condition on T ab means it has only

zz and z̄z̄ components, and its conservation means these are respectively

holomorphic and antiholomorphic, so we can write T (z) and T̃ (z̄).

The Virasoro operators are defined in terms of the energy-momentum

tensor as follows:

T (z) = Tzz(z) =

∞∑
n=−∞

Ln
zn+2

(3.8)

Ln =

∮
dz zn+1T (z) (3.9)

and similarly for L̃n in terms of T̃ (z̄) = Tz̄z̄(z̄) for the other half of the

closed string. The condition that all Virasoro operators annihilate physical

states is too restrictive, so by Hermiticity, L†n = L−n, we have

Ln|phys〉 = 0, n > 0 (3.10)

(L0 +A)|phys〉 = 0 (3.11)

States obtained by the action of L−n on any state are called spurious, and

are clearly orthogonal to any physical state by Hermitian conjugation; if

they are themselves physical, they are called null. States that differ by a
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null state correspond to the same physical state, so the Fock space does not

consist of ‘states’ as such but of equivalence classes or sets of states differing

by a null state, with each class denoted by one representative state. We see

that for us to obtain the same spectrum as in the light-cone case (not fixing

zero-point energy or dimensions in the latter case), we must have A = −1

and 26 dimensions. We see that A is the zero-point energy.

Secondly we have BRST (Becchi-Rouet-Stora-Tyutin) quantization. In

order to do BRST quantization, we must first fix the gauge using the

Faddeev-Popov procedure borrowed from gauge theory. In string theory

the gauge fixing introduces two new fields, one symmetric and traceless

with two lower indices and the other with one upper index, which are then

made fermionic (‘ghosts’). This is described in [53], heuristically in chapter

3 and more rigorously in chapter 5. The ghosts also form a CFT, with their

own energy-momentum tensor.

There are ‘large’ gauge transformations which cannot be specified in such

a form and indeed are orthogonal to all those that can, these are called

moduli. These are not the same as the massless scalars that define the

parameters of a general string compactification, or those that parametrize

the vacua of a supersymmetric gauge theory, which are also referred to as

moduli.

In BRST quantization, physical and null states are called closed and exact

respectively, and there is again a cohomology. Closed states are annihilated

by the BRST charge, denoted QB, and exact states are given by QB|〉 for

some state |〉 and are necessarily closed by the fact that Q2
B = 0. Each

‘state’ in the Fock space is again an equivalence class of closed states whose

difference is exact.

We will now have a brief diversion into operator products, the central part

of the machinery of CFT. Recalling that the path integral of a total (func-

tional) derivative is zero, we see that taking a total derivative inside a path

integral with insertions gives relations between the derivative of the inser-

tion and the insertion multiplied by the derivative of the action. This may

give rise to singularities in the product of two operators as their positions

approach each other, as in chapter 2 of [53]. The energy-momentum tensor

T (z), and its antiholomorphic analogue T̃ (z̄), may be built out of the funda-

mental fields of the CFT, or they may be fundamental fields themselves, and

their operator products are defined in terms of their constituent fields. The
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central charge is twice the coefficient of (z − w)−4 in the operator product

expansion of T (z)T (w).

BRST quantization forces the dimension of the bosonic string to be 26

because this is the only case for which the BRST charge squares to zero,

i.e. is nilpotent. We obtain this from the operator product of two BRST

currents, which are built out of combinations of components of the ghost

and matter CFTs.

The Weyl anomaly, which is a condition on the tracelessness of the energy-

momentum tensor (T aa = − c
12R, for c the central charge of the theory and

R the Ricci scalar, is derived in two ways, one from the variation of the

energy-momentum tensor and the other from the vacuum partition function,

in chapter 3 of [53]), requires the total central charge of the theory to vanish,

this is 1 for every spacetime dimension and -26 for the ghost bc CFT giving

D − 26 in total.

We will now move on to the superstring. String amplitudes always contain

an even number of fermions, so the periodicity conditions also allow the

boundary conditions to be antiperiodic. The sector in which the fermions

are periodic is called the Ramond (R) sector, and that in which they are

antiperiodic is called the Neveu-Schwarz (NS) sector.

Taking θ as 0 in the R-sector and 1
2 in the NS sector, we send n→ n− θ

in the sum and obtain the answer 1
24 −

1
8(2θ−1)2, again using zeta-function

regularization, this time of the Hurwitz zeta function which is defined as

ζ(z, a) =
∞∑
i=0

(n+ a)−z (3.12)

This formula reproduces Riemann’s when a = 1.

Expanding out the expression for the Hamiltonian, and hence the mass,

we see that the sign of the zero-point energy is reversed from the bosonic

case, so we have, again multiplying by 1
2 , 1

24 for each periodic fermion and

− 1
48 for each antiperiodic fermion. (Antiperiodic bosons contribute + 1

48 .)

In the R sector, the zero-point energy of the fermionic oscillators cancels

that of the bosonic ones; in the NS sector, we get in total − 1
16 for each of

the D − 2 directions transverse to the light cone.

In the NS sector, the states at the first excited level are given by ψi−1/2|0; k〉
for 2 ≤ i ≤ D − 1 and, by the commutation relations have mass
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1
α′

(
1
2 + 2−D

16

)
= 10−D

16α′ . Again, the little group is SO(D − 2) for massless

states but SO(D − 1) for massive states. There are only D − 2 states at

the first excited level, constraining D to be 10, with zero-point energy −1
2 .

Again this can be determined by more rigorous methods, i.e. the vanishing

of the Weyl anomaly and the nilpotency of the BRST charge. In this case we

also have central charge 1
2 from the fermionic oscillators in each spacetime

dimension, and superconformal bosonic ghosts β and γ making up a SCFT

with central charge 11. This reduces to 3
2D − 26 + 11 = 0 giving D = 10.

In the R-sector we have zero modes which generate spinor representations

of SO(8). Picking one ground state which is annihilated, say, by ψ2i −
iψ2i+1 for 1 ≤ i ≤ 4, by acting with the ψ2i + iψ2i+1 we obtain two spinor

representations, the 8 obtained by acting an even number of times with

these raising operators and the 8̄ obtained by acting an odd number of

times.

The GSO projection keeps states whose world-sheet fermion number is

even. The NS ground state at mass level −1
2 is odd because of ghost modes,

and in the R-sector we pick one SO(8) spinor, usually the 8, to have even

fermion number and the other odd. The fermionic oscillators are all odd,

so their action flips the odd/even parity of a given state. In type IIA string

theory, we keep the right-moving R-sector states whose world-sheet fermion

number is odd, keeping the even condition on the NS sector states.

As regards old covariant quantization, we also have operators Gn with

the moding of n being the same as that of the oscillators, i.e. half-odd

integers in the NS sector and integers in the R sector. Gn must annihilate

physical states for n ≥ 0, reducing the two SO(1, 9) 16-dimensional spinors

generated by the R-sector zero modes, here considering all 10 Minkowski

modes, to the same 8-dimensional ones of SO(8) as in the light-cone case.

The 6 internal dimensions can be replaced by a general superconformal

field theory with c = 9 (c̃ = 9 for the right-handed component of a closed

string). The normal ordering constant as derived earlier remains the same.

We do this in all three cases of the superstring that we consider, though

we see that in the case of 8 supercharges two of the internal dimensions

are toroidal so we consider 6-dimensional Minkowski spacetime with a c =

6 SCFT on the remaining 4 internal dimensions, and in the case of 16

supercharges all 6 internal dimensions are toroidal so we treat this case as

10-dimensional Minkowski spacetime.
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In these case, we must use BRST quantization to calculate its spec-

trum. This is done explicitly for the first massive level of the 4, 8 and

16-supercharge universal (to be defined later) superstring spectra in [15] and

[37], and the partition functions are calculated in [12] in the 4-supercharge

case and [11] in the 8-supercharge case.

We have derived these conditions from the worldsheet (S)CFT, without

recourse to spacetime properties. The open bosonic string contains a mass-

less vector (gauge) field, which must couple to a conserved current; simi-

larly the closed bosonic string contains a massless second-rank symmetric

traceless tensor field, which must couple to a conserved second-rank sym-

metric traceless tensor source, of which the only one present is the energy-

momentum tensor. These conditions impose that the theory must have

spacetime gauge and coordinate invariance respectively. The timelike and

longitudinal oscillators of the string are removed by world-sheet coordinate

(diff) invariance; from the spacetime point of view, it is the spacetime gauge

and coordinate invariance that remove these two oscillators. Spacetime su-

persymmetry also appears in a rather round-about way, in the construction

of null states in the R sector of the open type I superstring.

3.2 Introduction to string spectra

We will now return to the light-cone formalism.

We will start with [8], and then move on to the systematic treatment

described in [7].

We denote the characters by the sums of the products of the fugacities

raised to the power of the corresponding Dynkin labels. For the represen-
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tations discussed in this section we have the following characters:

[1, 0, 0, 0]8(~z) = z1 +
z2

z1
+
z3z4

z2
+
z3

z4
+
z4

z3
+

z2

z3z4
+
z1

z2
+

1

z1
(3.13)

[0, 0, 1, 0]8(~z) = z3 +
z2

z3
+
z1z4

z2
+
z1

z4
+
z4

z1
+

z2

z1z4
+
z3

z2
+

1

z3
(3.14)

[0, 0, 0, 1]8(~z) = z4 +
z2

z4
+
z1z3

z2
+
z1

z3
+
z3

z1
+

z2

z1z3
+
z4

z2
+

1

z4
(3.15)

[1, 0, 0, 0]9(~y) = y1 +
y2

y1
+
y3

y2
+
y2

4

y3
+ 1 +

y3

y2
4

+
y2

y3
+
y1

y2
+

1

y1
(3.16)

[0, 0, 0, 1]9(~y) = y4 +
y3

y4
+
y2y4

y3
+
y1y4

y2
+
y2

y4
+
y4

y1
+
y1y3

y2y4
+

y3

y1y4

+
y1y4

y3
+
y2y4

y1y3
+
y1

y4
+
y4

y2
+

y2

y1y4
+

y3

y2y4
+
y4

y3
+

1

y4
(3.17)

[1, 0, . . .]24(~z) = z1 +
9∑
i=1

zi+1

zi
+
z11z12

z10
+
z11

z12

+
z12

z11
+

z10

z11z12
+

9∑
i=1

zi
zi+1

+
1

z1
(3.18)

[1, 0, . . .]25(~y) = y1 +

10∑
i=1

yi+1

yi
+
y2

12

y11
+ 1

+
y11

y2
12

+

10∑
i=1

yi
yi+1

+
1

y1
(3.19)

When going between SO(2n) = Dn and SO(2n+ 1) = Bn representations,

as we do here for n = D−2
2 in both the bosonic case (D = 26) and the

superstring (D = 10), there is a mapping from zi to yi:

yi = zi, 1 ≤ i ≤ n− 2, yn−1 = zn−1zn, yn = zn (3.20)

and the inverse mapping is zn−1 = yn−1

yn
with zi = yi for all other i.

We will start with the simplest case of the bosonic string in 26 dimensions,

though our reference [8] begins with the open type I superstring.

There is one raising operator αi−m for each transverse direction i, 2 ≤ i ≤
D − 1 and each level m ∈ N>0. These combine to give an argument for the

plethystic exponential of [1, 0, . . .]24(zi)
∑∞

m=1 q
m = ([1, 0, . . .]25(yi)−1) q

1−q .
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The zero-point energy, in units of α′−1, is -1.

Zbos(q, yi) = PE

[
([1, 0, . . .]25(yi)− 1)

q

1− q

]
(3.21)

There is a general argument, outlined in [10], that this series does not

give negative coefficients of any representation of SO(25) at massive levels,

despite there being one in the PE.

It is possible to calculate each level using Mathematica, but we did it

using self-written Java and LiE [5] programs.

To generate a given level n in the bosonic case, or the bosonic part of a

type I or heterotic superstring spectrum, we start by finding all partitions

λ of n. We then rewrite each partition λ = [λ1, . . .] as 1n1 . . . ini . . . where

ni is the number of occurrences of i in λ, and take the tensor product of

the symmetrizations of [1, 0, 0, 0]8 = [1, 0, 0, 0]9 − 1 in the superstring cases

or [1, 0, . . .]24 = [1, 0, . . .]25 − 1 in the bosonic case to orders ni for each i.

Summing over all partitions of n, we obtain the n’th level of the bosonic

partition function, and we obtain the whole partition function by adding

together each level weighted by qn.

Up to mass level 9, the bosonic partition function is given by, assuming

representations are of SO(25) unless stated:
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Zbos =
1

q
+ [1, . . .]24 + q[2, . . .]

+ q2 ([3, . . .] + [0, 1, . . .]) + q3 ([4, . . .] + [2, . . .] + [1, 1, . . .] + 1)

+ q4 ([5, . . .] + [3, . . .] + [2, 1, . . .] + [1, 1, . . .] + [1, . . .] + [0, 1, . . .])

+ q5 ([6, . . .] + [4, . . .] + [3, 1, . . .] + [3, . . .] + [2, 1, . . .] + 2[2, . . .] + [1, 1, . . .]

+[1, . . .] + [0, 2, . . .] + [0, 0, 1, . . .] + 1)

+ q6 ([7, . . .] + [5, . . .] + [4, 1, . . .] + [4, . . .] + [3, 1, . . .] + 2[3, . . .] + 2[2, 1, . . .]

+[2, . . .] + [1, 2, . . .] + 2[1, 1, . . .] + [1, 0, 1, . . .] + 2[1, . . .] + 2[0, 1, . . .])

+ q7 ([8, . . .] + [6, . . .] + [5, 1, . . .] + [5, . . .] + [4, 1, . . .] + 3[4, . . .] + 2[3, 1, . . .]

+ 2[3, . . .] + [2, 2, . . .] + 2[2, 1, . . .] + [2, 0, 1, . . .] + 4[2, . . .] + [1, 2, . . .]

+3[1, 1, . . .] + [1, 0, 1, . . .] + 2[1, . . .] + 2[0, 2, . . .] + [0, 1, . . .] + [0, 0, 1, . . .] + 2)

+ q8 ([9, . . .] + [7, . . .] + [6, 1, . . .] + [6, . . .] + [5, 1, . . .] + 3[5, . . .] + 2[4, 1, . . .]

+ 2[4, . . .] + [3, 2, . . .] + 3[3, 1, . . .] + [3, 0, 1, . . .] + 5[3, . . .] + [2, 2, . . .]

+ 5[2, 1, . . .] + [2, 0, 1, . . .] + 3[2, . . .] + 2[1, 2, . . .] + 4[1, 1, . . .] + 2[1, 0, 1, . . .]

+4[1, . . .] + [0, 3, . . .] + [0, 2, . . .] + [0, 1, 1, . . .] + 4[0, 1, . . .] + [0, 0, 1, . . .])

+ q9 ([10, . . .] + [8, . . .] + [7, 1, . . .] + [7, . . .] + [6, 1, . . .] + 3[6, . . .] + 2[5, 1, . . .]

+ 3[5, . . .] + [4, 2, . . .] + 3[4, 1, . . .] + [4, 0, 1, . . .] + 6[4, . . .] + [3, 2, . . .]

+ 5[3, 1, . . .] + [3, 0, 1, . . .] + 5[3, . . .] + 3[2, 2, . . .] + 6[2, 1, . . .] + 3[2, 0, 1, . . .]

+ 8[2, . . .] + [1, 3, . . .] + 3[1, 2, . . .] + [1, 1, 1, . . .] + 7[1, 1, . . .] + 2[1, 0, 1, . . .]

+ 4[1, . . .] + 4[0, 2, . . .] + [0, 1, 1, . . .] + 3[0, 1, . . .] + 2[0, 0, 1, . . .]

+[0, 0, 0, 1, . . .] + 3)

We see stable patterns emerging as the coefficients of [n1, . . .] remain the

same as both the mass level and n1 are increased by 1. Fixing n2, . . ., the

number of n1 for which this is the case increases as the lowest level of agree-

ment does. To explain them, we must first introduce multiplicity generating

functions, which are the generating functions for the multiplicities at each

mass level of a specific representation. To demonstrate stable patterns, we

show the multiplicity generating functions for [3, . . .], [4, . . .] and [5, . . .]:
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Zbos = . . .+ [3, . . .](q2 + q4 + q5 + 2q6 + 2q7 + 5q8 + 5q9 + . . .)

+ [4, . . .](q3 + q5 + q6 + 3q7 + 2q8 + 6q9 + . . .)

+ [5, . . .](q4 + q6 + q7 + 3q8 + 3q9) + . . .

We see that the coefficients of qn in the MGF for [3, . . .] agree with those

of qn+1 in that for [4, . . .] up to the terms in q6 and q7 respectively (i.e.the

first 4 coefficients), and the MGFs for [4, . . .] and [5, . . .] agree in the first

5 coefficients. This suggests that as n→∞, the MGFs of [n, . . .] approach

qn−1 multiplied by a constant polynomial that we refer to as a stable pattern,

with the first disagreement, which is subtracted from the stable pattern,

occurring at q2n. This is called the first subleading Regge trajectory.

Similar patterns occur when the second and subsequent Dynkin labels are

not all zero. We will define stable patterns (or leading Regge trajectories),

subleading Regge trajectories and multiplicity generating functions more

rigorously in the next section.

For the open type I superstring, we start by defining the following func-

tions in terms of the raising operators which transform in the vector repre-

sentation of SO(8) in each case:

ZB = PE

[
q

1− q
[1, 0, 0, 0]8

]
= PE

[
q

1− q
([1, 0, 0, 0]9 − 1])

]
(3.22)

ZF (f) = PEF

[
f

1− q
[1, 0, 0, 0]8

]
= PEF

[
f

1− q
([1, 0, 0, 0]9 − 1])

]
(3.23)

In the NS sector, we have f = ±q1/2, and in the R sector we have f = ±q; we

take appropriate linear combinations of the two in order to impose the GSO

projection. In particular, in the NS sector the zero-point energy is −1
2 and

we keep terms with integer powers of q (after multiplying by q−1/2); in the

R sector we keep the action of an even number of positive-energy oscillators

on [0,0,0,1] and an odd number on [0,0,1,0] (Z is the full partition function

with both bosonic and fermionic modes, and note that ZF (−q) = Z−1
B and

[0, 0, 0, 1]8 + [0, 0, 1, 0]8 = [0, 0, 0, 1]9):
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ZNS =
1

2q1/2

(
ZF (q1/2)− ZF (−q1/2)

)
(3.24)

ZR =
1

2
([0, 0, 0, 1]8 (ZF (q) + ZF (−q))

+[0, 0, 1, 0]8 (ZF (q)− ZF (−q))) (3.25)

Z = ZB(ZNS + ZR) (3.26)

=
1

2
([0, 0, 0, 1]8 − [0, 0, 1, 0]8)

+ZB

(
ZNS +

1

2
[0, 0, 0, 1]9ZF (q)

)
(3.27)

We see that the product of ZB and ZF (q) gives even coefficients of all repre-

sentations at all massive levels, because the arguments of the two functions

are the same [8], and hence we have no fractional terms at massive levels in

Z. The argument from [10] that there are no negative coefficients at massive

levels applies here too.

We calculate level n of the R-sector of the fermionic or heterotic part

explicitly as we do the for the bosonic case but with antisymmetrization.

In the NS-sector, we find all partitions into half-odd integers, or into odd

integers. (Since the zero-point energy is −1
2 , we find partitions of n + 1

2

into half-odd integers or of 2n+ 1 into odd integers to give an integer total

level, though in the 4- and 8-supercharge cases we also need to find those

of n or 2n respectively, since we must multiply by the partition function of

the internal dimensions before taking the GSO projection. In the heterotic

NS case we keep integer levels, since the zero-point energy is -1; we do not

discuss heterotic cases with reduced supersymmetry in this thesis.)

To get the total bosonic and fermionic partition function at a given level n,

which can be a half-odd integer in the NS case, we sum all tensor products of

bosonic and fermionic levels with total level n. The total partition function

is the sum of this for all levels weighted by qn, or simply the tensor product

of the two partition functions. The same applies when ‘internal’ partition

functions are included.

To get the true level, we must add the zero-point energy, which is -1 for

the bosonic string and the NS sector of the heterotic string, −1
2 for the NS

sector of the type I superstring, 0 for the R sector of the type I superstring

and 1 for the R sector of the heterotic string.
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We see that the massive levels of the open type I superstring decom-

pose into a product of the massive supermultiplet, [2, 0, 0, 0]9 + [1, 0, 0, 1]9 +

[0, 0, 1, 0]9, with another term. The ‘factored’ spectrum, up to level 9, is

listed in [8]. As in the bosonic case, we see stable patterns emerging as the

coefficients of [n1, n2, n3, n4] remain the same as both the mass level and n1

are increased by 1. Fixing n2, n3 and n4, the number of n1 for which this

is the case increases as the lowest level of agreement does.

We can tensor two open type I strings together and apply level matching

to get the type II strings, in which the massive levels are the same in both

the type IIA and type IIB cases. We can also easily obtain the complete

closed and open type I spectrum, obtaining the closed (torus and Klein

bottle) part by taking the graded symmetric square (symmetric for bosons,

antisymmetric for fermions and simply the product of ‘cross’ terms) and

the open (annulus and Möbius strip) part by incorporating the Chan-Paton

factors of SO(32) into the partition function, [2, 0, . . .] + 1 (symmetric) for

odd mass levels and the adjoint [0, 1, 0, . . .] (antisymmetric) for even ones,

following chapter 6 of [53]. The first few levels are shown in [8] in both

cases.

We can do the same for the heterotic string, either the SO(32) case where

all 32 heterotic oscillators are in the same (R or NS) sector at the same time

or the E8 × E8 where there are two sets of 16 oscillators in each of which

all oscillators must be in the same sector but the two sets can be in differ-

ent sectors. Again GSO projections must be applied. Multiplying by the

10-dimensional bosonic partition gives the heterotic side of the partition

function, and the overall closed partition function can be obtained by ten-

soring with the type I partition function and level-matching, similarly to the

type II case. (It is usually easier to calculate heterotic spectra, especially

in the E8×E8 case, using the bosonic construction outlined in section 11.6

of [54].)

The first few levels of the heterotic strings of both types are listed in [8].
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3.3 Systematic treatment of type I superstring

compactifications

In this section, and the next chapter, we return to the open type I super-

string and its compactifications which preserve some or all of the supersym-

metry.

There are many ways of compactifying the superstring to preserve a de-

sired amount of supersymmetry.

The amount of supersymmetry in a 10D theory is reduced by a factor

of four, or 3
4 of the supersymmetry is broken, by compactification on a

Calabi-Yau 3-fold. The spinors 4 = [0, 1, 0] and 4̄ = [0, 0, 1] of the SO(6)

on the internal space decompose under the SU(3) holonomy to 3 + 1 =

([1, 0] + [0, 0]) and 3̄ + 1 = ([0, 1] + [0, 0]) respectively.

Similarly compactification on a CY 2-fold, of which there is only one

non-trivial example, K3, reduces the spinors [1, 0] and [0, 1] of the SO(4) =

SU(2)×SU(2) on the internal space decompose under the SU(2) holonomy

to [1] and 2[0], preserving (or breaking) half of the supersymmetry. (It

is a general rule that compactification on a CY n-fold, of which the only

other relevant case is compactification of M-theory on a CY 4-fold down

to 3 dimensions, preserves 21−n of the supersymmetry, here reducing the

32 supercharges down to 4 or N3d = 2, because the spinor and conjugate

spinor of SO(2n) together decompose under SU(n) into the sum of all the

antisymmetric k-th rank tensors with 0 ≤ k ≤ n, and the first and last of

these are singlets.)

We can also compactify superstring theory on orbifolds, which are quo-

tients of compact manifolds (usually tori) by finite groups; these can be

thought of as singular limits of Calabi-Yau manifolds. K3 necessarily has

2nd Betti number b2 = 22 (or Hodge number h1,1 = 20) and we see in

[74] that this is reproducible by compactification of 4 dimensions on T 2

orbifolded either by Z2 or Z3. In [35], several examples, with the Euler

number, given by χ =
∑2n

i=0(−1)ibi =
∑n

i,j=0(−1)i+jhi,j = 2(h1,1 − h2, 1)

with the last step coming from Hodge duality, equal to twice the number of

generations of chiral matter in the fundamental of E6 minus the number of

generations of antichiral matter in the antifundamental.

Reducing the dimension of space is also possible using D-brane systems.

Non-geometric compactifications, such as Gepner models, are also possi-
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ble as ways to reduce the supersymmetry; we see, again in [35], that the 35

Gepner model is equivalent to compactification on the quintic CY 3-fold.

However, in this thesis, we concentrate on the universal states that are

present in all compactifications preserving the desired amount of supersym-

metry.

Having seen both Regge-like behaviour, in that the first mass level at

which the [k, 0, . . .] representation occurs in the spectrum is k plus a con-

stant (-1 in the bosonic and ‘unfactored’ superstring cases and +1 for the

‘factored’ superstring), and manifest supersymmetry, in that the massive

levels of the superstring can be written as a tensor product of the fun-

damental massive supermultiplet of the theory and another term, we now

investigate this systematically for the cases of 4, 8 and 16 preserved su-

percharges. We start by using the methods we have described to derive

the partition functions for the spacetime dimensions, then we form the ap-

propriate products with the spectra of the internal dimensions obtained by

conformal field theory methods.

The choice of 4, 6 and 10 dimensions is natural as these are the max-

imal dimensions in which it is possible to have theories with 4, 8 and 16

supercharges respectively. The dimension of the minimal spinor in d di-

mensions is 2bd/2c+1, divided by 2 if either a Majorana (not symplectic) or

Weyl condition can be imposed or 4 if both can be simultaneously imposed.

A Majorana condition can be imposed if d ≡ 0, 1, 2, 3, 4mod8 and a Weyl

condition if d ≡ 2mod4.

Spinors of SO(1, 3) can have a Majorana property, but not Weyl, hence

the R-symmetry group is (S)U(N4d), special forN4d = 4 (because there is no

need for CPT conjugation), those of SO(1, 5) can be symplectic Majorana

and Weyl so there are two types and the R-symmetry group is Sp(N6d,L)×
Sp(N6d,R), where Sp(1) ∼= SU(2) and Sp(2) ∼= SO(5), and those of SO(1, 9)

are Majorana-Weyl so there are again two types and the R-symmetry is

SO(N10d,L)× SO(N10d,R), vanishing except in the Type IIB case.

When we compactify the N6d = (1, 0) theory on 2 dimensions, the little

group SO(5) decomposes to SO(3) × SO(2) and the SO(2) ∼= U(1) joins

with the SU(2) ∼= Sp(1) R-symmetry to give U(2), which is the R-symmetry

in the N4d = 2 case. When we compactify the N10d = 1 theory on 2

dimensions, the little group SO(9) decomposes to SO(7) × SO(2) and the

latter is the U(1) R-symmetry, N8d = 1. Compactifying on 4 dimensions,
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it decomposes to SO(5) × SO(4) and the latter is the SU(2) × SU(2) ∼=
Sp(1) × Sp(1) R-symmetry, N6d = (1, 1); compactifying on 6 dimensions

it decomposes to SO(3) × SO(6) and the latter is the SU(4) R-symmetry,

N4d = 4.

We see that the existence of 8 supercharges in 4 dimensions, or N4d = 2,

gives rise to an internal worldsheet theory in two parts, one of which has

N2d = 2 and c = 3 and the other has N2d = 4 and c = 6. The first of these

corresponds to two toroidally-compactified dimensions. In the case of 16

supercharges in 4 dimensions, or N4d = 4, the internal worldsheet theory

consists of three N2d = 2 and c = 3 parts, so all 6 compact dimensions are

toroidal. Therefore we can calculate the spectra with 4, 6 and 10 spacetime

dimensions and reduce via toroidal compactification if required. The orig-

inal version of [7] treated all three theories as 4-dimensional theories and

then assembled the higher-dimensional theories via decomposition of the 4-

dimensional R-symmetry into SO(d− 4) and the residual R-symmetry, but

the method used in the current version and in this thesis is more convenient.

In this thesis, we ignore the compactification-dependent Kaluza-Klein and

winding modes. Thus, determining the lower dimensional spectra becomes

a group theoretical problem of branching the associated Lorentz and R

symmetry groups.

Since we can easily infer the spectra of type IIA/B closed superstring

theories with twice the number of supercharges from our open string results

by tensoring two copies together and level matching, we will not do this

here.

We devote most attention to the N4d = 1 case, since this is both the most

mathematically tractable and, since chiral matter is only possible in this

case, the only phenomenologically relevant case. It is expected that this

case would, after supersymmetry breaking, give rise to phenomenologically

interesting string solutions at low energies with the spectrum of certain

extensions of the supersymmetric Standard Model.

It is known [37] that amplitudes involving standard model gluons and

either 0 or 2 quarks (the number must be even since they are fermions) are

independent of the model of compactification and their signatures could be

observed at the LHC if the string scale is low enough (in the TeV range),

as is the case in compactifications with large extra dimensions. No such

signatures have been observed so far, however. By contrast, those involving
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4 or more quarks leave model-dependent signatures.

The involvement of massive (string) states in scattering amplitudes be-

tween massless states has a precedent in weak decay, where the W- and

Z-bosons are, except in top quark decay, heavier than the decaying parti-

cles. This is permitted by Heisenberg’s uncertainty principle and explains

the short range of the interaction.

In our computations we do not grade the states by their fermion numbers,

in other words we add the spectra of fermionic states to the bosonic ones

rather than subtracting them. As we will see, this leads to partition func-

tions which are not modular-invariant. As expected from supersymmetry,

the spectra vanish if a grading by fermion number is introduced.

Open string states carry Chan-Paton factors at their endpoints, which are

attached to D-branes. In oriented string theories, the Chan-Paton degrees of

freedom transform in the adjoint representation of the group; in unoriented

theories the representation depends on the mass level, as shown in chapter

6 of [53]. We do not include these factors in our partition functions.

We start, in Section 4.1, by developing the foundations for refined super-

string partition functions. Using light-cone quantization, we compute the

SO(D − 1)-covariant spacetime partition functions in the bosonic, NS and

R sectors. We then, in Section 4.2, describe the universal spectra of the

internal dimensions, adapting those from [12] in the 4-supercharge N4d = 1

case and [11] in the 8-supercharge N6d = (1, 0) case to our requirements,

and in Sections 4.3, 4.4 and 4.5, tensor them together with the partition

functions of the spacetime dimensions to give overall partition functions

which are super Poincaré covariant. Factoring them into super-Poincaré

multiplets, we can then obtain multiplicity generating functions, where we

choose a representation and count, for each mass level, the number of times

the representation occurs at each level, as opposed to grouping by mass level

and counting how many of each representation there are in the spectrum at

that level. These power series are what give rise to the stable patterns, also

called (leading) Regge trajectories, which we derive both analytically and

empirically, from the tabulated data up to mass level 25, in the N4d = 1

case, seeing that they agree, and empirically in the 8- and 16-supercharge

cases.
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4 The covariant perturbative

superstring spectrum

4.1 Spacetime partition functions

This section reviews the construction of a refined partition function for

the oscillator modes of the world-sheet fields ∂Xµ, ψµ which form a su-

permultiplet on the world-sheet and carry an SO(1, d − 1) vector index

µ = 0, 1, . . . , d − 1. The quantization, whether lightcone, old covariant or

BRST, removes the µ = 0, 1 modes leaving D−2 modes which form a vector

representation of the SO(D − 2) massless little group, although since mas-

sive particles with D-dimensional timelike momentum form representations

of the massive little group SO(D − 1), the dependence on yi necessarily

arranges into characters of this group.

We introduce one fugacity yi for each pair of oscillators ∂X2i, ∂X2i+1

and their (world-sheet) fermionic superpartners ψ2i, ψ2i+1, and we take two

linear combinations ∂Xi±, ψi± having charges ±2 respectively under the

Cartan generator corresponding to that fugacity and 0 under all other Car-

tan generators. This differs from the last section in which we used Dynkin

labels for the powers of the fugacities in each term in the character ex-

pansion. We normalize the charge under the i-th Cartan generator to ±2

rather than ±1 so that the weights of spinor representations have (odd)

integer charges under all the Cartan generators rather than half-odd integer

charges.

Recall that we define the character of a representation of a group as the

sum of terms consisting of products of the fugacities raised to powers spec-

ified by the charge of each weight under the Cartan subalgebra generator

corresponding to that fugacity. We therefore see that the vector represen-
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tation of SO(D − 1) decomposes into those of SO(3) as follows:

[1, 0, . . .]SO(D−1)(~y) =

(D−2)/2∑
i=1

(y2
i +

1

y2
i

) + 1 =

(D−2)/2∑
i=1

[2]SO(3)(yi)−
1

2
(D− 4)

(4.1)

In the SO(D−1) characters, ~y refers to the vector of all 1
2(D−2) fugacities

yi, and in the SO(3) case to one specific SO(D− 1) fugacity, with the sum

(in the character of the vector) or product (in the partition function and

the character of the spinor representation) being taken over all SO(D − 1)

fugacities. This would not be the case if we used Dynkin labels. Therefore,

we will first calculate the spectra in the 4-dimensional case with 2 direc-

tions perpendicular to the lightcone (or not removed by the physical/null

or closed/exact cohomology in old covariant or BRST quantization respec-

tively), and then build those in the D > 4 case as products of 1
2(D − 2)

copies of the D = 4 spectra.

In the 4D case, we will first consider the contribution to the refined parti-

tion function made by the bosonic oscillators, then that from the fermionic

ones in both the NS and R sectors. We will then multiply them together to

get the full spacetime NS- and R-sector partition functions, and also quote

these in unrefined form, and we will finish this section with a discussion of

obtaining D > 4 spectra from products of 4D ones.

We recall that the character of the [n] representation of SO(3) (or SU(2)),

of dimension n+ 1, is given by:

[n]y =

n/2∑
k=−n/2

y2k (4.2)

There is one bosonic raising operator for each positive integer mode and each

direction transverse to the lightcone, so the contribution of the lightcone
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bosons to the refined partition function is given by

χ
SO(3)
B (q, y) = PE

[
([2]y − 1) (q + q2 + q3 + q4 + . . .)

]
= PE

[
([2]y − 1)

q

1− q

]
=

∞∏
n=1

1

(1− y2qn) (1− y−2qn)
=

1

(qy2; q)∞(qy−2; q)∞
(4.3)

= −iq
1
12 (y − y−1)

η(q)

ϑ1(y2, q)
. (4.4)

where the q-Pochhammer symbol (a, q)n and (a, q)∞ are defined by

(a; q)n =

n−1∏
k=0

(1− aqk) , (a; q)∞ =

∞∏
k=0

(1− aqk) (4.5)

and our conventions for the Dedekind eta and the Jacobi theta functions

are 1

η(q) = q
1
24

∞∏
n=1

(1− qn) = q
1
24 (q; q)∞ , (4.6)

ϑ1(y, q) = −iq
1
8 (y

1
2 − y−

1
2 )

∞∏
n=1

(1− qn)(1− yqn)(1− y−1qn) , (4.7)

ϑ2(y, q) = q
1
8 (y

1
2 + y−

1
2 )

∞∏
n=1

(1− qn) (1 + yqn)(1 + y−1qn) , (4.8)

ϑ3(y, q) =

∞∏
n=1

(1− qn) (1 + yqn−1/2)(1 + y−1qn−1/2) , (4.9)

ϑ4(y, q) =
∞∏
n=1

(1− qn) (1− yqn−1/2)(1− y−1qn−1/2) , (4.10)

where here and throughout the thesis we define

y = exp(2πiu) , q = exp(2πiτ) . (4.11)

1These conventions are related to, for example, those adopted in Appendix A of [73]
by y = exp(2πiv), q = exp(2πiτ). We refer the reader to this reference for further
properties of such functions.
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In terms of an infinite sum, the Jacobi theta functions can be written as

ϑ[ab ](y, q) =
∑
m∈Z

q
1
2

(m−a/2)2(e−iπby)(m−a/2) , (4.12)

where

ϑ1 = ϑ[11] , ϑ2 = ϑ[10] , ϑ3 = ϑ[00] , ϑ4 = ϑ[01] . (4.13)

Explicitly, the first few terms in the power series of χ
SO(3)
B (q, y) can be

written in terms of SO(3) characters [k]y as

χ
SO(3)
B (q, y) = 1 + q([2]y − 1) + q2[4]y + q3([2]y + [6]y)

+ q4([0]y + 2[4]y + [8]y) + q5(2[2]y + [4]y + 2[6]y + [10]y)

+ q6(2[0]y + [2]y + 3[4]y + 2[6]y + 2[8]y + [12]y)

+ q7(4[2]y + 3[4]y + 4[6]y + 2[8]y + 2[10]y + [14]y) + . . . .(4.14)

We see that only even-labelled representations of SO(3), i.e. those with

integer spin, occur, at least up to this order, as we expect from the form of

(4.3) and which is masked by the theta function expression.

From such a power series, we are motivated to rewrite (4.3) as an infinite

sum of the form

χ
SO(3)
B (q, y) =

∞∑
k=0

[k]yfk(q) , (4.15)

for some function fk(q) which depends only on q and not on y. We know

that this is possible, because χ
SO(3)
B (q, y) is invariant under y ↔ y−1 and

the characters [k]y, k ≥ 0 form a complete basis of functions invariant under

this interchange. The use of this form of the partition function will become

clear later.

In order to do so, we rewrite (4.3) using the q-binomial theorem2 as

χ
SO(3)
B (q, y) =

∞∑
m=0

∞∑
n=0

y2(m−n)

(q; q)m(q; q)n
qm+n =:

∞∑
k=0

[k]yfk(q) . (4.16)

The q-binomial theorem can be shown to be true combinatorically; the co-

efficient of zn can be shown to consist of the contributions q
∑n
i=1 λi summed

2The version we use states that 1
(z;q)∞

=
∑∞
n=0

zn

(q;q)∞
.
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over all partitions λ = (λ1, . . .) consisting of no more than n terms, some

of which may be zero, which is equal by transposition to the sum of the

contributions for all partitions in which all the λi are less than or equal to

n, which is given by (q; q)−1
n . To obtain (4.16), we multiply together two

such expansions, one with z = qy2 and the other with z = qy−2.

Before we proceed further, we state an identity that we are going to use

many times later. From (4.2) and the residue theorem, we find that

∫
dµSO(3)(y) ym[n]y =

δ0,n for m = 0 ,

1
2(δ|m|,n − δ|m|,n+2) for m 6= 0 ,

(4.17)

where the Haar measure dµSO(3) is given by∫
dµSO(3)(y) =

∫
dµSU(2)(y) =

1

2

1

2πi

∮
|y|=1

dy

y
(1− y2)(1− y−2) (4.18)

(A simpler Haar measure, in which the division by 2, which is the order of

the Weyl group of SO(3), and the multiplication by (1− y−2) are omitted,

was introduced in [3] and was used in old versions of [7], but we reverted

to the more conventional form for the current version.) We prove (4.17) by

expanding out the integrand:∫
dµSO(3)(y) ym[n]y =

1

2

1

2πi

∮
|y|=1

dy

y
(−ym−n−2 +ym−n+ym+n−ym+n+2)

(4.19)

There are no odd y powers in (4.16), so only integer spin representations

occur, i.e. f2k+1(q) = 0 for all k, and the expressions for f2k(q) are given as

follows:

f2k(q) =

∫
dµSO(3)(y) χ

SO(3)
B (q, y)[2k]y

=

∞∑
n=0

q2n+k

(q; q)n(q; q)n+k+1

(
1− q − qn+k+1

)
= (q; q)−2

∞

∞∑
n=1

(−1)n−1(1− qn)2qnk+ 1
2
n(n−1) . (4.20)

Our SO(3) character expansion of the bosonic partition function is thus as
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follows:

χ
SO(3)
B (q, y) = (q; q)−2

∞

∞∑
n=1

(−1)n−1(1− qn)2
∞∑
k=0

qnk+ 1
2
n(n−1)[2k]y . (4.21)

Note that the pattern
∑∞

n=1(−1)n−1qnk[2k]y . . ., where the . . . ellipsis does

not depend on y and k, is described in section 6 of [10] as an alternating

sequence of additive and subtractive Regge trajectories of slope 1
n , with the

power of q on the x-axis and k on the y-axis. This is the source of the stable

patterns as described in the previous section in bosonic string theory. We

will calculate these explicitly later in this section for the spacetime spectra,

both bosonic and combined bosonic and fermionic in both the NS and R

sectors, and the main focus of this thesis is to investigate such patterns,

if they occur, for the superstring spectra that we will consider later. (Our

heuristic treatment of the N10d = 1 case with 16 supercharges shows that

they do.) These patterns, or the leading Regge trajectory at least, are

called stable because, as m → ∞, more and more coefficients, i.e. the first

m, of the multiplicity generating function for [2m] match those of the stable

pattern.

Multiplicities of representations [2m] and their asymptotics

Let us determine the multiplicity of irreducible SO(3) representations [2m]

at each mass level. Recall the orthogonality of characters with respect to

the Haar measure: ∫
dµSO(3)(y)[m]y[n]y = δmn . (4.22)

From (4.21), we find that the generating function of the multiplicity of [2m]

is equal to f2m(q):

M(χ
SO(3)
B , [2m]; q) =

∫
dµSO(3)(y) [2m]yχ

SO(3)
B (q, y)

= (q; q)−2
∞

∞∑
n=1

(−1)n−1(1− qn)2q
1
2
n(n−1)qnm .(4.23)

Asymptotics as m → ∞. The expression (4.23) found for multiplicity

generating functions greatly simplifies in the limit m→∞ of large spin and
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mass level. In order to compute an asymptotic formula in this regime, we

apply Laplace’s method to our question. Since 0 < q < 1, the terms in

the series peak sharply near the n = 1 term as m → ∞. Therefore, it is

expected that for any ε > 0

M(χ
SO(3)
B , [2m]; q) ∼ (q; q)−2

∞

1+bεc∑
n=1

(−1)n−1(1− qn)2q
1
2
n(n−1)qnm, m→∞ .

(4.24)

Now let us write n = 1 + t, where t is small compared with 1. Note that

q
1
2
n(n−1) = 1 +

1

2
(log q)t+O(t2) , (4.25)

Substituting the leading term of this power series into the right hand side

of (4.24) and extending the region of summation to ∞, we find that the

leading behaviour of M(χ
SO(3)
B , [2m]; q) is given by

M(χ
SO(3)
B , [2m]; q) ∼ (q; q)−2

∞

∞∑
t=0

(−1)t(1− qt+1)2qm(t+1)

= (q; q)−2
∞

qm(1− q)2
(
1− q1+m

)
(1 + qm) (1 + q1+m) (1 + q2+m)

= (q2; q)−2
∞

qm (1− qm)

(1 + qm)3 , m→∞ . (4.26)

The higher order corrections can be computed by taking into account the

subleading terms of (4.25). Note that the next to leading term of (4.26) is of

order O(q2m log q). Thus, asymptotic formula (4.26) reproduces the exact

result up to O(q2m−1).

Interpretation and stable pattern. We can extract some information

about bosonic string states from (4.26).

• The representation [2m] appears first time in the bosonic partition

function χ
SO(3)
B (q, y) at mass level qm.

• The multiplicities of [2m] at levels qm+`, for 0 ≤ ` ≤ m − 1, are

independent of m. We refer to a set of these numbers as a stable

pattern for bosonic string theory. The generating function for such a

stable pattern can be determined by taking a formal limit m→∞ in
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(4.26):

lim
m→∞

q−mM(χ
SO(3)
B , [2m]; q) = (q2; q)−2

∞ =

∞∏
k=2

(1− qk)−2 (4.27)

= 1 + 2q2 + 2q3 + 5q4 + 6q5 + 13q6 + 16q7 + 30q8 + 40q9 + 66q10

+ 90q11 + 142q12 + 192q13 + 290q14 + 396q15 + 575q16 + 782q17

+ 1112q18 + 1500q19 + 2092q20 + 2808q21 + 3848q22 + 5132q23

+O(q24) . (4.28)

We do not actually need to calculate the explicit asymptotic expression

to derive this stable pattern, but can instead simply read it off as the

n = 1 term in the series in (4.23). Note that terms with low orders in

this power series are in agreement with the data presented in Table

6b of [10]. In actual fact terms match up to level q2m inclusive, i.e.

for ` = m as well as for 0 ≤ ` ≤ m − 1, because the second Regge

trajectory starts at level q2m+1 on account of 1
2n(n−1) = 1 for n = 2.

The exclusion of level q2m occurs because of taking the asymptotic

expression.

4.1.1 The NS sector in d = 4

Under NS boundary conditions, there is one raising operator for each pos-

itive half-odd integer and each transverse direction, so the worldsheet su-

perpartners ψi of the lightcone bosons contribute

fNS(q; y) = PEF

[
([2]y − 1)

q
1
2

1− q

]

=

∞∏
n=1

(1 + y2qn−1/2)(1 + y−2qn−1/2) (4.29)

= q
1
24
ϑ3(y2, q)

η(q)
. (4.30)

to the spacetime partition functions. We shall rewrite this function as an

infinite sum by means of Jacobi’s triple product identity, which is another
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way of expressing (4.30) :

∞∏
n=1

(1− x2n)(1 + x2n−1z)(1 + x2n−1z−1) =

∞∑
m=−∞

xm
2
zm . (4.31)

Applying identity (4.31) with x = q1/2 and z = y2 to (4.29), we obtain

fNS(q, y) = (q; q)−1
∞

+∞∑
m=−∞

y2mqm
2/2 (4.32)

= (q; q)−1
∞

∞∑
m=0

q
1
2
m2

(1− qm+ 1
2 )[2m]y , (4.33)

where (4.33) can be obtained by applying (4.17) and the orthogonality of

the characters to (4.32) as follows:

∫
dµSO(3)(y) fNS(q, y)[2k]y

= (q; q)−1
∞

[∑∞
m=0 q

m2/2δm,k −
∑−1

m=−∞ q
m2/2δ−m,k+1

]
= (q; q)−1

∞

(
q

1
2
k2 − q

1
2

(k+1)2
)

= (q; q)−1
∞ q

1
2
k2(1− qk+ 1

2 ) . (4.34)

Let us combine the bosonic partition function with the NS-sector con-

tribution. Using (4.3), (4.33) and the multiplication rule [2m] · [2k] =∑k+m
l=|k−m|[2l], we find that

χ
SO(3)
NS (q, y) := χ

SO(3)
B (q, y)fNS(q, y) = −iq1/8(y − y−1)

ϑ3(y2, q)

ϑ1(y2, q)
(4.35)

= (q; q)−3
∞

∞∑
m=0

∞∑
n=1

(−1)n−1(1− qm+ 1
2 )(1− qn)2

× q
1
2
n(n−1)+ 1

2
m2

∞∑
k=0

qnk
k+m∑

`=|k−m|

[2`] . (4.36)

We can manipulate this expression in order to rewrite it as
∑∞

k=0 fkmn(q)[2k],

for some function fkmn(q). In order to determine this function, we use the
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orthogonality of characters:

fkmn(q) =

∫
dµSO(3)(y)

∞∑
k′=0

qnk
′

k′+m∑
`=|k′−m|

[2`]y [2k]y

=
qn|k−m| − qn(k+m+1)

1− qn
. (4.37)

We could alternatively do this by rearrangement of the inequalities to ex-

press the range of k in terms of ` and swapping the order of the sums over

k and `:

` ≥ k −m =⇒ k ≤ `+m

` ≥ m− k =⇒ k ≥ m− `

` ≤ k +m =⇒ k ≥ `−m (4.38)

We then relabel k ↔ `, giving the same expression for fkmn(q). Therefore,

we obtain, by either method,

χ
SO(3)
NS (q, y) = (q; q)−3

∞

∞∑
m=0

∞∑
n=1

(−1)n−1(1− qm+ 1
2 )(1− qn)

× q
1
2

[n(n−1)+m2]
∞∑
k=0

(qn|k−m| − qn(k+m+1)) [2k] . (4.39)

We emphasise that the SO(3) irreducible representations with odd Dynkin

labels do not appear in the partition function χ
SO(3)
NS (q, y). This is as ex-

pected on account of their absence from both (4.3) and (4.29), but is masked

by the theta function expression in (4.35).
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In terms of a power series in q, the first few terms are given explicitly by

χ
SO(3)
NS (q, y) = 1 + q1/2([2]− 1) + q[2] + q3/2([0] + [4]) + q2([0] + 2[4])

+ q5/2(2[2] + [4] + [6]) + q3(3[2] + [4] + 2[6])

+ q7/2(2[0] + 2[2] + 4[4] + [6] + [8])

+ q4(3[0] + 3[2] + 5[4] + 2[6] + 2[8])

+ q9/2([0] + 7[2] + 4[4] + 6[6] + [8] + [10])

+ q5([0] + 9[2] + 7[4] + 7[6] + 2[8] + 2[10])

+ q11/2(6[0] + 8[2] + 13[4] + 7[6] + 6[8] + [10] + [12])

+ q6(8[0] + 11[2] + 17[4] + 11[6] + 8[8] + 2[10] + 2[12])

+ q13/2(4[0] + 20[2] + 19[4] + 18[6] + 9[8] + 6[10] + [12] + [14])

+ q7(6[0] + 26[2] + 25[4] + 25[6] + 13[8] + 8[10] + 2[12] + 2[14])

+ . . . (4.40)

As in the bosonic case, we see hints of a stable pattern emerging here too,

one for the integer powers of q and one for half-odd integer powers.

Setting y = 1, we obtain the unrefined partition function

χ
SO(3)
NS (q, y = 1) = χ

SO(3)
B (q, y)fNS(q, y) =

∞∏
n=1

(
1 + qn−1/2

1− qn

)2

= (q; q)−3
∞ ϑ3(1, q) = q−1/8ϑ3(1, q)

η(q)3
. (4.41)

In a previous version of [7] we derived this by replacing the characters [2m]

by their dimensions (2m + 1) in the refined partition function, but in the

current version and here we derive it more directly and simply.

Multiplicities of representations [2j] and their asymptotics

Similarly to the bosonic partition function, we can read off the generating

function for the multiplicities of the representations [2j] at different mass

levels of the NS superstring

M(χ
SO(3)
NS , [2j], q) = (q; q)−3

∞

∞∑
m=0

(1− qm+ 1
2 )q

1
2
m2

∞∑
n=1

(−1)n−1(1− qn)

× q
1
2
n(n−1)(qn|j−m| − qn(j+m+1)) . (4.42)
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Asymptotics as j → ∞. In this limit, we have |j − m| ∼ j − m for a

finite m. Futhermore, the summand as a function of n is sharply peaked

near n = 1, and so we can determine the leading behaviour of the sum over

n using Laplace’s method as follows (where ε > 0):

∞∑
n=1

(−1)n−1(1− qn)q
1
2
n(n−1)(qn(j−m) − qn(j+m+1))

∼ (1− q)
1+bεc∑
n=1

[
qn(j−m) − qn(j+m+1)

]
for ε > 0

∼ (1− q)
1+bεc∑
n=1

[
qn(j−m) − qn(j+m+1)

]
for ε > 0

∼ (1− q)
∞∑
t=0

[
q(t+1)(j−m) − q(t+1)(j+m+1)

]
= qj−m(1− q) 1− q2m+1

(1− q1+j+m)(1− qj−m)
. (4.43)
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Therefore, we find that

M(χ
SO(3)
NS , [2j], q) ∼ (q; q)−3

∞ qj(1− q)

[ ∞∑
m=0

q−m+m2

2

(
1− q2m+1

) (
1− q

1
2

+m
)

(1 + q1+j−m) (1 + qj−m)

]

∼ (q; q)−3
∞ qj

1− q
(1− qj)2

[ ∞∑
m=0

q
1
2

(m−1)2− 1
2
(
1− q2m+1

) (
1− q

1
2

+m
)]

∼ (q; q)−3
∞

∞∑
m=0

(1− qm+ 1
2 )q

1
2
m2

[ ∞∑
n=1

(−1)n−1(1− qn)
{
qn(j−m) − qn(j+m+1)

}]
= (q; q)−3

∞ qj(1− q)

×

[ ∞∑
m=0

q−m+m2

2

(
1− q

1
2

+m
)

(1 + q1+j−m) (1 + qj−m)
− q

∞∑
m=0

qm+m2

2

(
1− q

1
2

+m
)

(1 + q1+j+m) (1 + q2+j+m)

]

∼ (q; q)−3
∞
qj(1− q)
(1 + qj)2

[ ∞∑
m=0

q−m+m2

2

(
1− q

1
2

+m
)
− q

∞∑
m=0

qm+m2

2

(
1− q

1
2

+m
)]

= (q; q)−3
∞
qj(1− q)
(1 + qj)2

×

[
(1 + 2

√
q − q) + (1− q)ϑ3(0,

√
q)

2
√
q

−
(1 + 2

√
q − q)− (1− q)ϑ3(0,

√
q)

2
√
q

]

= (q; q)−3
∞ qj−

1
2

(
1− q
1 + qj

)2

ϑ3(1, q) +O(q2j−1) (4.44)

Note that asymptotic formula (4.44) reproduces the exact result up to the

order q2j− 3
2 . We emphasise that the representation [2j] appears first time

at mass level qj−
1
2 . One can also see this by observing that for j ≥ m,

the lowest term in the power series for given m,n is at mass level nj +
1
2

[
(m− n)2 − n

]
and minimizing over m this gives a lowest term at level

n(j − 1
2) so we do get an alternating sequence of Regge trajectories, of the

same slopes 1
n , and a stable pattern, this time from j − 1

2 to 2j − 3
2 , in the

same way as we do in the bosonic case.

In [10], the individual n summands of (4.42) are interpreted as an alter-

nating sequence of additive and subtractive Regge trajectories of slope 1
n .

In the notation of equation (6.2) of that reference, the M(χ
SO(3)
NS , [2j], q) are
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expanded as

M(χ
SO(3)
NS , [2j], q) = qj τNS

1 (q) − q2j τNS
2 (q) + q3j τNS

3 (q) − . . .

=

∞∑
`=1

(−1)`−1 q`j τNS
` (q) . (4.45)

Setting |j−m| = j−m in (4.42) leads to the following asymptotic expressions

for the τNS
` :

τNS
` (q) = (q; q)−3

∞ q−
1
2
` (1− q`)

∞∑
m=0

q
1
2

(m−`)2 (1− qm+ 1
2 ) (1− q2m`+`)(4.46)

The stable pattern. The generating function of the stable pattern can be

determined by projecting the sum in (4.45) to the first term (or, equivalently,

by taking the limit j →∞):

lim
j→∞

q−jM(χ
SO(3)
NS , [2j], q) = τNS

1 (q)

= (q; q)−3
∞ q−1/2(1− q)2ϑ3(1, q) (4.47)

=
(

2 + 2q + 8q2 + 14q3 + 34q4 + 58q5 + 120q6 + 204q7 + 378q8 + 632q9

+ 1096q10 + 1786q11 + 2968q12 + . . .
)

+
1
√
q

(
1 + q + 6q2 + 9q3 + 24q4 + 42q5 + 88q6 + 151q7 + 287q8

+ 480q9 + 846q10 + 1388q11 + 2326q12 + . . .
)
. (4.48)

Note that terms with low orders in the power series (4.48) are in agreement

with the data presented in Table 6c of [10].

4.1.2 The R sector in d = 4

The R sector fermionic oscillators have zero modes and so the ground state

is degenerate, forming a spinor representation of the (massive) little group

since the oscillators are 1√
2

times the generators of the Clifford algebra. In

the D = 4 case, the two weights in the spinor representation have charges

±1 under the single generator of the Cartan subalgebra and so contribute

y + y−1 to the refined partition function. For the positive-energy modes,

there is one mode for each positive integer and each direction transverse to
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the lightcone. Therefore, the R sector of the worldsheet superpartners ψi

of the lightcone bosons contributes

fR(q, y) = (y + y−1)PEF

[
([2]y − 1)

q

1− q

]
= (y + y−1)

∞∏
n=1

(1 + y2qn)(1 + y−2qn) (4.49)

= q−
1
12
ϑ2(y2, q)

η(q)
(4.50)

to the spacetime partition function. Again, it will turn out to be beneficial

to rewrite this function as an infinite sum. We proceed as follows. Replacing

z by xz in (4.31), we obtain

∞∏
n=1

(1− x2n)(1 + x2nz)(1 + x2n−2z−1) =

+∞∑
m=−∞

xm
2+mzm . (4.51)

Using the identity

∞∏
n=1

(1 + x2n−2z−1) = (1 + z−1)

∞∏
n=1

(1 + x2nz−1) , (4.52)

we arrive at

(z
1
2 + z−

1
2 )
∞∏
n=1

(1 + x2nz)(1 + x2nz−1) =

∑+∞
m=−∞ x

m2+mzm+1/2∏∞
n=1(1− x2n)

. (4.53)

Applying identity (4.53) to (4.49) with x = q1/2 and z = y2, we have

fR(q, y) = (q; q)−1
∞

+∞∑
m=−∞

y2m+1qm(m+1)/2

= (q; q)−1
∞

∞∑
m=0

q
1
2
m(m+1)(1− qm+1)[2m+ 1]y

= q−1/8(q; q)−1
∞

∑
m∈Z≥0+ 1

2

q
1
2
m2

(1− qm+ 1
2 )[2m]y , (4.54)

where the second equality follows from (4.17) and the orthogonality of the

characters.

Let us combine the bosonic partition function with the NS-sector con-
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tribution. Using (4.3), (4.49) and the multiplication rule [2m + 1] · [2k] =∑k+m+ 1
2

l=|k−m− 1
2
|[2l], where l sums over half-odd integers, we find that

χ
SO(3)
R (q, y) := χ

SO(3)
B (q, y)fR(q, y) = −i(y − y−1)

ϑ2(y2, q)

ϑ1(y2, q)
(4.55)

= q−
1
8 (q; q)−3

∞

∞∑
m=0

∞∑
n=1

(−1)n−1(1− qm+1)(1− qn)2q
1
2
n(n−1)+ 1

2
(m+ 1

2
)2

×
∞∑
k=0

qnk
k+m+ 1

2∑
`=|k−m− 1

2
|

[2`]

= q−
1
8 (q; q)−3

∞

∞∑
m=0

∞∑
n=1

(−1)n−1(1− qm+1)(1− qn)q
1
2

[n(n−1)+(m+ 1
2

)2]

×
∞∑
k=0

(qn|k−m| − qn(k+m+2)) [2k + 1] . (4.56)

Again, this can be rewritten as
∑∞

k=0 fkmn(q)[2k + 1], for some function

fkmn(q) (different to the one for the NS sector). In order to determine this

function, we use the orthogonality of characters:

fkmn(q) =

∫
dµSO(3)(y)

∞∑
k′=0

qnk
′

k′+m∑
`=|k′−m|

[2`]y [2k + 1]y

=
qn|k−m| − qn(k+m+2)

1− qn
. (4.57)

We could alternatively do this by rearrangement of the inequalities to ex-

press the range of k in terms of ` and swapping the order of the sums over

k and `:

` ≥ k −m− 1

2
=⇒ k ≤ `+m+

1

2

` ≥ m+
1

2
− k =⇒ k ≥ m+

1

2
− `

` ≤ k +m+
1

2
=⇒ k ≥ `−m− 1

2
(4.58)

We then relabel ` → ` − 1
2 (taking [2`] to [2` + 1] to emphasize the odd

Dynkin label; the form with ` ∈ Z>0 + 1
2 however makes rearrangement of

the inequalities easier) followed by k ↔ `, giving the same expression for
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(this) fkmn(q). This resembles (4.39) up to a shift in the summations over

m, k by ±1
2 . We emphasise that SO(3) irreducible representation with even

Dynkin labels do not appear in the R sector partition function χ
SO(3)
R (q, y).

This is easily seen from (4.49).

In terms of a power series, the first few powers of the partition function

are explicitly given by

χ
SO(3)
R (q, y) = [1] + 2[3]q + 2([1] + [3] + [5])q2 + (4[1] + 4[3] + 4[5] + 2[7])q3

+ (6[1] + 10[3] + 8[5] + 4[7] + 2[9])q4

+ (12[1] + 18[3] + 16[5] + 10[7] + 4[9] + 2[11])q5

+ (22[1] + 32[3] + 30[5] + 22[7] + 10[9] + 4[11] + 2[13])q6

+ (36[1] + 58[3] + 56[5] + 40[7] + 24[9] + 10[11] + 4[13] + 2[15])q7

+ . . . (4.59)

Again we see hints of a stable pattern arising.

Setting y = 1, we obtain the unrefined partition function

χ
SO(3)
R (q, y = 1) = 2

∞∏
n=1

(
1 + qn

1− qn

)2

= q−
1
8 (q; q)−3

∞ ϑ2(1, q) =
ϑ2(1, q)

η(q)3
.(4.60)

Again for simplicity we derive this directly rather than via the refined par-

tition function, which we did in an earlier version of [7].

Multiplicities of representations [2j + 1] and their asymptotics

The generating function for the multiplicities of the representations [2j+ 1]

at different mass levels are

M(χ
SO(3)
R , [2j + 1], q)

= q−
1
8 (q; q)−3

∞

∞∑
m=0

(1− qm+1)q
1
2

(m+ 1
2

)2
∞∑
n=1

(−1)n−1(1− qn)q
1
2
n(n−1)

× (qn|j−m| − qn(j+m+2)) (4.61)

in close analogy to (4.42). In fact, one can obtain the above formula by

shifting m → m + 1
2 and j → j + 1

2 in (4.42) and multiply by an overall

factor q−
1
8 .
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Asymptotics as j → ∞. Similarly to the NS-sector, we find that the

leading behaviour of M(χ
SO(3)
R , [2j + 1], q) is

M(χ
SO(3)
R , [2j + 1], q)

∼ q−
1
8 (q; q)−3

∞ qj+
1
2

1− q
(1 + qj)2

[ ∞∑
m=0

q
1
2

(m− 1
2

)2− 1
2
(
1− q2m+2

) (
1− qm+1

) ]

∼ (q; q)−3
∞
qj−

1
8 (1− q)

(1 + qj)2

×

[ ∞∑
m=0

q−m+ 1
2

(m+ 1
2

)2
(
1− qm+1

)
− q2

∞∑
m=0

qm+ 1
2

(m+ 1
2

)2
(
1− qm+1

) ]

= (q; q)−3
∞
qj−

1
8 (1− q)

(1 + qj)2

×

[{
q

1
8 +

1

2
(1− q)ϑ2(0, τ)

}
−
{
q

1
8 − 1

2
(1− q)ϑ2(0, τ)

}]

= (q; q)−3
∞ qj−

1
8

(
1− q
1 + qj

)2

ϑ2(1, q) +O(q2j) . (4.62)

Note that the representation [2j+ 1] appears first time at mass level qj and

the asymptotic formula reproduces the exact result up to the order q2j−1.

This time, we observe that for j ≥ m, the lowest term in the power series

for given m,n is at mass level nj + 1
2(m − n)(m − n + 1) this time having

a minimum over m of nj so we again get an alternating sequence of Regge

trajectories of slopes 1
n and a stable pattern, this time from j to 2j − 1.

The Regge trajectories can be obtained explicitly from the expansion of

M(χ
SO(3)
R , [2j + 1], q) in powers of qj as

M(χ
SO(3)
R , [2j + 1], q) = qj τR

1 (q) − q2j τR
2 (q) + q3j τR

3 (q) − . . .

=

∞∑
`=1

(−1)`−1 q`j τR
` (q) . (4.63)

The |j−m| = j−m asymptotics yield the following expressions for the `’th

Ramond trajectory τR
` :

τR
` (q) = (q; q)−3

∞ q−
1
8 (1− q`)

∞∑
m=0

q
1
2

(m+ 1
2
−`)2 (1− qm+1) (1− q2m`+2`)(4.64)
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The stable pattern. The generating function of the stable pattern can

be determined by taking the limit j →∞:

lim
j→∞

q−jM(χ
SO(3)
R , [2j + 1], q) = τR

1 (q)

= (q; q)−3
∞ q−1/8(1− q)2ϑ2(1, q) (4.65)

= 2 + 4q + 10q2 + 24q3 + 48q4 + 96q5 + 184q6 + 336q7 + 600q8 + 1048q9

+ 1784q10 + 2984q11 + 4912q12 + 7952q13 + 12704q14 + 20048q15

+ 31256q16 +O(q17) . (4.66)

Note that terms with low orders in the power series (4.66) are in agreement

with the data presented in Table 6d of [10].

4.1.3 Bosonic partition function in d > 4

The bosonic partition function in d = 2n+ 2 space-time dimensions can be

written as

χ
SO(2n+1)
B (q, ~y) = PE

[
([1, 0, . . . , 0]SO(2n+1)

y − 1)
q

1− q

]
, (4.67)

where ~y = (y1, . . . , yn). Because the character of the vector representation

[1, 0, . . . , 0] of SO(2n + 1), after subtracting 1, is given by the sum of the

SO(3) characters [2]yA − 1 for 1 ≤ A ≤ n, the PE can be written as the

product of n copies of the 4D partition function as follows:

χ
SO(2n+1)
B (q, ~y) = PE

[
q

1− q

n∑
k=1

([2]yk − 1)

]

=

n∏
A=1

χ
SO(3)
B (yA) . (4.68)

We substitute (4.21) into this:

χ
SO(2n+1)
B (q, ~y)

= (q; q)−2n
∞

∑
~n∈Zn>0

∑
~k∈Zn≥0

n∏
A=1

(−1)nA−1(1− qnA)2qnAkA+ 1
2
nA(nA−1)[2kA]yA

(4.69)

73



For our purpose of resolving the SO(2n+1) content of the partition function,

the aim is to rewrite (4.69) in the form

χ
SO(2n+1)
B (q, ~y) =

∑
λ1≥···≥λn≥0

(λ1, . . . , λn)~y G
B,SO(2n+1)
λ1,...,λn

(q) , (4.70)

where the summations run over highest weight vectors ~λ := (λ1, . . . , λn) ∈
Zn subject to inequalities λ1 ≥ · · · ≥ λn ≥ 0. We can convert these into

SO(2n+ 1) Dynkin label notation [a1, . . . , an] by

ai = λi − λi+1, 1 ≤ i < n

an = 2λn (4.71)

or equivalently

λi =
n−1∑
j=1

aj +
1

2
an, 1 ≤ i < n

λn =
1

2
an (4.72)

Since (4.67) involves only the vector representation and the PE generates

symmetrizations of the representation, spinor representations of SO(2n+1)

do not appear in χ
SO(2n+1)
B (q, ~y):

G
B,SO(2n+1)

λ1+ 1
2
,...,λn+ 1

2

(q) = 0, λk ∈ Z . (4.73)

In general, G
B,SO(2n+1)
λ1,...,λn

(q) can be interpreted as a generating function for

the multiplicities of the SO(2n+1) representation (λ1, . . . , λn) in the bosonic

string partition function. In subsequent sections, unless stated otherwise,

the λi may be all integers or all half-odd integers. This differs from the

treatment in [7] where the two cases are treated separately.

Some useful relations between SO(2n+ 1) and SO(3)

representations

In general, the character of the irreducible representation (λ1, . . . , λn), whether

the λi are all integers or all half-odd integers, of SO(2n+ 1) is given by the
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Weyl character formula, which in our basis is:

(λ1, . . . , λn)y =

det

(
y

2(λi+n−i+ 1
2

)

j − y−2(λi+n−i+ 1
2

)

j

)n
i,j=1

det

(
y

2(n−i+ 1
2

)

j − y−2(n−i+ 1
2

)

j

)n
i,j=1

. (4.74)

We can derive this expression by observing that any single Weyl reflection, in

this basis, now taking (λ1, . . . , λn) to be a general weight rather than neces-

sarily a highest weight, either sends λi → −λi for one i, swaps the positions

of two λi, or swaps the positions of two λi and reverses the sign of both,

which can be taken to be a combination of one of the second type of reflec-

tion and two of the first type. The Weyl vector (ρ1, . . . , ρn) = 1
2

∑
α∈∆+

α,

where ∆ is the set of roots and ∆+ is the set of positive roots, is given by

ρi = 2(n − i + 1
2). (We later use ∆ for the function that converts between

SO(3)n and SO(2n+ 1) representations and ρ for the conversion factor be-

tween the Haar measures.) Substituting into the Weyl character formula,

we obtain the determinants in both the numerator and denominator as in

(4.74).

Also, the Haar measure for SO(2n+ 1) can be written as∫
dµSO(2n+1)(~y) =

∫
dµSO(3)(y1) · · ·

∫
dµSO(3)(yn) ρ(~y) , (4.75)

where

ρ(~y) =
1

n!

∏
1≤i<j≤n

(1− y2
i y

2
j )(1− y−2

i y−2
j )

(
1− y2

i y
−2
j

) (
1− y−2

i y2
j

)
. (4.76)

In order to obtain compact formulae for the multiplicity generating functions

G
B,SO(2n+1)
λ1,...,λn

(q), we have to convert the SO(3) character products in (4.69)

into a basis of (λ1, . . . , λn)~y, i.e. we have to find the ∆ coefficients in the

basis transformation

n∏
A=1

[2kA]yA =
∑

λ1≥...≥λn≥0

∆ (λ1, . . . , λn; 2k1, . . . , 2kn) (λ1, . . . , λn)~y . (4.77)

In general, according to (5.10) of [10], it can be shown that the coefficients
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in this basis transformation are given by

∆(λ1, . . . , λn; 2k1, . . . , 2kn) :=

∫
dµSO(2n+1)(~y) (λ1, . . . , λn)~y

n∏
A=1

[2kA]yA

=
1

n!

∑
σ1,σ2∈Sn

sgn(σ2)

n∏
A=1

θ
2n+λA−A−σ2(A)
|λA−A+σ2(A)|

(
kσ1(A)

)
=

1

n!

∑
σ∈Sn

det
(
θ2n+λA−A−B
|λA−A+B|

(
kσ(A)

))n
A,B=1

(4.78)

where the function θnm(k) is defined as

θnm(k) =

1 if m ≤ k ≤ n ,

0 otherwise .
(4.79)

Following [10] but using fugacities yi instead of chemical potentials θA, we

prove this formula as follows. We note that the Haar measure of SO(2n+1)

is equal to the square of the denominator in the Weyl character formula

(4.74), so we substitute it into the first line of (4.78) and rewrite it as

an integral over products of SO(3) Haar measures, which we re-obtain by

factoring them out of the two determinants converting each matrix element

into a character:

∆(λ1, . . . , λn; 2k1, . . . , 2kn) (4.80)

=
1

n!

n∏
A=1

∫
dµSO(3)(yA)[2kA]yA

× det
(
[2(λi + n− i)]yj

)n
i,j=1

det
(
[2(n− i)]yj

)n
i,j=1

=
1

n!

∑
σ1,σ2∈Sn

sgn(σ1)sgn(σ2)

×
n∏

A=1

∫
dµSO(3)(yA)[2kA]yA [2(n− σ1(A) + λσ1(A))]yA [2(n− σ2(A))]yA

(4.81)

This identity holds for λi and ki either all integers or all half-odd integers;

∆(. . .) vanishes when λi are all integers and ki all half-odd integers or vice

versa.

Thus, Eq. (4.78) implies the following expansion rule for SO(3) character
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products in terms of SO(2n + 1) characters in Dynkin label notation: (λi

are all integers for 1 ≤ i ≤ n − 1, but λn can be either an integer or half

an odd integer, in which case kA are all integers or all half-odd integers

respectively)

n∏
A=1

[2kA]yA =
∑
~̀∈Zn≥0

[`1, . . . , `n−1, 2`n]~y

×∆ (2k1, . . . , 2kn; `1 + `2 + . . .+ `n, `2 + . . .+ `n, . . . , `n) (4.82)

The inverse decomposition formula follows from the SO(2n+ 1) Haar mea-

sure (4.75):

[`1, . . . , `n−1, 2`n]~y =
1

ρ(~y)

∑
~k∈Zn≥0

n∏
A=1

[2kA]yA

× (`1 + `2 + . . .+ `n, `2 + . . .+ `n, . . . , `n; 2k1, . . . , 2kn) , (4.83)

where ρ(~y) is defined as in (4.76) and ~̀= (`1, . . . , `n). This can be derived

by simple manipulation of (4.82) as follows, with `i and `′i all integers for

1 ≤ i ≤ n − 1 and the same conditions (integer or half-odd integer) on `n
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and `′n as on the kA:∫
dµSO(2n+1)(~y)

n∏
A=1

[2kA]yA [`′1, . . . , `
′
n−1, 2`

′
n]~y

=

∫
dµSO(2n+1)(~y)

∑
~̀

[`1, . . . , `n−1, 2`n]~y

×∆ (2k1, . . . , 2kn; `1 + `2 + . . .+ `n, `2 + . . .+ `n, . . . , `n)

× [`′1, . . . , `
′
n−1, 2`

′
n]~y

= ∆
(
2k1, . . . , 2kn; `′1 + `′2 + . . .+ `′n, `

′
2 + . . .+ `′n, . . . , `

′
n

)
(4.84)

Multiply both sides by

n∏
A=1

[2kA]yA and sum over kA:

∑
kA

(∫
dµSO(2n+1)(~y)

n∏
A=1

[2kA]yA [`′1, . . . , `
′
n−1, 2`

′
n]~y

)
n∏

B=1

[2kB]yB

=
∑
kA

(
n∏

A=1

(∫
dµSO(3)(yA)[2kA]yA

)
ρ(~y)[`′1, . . . , `

′
n−1, 2`

′
n]~y

)
n∏

B=1

[2kB]yB

= ρ(~y)[`′1, . . . , `
′
n−1, 2`

′
n]~y

=
∑
kA

∆
(
2k1, . . . , 2kn; `′1 + `′2 + . . .+ `′n, `

′
2 + . . .+ `′n, . . . , `

′
n

) n∏
A=1

[2kA]yA

(4.85)

and the final step is trivial, just divide by ρ(~y).
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Generating function for the multiplicities

According to (4.69), the bosonic spacetime partition function in 2n + 2

dimensions depends on Lorentz fugacities through the factor∑
k1,...,kn≥0

∆(λ1, . . . , λn; 2k1, . . . , 2kn)qn1k1+...+nnkn

=
∑

k1,...,kn≥0

det(θ2n+λA−A−B
|λA−A+B| (kA))nA,B=1q

n1k1+...+nnkn

= det

∑
kA≥0

θ2n+λA−A−B
|λA−A+B| (kA)qnAkA

n

A,B=1

.

=
n∏

C=1

qnC(λC−C+1) det

2n−B−1∑
kA=B−1

qnAkA

n

A,B=1

. (4.86)

Let us apply this to (4.69) to compute G
B,SO(2n+1)
λ1,...,λn

(q). For λ1 ≥ · · · ≥
λn ≥ n− 1, the argument in the absolute value is non-negative and so∑

k1,...,kn≥0

∆(λ1, . . . , λn; 2k1, . . . , 2kn)qn1k1+...nnkn

=

n∏
A=1

qnA(λA−A+1)
∏

1≤B<C≤n
(qnC − qnB )(1− qnC+nB ) (4.87)

for λ1 ≥ · · · ≥ λn ≥ n− 1 .

This formula can be derived by column-reducing to get the (A,B)-th matrix

element (for B < n) to equal qnA(B−1) + qnA(2n−B−1) and then splitting

the determinant into the sum of 2n−1 determinants, labelled by an integer

p, 0 ≤ p ≤ 2n−1 − 1, with each element in the B-th column containing

either the lower or higher power depending on whether the B−1-th bit (we

choose from the right) of p in binary is 0 or 1. Each determinant factorizes

into the product of the Vandermonde determinant and a (different for each

term) Schur polynomial both with the specialization yA → qkA , weighted

by the sign of the permutation required to bring the powers into downward

ascending order. We can show that the sum of these gives rise to the product

of (1− qnC+nB ); that of (qnC − qnB ) is the Vandermonde determinant.

It is pointed out by [10] and can be checked directly that the contribution

from λn < n− 1 to the bosonic string partition function is zero. Therefore,
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we have

G
B,SO(2n+1)
λ1,...,λn

(q)

= (q; q)−2n
∞

∑
~n∈Zn+

n∏
A=1

(−1)nA−1(1− qnA)2qnA(λA−A+1)+ 1
2
nA(nA−1)

×
∏

1≤B<C≤n
(qnC − qnB )(1− qnC+nB ) , (4.88)

for all λ1, . . . , λn ∈ Z and λ1 ≥ . . . ≥ λn ≥ 0.

4.1.4 The contributions from the NS and R sectors in d > 4

The contribution from the NS sector can be obtained by taking a product

of n copies of (4.39):

χ
SO(2n+1)
NS (q, ~y) =

n∏
A=1

χ
SO(3)
NS (q; yA)

= (q; q)−3n
∞

∑
~m∈Zn≥0

∑
~n∈Zn+

n∏
A=1

(−1)nA+1
(

1− qmA+ 1
2

)
(1− qnA)×

q
1
2

[nA(nA−1)+m2
A]

∞∑
~k∈Zn≥0

n∏
A=1

(qnA|kA−mA| − qnA(kA+mA+1)) [2kA]yA . (4.89)

Similarly for the contribution from the R sector, the product of n copies of

(4.56):

χ
SO(2n+1)
R (q, ~y) =

n∏
A=1

χ
SO(3)
R (q; yA)

= q−
n
8 (q; q)−3n

∞
∑
~m∈Zn≥0

∑
~n∈Zn+

n∏
A=1

(−1)nA+1(1− qmA+1)(1− qnA)×

q
1
2

[nA(nA−1)+(mA+ 1
2)

2
]
∑
~k∈Zn≥0

n∏
A=1

(qnA|kA−mA| − qnA(kA+mA+2)) [2kA + 1]yA .

(4.90)
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The unrefined partition functions can be written as

χ
SO(2n+1)
NS (q, {yi = 1}) = q−n/8

ϑ3(1, q)n

η(q)3n
, (4.91)

χ
SO(2n+1)
R (q, {yi = 1}) =

ϑ2(1, q)n

η(q)3n
. (4.92)

4.2 Internal SCFT on the compact dimensions

We can replace the remaining 6 dimensions of spacetime by any worldsheet

superconformal field theory with c = 9. The internal SCFT can be quantized

using the BRST method.

It is shown explicitly in chapter 18 of [54] that the SCFT description of

four- and six dimensional string compactifications with N4d = 1,N4d = 2

or N6d = (1, 0) spacetime SUSY, the last of which can be compactified on

a 2-torus to the second, comprises universal sectors with enhanced N2d =

2, 4 worldsheet SUSY [54, 15]. The purpose of this section is to collect

the associated charged characters, starting from the expressions given in

[12, 11] but adapting the dependence on fugacities s, x and z of the internal

symmetries to the R symmetries of the spectrum.

4.2.1 N2d = 2 worldsheet superconformal algebra at c = 9

The internal SCFT universal to any four dimensional string compactifica-

tion with N4d = 1 spacetime SUSY has N2d = 2 worldsheet SUSY. The

resulting model independent partition function receives contributions from

characters of the N2d = 2 superconformal algebra with central charge c = 9.

Its representations are characterized by the conformal weight h and the

U(1) charge ` of their highest weight state. The representations needed to

describe N4d = 1 compactifications have (h, `) = (0, 0) in the NS sector and

(h, `) =
(

3
8 ,

3
2

)
in the R sector. (In our partition functions we normalize the

U(1) charge to 1 in the R sector for the purpose of the power of the U(1)

fugacity in the partition functions, i.e. we multiply it by 2
3 .)

We will not discuss the details of the internal SCFT here; they can be

found in [12], although we use a different U(1) charge (more correctly the

SCFT splits into two parts and there are therefore two U(1) charges in

the theory; [12] refines the spectrum with a fugacity s raised to the power

of (a multiple of) only the first U(1) charge, while we use a (diagonal)
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combination of the two which is BRST-invariant, which is required in order

to generate spacetime symmetries, including the R-symmetry), and [15],

where we obtain the first massive level explicitly via BRST quantization.

We first calculate what is called the Verma module, which is constructed

by the action of raising operators of the (super)Virasoro algebra on the

highest weight state, on which the action of lowering operators vanishes and

L0 has eigenvalue h as above. (This is different to string partition functions,

where the states are built up .) From the (super)Virasoro algebra, outlined

for the various cases in [53, 54, 12, 11], the action of any raising operator,

bosonic or fermionic, wth mode −n raises the eigenvalue of L0 by n. The

Verma module can be irreducible, or it can contain null states which are

orthogonal to all other states in the module, so these must be removed.

In [11] this is done by finding the lowest null state and then iteratively

constructing null states from lower null states; this construction leads to

an alternating sum as we ensure each null state is only subtracted out once

from the Verma module. The action of raising operators on null states leads

to further null states, so the total partition function can be written as this

alternating sum times the partition function of the original Verma module.

The internal partition function is calculated by taking the trace of qL0 ,

refined by s raised to the power of the U(1) charge (or by rank(G) fugacities

each raised to the power of the corresponding Cartan subalgebra charge for

a general R-symmetry group G). We do not incorporate the factor of q−c/24

as in [53, 54, 12] because the total central charge of the theory, including

spacetime dimensions and (super)ghosts, is zero.
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The NS-sector

The internal character in this sector is given by

χN2d=2,c=9
NS,h=0,`=0(q; s) = (1− q)χSO(3)

NS (q, 1)
∑
p∈Z

qp
2+p− 1

2 s2p

(1 + qp−
1
2 )(1 + qp+

1
2 )

= (q; q)−3
∞ (1− q)ϑ3(1, q)

∑
p∈Z

qp
2+p− 1

2 s2p

(1 + qp−
1
2 )(1 + qp+

1
2 )

(4.93)

= (q; q)−3
∞ (1− q)ϑ3(1, q)

∞∑
p=0

s2p
qp

2+p− 1
2

(1 + qp+
1
2 )(1 + qp−

1
2 )

(4.94)

where we have introduced the notation

sn =

{
sn + s−n : n > 0

1 : n = 0
(4.95)

to compactly represent the fugacity dependence. Explicitly to the first few

orders we have

1 + q + (2 + s2)q3/2 + (3 + s2)q2 + (4 + s2)q5/2 + (6 + 2s2)q3

+ (10 + 4s2)q7/2 + (15 + 6s2)q4 + (20 + 8s2)q9/2 + (28 + 12s2)q5

+ (42 + 19s2 + s4)q11/2 + (59 + 27s2 + 2s4)q6

+ (78 + 36s2 + 2s4)q13/2 + (107 + 51s2 + 3s4)q7 +O(q15/2) ,
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The unrefined internal character (i.e. setting s to unity) can be rewritten in

terms of modular functions as follows:

χN2d=2,c=9
NS,h=0,`=0(q; s = 1) = (q; q)−3

∞ ϑ3(1, q)
∑
p∈Z

qp
2+p− 1

2 (1− q)
(1 + qp−

1
2 )(1 + qp+

1
2 )

= (q; q)−3
∞ ϑ3(1, q)

∑
p∈Z

qp
2

(
1

1 + qp+
1
2 )
− 1

1 + qp−
1
2

)

= (q; q)−3
∞ ϑ3(1, q)

∑
p∈Z

qp
2
(1− q2p+1)

1 + qp+
1
2

= (q; q)−3
∞ ϑ3(1, q)

∑
p∈Z

(
qp

2 − q(p+ 1
2

)2+ 1
4

)
= q1/8ϑ3(1, q)

η(q)3

[
ϑ3(1, q2)− q1/4ϑ2(1, q2)

]
. (4.96)

The R-sector

The internal character in this sector is given by

χN2d=2,c=9
R,h=3/8,`=3/2(q; s) = (1− q)χSO(3)

R (q, 1)
∑
p∈Z

qp
2−1 s2p−1

(1 + qp)(1 + qp−1)

= (q; q)−3
∞ (1− q)ϑ2(1, q)

∑
p∈Z

qp
2− 9

8 s2p−1

(1 + qp)(1 + qp−1)
(4.97)

= (q; q)−3
∞ (1− q)ϑ2(1, q)

∞∑
p=0

s2p+1
q(p+ 1

2
)2 − 3

8

(1 + qp+1)(1 + q−p)

(4.98)

Explicitly to the first few orders we have

s1 + 2s1q + 6s1q
2 + (2s3 + 14s1)q3 + (4s3 + 30s1)q4

+ (10s3 + 62s1)q5 + (24s3 + 122s1)q6 + (50s3 + 230s1)q7 +O(q8) .
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The unrefined internal character can be rewritten in terms of modular func-

tions as

χN2d=2,c=9
R,h=3/8,`=3/2(q; s = 1) = (q; q)−3

∞ ϑ2(1, q)
∑
p∈Z

qp
2− 9

8 (1− q)
(1 + qp)(1 + qp−1)

= (q; q)−3
∞ ϑ2(1, q)

∑
p∈Z

qp
2−p− 1

8

(
1

1 + qp
− 1

1 + qp−1

)

= (q; q)−3
∞ ϑ2(1, q)

∑
p∈Z

qp
2−p− 1

8 (1− q2p

(1 + qp)

= (q; q)−3
∞ ϑ2(1, q)

∑
p∈Z

(
q(p− 1

2
)2− 3

8 − qp2−
1
8

)
= q−1/4ϑ2(1, q)

η(q)3

[
ϑ2(1, q2)− q1/4ϑ3(1, q2)

]
.

(4.99)

Some features

Let us discuss some properties of the above internal characters.

• We have normalized the U(1)R differently from [12] such that all in-

teger powers of s occur. According to the infinite sums within (4.93)

and (4.97), even powers s2p firstly occur along with qp
2+p−1/2, i.e. in

the NS sector at mass level p2 + p − 1, except when p = 0 when the

levels are 0 and −1
2 respectively. (The difference comes from the zero

point energy which is −1
2 for a 10D (total) theory in the NS sector,

which is not incorporated into these characters). Odd powers s2p−1 of

the U(1)R fugacity, on the other hand, firstly show up at power qp
2−1,

which is their mass level in the R sector.

• The unrefined internal R character (4.99) can be derived from the NS

counterpart (4.96) by exchanging ϑ2 and ϑ3 and multiplying by an

overall factor q−3/8.

• Both of the unrefined internal characters (4.96) and (4.99) are not

modular invariant. This can be seen from the modular transformation
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q 7→ q̃ = e−2πi/τ ,

ϑ2 (1, q̃) = ϑ4(1, q)
√
−iτ , η (q̃) = η(q)

√
−iτ ,

ϑ3(1, q̃) = ϑ3(1, q)
√
−iτ . (4.100)

We will make use of these transformations later when we come to calculate

the total numbers of states at each level in the combined spacetime and

internal partition functions.

4.2.2 N2d = 4 worldsheet superconformal algebra at c = 6

As stated, but this time not derived, in chapter 18 of [54], the existence

of eight supercharges in four or six dimensional spacetime implies that the

universal part of the internal SCFT contains a sector with central charge c =

6, enhanced N2d = 4 worldsheet SUSY and SU(2) Kac Moody symmetry

at level 1. The c = 6 representations contributing to the NS sector and

R sector of N4d = 2 and N6d = (1, 0) spectra are characterized by values

(h, `) = (0, 0) and (h, `) =
(

1
4 ,

1
2

)
, respectively, of the conformal weight h

and the spin ` with respect to the SU(2) Kac Moody symmetry. (As with

the U(1) charge in the 4-supercharge case, our SU(2) is not the same as

that in [11]; again the CFT splits into two pieces each with their own SU(2),

[11] uses the first one, while we use a (diagonal) linear combination of the

two, again because of the need for BRST invariance in order to generate the

R-symmetry.) Again the first massive level is obtained explicitly by BRST

quantization in [15].

The second sector of the internal SCFT describing N4d = 2 supersymmet-

ric string compactifications has central charge c = 3 and N2d = 2 worldsheet

SUSY. This corresponds to two toroidally compactified dimensions with

spectrum the same as for two spacetime dimensions. In the N6d = (1, 0)

case, they are two spacetime dimensions and the two cases are related by

toroidal compactification on those two dimensions.

The NS-sector

The internal character in this sector is given by, written in the first line treat-

ing each SU(2) weight separately (almost as though we are considering it as

a U(1)), in the second line (using (4.17)) as a sum of SU(2) representations
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times terms independent of r and in subsequent lines its explicit expansion

to low orders:

χN2d=4,c=6
NS,h=0,`=0(q; r) = χ

SO(3)
NS (q, 1)

∑
m∈Z

q
1
2
m2+ 1

4 r2m qm−
1
2 − r−2

1 + qm−
1
2

= (q; q)−3
∞ ϑ3(1, q)

∞∑
k=0

[2k]r
(1− q)(1− qk+ 1

2 )

(1 + qk−
1
2 )(1 + qk+ 3

2 )
q

1
2
k2+k− 1

2 (4.101)

= [0]r + [2]rq + ([2]r + [0]r)q
3/2 + ([2]r + 2[0]r)q

2 + (2[2]r + 2[0]r)q
5/2

+ (4[2]r + 2[0]r)q
3 + ([4]r + 5[2]r + 4[0]r)q

7/2 + (2[4]r + 6[2]r + 7[0]r)q
4

+ (2[4]r + 10[2]r + 8[0]r)q
9/2 + (3[4]r + 16[2]r + 9[0]r)q

5

+ (6[4]r + 21[2]r + 15[0]r)q
11/2 + (9[4]r + 27[2]r + 23[0]r)q

6

+ (12[4]r + 39[2]r + 27[0]r)q
13/2 + ([6]r + 17[4]r + 56[2]r + 33[0]r)q

7

+O(q15/2) .

The unrefined internal character for the NS-sector can be written as

χN2d=4,c=6
NS,h=0,`=0(q; r = 1) = q1/8 ϑ3(1,q)2

η(q)3

[
1− 2iq1/8µ

(
1+τ

2 , τ
)]

, (4.102)

where µ(u, τ) is an Appell-Lerch sum defined in (4.104); for our purpose,

we have

µ

(
1 + τ

2
, τ

)
= − i

ϑ3(1,q)

∑
m∈Z

q
1
2m

2− 1
8

1+qm−
1
2
, (4.103)

where we have used the fact that ϑ1

(
e2πi(1+τ)/2, q

)
= q−1/8ϑ3(1, q).

The Appell-Lerch sum is defined as follows [16]:3

µ(u, τ) = − eiπu

ϑ1(y, q)

∑
m∈Z

(−1)m
eπim(m+1)τ+2πimu

1− e2πimτ+2πiu
, (4.104)

where

y = exp(2πiu) , q = exp(2πiτ) . (4.105)

3The notation in this thesis and that in Proposition 1.4 of [16] can be related as follows.
Our notation is on the left hand sides of the following equalities: µ(u, q) = µ(u, u, q),
and ϑ1(u, τ) = −ϑ(u, τ).
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The R-sector

The internal character in this sector is given as follows. Again the first line

treats each SU(2) weight separately, the second line is written (again using

(4.17)) as a sum of SU(2) representations times terms independent of r and

the subsequent lines are its explicit expansion to low orders:

χN2d=4,c=6

R,h= 1
4
,`= 1

2

(q; r) = χ
SO(3)
R (q, 1)

∑
m∈Z

r2m+1 q
m − r−2

1 + qm
q

1
2
m2+ 1

2
m

= q−
1
8 (q; q)−3

∞ ϑ2(1, q)

∞∑
k=0

[2k + 1]r
(1− q)(1− qk+1)

(1 + qk)(1 + qk+2)
q

1
2
k2+ 3

2
k (4.106)

= [1]r + 2[1]rq + (2[3]r + 4[1]r)q
2 + (4[3]r + 10[1]r)q

3

+ (10[3]r + 20[1]r)q
4 + (2[5]r + 22[3]r + 38[1]r)q

5

+ (6[5]r + 44[3]r + 72[1]r)q
6 + (14[5]r + 86[3]r + 130[1]r)q

7 +O(q8) .

The unrefined internal character for the R-sector can be written as

χN2d=4,c=6

R,h= 1
4
,`= 1

2

(q; r = 1) =
ϑ2(1, q)

η(q)3

∑
m∈Z

(
qm − 1

1 + qm

)
q

1
2
m(m+1)

=
ϑ2(1, q)

η(q)3

∑
m∈Z

[(
1− 2

1 + qm

)
q

1
2
m(m+1)

]
= q−1/8ϑ2(1, q)2

η(q)3

[
1− 2iq1/8µ (1/2, τ)

]
, (4.107)

where we have4

µ (1/2, τ) = − i
ϑ2(1,q)

∑
m∈Z

q
1
2m(m+1)

1+qm , (4.108)

where we have used the fact that ϑ1(−1, q) = ϑ2(1, q).

Some features

• Characters [n]r of SU(2)R follow the same highest weight notation as

for SO(3), i.e. we have [1]r = r+ r−1 for the fundamental representa-

tion and [n]r =
∑+n/2

k=−n/2 r
2k in the general spin n/2 case. Again, the

infinite sum representations allow to read off the lowest level where in-

dividual SU(2)R representations contribute: Integer spin representa-

4This function is also closely related to the function h2(q) introduced in [11, 13, 14].
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tions [2k]r firstly occur at qk
2/2+k−1/2, i.e. at mass level k2/2+k−1/2,

except for [0]r first occurring at q0 or mass level 0. (Again the actual

mass level of first occurrence in the NS sector is this plus −1
2 , the zero

point energy in the NS sector which we have not incorporated into

these characters.) Spinorial representations [2k + 1]r, on the other

hand, firstly show up at qk(k+3)/2, i.e. at mass level k(k + 3)/2.

• Observe that the unrefined internal characters in both NS and R sec-

tors involve Appell-Lerch sums, which are mock modular forms. Since

the characters and are holomorphic in q, it is immediate that they are

not modular invariant.

4.3 Spectrum in N4d = 1 supersymmetric

compactifications

This section opens up the main body of this work where the SCFT ingre-

dients introduced so far are applied to counting universal super Poincaré

multiplets in the perturbative string spectrum. We start with the phe-

nomenologically relevant and mathematically most tractable N4d = 1 su-

persymmetric scenario. Its SCFT description requires the internal sector

with enhanced N2d = 2 worldsheet SUSY introduced in subsection 4.2.1,

independently on the compactification details. The BRST invariant comple-

tion of the internal current takes the role of the U(1)R symmetry generator.

Lorentz quantum numbers enter through the partition functions (4.39) and

(4.56) of the spacetime SCFT for the ∂Xµ and ψµ oscillators, expressed in

terms of characters of the massive little group SO(3) in four dimension.

The universal part of the N4d = 1 spectrum is built from both spacetime

oscillators and internal operators. On the level of its partition function

χN4d=1(q; y, s), this amounts to forming a GSO projected product of NS-

and R characters from the spacetime- and internal SCFT, see (4.93) and

(4.97) for the latter. In a power series expansion in q, the coefficient of

the n’th power qn comprises characters for the N4d = 1 super Poincaré

multiplets occurring at the n’th mass level with m2 = n/α′. The aforemen-

tioned massive supercharacters are functions of SO(3) fugacity y and U(1)R

fugacity s.
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The fundamental N4d = 1 multiplet5 consists of 2 real bosonic degrees of

freedom and a Majorana fermion with 2 real fermonic on-shell degrees of

freedom after taking the Dirac equation into account. The two real bosonic

degrees of freedom can be complexified to yield a complex scalar and its

complex conjugate; they transform as a singlet under the little group SO(3)

and each of them carries opposite R-charges +1 and −1. On the other hand,

the two real fermonic degrees of freedom transform as a doublet under the

little group SO(3) and each of them carries zero R-charge. Thus, these 2+2

states yield the character

Z(N4d = 1) = [1]y + (s+ s−1) . (4.109)

Any other massive representation of N4d = 1 super Poincaré is specified by

the little group SO(3) quantum number n and the U(1)R charge Q of its

highest weight state or Clifford vacuum. Its SO(3) × U(1)R constituents

follow from a tensor product:

Jn,QK := Z(N4d = 1) · sQ[n]y = sQ[n]y
(
[1]y + (s+ s−1)

)
(4.110)

=

 sQ
(

[n+ 1] + (s+ s−1) [n] + [n− 1]
)

for n ≥ 1

sQ
(

[1] + (s+ s−1) [0]
)

for n = 0

The super-Poincaré character Jn,QK corresponds to 4(n+ 1) states of spin
n+1

2 , n
2 and (if n 6= 0) n−1

2 that can be generated from a Clifford vacuum

with spin n/2 and U(1)R charge Q+ 16. Note that Q is even whenever the

maximum spin quantum number n+ 1 is.

In this setting, we find the (GSO projected) N4d = 1 partition function

χN4d=1(q; y, s) := χN4d=1
NS |GSO (q; y, s) + χN4d=1

R |GSO (q; y, s) ,(4.111)

where GSO projection removes half odd integer mass levels α′m2 ∈ Z − 1
2

from the NS sector and interlocks spacetime chirality with U(1)R charges

5As we shall see below, the fundamental multiplet does not appear on its own in both
massless and massive spectra. Representations appearing in the massive spectrum
arise from certain non-trivial products with the fundamental multiplet.

6In this terminology, the first label of Jn,QK refers to the average spin of the SO(3)
irreducibles. We deviate from the common practice that supermultiplets are referred
to through the highest spin therein. The supercharacter J3, 0K = [4]+[2]+(s+s−1)[3],
for instance, describes U(1)R neutral bosons of spin two and one, and two massive
gravitinos of opposite U(1)R charges.
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in the R sector. We can capture this projection through the following 7.

(Note: before imposing the GSO projection, we must multiply the overall

NS sector partition function by q−
1
2 corresponding to the zero-point energy

in this sector.)

χN4d=1
NS |GSO (q) =

1

2
q−

1
2

[
χ
SO(3)
NS (q; y)χN2d=2,c=9

NS,h=0,`=0(q; s) − χ
SO(3)
NS (e2πiq; y)χN2d=2,c=9

NS,h=0,`=0(e2πiq; s)

]
,

χN4d=1
R |GSO (q) =

1

2
χ
SO(3)
R (q; y)χN2d=2,c=9

R,h=3/8,`=3/2(q; s) . (4.112)

In order to compactly represent the leading terms in a power series expan-

sion of the partition function χN4d=1, let us introduce the shorthand

Jn,±QK :=

{
Jn,+QK + Jn,−QK : Q 6= 0

Jn, 0K : Q = 0
(4.113)

which exploits that U(1)R charges ±Q always appear on symmetric foot-

ing. The pairing of supermultiplets with opposite (nonzero) U(1)R charges

combines Majorana fermions as they appear in the fundamental multiplet

7The formula for the GSO projected R sector is reliable for positive powers q≥1 only
and inaccurate at the massless level: The coefficient of q0 in χ

N4d=1
R |GSO is 1

2
(y +

y−1)(s+ s−1) instead of the desired value ys+ (ys)−1. One can just add to the former
1
2
(y − y−1)(s − s−1) to compensate this mismatch. This artifact of the mismatch

between massive and massless little groups does not affect the main focus our analysis
– the massive particle content. Indeed, the character ys corresponds to the left-handed
gaugino and the character (ys)−1 corresponds to the right-handed gaugino; they carry
opposite R-charge +1 and −1 and opposite helicities +1/2 and −1/2.
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(4.109) to Dirac fermions. The content of the first N4d = 1 levels reads

χN4d=1(q; y, s) =

(
y2 + y−2 +

1

2
(y + y−1) (s+ s−1)

)
q0︸ ︷︷ ︸

4 massless states

+
(
J3, 0K + J0,±1K

)
q︸ ︷︷ ︸

24 states at level 1

+
(
J5, 0K + J3, 0K + 2 J2,±1K + 2 J1, 0K

)
q2︸ ︷︷ ︸

104 states at level 2

+
(
J7, 0K + J5, 0K + 3 J4,±1K + 5 J3, 0K + 2 J2,±1K

+ J1,±2K + 5 J1, 0K + 3 J0,±1K
)
q3 + O(q4) ,

(4.114)

subleading orders up to mass level eight are summarized in Table 4.1. The

explicit form of the vertex operators at mass level one8 can be found in

section 5 of [15] (equations (5.3) to (5.6) for bosons and equations (5.14) to

(5.18) for fermions) in the RNS framework.

Character multiplicities up to mass level α′m2 = 25 are gathered in table

4.2 and in the tables of appendix 4.B.1.

4.3.1 The total number of states at a given mass level

In this subsection, we focus on the total number of states present at a given

mass level and derive the novel asymptotic formula (4.125). These numbers

can indeed be obtained by adding up the dimensions of representations

presented in table 4.1. Our aim here is to compute such numbers analytically

and asymptotically for large mass levels.

8Let us discuss about the states at the first mass level. The 24 total states consist of
the following multiplets:

(1) the massive spin 3/2 multiplet J3, 0K: it contains a massive spin 2 field with
5 on-shell degrees of freedoms (OSDOFs), a massive spin 1 field with 3 OSDOFs, a
massive spin 3/2 field with 4 OSDOFs, and a Dirac fermion with 4 OSDOFs; so we
have 8+8 real OSDOFs in total

(2) the massive spin 0 multiplet J0,±1K: the two constituents J0, 1K and J0,−1K
of the massive scalar multiplet correspond to two massless chiral fields, Φ and Φ̃ (not
complex conjugate to each other) at Q = ±1. The opposite Q-charges are necessary

to form an invariant mass term ΦΦ̃ in the superpotential. This multiplet contains 4
+ 4 real OSDOFs coming from two complex scalars plus two Majorana fermions; the
latter are equivalent to one massive Dirac fermion. Note that the spin 0 multiplet is
also referred to as two spin 1/2 multiplets in [15].
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α′m2 Representations of N4d = 1 super Poincaré

1 J3, 0K + J0,±1K
2 J5, 0K + J3, 0K + 2 J2,±1K + 2 J1, 0K
3 J7, 0K + J5, 0K + 3 J4,±1K + 5 J3, 0K + 2 J2,±1K + J1,±2K + 5 J1, 0K + 3 J0,±1K
4 J9, 0K + J7, 0K + 3 J6,±1K + 7 J5, 0K + 4 J4,±1K + 2 J3,±2K + 12 J3, 0K

+ 11 J2,±1K + 2 J1,±2K + 12 J1, 0K + 3 J0,±1K
5 J11, 0K + J9, 0K + 3 J8,±1K + 7 J7, 0K + 5 J6,±1K + 2 J5,±2K + 17 J5, 0K + 18 J4,±1K

+ 6 J3,±2K + 31 J3, 0K + 20 J2,±1K + 6 J1,±2K + 28 J1, 0K + J0,±3K + 15 J0,±1K
6 J13, 0K + J11, 0K + 3 J10,±1K + 7 J9, 0K + 5 J8,±1K + 2 J7,±2K + 19 J7, 0K

+ 21 J6,±1K + 8 J5,±2K + 45 J5, 0K + 39 J4,±1K + 15 J3,±2K + 72 J3, 0K
+ 3 J2,±3K + 58 J2,±1K + 17 J1,±2K + 64 J1, 0K + 21 J0,±1K

7 J15, 0K + J13, 0K + 3 J12, 1K + 7 J11, 0K + 5 J10, 1K + 2 J9, 2K + 19 J9, 0K + 22 J8, 1K
+ 8 J7, 2K + 51 J7, 0K + 49 J6, 1K + 22 J5, 2K + 108 J5, 0K + 4 J4, 3K + 105 J4, 1K
+ 43 J3, 2K + 166 J3, 0K + 5 J2, 3K + 115 J2, 1K + 38 J1, 2K + 136 J1, 0K + 6 J0, 3K
+ 66 J0, 1K

8 J17, 0K + J15, 0K + 3 J14, 1K + 7 J13, 0K + 5 J12, 1K + 2 J11, 2K + 19 J11, 0K
+ 22 J10, 1K + 8 J9, 2K + 53 J9, 0K + 52 J8, 1K + 24 J7, 2K + 125 J7, 0K + 4 J6, 3K
+ 135 J6, 1K + 62 J5, 2K + 254 J5, 0K + 10 J4, 3K + 223 J4, 1K + 101 J3, 2K + 357 J3, 0K
+ 21 J2, 3K + 274 J2, 1K + J1, 4K + 89 J1, 2K + 289 J1, 0K + 7 J0, 3K + 112 J0, 1K

Table 4.1: The content of the first eight N4d = 1 levels.

The starting point is the unrefined partition function obtained by setting

the fugacities y and s in (4.111) to unity. The total number of states Nm

at the mass level m can be read off from the coefficient of qm in the power

series of χN4d=1(q; y = 1, s = 1).

Supersymmetry implies that

χN4d=1
NS |GSO (q; y = 1, s = 1) = χN4d=1

R |GSO (q; y = 1, s = 1) . (4.115)

which can, of course, be checked directly using (4.112), (4.41), (4.60), (4.96)

and (4.99). Since the formula for the R sector is simpler, we proceed from

there.

χN4d=1(q; y = 1, s = 1) = 2χN4d=1
R |GSO (q; y = 1, s = 1)

= χ
SO(3)
R (q, y = 1)χN2d=2,c=9

R,h=3/8,`=3/2(q; s = 1)

= q−1/4ϑ2(1, q)2

η(q)6

[
ϑ2(1, q2)− q1/4ϑ3(1, q2)

]
.

(4.116)

Indeed, the power series of χN4d=1(q; y = 1, s = 1) in q reproduces the

numbers presented in the first column of Table 4.13. We mention in passing

that χN4d=1(q; y = 1, s = 1) is not a modular form.
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The number of states at each mass level and its asymptotics

The number of states at the mass level m can be computed from

Nm =
1

2πi

∮
C

dq

qm+1
χN4d=1(q; y = 1, s = 1) , (4.117)

where C is a contour around the origin.

Let us compute the number of states Nm in the limit m→∞. Since the

integrand of (4.117) is sharply peaked near q = 1, we need to examine the

behaviour of χN4d=1(q; y = 1, s = 1) as q → 1−. The q → 1− regime in

question is related to the easily accessible q → 0 limit

η(q) ∼ q1/24 , ϑ3(1, q) ∼ 1 , ϑ4(1, q) ∼ 1 , q → 0 (4.118)

through modular transformation q = e2πiτ 7→ q̃ = e−2πi/τ :

ϑ2-function : ϑ4 (1, q̃) = ϑ2(1, q)
√
−iτ ∼ 1√

2π
(1− q)1/2ϑ2(1, q)

⇒ ϑ2(1, q) ∼
√

2π(1− q)−1/2, q → 1− , (4.119)

ϑ3-function : ϑ3 (1, q̃) = ϑ3(1, q)
√
−iτ ∼ 1√

2π
(1− q)1/2ϑ3(1, q)

⇒ ϑ3(1, q) ∼
√

2π(1− q)−1/2, q → 1− , (4.120)

η-function : η (q̃) = η(q)
√
−iτ ∼ 1√

2π
(1− q)1/2η(q)

⇒ η(q) ∼
√

2π(1− q)−1/2 exp

(
π2

6 log q

)
, q → 1− ,

(4.121)

Hence, we have

ϑ2(1, q2) ∼ ϑ3(1, q2) ∼
√

2π(1− q2)−1/2 , q → 1− , (4.122)

and so as q → 1−,

χN4d=1(q; y = 1, s = 1) ∼ (2π)−3/2(1− q)2(1− q1/4)(1− q2)−1/2

× exp

(
− π2

log q

)
. (4.123)
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Hence, as m→∞,

Nm ∼ (2π)−3/2 1

2πi

∮
C

dq

q
(1− q)2(1− q1/4)(1− q2)−1/2

× exp

(
− π2

log q
−m log q

)
. (4.124)

Observe that the argument of the exponential function has a critical value

at q0 = exp(−π/
√
m); this is the saddle point. The direction of steepest

descent at this point is the imaginary direction in q. We deform the contour

C such that it passes through q = q0 and tangent to this direction. The

leading contribution comes from expansions around q = q0 in the steepest

descent direction. Writing q = q0e
iθ, we have

Nm ∼ (2π)−3/2(1− q0)2(1− q1/4
0 )(1− q2

0)−1/2

× 1

2π

∫ ε

−ε
dθ exp

(
− π2

iθ + log q0
−m(iθ + log q0)

)
, ε > 0

∼ (2π)−3/2(1− q0)2(1− q1/4
0 )(1− q2

0)−1/2

× e2π
√
m 1

2π

∫ ε

−ε
dθ exp

(
−m

3/2

π
θ2 +O(θ3)

)
, ε > 0

∼ (2π)−3/2(1− q0)2(1− q1/4
0 )(1− q2

0)−1/2e2π
√
m

× 1

2π

∫ ∞
−∞

dθ exp

(
−m

3/2

π
θ2

)
∼ π

32
m−2 exp

(
2π
√
m
)
, m→∞ . (4.125)

4.3.2 The GSO projected NS- and R sectors

In what follows, we compute analytic expressions of the refined partition

function χN4d=1(q; y, s) and discuss its asymptotic behaviour.

The NS sector

Let us write the partition function χN4d=1
NS |GSO (q; y, s), defined in (4.112),

as

χN4d=1
NS |GSO (q; y, s) =

∞∑
k=0

∞∑
p=−∞

[2k]ys
2p FNS

k,p (q) , (4.126)
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where the function FNS
k,p (q) follows from (4.39), (4.93) and (4.112):

FNS
k,p (q) = (q; q)−6

∞ (1− q)qp2+p−1
∞∑
n=1

(−1)n+1(1− qn)q(
n
2)

×
∞∑
m=0

(qn|k−m| − qn(k+m+1))

× 1

2
q

1
2
m2

[
(1− qm+ 1

2 )ϑ3(1, q)

(1 + qp−
1
2 )(1 + qp+

1
2 )

+ (−1)m
2 (1 + qm+ 1

2 )ϑ4(1, q)

(1− qp−
1
2 )(1− qp+

1
2 )

]
.

(4.127)

This expression can be simplified further in the asymptotic limit k →
∞. In this limit, qn|k−m| ∼ qn(k−m) and the dominant contribution in

the summation over n comes from n = 1. The summation over n can be

asymptotically evaluated as follows (assume that m is finite):

∞∑
n=1

(−1)n+1(1− qn)q(
n
2)(qn|k−m| − qn(k+m+1))

∼
∞∑
n=1

(−1)n+1(1− qn)qn(k−m)(1− qn(2m+1))

∼
qk(1− q)

(
1− q2k

)
(1 + qk)

4

{
q−m

(
1− q2m+1

)}
. (4.128)

The summation over m can be evaluated by considering

∞∑
m=0

q
1
2
m2−m

(
1− qm+ 1

2

) (
1− q2m+1

)
= q−

1
2 (1− q)ϑ3(1, q) ,

(4.129)
∞∑
m=0

(−1)m
2
q

1
2
m2−m

(
1 + qm+ 1

2

) (
1− q2m+1

)
= −q−

1
2 (1− q)ϑ4(1, q) .

(4.130)
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In such a limit, the function FNS
k,p (q) becomes

FNS
k,p (q) ∼ 1

2
(q; q)−6

∞ (1− q)3qp
2+p+k− 3

2
1− q2k

(1 + qk)4

×

[
ϑ3(1, q)2

(1 + qp−
1
2 )(1 + qp+

1
2 )
− ϑ4(1, q)2

(1− qp−
1
2 )(1− qp+

1
2 )

]
∼ 1

2
(q; q)−6

∞ (1− q)3qp
2+p+k− 3

2

×

[
ϑ3(1, q)2

(1 + qp−
1
2 )(1 + qp+

1
2 )
− ϑ4(1, q)2

(1− qp−
1
2 )(1− qp+

1
2 )

]
, k →∞ .

(4.131)

The R sector

Similarly the partition function χN4d=1
R |GSO (q; y, s), defined in (4.112), can

be written as

χN4d=1
R |GSO (q; y, s) =

∞∑
k=0

∞∑
p=−∞

[2k + 1]ys
2p−1 FR

k,p(q) , (4.132)

where the function FR
k,p(q) follows from (4.56), (4.97) and (4.112):

FR
k,p(q) =

1

2
(q; q)−6

∞ (1− q) qp
2− 5

4

(1 + qp)(1 + qp−1)
ϑ2(1, q)

×
∞∑
n=1

(−1)n+1(1− qn)q(
n
2)

×
∞∑
m=0

q
1
2

(m+ 1
2

)2(1− qm+1)(qn|k−m| − qn(k+m+2)) . (4.133)

In the limit k →∞, this function can be simplified further. The summation

over n can be asymptotically evaluated as follows (assume that m is finite):

∞∑
n=1

(−1)n+1(1− qn)q(
n
2)(qn|k−m| − qn(k+m+2))

∼
∞∑
n=1

(−1)n+1(1− qn)qn(k−m)(1− qn(2m+2))

∼
qk(1− q)

(
1− q2k

)
(1 + qk)

4

{
q−m

(
1− q2m+2

)}
, (4.134)
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and the summation over m can be computed as follows:

∞∑
m=0

q
1
2

(m+ 1
2

)2−m (1− qm+1
) (

1− q2m+2
)

= (1− q)ϑ2(1, q) . (4.135)

Therefore, we have the following asymptotic formula:

FR
k,p(q) ∼

1

2
(q; q)−6

∞
qp

2+k− 5
4 (1− q)3

(
1− q2k

)
(1 + qp) (1 + qp−1) (1 + qk)

4ϑ2(1, q)2

∼ 1

2
(q; q)−6

∞
qp

2+k− 5
4 (1− q)3

(1 + qp) (1 + qp−1)
ϑ2(1, q)2 , k →∞ . (4.136)

Combining both sectors

Combining the NS- and R contributions from the previous subsections gives

rise to the following SO(3)× U(1)R covariant partition function

χN4d=1(q; y, s) = χN4d=1
NS |GSO (q; y, s) + χN4d=1

R |GSO (q; y, s)

=

∞∑
k=0

∞∑
p=−∞

(
[2k]ys

2p FNS
k,p (q) + [2k + 1]ys

2p−1 FR
k,p(q)

)
=

∞∑
k=0

[2k]

FNS
k,0 (q) +

∞∑
p=1

s2pF
NS
k,p (q)

+ [2k + 1]

∞∑
p=1

s2p−1F
R
k,p(q)

 ,

(4.137)

where sm is defined by (4.95). Even though the FNS
k,p and FR

k,p functions are

known, the representation (4.137) of the overall partition function does not

make N4d = 1 SUSY manifest to all mass levels. In order to do so, we have

to combine SO(3) × U(1)R representations to supermultiplets (4.110) and

rewrite (4.137) as9

χN4d=1(q; y, s) =
∞∑
n=0

∞∑
Q=0

Jn,±QKM(χN4d=1, Jn,QK, q) . (4.138)

This introduces a multiplicity generating function M(χN4d=1, Jn,QK, q) for

the supermultiplet Jn,QK appearing in the partition function χN4d=1. To

9The symmetry of (4.137) under s → s−1 guarantees that M(χN4d=1, Jn,QK, q) =
M(χN4d=1, Jn,−QK, q), so we shall henceforth assume that Q ≥ 0.
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lighten our notation in the subsequent steps, we shall use the shorthand

Gn,Q(q) := M(χN4d=1, Jn,QK, q) . (4.139)

By comparing (4.137) with (4.138), it is immediate that

G2n,2Q(q) = G2n+1,2Q+1(q) = 0 , for all n ≥ 0 and Q ≥ 0 . (4.140)

Recurrence relations

In order to relate the supersymmetric multiplicity generating functions Gn,Q

to their SO(3) × U(1)R relatives FNS
k,p and FR

k,p, we use (4.110) to rewrite

(4.138) in terms of characters of irreducible SO(3) characters and the fu-

gacity s as

χN4d=1(q; y, s)

= [0]
[
(G1,0 + 2G0,1) +

∞∑
Q=1

s2Q (G0,2Q−1 +G1,2Q +G0,2Q+1)
]

+

∞∑
k=1

[2k]
[

(G2k−1,0 + 2G2k,1 +G2k+1,0) (4.141)

+

∞∑
Q=1

s2Q (G2k−1,2Q +G2k,2Q−1 +G2k,2Q+1 +G2k+1,2Q)
]

+

∞∑
k=0

[2k + 1]

×
∞∑
Q=1

s2Q−1 (G2k,2Q−1 +G2k+1,2Q−2 +G2k+1,2Q +G2k+2,2Q−1) , (4.142)

where Gn,Q is a shorthand notation for Gn,Q(q).
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Comparing (4.137) with (4.141), we have the following relations:

2G0,1(q) +G1,0(q) = FNS
0,0 (q) , (4.143)

G2k−1,0(q) + 2G2k,1(q) +G2k+1,0(q) = FNS
k,0 (q) , k ≥ 1 (4.144)

G0,2Q−1(q) +G0,2Q+1(q) +G1,2Q(q) = FNS
0,Q(q) , Q ≥ 1 (4.145)

G2k−1,2Q(q) +G2k,2Q−1(q) +G2k,2Q+1(q) +G2k+1,2Q(q) = FNS
k,Q(q) ,

k,Q ≥ 1 (4.146)

G2k,2Q−1(q) +G2k+1,2Q−2(q) +G2k+1,2Q(q) +G2k+2,2Q−1(q) = FR
k,Q(q) ,

k ≥ 0, Q ≥ 1 . (4.147)

These relations are useful for computing a multiplicity generating function

for a representation Jodd, evenK (or Jeven, oddK) when the one for opposite

parity is known. However, the recursion is not powerful enough to directly

determine all the Gn,Q in terms of FNS
k,p and FR

k,p. The following subsection

follows an alternative approach to determine the Gn,Q.

4.3.3 Multiplicities of representations in the N4d = 1

partition function

Our aim in this subsection is to factor out the fundamental N4d = 1 super

Poincaré character Z(N4d = 1) = [1]y + s + s−1 and to compute explicitly

the multiplicity generating functions Gn,Q(q) for Jn,QK in

χN4d=1(q; y, s) =
∞∑
n=0

∞∑
Q=−∞

Jn,QKGn,Q(q) . (4.148)

Using the second equality of (4.110) and orthogonality of SO(3) × U(1)R

representations, we have

Gn,Q(q) = M(χN4d=1, Jn,QK, q)

=
1

2πi

∮
C

ds

s

∫
dµSO(3)(y) [n]ys

−Q χN4d=1(q; y, s)

[1]y + (s+ s−1)
, (4.149)
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where C is a contour in the complex s-plane enclosing the origin. In order to

proceed, we use the geometric series expansion of the inverse Z(N4d = 1),10

1

[1]y + (s+ s−1)
=

1

s+ s−1

1

1 +
[1]y
s+s−1

=

∞∑
m=0

(−1)m
[1]my

(s+ s−1)m+1
.(4.151)

In what follows, we consider the contributions from χN4d=1
NS |GSO (q; y, s)

and χN4d=1
R |GSO (q; y, s) separately and then add up these results to yield

the overall multiplicity generating function defined by (4.148),

M(χN4d=1, Jn,QK, q)

= M(χN4d=1
NS |GSO, Jn,QK, q) +M(χN4d=1

R |GSO, Jn,QK, q) , (4.152)

where χN4d=1
NS,R |GSO are given by (4.126) and (4.132).

Multiplicities in the NS-sector

The series expansion of (Z(N4d = 1))−1 leads to the following NS sector

contribution to the multiplicity generating function of the supermultiplet

Jn,QK

M(χN4d=1
NS |GSO, Jn,QK, q)

:=
1

2πi

∮
C

ds

s

∫
dµSO(3)(y)

[n]y
sQ
×
χN4d=1

NS |GSO (q; y, s)

[1]y + (s+ s−1)

=

∞∑
m=0

∞∑
k=0

∞∑
p=−∞

(−1)mFNS
k,p (q)

1

2πi

∮
|s|=1−ε

ds

s

s2p

sQ(s+ s−1)m+1

×
∫

dµSO(3)(y) [n]y[1]my [2k]y , (4.153)

We shall henceforth take C to be a circle centred at the origin with the

radius 1 − ε, with 0 < ε < 1. The quantities in the curly brackets can be

10Note that 1
[1]y+(s+s−1)

can also be written in another way as follows:

1

[1]y + (s+ s−1)
=

∞∑
m=0

(−1)msm+1[m]y . (4.150)

However, we shall not take this approach, since otherwise this would lead to tensor
products in (4.155) and (4.156) which are harder to evaluate in comparison with our
current approach.
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computed as follows:

1

2πi

∮
|s|=1−ε

ds

s

s2p

sQ(s+ s−1)m+1

=

(−1)
1
2

(Q−m−2p−1)
( 1

2
(Q+m−2p−1)

m

)
for Q−m odd and Q+m ≥ 2p+ 1

0 otherwise ,

(4.154)

and

∫
dµSO(3)(y) [2n]y[1]my [2k]y =

T2n+1

(
m, 1

2m+ n− k
)

if m is even

0 if m is odd ,

(4.155)∫
dµSO(3)(y) [2n+ 1]y[1]my [2k]y =

T2n+2

(
m, 1

2m+ n+ 1
2 − k

)
if m is odd

0 if m is even ,

(4.156)

where

Tp(m, k) =

(
m

k

)
−
(

m

k − p

)
. (4.157)

We can derive (4.155) as follows, using (4.17) in the first step:∫
dµSO(3)(y) [2n]y[1]my [2k]y

=

∫
dµSO(3)

bm2 c∑
l=0

((
m

l

)
−
(

m

l − 1

))
[m− 2l]y

 n+k∑
p=|n−k|

[2p]y

=

(
m

1
2m− |n− k|

)
−
(

m
1
2m− n− k − 1

)
=

(
m

1
2m+ n− k

)
−
(

m
1
2m− n− k − 1

)
(4.158)

as required, and similarly for (4.156). Note that (4.154), (4.155) and (4.156)

are in perfect agreement with the selection rule

M(χN4d=1, J2n, 2QK, q) = M(χN4d=1, J2n+ 1, 2Q+ 1K, q) = 0 . (4.159)
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The nonzero multiplicities of J2n, 2Q+ 1K and J2n+ 1, 2QK receive the fol-

lowing NS sector contributions:

M(χN4d=1
NS |GSO, J2n, 2Q+ 1K, q)

=

∞∑
k=0

∞∑
m=0

Q+m∑
p=−∞

(−1)Q−m−pFNS
k,p (q)

(
Q+m− p

2m

)
T2n+1(2m,m+ n− k) ,

(4.160)

M(χN4d=1
NS |GSO, J2n+ 1, 2QK, q)

=
∞∑
k=0

∞∑
m=0

Q+m∑
p=−∞

(−1)Q−m−pFNS
k,p (q)

(
Q+m− p

2m+ 1

)
T2n+2(2m+ 1,m+ n+ 1− k) .

(4.161)

Multiplicities in the R-sector

Similarly to the NS-sector, the generating function for the multiplicity of

the representation Jn,QK in the function χN4d=1
R |GSO (q; y, s) is given by

M(χN4d=1
R |GSO, Jn,QK, q)

:=
1

2πi

∮
|s|=1−ε

ds

s

∫
dµSO(3)(y)

[n]y
sQ
×
χN4d=1

R |GSO (q; y, s)

[1]y + (s+ s−1)

=
∞∑
m=0

∞∑
k=0

∞∑
p=−∞

(−1)mFR
k,p(q)

1

2πi

∮
|s|=1−ε

ds

s

s2p−1

sQ(s+ s−1)m+1

×
∫

dµSO(3)(y) [n]y[1]my [2k + 1]y , (4.162)

with 0 < ε < 1,

1

2πi

∮
|s|=1−ε

ds

s

s2p−1

sQ(s+ s−1)m+1

=

(−1)
1
2

(Q−m−2p)
( 1

2
(Q+m−2p)

m

)
for Q−m even and Q+m ≥ 2p

0 otherwise ,

(4.163)
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and

∫
dµSO(3)(y) [2n]y[1]my [2k + 1]y =

T2n+1

(
m, 1

2m+ n− k − 1
2

)
if m is odd

0 if m is even ,

(4.164)∫
dµSO(3)(y) [2n+ 1]y[1]my [2k + 1]y =

T2n+2

(
m, 1

2m+ n− k
)

if m is even

0 if m is odd ,

(4.165)

where Tp(m, k) is defined as above, and can again be derived similarly to

(4.158), and the zeros once again confirm the selection rule (4.159).

The multiplicities of J2n, 2Q+ 1K are given by

M(χN4d=1
R |GSO, J2n, 2Q+ 1K, q)

=

∞∑
k=0

∞∑
m=0

Q+m∑
p=−∞

(−1)Q−m−p+1FR
k,p(q)

(
Q+m− p+ 1

2m+ 1

)
× T2n+1(2m+ 1,m+ n− k) . (4.166)

The multiplicities of J2n+ 1, 2QK are given by

M(χN4d=1
R |GSO, J2n+ 1, 2QK, q)

=
∞∑
k=0

∞∑
m=0

Q+m∑
p=−∞

(−1)Q−m−pFR
k,p(q)

(
Q+m− p

2m

)
T2n+2(2m,m+ n− k) .

(4.167)

Combining the NS and R sectors

Now we can assemble the NS- and R sector results to obtain the full mul-

tiplicities of the representation Jn,QK in χN4d=1(q; y, s). First, it is clear

that

G2n,2Q(q) = G2n+1,2Q+1(q) = 0 . (4.168)
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The nonzero multiplicities of J2n, 2Q+ 1K and J2n+ 1, 2QK are most conve-

niently presented in terms of the shorthands

MJ2n,2Q+1K(m, p, k; q)

:= (−1)Q−m−p

[
FNS
k,p (q)

(
Q+m− p

2m

)
T2n+1(2m,m+ n− k)

− FR
k,p(q)

(
Q+m− p+ 1

2m+ 1

)
T2n+1(2m+ 1,m+ n− k)

]
(4.169)

MJ2n+1,2QK(m, p, k; q)

:= (−1)Q−m−p

[
FNS
k,p (q)

(
Q+m− p

2m+ 1

)
T2n+2(2m+ 1,m+ n+ 1− k)

+ FR
k,p(q)

(
Q+m− p

2m

)
T2n+2(2m,m+ n− k)

]
(4.170)

for the contributions MJ·,·K(m, p, k; q) of individual terms in the m, p, k triple

sum to the multiplicity generating function. The result for J2n, 2Q + 1K
supermultiplets is

G2n,2Q+1(q) =
∞∑
k=0

∞∑
m=0

Q+m∑
p=−∞

MJ2n,2Q+1K(m, p, k; q)

=

∞∑
k=0

∞∑
m=0

[ ∞∑
p=0

{
MJ2n,2Q+1K(m,−p− 1, k; q) + MJ2n,2Q+1K(m+ p, p, k; q)

}

+

Q−1∑
p=0

MJ2n,2Q+1K(m,m+ p+ 1, k; q)

]
. (4.171)

whereas the multiplicities of J2n+ 1, 2QK are given by

G2n+1,2Q(q) =
∞∑
k=0

∞∑
m=0

Q+m∑
p=−∞

MJ2n+1,2QK(m, p, k; q)

=

∞∑
k=0

∞∑
m=0

[ ∞∑
p=0

{
MJ2n+1,2QK(m,−p− 1, k; q) + MJ2n+1,2QK(m+ p, p, k; q)

}

+

Q−1∑
p=0

MJ2n+1,2QK(m,m+ p+ 1, k; q)

]
. (4.172)
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4.3.4 Asymptotic analysis for the multiplicities

This subsection is devoted to the multiplicity generating function Gn,Q(q)

in the limit n → ∞. We shall present analytic expressions for their n →
∞ asymptotics whose derivation is defered to appendix 4.A. The method

essentially relies on identifying the dominant contribution to the triple sums

in (4.171) and (4.172). The end result for multiplicity generating functions

Gn,Q(q) reads

G2n+1,2Q(q) ∼ (1− q)2qn−
3
2

2(q; q)6
∞
F(q,Q) , n→∞ , (4.173)

G2n,2Q+1(q) ∼ (1− q)2qn−
3
2

2(q; q)6
∞(1 + q)

×

[
q(Q+1)2+ 1

4 (1− q)
(1 + qQ) (1 + qQ+1)

ϑ2(1, q)2 −F(q,Q)−F(q,Q+ 1)

]
(4.174)

with the function F(q,Q) given by

F(q,Q)

= ϑ2(1, q)2
[
q1−Qu1(

√
q,Q) + (−1)Q(1− q)(v1(

√
q,Q) + q−1/4w1(

√
q,Q))

]
+ ϑ3(1, q)2

[
− q1−Qu2(

√
q,Q) + (−1)Q(1− q)(v2(

√
q,Q) + q2w2(

√
q,Q))

]
+ ϑ4(1, q)2

[
q1−Qu2(−√q,Q)− (−1)Q(1− q)(v2(−√q,Q) + q2w2(−√q,Q))

]
.

(4.175)
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The three pairs of functions ui, vi and wi correspond to the three summa-

tions in (4.171) and (4.172):

u1(q,Q) =

∞∑
p=0

q2(p+ 3
2)

2 1− q4p+4Q+6

(1 + q2p+2)(1 + q2p+4)
,

u2(q,Q) =

∞∑
p=0

q2(p+1)2 1− q4p+4Q+4

(1 + q2p+1)(1 + q2p+3)
. (4.176)

v1(q,Q) =

bQ/2c∑
p=0

q2(p− 1
2

)2(1 + q2)2p

(1 + q2p−2)(1 + q2p)

(
Q

2p

)

× 3F2

[
1, Q+ 1, 2p−Q
p+ 1/2, p+ 1

;
(1 + q)2

4q

]
,

v2(q,Q) =

bQ/2c∑
p=0

(1 + q)q2p2(1 + q2)2p

(1 + q2p−1)(1 + q2p+1)

(
Q

2p+ 1

)

× 3F2

[
1, Q+ 1, 2p+ 1−Q

p+ 1, p+ 3/2
;

(1 + q)2

4q

]
, (4.177)

w1(q,Q) =

∞∑
m=0

Q−1∑
p=0

(−1)p+1q1+2(1+m+p)2−2m
(
1 + q2

)2m (Q−1−p
2m

)(
1 + q2(m+p)

) (
1 + q2(1+m+p)

) ,

w2(q,Q) = q−
9
2

∞∑
m=0

Q−1∑
p=0

(−1)p+1q2(m+p+ 3
2)

2−2m
(
1 + q2

)2m+1 (Q−1−p
1+2m

)
(1 + q1+2m+2p) (1 + q3+2m+2p)

.

(4.178)

Note that the leading orders in the power series are

G2n+1,2Q(q) ∼ qn+Q(Q+2) , G2n,2Q+1(q) ∼ qn+Q2+3Q+1 , q → 0 ,(4.179)

i.e. the supermultiplet J2n+1, 2QK firstly occurs at mass level n+Q(Q+2)

whereas the J2n, 2Q+1K multiplet firstly occurs at mass level n+Q2+3Q+1.

For reference, we list the leading q powers for the Gn→∞,Q regime for

some small values of the U(1)R charge, obtained by expansion of (4.173)
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and (4.174): firstly for even values Q ∈ 2N0

G2n+1,0(q) ∼ qn(1 + q + 7q2 + 19q3 + 53q4 + 133q5 + 328q6 + 752q7

+ 1689q8 + 3635q9 +O(q10)) ,

G2n+1,2(q) ∼ qn+3(2 + 8q + 24q2 + 73q3 + 187q4 + 467q5 + 1090q6

+ 2457q7 + 5314q8 +O(q9)) ,

G2n+1,4(q) ∼ qn+8(2 + 10q + 36q2 + 110q3 + 306q4 + 773q5 + 1861q6

+ 4245q7 + 9327q8 +O(q9)) ,

G2n+1,6(q) ∼ qn+15(2 + 10q + 38q2 + 124q3 + 352q4 + 928q5 + 2282q6

+ 5335q7 +O(q8)) , (4.180)

and secondly for odd values Q ∈ 2N− 1

G2n,1(q) ∼ qn+1(3 + 5q + 22q2 + 53q3 + 150q4 + 345q5 + 836q6 + 1824q7

+ 4011q8 +O(q9)) ,

G2n,3(q) ∼ qn+5(4 + 11q + 46q2 + 117q3 + 331q4 + 784q5 + 1876q6

+ 4133q7 +O(q8)) ,

G2n,5(q) ∼ qn+11(4 + 12q + 55q2 + 150q3 + 437q4 + 1078q5 + 2640q6

+ 5951q7 +O(q8)) ,

G2n,7(q) ∼ qn+19(4 + 12q + 56q2 + 159q3 + 474q4 + 1197q5 + 2994q6

+ 6882q7 +O(q8)) . (4.181)

Note that the general formula greatly simplifies at U(1)R charges Q = 0
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and Q = 1,

G2n+1,0(q) ∼ qn

(q; q)6
∞
×{

1

2
(1− q)2q−

1
2

(
u1(
√
q)ϑ2(1, q)2 −

[
u2(
√
q)ϑ3(1, q)2 − u2(−√q)ϑ4(1, q)2

] )
+

1

4

(1− q)3

1 + q
q−

1
4ϑ2(1, q)2

}
, n→∞ (4.182)

G2n,1(q) ∼ (1− q)3qn+1

4(q; q)6
∞
×[

q−
5
2

{
ϑ3(1, q)2

(1 + q−
1
2 )(1 + q

1
2 )
− ϑ4(1, q)2

(1− q−
1
2 )(1− q

1
2 )

}
− 1

2
q−

9
4ϑ2(1, q)2

− q−
5
2

1 + q

1− q

(
u1(
√
q)ϑ2(1, q)2 −

[
u2(
√
q)ϑ3(1, q)2 − u2(−√q)ϑ4(1, q)2

] )]
(4.183)

where ui(q) ≡ ui(q; 0), see the first subsection of appendix 4.A.

4.3.5 Empirical approach to N4d = 1 asymptotic patterns

In the previous subsection, we have derived the large spin asymptotics for

multiplicity generating functions Gk,Q(q) of individual N4d = 1 multiplets

(at finite Q while k →∞), the main results being (4.173) and (4.174). The

asymptotic formulae can be viewed as the supersymmetric generalization

of truncating the infinite sum expression (4.23) for the SO(3) multiplicity

generating function in the d = 4 bosonic partition function to its n = 1

term. In [10], this n = 1 term is interpreted as the leading (additive) Regge

trajectory of unit slope, followed by an infinite tower of sister trajectories

of fractional slope and alternating sign.

Let us borrow some notation from equation (6.2) of [10] and expand the
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Gk,Q(q) in an infinite series of trajectories τ`:

G2n+1,2Q(q) = qn τ2Q
1 (q) − q2n τ2Q

2 (q) + q3n τ2Q
3 (q) − . . .

=

∞∑
`=1

(−1)`−1 q`n τ2Q
` (q) (4.184)

G2n,2Q+1(q) = qn τ2Q+1
1 (q) − q2n τ2Q+1

2 (q) + q3n τ2Q+1
3 (q) − . . .

=

∞∑
`=1

(−1)`−1 q`n τ2Q+1
` (q)

It is not obvious that the patterns observed in [10] for non-supersymmetric

theories persist for the counting of super-Poincaré multiplets, i.e. that the

spacetime partition functions of the reference preserve the nested structure

in (4.184) after multiplication with the internal characters. At any rate,

all our N4d = 1 data suggests that both of τ2Q
` (q) and τ2Q+1

` (q) are power

series in q with non-negative coefficients. Our analytic results (4.173) and

(4.174) identify the first coefficient functions τ1(q) in (4.184):

τ2Q
1 (q) =

(1− q)2q−
3
2

2(q; q)6
∞
F(q,Q) (4.185)

τ2Q+1
1 (q) =

(1− q)2q−
3
2

2(q; q)6
∞(1 + q)

×

[
q(Q+1)2+ 1

4 (1− q)
(1 + qQ) (1 + qQ+1)

ϑ2(1, q)2 −F(q,Q)−F(q,Q+ 1)

]
(4.186)

The methods presented in appendix 4.A and applied in the previous sub-

section are not suitable to extract subleading Regge trajectories τ`≥2(q), i.e.

N4d = 1 analogues of n ≥ 2 terms in the sum (4.23). Instead, we shall

rely on an empirical approach, more specifically on explicit results obtained

from a supercharacter expansion of the partition function (4.112) up to the

25th mass level.

As an illustrative example, let us first of all investigate the family of Q = 0

supermultiplets: The following table 4.2 gathers J2n+ 1, 0K multiplicities in

the first 25 levels. Numbers marked in red directly correspond to the lead-

ing trajectory τ0
1 (q) whereas those in blue are additionally affected by the

subleading trajectory τ0
2 (q). Given the leading trajectories (4.185), our data
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α
′m

2

#
J1
,0K

#
J3
,0K

#
J5
,0K

#
J7
,0K

#
J9
,0K

#
J1

1
,0K

#
J1

3
,0K

#
J1

5
,0K

#
J1

7
,0K

#
J1

9
,0K

#
J2

1
,0K

1 0 1 0
2 2 1 1 0
3 5 5 1 1 0
4 12 12 7 1 1 0
5 28 31 17 7 1 1 0
6 64 72 45 19 7 1 1 0
7 136 166 108 51 19 7 1 1 0
8 289 357 254 125 53 19 7 1 1 0
9 588 757 557 302 131 53 19 7 1 1 0
10 1175 1548 1200 675 320 133 53 19 7 1 1
11 2293 3100 2482 1479 726 326 133 53 19 7 1
12 4399 6053 5028 3106 1611 744 328 133 53 19 7
13 8267 11620 9910 6373 3422 1663 750 328 133 53 19
14 15325 21855 19173 12713 7098 3557 1681 752 328 133 53
15 27949 40496 36322 24856 14297 7428 3609 1687 752 328 133
16 50306 73846 67720 47539 28216 15061 7564 3627 1689 752 328
17 89367 132860 124161 89401 54430 29909 15394 7616 3633 1689 752
18 156930 235871 224479 165210 103182 58054 30687 15530 7634 3635 1689
19 272424 413879 400257 300837 192109 110702 59786 31021 15582 7640 3635
20 468130 717909 705032 539962 352279 207282 114437 60567 31157 15600 7642
21 796410 1232463 1227214 956883 636445 382179 215074 116183 60901 31209 15606
22 1342531 2094716 2113394 1674933 1134836 694090 398007 218848 116965 61037 31227
23 2243232 3527456 3602086 2899342 1997955 1243836 725457 405910 220597 117299 61089
24 3717405 5887668 6081317 4965411 3477396 2200438 1304682 741559 409698 221379 117435
25 6111615 9745995 10173766 8420331 5986079 3847540 2316123 1336712 749501 411448 221713

Table 4.2: N4d = 1 multiplets at U(1)R charge Q = 0

from table 4.2 can be used to determine the following subleading behaviour

for Q = 0 multiplets:
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G2n+1,0(q) ∼ qn (1 + q + 7q2 + 19q3 + 53q4 + 133q5 + 328q6 + 752q7

+ 1689q8 + 3635q9 + 7642q10 + 15608q11 + 31235q12

+ 61115q13 + 117513q14 + 221927q15 + 412778q16 + 756372q17

+ 1367753q18 + 2441849q19 + 4309132q20 + 7520092q21

+ 12989357q22 + 22216885q23 + 37651970q24 + 63252874q25 + . . .)

− q2n+1 (2 + 8q + 26q2 + 78q3 + 214q4 + 548q5 + 1330q6 + 3080q7

+ 6872q8 + 14832q9 + 31102q10 + 63574q11 + 127020q12

+ 248590q13 + 477504q14 + . . .)

+ q3n+1 (1 + 4q + 19q2 + 61q3 + 187q4 + 503q5 + 1294q6 + 3113q7

+ 7217q8 + 16036q9 + 34584q10 + . . .)

− q4n+2 (2 + 10q + 38q2 + 124q3 + 364q4 + 978q5 + 2476q6 + . . .)

+ q5n+2 (1 + 4q + 21q2 + 72q3 + . . .) + . . . , n→∞ (4.187)

The first term linear in qn simply reproduces (4.182) for τQ=0
1 (q) whereas

higher powers of qn allow to read off subleading τQ=0
`≥2 (q) to certain order in

q:

τQ=0
2 (q) = q (2 + 8q + 26q2 + 78q3 + 214q4 + 548q5 + 1330q6 + 3080q7

+ 6872q8 + 14832q9 + 31102q10 + 63574q11

+ 248590q13 + 477504q14 + . . .) (4.188)

τQ=0
3 (q) = q (1 + 4q + 19q2 + 61q3 + 187q4 + 503q5 + 1294q6 + 3113q7

+ 7217q8 + 16036q9 + 34584q10 + . . .) (4.189)

τQ=0
4 (q) = q2 (2 + 10q + 38q2 + 124q3 + 364q4 + 978q5 + 2476q6 + . . .)

(4.190)

τQ=0
5 (q) = q2 (1 + 4q + 21q2 + 72q3 + . . .) (4.191)

Determining higher order terms in the τQ=0
`≥2 (q) would require O(q26) parts

of (4.112), this is where we stopped the explicit evaluation.

Similarly, the J2n+ 1, 2K and J2n, 1K multiplicities up to level q25 as tab-

ulated in appendix 4.B.1 determine the associated τ ...` (q) coefficients to the
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following orders:

τQ=2
2 (q) = q3 (2 + 11q + 37q2 + 114q3 + 319q4 + 822q5 + 2000q6 + 4645q7

+ 10354q8 + 22317q9 + 46702q10 + 95210q11 + 189656q12 + . . .)

τQ=2
3 (q) = q3 (2 + 8q + 33q2 + 104q3 + 310q4 + 826q5 + 2093q6 + 4991q7

+ 11454q8 + . . .)

τQ=2
4 (q) = q3 (1 + 5q + 22q2 + 77q3 + 237q4 + 664q5 + . . .)

τQ=2
5 (q) = q4 (3 + 12q + 49q2 + . . .) (4.192)

τQ=1
2 (q) = 1 + 4q + 15q2 + 50q3 + 143q4 + 379q5 + 947q6 + 2244q7 + 5103q8

+ 11196q9 + 23804q10 + 49252q11 + 99465q12 + 196522q13 + 380719q14 + . . .

τQ=1
3 (q) = 1 + 5q + 22q2 + 70q3 + 212q4 + 568q5 + 1458q6 + 3496q7

+ 8093q8 + 17936q9 + . . .

τQ=1
4 (q) = 1 + 6q + 24q2 + 83q3 + 252q4 + 698q5 + . . .

τQ=1
5 (q) = 1 + 6q + 25q2 + . . . (4.193)

Note that the analytic result (4.173) for τ2
1 (q), τ1

1 (q) was used as an extra

input, in addition to the explicit results for the first 25 mass level, to make

a few more orders of the subleading τ ...`≥2(q) accessible. Some more leading

and subleading τQ` for larger values of Q are given in (4.B.1).

4.4 Spectra in compactifications with 8

supercharges

In six dimensional Minkowski space, the minimal realization of SUSY in-

volves eight supercharges. They form two left- handed Weyl spinors of

SO(6) which are related through an SU(2)R R symmetry. Our notation

for such minimally supersymmetric theories in d = 6 is N6d = (1, 0). Su-

perstring compactification subject to N6d = (1, 0) SUSY are described by

a universal SCFT sector with c = 6 and N2d = 4 SUSY on the worldsheet,

see subsection 4.2.2 for details. In addition, the SCFT introduces SO(5)

quantum numbers for the massive string states through a six dimensional

spacetime sector for which the methods of subsections 4.1.3 and 4.1.4 are

applicable.
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The fundamental multiplet of N6d = (1, 0) theories consists of 8+8 states

Z(N6d = (1, 0)) := [1, 0] + [2]R + [1]R [0, 1] . (4.194)

where [p]R is the character of the p+1 dimensional representation of SU(2)R.

Generic multiplets follow through the tensor product with some SO(5) ×
SU(2)R representation with little group quantum numbers [n1, n2] and R

symmetry content [k]R. This leads to the general supercharacter

Jn1, n2; pK := Z(N6d = (1, 0)) · [p]R [n1, n2] . (4.195)

The partition function capturing the universal spectrum of six dimensional

N6d = (1, 0) compactifications is obtained thorugh a GSO projected product

of internal χN2d=4,c=6
... (q; r) characters (with SU(2)R fugacity r) defined by

(4.101) as well as (4.106) and SO(5) spacetime characters (4.89) and (4.90).

The GSO projection removes half odd integer mass leves from the NS sector

and enforces the R spin field to be a left handed SO(6) spinor, therefore

(again needing to multiply by q−
1
2 in the NS case to incorporate the zero-

point energy):

χN6d=(1,0)(q; ~y, r) = χ
N6d=(1,0)
NS |GSO (q; ~y, r) + χ

N6d=(1,0)
R |GSO (q; ~y, r)

χ
N6d=(1,0)
NS |GSO (q; ~y, r) =

1

2
q−

1
2
[
χ
SO(5)
NS (q; ~y)χN2d=4,c=6

NS,h=0,`=0(q; r)

− χ
SO(5)
NS (e2πiq; ~y)χN2d=4,c=6

NS,h=0,`=0(e2πiq; r)
]

χ
N6d=(1,0)
R |GSO (q; ~y, r) =

1

2
χ
SO(5)
R (q; ~y)χN2d=4,c=6

R,h=1/4,`=1/2(q; r) . (4.196)
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The power series expansion of (4.196) starts as11

χN6d=(1,0)(q; ~y, r) =

(
y2

1 + y−2
1 + y2

2 + y−2
2 +

1

2
[1]r

2∏
i=1

(yi + y−1
i )

)
q0

︸ ︷︷ ︸
8 massless states

+ J1, 0; 0K q︸ ︷︷ ︸
80 states at level 1

+
(
J2, 0; 0K + J0, 2; 0K + J0, 1; 1K

)
q2︸ ︷︷ ︸

512 states at level 2

+
(
J3, 0; 0K + 2 J1, 0; 0K + J0, 0; 0K

+ J1, 2; 0K + J0, 2; 0K + J0, 0; 2K + 2 J1, 1; 1K + J0, 1; 1K
)
q3 + O(q4) .

(4.197)

The q≤6 coefficients are listed in table 4.3, further information on the particle

content up to level 25 is tabulated in appendix 4.B.2.

α′m2 representations of N6d = (1, 0) super Poincaré

1 J1, 0; 0K
2 J2, 0; 0K + J0, 2; 0K + J0, 1; 1K
3 J3, 0; 0K + 2 J1, 0; 0K + J0, 0; 0K + J1, 2; 0K + J0, 2; 0K + J0, 0; 2K + 2 J1, 1; 1K + J0, 1; 1K
4 J4, 0; 0K + 3 J2, 0; 0K + 2 J1, 0; 0K + 2 J0, 0; 0K + J2, 2; 0K + 2 J1, 2; 0K + 4 J0, 2; 0K

+ 2 J1, 0; 2K + J0, 2; 2K + 3 J1, 1; 1K + 4 J0, 1; 1K + 2 J2, 1; 1K
5 J5, 0; 0K + 3 J3, 0; 0K + 4 J2, 0; 0K + 9 J1, 0; 0K + 3 J0, 0; 0K + J3, 2; 0K + 2 J2, 2; 0K

+ 7 J1, 2; 0K + 6 J0, 2; 0K + J0, 4; 0K + 3 J2, 0; 2K + 3 J1, 0; 2K + 3 J0, 0; 2K + J1, 2; 2K
+ 3 J0, 2; 2K + 2 J3, 1; 1K + 4 J2, 1; 1K + 9 J1, 1; 1K + 8 J0, 1; 1K + J1, 3; 1K + 4 J0, 3; 1K
+ J0, 1; 3K

6 J6, 0; 0K + J4, 2; 0K + 2 J4, 1; 1K + 3 J4, 0; 0K + 2 J3, 2; 0K + 4 J3, 1; 1K + 3 J3, 0; 2K
+ 5 J3, 0; 0K + J2, 3; 1K + J2, 2; 2K + 8 J2, 2; 0K + 12 J2, 1; 1K + 4 J2, 0; 2K + 14 J2, 0; 0K
+ J1, 4; 0K + 5 J1, 3; 1K + 6 J1, 2; 2K + 13 J1, 2; 0K + 2 J1, 1; 3K + 23 J1, 1; 1K + 9 J1, 0; 2K
+ 12 J1, 0; 0K + 4 J0, 4; 0K + 9 J0, 3; 1K + 9 J0, 2; 2K + 19 J0, 2; 0K + 3 J0, 1; 3K
+ 18 J0, 1; 1K + 4 J0, 0; 2K + 8 J0, 0; 0K

7 J7, 0; 0K + J5, 2; 0K + 2 J5, 1; 1K + 3 J5, 0; 0K + 2 J4, 2; 0K + 4 J4, 1; 1K + 3 J4, 0; 2K
+ 5 J4, 0; 0K + J3, 3; 1K + J3, 2; 2K + 8 J3, 2; 0K + 13 J3, 1; 1K + 5 J3, 0; 2K + 17 J3, 0; 0K
+ J2, 4; 0K + 5 J2, 3; 1K + 6 J2, 2; 2K + 16 J2, 2; 0K + 2 J2, 1; 3K + 31 J2, 1; 1K + 17 J2, 0; 2K
+ 24 J2, 0; 0K + 5 J1, 4; 0K + 15 J1, 3; 1K + 16 J1, 2; 2K + 38 J1, 2; 0K + 7 J1, 1; 3K
+ 51 J1, 1; 1K + J1, 0; 4K + 20 J1, 0; 2K + 35 J1, 0; 0K + J0, 5; 1K + 3 J0, 4; 2K + 9 J0, 4; 0K
+ 2 J0, 3; 3K + 26 J0, 3; 1K + 22 J0, 2; 2K + 34 J0, 2; 0K + 7 J0, 1; 3K + 39 J0, 1; 1K
+ J0, 0; 4K + 13 J0, 0; 2K + 13 J0, 0; 0K

Table 4.3: N6d = (1, 0) multiplets occurring up to mass level 7

11Again, there is a subtlety in applying (4.196) to the massless R sector, see the footnote
before (4.112). However, this can be fixed easily: one can simply add to it 1

2
(y1 −

y−1
1 )(y2 − y−1

2 )(r − r−1) to get the correct massless character in R sector.
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4.4.1 The total number of states at a given mass level

In this subsection, we compute the total number of states present at a

given mass level through the unrefined partition function, i.e. by setting

the fugacities y1, y2 and r in (4.197) to unity. The total number of states

Nm at the mass level m can be read off from the coefficient of qm in the

power series of χN6d=(1,0)(q; {yi = 1, r = 1}).
We follow the analysis presented in subsection 4.3.1. The unrefined par-

tition function is given by

χN6d=(1,0)(q; {yi = 1, r = 1}) = 2χ
N6d=(1,0)
R |GSO (q; y = 1, s = 1)

= χ
SO(5)
R (q; {yi = 1})χN2d=4,c=6

R,h=1/4,`=1/2(q; r = 1)

= χ
SO(3)
R (q; {y = 1})2 χN2d=4,c=6

R,h=1/4,`=1/2(q; r = 1)

= q−1/8ϑ2(1, q)4

η(q)9

[
1− 2iq1/8µ (1/2, τ)

]
.

(4.198)

Indeed, the power series of χN6d=(1,0)(q; {yi = 1, r = 1}) in q reproduces

the numbers presented in the second column of Table 4.13. Note that

χN6d=(1,0)(q; {yi = 1, r = 1}) is not a modular form, since the Appell-

Lerch sum is a mock modular form and it is not added by a suitable non-

holomorphic component to be modular.

The number of states at each mass level and its asymptotics

The number of states at the mass level m can also be computed from

Nm =
1

2πi

∮
C

dq

qm+1
χN6d=(1,0)(q; {yi = 1, r = 1}) , (4.199)

where C is a contour around the origin.

Now let us compute an asymptotic formula for the number of states Nm

at a mass level m when m→∞. We focus on the limit q → 1− and proceed

in a similar way to subsection 4.3.1.

Let us first examine the leading behaviour of µ (1/2, τ) as q → 1− or

τ → 0. Using the second point of Proposition 1.5 of [16], we find that

1√
−iτ

µ

(
1

2τ
,−1

τ

)
+ µ

(
1

2
, τ

)
=

1

2i
. (4.200)
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Let us consider µ
(

1
2τ ,−

1
τ

)
as q → 1− or equivalently τ = iε as ε → 0+. It

follows from the definition of Appell-Lerch sum that

µ

(
1

2τ
,−1

τ

)
= − eiπ/(2τ)

ϑ1(e2πi/(2τ), e−2πi/τ )

∑
m∈Z

(−1)m
e−iπm

2/τ

1− e−2πim/τ+πi/τ

∼ − eπ/(2ε)

−ieπ/(4ε)
× (−2e−π/ε) , τ = iε, ε→ 0+

= 2i exp

(
−3π

4ε

)
, (4.201)

where in the second ‘equality’ only m = 0, 1 in the infinite sum contribute to

the leading behaviour and we have used the fact that ϑ1(e2πi/(2τ), e−2πi/τ ) =

−ieπ/(4ε), as τ = iε, ε → 0+. Hence, to the leading order, one can neglect

the first term in (4.200) in comparison with 1/(2i) on the right hand side

and so

µ

(
1

2
, τ

)
∼ 1

2i
, q → 1− . (4.202)

Therefore it follows from (4.198) that, as q → 1−,

χN6d=(1,0)(q; {yi = 1, r = 1}) ∼ q−1/8ϑ2(1, q)4

η(q)9

(
1− q1/8

)
∼ (2π)−5/2(1− q1/8)(1− q)5/2 exp

(
− 3π2

2 log q

)
, (4.203)

where we have used (4.121) and (4.119). Hence, as m→∞,

Nm ∼ (2π)−5/2 1

2πi

∮
C

dq

q
(1− q1/8)(1− q)5/2 exp

(
− 3π2

2 log q
−m log q

)
.(4.204)

The saddle point is at q0 = exp
(
−π
√

3/
√

2m
)

and the steepest descent

direction is the imaginary direction in q. We proceed in a similar way to

(4.125) by writing q = q0e
iθ and using Laplace’s method to obtain

Nm ∼ (2π)−5/2(1− q1/8
0 )(1− q0)5/2eπ

√
6m 1

2π

∫ ∞
−∞

dθ exp

(
− 1

π

√
2

3
m3/2θ2

)
∼ 9π

217/2
m−5/2 exp

(
π
√

6m
)
, m→∞ . (4.205)
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4.4.2 The GSO projected NS and R sectors

The NS sector

From (4.291), the partition function of the GSO projected NS sector is

χ
N6d=(1,0)
NS |GSO (q; y, s) =

∞∑
k1,k2,p=0

[2k1]y1 [2k2]y2 [2p]r F
NS
k1,k2,p(q) , (4.206)

where the function FNS
k,p (q) is given by

FNS
k1,k2,p(q) = (q; q)−9

∞ (1− q)q
1
2
p2+p−1

×
∑
~n∈Z2

+

∑
~m∈Z2

≥0

2∏
A=1

(−1)nA+1(1− qnA)q
1
2
m2
A+(nA2 )(qnA|kA−mA| − qnA(kA+mA+1))

× 1

2

[
(1− qp+

1
2 )ϑ3(1, q)

(1 + qp−
1
2 )(1 + qp+

3
2 )

2∏
A=1

(1− qmA+ 1
2 )

+ (−1)m
2
1+m2

2+p2 (1 + qp+
1
2 )ϑ4(1, q)

(1− qp−
1
2 )(1− qp+

3
2 )

2∏
A=1

(1 + qmA+ 1
2 )

]
. (4.207)

Asymptotics. This expression can be simplified further in the asymptotic

limit k1, k2 →∞. Using (4.128), we have

∑
~n∈Z2

+

2∏
A=1

(−1)nA+1(1− qnA)q(
nA
2 )(qnA|kA−mA| − qnA(kA+mA+1))

∼ (1− q)2
2∏

A=1

qkA
(
1− q2kA+2

)
(1 + qkA)

4

{
q−mA

(
1− q2mA+1

)}
, (4.208)

and using (4.130) we have

∑
~m∈Z2

≥0

2∏
A=1

q
1
2
m2
A−mA

(
1− qmA+ 1

2

) (
1− q2mA+1

)
= q−1(1− q)2ϑ3(1, q)2 ,

(4.209)∑
~m∈Z2

≥0

2∏
A=1

(−1)m
2
Aq

1
2
m2
A−mA

(
1 + qmA+ 1

2

) (
1− q2mA+1

)
= q−1(1− q)2ϑ4(1, q)2 , (4.210)
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Therefore we arrive at an asymptotic formula for FNS
k1,k2,p

(q) when k1, k2 →
∞:

FNS
k1,k2,p(q) ∼

1

2
(q; q)−9

∞ (1− q)5q
1
2
p2+p+k1+k2−2

[
(1− qp+

1
2 )

(1 + qp−
1
2 )(1 + qp+

3
2 )
ϑ3(1, q)3

+ (−1)p
2 (1 + qp+

1
2 )

(1− qp−
1
2 )(1− qp+

3
2 )
ϑ4(1, q)3

]
, k1, k2 →∞ .

(4.211)

The R sector

The partition function of the GSO projected R sector is

χ
N6d=(1,0)
R |GSO (q; y, s)

=

∞∑
k1,k2,p=0

[2k1 + 1]y1 [2k2 + 1]y2 [2p+ 1]r F
R
k1,k2,p(q) , (4.212)

where FR
k1,k2,p

(q) is given by

FR
k1,k2,p(q) = (q; q)−9∞ (1− q)q 1

2p
2+ 3

2p−
3
8 × 1

2

(1− qp+1)ϑ2(1, q)

(1 + qp)(1 + qp+2)

×
∑
~n∈Z2

+

∑
~m∈Z2

≥0

2∏
A=1

(−1)nA(1− qnA)q
1
2 (mA+ 1

2 )
2+(nA

2 )

× (qnA|kA−mA| − qnA(kA+mA+2))(1− qmA+1) (4.213)

Similarly to the NS sector, an asymptotic formula for FNS
k1,k2,p

(q) when

k1, k2 →∞ is given by

FR
k1,k2,p(q) ∼

1

2
(q; q)−9

∞ (1− q)5q
1
2
p2+ 3

2
p+k1+k2− 3

8
(1− qp+1)

(1 + qp)(1 + qp+2)
ϑ2(1, q)3 .

(4.214)
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4.4.3 Multiplicities of representations in the N6d = (1, 0)

partition function

Combining the contributions from the NS and R sectors, we have

χN6d=(1,0)(q; ~y, r) = χ
N6d=(1,0)
NS |GSO (q; ~y, r) + χ

N6d=(1,0)
R |GSO (q; ~y, r)

=

∞∑
k1,k2,p=0

(
[2k1]y1 [2k2]y2 [2p]r F

NS
k1,k2,p(q)

+ [2k1 + 1]y1 [2k2 + 1]y2 [2p+ 1]r F
R
k1,k2,p(q)

)
. (4.215)

Making SUSY manifest amounts to rewriting the partition function as

χN6d=(1,0)(q; ~y, r) =
∑

n1,n2≥0

∑∞
p=0Jn1, n2; pK Gn1,n2,p(q) , (4.216)

and the aim is to compute explicitly a multiplicity generating function

Gn1,n2,p(q).

Before proceeding further, we observe the selection rule

Gn1,2n2,2p+1(q) = 0 , Gn1,2n2+1,2p(q) = 0 . (4.217)

It follows from (4.215) that [k1]y1 [k2]y2 [p]r with odd (respectively even) val-

ues of p only enter with a product of two representations with both odd

(resp. even) k1 and k2. According to (4.82), the product [k1]y1 [k2]y2 with

both odd (resp. even) k1 and k2 decomposes into only spin (resp. non-spin)

representations of SO(5). In other words, a spin (resp. non-spin) represen-

tation only comes with an odd (resp. even) value of p, and hence (4.217)

follows.

The multiplicity of Jn1, n2; pK appearing in χN6d=(1,0)(q; ~y, r) can be de-

termined as follows:

Gn1,n2,p(q) =

∫
dµSU(2)(r)[p]r

∫
dµSO(5)(~y)[n1, n2]~y

χN6d=(1,0)(q; ~y, r)

Z(N6d = (1, 0))(~y, r)
,

= GNS
n1,n2,p(q) +GR

n1,n2,p(q) ,

=

∫
dµSU(2)(r)[p]r∆n1+ 1

2
n2,

1
2
n2;2k1,2k2

χN6d=(1,0)(q; ~y, r)

Z(N6d = (1, 0))(~y, r)

(4.218)
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where

GNS
n1,n2,p(q) =

∫
dµSU(2)(r)[p]r

∫
dµSO(5)(~y)[n1, n2]~y

×
∑

k1,k2,p′≥0

[2k1]y1 [2k2]y2 [2p′]r
Z(N6d = (1, 0))(~y, r)

FNS
k1,k2,p′(q) , (4.219)

GR
n1,n2,p(q) =

∫
dµSU(2)(r)[p]r

∫
dµSO(5)(~y)[n1, n2]~y

×
∑

k1,k2,p′≥0

[2k1 + 1]y1 [2k2 + 1]y2 [2p′ + 1]r
Z(N6d = (1, 0))(~y, r)

FR
k1,k2,p′(q) (4.220)

and the inverse of the character of the fundamental multiplet in (4.194) can

be written as a geometric series12 13 similar to (4.151)

[Z(N6d = (1, 0))(~y, r)]−1 =
r2(

1 + r
y1y2

)(
1 + ry1

y2

)(
1 + ry2

y1

)
(1 + ry1y2)

=
∑

m1,...,m4≥0

(−1)m1+m2+m3+m4r2+m1+m2+m3+m4

× y−m1+m2−m3+m4
1 y−m1−m2+m3+m4

2 . (4.223)

12Note that this can also be rewritten as

[Z(N6d = (1, 0))(~y, r)]−1 = r2 PE [s[0, 1]~y] with s = −r

=

∞∑
m=0

(−1)mrm+2[0,m]~y . (4.221)

where in the last equality we have used the fact that Symm[0, 1] = [0,m].
13After [7] was published, a new formula for the inverse of the fundamental super-Poincaré

multiplet was found:

Z(N6d = (1, 0))−1 =
1

((r + r−1) + [1]y1y2)((r + r−1) + [1] y1
y2

)

=

∞∑
m=0

(−1)m

(r + r−1)m+2

bm
2
c∑

p=0

(
m+ 1

p

)
[m− 2p]y1 [m− 2p]y2 (4.222)

While it is more complex to use than (4.151) for theN4d = 1 case, it shares its property
of being symmetric under r ↔ r−1.

121



Some useful identities

Before we proceed further, let us derive some useful identities for the ele-

mentary building blocks of Gn1,n2,p. The first one follows from (4.17):

I0(w; p1, p2) :=

∫
dµSO(3)(r) r

w[p1]r[p2]r

=

δp1,p2 for w = 0

1
2

∑ 1
2

(p1+p2−|p1−p2|)
p=0

(
δ|w|,2p+|p1−p2| − δ|w|,2p+2+|p1−p2|

)
for w 6= 0

(4.224)

Next, we are interested in the following integral:

I(~w;~k;~n) :=

∫
dµSO(5)(~y) yw1

1 yw2
2 [k1]y1 [k2]y2 [n1, n2]~y . (4.225)

We compute this using the decomposition formula (4.83), together with

(4.224). In what follows, we assume that ~k, ~n ∈ Z2
≥0 and ~w ∈ Z2. (Here,

as i(4.78), the kA, the k′A and n2 can be integers or half-odd integers (in-

dependently of each other, though the two kA must be of the same type as

must the two k′A, while in [7] we consider the cases separately.)

I(~w; 2k1, 2k2;n1, 2n2)

=
∑
~k′

∆(n1 + n2, n2; 2k′1, 2k
′
2)

2∏
A=1

I0(wA; 2kA, 2k
′
A) (4.226)

where from (4.78)

∆(λ1, λ2; 2k1, 2k2) = 1
2

∑
σ∈S2

det
(
θ4+λA−A−B
|λA−A+B|

(
kσ(A)

))2

A,B=1
(4.227)
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Multiplicity generating function

The NS- and R sector contributions to the multiplicity generating function

for the representation Jn1, n2; pK can be rewritten as

GNS
n1,n2,p(q) =

∑
m1,...,m4≥0

(−1)
∑4
j=1mj

∑
p′≥0

I0(W1(~m), p, 2p′) (4.228)

×
∑

k1,k2≥0

I( ~W2(~m); 2k1, 2k2;n1, n2) FNS
k1,k2,p′(q)

GR
n1,n2,p(q) =

∑
m1,...,m4≥0

(−1)
∑4
j=1mj

∑
p′≥0

I0(W1(~m), p, 2p′ + 1) (4.229)

×
∑

k1,k2≥0

I( ~W2(~m); 2k1 + 1, 2k2 + 1;n1, n2) FR
k1,k2,p′(q) ,

where we define

W1(~m) = 2 +m1 +m2 +m3 +m4 ,

~W2(~m) = (−m1 +m2 −m3 +m4,−m1 −m2 +m3 +m4) . (4.230)

As stated in (4.218), the multiplicity of the representation Jn1, n2; pK in

the N6d = (1, 0) partition function is given by

Gn1,n2,p(q) = GNS
n1,n2,p(q) +GR

n1,n2,p(q)

=
∑

m1,...,m4≥0

(−1)
∑4

j=1 mj
∑
p′≥0

[
I0(W1(~m); p, 2p′)

×
∑

k1,k2≥0

I( ~W2(~m); 2k1, 2k2;n1, n2) FNS
k1,k2,p′(q)

+ I0(W1(~m), p, 2p′ + 1)
∑

k1,k2≥0

I( ~W2(~m); 2k1 + 1, 2k2 + 1;n1, n2) FR
k1,k2,p′(q)

]
.

(4.231)

4.4.4 Empirical approach to N6d = (1, 0) asymptotic patterns

In this subsection, we follow the lines of subsection 4.3.5 and investigate

the large spin asymptotics of multiplicity generating functions Gn,k,p(q) for

universal N6d = (1, 0) supermultiplets Jn, k; pK. Similar to the N4d = 1

strategy, the Gn,k,p(q) are expanded in powers of qn where n denotes the

first Dynkin label that we loosely identify with the spin. The coefficients
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τk,p` (q) of (qn)` turn out to be power series with non-negative coefficients

which enter with alternating sign (−1)`−1:

Gn,k,p(q) = qn τk,p1 (q) − q2n τk,p2 (q) + q3n τk,p3 (q) − . . .

=

∞∑
`=1

(−1)`−1 q`n τk,p` (q) (4.232)

In spacetime dimensions higher than four, the analytic methods of sub-

section 4.3.4 are no longer efficiently applicable. We could not find an

asymptotic formula for (4.231) resembling (4.173) and (4.174) for the large

spin regime of the N4d = 1 multiplicity generating functions. Hence, we

determine the τk,p` (q) including the leading trajectory τk,p1 (q) from our data

found by expanding the partition function (4.196) up to mass level 25. The

multiplicities of Jn, 0; 0K multiplets are shown in the following table 4.4, data

for nonzero values (k, p) = (2, 0), (0, 2) and (1, 1) can be found in appendix

4.B.2. Table entries marked in red are only affected by the stable pattern

τk,p`=1(q) whereas the blue numbers arise from qnτk,p1 (q)− q2nτk,p2 (q), i.e. by

including the (subtractive) subleading trajectory.

Levels of first appearance

Let us firstly determine the level of first appearance for various families

{Jn, k; pK, n = 0, 1, . . .} of N6d = (1, 0) supermultiplets with second SO(5)

Dynkin label k and R symmetry quantum number p fixed. It is identical

to the leading q power of the multiplicity generaing function G0,k,p(q) or

its expansion coefficients τk,p` (q) defined by (4.232). The following table 4.5

gathers the mass levels α′m2 ≤ 25 where the first instance of a {Jn, k; pK, n =

0, 1, . . .} member can be found:

We observe that, roughly speaking, the level of first appearance for super-

multiplets Jn, k; pK depends linearly14 on the SO(5) Dynkin label k (with

slope 3
2) but quadratically on the R symmetry spin p/2, in agreement with

the final remark in subsection 4.2.2.

14The linear k dependence can be partially understood from the λ1,2 dependence in (4.88).
However, the bosonic string suggests that an SO(5) representation [n, k] is delayed by
two levels under k 7→ k + 1 whereas the observations from table 4.5 clearly show a
delay of three levels per k 7→ k+1. Even though we cannot give a detailed explanation
on analytical grounds, it is clear that this extra delay in mass level must be due to
the worldsheet fermions, see e.g. (4.89) and (4.90).
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α
′m

2

#
J0
,0

;0K

#
J1
,0

;0K

#
J2
,0

;0K

#
J3
,0

;0K

#
J4
,0

;0K

#
J5
,0

;0K

#
J6
,0

;0K

#
J7
,0

;0K

#
J8
,0

;0K

#
J9
,0

;0K

#
J1

0
,0

;0K

#
J1

1
,0

;0K

1 0 1 0
2 0 0 1 0
3 1 2 0 1 0
4 2 2 3 0 1 0
5 3 9 4 3 0 1 0
6 8 12 14 5 3 0 1 0
7 13 35 24 17 5 3 0 1 0
8 30 58 63 29 18 5 3 0 1 0
9 53 135 116 82 32 18 5 3 0 1 0
10 107 243 265 153 88 33 18 5 3 0 1 0
11 193 505 503 358 172 91 33 18 5 3 0 1
12 376 918 1044 696 403 178 92 33 18 5 3 0
13 670 1803 1975 1474 801 423 181 92 33 18 5 3
14 1246 3269 3887 2839 1711 846 429 182 92 33 18 5
15 2220 6136 7235 5687 3355 1824 866 432 182 92 33 18
16 4005 11015 13691 10754 6784 3605 1870 872 433 182 92 33
17 7025 20052 25041 20649 13021 7348 3718 1890 875 433 182 92
18 12407 35469 45971 38304 25243 14213 7606 3764 1896 876 433 182
19 21469 63030 82532 71226 47411 27774 14790 7720 3784 1899 876 433
20 37182 109838 147906 129443 89013 52547 29015 15048 7766 3790 1900 876
21 63492 191293 260818 234646 163536 99387 55177 29600 15162 7786 3793 1900
22 108142 328527 457957 418298 299140 183903 104797 56431 29859 15208 7792 3794
23 182254 562391 794256 741961 538495 338749 194850 107476 57016 29973 15228 7795
24 306007 952431 1369976 1299438 963344 613928 360467 200360 108738 57275 30019 15234
25 509309 1605996 2339762 2261945 1702039 1105604 656324 371692 203052 109324 57389 30039

Table 4.4: N6d = (1, 0) multiplets with SO(5) quantum numbers [n, 0] and
SU(2)R spin 0

↓ p,
−→
k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 1 2 5 8 11 14 17 20 23
1 2 4 7 10 13 16 19 22 25
2 3 4 7 10 13 16 19 22 25
3 5 7 10 13 16 19 22 25
4 7 8 10 13 16 19 22 25
5 9 11 14 17 20 23
6 11 12 15 18 21 24
7 14 16 19 22 25
8 17 18 20 23
9 20 22 25
10 23 24

Table 4.5: Mass level where the J0, k; pK multiplet of N6d = (1, 0) firstly oc-
curs. Empty spaces indicate that the representations in question
do not occur at levels ≤ 25.
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Explicit formulae for the τk,p` (q)

Let us now list the leading terms in τ0,0
` (q), τ2,0

` (q), τ0,2
` (q) and τ1,1

` (q), ob-

tained through the entries of table 4.4 and its (k, p) 6= (0, 0) relatives dis-

played in appendix 4.B.2. This allows to reconstruct the large spin asymp-

totics of the multiplicity generating functions Gn,k,p(q) via (4.232).

• SO(5) Dynkin labels [n→∞, 0] and SU(2)R representation [0]

τ0,0
1 (q) = 1 + 0q + 3q2 + 5q3 + 18q4 + 33q5 + 92q6 + 182q7 + 433q8

+ 876q9 + 1900q10 + 3794q11 + 7796q12 + 15238q13 + 30049q14

+ 57465q15 + 109773q16 + 205349q17 + 382249q18 + 700520q19 + . . .

τ0,0
2 (q) = q (1 + 4q1 + 10q2 + 30q3 + 76q4 + 190q5 + 449q6 + 1035q7

+ 2298q8 + 4999q9 + 10580q10 + 21976q11 + 44727q12 + 89543q13 + . . .)

τ0,0
3 (q) = q (1 + q + 10q2 + 23q3 + 81q4 + 194q5 + 531q6 + 1232q7+

+ 2967q8 + 6586q9 + . . .)

τ0,0
4 (q) = q2 (1 + 5q + 16q2 + 53q3 + 153q4 + 417q5 + . . .)

τ0,0
5 (q) = q2 (1 + q + 11q2 + . . .) (4.233)

• SO(5) Dynkin labels [n→∞, 2] and SU(2)R representation [0]

τ2,0
1 (q) = q2 (1 + 2q + 8q2 + 17q3 + 52q4 + 117q5 + 293q6 + 645q7

+ 1468q8 + 3119q9 + 6667q10 + 13674q11 + 27913q12 + 55446q13

+ 109165q14 + 210717q15 + 402714q16 + 757889q17 + 1412208q18 + . . .)

τ2,0
2 (q) = q3 (1 + 4q + 14q2 + 41q3 + 118q4 + 306q5 + 764q6 + 1818q7

+ 4191q8 + 9344q9 + 20318q10 + 43083q11 + 89493q12 + 182239q13 + . . .)

τ2,0
3 (q) = q5 (3 + 9q + 40q2 + 114q3 + 345q4 + 890q5 + 2297q6 + 5481q7

+ 12871q8 + . . .)

τ2,0
4 (q) = q6 (1 + 5q + 23q2 + 79q3 + 251q4 + 717q5 + . . .)

τ2,0
5 (q) = q8 (3 + 10q + 48q2 + . . .) (4.234)
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• SO(5) Dynkin labels [n→∞, 0] and SU(2)R representation [2]

τ0,2
1 (q) = q3 (3 + 5q + 20q2 + 46q3 + 128q4 + 288q5 + 696q6 + 1513q7

+ 3354q8 + 7025q9 + 14707q10 + 29736q11 + 59679q12 + 116933q13

+ 226900q14 + 432515q15 + 816089q16 + . . .)

τ0,2
2 (q) = q2 (1 + 3q1 + 13q2 + 37q3 + 109q4 + 285q5 + 727q6 + 1737q7

+ 4050q8 + 9075q9 + 19868q10 + 42302q11 + 88278q12 + . . .)

τ0,2
3 (q) = q2 (1 + 2q + 13q2 + 37q3 + 124q4 + 331q5 + 906q6 + 2233q7

+ 5456q8 + . . .)

τ0,2
4 (q) = q3 (2 + 7q + 29q2 + 92q3 + 282q4 + . . .)

τ0,2
5 (q) = q3 (1 + 3q + 18q2 + . . .) (4.235)

• SO(5) Dynkin labels [n→∞, 1] and SU(2)R representation [1]

τ1,1
1 (q) = q2 (2 + 4q + 13q2 + 35q3 + 89q4 + 216q5 + 508q6 + 1145q7

+ 2521q8 + 5402q9 + 11320q10 + 23238q11 + 46856q12 + 92850q13

+ 181217q14 + 348612q15 + 661792q16 + 1240786q17 + . . .)

τ1,1
2 (q) = q2 (1 + 4q + 13q2 + 43q3 + 122q4 + 323q5 + 814q6 + 1962q7

+ 4550q8 + 10233q9 + 22370q10 + 47718q11 + 99574q12 + . . .)

τ1,1
3 (q) = q3 (1 + 5q + 21q2 + 70q3 + 211q4 + 584q5 + 1529q6 + 3798q7

+ . . .)

τ1,1
4 (q) = q4 (1 + 6q + 24q2 + 85q3 + . . .)

τ1,1
5 (q) = q5 (1 + . . .) (4.236)

Further τk,p` (q) are listed in (4.B.2). They suggest that the τk,p` (q) expansion

(4.232) coverges more quickly with larger values of k and smaller values of

p.

4.4.5 Four dimensional N4d = 2 spectra

In order to determine universal string spectra with N4d = 2 SUSY, we shall

now compactify two dimensions of minimally supersymmetric N6d = (1, 0)

theories on a T 2. This preserves all the eight supercharges and the internal

rotation symmetry becomes an R symmetry factor of SO(2)R ∼= U(1)R.
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Hence, the dimensionally reduced theory in d = 4 spacetime dimensions

enjoys N4d = 2 SUSY and R symmetry SU(2)R × U(1)R = U(2)R. The

fundamental N4d = 2 super Poincaré multiplet encompasses 8+8 states,

Z(N4d = 2) = [2]y + [2]r[0]y + (z2 + z−2)[0]y + (z + z−1)[1]r[1]y (4.237)

where z denotes the U(1)R fugacity. The tensor product of (4.237) with

a Clifford vacuum in some SO(3) × SU(2)R × U(1)R representation yields

a family of supermultiplets characterized by three quantum numbers – n

for SO(3) spin, m for SU(2)R spin and p for U(1)R charge. The resulting

16(n+ 1)(m+ 1) states are described by the supercharacter 15

Jn;m, pK := Z(N4d = 2) · zp [m]r [n]y . (4.243)

The position of the semicolon in the arguments of the supercharacter allows

to distinguish N4d = 2 multiplets J·; ·, ·K from N6d = (1, 0) multiplets J·, ·; ·K.
The universal partition function of N4d = 2 scenarios is obtained through

15 The simplicity of the SO(3) tensor product [2m]·[2k] =
∑k+m
l=|k−m|[2l] allows for compact

closed formulae for the SO(3)× SU(2)R ×U(1)R decomposition of a general N4d = 2
supercharacter:

Jn;m, pK = zp
{

[m]r [n+ 2] + [m]r [n− 2] + [m+ 2]r [n] + [m− 2]r [n] + 2 [m]r [n]

+ (z2 + z−2) [m]r [n] + (z + z−1)
(

[m+ 1]r + [m− 1]r
) (

[n+ 1] + [n− 1]
) }

(4.238)

This generic character formula (4.238) holds for values n,m ≥ 2 of the Clifford vac-
uum’s SO(3)× SU(2)R spin quantum numbers and specializes otherwise:

Jn; 0, pK =zp
{

[n+ 2] + [n− 2] + [2]r [n] + (1 + z2 + z−2) [n]

+ (z + z−1) [1]r
(

[n+ 1] + [n− 1]
) }

, n ≥ 2 (4.239)

J0;m, pK =zp
{

[m]r [2] + [m]r [0] + [m+ 2]r [0] + [m− 2]r [0] + (z2 + z−2) [m]r [0]

+ (z + z−1)
(

[m+ 1]r + [m− 1]r
)

[1]
}
, m ≥ 2 (4.240)

J0; 0, pK =zp
{

[2] + [2]r [0] + (z2 + z−2) [0] + (z + z−1) [1]r [1]
}

(4.241)

J1; 1, pK =zp
{

[1]r [3] + [3]r [1] + (2 + z2 + z−2) [1]r [1]

(z + z−1)
(

[2]r [2] + [2]r [0] + [2] + [0]
) }

(4.242)

We observe the general selection rule that either none or all of n,m, p are odd, hence,
there is no need to consider J1; 0, pK or J0; 1, pK.
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GSO projection of the following character products:

χN4d=2(q; y, r, z) = χN4d=2
NS |GSO (q; y, r, z) + χN4d=2

R |GSO (q; y, r, z)

χN4d=2
NS |GSO (q; y, r, z) =

1

2
q−

1
2
[
χ
SO(3)
NS (q; y)χN2d=4,c=6

NS,h=0,`=0(q; r)χ
SO(3)
NS (q; z)

− χ
SO(3)
NS (e2πiq; y)χN2d=4,c=6

NS,h=0,`=0(e2πiq; r)χ
SO(3)
NS (e2πiq; z)

]
χN4d=2

R |GSO (q; y, r, z) =
1

2
χ
SO(3)
R (q; y)χN2d=4,c=6

R,h=1/4,`=1/2(q; r)χ
SO(3)
R (q; z)

(4.244)

Its symmetry under reversal p 7→ −p of U(1)R charges motivates the defi-

nition

Jn;m,±pK :=

{
Jn;m, pK + Jn;m,−pK : p 6= 0

Jn;m, 0K : p = 0
, (4.245)

then the power series expansion of (4.244) starts like16

χN4d=2(q; y, r, z) =

(
y2 + y−2 + z2 + z−2 +

1

2
(y + y−1)[1]z[1]r

)
q0︸ ︷︷ ︸

8 massless states

+
(
J2; 0, 0K + J0; 0,±2K

)
q︸ ︷︷ ︸

80 states at level 1

+
(
J4; 0, 0K + 2 J2; 0,±2K + J2; 0, 0K + J1; 1,±1K + J0; 0,±4K + 2 J0; 0, 0K

)
q2︸ ︷︷ ︸

512 states at level 2

+
(
J6; 0, 0K + 2 J4; 0,±2K + J4; 0, 0K + 2 J3; 1,±1K + 2 J2; 0,±4K + 2 J2; 0,±2K

+ 6 J2; 0, 0K + 2 J1; 1,±3K + 3 J1; 1,±1K + J0; 2, 0K + J0; 0,±6K

+ 4 J0; 0,±2K + 2 J0; 0, 0K
)
q3 + O(q4) (4.246)

The vertex operators occurring in the three multiplets of the first mass level

have been constructed in [15], see equations (6.3) to (6.11) of that reference

for bosons and equations (6.22) to (6.30) for fermions. The content of the

first five levels is summarized in table 4.6:

16Again, there is a subtlety in applying the above formula to the massless R sector; see
the footnote before (4.112). However, this can be fixed easily: one can simply add to
it 1

2
(y − y−1)(z − z−1)(r − r−1) to get the correct massless character in R sector.
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α′m2 representations of N4d = 2 super Poincaré

1 J2; 0, 0K + J0; 0,±2K
2 J4; 0, 0K + 2 J2; 0,±2K + J2; 0, 0K + J1; 1,±1K + J0; 0,±4K + 2 J0; 0, 0K
3 J6; 0, 0K + 2 J4; 0,±2K + J4; 0, 0K + 2 J3; 1,±1K + 2 J2; 0,±4K + 2 J2; 0,±2K + 6 J2; 0, 0K

+ 2 J1; 1,±3K + 3 J1; 1,±1K + J0; 2, 0K + J0; 0,±6K + 4 J0; 0,±2K + 2 J0; 0, 0K
4 J8; 0, 0K + 2 J6; 0,±2K + J6; 0, 0K + 2 J5; 1,±1K + 2 J4; 0,±4K + 3 J4; 0,±2K + 8 J4; 0, 0K

+ 3 J3; 1,±3K + 6 J3; 1,±1K + J2; 2,±2K + 3 J2; 2, 0K + 2 J2; 0,±6K + 3 J2; 0,±4K
+ 12 J2; 0,±2K + 11 J2; 0, 0K + 2 J1; 1,±5K + 5 J1; 1,±3K + 10 J1; 1,±1K + 2 J0; 2,±2K
+ J0; 2, 0K + J0; 0,±8K + 5 J0; 0,±4K + 4 J0; 0, 2K + 11 J0; 0, 0K

5 J10; 0, 0K + 2 J8; 0,±2K + J8; 0, 0K + 2 J7; 1,±1K + 2 J6; 0,±4K + 3 J6; 0,±2K + 8 J6; 0, 0K
+ 3 J5; 1,±3K + 7 J5; 1,±1K + J4; 2,±2K + 4 J4; 2, 0K + 2 J4; 0,±6K + 4 J4; 0,±4K
+ 16 J4; 0,±2K + 17 J4; 0, 0K + 3 J3; 1,±5K + 11 J3; 1,±3K + 21 J3; 1,±1K + J2; 2,±4K
+ 7 J2; 2,±2K + 8 J2; 2, 0K + 2 J2; 0,±8K + 3 J2; 0,±6K + 15 J2; 0,±4K + 23 J2; 0,±2K
+ 38 J2; 0, 0K + J1; 3,±1K + 2 J1; 1,±7K + 6 J1; 1,±5K + 16 J1; 1,±3K + 28 J1; 1,±1K
+ 3 J0; 2,±4K + 4 J0; 2,±2K + 9 J0; 2, 0K + J0; 0,±10K + 5 J0; 0,±6K + 6 J0; 0,±4K
+ 21 J0; 0,±2K + 16 J0; 0, 0K

Table 4.6: N4d = 2 multiplets occurring up to mass level 5

Comparison with the partition function (4.197) of the N6d = (1, 0) an-

cestor theory (and table 4.3) clearly demonstrates that the six dimensional

viewpoint gives a more streamlined handle on the spectrum in terms of fewer

supermultiplets. This is why we do not provide an asymptotic analysis and

data tables for the universal N4d = 2 spectrum like we did for the d = 6

ancestor in subsection 4.4.4 and appendix 4.B.2.

4.5 Spectra in compactifications with 16

supercharges

This section is devoted to maximally supersymmetric type I superstring

compactifications on even dimensional tori where all the sixteen super-

charges are preserved. The methods introduced in subsections 4.1.3 and

4.1.4 are applied to decompose the partition function of the (∂Xi, ψi) CFT

describing d = 10, 8, 6, 4 spacetime dimensions into characters of the little

group SO(d−1). The d = 10 case takes the role of the ancestor theory for 16

supercharges, so its spectrum will be analyzed in particular detail. In the re-

maining cases d = 8, 6, 4, dimensional reduction converts part of the higher

dimensional Lorentz symmetry into an internal R symmetry, i.e. we branch

the ten dimensional little group into SO(9) → SO(d − 1) × SO(10 − d)R.

In this process, individual Lorentz fugacities yk with k > 1
2(d− 2) are rein-

terpreted as R symmetry fugacities rk.

Before looking at individual dimensionalities in detail, let us fix the nota-
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tion for describing supersymmetric spectra with R symmetries: Characters

of the spacetime little group SO(d − 1) are denoted by [a1, . . . , an] with

fugacities y1, . . . , yn and n = 1
2(d − 2) whereas those of the R symmetry

SO(10−d)R receive an extra subscript [b1, . . . , b`]R with fugacities r1, . . . , r`

and ` = 5− d
2 . Our notation for supercharacters makes use of double brack-

ets Ja1, . . . , an; b1, . . . , b`K enclosing the SO(d− 1)× SO(10− d)R quantum

numbers of the highest weight state. The semicolon between an and b1

separates spacetime from R symmetry Dynkin labels and eliminates any

ambiguity about the spacetime dimension under consideration.

4.5.1 Ten dimensional N10d = 1 spectra

In this subsection, we want to revisit the results of [8] on SO(9) covariant

partition functions for ten dimensional open string excitations and examine

further symmetry patterns. The minimal massive N10d = 1 SUSY multiplet

encompasses SO(9) representations of a spin two tensor, a three-form and

a massive gravitino17

Z(N10d = 1) := [2, 0, 0, 0] + [0, 0, 1, 0] + [1, 0, 0, 1] . (4.247)

This is precisely the particle content of the first mass level, its vertex op-

erators can for instance be found in equations (2.8), (2.9) and (2.22) of

[15].

The generic multiplet is obtained as a tensor product of Z(N10d = 1)

with some SO(9) representation and therefore described by the following

N10d = 1 supercharacter:

Ja1, a2, a3, a4K := Z(N10d = 1) · [a1, a2, a3, a4] (4.248)

This is the basic building blocks of the refined ten dimensional partition

function. The latter can be obtained through standard GSO projection of

17Note that Z(N10d = 1) is denoted by ZQ in [8].
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the spacetime CFT

χN10d=1(q; ~y) = χN10d=1
NS |GSO (q; ~y) + χN10d=1

R |GSO (q; ~y)

χN10d=1
NS |GSO (q; ~y, r) =

1

2
q−

1
2
[
χ
SO(9)
NS (q; ~y) − χ

SO(9)
NS (e2πiq; ~y)

]
χN10d=1

R |GSO (q; ~y, r) =
1

2
χ
SO(9)
R (q; ~y) , (4.249)

where χ
SO(9)
NS (q; ~y) and χ

SO(9)
R (q; ~y) are given by (4.89) and (4.90).

In a power series expansion in q, the coefficient of the n’th power qn

comprises the super Poincaré characters of the n’th mass level m2 = n/α′:18

χN10d=1(q; ~y) =

 4∑
j=1

(y2
j + y−2

j ) +
1

2

4∏
j=1

(yj + y−1
j )

 q0

︸ ︷︷ ︸
16 massless states

+ J0, 0, 0, 0K q︸ ︷︷ ︸
256 states at level 1

+ J1, 0, 0, 0K q2︸ ︷︷ ︸
2304 states at level 2

+
(
J2, 0, 0, 0K + J0, 0, 0, 1K

)
q3︸ ︷︷ ︸

15360 states at level 3

+
(
J3, 0, 0, 0K + J1, 0, 0, 1K + J1, 0, 0, 0K + J0, 1, 0, 0K

)
q4 + O(q5) .

(4.250)

The supermultiplets up to level eight are listed in table 4.7 and the complete

first 25 mass levels can be found in table 4.8 and appendix 4.B.3.

The total number of states at a given mass level

The total number of states at a given mass level m can be read off from

the coefficient of qm in the partition function χN10d=1(q; ~y) when the SO(9)

fugacities y1, . . . , y4 are set to unity. The function χN10d=1(q; {yi = 1}) is

referred to as the unrefined partition function. From (4.91), (4.249) and

18Note the usual subtlety about the massless R sector which was explained in the footnote
before (4.112). One can simply fix this by adding 1

2
([0, 0, 0, 1]SO(8)− [0, 0, 1, 0]SO(8)) =

1
2

∏4
i=1(yi−y−1

i ) to the present result and obtain the correct answer; see also (3.16) of
[8]. The 1

2
[1, 0, 0, 0]9 factor in the massive sector of the aforementioned (3.16) exactly

matches our formula at any positive q power.

132



α′m2 representations of N10d = 1 super Poincaré

1 J0, 0, 0, 0K
2 J1, 0, 0, 0K
3 J2, 0, 0, 0K + J0, 0, 0, 1K
4 J3, 0, 0, 0K + J1, 0, 0, 1K + J1, 0, 0, 0K + J0, 1, 0, 0K
5 J4, 0, 0, 0K + J2, 0, 0, 1K + J2, 0, 0, 0K + J1, 1, 0, 0K + J1, 0, 0, 1K + J0, 1, 0, 0K

+ J0, 0, 1, 0K + J0, 0, 0, 1K + J0, 0, 0, 0K
6 J5, 0, 0, 0K + J3, 0, 0, 1K + J3, 0, 0, 0K + J2, 1, 0, 0K + J2, 0, 0, 1K + J2, 0, 0, 0K + 2 J1, 1, 0, 0K

+ J1, 0, 1, 0K + 2 J1, 0, 0, 1K + 2 J1, 0, 0, 0K + J0, 1, 0, 1K + J0, 1, 0, 0K + J0, 0, 0, 2K
+ 2 J0, 0, 0, 1K

7 J6, 0, 0, 0K + J4, 0, 0, 1K + J4, 0, 0, 0K + J3, 1, 0, 0K + J3, 0, 0, 1K + J3, 0, 0, 0K + 2 J2, 1, 0, 0K
+ J2, 0, 1, 0K + 3 J2, 0, 0, 1K + 3 J2, 0, 0, 0K + J1, 1, 0, 1K + 2 J1, 1, 0, 0K + J1, 0, 1, 0K
+ J1, 0, 0, 2K + 4 J1, 0, 0, 1K + 2 J1, 0, 0, 0K + J0, 2, 0, 0K + 2 J0, 1, 0, 1K + 2 J0, 1, 0, 0K
+ 3 J0, 0, 1, 0K + J0, 0, 0, 2K + 2 J0, 0, 0, 1K + 2 J0, 0, 0, 0K

8 J7, 0, 0, 0K + J5, 0, 0, 1K + J5, 0, 0, 0K + J4, 1, 0, 0K + J4, 0, 0, 1K + J4, 0, 0, 0K + 2 J3, 1, 0, 0K
+ J3, 0, 1, 0K + 3 J3, 0, 0, 1K + 4 J3, 0, 0, 0K + J2, 1, 0, 1K + 3 J2, 1, 0, 0K + J2, 0, 1, 0K
+ J2, 0, 0, 2K + 5 J2, 0, 0, 1K + 3 J2, 0, 0, 0K + J1, 2, 0, 0K + 3 J1, 1, 0, 1K + 5 J1, 1, 0, 0K
+ 4 J1, 0, 1, 0K + 2 J1, 0, 0, 2K + 7 J1, 0, 0, 1K + 5 J1, 0, 0, 0K + J0, 2, 0, 0K + J0, 1, 1, 0K
+ 4 J0, 1, 0, 1K + 5 J0, 1, 0, 0K + J0, 0, 1, 1K + 2 J0, 0, 1, 0K + 3 J0, 0, 0, 2K + 4 J0, 0, 0, 1K
+ J0, 0, 0, 0K

Table 4.7: N10d = 1 multiplets occurring up to mass level eight

SUSY19, we have

χN10d=1(q; {yi = 1}) = 2χN10d=1
R |GSO (q; {yi = 1})

=
ϑ2(1, q)4

η(q)12
= 16

∞∏
n=1

(
1 + qn

1− qn

)8

. (4.252)

The coefficients in the power series of this formula reproduces the third

column of Table 4.13. It also agrees with (5.3.37) of [57]. Note that

χN10d=1(q; {yi = 1}) is not a modular form.

The number of states at each mass level and its asymptotics

The number of states at the mass level m can be determined by

Nm =
1

2πi

∮
C

dq

qm+1
χN10d=1(q; {yi = 1}) , (4.253)

where C is a contour around the origin.

Now let us compute an asymptotic formula for the number of states Nm

19The agreement of GSO projected partition functions for NS and R sectors follows from
Jacobi’s abstruse identity:

ϑ3(1, q)4 − ϑ4(1, q)4 − ϑ2(1, q)4 = 0 . (4.251)
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at mass level m when m→∞. Note that a similar discussion can be found

in subsections 4.3.3 and 5.3.1 of [57]. For completeness, let us go over some

details here. We focus on the limit q → 1− and proceed in a similar way to

subsection 4.3.1. The asymptotic behaviour (4.119) and (4.121) of ϑ2(1, q)

and η(q), respectively, leads to

χN10d=1(q; {yi = 1}) ∼ 1

(2π)4
(1− q)4 exp

(
− 2π2

log q

)
, q → 1− . (4.254)

Let us now combine (4.253) with (4.254). As m→∞,

Nm ∼
1

(2π)4

1

2πi

∮
C

dq

q
(1− q)4 exp

(
− 2π2

log q
−m log q

)
. (4.255)

The saddle point is at q0 = exp
(
−π
√

2
m

)
and the steepest descent direction

is the imaginary direction in q. We proceed in a similar way to (4.125) by

writing q = q0e
iθ and using Laplace’s method to obtain

Nm ∼
1

(2π)4
(1− q0)4 1

2π

∫ ε

−ε
dθ exp

(
− 2π2

iθ + log q0
−m(iθ + log q0)

)
, ε > 0

∼ 1

4
m−2 exp

(
2π
√

2m
) 1

2π

∫ ∞
−∞

dθ exp

(
−m

3/2

π
√

2
θ2

)

=
1

4
m−2 exp

(
2π
√

2m
) 1

2π

21/4π

m3/4

∼ 1

211/4
m−11/4e2π

√
2m , m→∞ . (4.256)

For example, for m = 100, the exact value for N100 is 1.59 × 1032 and the

value from (4.256) is 1.83× 1032 ; the error is approximately 15 %.

The GSO projected NS and R sectors

In this section we compute the contributions from the NS and R sectors

to the partition function given in (4.249). Here we consider the refined

partition function, i.e. the fugacities y’s are kept explicit.
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The NS sector. From (4.249) and (4.89), the partition function of the

GSO projected NS sector has the structure

χN10d=1
NS |GSO (q; y) =

∑
~k∈Z4

≥0
FNS
k1,...,k4

(q)
∏4
A=1[2kA]yA , (4.257)

where the functions FNS
k1,...,k4

(q) are given by

FNS
k1,...,k4(q) = (q; q)−12

∞
∑
~n∈Z4

+

∑
~m∈Z4

≥0

×
4∏

A=1

(−1)nA+1(1− qnA)q
1
2
m2
A+(nA2 )(qnA|kA−mA| − qnA(kA+mA+1))

× 1

2

[
4∏

A=1

(1− qmA+ 1
2 ) + (−1)m

2
1+m2

2+m2
3+m2

4

4∏
A=1

(1 + qmA+ 1
2 )

]
. (4.258)

The R sector. From (4.249) and (4.90), the partition function of the

GSO projected R sector is

χN10d=1
R |GSO (q; y, s) =

∑
~k∈Z4

≥0
FR
k1,...,k4

(q)
∏4
A=1[2kA + 1]yA ,(4.259)

where the function FR
k1,...,k4

(q) is given by

FR
k1,...,k4(q) =

1

2
q−

1
2 (q; q)−12

∞

×
∑
~m∈Z4

≥0

∑
~n∈Z4

+

4∏
A=1

(−1)nA+1(1− qmA+1)(1− qnA)q
1
2(mA+ 1

2)
2
+(nA2 )

×
4∏

A=1

(qnA|kA−mA| − qnA(kA+mA+2)) . (4.260)

Multiplicities of representations in the N10d = 1 partition function

Combining the contributions from the NS and R sectors, we have

χN10d=1(q; ~y) = χN10d=1
NS |GSO (q; ~y) + χN10d=1

R |GSO (q; ~y)

=
∑
~k∈Z4

≥0

(
FNS
~k

(q)
4∏

A=1

[2kA]yA + FR
~k

4∏
A=1

[2kA + 1]yA

)
. (4.261)
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Supersymmetry implies that this partition function can be rewritten as

χN10d=1(q; ~y) =
∑

~n∈Z4
≥0

Jn1, n2, n3, n4K Gn1,n2,n3,n4(q) , (4.262)

and the aim is to compute explicitly a multiplicity generating function

Gn1,n2,n3,n4(q).

The multiplicity of Jn1, n2, n3, n4K appearing in χN10d=1(q; ~y) can be de-

termined as follows:

Gn1,n2,n3,n4(q) =

∫
dµSO(9)(~y)[n1, n2, n3, n4]~y

χN10d=1(q; ~y)

Z(N10d = 1)(~y)
,

= GNS
n1,n2,n3,n4

(q) +GR
n1,n2,n3,n4

(q) , (4.263)

where

GNS
n1,n2,n3,n4

(q) =

∫
dµSO(9)(~y)[n1, n2, n3, n4]~y

×
∑
~k∈Z4

≥0

∏4
A=1[2kA]yA

Z(N10d = 1)(~y)
FNS
k1,...,k4(q) , (4.264)

GR
n1,n2,n3,n4

(q) =

∫
dµSO(9)(~y)[n1, n2, n3, n4]~y

×
∑
~k∈Z4

≥0

∏4
A=1[2kA + 1]yA
Z(N10d = 1)(~y)

FR
k1,...,k4(q) . (4.265)

The inverse of the character of the fundamental multiplet in (4.247) can be
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written as a geometric series20 similar to (4.151) and (4.223)

[Z(N10d = 1)(~y, r)]−1

=
y4

4(
1 + y4

y1y2y3

)(
1 + y1y4

y2y3

)(
1 + y2y4

y1y3

)(
1 + y1y2y4

y3

)(
1 + y3y4

y1y2

)(
1 + y1y3y4

y2

)
× 1(

1 + y2y3y4
y1

)
(1 + y1y2y3y4)

=
∑
~m∈Z8

≥0

(−1)
∑8
j=1mjy

∑8
j=1(−1)jmj

1 y
∑8
j=1(−1)b(j+1)/2cmj

2

× y
∑8
j=1(−1)b(j+3)/4cmj

3 y
4+

∑8
j=1mj

4 . (4.267)

Some useful identities

In this section, we derive some useful identities that will be put into use

later. Once we plug the series expansion (4.267) of the inverse Z(N10d = 1)

into the integrand of (4.263), the elementary contributions to multiplicity

generating functions Gn1,n2,n3,n4 are integrals of type

J (~w;~k;~n) :=

∫
dµSO(9)(~y)[n1, n2, n3, n4]~y

4∏
A=1

ywAA [kA]yA . (4.268)

As usual, we consider the cases of kA, k′A, wA and n4 (independently) integer

or half-integer together, which are treated separately in [7]:

J (~w; 2k1, . . . , 2k4; n1, . . . , 2n4) =
∑
~k′

∆(~λns; 2k′1, . . . , 2k
′
4)

×
4∏

A=1

J0(wA; 2kA, 2k
′
A) (4.269)

20Note that this can also be rewritten as

[Z(N10d = 1)(~y)]−1 = lim
s→−1

(PE [s[0, 0, 0, 1]~y])1/2 =

[
∞∑
m=0

(−1)mSymm[0, 0, 0, 1]~y

]1/2
.

(4.266)
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where ~λns = (n1 + n2 + n3 + n4, n2 + n3 + n4, n3 + n4, n4). Recall from

(4.78) that

∆(~λ; 2k1, . . . , 2k4) = 1
4!

∑
σ∈S4

det
(
θ8+λA−A−B
|λA−A+B|

(
kσ(A)

))4

A,B=1
(4.270)

Multiplicity generating function

The NS- and R sector contributions to the multiplicity generating function

for the representation Jn1, n2, n3, n4K can be rewritten as

GNS
n1,...,n4

(q) =
∑

~m∈Z8
≥0

(−1)
∑8
j=1mj

∑
~k∈Z4

≥0

×J ( ~W (~m); 2k1, . . . , 2k4;~n) FNS
k1,...,k4

(q) , (4.271)

GR
n1,...,n4

(q) =
∑

~m∈Z8
≥0

(−1)
∑8
j=1mj

∑
~k∈Z4

≥0

×J ( ~W (~m); 2k1 + 1, . . . , 2k4 + 1;~n) FR
k1,...,k4

(q) , (4.272)

where

~W (~m) =

 8∑
j=1

(−1)jmj ,
8∑
j=1

(−1)b(j+1)/2cmj ,

8∑
j=1

(−1)b(j+3)/4cmj , 4 +

8∑
j=1

mj

 . (4.273)

As stated in (4.249), the multiplicity of the representation Jn1, n2, n3, n4K
in the N10d = 1 partition function is given by

Gn1,n2,n3,n4(q)

=
∑
~m∈Z8

≥0

(−1)
∑8
j=1mj

∑
~k∈Z4

≥0

[
J ( ~W (~m); 2k1, . . . , 2k4;~n) FNS

k1,...,k4(q)

+ J ( ~W (~m); 2k1 + 1, . . . , 2k4 + 1;~n) FR
k1,...,k4(q)

]
. (4.274)

4.5.2 Empirical approach to N10d = 1 asymptotic patterns

In this subsection, we proceed like in subsections 4.3.5 and 4.4.4 to obtain

large spin asymptotics of multiplicity generating functions Gn,x,y,z(q) for

N10d = 1 supermultiplet Jn, x, y, zK. The supermultiplet content of the first

25 mass levels is used to determine the q expansion of the leading coefficients
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τx,y,z` (q) defined by:

Gn,x,y,z(q) = qn τx,y,z1 (q) − q2n τx,y,z2 (q) + q3n τx,y,z3 (q) − . . .

=

∞∑
`=1

(−1)`−1 q`n τx,y,z` (q) (4.275)

Again, the τx,y,z` (q) are found to be power series in q with non-negative

coefficients.

Having d > 4 spacetime dimensions makes the analytic methods of sub-

section 4.3.4 inefficient, i.e. we did not find a manageable asymptotic for-

mula for (4.274). Hence, we compute the τx,y,z` (q) at ` ≤ 5 on the basis

of an O(q25) expansion of the partition function (4.249). The multiplicities

of Jn, 0, 0, 0K multiplets are shown in the following table 4.8, and analo-

gous data tables for Jn, x, y, zK at nonzero values of x, y, z can be found

in appendix 4.B.3. The numbers marked in red match with the lead-

ing trajectory contribution qnτx,y,z1 (q) whereas blue numbers correspond

to qnτx,y,z1 (q)− q2nτx,y,z2 (q) including one subleading trajectory.

Levels of first appearance

The mass level where some J0, x, y, zK multiplet firstly occurs can be stud-

ied by inspecting the leading power of the multiplicity generating function

G0,x,y,z(q) and therefore τx,y,z` (q). The following table 4.9 gives an overview

of this mass level threshold for various values of x, y, z.

For all supermultiplets J0, x, y, zK considered in table 4.9, the level of

first appearance is delayed by three whenever the second Dynkin label is

incremented as x 7→ x + 1. This suggests to look for a similar linear effect

of y 7→ y + 1 and z 7→ z + 1. Up to the two exceptions J0, 0, 0, 0K and

J0, 0, 0, 1K, the data in the tables shows that the value y of the third Dynkin

label increases the level of first appearance by 6y.

The influence of the last Dynkin label z is much more difficult to probe

without any explicit multiplicities beyond level 25 at hand. If an asymptoti-

cally linear relation between z and the level of first appearance of J0, x, y, zK
exists, then it certainly admits even more exceptions than in the y 7→ y+ 1

case. The onset of Jn, 0, 0, 4K, Jn, 0, 0, 5K and Jn, 0, 0, 6K multiplets at levels

14, 19 and 24, respectively, suggests that an increment z 7→ z + 1 delays

the J0, x, y, zK multiplet by five levels – at least in the regime of sufficiently
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α
′m

2

#
J0
,0
,0
,0K

#
J1
,0
,0
,0K

#
J2
,0
,0
,0K

#
J3
,0
,0
,0K

#
J4
,0
,0
,0K

#
J5
,0
,0
,0K

#
J6
,0
,0
,0K

#
J7
,0
,0
,0K

#
J8
,0
,0
,0K

#
J9
,0
,0
,0K

#
J1

0
,0
,0
,0K

#
J1

1
,0
,0
,0K

#
J1

2
,0
,0
,0K

#
J1

3
,0
,0
,0K

#
J1

4
,0
,0
,0K

1 1 0
2 0 1 0
3 0 0 1 0
4 0 1 0 1 0
5 1 0 1 0 1 0
6 0 2 1 1 0 1 0
7 2 2 3 1 1 0 1 0
8 1 5 3 4 1 1 0 1 0
9 3 5 9 4 4 1 1 0 1 0
10 3 12 10 11 5 4 1 1 0 1 0
11 8 15 23 14 12 5 4 1 1 0 1 0
12 8 30 31 31 16 13 5 4 1 1 0 1 0
13 19 41 61 45 36 17 13 5 4 1 1 0 1 0
14 22 77 89 87 53 38 18 13 5 4 1 1 0 1 0
15 41 109 164 132 104 58 39 18 13 5 4 1 1 0 1
16 57 190 245 244 162 113 60 40 18 13 5 4 1 1 0
17 100 282 426 378 299 179 118 61 40 18 13 5 4 1 1
18 138 471 656 657 473 332 188 120 62 40 18 13 5 4 1
19 235 710 1097 1040 830 532 350 193 121 62 40 18 13 5 4
20 336 1153 1699 1751 1333 938 565 359 195 122 62 40 18 13 5
21 544 1750 2778 2769 2263 1523 1000 583 364 196 122 62 40 18 13
22 799 2785 4309 4561 3630 2600 1635 1034 592 366 197 122 62 40 18
23 1261 4237 6907 7201 6025 4212 2803 1697 1052 597 367 197 122 62 40
24 1860 6634 10700 11637 9629 7034 4567 2918 1731 1061 599 368 197 122 62
25 2895 10082 16893 18301 15694 11337 7662 4774 2981 1749 1066 600 368 197 122

Table 4.8: N10d = 1 multiplets with SO(9) quantum numbers [n, 0, 0, 0]

↓ y, −→z 0 1 2 3 4 5 6 7

0 1+3x 3+3x 6+3x 10+3x 14+3x 19+3x 24+3x

1 5+3x 8+3x 12+3x 16+3x 20+3x 25+3x

2 11+3x 14+3x 18+3x 22+3x

3 17+3x 20+3x 24+3x

4 23+3x

Table 4.9: First mass level where supermultiplets J0, x, y, zK of N10d = 1
firstly occur. Empty spaces indicate that the representations in
question do not occur at levels ≤ 25.
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large values of x, y, z.

On the basis of this reasonning, we conjecture that sufficiently high mass

levels of first occurrence for general supermultiplets Jn, x, y, zK are deter-

mined by the following overall prefactor in their multiplicity generating

function:

Gn,x,y,z(q) ∼ qn+3x+6y+5z−6 × O(1) , x, y, z large (4.276)

Note that also the six dimensional N6d = (1, 0) spectrum exhibis an asymp-

totic linear relation between the second SO(5) label k and the level of first

appearance: Table 4.5 shows that sufficiently high levels of first appearance

for Jn, k; pK are delayed by three under k 7→ k + 2.

Explicit formulae for the τx,y,z` (q)

We shall now give the explicit results for a large class of τx,y,z` (q), obtained

through the entries of table 4.8 and its generalizations to (x, y, z) 6= (0, 0, 0)

gathered in appendix 4.B.3. This reflects large spin information on the

multiplicity generating functions Gn,x,y,z(q) via (4.275).

• SO(9) Dynkin labels [n→∞, 0, 0, 0]

τ0,0,0
1 (q) = q1 (1 + 0q + 1q2 + 1q3 + 4q4 + 5q5 + 13q6 + 18q7 + 40q8

+ 62q9 + 122q10 + 197q11 + 368q12 + 601q13 + 1070q14 + 1767q15

+ 3051q16 + 5022q17 + 8489q18 + 13897q19 + . . .)

τ0,0,0
2 (q) = q1 (1 + 2q + 4q2 + 9q3 + 18q4 + 36q5 + 70q6 + 133q7

+ 249q8 + 460q9 + 836q10 + 1503q11 + 2672q12 + 4699q13 + . . .)

τ0,0,0
3 (q) = q1 (1 + 1q + 5q2 + 9q3 + 26q4 + 48q5 + 112q6 + 211q7

+ 439q8 + 818q9 + . . .)

τ0,0,0
4 (q) = q1 (1 + 3q + 8q2 + 20q3 + 48q4 + 106q5 + . . .)

τ0,0,0
5 (q) = q1 (1 + 1q + 6q2 + . . .) (4.277)
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• SO(9) Dynkin labels [n→∞, 1, 0, 0]

τ1,0,0
1 (q) = q4 (1 + 2q + 3q2 + 7q3 + 14q4 + 28q5 + 53q6 + 103q7

+ 189q8 + 352q9 + 634q10 + 1146q11 + 2026q12 + 3578q13 + 6209q14

+ 10752q15 + 18378q16 + 31279q17 + . . .)

τ1,0,0
2 (q) = q5 (1 + 2q + 5q2 + 11q3 + 26q4 + 54q5 + 114q6 + 227q7

+ 449q8 + 863q9 + 1639q10 + 3050q11 + 5618q12 + 10187q13 + . . .)

τ1,0,0
3 (q) = q8 (2 + 5q + 15q2 + 35q3 + 86q4 + 185q5 + 403q6 + 825q7

+ . . .)

τ1,0,0
4 (q) = q10 (1 + 3q + 11q2 + 30q3 + . . .) (4.278)

• SO(9) Dynkin labels [n→∞, 0, 1, 0]

τ0,1,0
1 (q) = q5 (1 + 1q + 5q2 + 8q3 + 22q4 + 40q5 + 90q6 + 165q7

+ 338q8 + 619q9 + 1190q10 + 2149q11 + 3969q12 + 7048q13 + 12630q14

+ 22060q15 + 38603q16 + . . .)

τ0,1,0
2 (q) = q6 (1 + 2q + 7q2 + 17q3 + 41q4 + 91q5 + 199q6 + 412q7

+ 841q8 + 1665q9 + 3241q10 + 6178q11 + 11611q12 + . . .)

τ0,1,0
3 (q) = q8 (1 + 2q + 11q2 + 25q3 + 71q4 + 160q5 + 381q6 + 809q7

+ . . .)

τ0,1,0
4 (q) = q11 (2 + 7q + 23q2 + . . .) (4.279)

• SO(9) Dynkin labels [n→∞, 0, 0, 2]

τ0,0,2
1 (q) = q6 (1 + 2q + 7q2 + 13q3 + 33q4 + 66q5 + 143q6 + 277q7

+ 559q8 + 1053q9 + 2019q10 + 3715q11 + 6859q12 + 12338q13

+ 22156q14 + 39043q15 + . . .)

τ0,0,2
2 (q) = q7 (1 + 4q1 + 11q2 + 28q3 + 68q4 + 155q5 + 339q6 + 716q7

+ 1469q8 + 2938q9 + 5755q10 + 11054q11 + . . .)

τ0,0,2
3 (q) = q9 (2 + 5q + 19q2 + 48q3 + 130q4 + 301q5 + 703q6 + 1518q7

+ . . .)

τ0,0,2
4 (q) = q11 (1 + 4q + 16q2 + 49q3 + . . .) (4.280)
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• SO(9) Dynkin labels [n→∞, 0, 0, 1]

τ0,0,1
1 (q) = q3 (1 + 1q + 3q2 + 6q3 + 12q4 + 24q5 + 48q6 + 90q7 + 171q8

+ 317q9 + 579q10 + 1045q11 + 1870q12 + 3299q13 + 5777q14 + 10017q15

+ 17222q16 + 29370q17 + . . .)

τ0,0,1
2 (q) = q4 (1 + 2q1 + 5q2 + 13q3 + 29q4 + 62q5 + 130q6 + 263q7

+ 520q8 + 1008q9 + 1916q10 + 3583q11 + 6609q12 + . . .)

τ0,0,1
3 (q) = q6 (1 + 3q1 + 10q2 + 26q3 + 63q4 + 143q5 + 315q6 + 664q7

+ . . .)

τ0,0,1
4 (q) = q8 (1 + 4q + 12q2 + 35q3 + . . .)

τ0,0,1
5 (q) = q10 (1 + . . .) (4.281)

Further τx,y,z` (q) listed in (4.B.3) support the trend that the τx,y,z` (q) ex-

pansion (4.275) converges more quickly at higher value of x, y, z.

4.5.3 Eight dimensional N8d = 1 spectra

Starting from this subsection, we consider even dimensional type I super-

string compactifications on T 2 tori preserving all the sixteen supercharges.

The highest dimensional example is N8d = 1 SUSY in eight spacetime di-

mensions.

Let r denote the fugacity with respect to the R symmetry SO(2)R ∼=
U(1)R and yi the fugacities of the massive little group SO(7), then the

fundamental N8d = 1 super Poincaré multiplet is described by the super-

character

Z(N8d = 1) := (r4 + r−4) [0, 0, 0] + (r3 + r−3) [0, 0, 1]

+ (r2 + r−2)
(

[0, 1, 0] + [1, 0, 0]
)

+ (r + r−1)
(

[1, 0, 1] + [0, 0, 1]
)

+ [2, 0, 0] + [0, 0, 2] + [1, 0, 0] + [0, 0, 0] (4.282)

which is obtained by branching the SO(9) representations contributing to

the N10d = 1 analogue (4.247) to SO(7) × U(1)R. The minimal multiplet

(4.282) can be generated from a scalar Clifford vacuum of U(1)R charge

+4, and the generic N8d = 1 multiplet follows from a Clifford vacuum
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with nontrivial SO(7) × U(1)R quantum numbers21. This gives rise to the

supercharacter

Ja1, a2, a3;QK := Z(N8d = 1) · rQ [a1, a2, a3] . (4.283)

The eight dimensional partition function is obtained from its ten dimen-

sional ancestor (4.249) by singling out an internal factor χ
SO(3)
NS,R within

χ
SO(9)
NS,R (~y) =

∏4
k=1 χ

SO(3)
NS,R (yk) and reinterpreting its argument as an R-

symmetry fugacity:

χN8d=1(q; ~y, r) = χN8d=1
NS |GSO (q; ~y, r) + χN8d=1

R |GSO (q; ~y, r)

χN8d=1
NS |GSO (q; ~y, r) =

1

2
q−

1
2
[
χ
SO(7)
NS (q; ~y)χ

SO(3)
NS (q; r)

− χ
SO(7)
NS (e2πiq; ~y)χ

SO(3)
NS (e2πiq; r)

]
χN8d=1

R |GSO (q; ~y, r) =
1

2
χ
SO(7)
R (q; ~y)χ

SO(3)
R (q; r) (4.284)

As with the products of the spacetime and internal partition functions in

the 4- and 8-supercharge cases (4.112) and (4.196), we have to take the

product before imposing the GSO projection, in both NS and R sectors.

Let us display the first four coefficients of the power series expansion in

q:22

χN8d=1(q; ~y, r)

=

 3∑
j=1

(y2
j + y−2

j ) + r2 + r−2 +
1

2

3∏
j=1

(yj + y−1
j ) (r + r−1)

 q0

︸ ︷︷ ︸
16 massless states

+ J0, 0, 0; 0K q︸ ︷︷ ︸
256 states at level 1

+
(
J0, 0, 0;±2K + J1, 0, 0; 0K

)
q2︸ ︷︷ ︸

2304 states at level 2

+
(
J0, 0, 0;±4K + J1, 0, 0;±2K + J0, 0, 1;±1K

+ J2, 0, 0; 0K + J0, 0, 0; 0K
)
q3 + O(q4) . (4.285)

21Recall that the semicolon in Ja1, a2, a3; bK separating the U(1)R quantum number b
from the SO(7) Dynkin labels a1, a2, a3 eliminates potential confusion with N10d = 1
supercharacters (4.248).

22Again, there is a subtlety in applying the above formula to the massless R sector; see
the footnote before (4.112). However, this can be fixed easily: one can simply add to
it 1

2

∏3
j=1(yj − y−1

j ) (r − r−1) to get the correct massless character in R sector.
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The pairing of opposite U(1)R charges ±Q motivates the following short-

hand:

Ja1, a2, a3;±QK :=

 Ja1, a2, a3;QK + Ja1, a2, a3;−QK for Q 6= 0 ,

Ja1, a2, a3; 0K for Q = 0 .

(4.286)

The supermultiplets up to level six are listed in table 4.10. The branching

process obviously increases the number and diversity of multiplets compared

to the ten dimensional analogue, cf. table 4.7. This is why we do not repeat

the higher level analysis carried out for the d = 10 ancestor in dimensionally

reduced settings.

Note that this partition function can also be obtained by branching the

SO(9) representations appearing in the the N10d = 1 partition function

(4.250) into SO(7) × U(1)R representations. In terms of characters, one

simply maps SO(9) fugacities into SO(7) × U(1)R fugacities; a possible

fugacity map is as follows:

z1 = y1, z2 = y2, z3 = y3, z4 = s , (4.287)

where z1, . . . , z4 are fugacities of SO(9), y1, y2, y3 are fugacities of SO(7)

and s is a fugacity of U(1)R. For example,

[1, 0, 0, 0]~z = 1 +
1

z2
1

+ z2
1 +

1

z2
2

+ z2
2 +

1

z2
3

+ z2
3 +

1

z2
4

+ z2
4

= 1 +
1

y2
1

+ y2
1 +

1

y2
2

+ y2
2 +

1

y2
3

+ y2
3 +

1

s2
+ s2

= [1, 0, 0; 0]~y;s + [0, 0, 0; +2]~y;s + [0, 0, 0;−2]~y;s , (4.288)

where the notation [b1, b2, b3;Q] denotes the SO(7)×U(1)R representation.

4.5.4 Six dimensional N6d = (1, 1) spectra

Six dimensional type I compactifications with sixteen supercharges are said

to possessN6d = (1, 1) SUSY. The spacetime symmetry branches to SO(9)→
SO(5) × SO(4)R, i.e. two Cartan generators of ten dimensional Lorentz

group take the role of R symmetry generators probing fugacities r1, r2 of

145



α′m2 representations of N8d = 1 super Poincaré

1 J0, 0, 0; 0K
2 J0, 0, 0;±2K + J1, 0, 0; 0K
3 J0, 0, 0;±4K + J1, 0, 0;±2K + J0, 0, 1;±1K + J2, 0, 0; 0K + J0, 0, 0; 0K
4 J0, 0, 0;±6K + J1, 0, 0;±4K + J0, 0, 1;±3K + J2, 0, 0;±2K + J1, 0, 0;±2K + 2 J0, 0, 0;±2K

+ J1, 0, 1;±1K + J0, 0, 1;±1K + J3, 0, 0; 0K + 2 J1, 0, 0; 0K + J0, 1, 0; 0K + J0, 0, 0; 0K
5 J0, 0, 0;±8K + J1, 0, 0;±6K + J0, 0, 1;±5K + J2, 0, 0;±4K + J1, 0, 0;±4K + 2 J0, 0, 0;±4K

+ J1, 0, 1;±3K + 2 J0, 0, 1;±3K + J3, 0, 0;±2K + J2, 0, 0;±2K + 3 J1, 0, 0;±2K + 2 J0, 1, 0;±2K
+ J0, 0, 0;±2K + J2, 0, 1;±1K + 2 J1, 0, 1;±1K + 3 J0, 0, 1;±1K + J4, 0, 0; 0K + 2 J2, 0, 0; 0K
+ J1, 1, 0; 0K + 3 J1, 0, 0; 0K + J0, 1, 0; 0K + J0, 0, 2; 0K + 4 J0, 0, 0; 0K

6 J0, 0, 0;±10K + J1, 0, 0;±8K + J0, 0, 1;±7K + J2, 0, 0;±6K + J1, 0, 0;±6K + 2 J0, 0, 0;±6K
+ J1, 0, 1;±5K + 2 J0, 0, 1;±5K + J3, 0, 0;±4K + J2, 0, 0;±4K + 3 J1, 0, 0;±4K + 2 J0, 1, 0;±4K
+ 2 J0, 0, 0;±4K + J2, 0, 1;±3K + 3 J1, 0, 1;±3K + 3 J0, 0, 1;±3K + J4, 0, 0;±2K + J3, 0, 0;±2K
+ 3 J2, 0, 0;±2K + 2 J1, 1, 0;±2K + 5 J1, 0, 0;±2K + J0, 1, 0;±2K + 2 J0, 0, 2;±2K
+ 4 J0, 0, 0;±2K + J3, 0, 1;±1K + 2 J2, 0, 1;±1K + 4 J1, 0, 1;±1K + J0, 1, 1;±1K
+ 5 J0, 0, 1;±1K + J5, 0, 0; 0K + 2 J3, 0, 0; 0K + J2, 1, 0; 0K + 4 J2, 0, 0; 0K + J1, 1, 0; 0K
+ J1, 0, 2; 0K + 5 J1, 0, 0; 0K + 5 J0, 1, 0; 0K + J0, 0, 2; 0K + 3 J0, 0, 0; 0K

Table 4.10: N8d = 1 multiplets occurring up to mass level six

SO(4)R ∼= SU(2)R×SU(2)R. The fundamental supermultiplet of the N6d =

(1, 1) super Poincaré group has the following SO(5)×SU(2)R×SU(2)R par-

ticle content:

Z(N6d = (1, 1)) := [2, 0] · [0, 0]R + [0, 2] · [0, 0]R + [0, 2] · [1, 1]R

+ [1, 0] · [1, 1]R + [1, 0] ·
(

[2, 0]R + [0, 2]R
)

+ [0, 0] · [2, 2]R

+ [0, 0] · [1, 1]R + [0, 0] · [0, 0]R + [1, 1] ·
(

[1, 0]R + [0, 1]R
)

+ [0, 1] ·
(

[2, 1]R + [1, 2]R + [1, 0]R + [0, 1]R
)

(4.289)

Note that the R-symmetry characters [. . .]R carry a subscript to avoid con-

fusion with the Lorentz symmetry of identical rank.

The most general multiplet follows from (4.289) by taking tensor products

with SO(5)×SU(2)R×SU(2)R representations, this leads to the superchar-

acter

Ja1, a2; b1, b2K := Z(N6d = (1, 1)) · [a1, a2] · [b1, b2]R (4.290)

The six dimensional partition function is obtained from its ten dimen-

sional ancestor (4.249) by singling out two internal factor χ
SO(3)
NS,R within

χ
SO(9)
NS,R (~y) =

∏4
k=1 χ

SO(3)
NS,R (yk) and reinterpreting their second argument as
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an R-symmetry fugacity:

χN6d=(1,1)(q; ~y, ~r) = χ
N6d=(1,1)
NS |GSO (q; ~y, ~r) + χ

N6d=(1,1)
R |GSO (q; ~y, ~r)

χ
N6d=(1,1)
NS |GSO (q; ~y, ~r) =

1

2
q−

1
2
[
χ
SO(5)
NS (q; ~y)χ

SO(5)
NS (q;~r)

− χ
SO(5)
NS (e2πiq; ~y)χ

SO(5)
NS (e2πiq;~r)

]
χ
N6d=(1,1)
R |GSO (q; ~y, ~r) =

1

2
χ
SO(5)
R (q; ~y)χ

SO(5)
R (q;~r) (4.291)

Its q expansion starts like23

χN6d=(1,1)(q; ~y, ~r)

=

 2∑
j=1

(y2
j + y−2

j ) +
2∑
j=1

(r2
j + r−2

j ) +
1

2

2∏
j=1

(yj + y−1
j )

2∏
j=1

(rj + r−1
j )

 q0

︸ ︷︷ ︸
16 massless states

+ J0, 0; 0, 0K q︸ ︷︷ ︸
256 states at level 1

+
(
J0, 0; 1, 1K + J1, 0; 0, 0K

)
q2︸ ︷︷ ︸

2304 states at level 2

+
(
J0, 0; 2, 2K + J1, 0; 1, 1K + J0, 1; 1, 0K

+ J0, 1; 0, 1K + J2, 0; 0, 0K + J0, 0; 0, 0K
)
q3 + O(q4) , (4.292)

and supermultiplets at higher levels ≤ 5 are listed in table 4.11.

Note that this partition function can also be obtained by branching the

SO(9) representations appearing in the the N10d = 1 partition function

(4.250) into SO(5) × SU(2)R × SU(2)R representations. In terms of char-

acters, one simply maps SO(9) fugacities into SO(5) × SU(2)R × SU(2)R

fugacities; a possible fugacity map is as follows:

z1 = y1, z2 = y2, z3 = r1r2, z4 = r1r
−1
2 , (4.293)

where z1, . . . , z4 are fugacities of SO(9), y1, y2 are fugacities of SO(5), and

23Again, there is a subtlety in applying the above formula to the massless R sector; see
the footnote before (4.112). However, this can be fixed easily: one can simply add to
it 1

2

∏2
j=1(yj − y−1

j )
∏2
j=1(rj − r−1

j ) to get the correct massless character in R sector.
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r1, r2 are fugacities for the two SU(2)R factors. For example,

[1, 0, 0, 0]~z = 1 +
1

z2
1

+ z2
1 +

1

z2
2

+ z2
2 +

1

z2
3

+ z2
3 +

1

z2
4

+ z2
4

= 1 +
1

y2
1

+ y2
1 +

1

y2
2

+ y2
2 + (r1 + r−1

1 )(r2 + r−1
2 )

= [1, 0; 0, 0]~y;~r + [0, 0; 1, 1]~y;~r , (4.294)

where the notation [a1, a2; b1, b2] denotes the SO(5) × SU(2)R × SU(2)R

representation.

α′m2 representations of N6d = (1, 1) super Poincaré

1 J0, 0; 0, 0K
2 J0, 0; 1, 1K + J1, 0; 0, 0K
3 J0, 0; 2, 2K + J1, 0; 1, 1K + J0, 1; 1, 0K + J0, 1; 0, 1K + J2, 0; 0, 0K + J0, 0; 0, 0K
4 J0, 0; 3, 3K + J1, 0; 2, 2K + J0, 1; 2, 1K + J0, 0; 2, 0K + J0, 1; 1, 2K + J2, 0; 1, 1K + J1, 0; 1, 1K

+ 2 J0, 0; 1, 1K + J1, 1; 1, 0K + J0, 1; 1, 0K + J0, 0; 0, 2K + J1, 1; 0, 1K + J0, 1; 0, 1K
+ J3, 0; 0, 0K + 2 J1, 0; 0, 0K + J0, 2; 0, 0K

5 J0, 0; 4, 4K + J1, 0; 3, 3K + J0, 1; 3, 2K + J0, 0; 3, 1K + J0, 1; 2, 3K + J2, 0; 2, 2K + J1, 0; 2, 2K
+ 2 J0, 0; 2, 2K + J1, 1; 2, 1K + 2 J0, 1; 2, 1K + 2 J1, 0; 2, 0K + J0, 0; 2, 0K + J0, 0; 1, 3K
+ J1, 1; 1, 2K + 2 J0, 1; 1, 2K + J3, 0; 1, 1K + J2, 0; 1, 1K + 3 J1, 0; 1, 1K + 2 J0, 2; 1, 1K
+ 2 J0, 0; 1, 1K + J2, 1; 1, 0K + 2 J1, 1; 1, 0K + 3 J0, 1; 1, 0K + 2 J1, 0; 0, 2K + J0, 0; 0, 2K
+ J2, 1; 0, 1K + 2 J1, 1; 0, 1K + 3 J0, 1; 0, 1K + J4, 0; 0, 0K + 2 J2, 0; 0, 0K + J1, 2; 0, 0K
+ J1, 0; 0, 0K + 2 J0, 2; 0, 0K + 3 J0, 0; 0, 0K

Table 4.11: N6d = (1, 1) multiplets occurring up to mass level five

4.5.5 Four dimensional N4d = 4 spectra

Finally, four dimensional theories with maximal N4d = 4 SUSY follow from

the ten dimensional ancestor through compactification on T 6. The internal

rotation group is identified with the R symmetry SO(6)R, its characters

are denoted by [b1, b2, b3]R. The universal partition function decomposes

into characters of the N4d = 4 super Poincaré algebra, the fundamental one

being

Z(N4d = 4) = [0]
(

[0, 0, 2]R + [0, 2, 0]R + [2, 0, 0]R + 2
)

+ [2] [0, 1, 1]R

+ 2 [2] [1, 0, 0]R + [4] + [1]
(

[0, 0, 1]R + [0, 1, 0]R + [1, 0, 1]R + [1, 1, 0]R
)

+ [3]
(

[0, 0, 1]R + [0, 1, 0]R
)
. (4.295)
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Any other supermultiplet follows by taking a tensor product of (4.295) with

the SO(3) × SO(6)R representation [n] [b1, b2, b3]R of the the Clifford vac-

uum,

Jn; b1, b2, b3K := Z(N4d = 4) · [n] [b1, b2, b3]R . (4.296)

The four dimensional partition function is obtained through the usual pro-

cedure from the ten dimensional ancestor (4.249), this time we have to

interpret three factors of χ
SO(3)
NS,R as carrying R-symmetry fugacities rj :

χN4d=4(q; y, ~r) = χN4d=4
NS |GSO (q; y, ~r) + χN4d=4

R |GSO (q; y, ~r)

χN4d=4
NS |GSO (q; y, ~r) =

1

2
q−

1
2
[
χ
SO(3)
NS (q; y)χ

SO(7)
NS (q;~r)

− χ
SO(3)
NS (e2πiq; y)χ

SO(7)
NS (e2πiq;~r)

]
χN4d=4

R |GSO (q; y, ~r) =
1

2
χ
SO(3)
R (q; y)χ

SO(7)
R (q;~r) (4.297)

The power series in q starts with24

χN4d=4(q; y, rj) =

y2 + y−2 +

3∑
j=1

(r2
j + r−2

j ) +
1

2
[1]y

3∏
j=1

(rj + r−1
j )

 q0

︸ ︷︷ ︸
16 massless states

+ J0; 0, 0, 0K q︸ ︷︷ ︸
256 states at level 1

+
(
J0; 1, 0, 0K + J2; 0, 0, 0K

)
q2︸ ︷︷ ︸

2304 states at level 2

+
(
J0; 0, 0, 0K + J0; 2, 0, 0K

+ J1; 0, 0, 1K + J1; 0, 1, 0K + J2; 1, 0, 0K + J4; 0, 0, 0K
)
q3 + O(q4) , (4.298)

the coefficients of q4 and q5 can be found in table 4.12. The explicit vertex

operators from the first level are listed in section 4 of [15].

Note that this partition function can also be obtained by branching the

SO(9) representations appearing in the the N10d = 1 partition function

(4.250) into SO(3) × SO(6)R representations. In terms of characters, one

simply maps SO(9) fugacities into SO(3) × SO(6)R fugacities; a possible

fugacity map is as follows:

z1 = r1, z2 = r2, z3 = r3, z4 = y , (4.299)

24Again, there is a subtlety in applying the above formula to the massless R sector; see
the footnote before (4.112). However, this can be fixed easily: one can simply add to
it 1

2
(y − y−1)

∏3
j=1(rj − r−1

j ) to get the correct massless character in R sector.
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where z1, . . . , z4 are fugacities of SO(9), r1, r2, r3 are fugacities of SO(6)R

and y is a fugacity of SO(3). For example,

[1, 0, 0, 0]~z = 1 +
1

z2
1

+ z2
1 +

1

z2
2

+ r2
2 +

1

z2
3

+ z2
3 +

1

z2
4

+ z2
4

=
1

r2
1

+ r2
1 +

1

r2
2

+ r2
2 +

1

r2
3

+ r2
3 +

(
1 +

1

y2
+ y2

)
= [0; 1, 0, 0]~r;y + [2; 0, 0, 0]~r;y , (4.300)

where the notation [a; b1, b2, b3] denotes the SO(3) × SO(6)R representa-

tion for which the SO(3) representation is [a] and SO(6)R representation is

[b1, b2, b3]R.

α′m2 representations of N4d = 4 super Poincaré

1 J0; 0, 0, 0K
2 J0; 1, 0, 0K + J2; 0, 0, 0K
3 J0; 0, 0, 0K + J0; 2, 0, 0K + J1; 0, 0, 1K + J1; 0, 1, 0K + J2; 1, 0, 0K + J4; 0, 0, 0K
4 J0; 0, 1, 1K + 2J0; 1, 0, 0K + J0; 3, 0, 0K + J1; 0, 0, 1K + J1; 0, 1, 0K + J1; 1, 0, 1K

+ J1; 1, 1, 0K + 3J2; 0, 0, 0K + J2; 1, 0, 0K + J2; 2, 0, 0K + J3; 0, 0, 1K + J3; 0, 1, 0K
+ J4; 1, 0, 0K + J6; 0, 0, 0K

5 4J0; 0, 0, 0K + J0; 0, 0, 2K + J0; 0, 1, 1K + J0; 0, 2, 0K + J0; 1, 0, 0K + J0; 1, 1, 1K
+ 2J0; 2, 0, 0K + J0; 4, 0, 0K + 3J1; 0, 0, 1K + 3J1; 0, 1, 0K + 2J1; 1, 0, 1K
+ 2J1; 1, 1, 0K + J1; 2, 0, 1K + J1; 2, 1, 0K + 2J2; 0, 0, 0K + 2J2; 0, 1, 1K + 5J2; 1, 0, 0K
+ J2; 2, 0, 0K + J2; 3, 0, 0K + 2J3; 0, 0, 1K + 2J3; 0, 1, 0K + J3; 1, 0, 1K + J3; 1, 1, 0K
+ 3J4; 0, 0, 0K + J4; 1, 0, 0K + J4; 2, 0, 0K + J5; 0, 0, 1K + J5; 0, 1, 0K + J6; 1, 0, 0K
+ J8; 0, 0, 0K

Table 4.12: N4d = 4 multiplets occurring up to mass level 5

4.6 Conclusion

We have investigated model independent superstring states common to all

type I compactifications that preserve N4d = 1 and N6d = (1, 0) SUSY, re-

spectively, and identified the underlying super Poincaré multiplets at indi-

vidual mass levels. Part of our results are the associated unrefined partition

functions together with their asymptotics for large mass levels, see (4.116)–

(4.125) and (4.198)–(4.205). The refined versions of the universal partition

functions are given by (4.112) and (4.196) and rewritten in terms of super

Poincaré characters in (4.148), (4.171), (4.172), (4.216) and (4.231). More-

over, we have presented dimensional reductions of the universal N6d = (1, 0)
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and N10d = 1 spectra to even dimensions d ≥ 4 in subsections 4.4.5, 4.5.3,

4.5.4 and 4.5.5.

Multiplicity generating functions for individual supermultiplets tend to

stabilize in the regime where the spin j (or more generally the first SO(d−1)

Dynkin label) is comparable to the mass level M = α′m2. More specifically,

the validity for the stable pattern roughly ranges between 1
2(M −M0) /

j /M −M0 where the offset M0 depends on the remaining super Poincaré

quantum numbers of the multiplets beyond the spin. In the mathematically

most tractable N4d = 1 case, we have derived closed formulae (4.173) and

(4.174) for the leading Regge trajectory. In the highest dimensional scenar-

ios with given number of supercharges – N4d = 1, N6d = (1, 0) and N10d = 1

– we extracted both leading and subleading Regge trajectories from explic-

itly computed multiplicities up to level α′m2 = 25, see subsections 4.3.5,

4.4.4 and 4.5.2.

4.6.1 The number of universal open string states

The following table 4.13 summarizes their numbers at low levels ≤ 9 in

scenarios with 4, 8 and 16 supercharges, respectively. They are obtained

by expanding the associated unrefined partition functions. For the cases of

4, 8 and 16 supercharges, the exact generating functions are respectively

given by (4.116), (4.198), (4.252) and their asymptotics at large mass levels

are respectively given by (4.125), (4.205), (4.256). Roughly speaking, the

number of states increases exponentially with respect to the square root of

the mass level.

α′m2 # states for 4 supercharges # states for 8 supercharges # states for 16 supercharges

0 4 8 16
1 24 80 256
2 104 512 2.304
3 384 2.576 15.360
4 1.240 11.008 84.224
5 3.648 41.792 400.896
6 9.992 144.784 1.711.104
7 25.792 465.856 6.690.816
8 63.392 1.409.792 24.332.544
9 149.464 4.050.112 83.219.712

Table 4.13: The number of model independent open string states in com-
pactifications with 4, 8 and 16 supercharges, respectively, up to
mass level α′m2 = 9.
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4.A Deriving the asymptotic formulae for N4d = 1

multiplicity generating functions

In this appendix, we derive the asymptotic results on multiplicity generating

function Gn,Q(q) in the limit n→∞ presented in subsection 4.3.4.

In what follows, we will exploit the n→∞ behaviour of objects Tp(m, k) :=(
m
k

)
−
(
m
k−p
)
,

T2n+2(2m+ 1,m+ n+ 1− k) ∼
(

2m+1
m+n+1−k

)
,

T2n+2(2m,m+ n− k) ∼
(

2m
m+n−k

)
. (4.301)

assuming that m, k ≥ 0

4.A.1 Warm-up: Multiplicities of J2n+ 1, 0K and J2n, 1K as

n→∞

In order to get familiar with the asymptotic methods in theN4d = 1 context,

we shall first of all discuss the large spin regime of supermultiplets with

U(1)R neutral Clifford vacuum.

The multiplicity generating function for the representation J2n+1, 0K can

be written as

G2n+1,0(q) =

∞∑
k=0

∞∑
m=0

∞∑
p=0

MJ2n+1,0K(m,−p− 1, k; q)

+
∞∑
k=0

∞∑
p=0

MJ2n+1,0K(p, p, k; q) , (4.302)

where the function MJ2n+1,2QK and MJ2n+1,2QK are defined in (4.169) and

(4.170) and, as n→∞,

MJ2n+1,0K(m, p, k; q) ∼ (−1)−m−p

[
FNS
k,p (q)

(
m−p
2m+1

)(
2m+1

m+n+1−k
)

+FR
k,p(q)

(
m−p
2m

)(
2m

m+n−k
)]

. (4.303)

Note that the binomial coefficient
(
α
β

)
increases as β increases from 0 to

bα/2c and then decreases as β increases from bα/2c+ 1 to α.
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Observe that MJ2n+1,0K(m,−p−1, k; q) is sharply peaked near (m, p, k) =

(0, 0, n) for n large. Therefore, the dominant contribution to the first set of

summations in (4.302) comes from

∞∑
m=0

∞∑
p=0

∞∑
k=0

MJ2n+1,0K(m,−p− 1, k; q)

∼
dε1e∑
m=0

dε2e∑
p=0

dn(1+ε3)e∑
k=bn(1−ε3)c

MJ2n+1,0K(m,−p− 1, k; q)

any ε1, ε2, ε3 > 0, n→∞

∼
∞∑
m=0

∞∑
p=0

∞∑
δ=−∞

MJ2n+1,0K(m,−p− 1, n+ δ; q), n→∞ . (4.304)

In the limit of large k, we can use asymptotic formulae (4.131) and (4.136)

for FNS
k,p (q) and FR

k,p(q). The summation over δ from −∞ to ∞ can be

readily computed using the fact that

∞∑
δ=−∞

qδ
(

2m

m− δ

)
=

m∑
δ=−m

qδ
(

2m

m− δ

)
= q−m(1 + q)2m ,

∞∑
δ=−∞

qδ
(

2m+ 1

m− δ + 1

)
=

m+1∑
δ=−(m+1)

qδ
(

2m+ 1

m− δ + 1

)
= q−m(1 + q)2m+1 .

(4.305)

Next, the summation over m from 0 to ∞ can be computed using the

following identities:

∞∑
m=0

(−q)−m(1 + q)2m

(
1 +m+ p

2m

)
= (−q)−p−1 1− q2p+3

1− q
,

∞∑
m=0

(−q)−m(1 + q)2m+1

(
1 +m+ p

1 + 2m

)
= (−q)−p 1− q2p+2

1− q
. (4.306)

Thus, from (4.304), we find that

∞∑
m=0

∞∑
p=0

∞∑
k=0

MJ2n+1,0K(m,−p− 1, k; q) =
(1− q)2qn−

1
2

2(q, q)6
∞

×
{
u1(
√
q)ϑ2(1, q)2 −

[
u2(
√
q)ϑ3(1, q)2 − u2(−√q)ϑ4(1, q)2

] }
, (4.307)
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where the functions u1(q) and u2(q) are defined as follows:

u1(q) =

∞∑
p=0

q2(p+ 3
2)

2 1− q4p+6

(1 + q2p+2)(1 + q2p+4)
,

u2(q) =

∞∑
p=0

q2(p+1)2 1− q4p+4

(1 + q2p+1)(1 + q2p+3)
. (4.308)

It remains unclear whether u1(q) and u2(q) can be written in terms of known

functions (if this is useful at all). In practice, it is easy to compute the power

series u1(q) and u2(q) up to a high order in q. Moreover, their asymptotic

formulae can be easily derived in the limit q → 0. We shall come back to

this point later.

Let us now examine the second set of summations in (4.302). The function

MJ2n+1,0K(p, p, k; q) is sharply peaked near (p, k) = (0, n) for large n. Thus,

∞∑
k=0

∞∑
p=0

MJ2n+1,0K(p, p, k; q) ∼MJ2n+1,0K(0, 0, n; q) , n→∞

=
1

4(q; q)6
∞

(1− q)3

1 + q
qn−

1
4ϑ2(1, q)2 . (4.309)

From (4.302), we simply add (4.304) and (4.309) together and obtain the

expression (4.182) for Q2n+1,0, in agreement with the stable pattern in table

4.2.

From recurrence relation (4.144) for Gn,Q, the asymptotic behaviour of

multiplicity generating functions U(1)R charge Q = 1 is given by

G2n,1(q) =
1

2

[
FNS
n,0 (q)−G2n−1,0(q)−G2n+1,0(q)

]
. (4.310)

Using the asymptotics G2n−1,Q ∼ q−1G2n+1,Q as well as (4.182) for G2n+1,Q

and (4.131) for FNS
n,0 , we arrive at (4.183). This also agrees with the stable

pattern tabulated in appendix 4.B.1.

4.A.2 Multiplicities of J2n+ 1, 2QK and J2n, 2Q+ 1K as

n→∞, Q = O(1)

This subsection generalizes the asymptotic results from the Q = 0 (or Q =

1) sector to generic U(1)R charges. The multiplicity generating function for
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J2n+ 1, 2QK can be written as

G2n+1,2Q(q) =

∞∑
k=0

∞∑
m=0

[ ∞∑
p=0

{
MJ2n+1,2QK(m,−p− 1, k; q)

+ MJ2n+1,2QK(m+ p, p, k; q)
}

+

Q−1∑
p=0

MJ2n+1,2QK(m,m+ p+ 1, k; q)

]
.

(4.311)

where the MJ2n+1,2QK function follows the following n→∞ behaviour:

MJ2n+1,2QK(m, p, k; q) = (−1)Q−m−p

×

[
FNS
k,p (q)

(
Q+m− p

2m+ 1

)(
2m+ 1

m+ n+ 1− k

)
+ FR

k,p(q)

(
Q+m− p

2m

)(
2m

m+ n− k

)]
(4.312)

The dominant contribution to G2n+1,2Q(q) comes from

G2n+1,2Q(q) ∼
∞∑
m=0

dε2e∑
p=0

dn(1+ε1)e∑
k=bn(1−ε1)c

[
MJ2n+1,2QK(m,−p− 1, k; q)

+ MJ2n+1,2QK(m+ p, p, k; q)
]

+
∞∑
m=0

Q−1∑
p=0

dn(1+ε1)e∑
k=bn(1−ε1)c

MJ2n+1,2QK(m,m+ p+ 1, k; q) , ε1, ε2 > 0 , n→∞

∼
∞∑
m=0

∞∑
p=0

∞∑
δ=−∞

[
MJ2n+1,2QK(m,−p− 1, n+ δ; q)

+ MJ2n+1,2QK(m+ p, p, n+ δ; q)
]

+
∞∑
m=0

Q−1∑
p=0

∞∑
δ=−∞

MJ2n+1,2QK(m,m+ p+ 1, n+ δ; q) , n→∞ .

(4.313)
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The first set of summations can be evaluated as follows:

∞∑
m=0

∞∑
p=0

∞∑
δ=−∞

MJ2n+1,2QK(m,−p− 1, n+ δ; q) =
(1− q)2qn−Q−

1
2

2(q; q)6
∞

×
{
u1(
√
q,Q)ϑ2(1, q)2 −

[
u2(
√
q,Q)ϑ3(1, q)2 − u2(−√q,Q)ϑ4(1, q)2

] }
,

(4.314)

where

u1(q,Q) =

∞∑
p=0

q2(p+ 3
2)

2 1− q4p+4Q+6

(1 + q2p+2)(1 + q2p+4)
,

u2(q,Q) =

∞∑
p=0

q2(p+1)2 1− q4p+4Q+4

(1 + q2p+1)(1 + q2p+3)
. (4.315)

The next set of summations in (4.172) can be evaluated as follows:

∞∑
m=0

∞∑
p=0

∞∑
δ=−∞

MJ2n+1,2QK(m+ p, p, n+ δ; q) =
(−1)Q(1− q)3qn−

3
2

2(q; q)6
∞

×
{
v1(
√
q,Q)ϑ2(1, q)2 +

[
v2(
√
q,Q)ϑ3(1, q)2 − v2(−√q,Q)ϑ4(1, q)2

] }
,

(4.316)

where25

v1(q,Q) =

bQ/2c∑
p=0

q2(p− 1
2

)2(1 + q2)2p

(1 + q2p−2)(1 + q2p)

(
Q

2p

)
3F2

[
1, Q+ 1, 2p−Q
p+ 1/2, p+ 1

;
(1 + q)2

4q

]
,

v2(q,Q) =

bQ/2c∑
p=0

(1 + q)q2p2(1 + q2)2p

(1 + q2p−1)(1 + q2p+1)

(
Q

2p+ 1

)

× 3F2

[
1, Q+ 1, 2p+ 1−Q

p+ 1, p+ 3/2
;

(1 + q)2

4q

]
, (4.318)

25Upon obtaining the hypergeometric functions, we make use of the following identities
for p ≥ 0:

Q∑
m=0

(−1)mq−m(1 + q)2m
(
Q+m

2p+ 2m

)
=

(
Q

2p

)
3F2

[
1, Q+ 1, 2p−Q
p+ 1/2, p+ 1

;
(1 + q)2

4q

]
,

Q∑
m=0

(−1)mq−m(1 + q)2m+1

(
Q+m

1 + 2p+ 2m

)
=

(
Q

2p+ 1

)
3F2

[
1, Q+ 1, 2p+ 1−Q

p+ 1, p+ 3/2
;

(1 + q)2

4q

]
.

(4.317)
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The last set of summations in (4.172) can be evaluated as follows:

∞∑
m=0

Q−1∑
p=0

∞∑
δ=−∞

MJ2n+1,2QK(m,m+ p+ 1, n+ δ; q) =
(−1)Q(1− q)3qn−

7
4

2(q; q)6
∞

×
{
w1(
√
q,Q)ϑ2(1, q)2 + q

9
4
[
w2(
√
q,Q)ϑ3(1, q)2 − w2(−√q,Q)ϑ4(1, q)2

] }
,

(4.319)

where

w1(q,Q) =

∞∑
m=0

Q−1∑
p=0

(−1)p+1q1+2(1+m+p)2−2m
(
1 + q2

)2m (Q−1−p
2m

)(
1 + q2(m+p)

) (
1 + q2(1+m+p)

) ,

w2(q,Q) = q−
9
2

∞∑
m=0

Q−1∑
p=0

(−1)p+1q2(m+p+ 3
2)

2−2m
(
1 + q2

)2m+1 (Q−1−p
1+2m

)
(1 + q1+2m+2p) (1 + q3+2m+2p)

.

(4.320)

Combining the three sets of summations into (4.172), we have

G2n+1,2Q(q) =
(1− q)2qn

2q
3
2 (q; q)6

∞
×{

ϑ2(1, q)2
[
q1−Qu1(

√
q,Q) + (−1)Q(1− q)(v1(

√
q,Q) + q−1/4w1(

√
q,Q))

]
+ ϑ3(1, q)2

[
− q1−Qu2(

√
q,Q) + (−1)Q(1− q)(v2(

√
q,Q) + q2w2(

√
q,Q))

]
+ ϑ4(1, q)2

[
q1−Qu2(−√q,Q)− (−1)Q(1− q)(v2(−√q,Q) + q2w2(−√q,Q))

]}
(4.321)

which exactly (4.173) with the definition (4.175) for the function F(q,Q) in

the curly brackets. Note that this formula reproduces (4.182) when Q = 0.

This allows to quickly infer asymptotic J2n, 2Q+1K multiplicities through

the recursion (4.147) and the asymptotic relationsG2n+2,2Q+1(q) ∼ qG2n,2Q+1(q)

as n→∞:

G2n,2Q+1(q) ∼ 1

1 + q

[
FR
n,Q+1(q)−G2n+1,2Q(q)−G2n+1,2Q+2(q)

]
(4.322)

The asymptotic formula (4.136) for FR
n,Q+1(q) and the definition (4.175) for

the function F(q,Q) then leads to (4.174).
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4.B Data tables for super Poincaré multiplicities

This appendix contains data tables for multiplicities of super Poincaré rep-

resentations up to mass level α′m2 = 25. We only display tables for the

ancestor theories with 4, 8 and 16 supercharges, respectively, since these

highest dimensional theories organize the states in the most economic num-

ber of supermultiplets. Particular attention is paid to stable patterns, i.e.

to the asymptotics of multiplicity generating functions for large spins and

mass levels.

Each of the following tables is devoted to family of supermultiplets whose

quantum numbers differ in the first SO(d − 1) Dynkin label and match in

the remaining SO(d − 1) and R symmetry quantum numbers. Rows are

associated with mass levels, and columns are associated with the value of

the first SO(d − 1) Dynkin label to which we loosely refer to as the spin.

Independently of spacetime dimensions and supercharges, the multiplicity

generating functions G...(q) tend to stabilize for large values of the spin and

the mass level in the limit where both of them are uniformly increased.

This leading Regge trajectory (corresponding to the τ ...1 (q) contribution in

(4.184), (4.232) and (4.275)) is exact when numbers occur repeatedly along

diagonal lines in the tables, these entries are marked in red.

Moreover, once the asymptotic numbers in red are subtracted from the

data outside the first stable region, further subleading trajectories emerge.

The leftover after this subtraction tends to stabilize along lines where the

mass level grows twice as fast as the spin. This can be understood as the

second Regge trajectory (corresponding to the τ ...2 (q) contribution in (4.184),

(4.232) and (4.275)) with slope 1
2 and subtractive sign. Its region of exact

validity is highlighted in blue.

4.B.1 4 supercharges in four dimensions

The tables in this subsection are based on the N4d = 1 partition function

(4.112), organized in terms of multiplicity generating functions Gn,Q(q), see

(4.148).
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α
′m

2

J1
;2K

J3
;2K

J5
;2K

J7
;2K

J9
;2K

J1
1
;2K

J1
3
;2K

J1
5
;2K

J1
7
;2K

J1
9
;2K

J2
1
;2K

J2
3
;2K

1 0

2 0

3 1 0

4 2 2 0

5 6 6 2 0

6 17 15 8 2 0

7 38 43 22 8 2 0

8 89 101 62 24 8 2 0

9 195 233 152 71 24 8 2 0

10 411 512 361 176 73 24 8 2 0

11 843 1089 803 430 185 73 24 8 2 0

12 1694 2231 1734 978 456 187 73 24 8 2 0

13 3302 4483 3602 2146 1053 465 187 73 24 8 2 0

14 6336 8758 7304 4525 2343 1079 467 187 73 24 8 2

15 11919 16795 14402 9300 4997 2420 1088 467 187 73 24 8

16 22053 31582 27835 18548 10383 5200 2446 1090 467 187 73 24

17 40173 58428 52685 36227 20921 10878 5277 2455 1090 467 187 73

18 72204 106359 98044 69217 41236 22068 11083 5303 2457 1090 467 187

19 128014 191004 179419 129896 79473 43785 22569 11160 5312 2457 1090 467

20 224337 338384 323661 239545 150345 84906 44955 22774 11186 5314 2457 1090

21 388651 592391 575773 435174 279322 161591 87520 45458 22851 11195 5314 2457

22 666314 1025226 1011672 779119 510970 301946 167204 88696 45663 22877 11197 5314

23 1131024 1755809 1756589 1377070 920804 555389 313632 169841 89199 45740 22886 11197

24 1902209 2976969 3017219 2404087 1637411 1006121 579053 319310 171019 89404 45766 22888

25 3170935 5000934 5129359 4150179 2874993 1798156 1052851 590920 321953 171522 89481 45775
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α
′m

2

J0
;1K

J2
;1K

J4
;1K

J6
;1K

J8
;1K

J1
0
;1K

J1
2
;1K

J1
4
;1K

J1
6
;1K

J1
8
;1K

J2
0
;1K

1 1 0

2 0 2 0

3 3 2 3 0

4 3 11 4 3 0

5 15 20 18 5 3 0

6 21 58 39 21 5 3 0

7 66 115 105 49 22 5 3 0

8 112 274 223 135 52 22 5 3 0

9 267 543 521 296 146 53 22 5 3 0

10 487 1159 1066 698 330 149 53 22 5 3 0

11 1027 2248 2258 1467 786 341 150 53 22 5 3

12 1872 4483 4465 3133 1682 821 344 150 53 22 5

13 3684 8456 8874 6300 3637 1774 832 345 150 53 22

14 6654 16077 16929 12629 7413 3868 1809 835 345 150 53

15 12430 29505 32174 24376 15014 7960 3961 1820 836 345 150

16 22104 54085 59444 46663 29304 16246 8195 3996 1823 836 345

17 39831 96778 109017 86997 56583 31974 16809 8288 4007 1824 836

18 69495 172263 195931 160521 106459 62184 33250 17045 8323 4010 1824

19 121751 301246 348996 290518 197927 117845 64978 33817 17138 8334 4011

20 208588 523209 612069 520208 360936 220529 123748 66270 34053 17173 8337

21 356951 896281 1063839 917434 650566 404759 232640 126586 66838 34146 17184

22 601090 1524153 1825894 1601735 1154779 733851 428967 238668 127882 67074 34181

23 1008432 2562971 3106955 2761714 2027692 1310137 781160 441385 241522 128450 67167

24 1670909 4278549 5231334 4717314 3515675 2312784 1400641 806110 447457 242819 128686

25 2755277 7075262 8737282 7973033 6035514 4030732 2482787 1449609 818653 450315 243387
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α
′m

2

J1
;4K

J3
;4K

J5
;4K

J7
;4K

J9
;4K

J1
1
;4K

J1
3
;4K

J1
5
;4K

J1
7
;4K

J1
9
;4K

J2
1
;4K

J2
3
;4K

J2
5
;4K

J2
7
;4K

7 0

8 1 0

9 3 2 0

10 9 8 2 0

11 25 24 10 2 0

12 63 65 34 10 2 0

13 145 166 96 36 10 2 0

14 327 387 251 108 36 10 2 0

15 701 870 600 292 110 36 10 2 0

16 1455 1868 1375 716 304 110 36 10 2 0

17 2935 3884 2994 1676 759 306 110 36 10 2 0

18 5784 7830 6304 3717 1804 771 306 110 36 10 2 0

19 11124 15422 12839 7947 4058 1847 773 306 110 36 10 2 0

20 21013 29656 25499 16409 8787 4188 1859 773 306 110 36 10 2 0

21 38962 55955 49404 32977 18350 9140 4231 1861 773 306 110 36 10 2

22 71109 103656 93817 64563 37270 19232 9270 4243 1861 773 306 110 36 10

23 127858 188982 174756 123758 73674 39339 19587 9313 4245 1861 773 306 110 36

24 226848 339385 320180 232485 142472 78301 40233 19717 9325 4245 1861 773 306 110

25 397364 601382 577497 429191 269832 152411 80412 40588 19760 9327 4245 1861 773 306

α
′m

2

J1
;6K

J3
;6K

J5
;6K

J7
;6K

J9
;6K

J1
1
;6K

J1
3
;6K

J1
5
;6K

J1
7
;6K

J1
9
;6K

J2
1
;6K

J2
3
;6K

J2
5
;6K

14 0

15 1 0

16 3 2 0

17 10 8 2 0

18 29 26 10 2 0

19 73 76 36 10 2 0

20 178 195 110 38 10 2 0

21 406 474 294 122 38 10 2 0

22 888 1086 733 338 124 38 10 2 0

23 1876 2382 1711 868 350 124 38 10 2 0

24 3845 5028 3815 2075 914 352 124 38 10 2 0

25 7657 10304 8160 4716 2222 926 352 124 38 10 2 0
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α
′m

2

J0
;3K

J2
;3K

J4
;3K

J6
;3K

J8
;3K

J1
0
;3K

J1
2
;3K

J1
4
;3K

J1
6
;3K

J1
8
;3K

J2
0
;3K

J2
2
;3K

4 0

5 1 0

6 0 3 0

7 6 5 4 0

8 7 21 10 4 0

9 29 44 37 11 4 0

10 50 122 84 45 11 4 0

11 135 254 227 108 46 11 4 0

12 249 588 498 294 116 46 11 4 0

13 569 1191 1136 668 322 117 46 11 4 0

14 1061 2504 2359 1546 747 330 117 46 11 4 0

15 2184 4885 4938 3278 1756 775 331 117 46 11 4 0

16 4044 9638 9770 6932 3790 1839 783 331 117 46 11 4

17 7804 18183 19255 13918 8113 4013 1867 784 331 117 46 11

18 14160 34268 36625 27663 16509 8671 4096 1875 784 331 117 46

19 26159 62704 69034 53180 33151 17810 8898 4124 1876 784 331 117

20 46461 114071 126973 100951 64405 36059 18381 8981 4132 1876 784 331

21 82968 203202 231136 187165 123324 70634 37407 18608 9009 4133 1876 784

22 144356 359209 413075 342732 230632 136240 73668 37982 18691 9017 4133 1876

23 250925 624938 730729 616388 425446 256624 142806 75029 38209 18719 9018 4133

24 428144 1078397 1274031 1095794 770702 476487 270343 145887 75604 38292 18727 9018

25 727755 1837377 2199827 1920245 1378855 868644 504339 277036 147252 75831 38320 18728

α
′m

2

J0
;5K

J2
;5K

J4
;5K

J6
;5K

J8
;5K

J1
0
;5K

J1
2
;5K

J1
4
;5K

J1
6
;5K

J1
8
;5K

J2
0
;5K

J2
2
;5K

J2
4
;5K

J2
6
;5K

10 0

11 1 0

12 0 3 0

13 7 6 4 0

14 10 26 11 4 0

15 37 58 46 12 4 0

16 70 163 111 54 12 4 0

17 188 355 305 141 55 12 4 0

18 359 832 696 394 149 55 12 4 0

19 821 1726 1616 931 428 150 55 12 4 0

20 1574 3664 3429 2198 1035 436 150 55 12 4 0

21 3240 7267 7266 4762 2489 1069 437 150 55 12 4 0

22 6100 14444 14582 10210 5493 2597 1077 437 150 55 12 4 0

23 11809 27539 28985 20800 11934 5800 2631 1078 437 150 55 12 4 0

24 21646 52203 55668 41719 24651 12729 5908 2639 1078 437 150 55 12 4

25 40108 96213 105581 80976 49997 26553 13040 5942 2640 1078 437 150 55 12
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α
′m

2

J0
;7K

J2
;7K

J4
;7K

J6
;7K

J8
;7K

J1
0
;7K

J1
2
;7K

J1
4
;7K

18 0

19 1 0

20 0 3 0

21 7 6 4 0

22 11 27 11 4 0

23 41 63 47 12 4 0

24 78 180 120 55 12 4 0

25 214 402 336 150 56 12 4 0

4.B.2 8 supercharges in six dimensions

The tables in this subsection are based on theN6d = (1, 0) partition function

(4.196), organized in terms of multiplicity generating functions Gn1,n2,p(q),

see (4.216).

α
′m

2

J0
,2

;0K

J1
,2

;0K

J2
,2

;0K

J3
,2

;0K

J4
,2

;0K

J5
,2

;0K

J6
,2

;0K

J7
,2

;0K

J8
,2

;0K

J9
,2

;0K

J1
0
,2

;0K

J1
1
,2

;0K

1 0

2 1 0

3 1 1 0

4 4 2 1 0

5 6 7 2 1 0

6 19 13 8 2 1 0

7 34 38 16 8 2 1 0

8 81 79 48 17 8 2 1 0

9 156 184 103 51 17 8 2 1 0

10 332 378 252 113 52 17 8 2 1 0

11 636 813 530 279 116 52 17 8 2 1 0

12 1276 1623 1171 604 289 117 52 17 8 2 1 0

13 2404 3290 2395 1350 631 292 117 52 17 8 2 1

14 4614 6386 4962 2816 1427 641 293 117 52 17 8 2

15 8537 12406 9823 5912 3001 1454 644 293 117 52 17 8

16 15853 23445 19436 11896 6361 3078 1464 645 293 117 52 17

17 28748 44075 37346 23836 12913 6549 3105 1467 645 293 117 52

18 52034 81247 71315 46446 26104 13368 6626 3115 1468 645 293 117

19 92579 148705 133388 89732 51295 27149 13556 6653 3118 1468 645 293

20 163950 268145 247448 169908 99935 53631 27607 13633 6663 3119 1468 645

21 286638 479693 451900 318623 190744 104983 54682 27795 13660 6666 3119 1468

22 498178 848018 818105 588270 360520 201413 107347 55140 27872 13670 6667 3119

23 856969 1487396 1462590 1075628 670688 382510 206529 108401 55328 27899 13673 6667

24 1465054 2583018 2592572 1942043 1235427 715151 393379 208899 108859 55405 27909 13674

25 2483037 4452127 4547623 3474093 2246578 1323605 737611 398523 209953 109047 55432 27912
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α
′m

2

J0
,0

;2K

J1
,0

;2K

J2
,0

;2K

J3
,0

;2K

J4
,0

;2K

J5
,0

;2K

J6
,0

;2K

J7
,0

;2K

J8
,0

;2K

J9
,0

;2K

J1
0
,0

;2K

J1
1
,0

;2K

2 0

3 1 0

4 0 2 0

5 3 3 3 0

6 4 9 4 3 0

7 13 20 17 5 3 0

8 20 50 34 19 5 3 0

9 53 101 93 43 20 5 3 0

10 93 224 192 115 45 20 5 3 0

11 203 449 446 252 125 46 20 5 3 0

12 369 924 903 589 275 127 46 20 5 3 0

13 743 1798 1920 1241 659 285 128 46 20 5 3 0

14 1355 3523 3792 2664 1405 683 287 128 46 20 5 3

15 2585 6673 7601 5410 3071 1476 693 288 128 46 20 5

16 4662 12617 14601 10981 6311 3245 1500 695 288 128 46 20

17 8585 23303 28083 21538 13007 6741 3317 1510 696 288 128 46

18 15272 42800 52540 41953 25810 13982 6916 3341 1512 696 288 128

19 27351 77315 97864 79808 50933 28012 14422 6988 3351 1513 696 288

20 47902 138661 178789 150444 97964 55666 29010 14598 7012 3353 1513 696

21 83950 245476 324415 278690 186802 107982 57944 29451 14670 7022 3354 1513

22 144814 431357 580136 511315 349601 207363 112896 58952 29627 14694 7024 3354

23 249137 750026 1029661 925300 648055 391117 217862 115197 59394 29699 14704 7025

24 423589 1294613 1806340 1658994 1183895 730037 412771 222852 116206 59570 29723 14706

25 717200 2214733 3145140 2940833 2142556 1343353 774118 423453 225163 116648 59642 29733
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α
′m

2

J0
,1

;1K

J1
,1

;1K

J2
,1

;1K

J3
,1

;1K

J4
,1

;1K

J5
,1

;1K

J6
,1

;1K

J7
,1

;1K

J8
,1

;1K

J9
,1

;1K

J1
0
,1

;1K

J1
1
,1

;1K

1 0

2 1 0

3 1 2 0

4 4 3 2 0

5 8 9 4 2 0

6 18 23 12 4 2 0

7 39 51 31 13 4 2 0

8 82 114 76 34 13 4 2 0

9 165 249 174 85 35 13 4 2 0

10 333 519 391 203 88 35 13 4 2 0

11 652 1064 843 465 212 89 35 13 4 2 0

12 1260 2137 1776 1024 495 215 89 35 13 4 2 0

13 2396 4202 3645 2203 1102 504 216 89 35 13 4 2

14 4499 8128 7330 4609 2399 1132 507 216 89 35 13 4

15 8321 15488 14450 9428 5080 2478 1141 508 216 89 35 13

16 15236 29063 28022 18898 10511 5280 2508 1144 508 216 89 35

17 27556 53844 53451 37201 21297 10997 5359 2517 1145 508 216 89

18 49336 98540 100527 71985 42376 22425 11198 5389 2520 1145 508 216

19 87449 178260 186521 137212 82828 44899 22915 11277 5398 2521 1145 508

20 153595 319063 341843 257835 159430 88321 46042 23116 11307 5401 2521 1145

21 267352 565412 619252 478197 302417 171054 90889 46533 23195 11316 5402 2521

22 461595 992485 1109824 876142 565992 326453 176672 92036 46734 23225 11319 5402

23 790578 1726764 1968850 1587104 1046065 614658 338400 179255 92527 46813 23234 11320

24 1343972 2979088 3459778 2844391 1910959 1142740 639492 344063 180403 92728 46843 23237

25 2268336 5098709 6025145 5046950 3452679 2099666 1193279 651564 346650 180894 92807 46852
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α
′m

2

J0
,4

;0K

J1
,4

;0K

J2
,4

;0K

J3
,4

;0K

J4
,4

;0K

J5
,4

;0K

J6
,4

;0K

J7
,4

;0K

J8
,4

;0K

J9
,4

;0K

J1
0
,4

;0K

J1
1
,4

;0K

J1
2
,4

;0K

4 0

5 1 0

6 4 1 0

7 9 5 1 0

8 25 13 5 1 0

9 61 38 14 5 1 0

10 142 95 42 14 5 1 0

11 312 238 108 43 14 5 1 0

12 681 536 276 112 43 14 5 1 0

13 1415 1216 642 289 113 43 14 5 1 0

14 2909 2595 1482 680 293 113 43 14 5 1 0

15 5804 5486 3235 1592 693 294 113 43 14 5 1 0

16 11416 11186 6961 3511 1630 697 294 113 43 14 5 1 0

17 21988 22514 14456 7644 3621 1643 698 294 113 43 14 5 1

18 41816 44165 29554 16043 7924 3659 1647 698 294 113 43 14 5

19 78176 85560 58907 33146 16736 8034 3672 1648 698 294 113 43 14

20 144486 162571 115712 66723 34776 17016 8072 3676 1648 698 294 113 43

21 263440 305182 222926 132356 70428 35473 17126 8085 3677 1648 698 294 113

22 475248 564283 423773 257348 140501 72068 35753 17164 8089 3677 1648 698 294

23 847638 1031812 793186 493656 274795 144249 72765 35863 17177 8090 3677 1648 698

24 1497518 1863142 1466875 931993 530067 283053 145893 73045 35901 17181 8090 3677 1648

25 2619670 3330628 2677934 1738092 1006402 547844 286811 146590 73155 35914 17182 8090 3677
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α
′m

2

J0
,6

;0K

J1
,6

;0K

J2
,6

;0K

J3
,6

;0K

J4
,6

;0K

J5
,6

;0K

J6
,6

;0K

J7
,6

;0K

J8
,6

;0K

J9
,6

;0K

J1
0
,6

;0K

J1
1
,6

;0K

J1
2
,6

;0K

J1
3
,6

;0K

7 0

8 1 0

9 4 1 0

10 13 5 1 0

11 35 17 5 1 0

12 101 48 18 5 1 0

13 238 140 52 18 5 1 0

14 575 350 153 53 18 5 1 0

15 1285 860 389 157 53 18 5 1 0

16 2834 1983 976 402 158 53 18 5 1 0

17 5972 4467 2279 1015 406 158 53 18 5 1 0

18 12413 9647 5213 2395 1028 407 158 53 18 5 1 0

19 24997 20422 11410 5513 2434 1032 407 158 53 18 5 1 0

20 49629 41963 24476 12167 5629 2447 1033 407 158 53 18 5 1 0

21 96355 84692 50910 26287 12467 5668 2451 1033 407 158 53 18 5 1

22 184497 167219 103990 55095 27048 12583 5681 2452 1033 407 158 53 18 5

23 347237 324945 207612 113323 56917 27348 12622 5685 2452 1033 407 158 53 18

24 645476 620525 407840 227879 117556 57678 27464 12635 5686 2452 1033 407 158 53

25 1183084 1168737 786848 450666 237343 119382 57978 27503 12639 5686 2452 1033 407 158
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α
′m

2

J0
,2

;2K

J1
,2

;2K

J2
,2

;2K

J3
,2

;2K

J4
,2

;2K

J5
,2

;2K

J6
,2

;2K

J7
,2

;2K

J8
,2

;2K

J9
,2

;2K

J1
0
,2

;2K

J1
1
,2

;2K

3 0

4 1 0

5 3 1 0

6 9 6 1 0

7 22 16 6 1 0

8 54 47 19 6 1 0

9 122 114 57 19 6 1 0

10 269 282 147 60 19 6 1 0

11 570 628 372 157 60 19 6 1 0

12 1182 1397 867 408 160 60 19 6 1 0

13 2384 2944 1973 966 418 160 60 19 6 1 0

14 4720 6137 4285 2249 1002 421 160 60 19 6 1 0

15 9164 12349 9114 4962 2351 1012 421 160 60 19 6 1

16 17509 24540 18781 10746 5247 2387 1015 421 160 60 19 6

17 32937 47598 37992 22468 11461 5349 2397 1015 421 160 60 19

18 61121 91162 75102 46159 24208 11749 5385 2400 1015 421 160 60

19 111963 171440 146106 92470 50163 24932 11851 5395 2400 1015 421 160

20 202707 318632 279173 182328 101434 51941 25220 11887 5398 2400 1015 421

21 362956 583695 526058 352627 201679 105547 52668 25322 11897 5398 2400 1015

22 643253 1057824 976881 672443 393429 210967 107334 52956 25358 11900 5398 2400

23 1129052 1894240 1792109 1262534 756265 413603 215118 108061 53058 25368 11900 5398

24 1963846 3359194 3247454 2341077 1431348 799141 423000 216908 108349 53094 25371 11900

25 3386710 5896540 5821871 4284997 2674272 1520012 819640 427160 217635 108451 53104 25371
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α
′m

2

J0
,4

;2K

J1
,4

;2K

J2
,4

;2K

J3
,4

;2K

J4
,4

;2K

J5
,4

;2K

J6
,4

;2K

J7
,4

;2K

J8
,4

;2K

J9
,4

;2K

J1
0
,4

;2K

J1
1
,4

;2K

J1
2
,4

;2K

6 0

7 3 0

8 9 3 0

9 33 12 3 0

10 81 45 12 3 0

11 218 126 48 12 3 0

12 504 345 138 48 12 3 0

13 1169 849 393 141 48 12 3 0

14 2525 2025 989 405 141 48 12 3 0

15 5415 4556 2426 1037 408 141 48 12 3 0

16 11115 9997 5574 2569 1049 408 141 48 12 3 0

17 22527 21139 12502 5988 2617 1052 408 141 48 12 3 0

18 44383 43734 26921 13577 6131 2629 1052 408 141 48 12 3 0

19 86277 88152 56723 29598 13994 6179 2632 1052 408 141 48 12 3

20 164309 174452 116181 63019 30686 14137 6191 2632 1052 408 141 48 12

21 308983 338438 233542 130513 65753 31103 14185 6194 2632 1052 408 141 48

22 571846 646421 459542 264959 136982 66844 31246 14197 6194 2632 1052 408 141

23 1046250 1215097 889787 526615 279815 139729 67261 31294 14200 6194 2632 1052 408

24 1889540 2253670 1693826 1029156 559415 286341 140820 67404 31306 14200 6194 2632 1052

25 3377343 4124779 3179821 1977217 1099765 574444 289091 141237 67452 31309 14200 6194 2632

α
′m

2

J0
,0

;4K

J1
,0

;4K

J2
,0

;4K

J3
,0

;4K

J4
,0

;4K

J5
,0

;4K

J6
,0

;4K

J7
,0

;4K

J8
,0

;4K

J9
,0

;4K

J1
0
,0

;4K

J1
1
,0

;4K

J1
2
,0

;4K

J1
3
,0

;4K

6 0 0

7 1 1 0

8 2 2 1 0

9 5 10 4 1 0

10 12 20 15 4 1 0

11 30 58 38 18 4 1 0

12 61 125 104 44 18 4 1 0

13 135 296 245 132 47 18 4 1 0

14 273 613 575 313 139 47 18 4 1 0

15 555 1320 1260 766 343 142 47 18 4 1 0

16 1087 2639 2719 1704 846 350 142 47 18 4 1 0

17 2115 5333 5628 3792 1926 877 353 142 47 18 4 1 0

18 3999 10325 11477 7967 4333 2008 884 353 142 47 18 4 1 0

19 7521 19947 22744 16616 9280 4568 2039 887 353 142 47 18 4 1

20 13858 37496 44413 33421 19571 9854 4651 2046 887 353 142 47 18 4

21 25303 70043 84963 66421 39975 20993 10091 4682 2049 887 353 142 47 18

22 45553 128294 160356 128808 80349 43201 21580 10174 4689 2049 887 353 142 47

23 81270 233155 297815 246711 157849 87619 44657 21818 10205 4692 2049 887 353 142

24 143279 417523 546529 463836 305575 173443 90956 45246 21901 10212 4692 2049 887 353

25 250518 741533 989832 861982 581093 338524 180996 92425 45484 21932 10215 4692 2049 887
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α
′m

2

J0
,2

;4K

J1
,2

;4K

J2
,2

;4K

J3
,2

;4K

J4
,2

;4K

J5
,2

;4K

J6
,2

;4K

J7
,2

;4K

J8
,2

;4K

J9
,2

;4K

J1
0
,2

;4K

J1
1
,2

;4K

J1
2
,2

;4K

7 0

8 3 0

9 6 4 0

10 25 13 4 0

11 57 47 14 4 0

12 152 128 57 14 4 0

13 338 338 159 58 14 4 0

14 782 808 447 169 58 14 4 0

15 1644 1886 1098 481 170 58 14 4 0

16 3493 4153 2657 1219 491 170 58 14 4 0

17 7041 8937 5997 2996 1253 492 170 58 14 4 0

18 14124 18564 13258 6912 3120 1263 492 170 58 14 4 0

19 27439 37778 28108 15522 7263 3154 1264 492 170 58 14 4 0

20 52817 74981 58430 33506 16489 7387 3164 1264 492 170 58 14 4

21 99411 146275 118038 70651 35926 16843 7421 3165 1264 492 170 58 14

22 185238 279950 234313 144914 76519 36905 16967 7431 3165 1264 492 170 58

23 339430 527948 455350 291435 158361 78991 37259 17001 7432 3165 1264 492 170

24 615770 980532 871500 573877 321433 164388 79973 37383 17011 7432 3165 1264 492

25 1102442 1798020 1640298 1111406 638384 335362 166872 80327 37417 17012 7432 3165 1264

α
′m

2

J0
,0

;6K

J1
,0

;6K

J2
,0

;6K

J3
,0

;6K

J4
,0

;6K

J5
,0

;6K

J6
,0

;6K

J7
,0

;6K

J8
,0

;6K

J9
,0

;6K

J1
0
,0

;6K

J1
1
,0

;6K

J1
2
,0

;6K

J1
3
,0

;6K

10 0

11 1 0

12 0 2 0

13 5 5 3 0

14 8 16 7 3 0

15 27 42 30 8 3 0

16 50 110 74 34 8 3 0

17 129 253 212 93 35 8 3 0

18 255 581 490 264 97 35 8 3 0

19 565 1258 1184 648 286 98 35 8 3 0

20 1101 2674 2587 1580 706 290 98 35 8 3 0

21 2258 5480 5674 3580 1768 728 291 98 35 8 3 0

22 4314 11042 11782 7961 4056 1829 732 291 98 35 8 3 0

23 8389 21690 24263 16956 9193 4251 1851 733 291 98 35 8 3 0

24 15646 41956 48269 35421 19829 9701 4312 1855 733 291 98 35 8 3

25 29297 79620 94929 71854 42078 21153 9899 4334 1856 733 291 98 35 8
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α
′m

2

J0
,3

;1K

J1
,3

;1K

J2
,3

;1K

J3
,3

;1K

J4
,3

;1K

J5
,3

;1K

J6
,3

;1K

J7
,3

;1K

J8
,3

;1K

J9
,3

;1K

J1
0
,3

;1K

J1
1
,3

;1K

3 0

4 1 0

5 4 1 0

6 9 5 1 0

7 26 15 5 1 0

8 61 42 16 5 1 0

9 140 109 48 16 5 1 0

10 311 261 127 49 16 5 1 0

11 669 604 318 133 49 16 5 1 0

12 1387 1343 756 336 134 49 16 5 1 0

13 2833 2883 1726 815 342 134 49 16 5 1 0

14 5638 6031 3797 1887 833 343 134 49 16 5 1 0

15 11026 12313 8123 4213 1946 839 343 134 49 16 5 1

16 21191 24598 16912 9138 4376 1964 840 343 134 49 16 5

17 40119 48224 34431 19284 9563 4435 1970 840 343 134 49 16

18 74828 92924 68660 39746 20332 9726 4453 1971 840 343 134 49

19 137838 176248 134437 80231 42221 20759 9785 4459 1971 840 343 134

20 250749 329537 258807 158890 85837 43278 20922 9803 4460 1971 840 343

21 451108 608030 490719 309257 171219 88345 43705 20981 9809 4460 1971 840

22 802990 1108150 917317 592528 335580 176928 89404 43868 20999 9810 4460 1971

23 1415399 1996715 1692631 1118817 647375 348202 179445 89831 43927 21005 9810 4460

24 2471579 3559576 3085506 2084291 1230561 674467 353944 180504 89994 43945 21006 9810

25 4278524 6282467 5561480 3834679 2307511 1287320 687192 356463 180931 90053 43951 21006
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α
′m

2

J0
,5

;1K

J1
,5

;1K

J2
,5

;1K

J3
,5

;1K

J4
,5

;1K

J5
,5

;1K

J6
,5

;1K

J7
,5

;1K

J8
,5

;1K

J9
,5

;1K

J1
0
,5

;1K

J1
1
,5

;1K

J1
2
,5

;1K

6 0

7 1 0

8 6 1 0

9 17 7 1 0

10 54 23 7 1 0

11 138 73 24 7 1 0

12 341 202 79 24 7 1 0

13 797 518 221 80 24 7 1 0

14 1795 1254 584 227 80 24 7 1 0

15 3879 2912 1441 603 228 80 24 7 1 0

16 8183 6485 3410 1507 609 228 80 24 7 1 0

17 16780 14008 7731 3599 1526 610 228 80 24 7 1 0

18 33692 29414 16985 8239 3665 1532 610 228 80 24 7 1 0

19 66268 60280 36213 18272 8428 3684 1533 610 228 80 24 7 1

20 128089 120877 75329 39321 18782 8494 3690 1533 610 228 80 24 7

21 243471 237770 153142 82512 40618 18971 8513 3691 1533 610 228 80 24

22 456134 459491 305209 169218 85661 41128 19037 8519 3691 1533 610 228 80

23 842758 873960 597152 340066 176532 86960 41317 19056 8520 3691 1533 610 228

24 1537763 1638041 1149250 670793 356528 179691 87470 41383 19062 8520 3691 1533 610

25 2773038 3028963 2178141 1301158 706690 363883 180990 87659 41402 19063 8520 3691 1533
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α
′m

2

J0
,1

;3K

J1
,1

;3K

J2
,1

;3K

J3
,1

;3K

J4
,1

;3K

J5
,1

;3K

J6
,1

;3K

J7
,1

;3K

J8
,1

;3K

J9
,1

;3K

J1
0
,1

;3K

J1
1
,1

;3K

4 0

5 1 0

6 3 2 0

7 7 7 2 0

8 19 20 9 2 0

9 44 53 27 9 2 0

10 100 130 76 29 9 2 0

11 215 303 195 84 29 9 2 0

12 454 675 472 223 86 29 9 2 0

13 925 1453 1084 552 231 86 29 9 2 0

14 1854 3036 2403 1302 581 233 86 29 9 2 0

15 3630 6184 5144 2948 1387 589 233 86 29 9 2 0

16 6990 12327 10721 6442 3183 1416 591 233 86 29 9 2

17 13233 24088 21797 13674 7043 3269 1424 591 233 86 29 9

18 24712 46250 43391 28292 15133 7283 3298 1426 591 233 86 29

19 45490 87411 84717 57218 31670 15751 7369 3306 1426 591 233 86

20 82763 162815 162618 113413 64772 33187 15992 7398 3308 1426 591 233

21 148802 299261 307244 220754 129748 68318 33810 16078 7406 3308 1426 591

22 264749 543354 572296 422630 255152 137754 69852 34051 16107 7408 3308 1426

23 466300 975347 1051966 797014 493286 272632 141358 70476 34137 16115 7408 3308

24 813740 1732302 1910295 1482317 939075 530438 280808 142897 70717 34166 16117 7408

25 1407443 3046334 3429687 2721679 1762389 1016082 548377 284429 143521 70803 34174 16117
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α
′m

2

J0
,3

;3K

J1
,3

;3K

J2
,3

;3K

J3
,3

;3K

J4
,3

;3K

J5
,3

;3K

J6
,3

;3K

J7
,3

;3K

J8
,3

;3K

J9
,3

;3K

J1
0
,3

;3K

J1
1
,3

;3K

6 0

7 2 0

8 7 2 0

9 24 10 2 0

10 63 38 10 2 0

11 163 109 41 10 2 0

12 385 295 124 41 10 2 0

13 879 736 351 127 41 10 2 0

14 1915 1740 902 366 127 41 10 2 0

15 4066 3931 2202 959 369 127 41 10 2 0

16 8365 8576 5105 2378 974 369 127 41 10 2 0

17 16851 18124 11412 5604 2435 977 369 127 41 10 2 0

18 33194 37328 24640 12713 5781 2450 977 369 127 41 10 2

19 64238 75100 51777 27847 13222 5838 2453 977 369 127 41 10

20 122171 148039 106067 59296 29185 13399 5853 2453 977 369 127 41

21 228951 286468 212660 123042 62633 29695 13456 5856 2453 977 369 127

22 422965 545251 417987 249674 130948 63981 29872 13471 5856 2453 977 369

23 771624 1022124 807305 496442 267714 134322 64491 29929 13474 5856 2453 977

24 1390866 1889717 1534140 969373 536185 275750 135671 64668 29944 13474 5856 2453

25 2479819 3449211 2873001 1861540 1054472 554615 279134 136181 64725 29947 13474 5856

α
′m

2

J0
,1

;5K

J1
,1

;5K

J2
,1

;5K

J3
,1

;5K

J4
,1

;5K

J5
,1

;5K

J6
,1

;5K

J7
,1

;5K

J8
,1

;5K

J9
,1

;5K

J1
0
,1

;5K

J1
1
,1

;5K

J1
2
,1

;5K

J1
3
,1

;5K

8 0

9 1 0

10 3 2 0

11 9 8 2 0

12 26 25 10 2 0

13 62 73 34 10 2 0

14 148 188 105 36 10 2 0

15 332 457 283 116 36 10 2 0

16 721 1056 717 322 118 36 10 2 0

17 1511 2343 1708 839 333 118 36 10 2 0

18 3097 5020 3902 2053 880 335 118 36 10 2 0

19 6181 10457 8566 4793 2183 891 335 118 36 10 2 0

20 12114 21231 18249 10747 5170 2224 893 335 118 36 10 2 0

21 23284 42177 37794 23329 11740 5302 2235 893 335 118 36 10 2 0

22 44053 82157 76466 49173 25807 12125 5343 2237 893 335 118 36 10 2

23 82070 157249 151421 101106 55044 26833 12257 5354 2237 893 335 118 36 10

24 150888 296196 294293 203277 114478 57629 27220 12298 5356 2237 893 335 118 36

25 273843 549904 562169 400661 232669 120665 58663 27352 12309 5356 2237 893 335 118
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4.B.3 16 supercharges in ten dimensions

The tables in this subsection are based on the N10d = 1 partition function

(4.249), organized in terms of multiplicity generating functionsGn1,n2,n3,n4(q),

see (4.262).

α
′m

2

J0
,1
,0
,0K

J1
,1
,0
,0K

J2
,1
,0
,0K

J3
,1
,0
,0K

J4
,1
,0
,0K

J5
,1
,0
,0K

J6
,1
,0
,0K

J7
,1
,0
,0K

J8
,1
,0
,0K

J9
,1
,0
,0K

J1
0
,1
,0
,0K

J1
1
,1
,0
,0K

J1
2
,1
,0
,0K

J1
3
,1
,0
,0K

J1
4
,1
,0
,0K

3 0

4 1 0

5 1 1 0

6 1 2 1 0

7 2 2 2 1 0

8 5 5 3 2 1 0

9 7 9 6 3 2 1 0

10 13 17 12 7 3 2 1 0

11 21 29 23 13 7 3 2 1 0

12 37 54 42 26 14 7 3 2 1 0

13 60 90 77 48 27 14 7 3 2 1 0

14 101 159 137 92 51 28 14 7 3 2 1 0

15 165 268 243 163 98 52 28 14 7 3 2 1 0

16 274 457 422 298 178 101 53 28 14 7 3 2 1 0

17 441 760 732 522 326 184 102 53 28 14 7 3 2 1 0

18 717 1276 1248 924 580 341 187 103 53 28 14 7 3 2 1

19 1149 2088 2121 1592 1032 608 347 188 103 53 28 14 7 3 2

20 1847 3443 3551 2750 1801 1092 623 350 189 103 53 28 14 7 3

21 2928 5585 5929 4656 3134 1912 1120 629 351 189 103 53 28 14 7

22 4647 9060 9790 7886 5361 3351 1972 1135 632 352 189 103 53 28 14

23 7310 14538 16095 13160 9148 5762 3464 2000 1141 633 352 189 103 53 28

24 11482 23301 26221 21906 15414 9894 5982 3524 2015 1144 634 352 189 103 53

25 17908 36995 42535 36063 25846 16754 10303 6095 3552 2021 1145 634 352 189 103
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α
′m

2

J0
,0
,1
,0K

J1
,0
,1
,0K

J2
,0
,1
,0K

J3
,0
,1
,0K

J4
,0
,1
,0K

J5
,0
,1
,0K

J6
,0
,1
,0K

J7
,0
,1
,0K

J8
,0
,1
,0K

J9
,0
,1
,0K

J1
0
,0
,1
,0K

J1
1
,0
,1
,0K

J1
2
,0
,1
,0K

J1
3
,0
,1
,0K

J1
4
,0
,1
,0K

4 0

5 1 0

6 0 1 0

7 3 1 1 0

8 2 4 1 1 0

9 7 6 5 1 1 0

10 10 15 7 5 1 1 0

11 22 24 20 8 5 1 1 0

12 30 51 33 21 8 5 1 1 0

13 64 85 73 38 22 8 5 1 1 0

14 97 164 125 83 39 22 8 5 1 1 0

15 179 276 249 148 88 40 22 8 5 1 1 0

16 282 502 431 297 158 89 40 22 8 5 1 1 0

17 496 842 803 529 321 163 90 40 22 8 5 1 1 0

18 784 1473 1379 993 578 331 164 90 40 22 8 5 1 1 0

19 1335 2449 2462 1748 1099 602 336 165 90 40 22 8 5 1 1

20 2117 4164 4181 3153 1951 1149 612 337 165 90 40 22 8 5 1

21 3497 6853 7238 5454 3559 2058 1173 617 338 165 90 40 22 8 5

22 5546 11401 12131 9549 6218 3770 2108 1183 618 338 165 90 40 22 8

23 8981 18557 20509 16261 10990 6637 3878 2132 1188 619 338 165 90 40 22

24 14141 30342 33931 27794 18890 11791 6849 3928 2142 1189 619 338 165 90 40

25 22570 48846 56288 46628 32585 20406 12218 6957 3952 2147 1190 619 338 165 90
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α
′m

2

J0
,0
,0
,2K

J1
,0
,0
,2K

J2
,0
,0
,2K

J3
,0
,0
,2K

J4
,0
,0
,2K

J5
,0
,0
,2K

J6
,0
,0
,2K

J7
,0
,0
,2K

J8
,0
,0
,2K

J9
,0
,0
,2K

J1
0
,0
,0
,2K

J1
1
,0
,0
,2K

J1
2
,0
,0
,2K

J1
3
,0
,0
,2K

J1
4
,0
,0
,2K

5 0

6 1 0

7 1 1 0

8 3 2 1 0

9 4 6 2 1 0

10 10 9 7 2 1 0

11 16 22 12 7 2 1 0

12 32 40 29 13 7 2 1 0

13 52 80 55 32 13 7 2 1 0

14 98 141 115 62 33 13 7 2 1 0

15 160 267 211 132 65 33 13 7 2 1 0

16 286 463 409 249 139 66 33 13 7 2 1 0

17 469 835 733 491 266 142 66 33 13 7 2 1 0

18 805 1431 1351 900 531 273 143 66 33 13 7 2 1 0

19 1314 2489 2375 1685 985 548 276 143 66 33 13 7 2 1 0

20 2199 4199 4218 3018 1864 1025 555 277 143 66 33 13 7 2 1

21 3558 7131 7270 5438 3378 1951 1042 558 277 143 66 33 13 7 2

22 5837 11842 12571 9530 6148 3560 1991 1049 559 277 143 66 33 13 7

23 9361 19709 21279 16701 10888 6520 3647 2008 1052 559 277 143 66 33 13

24 15106 32300 35990 28688 19266 11624 6704 3687 2015 1053 559 277 143 66 33

25 23999 52855 59966 49138 33418 20692 11999 6791 3704 2018 1053 559 277 143 66
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α
′m

2

J0
,0
,0
,1K

J1
,0
,0
,1K

J2
,0
,0
,1K

J3
,0
,0
,1K

J4
,0
,0
,1K

J5
,0
,0
,1K

J6
,0
,0
,1K

J7
,0
,0
,1K

J8
,0
,0
,1K

J9
,0
,0
,1K

J1
0
,0
,0
,1K

J1
1
,0
,0
,1K

J1
2
,0
,0
,1K

J1
3
,0
,0
,1K

J1
4
,0
,0
,1K

2 0

3 1 0

4 0 1 0

5 1 1 1 0

6 2 2 1 1 0

7 2 4 3 1 1 0

8 4 7 5 3 1 1 0

9 8 12 10 6 3 1 1 0

10 12 22 19 11 6 3 1 1 0

11 20 38 35 22 12 6 3 1 1 0

12 34 66 62 43 23 12 6 3 1 1 0

13 54 113 112 77 46 24 12 6 3 1 1 0

14 89 190 197 142 85 47 24 12 6 3 1 1 0

15 147 318 342 256 158 88 48 24 12 6 3 1 1 0

16 233 532 587 452 288 166 89 48 24 12 6 3 1 1 0

17 376 877 1001 792 517 304 169 90 48 24 12 6 3 1 1

18 603 1438 1686 1376 916 550 312 170 90 48 24 12 6 3 1

19 954 2345 2823 2354 1610 983 566 315 171 90 48 24 12 6 3

20 1511 3795 4684 4003 2789 1740 1016 574 316 171 90 48 24 12 6

21 2383 6105 7716 6745 4795 3037 1808 1032 577 317 171 90 48 24 12

22 3727 9775 12620 11265 8164 5260 3169 1841 1040 578 317 171 90 48 24

23 5821 15552 20513 18678 13782 9019 5514 3237 1857 1043 579 317 171 90 48

24 9050 24624 33121 30757 23075 15332 9498 5647 3270 1865 1044 579 317 171 90

25 13998 38797 53183 50273 38366 25850 16217 9754 5715 3286 1868 1045 579 317 171
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α
′m

2

J0
,2
,0
,0K

J1
,2
,0
,0K

J2
,2
,0
,0K

J3
,2
,0
,0K

J4
,2
,0
,0K

J5
,2
,0
,0K

J6
,2
,0
,0K

J7
,2
,0
,0K

J8
,2
,0
,0K

J9
,2
,0
,0K

J1
0
,2
,0
,0K

J1
1
,2
,0
,0K

J1
2
,2
,0
,0K

J1
3
,2
,0
,0K

J1
4
,2
,0
,0K

6 0

7 1 0

8 1 1 0

9 4 2 1 0

10 5 5 2 1 0

11 13 9 6 2 1 0

12 21 21 10 6 2 1 0

13 45 38 25 11 6 2 1 0

14 74 78 46 26 11 6 2 1 0

15 143 141 98 50 27 11 6 2 1 0

16 240 269 178 106 51 27 11 6 2 1 0

17 437 477 349 198 110 52 27 11 6 2 1 0

18 731 870 629 389 206 111 52 27 11 6 2 1 0

19 1280 1515 1170 713 409 210 112 52 27 11 6 2 1 0

20 2126 2673 2067 1335 753 417 211 112 52 27 11 6 2 1 0

21 3619 4576 3709 2394 1422 773 421 212 112 52 27 11 6 2 1

22 5952 7867 6438 4328 2563 1462 781 422 212 112 52 27 11 6 2

23 9908 13251 11235 7604 4668 2650 1482 785 423 212 112 52 27 11 6

24 16128 22320 19168 13377 8250 4840 2690 1490 786 423 212 112 52 27 11

25 26386 37038 32718 23070 14611 8594 4927 2710 1494 787 423 212 112 52 27

α
′m

2

J0
,3
,0
,0K

J1
,3
,0
,0K

J2
,3
,0
,0K

J3
,3
,0
,0K

J4
,3
,0
,0K

J5
,3
,0
,0K

J6
,3
,0
,0K

J7
,3
,0
,0K

J8
,3
,0
,0K

J9
,3
,0
,0K

J1
0
,3
,0
,0K

J1
1
,3
,0
,0K

J1
2
,3
,0
,0K

J1
3
,3
,0
,0K

J1
4
,3
,0
,0K

9 0

10 1 0

11 1 1 0

12 4 2 1 0

13 8 5 2 1 0

14 18 12 6 2 1 0

15 34 26 13 6 2 1 0

16 73 55 30 14 6 2 1 0

17 135 112 63 31 14 6 2 1 0

18 261 222 133 67 32 14 6 2 1 0

19 479 428 264 141 68 32 14 6 2 1 0

20 885 815 520 285 145 69 32 14 6 2 1 0

21 1577 1512 996 562 293 146 69 32 14 6 2 1 0

22 2822 2776 1881 1091 583 297 147 69 32 14 6 2 1 0

23 4922 5005 3482 2067 1133 591 298 147 69 32 14 6 2 1 0

24 8567 8930 6366 3865 2162 1154 595 299 147 69 32 14 6 2 1

25 14672 15706 11460 7105 4054 2204 1162 596 299 147 69 32 14 6 2

179



α
′m

2

J0
,1
,1
,0K

J1
,1
,1
,0K

J2
,1
,1
,0K

J3
,1
,1
,0K

J4
,1
,1
,0K

J5
,1
,1
,0K

J6
,1
,1
,0K

J7
,1
,1
,0K

J8
,1
,1
,0K

J9
,1
,1
,0K

J1
0
,1
,1
,0K

J1
1
,1
,1
,0K

J1
2
,1
,1
,0K

J1
3
,1
,1
,0K

J1
4
,1
,1
,0K

7 0

8 1 0

9 1 1 0

10 6 2 1 0

11 10 7 2 1 0

12 23 17 8 2 1 0

13 43 36 18 8 2 1 0

14 90 77 43 19 8 2 1 0

15 162 157 91 44 19 8 2 1 0

16 312 307 194 98 45 19 8 2 1 0

17 554 591 385 208 99 45 19 8 2 1 0

18 1010 1110 763 423 215 100 45 19 8 2 1 0

19 1764 2041 1453 844 437 216 100 45 19 8 2 1 0

20 3105 3701 2741 1636 882 444 217 100 45 19 8 2 1 0

21 5310 6608 5043 3111 1718 896 445 217 100 45 19 8 2 1 0

22 9113 11636 9178 5810 3297 1756 903 446 217 100 45 19 8 2 1

23 15325 20254 16405 10673 6191 3379 1770 904 446 217 100 45 19 8 2

24 25728 34873 29035 19314 11467 6378 3417 1777 905 446 217 100 45 19 8

25 42607 59411 50676 34509 20876 11851 6460 3431 1778 905 446 217 100 45 19

α
′m

2

J0
,2
,1
,0K

J1
,2
,1
,0K

J2
,2
,1
,0K

J3
,2
,1
,0K

J4
,2
,1
,0K

J5
,2
,1
,0K

J6
,2
,1
,0K

J7
,2
,1
,0K

J8
,2
,1
,0K

J9
,2
,1
,0K

J1
0
,2
,1
,0K

J1
1
,2
,1
,0K

J1
2
,2
,1
,0K

J1
3
,2
,1
,0K

J1
4
,2
,1
,0K

10 0

11 1 0

12 1 1 0

13 7 2 1 0

14 13 8 2 1 0

15 36 20 9 2 1 0

16 70 50 21 9 2 1 0

17 160 109 57 22 9 2 1 0

18 307 243 123 58 22 9 2 1 0

19 629 497 283 130 59 22 9 2 1 0

20 1176 1016 583 297 131 59 22 9 2 1 0

21 2259 1983 1219 623 304 132 59 22 9 2 1 0

22 4119 3837 2400 1306 637 305 132 59 22 9 2 1 0

23 7570 7206 4727 2606 1346 644 306 132 59 22 9 2 1 0

24 13461 13400 8972 5157 2693 1360 645 306 132 59 22 9 2 1 0

25 23950 24383 16923 9892 5364 2733 1367 646 306 132 59 22 9 2 1
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α
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J0
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,0
,2K

J1
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,0
,2K
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,0
,2K

J3
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,0
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,0
,2K
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,0
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,0
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J7
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,0
,2K
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,0
,2K

J9
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,0
,2K

J1
0
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,0
,2K

J1
1
,1
,0
,2K

J1
2
,1
,0
,2K

J1
3
,1
,0
,2K

J1
4
,1
,0
,2K

8 0

9 1 0

10 3 1 0

11 8 4 1 0

12 17 11 4 1 0

13 38 27 12 4 1 0

14 76 61 30 12 4 1 0

15 153 133 71 31 12 4 1 0

16 290 273 158 74 31 12 4 1 0

17 548 547 336 168 75 31 12 4 1 0

18 1003 1058 687 361 171 75 31 12 4 1 0

19 1819 2012 1365 752 371 172 75 31 12 4 1 0

20 3227 3732 2646 1511 777 374 172 75 31 12 4 1 0

21 5674 6825 5017 2973 1576 787 375 172 75 31 12 4 1 0

22 9821 12252 9337 5702 3121 1601 790 375 172 75 31 12 4 1 0

23 16851 21737 17080 10752 6035 3186 1611 791 375 172 75 31 12 4 1

24 28565 38015 30794 19888 11457 6183 3211 1614 791 375 172 75 31 12 4

25 48036 65800 54747 36281 21354 11792 6248 3221 1615 791 375 172 75 31 12

α
′m

2

J0
,0
,2
,0K

J1
,0
,2
,0K

J2
,0
,2
,0K

J3
,0
,2
,0K

J4
,0
,2
,0K

J5
,0
,2
,0K

J6
,0
,2
,0K

J7
,0
,2
,0K

J8
,0
,2
,0K

J9
,0
,2
,0K

J1
0
,0
,2
,0K

J1
1
,0
,2
,0K

J1
2
,0
,2
,0K

J1
3
,0
,2
,0K

J1
4
,0
,2
,0K

10 0

11 2 0

12 2 2 0

13 11 4 2 0

14 16 15 4 2 0

15 43 30 17 4 2 0

16 78 75 34 17 4 2 0

17 169 150 91 36 17 4 2 0

18 297 325 185 95 36 17 4 2 0

19 593 622 414 201 97 36 17 4 2 0

20 1043 1236 812 451 205 97 36 17 4 2 0

21 1935 2296 1656 904 467 207 97 36 17 4 2 0

22 3369 4316 3139 1863 941 471 207 97 36 17 4 2 0

23 6003 7793 6029 3594 1957 957 473 207 97 36 17 4 2 0

24 10261 14093 11090 6972 3804 1994 961 473 207 97 36 17 4 2 0

25 17753 24813 20426 13020 7444 3898 2010 963 473 207 97 36 17 4 2
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α
′m

2

J0
,1
,0
,1K

J1
,1
,0
,1K

J2
,1
,0
,1K

J3
,1
,0
,1K

J4
,1
,0
,1K

J5
,1
,0
,1K

J6
,1
,0
,1K

J7
,1
,0
,1K

J8
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,0
,1K

J9
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,0
,1K

J1
0
,1
,0
,1K

J1
1
,1
,0
,1K

J1
2
,1
,0
,1K

J1
3
,1
,0
,1K

J1
4
,1
,0
,1K

5 0

6 1 0

7 2 1 0

8 4 3 1 0

9 8 6 3 1 0

10 15 14 7 3 1 0

11 29 28 16 7 3 1 0

12 53 55 34 17 7 3 1 0

13 96 107 70 36 17 7 3 1 0

14 171 201 138 76 37 17 7 3 1 0

15 300 369 268 153 78 37 17 7 3 1 0

16 520 671 506 301 159 79 37 17 7 3 1 0

17 891 1195 939 578 316 161 79 37 17 7 3 1 0

18 1512 2101 1710 1089 611 322 162 79 37 17 7 3 1 0

19 2541 3654 3071 2012 1163 626 324 162 79 37 17 7 3 1 0

20 4233 6280 5439 3663 2167 1196 632 325 162 79 37 17 7 3 1

21 6999 10680 9518 6573 3978 2241 1211 634 325 162 79 37 17 7 3

22 11481 18008 16466 11648 7199 4135 2274 1217 635 325 162 79 37 17 7

23 18704 30086 28203 20395 12861 7519 4209 2289 1219 635 325 162 79 37 17

24 30270 49864 47842 35340 22696 13500 7676 4242 2295 1220 635 325 162 79 37

25 48683 82031 80451 60618 39634 23943 13822 7750 4257 2297 1220 635 325 162 79
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,0
,1K

J1
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,0
,1K

J2
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,0
,1K

J3
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,0
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,0
,1K

J5
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,0
,1K

J6
,2
,0
,1K

J7
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,0
,1K

J8
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,0
,1K

J9
,2
,0
,1K

J1
0
,2
,0
,1K

J1
1
,2
,0
,1K

J1
2
,2
,0
,1K

J1
3
,2
,0
,1K

8 0

9 1 0

10 2 1 0

11 6 3 1 0

12 14 8 3 1 0

13 30 20 9 3 1 0

14 62 46 22 9 3 1 0

15 125 98 52 23 9 3 1 0

16 241 204 114 54 23 9 3 1 0

17 460 408 242 120 55 23 9 3 1 0

18 855 798 493 258 122 55 23 9 3 1 0

19 1561 1522 982 531 264 123 55 23 9 3 1 0

20 2806 2848 1904 1069 547 266 123 55 23 9 3 1 0

21 4977 5233 3621 2094 1107 553 267 123 55 23 9 3 1 0

22 8706 9473 6754 4020 2181 1123 555 267 123 55 23 9 3 1

23 15067 16902 12404 7571 4212 2219 1129 556 267 123 55 23 9 3

24 25791 29782 22437 14033 7976 4299 2235 1131 556 267 123 55 23 9

25 43720 51867 40062 25611 14867 8168 4337 2241 1132 556 267 123 55 23
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α
′m

2

J0
,0
,1
,1K

J1
,0
,1
,1K

J2
,0
,1
,1K

J3
,0
,1
,1K

J4
,0
,1
,1K

J5
,0
,1
,1K

J6
,0
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,1K

J7
,0
,1
,1K

J8
,0
,1
,1K

J9
,0
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,1K

J1
0
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,1
,1K

J1
1
,0
,1
,1K

J1
2
,0
,1
,1K

J1
3
,0
,1
,1K

J1
4
,0
,1
,1K

7 0

8 1 0

9 3 1 0

10 5 4 1 0

11 12 9 4 1 0

12 25 22 10 4 1 0

13 47 47 26 10 4 1 0

14 90 98 58 27 10 4 1 0

15 169 195 125 62 27 10 4 1 0

16 304 378 258 136 63 27 10 4 1 0

17 547 713 516 286 140 63 27 10 4 1 0

18 966 1322 1001 584 297 141 63 27 10 4 1 0

19 1677 2402 1903 1151 612 301 141 63 27 10 4 1 0

20 2887 4299 3540 2226 1220 623 302 141 63 27 10 4 1 0

21 4916 7584 6475 4207 2381 1248 627 302 141 63 27 10 4 1 0

22 8274 13215 11659 7808 4542 2450 1259 628 302 141 63 27 10 4 1

23 13822 22755 20706 14260 8510 4698 2478 1263 628 302 141 63 27 10 4

24 22889 38785 36301 25672 15681 8850 4767 2489 1264 628 302 141 63 27 10

25 37594 65459 62931 45588 28475 16395 9006 4795 2493 1264 628 302 141 63 27
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J1
0
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J1
1
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,1
,1K

J1
2
,1
,1
,1K

J1
3
,1
,1
,1K

J1
4
,1
,1
,1K

10 0

11 1 0

12 4 1 0

13 11 5 1 0

14 28 15 5 1 0

15 65 40 16 5 1 0

16 141 99 44 16 5 1 0

17 292 224 111 45 16 5 1 0

18 587 483 259 115 45 16 5 1 0

19 1143 1007 572 271 116 45 16 5 1 0

20 2176 2023 1216 607 275 116 45 16 5 1 0

21 4056 3959 2495 1306 619 276 116 45 16 5 1 0

22 7420 7580 4977 2710 1341 623 276 116 45 16 5 1 0

23 13361 14206 9692 5467 2800 1353 624 276 116 45 16 5 1 0

24 23720 26160 18474 10762 5683 2835 1357 624 276 116 45 16 5 1 0

25 41558 47429 34562 20726 11258 5773 2847 1358 624 276 116 45 16 5 1
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J7
,0
,0
,3K

J8
,0
,0
,3K
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J1
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,3K

J1
1
,0
,0
,3K

J1
2
,0
,0
,3K

J1
3
,0
,0
,3K

J1
4
,0
,0
,3K

9 0

10 2 0

11 3 2 0

12 7 5 2 0

13 16 13 5 2 0

14 32 30 15 5 2 0

15 62 65 36 15 5 2 0

16 121 135 82 38 15 5 2 0

17 222 272 176 88 38 15 5 2 0

18 406 525 368 193 90 38 15 5 2 0

19 731 997 732 412 199 90 38 15 5 2 0

20 1291 1848 1431 836 429 201 90 38 15 5 2 0

21 2247 3367 2722 1662 880 435 201 90 38 15 5 2 0

22 3879 6033 5078 3218 1769 897 437 201 90 38 15 5 2 0

23 6601 10664 9300 6100 3457 1813 903 437 201 90 38 15 5 2 0

24 11134 18593 16784 11343 6620 3564 1830 905 437 201 90 38 15 5 2

25 18612 32056 29830 20770 12428 6862 3608 1836 905 437 201 90 38 15 5

4.C Large spin asymptotics of super Poincaré

multiplicities

This appendix contains some more data on the large spin asymptotics of

N4d = 1, N6d = (1, 0) and N10d = 1 spectra. The leading and sublead-

ing Regge trajectories τQ` (q), τk,p` (q) and τx,y,z` (q) are defined through the

expansion (4.184), (4.232) and (4.275) of super Poincaré multiplicity gener-

ating functions in terms of qn powers (with n denoting the first SO(d− 1)

Dynkin label). They have been computed on the basis of the α′m2 ≤ 25

data given in Section 4.B.1

4.C.1 N4d = 1 multiplets at SO(3) Dynkin label [n→∞]

This appendix contains more data on the asymptotics of universal N4d = 1

multiplets of U(1)R charge Q ≥ 2. The J2n + 1, 2QK multiplicities up to

level q25 determine the associated τ2Q
` (q) coefficients for low charges Q to

the following orders:
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• U(1)R charge Q = 2:

τQ=2
2 (q) = q3 (2 + 11q + 37q2 + 114q3 + 319q4 + 822q5 + 2000q6

+ 4645q7 + 10354q8 + 22317q9 + 46702q10 + 95210q11

+ 189656q12 + . . .)

τQ=2
3 (q) = q3 (2 + 8q + 33q2 + 104q3 + 310q4 + 826q5 + 2093q6

+ 4991q7 + 11454q8 + . . .)

τQ=2
4 (q) = q3 (1 + 5q + 22q2 + 77q3 + 237q4 + 664q5 + . . .)

τQ=2
5 (q) = q4 (3 + 12q + 49q2 + . . .) (4.323)

• U(1)R charge Q = 4:

τQ=4
2 (q) = q8 (2 + 14q + 57q2 + 187q3 + 542q4 + 1438q5 + 3563q6

+ 8376q7 + 18846q8 + 40866q9 + . . .)

τQ=4
3 (q) = q8 (2 + 14q + 58q2 + 200q3 + 591q4 + 1612q5 + . . .)

τQ=4
4 (q) = q8 (2 + 13q + 53q2 + . . .) (4.324)

• U(1)R charge Q = 6:

τQ=6
2 (q) = q15 (2 + 14q + 60q2 + 209q3 + 633q4 + . . .)

τQ=6
3 (q) = q15 (2 + 14q + 64q2 + . . .) (4.325)

Also in the J2n, 2Q + 1K sector, we can expand the subleading trajectories

τ2Q+1
≥2 (q):

• U(1)R charge Q = 1:

τQ=1
2 (q) = 1 + 4q + 15q2 + 50q3 + 143q4 + 379q5 + 947q6 + 2244q7

+ 5103q8 + 11196q9 + 23804q10 + 49252q11 + 99465q12

+ 196522q13 + 380719q14 + . . .

τQ=1
3 (q) = 1 + 5q + 22q2 + 70q3 + 212q4 + 568q5 + 1458q6 + 3496q7

+ 8093q8 + 17936q9 + . . .

τQ=1
4 (q) = 1 + 6q + 24q2 + 83q3 + 252q4 + 698q5 + . . .

τQ=1
5 (q) = 1 + 6q + 25q2 + . . . (4.326)
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• U(1)R charge Q = 3:

τQ=3
2 (q) = q4 (1 + 9q + 37q2 + 120q3 + 347q4 + 922q5 + 2287q6

+ 5385q7 + 12142q8 + 26395q9 + 55605q10 + 113973q11 + . . .)

τQ=3
3 (q) = q4 (4 + 17q + 68q2 + 208q3 + 603q4 + 1573q5 + 3919q6

+ 9195q7 + . . .)

τQ=3
4 (q) = q3 (1 + 7q + 28q2 + 99q3 + 304q4 + 851q5 + . . .)

τQ=3
5 (q) = q3 (2 + 9q + 38q2 + . . .) (4.327)

• U(1)R charge Q = 5:

τQ=5
2 (q) = q10 (1 + 9q + 43q2 + 151q3 + 462q4 + 1277q5 + 3264q6

+ 7865q7 + . . .)

τQ=5
3 (q) = q10 (4 + 20q + 89q2 + 292q3 + . . .)

τQ=5
4 (q) = q9 (1 + 9q + . . .) (4.328)

• U(1)R charge Q = 7:

τQ=7
2 (q) = q18 (1 + 9q + . . .) (4.329)

Note that for all values of the U(1)R charge Q considered here, the leading

q powers of the τQ` (q) at fixed Q hardly vary with ` (at Q = 2, for in-

stance, we can read off τ2
1 , τ

2
2 , τ

2
3 , τ

2
4 ∼ O(q3) and τ2

5 ∼ O(q4) from (4.323)).

In particular, the approximate agreement of the leading q powers of τ1(q)

and τ2(q) supports our claim in the introduction that half of the nonzero

multiplicities exactly match with the stable patterns.

4.C.2 N6d = (1, 0) multiplets at SO(5) Dynkin labels [n→∞, k]

For the universal N6d = (1, 0) multiplets Jn → ∞, k; pK we display some

τk,p`≤5(q) associated with super Poincaré quantum numbers (k, p) beyond the

examples of subsection 5.4. Bosonic multiplets are characterized by the

following asymptotic behaviour:
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• SO(5) Dynkin labels [n→∞, 2] and SU(2)R representation [2]

τ2,2
1 (q) = q4 (1 + 6q + 19q2 + 60q3 + 160q4 + 421q5 + 1015q6 + 2400q7

+ 5398q8 + 11900q9 + 25371q10 + 53107q11 + 108500q12 + 218074q13

+ 430116q14 + 836194q15 + 1600889q16 + . . .)

τ2,2
2 (q) = q5 (3 + 13q + 49q2 + 151q3 + 439q4 + 1166q5 + 2956q6

+ 7119q7 + 16566q8 + 37224q9 + 81414q10 + 173493q11 + . . .)

τ2,2
3 (q) = q6 (3 + 12q + 53q2 + 171q3 + 537q4 + 1486q5 + 3960q6

+ 9876q7 + . . .)

τ2,2
4 (q) = q7 (1 + 8q + 35q2 + 134q3 + 434q4 + . . .)

τ2,2
5 (q) = q9 (4 + . . .) (4.330)

• SO(5) Dynkin labels [n→∞, 4] and SU(2)R representation [0]

τ4,0
1 (q) = q5 (1 + 5q + 14q2 + 43q3 + 113q4 + 294q5 + 698q6 + 1648q7

+ 3677q8 + 8090q9 + 17182q10 + 35919q11 + 73211q12 + 147036q13

+ 289598q14 + 562694q15 + 1076373q16 + . . .)

τ4,0
2 (q) = q6 (1 + 5q + 18q2 + 56q3 + 166q4 + 446q5 + 1143q6 + 2787q7

+ 6549q8 + 14864q9 + 32811q10 + 70532q11 + 148268q12 + . . .)

τ4,0
3 (q) = q9 (4 + 14q + 61q2 + 184q3 + 561q4 + 1495q5 + 3896q6

+ 9478q7 + . . .)

τ4,0
4 (q) = q11 (1 + 8q + 36q2 + 131q3 + . . .) (4.331)

• SO(5) Dynkin labels [n→∞, 0] and SU(2)R representation [4]

τ0,4
1 (q) = q6 (1 + 4q + 18q2 + 47q3 + 142q4 + 353q5 + 887q6 + 2049q7

+ 4692q8 + 10215q9 + 21942q10 + 45608q11 + 93377q12 + 186790q13

+ 368341q14 + . . .)

τ0,4
2 (q) = q6 (3 + 10q + 41q2 + 124q3 + 362q4 + 952q5 + 2424q6

+ 5811q7 + 13526q8 + 30317q9 + . . .)

τ0,4
3 (q) = q5 (1 + 3q + 17q2 + 53q3 + 179q4 + 501q5 + 1392q6 + . . .)

τ0,4
4 (q) = q5 (1 + 3q + 16q2 + 53q3 + . . .) (4.332)
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• SO(5) Dynkin labels [n→∞, 4] and SU(2)R representation [2]

τ4,2
1 (q) = q7 (3 + 12q + 48q2 + 141q3 + 408q4 + 1052q5 + 2632q6

+ 6194q7 + 14200q8 + 31309q9 + 67467q10 + 141443q11

+ 290805q12 + 585447q13 + 1159182q14 + . . .)

τ4,2
2 (q) = q8 (3 + 15q + 63q2 + 206q3 + 623q4 + 1714q5 + 4464q6

+ 11006q7 + 26108q8 + 59679q9 + 132452q10 + . . .)

τ4,2
3 (q) = q10 (3 + 16q + 76q2 + 262q3 + 847q4 + 2427q5 + 6599q6

+ . . .)

τ4,2
4 (q) = q12 (1 + 11q + 52q2 + . . .) (4.333)

• SO(5) Dynkin labels [n→∞, 2] and SU(2)R representation [4]

τ2,4
1 (q) = q8 (4 + 14q + 58q2 + 170q3 + 492q4 + 1264q5 + 3165q6

+ 7432q7 + 17012q8 + 37428q9 + 80496q10 + 168377q11

+ 345433q12 + . . .)

τ2,4
2 (q) = q8 (1 + 11q + 45q2 + 169q3 + 523q4 + 1505q5 + 3992q6

+ 10086q7 + 24241q8 + . . .)

τ2,4
3 (q) = q9 (3 + 15q + 70q2 + 241q3 + 781q4 + . . .)

τ2,4
4 (q) = q10 (3 + 15q + . . .) (4.334)

• SO(5) Dynkin labels [n→∞, 6] and SU(2)R representation [0]

τ6,0
1 (q) = q8 (1 + 5q + 18q2 + 53q3 + 158q4 + 407q5 + 1033q6 + 2452q7

+ 5686q8 + 12640q9 + 27521q10 + 58151q11 + 120616q12 + 244647q13

+ . . .)

τ6,0
2 (q) = q9 (1 + 5q + 18q2 + 57q3 + 173q4 + 473q5 + 1234q6 + 3060q7

+ 7308q8 + 16835q9 + . . .)

τ6,0
3 (q) = q13 (4 + 15q + 67q2 + 209q3 + . . .) (4.335)
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• SO(5) Dynkin labels [n→∞, 0] and SU(2)R representation [6]

τ0,6
1 (q) = q11 (3 + 8q + 35q2 + 98q3 + 291q4 + 733q5 + 1856q6 + 4339q7

+ 9987q8 + 21954q9 + . . .)

τ0,6
2 (q) = q10 (1 + 5q1 + 27q2 + 88q3 + 286q4 + 804q5 + 2171q6 + . . .)

τ0,6
3 (q) = q10 (3 + 10q + 46q2 + 148q3 + . . .)

τ0,6
4 (q) = q9 (1 + 3q + . . .) (4.336)

In addition, let us display some τk,p` (q) associated with fermionic supermul-

tiplets:

• SO(5) Dynkin labels [n→∞, 3] and SU(2)R representation [1]

τ3,1
1 (q) = q4 (1 + 5q + 16q2 + 49q3 + 134q4 + 343q5 + 840q6 + 1971q7

+ 4460q8 + 9810q9 + 21006q10 + 43952q11 + 90078q12 + 181178q13

+ 358196q14 + 697195q15 + 1337468q16 + . . .)

τ3,1
2 (q) = q5 (1 + 7q + 25q2 + 84q3 + 247q4 + 674q5 + 1733q6 + 4252q7

+ 10005q8 + 22774q9 + 50306q10 + 108276q11 + . . .)

τ3,1
3 (q) = q7 (2 + 11q + 46q2 + 158q3 + 486q4 + 1369q5 + 3622q6 + . . .)

τ3,1
4 (q) = q9 (2 + 13q + 57q2 + . . .) (4.337)

• SO(5) Dynkin labels [n→∞, 1] and SU(2)R representation [3]

τ1,3
1 (q) = q5 (2 + 9q + 29q2 + 86q3 + 233q4 + 591q5 + 1426q6 + 3308q7

+ 7408q8 + 16117q9 + 34176q10 + 70842q11 + 143887q12 + 286959q13

+ 562767q14 + 1086923q15 + . . .)

τ1,3
2 (q) = q5 (2 + 10q + 39q2 + 125q3 + 366q4 + 990q5 + 2530q6 + 6157q7

+ 14414q8 + 32604q9 + 71640q10 + 153380q11 + . . .)

τ1,3
3 (q) = q5 (1 + 6q + 24q2 + 87q3 + 275q4 + 799q5 + 2168q6 + 5570q7

+ 13669q8 + . . .)

τ1,3
4 (q) = q6 (2 + 9q + 38q2 + 135q3 + 428q4 + . . .)

τ1,3
5 (q) = q7 (2 + 11q + . . .) (4.338)

189



• SO(5) Dynkin labels [n→∞, 5] and SU(2)R representation [1]

τ5,1
1 (q) = q7 (1 + 7q + 24q2 + 80q3 + 228q4 + 610q5 + 1533q6 + 3691q7

+ 8520q8 + 19063q9 + 41409q10 + 87751q11 + 181781q12 + 369134q13

+ 735899q14 + . . .)

τ5,1
2 (q) = q8 (1 + 7q + 26q2 + 92q3 + 281q4 + 791q5 + 2090q6 + 5251q7

+ 12618q8 + 29264q9 + 65731q10 + . . .)

τ5,1
3 (q) = q11 (2 + 12q + 55q2 + 196q3 + 625q4 + 1808q5 + . . .)

τ5,1
4 (q) = q14 (2 + 15q + . . .) (4.339)

• SO(5) Dynkin labels [n→∞, 3] and SU(2)R representation [3]

τ3,3
1 (q) = q7 (2 + 10q + 41q2 + 127q3 + 369q4 + 977q5 + 2453q6 + 5856q7

+ 13474q8 + 29947q9 + 64743q10 + 136433q11 + 281245q12 + 568184q13

+ 1127435q14 + . . .)

τ3,3
2 (q) = q8 (3 + 18q + 75q2 + 252q3 + 762q4 + 2111q5 + 5496q6

+ 13580q7 + 32188q8 + 73580q9 + 163122q10 + . . .)

τ3,3
3 (q) = q9 (1 + 11q + 49q2 + 189q3 + 617q4 + 1841q5 + 5079q6 + . . .)

τ3,3
4 (q) = q11 (3 + 19q + 84q2 + . . .) (4.340)

• SO(5) Dynkin labels [n→∞, 1] and SU(2)R representation [5]

τ1,5
1 (q) = q9 (2 + 10q + 36q2 + 118q3 + 335q4 + 893q5 + 2237q6

+ 5356q7 + 12311q8 + 27406q9 + 59236q10 + 124892q11 + . . .)

τ1,5
2 (q) = q9 (2 + 13q + 54q2 + 186q3 + 573q4 + 1609q5 + 4237q6

+ 10575q7 + . . .)

τ1,5
3 (q) = q9 (2 + 10q + 45q2 + 161q3 + 518q4 + . . .)

τ1,5
4 (q) = q9 (1 + 6q + 26q2 + . . .) (4.341)

As mentioned in subsection 5.4, the τk,p` (q) expansion (5.42) of Gn,k,p(q)

converges more rapidly at large vales of the second Dynkin label k and

small values of the SU(2)R spin p.
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4.C.3 N10d = 1 multiplets at SO(9) Dynkin labels

[n→∞, x, y, z]

Also forN10d = 1 multiplets Jn→∞, x, y, zK we would like to list some more

τx,y,z`≤5 (q) beyond those of subsection 6.2. We focus on six bosonic families

• SO(9) Dynkin labels [n→∞, 2, 0, 0]

τ2,0,0
1 (q) = q7 (1 + 2q + 6q2 + 11q3 + 27q4 + 52q5 + 112q6 + 212q7

+ 423q8 + 787q9 + 1496q10 + 2724q11 + 5001q12 + 8927q13

+ 15950q14 + . . .)

τ2,0,0
2 (q) = q8 (1 + 2q1 + 6q2 + 14q3 + 34q4 + 74q5 + 161q6 + 333q7

+ 680q8 + 1346q9 + 2627q10 + . . .)

τ2,0,0
3 (q) = q12 (3 + 7q + 23q2 + 54q3 + 138q4 + . . .)

τ2,0,0
4 (q) = q15 (1 + . . .) (4.342)

• SO(9) Dynkin labels [n→∞, 1, 1, 0]

τ1,1,0
1 (q) = q8 (1 + 2q + 8q2 + 19q3 + 45q4 + 100q5 + 217q6 + 446q7

+ 905q8 + 1779q9 + 3440q10 + 6521q11 + 12181q12 + 22396q13 + . . .)

τ1,1,0
2 (q) = q9 (1 + 2q + 9q2 + 23q3 + 61q4 + 143q5 + 330q6 + 715q7

+ 1524q8 + 3128q9 + . . .)

τ1,1,0
3 (q) = q12 (1 + 4q1 + 16q2 + 46q3 + 125q4 + . . .) (4.343)

• SO(9) Dynkin labels [n→∞, 1, 0, 2]

τ1,0,2
1 (q) = q9 (1 + 4q + 12q2 + 31q3 + 75q4 + 172q5 + 375q6 + 791q7

+ 1615q8 + 3225q9 + 6287q10 + 12044q11 + 22652q12 + . . .)

τ1,0,2
2 (q) = q10 (1 + 4q + 14q2 + 39q3 + 104q4 + 252q5 + 587q6 + 1300q7

+ 2794q8 + . . .)

τ1,0,2
3 (q) = q13 (2 + 8q + 30q2 + 87q3 + . . .) (4.344)
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• SO(9) Dynkin labels [n→∞, 3, 0, 0]

τ3,0,0
1 (q) = q10 (1 + 2q + 6q2 + 14q3 + 32q4 + 69q5 + 147q6 + 299q7

+ 597q8 + 1168q9 + 2239q10 + 4226q11 + 7854q12 + . . .)

τ3,0,0
2 (q) = q11 (1 + 2q + 6q2 + 14q3 + 35q4 + 77q5 + 172q6 + 361q7

+ 752q8 + 1513q9 + . . .)

τ3,0,0
3 (q) = q16 (3 + 8q + 25q2 + 63q3 + . . .) (4.345)

• SO(9) Dynkin labels [n→∞, 0, 2, 0]

τ0,2,0
1 (q) = q11 (2 + 4q + 17q2 + 36q3 + 97q4 + 207q5 + 473q6 + 963q7

+ 2016q8 + 3957q9 + 7809q10 + 14838q11 + . . .)

τ0,2,0
2 (q) = q12 (2 + 6q + 22q2 + 59q3 + 153q4 + 365q5 + 842q6 + 1842q7

+ . . .)

τ0,2,0
3 (q) = q14 (2 + 5q + 24q2 + 62q3 + . . .) (4.346)

• SO(9) Dynkin labels [n→∞, 2, 1, 0]

τ2,1,0
1 (q) = q11 (1 + 2q + 9q2 + 22q3 + 59q4 + 132q5 + 306q6 + 646q7

+ 1369q8 + 2756q9 + 5514q10 + 10682q11 + . . .)

τ2,1,0
2 (q) = q12 (1 + 2q + 9q2 + 23q3 + 63q4 + 150q5 + 357q6 + 791q7

+ 1728q8 + . . .)

τ2,1,0
3 (q) = q16 (1 + 4q + 18q2 + 51q3 + . . .) (4.347)

and five fermionic families of supermultiplets:
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• SO(9) Dynkin labels [n→∞, 1, 0, 1]

τ1,0,1
1 (q) = q6 (1 + 3q + 7q2 + 17q3 + 37q4 + 79q5 + 162q6 + 325q7

+ 635q8 + 1220q9 + 2298q10 + 4266q11 + 7807q12 + 14110q13

+ 25197q14 + 44530q15 + . . .)

τ1,0,1
2 (q) = q7 (1 + 3q + 9q2 + 24q3 + 57q4 + 131q5 + 288q6 + 610q7

+ 1256q8 + 2523q9 + 4957q10 + 9557q11 + . . .)

τ1,0,1
3 (q) = q10 (2 + 7q + 22q2 + 61q3 + 155q4 + 367q5 + 835q6 + . . .)

τ1,0,1
4 (q) = q13 (2 + 9q + 31q2 + . . .) (4.348)

• SO(9) Dynkin labels [n→∞, 0, 1, 1]

τ0,1,1
1 (q) = q8 (1 + 4q + 10q2 + 27q3 + 63q4 + 141q5 + 302q6 + 628q7

+ 1264q8 + 2494q9 + 4811q10 + 9119q11 + 17005q12 + 31260q13 + . . .)

τ0,1,1
2 (q) = q9 (1 + 5q + 16q2 + 44q3 + 113q4 + 269q5 + 610q6 + 1330q7

+ 2804q8 + 5748q9 + . . .)

τ0,1,1
3 (q) = q11 (1 + 6q + 19q2 + 59q3 + 160q4 + 404q5 + . . .)

τ0,1,1
4 (q) = q14 (2 + 9q + . . .) (4.349)

• SO(9) Dynkin labels [n→∞, 2, 0, 1]

τ2,0,1
1 (q) = q9 (1 + 3q + 9q2 + 23q3 + 55q4 + 123q5 + 267q6 + 556q7

+ 1132q8 + 2244q9 + 4362q10 + 8318q11 + 15616q12 + 28873q13 + . . .)

τ2,0,1
2 (q) = q10 (1 + 3q + 9q2 + 25q3 + 63q4 + 150q5 + 342q6 + 749q7

+ 1591q8 + 3289q9 + 6640q10 + . . .)

τ2,0,1
3 (q) = q14 (2 + 8q + 27q2 + 77q3 + 204q4 + . . .) (4.350)
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• SO(9) Dynkin labels [n→∞, 0, 0, 3]

τ0,0,3
1 (q) = q10 (2 + 5q + 15q2 + 38q3 + 90q4 + 201q5 + 437q6 + 905q7

+ 1838q8 + 3633q9 + 7038q10 + 13374q11 + . . .)

τ0,0,3
2 (q) = q11 (2 + 8q + 25q2 + 69q3 + 176q4 + 418q5 + 949q6 + 2069q7

+ . . .)

τ0,0,3
3 (q) = q13 (3 + 11q + 38q2 + 109q3 + . . .)

τ0,0,3
4 (q) = q15 (1 + . . .) (4.351)

• SO(9) Dynkin labels [n→∞, 1, 1, 1]

τ1,1,1
1 (q) = q11 (1 + 5q + 16q2 + 45q3 + 116q4 + 276q5 + 624q6 + 1358q7

+ 2852q8 + 5825q9 + 11616q10 + 22669q11 + . . .)

τ1,1,1
2 (q) = q12 (1 + 5q + 17q2 + 52q3 + 142q4 + 358q5 + 855q6 + 1950q7

+ 4279q8 + . . .)

τ1,1,1
3 (q) = q15 (1 + 7q + 26q2 + 84q3 + 243q4 + . . .) (4.352)

These results confirm that the τx,y,z` (q) expansion (6.34) of multiplicity gen-

erating functions Gn,x,y,z(q) converges more quickly at higher values of the

Dynkin labels x, y, z.
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5 Hilbert series of SQCD with

exceptional gauge groups

In this section we will discuss Hilbert series, which are another type of

partition function, for supersymmetric QCD theories with exceptional and

related gauge groups. We will begin with a short introduction to super-

symmetric gauge theories as a whole, with derivations of the F-term and

D-term constraints, and then specialize to quiver gauge theories, and their

cousins brane tilings, and finally to SQCD. We will leave it till then to dis-

cuss the transition to Hilbert series, although they apply equally to other

SUSY gauge theories, in particular to those with a nonzero (classical) super-

potential which is not the case in SQCD. We will next give a short review

of the currently known results for classical gauge groups with matter in

(anti)fundamental representations, both with and without an adjoint field,

and also for the simplest exceptional group, G2, with an adjoint field present,

before proceeding to the meat of the discussion about the other exceptional

gauge groups, which we introduce and put into context, and other groups

related to the exceptional ones either by sequence of Dynkin diagrams, the

Higgs mechanism, and folding of the Dynkin diagrams.

5.1 Supersymmetric gauge theories

In 4-dimensional non-supersymmetric field theories, the mass dimension of

a scalar field is 1, because the Lagrangian density must have dimension 4 to

match the -4 of the integral (length = mass−1) and the derivative operator,

and of course the mass itself, have dimension 1. By the same argument, that

of a gauge field is also 1, and that of a fermionic field is 3
2 .

Supersymmetry is a symmetry between bosons, whether they be scalar

fields (of spin - or helicity for massless fields - 0) or gauge (vector) fields

(1) - or gravitons, with spin 2, which are not part of the gauge theories
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we consider here - and fermions, whether their spin is 1
2 or 3

2 (again we do

not deal with the latter, which are called gravitinos, here, or in gauge the-

ories in general), so in supersymmetric field theories, one must incorporate

both bosonic and fermionic fields, of whichever type, into supersymmetry

multiplets which can be represented by so-called superfields.

We must therefore introduce new ‘superspace’ fermionic (Grassmann) co-

ordinates θα, and its hermitian conjugate θ̄α̇, with mass dimension −1
2 . (In

extended supersymmetry, i.e. N > 1, these have a subscript A from 1 to

N .)

The summation convention for undotted indices is top left to bottom

right, and for dotted indices it is from bottom left to top right. In N = 1

supersymmetry, a (complex) scalar field and a (Dirac) fermion can be com-

bined into a so-called chiral superfield; however since off-shell a complex

scalar has 2 degrees of freedom and a Dirac fermion 4, and also for con-

sistency with supersymmetric variations, an ‘auxiliary’ complex scalar F

must be incorporated into the superfield as the highest (i.e. θθ) term. An

antichiral superfield can be constructed in a similar way.

A general superfield can be expressed as [40]

S(xµ, θα, θ̄α̇) = φ+ θψ+ θ̄χ̄+ θθM + θ̄θ̄N + θσµθ̄Vµ + θ̄θ̄θρ+ θθθ̄λ̄+ θθθ̄θ̄D

(5.1)

Certain conditions must exist on the coefficients of each power of θ and θ̄,

which are functions of xµ, and their derivatives with respect to xµ, for this

to be a superfield. For example, if there is only the φ term, it must be a

constant.

This is not an irreducible representation of the supersymmetry algebra;

chiral and antichiral superfields are irreps, and the other types are vector

superfields, which we will consider here, and linear ones, which we will not.

A vector superfield is real, so φ, Vµ and D are real and ψ = χ, ρ = λ and

M = N∗ (we usually write M ± iN). There are 8 bosonic and 8 fermionic

degrees of freedom.

The matter fields Φi, which are chiral multiplets (in N = 1) or hyper-

multiplets (in N = 2), can transform in any representation of the gauge

and global symmetry groups; the gauge field V a is a vector multiplet and

transforms in the adjoint representation of the gauge group and as a singlet

of the global group.
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Supersymmetry transformations are generated by supercharges Qα and

Q̄α̇ which are defined as follows in terms of partial derivatives and super-

space coordinates as follows:

Qα = −i∂α − σµαβ̇ θ̄
β̇∂µ (5.2)

Q̄α̇ = i∂α̇ + θβσµβα̇∂µ (5.3)

If ∂µ acts on a superfield, we still have a superfield, but acting with ∂α or

∂α̇ do not give one; one must therefore define new ‘chiral’ derivatives Dα

and Dα̇ which do give a superfield when acting on one. They are defined as

follows:

Dα = ∂α + iσµ
αβ̇
θ̄β̇∂µ (5.4)

D̄α̇ = −∂α̇ − iθβσµβα̇∂µ (5.5)

In these expressions we are using a spacetime coordinate xµ; we can define

a new spacetime coordinate yµ under which the chirality is made manifest

and D̄α̇ is equivalent to ∂α̇:

yµ = xµ + iθασµ
αβ̇
θ̄β̇ (5.6)

In this basis, chiral superfields have an expansion solely in powers of θ and

are independent of θ̄. Antichiral superfields can be defined similarly in terms

of ȳµ = xµ − iθασµ
αβ̇
θ̄β̇ and depend solely on θ̄ in the new basis.

Chiral and antichiral superfields can be written as follows:

Φi = φi +
√

2θψi + θθFi (5.7)

Φ†i = φ∗i +
√

2θ̄ψ̄i + θ̄θ̄F ∗i (5.8)

In both cases there are 4 bosonic and 4 fermionic degrees of freedom. Vector

superfields have 8 of both types.

A Lagrangian density for a supersymmetric gauge theory, just as for a

non-supersymmetric theory, must consist of terms whose variation under

supersymmetry transformations is a total derivative. We know that the

variation of the F-term of a chiral superfield is a total derivative, and the

same for the D-term of a general superfield, because they (excluding the
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superspace coordinates) are the terms with the highest mass dimension and

to get terms of the same dimension from terms of lower dimension, including

a parameter ε with mass dimension −1
2 , we must take a derivative (raising

the dimension by 1), and so the Lagrangian density must consist only of

such terms. The Lagrangian density of a general supersymmetric gauge

theory is specified by three quantities:

• The Kähler potential K(Φ,Φ†), which is a real function of Φ and Φ†

• The superpotential W (Φ), which is a holomorphic function of Φ and

does not depend on Φ†

• The gauge field strength term Wa
αWaα

The Kähler potential is integrated over all of superspace as it is the D-term

whose variation is a total derivative; the superpotential is integrated over

half of superspace as it is an F-term. Technically, the gauge field strength

term is a D-term, because it is a second antichiral derivative, though it

occurs in the Lagrangian as an integral over half of superspace.

Solving the Euler-Lagrange equations for the auxiliary fields which form

the highest component of each superfield, viz. the F-term in a chiral super-

field and the D-term in a vector superfield, gives the F-term and D-term

constraints respectively. The F-term constraints come from the interaction

between the FF ∗ term in the Kähler potential and the Taylor expansion

of the superpotential W (Φ) about the scalar part φ, and the D-term ones

from that between the gauge field strength term, which contains the DaDa

term, and the Φ†V aΦ term from the expansion of Φ†egV
aTaΦ in the Kähler

potential.

Like non-supersymmetric gauge theories, supersymmetric gauge theo-

ries exhibit gauge invariance. Taking Φ to eigΛ
aTaΦ (and similarly Φ† to

Φ†e−igΛ
a†Ta), where Λa is a chiral superfield in the adjoint representation

of the gauge group (so eigΛ
a
Φ is still chiral), One can choose Λa so that the

components of V a that do not contain both θ and θ̄ can be gauged away.

This is called the Wess-Zumino gauge and simplifies the expansion of eigV
aTa

to go only up to order g2. This is not supersymmetric because taking the

variation under supersymmetry transformations produces terms dependent

on θ but not θ̄ and vice versa, and also because there are 5 bosonic degrees
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of freedom but only 4 fermionic ones; however the variation can be gauged

away by a ‘compensating’ gauge transformation.

The importance of supersymmetric gauge theories increased exponentially

in 1997 on the proposal of the so-called AdS/CFT correspondence [64] - a

special case of the more general gauge/gravity duality - by which a theory

on anti-de Sitter (or other) space in d + 1 dimensions containing gravity

is conjectured to be related to a conformal (or other) field theory in d

dimensions without gravity. Specifically, string theory (type IIA or IIB) on

AdSd+1×X9−d is mapped to a conformal (or more general gauge) theory in

d dimensions (usually on a Dp-brane where p = d−1) probing a Calabi-Yau

singularity on the cone over X9−d.

The two principal cases in current literature are type IIB string theory

on AdS5 × X5 where X5 is a Sasaki-Einstein manifold which is mapped

to a gauge theory on D3-branes probing a Calabi-Yau singularity on the

cone over X5 which is a (singular) Calabi-Yau 3-fold (6 real dimensions) -

in the special case where X5 is simply the 5-sphere S5, the cone is simply

R6 and so the theory is simply 4-dimensional N = 4 super-Yang-Mills -

and M-theory on AdS4×X7 which is mapped to a Chern-Simons theory on

M2-branes probing a Calabi-Yau singularity on the cone over X7 which is

a CY 4-fold. The former (with a non-trivial SE/CY manifold, so N = 1)

are investigated - on the gauge side of the correspondence - in [29] and [27],

and the latter in [31, 30, 28, 26, 39], and with the special case of X7 being

an orbifold of the 7-sphere S7 by a finite subgroup G of SU(2), with the

cone being R8/G, in [50]. G is one of the following groups:

• Ak = Zk,

• Dk+2 = Dih(k), the dihedral group of order 2k,

• the ‘exceptional’ subgroups of SU(2) called E6, E7 and E8.

In all cases the order of the group is the same as the sum of the squares of

the (dual) Coxeter labels of the nodes of the extended Dynkin diagram of

the Lie group of the same name. 1

1The Coxeter label of a node is the coefficient of the simple root corresponding to the
node in the linear independence relation between the simple roots, normalized to have
greatest common factor 1. The ‘lowest’ root, i.e. the negative of the highest positive
root, corresponds to the extended node and always has coefficient 1. To get the dual
Coxeter numbers, one multiplies by the norm squared of the root and divides by that
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Recent work in [49, 48, 47, 46] also links gauge amplitudes in d dimensions

with gravity ones in d+1 dimensions by showing that supergravity, the low-

energy limit of string theory, is the ‘square’ of super-Yang-Mills theory in

some way and that in the cases of 3, 4, 6 and 10-dimensional SYM the

number of dimensions of the squared theory can be raised by one and N be

halved back to its original value.

The usefulness of this correspondence is that it is (generally) much easier

to calculate scattering amplitudes in gauge theory than in string theory.

There are few examples of direct comparisons of the two methods of cal-

culation, but it is done in [75], where the SO(9) string spectra (as calcu-

lated in the 16-supercharge section of the last chapter) are decomposed into

SO(4)× SO(5) spectra and each of the latter representations ‘lifted’ to the

Kaluza-Klein ‘tower’ of SO(6) representations which contain them in their

SO(5) decompositions, and the gauge calculations done using Polya’s enu-

meration theorem which is similar to the method of calculating invariants

for finite groups described in Section 2.6.

Supersymmetric gauge theories are different from non-supersymmetric

ones in that they always have flat directions in their potential, whether

that comes from the F-terms, the D-terms or both [44]. These correspond

to massless scalars, which are called moduli and span what is known as a

moduli space, and are parametrized by gauge-invariant combinations of the

fundamental fields in the theory. For example, in instanton theories [42],

an instanton of a specific gauge group G is parametrized by its position (4

scalars - it corresponds to the Higgs branch of Dp-branes confined to D(p+

4)-branes), its size (1), its orientation within SU(2) (3) and its orientation

as an SU(2) instanton within G (dim(G) − dim(H) − 3 where H is the

subgroup of G normal to SU(2)). For example, when G = E8, H = E7

and dim(G)− dim(H)− 3 = 112 = 4(30− 2) where 30 is the dual Coxeter

number of E8. This relation holds for all choices of G.

Moduli spaces also occur in other contexts, for example in string theory

where several dimensions are compactified to finite size [53], the moduli

specify quantities like the sizes of the dimensions and the angles at which

they interact. Moduli spaces in supersymmetric gauge theories form an

of the longest (simple) root; for simply laced groups the Coxeter and dual Coxeter
numbers are therefore the same. The (dual) Coxeter number of the group as a whole
is the sum of those for the nodes, including the extended node.
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algebraic structure called a (chiral, (multi)graded) ring and the dimension of

each (multi)graded piece can be counted in a partition function-like quantity

called a Hilbert series. Our treatment of supersymmetric gauge theories in

this thesis is concerned with these Hilbert series. The dimension of a moduli

space is given by the degree of the pole at t = 1 in the Hilbert series when

all U(1) counting fugacities are identified with each other.

Moduli spaces can be irreducible, or they can have more than one branch.

In N = 2 theories (in 4D), the branch parametrized by the scalars in hy-

permultiplets is called the Higgs branch, while that parametrized by those

in vector multiplets is called the Coulomb branch. In the master space the-

ories investigated in [51] and [52], the Higgs branch is the one for which the

fields generically take non-zero values, while the Coulomb branch generally

has some fields fixed at zero and thus has lower dimension. In these cases

the Higgs branch is itself reducible into a ‘coherent component’ and other

(linear) branches, which may include the Coulomb branch, and the coherent

component can be split off from the linear branches using a technique called

‘surgery’; in other cases such as the one-instanton moduli spaces in [42], it is

reducible into a coherent component and a centre-of-mass part which spans

C2.

We know from [1, 2] that the moduli spaces for SQCD theories with

classical gauge groups and matter in (anti)fundamental representations are

irreducible, and we expect the same to be true for those for exceptional

gauge groups and for those for classical gauge groups with matter in non-

(anti)fundamental representations such as spinors. (It is stated (without

proof) in [1] that the (vacuum/mesonic) moduli space of an SU(Nc) super-

symmetric QCD theory is irreducible, since it is the symplectic quotient of

the irreducible manifold Cn by a continuous (gauge) group.)

If the numerator of the Hilbert series is palindromic, the moduli space is

Calabi-Yau. We leave it to [1, 2, 3] for an explanation. The full (irreducible)

moduli spaces in these cases, and the coherent components of the master

spaces in [51, 52] and the one-instanton moduli spaces in [42], are Calabi-

Yau.

We emphasize that in this thesis we are considering classical moduli

spaces. It is noted in [1] that quantum effects cause a dynamically generated

runaway superpotential, called the ADS superpotential (after Affleck, Dine

and Seiberg) to emerge for SU(Nc) supersymmetric gauge theories with Nf
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flavours where Nf < Nc, meaning that there is no classical supersymmetric

vacuum; when Nf = Nc the form of the gauge-invariant operators and re-

lations are modified by quantum corrections (and the singularity removed)

but their numbers are unaffected, and for Nf > Nc the two vacuum mod-

uli spaces coincide. The derivation, following [25], involves first Higgsing

on one flavour, secondly (separately) giving that flavour a mass, comparing

the results and extending to the case of more Higgsed or massive flavours.

The same effect also occurs for SO(Nc) and Sp(Nc) (with Nf < Nc + 1)

gauge groups; following [44], we see that it also occurs for E6 theories with

the critical number of flavours (not considering antiflavours) being 4.

In the next section we introduce a specific type of supersymmetric gauge

theories called quiver gauge theories, and related structures called brane

tilings.

5.2 Quiver gauge theories and diagrams

Quiver gauge theories were originally used to describe the low-energy effec-

tive theories of stacks of branes probing orbifold singularities in type IIA or

IIB string theory, with the nodes denoting stacks of ‘fractional’ branes at

the various ‘states’ of the fixed point and the lines being open fundamental

string states connecting two such stacks, being in the untwisted sector of the

string spectrum if both endpoints lie on the same stack and the twisted sec-

tor if they lie on different stacks. The gauge groups are determined by the

number of fractional branes and the presence and charge of an orientifold

planes; if there is no such plane then all gauge groups are U(Ni) for node

i, if there is one then the gauge group corresponding to the stack which is

stuck to the orientifold plane is SO(Ni) if the charge is positive and Sp(Ni)

if it is negative, with all others remaining as U(Ni).

In the non-SQCD quiver gauge theories considered in [42], all matter fields

transform in the fundamental (or vector) representation of the ‘from’ gauge

group and the antifundamental (or vector) representation of the ‘to’ gauge

group, however once we get away from requiring brane pictures we can gen-

eralize quiver gauge theories to any symmetry groups and representations.

Spin representations of SO(N) gauge groups can arise out of the fermionic

zero modes of the group. Exceptional groups have no brane interpretation

and, at least for the E-type groups and fundamental representations, are a
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pure M-theory effect [35]; with other exceptional groups and representations

and non-fundamental and non-spinor representations of classical groups it

is not known if they arise even through M-theory.

Quiver gauge theories are described by quiver diagrams, which consist

of lines and nodes. In this thesis, and most of the literature, nodes denote

vector multiplets in the adjoint representations of symmetry groups (usually

circular nodes for gauge groups and square nodes for global groups) and

lines denote hypermultiplets (for N = 2) or chiral multiplets (N = 1) in

bifundamental or other (not a singlet of either group) representations of

the symmetry groups of the two nodes which they join; if a line joins a

node to itself, the corresponding multiplet transforms in the adjoint of the

gauge group associated with that node (usually - it may transform in the

(anti)symmetric 2nd-rank tensor representation instead, as in the SO(N)

and Sp(N) cases in [42]) and as a singlet of all other gauge groups. In the

N = 1 case the multiplets (treated solely as SUSY multiplets without gauge

group indices) are not self-conjugate before CPT conjugates are added and

so the lines have a direction (except in the adjoint case where it is irrelevant).

In the (4D) N = 4 case the only multiplet with maximum helicity 1 or

less (as is required for gauge theories - gravity theories allow helicities up to

2) is the vector one with maximum helicity 1, so we can only have nodes in

the quiver diagram, there cannot be any lines - the only theory is therefore

pure SYM. (We recall that N3d = 2N4d.)

In the N = 2 case we can have both vector- and hypermultiplets with

maximum helicity 1 and 1
2 respectively, so we can have both nodes and

lines in the diagram. An N = 4 vector multiplet, necessarily transforming

in the adjoint of the gauge group, decomposes into a vector multiplet and

a hypermultiplet (including CPT conjugates), of course also both in the

adjoint, in N = 2, so a N = 4 quiver diagram, consisting by necessity of a

node by itself, becomes an N = 2 quiver diagram consisting of a node and

a line linking the node to itself. However, a N = 2 diagram which does not

arise from a N = 4 one can have multiple nodes linked by lines.

N = 1 quiver diagrams also consist of both nodes and lines, but this

time the lines have direction. An N = 2 vector multiplet decomposes into a

vector multiplet and an adjoint chiral multiplet in N = 1 and a hypermul-

tiplet decomposes into two chiral multiplets, one transforming in the same

bifundamental representation as the original N = 2 hypermultiplet and the
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other in its complex conjugate when this is different, so a node becomes a

node and a line linking the node to itself and a line becomes two lines in

opposite directions. An N = 4 quiver diagram becomes a node with three

lines all linking the node to itself.

In both N > 1 cases the quiver gauge theory is uniquely described by the

diagram; this is not the case for N = 1 quiver gauge theories, which may

have a nonzero superpotential, but this is not specified, at least uniquely, by

the diagram. It can only consist of contributions from closed paths in the

diagram, because these are the only combinations of fields which are gauge-

invariant. The decomposition of an N = 2 quiver diagram into an N = 1

one leads to a unique superpotential which consists of the contributions from

all closed paths; however a general N = 1 quiver gauge theory can have any

superpotential as long as every term is the contribution from a closed path,

including a vanishing superpotential (as in the SQCD theories which are the

main focus of this chapter and which we describe later, although there are

no closed paths in these diagrams) which is trivially the sum of zero such

terms. The superpotential gives rise to F-term constraints.

Quiver gauge theories can also arise through systems of interacting branes,

with the amount of supersymmetry preserved dependent on the types and

orientations (extended/pointlike directions and angles of intersection) of the

D- and NS-branes present in the theory and the gauge groups dependent

on the number and separation of each type and orientation of brane and

the presence (and charge if present) or absence of an orientifold plane. For

there to be any supersymmetry preserved at all, the number of ‘Neumann-

Dirichlet’ directions (those in which one type of brane is extended and the

other type pointlike) must be a multiple of 4 for all pairs of different types

of branes, and if there are branes of the same type at angles to each other,

certain combinations of the angles must vanish [54].

If every field occurs exactly twice in the superpotential, once with a +ve

sign and once with a -ve sign, then the superpotential is called ‘toric’. In

the next subsection we will discuss structures related to and that can arise

from quiver diagrams if they meet certain conditions, these are called brane

tilings. In these theories the superpotential is always nonzero and is toric

by construction.
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5.2.1 Brane tilings

In quiver diagrams, a node represents a gauge group and a line a field

transforming in the fundamental (or other) representation of the ‘from’ node

and the antifundamental (or other) of the ‘to’ node, with superpotentials

being closed loops in the diagrams, but there is no requirement either to

have or not to have the term corresponding to a specific closed loop in the

superpotential.

By contrast, a brane tiling is like a ‘dual’ of a quiver diagram, with

faces representing gauge groups (closed loops in the quiver diagram can be

thought of as ‘faces’ for the purpose of this dualization), lines fields (as in

quiver diagrams) but thought of as joining two faces rather than two nodes,

and nodes superpotential terms, with white nodes corresponding to positive

terms in the superpotential with the (assumed) trace taken clockwise round

the node, and black nodes negative terms with the trace taken anticlockwise.

Because there are two types of nodes, brane tilings are called ‘bipartite’, and

because all lines must join a white node to a black node, all faces have an

even number of sides.

The physical interpretation of a brane tiling theory is different, but re-

lated, to that of a quiver gauge theory, as described in [38]. There are two

types of NS5-branes, one extended in the 012345 directions and the other

in 012367, both wrapping a 2-cycle on a 4-torus in directions 4567, and D5-

branes (hence they only exist in type IIB string theory) extended in 0123

and wrapping the torus in the 46 directions and a holomorphic curve in

the 57 directions. The NS5-branes intersect with the D5-branes, reducing

the N = 4 supersymmetry to a chiral N = 1 theory. This picture can be

T-dualized on the 4- and 6-directions turning the D5-brane into a D3-brane

and the NS5-branes into pure geometry (specifically a (singular) Calabi-

Yau 3-fold), which is where the relation to quiver diagrams comes in. The

fundamental (F1) strings stretch between two ‘stacks’ of D5-branes which

are actually the same stack but are separated by their intersection with an

NS5-brane. All gauge groups are the same by anomaly cancellation, U(N)

for N D5-branes. We also see in [38] that the normalization of the R-charge

of the superpotential to 0 and the requirement that the theory be super-

conformal (the beta function vanish) relates elegantly to the Euler number

of the brane tiling vanish as must occur on a torus.
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Only quiver diagrams that can be made ‘periodic’ correspond to brane

tilings, and then the periodic quiver has to be able to tile a plane for it

to be able to be converted into a brane tiling, this arises naturally from

the physical interpretation. The diagram can then be dualized to give a

brane tiling. All brane tilings with up to 8 terms in the superpotential are

enumerated in [29] using a method that first finds all periodic and irreducible

quiver diagrams and then dualizes them to brane tilings. (To extend this

to tilings with 10 or more terms within a reasonable timescale would take

a significant improvement to the algorithm finding them.)

A brane tiling always has a repeated unit, called the fundamental domain;

this is easy to see because the D5-branes are wrapped on a torus and the

NS5-branes intersect this torus.

The Hilbert series of brane tiling theories are not calculated in the same

way as for quiver diagrams, but rather by a different method involving first

calculating ‘perfect matchings’, which are groupings of the edges in the fun-

damental domain so that each perfect matching contains each node exactly

once. Both the F-term and D-term constraints are expressed in terms of

the matrix of perfect matchings; the ‘master space’ or combined mesonic

and baryonic moduli space can be obtained by modding out the entire space

of possible field values by the F-term constraints, and the mesonic one by

modding it out by both the F-term and D-term constraints.

In [31, 30, 28, 26, 39], brane tilings are adapted to M-theory. The physical

interpretation is again discussed in [38]. Starting with type IIA string theory

and replacing the D5-branes in the type IIB brane tilings with D4-branes,

again compactified on a torus in two of the four spatial dimensions, we

then go to strong coupling where the theory ‘grows’ an extra dimension,

and as this grows to infinite size the theory becomes M-theory, and the

D2-branes that result from T-dualizing on the two toroidal dimensions of

the D4-branes become M2-branes with the geometry from the T-dual of the

NS5-branes which intersect the torus becoming a Calabi-Yau 4-fold with

8 real dimensions. The Hilbert series is calculated similarly to that for a

‘normal’ brane tiling, apart from the added detail of integer Chern-Simons

levels for each gauge group.

In [27] and [32], brane tilings consisting solely of hexagons are related to

orbifolds of C3 by Zn and it is shown that counting them in this way gives

the same results as other methods such as toric diagrams with area 1
2n and
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Hermite normal forms with determinant n.

We will not discuss brane tilings, either the type IIB or M-theory case,

further in this thesis, as they are not relevant to the SQCD quiver gauge

theories whose discussion forms the bulk of the remainder of this section.

5.3 Supersymmetric QCD

The quiver diagram for SQCD theories is very simple. There is one circular

node corresponding to the gauge group and this is joined to one or more

(S)U(N) global symmetry groups corresponding to the number of ‘flavours’

of matter transforming in a specific (irreducible or other) representation of

the gauge group. There may also be a line from the gauge group node to

itself symbolizing an adjoint field.

There are no closed loops in the diagram (not counting the adjoint field

linking the gauge node to itself if present), so the classical superpotential is

zero.

Since our focus is on Hilbert series, we will first give an introduction to

these, and then discuss how to transition from a (general, not necessarily

SQCD) supersymmetric gauge theory to a Hilbert series.

5.3.1 Introduction to Hilbert series

A Hilbert series enumerates elements in a graded algebraic structure such as

a ring, module or ideal by grading, with each graded component of grading

i being the number of (algebraically or linearly, which are often the same

thing) independent (Laurent) polynomials of total degree i in the algebraic

structure. In SQCD and other supersymmetric gauge theories the algebraic

structure is the chiral ring consisting of gauge invariant operators.

To define a Hilbert series, one must first define a generating function:

given a function f from Z to Z, the generating functionG(z) for f is specified

by

G(z) =
∞∑

i=−∞
f(i)zi (5.9)

For a graded algebraic structure M, the Hilbert series is given by

M =
⊕
i

Mi =⇒ H(t,M) =
∞∑

i=−∞
dim(Mi)t

i (5.10)
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The dimension is understood to be taken over the field over which the

algebraic structure acts; in most cases it is the field of complex numbers, C,

so the dimension is the complex dimension. In the case of the one-instanton

moduli space covered in [42] quaternionic dimensions are also discussed.

The terms generating function and Hilbert series, and also partition func-

tion, are often used interchangeably, but they are not identical in meaning

and a given generating function or partition function is not necessarily a

Hilbert series. In particular, the generating function counting the number

of partitions of each positive integer is both a generating function and a par-

tition function, but it is not a Hilbert series, because the coefficients tend

to infinity at an exponential rate. The unrefined bosonic string partition

function is just this function raised to the 24th power, divided by the nome

q, so is again not a Hilbert series.

A characteristic property of a Hilbert series is that it is usually (in partic-

ular, in all cases expounded on here) expressible as a rational function, the

denominator of which can be written in ‘Euler form’, i.e. as in the following

(showing the form of the whole function):

H(t,M) =
Q(t)∏

i(1− ti)ai
(5.11)

2 There are only a finite number of values of i for which ai > 0; this has the

consequence that the coefficients of a Hilbert series never tend to infinity

at faster than polynomial rate. The term is not used in physics literature,

where such series are referred to as partition functions. Hilbert series are

also referred to as Hilbert-Poincaré or simply Poincaré series, however the

naming after Hilbert alone is preferred here [19].

In fact Hilbert series can be expressed in such a form in two different ways

both of which emphasize the fact that they are singular at t = 1, these are

2We will see, however, that in some cases to be seen later the expression of the Hilbert
series with the denominator in Euler form is not in its lowest terms and that the loca-
tions and degrees of the poles are better seen from the expression of the denominator
in which rather than factors of the form (1 − tn) we have the minimum polynomial
of e2πi/n, for example (1 + t + t2) instead of (1 − t3). This minimum polynomial is
of degree φ(n) where φ is Euler’s totient function. In most cases, however, the form
with the denominator in Euler form is in its lowest terms and it is certainly easier to
visualize. In this section we will assume this is the case and consider cases where it is
not individually in the relevant sections later.
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called Hilbert series of the first and second kind:

First kind: H(t,M) =
Q(t)∏

i(1− ti)ai
=

Q(t)

(1− t)k(1 + . . . )
(5.12)

Second kind: H(t,M) =
P (t)∏

i(1− ti)bi
=

P (t)

(1− t)dim(M)(1 + . . . )
(5.13)

where k =
∑
i

ai dim(M) =
∑
i

bi

In the first form (1 + . . . ) =
∏
i

(
1 + t+ · · ·+ ti−1

)ai =
∏
i

(
1− ti

1− t

)ai
The same is true of the second form replacing ai with bi. Both P (t) and

Q(t) are polynomials with integer coefficients; in the first form, k is the

dimension of the embedding space and in the second, dim(M) is that of the

manifold.

P (1) must be strictly greater than 0; its quotient by the second (1 + . . . )

gives the coefficient of the leading pole at t = 1 and is the degree of the

algebraic variety, which is the total number of degrees of freedom; Q(1)

however will be 0 if k > dim(M) strictly as is usually the case.

It is noted in [1] that the expressions often make much more sense if

the powers of t in the (1 − ti) terms in the denominator are not all 1 (or

the same), because such expressions give much more information about the

geometry and other properties of the moduli space; in these cases H is said

to be a Hilbert series over a weighted projective space rather than over

an ordinary projective variety. For example, in supersymmetric QCD with

SU(Nc) gauge group and Nf flavours, mesons are usually weighted by 2 and

baryons (if they exist) by Nf , because they are multiplicative combinations

of that number of fundamental fields (weighted by 1).

In the next section we will discuss Hilbert series within the context of

supersymmetric gauge theories.

5.3.2 SUSY gauge theories: transition to Hilbert series

To go from a supersymmetric gauge theory to a Hilbert series, the funda-

mental fields of the theory are converted into products of characters of the

global and gauge symmetry groups, including the ‘counting’ U(1)s either as

a separate weighting or embedded into the global group. Because we need to
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take symmetrized products (antisymmetrized if the fields are fermionic, in

which case we consider the sum separately for bosonic and fermionic funda-

mental fields), the sum of all products of characters becomes the argument

of a plethystic exponential.

If a field is ‘frozen’ to zero on a specific branch of the moduli space, such as

the Φ field denoting the position of the D3-branes in [42], it is not included

in the argument of the PE.

The F-term constraints, if they are present, are similarly converted into

arguments of a PE to be divided by.

Constraints containing frozen fields are not incorporated into the Hilbert

series, similarly to the frozen fields themselves, but constraints resulting

from differentiating the superpotential with respect to the frozen fields are

included, again as in [42].

This gives the Hilbert series for the F-flat moduli space, or the ‘master

space’ of the theory. Master spaces are investigated for brane tiling theories

in [51] and [52], though here they are evaluated using a different method

involving ‘perfect matchings’, and in simpler cases by simple imposition of

the F-term constraints and inspection of which fundamental fields are still

independent and the relations between those which are not.

Imposing the Wess-Zumino gauge on the vector superfield V a makes it

non-supersymmetric since there are now 5 bosonic degrees of freedom in-

cluding the auxiliary field Da and only 4 fermionic ones; this is rectified by

imposing the D-term conditions.

The ‘mesonic’ moduli space is the symplectic quotient of the F-flat moduli

space by the gauge group, or its ‘ordinary’ quotient by the complexification

of the gauge group; dividing out by the imaginary part of this corresponds to

imposing the D-term conditions, and by the real part to imposing gauge in-

variance. (The mesonic moduli space is generated solely by mesonic moduli,

or those built out of traces of the superfields; the master space is generated

both by these and by baryonic moduli, which are built out of determinants

of the superfields.)

Imposition of gauge invariance is done by integration over the gauge group

manifold, i.e. over the maximal torus with weighting by the Haar measure.

This gives the mesonic moduli space (although, in the SQCD cases investi-

gated here, though not in the master spaces covered in [51] and [52], they

may contain baryons).
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We will first review the results for the classical groups, originally published

in [1], [2] and (with an adjoint field, and also for G2) [3], and then present the

as-yet unpublished ones for the exceptional groups, including the case of G2

without an adjoint. We also present results for groups related to exceptional

groups either by following the sequence of removing the rightmost node in

the Dynkin diagram (E5 = D5), Higgsing and/or folding, and aim to show

relations between the corresponding Hilbert series. In all cases we compute

series for theories both with and without an adjoint field, but we concentrate

on the latter case.

In this work, we do not particularly work with fugacities directly, except

for those of the U(1) charges counting numbers of fields, except when we,

following [1, 2, 3], work with Mathematica and calculate Hilbert series, both

refined and unrefined, by residue methods. When this is the case, we simply

have each fugacity correspond to a fundamental weight and set the power

of the fugacity in each term to be the Dynkin label of that weight as is done

for G2 (with an adjoint) in the last of those papers. For SO(N) groups,

we would use the Cartesian basis when working solely with fundamental

or adjoint representations, but the Dynkin basis when working with spinor

representations, as opposed to in Chapter 4, following [7], where we use

the Cartesian basis, but with all weights doubled (or fugacities squared),

to avoid using half-integer weights, but to maintain the symmetry between

weights and make conversion between SO(3)(D−2)/2 and SO(D − 1) easier.

In principle the use of the plethystic programme allows one to calcu-

late the whole Hilbert series, either refined or unrefined, analytically using

either the residue method as in [1], [2] and [3], an alternative method in-

dependent of the number of flavours expounded on in [6], or some other

method. However in practice this is often not the case, owing to memory

or time constraints when either or both of the gauge group and the number

of flavours is large. For the residue method, it can be shown that in the

refined case the number of residues increases as O((1
2dim(R))Nf ) for matter

in representation R, and in the unrefined case a similar mushrooming of the

number of terms to be summed occurs because of the need to differentiate

Nf − 1 times (or more even).

An alternative, flavour-independent, method is discussed in [6] where the

plethystic exponential and Haar measure were expanded as power series and

the coefficient of
∏r
i=1 z

−1
i for all the gauge group fugacities zi found and
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expanded in terms of products of complete symmetric polynomials hi(t) in

the global symmetry group fugacities ti (treating them as U(N) fugacities

which can then be unrefined to an U(1) fugacity t or split off into t and

SU(N) fugacities). This method reproduces the SU(N) results in [1] and,

using the Cartesian basis, the SO(N) and Sp(N) results in and [2], and

calculates series for G2 to high order (up to 40, though the fully refined

series is not shown in the paper) and F4, E6 and E7 up to 3, 4 (antiflavours

of E6 are not considered) and 3 flavours respectively where the moduli space

is a complete intersection, showing the character expansion up to order 8 in

each case. Even this method is limited for the higher exceptional groups,

however, with the problem coming from the dimension, i.e. the number of

power series that have to be expanded, and the size of the Weyl group, or

the number of terms for which coefficients of
∏r
i=1 z

−1
i have to be found,

rather than the rank of the group.

However, in this paper, at least for F4, E6 and E7 (and B3, D4 and D5,

which are not exceptional), we will first generate the refined series using a

program written in LiE [5], as in [4], and then convert them to unrefined

series by replacing each character by the dimension of the corresponding

representation. The Haar measure is very complicated and thus a large

number of terms would have to be evaluated if using either of the previ-

ous methods, especially for the refined series of the exceptional groups. In

this method, we see from Section 2.4 that the symmetrization of a prod-

uct of representations of two different groups to a given order is given by

the sum of the direct products of the plethysms of the two representations

over all Young tableaux with number of boxes equal to the order. (The

antisymmetrization of the product representation is given by the sum of

the direct products of the plethysm of the first representation over a given

Young tableau by the plethysm of the second representation over its trans-

pose.) A sample program is shown in 5.10. We can only, because of time

and memory constraints, evaluate the refined series up to some finite order.

In this paper, we have gone up to level 24 in the G2 case, 21 in the F4 and

E6 cases and 20 for E7.

We initially computed series with restrictions on the number of flavours,

i.e. the maximum height of the Young tableau over which the plethysm of

the matter representation is taken, but subsequently switched to a flavour-

independent enumeration of the singlets as in [4] and [6]. The first method
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makes finding invariants easier as one only has to consider representations

of SU(Nf ) which can be specified by Young tableaux with no more than Nf

rows, so we convert the results from the second method into the first form

before doing so.

We then use a ‘trial and error’ method to determine the generators, rela-

tions and higher syzygies, also using LiE, finding the lowest ones by inspec-

tion and obtaining the rest by repeatedly generating the whole Hilbert series

generated by the known generators, comparing with the ‘actual’ Hilbert se-

ries, adding in the new generators and re-generating the Hilbert series; how-

ever this is often adequate to determine them fully when the moduli space

is either freely generated or a complete intersection and the generators and

relations are of lower order than that up to which the series is calculated,

and when it is not it is still useful to obtain a great deal of information

about them as is done up to order 18 for E6 (with no antiflavours) and E7

and order 13 for G2 in [4]. It is a hard problem, however, to know exactly

how high an order one has to go to to be sure to know the whole Hilbert

series, and it is not known at the moment.

Invariants, relations and higher syzygies that arise at a certain number

of flavours remain in the spectrum as the number of flavours increases,

because they are specified by a Young tableau with Nf rows (where Nf is

the number of flavours of first occurrence) and this is still a valid Young

tableau for higher numbers of flavours.

When performing the plethystic exponential, because the Young tableaux

corresponding to the global symmetry group representation and the plethysm

of the matter representation of the gauge group are the same, the Young

tableaux appearing in the Hilbert series cannot have more rows than the

dimension of the representation of the gauge group in which the matter

fields transform, however many flavours there are. However, as is seen in

[4] for G2, [1] for SU(N) and [2] for SO(N) and Sp(N), it is possible for

relations and higher syzygies to transform in representations of the flavour

group corresponding to Young tableaux with more rows than the dimension

of the matter representation.

To obtain the plethysm of a general representation R of a group G over a

partition λ, one follows the procedure explained in [37] and also described

below. This is done in LiE using the plethysm function, which takes a

partition λ, a character χ (described either by a highest weight or a sum
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of highest weights with their multiplicities) and a group G; an example

program is shown in Section 5.10.

We consider the representation R temporarily as a representation of

U(dim(R)) and relabel the terms in the character as Xi, 1 ≤ i ≤ dim(R).

If any weights in R have multiplicity greater than 1, we must introduce

separate temporary fugacities in this step and later on map them back to the

same weight of R. We take the Schur polynomial sλ(X) of these temporary

fugacities, map them back to products of powers of the original fugacities

(of G) and lastly decompose this character into characters of irreducible

representations of G. This is shown for λ = [2] and R the vector of SO(5)

in [37], and as follows.

The character expansion of the vector of SO(5) is as follows:

χ
SO(5)
[1,0] (zi) = z1 +

z2
2

z1
+ 1 +

z1

z2
2

+
1

z1
(5.14)

Assigning temporary fugacities Xi, 1 ≤ i ≤ 5 to the terms in this series,

we recall that the Schur polynomial over Xi for the partition [2], s[2](Xi),

which is the same as the complete symmetric polynomial h2(Xi) because

this partition has only one row, writing out all terms explicitly, is

s[2](Xi) = X2
1 +X1X2 +X1X3 +X1X4 +X1X5 +X2

2 +X2X3 +X2X4

+X2X5 +X2
3 +X3X4 +X3X5 +X2

4 +X4X5 +X2
5 (5.15)

Substituting the terms in the character into this expression, we obtain

s[2](χ
SO(5)
[1,0] (zi)) = z2

1 + z2
2 + z1 +

z2
1

z2
2

+ 1 +
z4

2

z2
1

+
z2

2

z1
+ 1

+
z2

2

z2
1

+ 1 +
z1

z2
2

+
1

z1
+
z2

1

z4
2

+
1

z2
2

+
1

z2
1

(5.16)

We see that the highest weight in the plethysm is [2,0] in Dynkin label

notation; calculating the character of this representation, either via the

one-step Weyl character formula or the two-step construction of the weights

and Freudenthal’s recursion formula, we see that the plethysm decomposes

into the character of the [2,0] representation and a singlet. We write this in
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Dynkin label form as follows:

s[2](χ
SO(5)
[1,0] (zi)) = χ

SO(5)
[2,0] (zi) + χ

SO(5)
[0,0] (zi) (5.17)

The dimension of the moduli space, which is the dimension of the pole at

t = 1 in the unrefined Hilbert series, is given by the number of matter

degrees of freedom that are not ‘eaten’ when the gauge group G is broken

down to its ‘unbroken’ subgroup H by the Higgs mechanism. This is given

by (
∑

RNRdim(R)) − dim(G) + dim(H), where R sums over all possible

matter representations and NR is the number of ‘flavours’ of representation

R. Usually there are only one or two types of matter fields in a theory,

though cases with 3 types have had their Hilbert series computed in the

case of SU(N) with an adjoint, Nf fundamentals and the same number of

antifundamentals as covered in [3] and the cases covered in this thesis of

SO(8) with vectors, spinors and conjugate spinors or one adjoint and both

types of spinor, and are also discussed in [34].

Since the gauge group is broken progressively for each added flavour of a

given matter representation R until it is broken completely at the number

of flavours at which the moduli space becomes a complete intersection (or

one fewer) and henceforth remains completely broken, the dimension of the

moduli space increases at an increasing rate until this number of flavours is

reached and subsequently increases by dim(R) at each step. This ‘critical’

number of flavours is, except in the case of SO(N) and flavours in the fun-

damental where it is N (and taking a ‘flavour’ to mean both a fundamental

and an antifundamental in the case of SU(N)), given by

N crit
f =

I2(Ad)

I2(Rmat)
(5.18)

where I2(R) is the second Dynkin index for representation R and the matter

transforms in representation Rmat. The second Dynkin index of a represen-

tation R of a group G is given by

TrR(T aT b) = f(G)I2(R)δab (5.19)

where TrR is the trace taken over the representation R and T a (where a is

an adjoint index) is the a-th generator (with the representation understood).
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The trace over the adjoint is usually denoted simply Tr and that over the

(anti)fundamental of SU(N) or Sp(N) or the vector of SO(N) is usually

denoted tr. The factor f(G) is 1
2 for SU(N) groups to normalize I(R) to

be 1 for the (anti)fundamental; for Sp(N) it is chosen to set I(R) for the

fundamental to 1, and similarly for SO(N) it is 1, chosen to set I(R) for the

vector to 2. For other groups and representations the Dynkin indices, along

with the dimensions, are shown in Table 5.1. The normalization is chosen

so that the adjoint has as its Dynkin index twice the dual Coxeter number.

(The conventions of [24] and [72], rather than [5], are used to order the

entries. For An groups the Dynkin index and dimension remain the same

when the order of all entries is reversed.)

The sum of the Dynkin indices of the matter representations given the

aforementioned normalization must be even so that the Z2 anomaly is not

violated [3]. This constrains the total number of fundamentals and anti-

fundamentals in SU(N) SQCD, and the number of fundamentals in Sp(N)

SQCD, to be even, because the Dynkin index of these representations is 1.

We usually only consider SU(N) theories with the same number of funda-

mentals and antifundamentals as in [1] and [3]. The only other common

matter representations that could have odd Dynkin indices are the 2nd-

order symmetric and antisymmetric tensors of SU(N), which have indices

N + 2 and N − 2 respectively and are thus odd for odd N , though since

there are no invariants of the antisymmetric tensor in this case we do not

consider it. The numbers of flavours in theories with SO(N) or exceptional

gauge groups is not constrained by this anomaly, because the Dynkin index

of any representation is even.

As the number of flavours is increased, the gauge group is further broken

(when the Higgs mechanism is applied on all possible flat directions) and

eventually the number of flavours is such that the gauge group is broken

completely, this normally happens at the aforementioned ’critical’ number

of flavours (or one less flavour in the case of G2), and from then on the

dimension of the moduli space increases by the same amount, i.e. the di-

mension of the matter representation(s), with each added flavour. We see

that the same applies for the dimension of each individual pole and thus can

write a general expression for the unrefined series as a polynomial of degree

linear in the number of flavours divided by a product of terms of the form

(1 − tn)m where m is also linear in the number of flavours for each n, or
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G R dim(R) I2(R)

An−1 [1,0,. . .,0] n 1

An−1 [2,0,. . .,0] n(n+1)
2 n+ 2

An−1 [0,1,0,. . .,0] n(n−1)
2 n− 2

An−1 [1,0,. . .,0,1] n2 − 1 2n

Bn [1,0,. . .,0] 2n+ 1 2

Bn [0,1,0,. . .,0] n(2n+ 1) 4n− 2

Bn [0,. . .,0,1] 2n 2n−2

Cn [1,0,. . .,0] 2n 1

Cn [2,0,. . .,0] n(2n+ 1) 2n+ 2

Cn [0,1,0,. . .,0] n(2n− 1)− 1 2n− 2

Dn [1,0,. . .,0] 2n 2

Dn [0,1,0,. . .,0] n(2n− 1) 4n− 4

Dn [0,. . .,0,1] 2n−1 2n−3

Dn [0,. . .,0,1,0] 2n−1 2n−3

E6 [1,0,0,0,0,0] 27 6

E6 [0,0,0,0,1,0] 27 6

E6 [0,0,0,0,0,1] 78 24

E7 [0,0,0,0,0,1,0] 56 12

E7 [1,0,0,0,0,0,0] 133 36

F4 [0,0,0,1] 26 6

F4 [1,0,0,0] 52 18

G2 [0,1] 7 2

G2 [1,0] 14 8

Table 5.1: Dynkin indices and dimensions for groups and representations
discussed in this thesis
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sometimes a product of terms of the form (1−ω−1
n,kt)

m where ωn,k = e2πik/n

and k and n are coprime, or of powers of products of such terms which have

integer coefficients but are irreducible over Z. 3

We use the following notation to denote the fundamental fields of the

theories:

• Qia for quark fields in the fundamental representation of SU(N), G2,

F4, E6 or E7 or the vector representation of SO(N) or Sp(N)

• Q̃ai for antiquark fields where the fundamental is complex and hence

the antifundamental is not the same representation, i.e. SU(N), E6.

We use tildes rather than bars because this is not the complex conju-

gate of the quark field but rather a separate independent field. (We

do use bars for the complex conjugate, i.e. when discussing D-term

constraints and Higgsing.)

• Sia for (quark) fields in the spinor representation of SO(N) and the

‘conjugate’ spinor representation of SO(4n) for which both spinor rep-

resentations are self-conjugate

• Sai for (antiquark) fields in the conjugate spinor representation of

SO(4n + 2) where the conjugate spinor is the complex conjugate of

the spinor

• φab for fields in the adjoint representation of SO(N), Sp(N), G2, F4

and E7 in which the fundamental is self-conjugate, i.e. real (SO(N),

G2 and F4) or pseudo-real (Sp(N) and E7)

• φab for fields in the adjoint representation of SU(N) and E6 in which

the fundamental is complex.

In all cases i, j, . . . denote global symmetry group indices and a, b, . . . gauge

group ones.

We use the following symbols to denote ’counting’ (i.e. U(1)) fugacities:

• t to count quark fields

3For example, (1− t6) is expressible as the product (1− t)(1 + t)(1 + t+ t2)(1− t+ t2),
while we also have 1− t3 = (1− t)(1+ t+ t2) and 1− t2 = (1− t)(1+ t), and sometimes
the rational function would not be in its lowest terms if expressed in the first form.
For examples see Section 5.6.
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• u for antiquarks; this differs from [1] and [3] where t̃ is used

• v for conjugate spinors when there are all 3 types of field (vector,

spinor, conjugate spinor; in this thesis we will only do this for SO(8))

in the theory (when there are only 2 types of (non-adjoint) matter

field, still for SO(8), we consider them to be spinors and conjugate

spinors but still use t and u, when there is only one type we consider

it to be a vector)

• s to count adjoint fields.

If we ‘merge’ the counting fugacity with a set of SU(N) fugacities to give a

set of U(N) fugacities, we append the subscript i to the counting fugacities.

5.4 Review of results for classical gauge groups

In this section we will set the scene for the results for exceptional and re-

lated gauge groups to come in the next sections with a short review of those

for classical gauge groups with matter in (anti)fundamental representations

both with and without an adjoint field and G2 with fundamental matter

and an adjoint field as discussed in [1], [2] and [3]. We show how to obtain

the character expansion, and then discuss how relations and higher syzy-

gies arise from the character expansion in the cases which are not freely

generated.

5.4.1 SU(N) gauge group without adjoint

The gauge group is SU(Nc) and the global symmetry group is U(Nf ) ×
U(Nf ), where Nc is the number of colours and Nf the number of flavours.

There are two global groups because there are two types of fields: quarks

transforming in the fundamental of the global symmetry group and the an-

tifundamental of the gauge group and antiquarks which transform in the an-

tifundamental of the global group and the fundamental of the gauge group,

although there are Nf of each.

As we will do with all the cases we consider, we use two methods of

describing the refined Hilbert series; firstly using ti for i between 1 and Nf ,

the number of flavours, and secondly splitting the U(Nf ) into a U(1) part,

described by one counting fugacity t, and a SU(N) part, which we describe
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using Dynkin labels. We usually use the second notation, which is more

succinct and explicit in terms of group representations, when describing

character expansions.

In [1], the Hilbert series were first obtained using methods from algebraic

geometry, and later re-derived using the plethystic programme, where we

see that the two methods produce the same results in the cases where the

moduli space is either freely generated or a complete intersection, so we use

the second method to derive the Hilbert series when it is neither.

The moduli space, which is the (chiral) ring whose graded pieces are

counted in the Hilbert series, is parametrized by the gauge-invariant opera-

tors of the theory. For Nf < Nc, the only possible gauge-invariant operators

are the mesons, defined as M i
j = QiaQ̃

a
j with summation over the gauge in-

dices; there are N2
f of them and they transform in the [1, 0, . . . , 0; 0, . . . , 0, 1]

representation of the global symmetry group, and there are no relations be-

tween them so the moduli space is freely generated. (In other theories, such

as instanton theories, there are relations between the mesons, which come

from the superpotential, e.g. in the one-instanton case the meson matrix is

traceless and squares to zero, i.e. is nilpotent of order 2.)

For Nf ≥ Nc, we also have baryons, defined by

Bi1...iNc = εa1...aNcQi1a1 . . . Q
iNc
aNc , and antibaryons, defined similarly as

B̃i1...iNc = εa1...aNc Q̃
a1
i1
. . . Q̃

aNc
iNc

. (The nomenclature echoes the usage in

standard particle physics, with mesons consisting of a quark and an anti-

quark and (anti)baryons of a number of (anti)quarks equal to the number

of colours; also mesons are contracted with traces and baryons with de-

terminants or fully antisymmetric tensors.) There are
(Nf
Nc

)
of each, giving

N2
f + 2

(Nf
Nc

)
generators in total.

There are relations between mesons and (anti)baryons even in this SQCD

case with no superpotential. Firstly, because of the properties of products of

the epsilon tensors, the baryon and antibaryon multiply to give a product

of mesons; there are
(Nf
Nc

)2
such relations: Bi1...iNc B̃j1...jNc . Secondly, for

Nf > Nc strictly, dualizing the baryon using the epsilon tensor of the global

group and contracting with a meson vanishes on account of antisymmetriz-

ing over Nc + 1 flavour indices, and therefore by necessity over the same

number of colour indices, so it must vanish because there are only Nc of the

latter: M.∗B = 0, and the same for antibaryons. There are 2Nf

( Nf
Nc+1

)
such

relations. For Nf = Nc, the dual baryon and antibaryon (there is only one
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of each) are scalars, so they have no ‘inner’ product with mesons, but their

product is the determinant of the meson matrix: ∗B∗B̃ = det(M).

These gauge invariant operators could be seen simply by inspection, and

as we will see in Section 5.6, and has been explained in [25], at least for the

case of Nf < Nc, by consideration of how many generators of the original

SU(Nc) gauge group were broken by giving the quark fields vacuum expec-

tation values (VEVs) and therefore how many of the ‘original’ quark fields

were not ‘eaten’ (one field is eaten per broken generator) but rather left as

massless fields in the ‘new’ theory and basically ‘guess’ the representations

of the residual gauge groups in which they transform. For Nf < Nc, the

gauge group is broken to SU(Nc − Nf ), the number of broken generators

is N2
c − 1 − ((Nc − Nf )2 − 1) = 2NfNc − N2

f and therefore the number

of fields left massless is N2
f , which matches exactly the number of mesons

and is consistent with the fact that these are the only generators and there

are no relations between them. A similar construction applies for the other

classical groups as is seen in [2].

For Nf ≥ Nc, again following [25], the gauge group is broken completely

so the number of gauge fields left over is 2NfNc−N2
c +1. For Nf = Nc, this

equals N2
f +1 and is equal to the N2

f mesons plus the baryon and antibaryon

minus the one relation, but for Nf > Nc there are too many relations to

exactly cancel out the extra generators, so we need further back-relations

between the primitive relations and the primitive generators, these are called

higher syzygies.

These higher syzygies are difficult to calculate, so we cannot simply ‘ob-

serve’ them; we need some way of determining them systematically, which is

where the plethystic programme comes in. The plethystic exponential (PE)

is a generator for the symmetrization of the fundamental fields to arbitrary

orders, and the gauge invariant Hilbert series, which can be refined or un-

refined (or partially refined!), is then obtained by integrating over the Haar

measure for the gauge group. The plethystic logarithm (PL) can then be

used to extract the generators, relations and higher syzygies. When we gen-

eralize to the case of exceptional gauge groups, especially the higher ones,

or non-(anti)fundamental representations of classical groups, we even need

to use plethystics to determine the primitive invariants and relations, and

then deduce the residual gauge groups.

As is described in Section 5.3.2, the argument for the plethystic exponen-
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tial is the sum of all fundamental fields expressed in terms of characters of

both the gauge and global groups and weighted by any counting fugacities.

Like the ‘usual’ exponential, the plethystic exponential of the sum of two

arguments is the product of the plethystic exponentials of the arguments

taken separately. We will see how this gives the character expansion, and

observe how relations and higher syzygies arise in the case of Nf ≥ Nc, for

the refined Hilbert series for SU(Nc) gauge group and SU(Nf ) × SU(Nf )

global group.

We recall from Section 2.4 that the symmetrization of the product of two

U(N) fundamentals, here U(Nf ) and U(Nc) (actually SU(Nc) but we will

treat it as U(Nc) for now), written in the form of simple sums of fugacities

ti, 1 ≤ i ≤ Nf and zj , 1 ≤ j ≤ Nc, to general order k is given by the sum of

the products of the Schur polynomials in the two sets of fugacities separately

with the partition being the same in both cases:

Symk(

Nf∑
i=1

Nc∑
j=1

tizj) =
∑
|λ|=k

sλ(ti)sλ(zj) (5.20)

When working with character expansions, we decompose the U(N) global

group(s) to U(1) × SU(N) where the U(1) fugacity counts the number

of fields. We usually split off the U(1) counting fugacity by setting t =

(
∏N−1
i=1 ti)

1/N . This can be done by defining new SU(N) fugacities zi = ti/t

and seeing that zN = (
∏N−1
i=1 zi)

−1, or using the Dynkin labels of the weights

to determine the powers of the fugacities in each term, with the mapping

being

t1 → tz1

ti → t
zi
zi−1

, 1 < i < N

tN → t/zN−1 (5.21)

Both methods are explored in [1]. 4

The reverse mapping obtains the (t1, . . . , tN ) powers from those of

4A third approach, which keeps characters ‘symmetric’ in the fugacities, is used in [43].
It treats the U(N) fugacities zi as independent and imposes the SU(N) condition via
a delta function, using the fact that the latter can be expanded as an infinite Laurent
power series: δ(

∏N
i=1 zi − 1) = 1

2πi

∑∞
n=−∞(

∏N
i=1 zi)

n. This method is not convenient
here though.
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(z1, . . . , zN−1; t) via the matrix (aij)1≤i,j≤N , where the aij are given by

aij =

{
N−i
N , 1 ≤ j ≤ i
−i
N , i+ 1 ≤ j ≤ N

aNi =
1

N
, 1 ≤ i ≤ N (5.22)

We do the same thing with the gauge group, though here as the gauge

group is SU(Nc) we either absorb the temporary ‘counting’ fugacity into

that for the global group or we ignore it entirely. (We could also describe

this process as simply replacing the temporary (S)U(N) fugacities with the

terms in the character of the global or gauge group representation, which is

called a ‘specialization’, and multiplying by a counting fugacity if the group

is U(N).)

For a group SU(N), the Schur polynomial sλ, with the fugacities special-

ized to the terms in the character of the fundamental as above, is just the

character of the representation with Dynkin labels [a1, a2, . . . , aN−1] where

ai = λi−λi+1 for 1 ≤ i ≤ N−1. (This is not the case for other gauge groups,

where the plethysm is non-trivial.) There must not be more than N rows

in the Young tableau corresponding to the partition. When the field trans-

forms in the antifundamental of that particular (gauge or global) SU(N),

the plethysm is given by the complex conjugate of that of the fundamental,

i.e. [aN−1, . . . , a1].

The quark fields transform in the fundamental representation of the first

SU(Nf ) in the global symmetry group, the antifundamental of the SU(Nc)

gauge group and a singlet of the second SU(Nf ) in the global group and

are counted by the U(1) fugacity t. The antiquarks transform as a singlet of

the first SU(Nf ), the fundamental of SU(Nc), the antifundamental of the

second SU(Nf ) and are counted by u.

The plethystic exponential of t[1, 0, . . . , 0]SU(Nf )1 [0, . . . , 0, 1]SU(Nc), which

denotes the quark fields, is given by, in character expansion,

∑
ni≥0,1≤i≤min(Nf ,Nc)

t
∑min(Nf ,Nc)

i=1 ini [n1, n2, . . .]SU(Nf )1 [. . . , n2, n1]SU(Nc)

(5.23)

The summation to min(Nf , Nc) occurs because Young tableaux with more

rows than this contain antisymmetrizations of either the gauge or global
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group representation to order more than their dimension and therefore van-

ish. (One goes from a partition λ to an SU(N) representation as before, i.e.

ni = λi − λi+1.) When Nf < Nc, columns with Nf boxes do not contribute

to the SU(Nf ) Dynkin labels of (half) the global group, but they do to the

U(1) charge to which power t is raised, which is the integer of which the

corresponding λ is a partition, and also to the (Nc −Nf )-th (from the left,

Nf -th from the right) SU(Nc) Dynkin labels of the gauge group; the same

applies the other way round (the Nc-th Dynkin label) for Nf > Nc. When

they are equal, columns of length Nf = Nc contribute only to the power of

t. (This comes from the fact that the epsilon invariant of SU(N) is not an

invariant of U(N), because the determinant of a U(N) matrix is not fixed to

be 1, therefore columns of N boxes can contribute to a U(N) tableau, but

not an SU(N) one, so they must contribute to the U(1) charge instead.)

The PE of the combined gauge/global representation denoting the anti-

quark fields is given by the complex conjugate of this expression, counted

by u and transforming non-trivially in the second SU(Nf ):

∑
mi≥0,1≤i≤min(Nf ,Nc)

u
∑min(Nf ,Nc)

i=1 imi [m1,m2, . . .]SU(Nc)[. . . ,m2,m1]SU(Nf )2

(5.24)

When the two expansions are tensored together, gauge singlets occur when

the gauge group representations in the two terms are conjugates of each

other, i.e. they have the same Dynkin labels but with the order reversed.

When Nf < Nc, ni = mi = 0 for i > Nf necessarily, and gauge singlets

arise when ni = mi for 1 ≤ i ≤ Nf . These correspond to a character

expansion of

∑
ni≥0,1≤i≤Nf

(tu)
∑Nf
i=1 ini [n1, . . . , nNf−1]SU(Nf )1 [nNf−1, . . . , n1]SU(Nf )2

(5.25)

We see that nNf does not contribute to the SU(Nf ) Dynkin labels, but

only to the overall power of tu, so we can factor the dependence on it out

as follows:

1

(1− (tu)Nf )

∑
ni≥0,1≤i≤Nf−1

(tu)
∑Nf−1

i=1 ini

×[n1, . . . , nNf−1]SU(Nf )1 [nNf−1, . . . , n1]SU(Nf )2 (5.26)
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When Nf ≥ Nc, ni = mi for 1 ≤ i ≤ Nc−1, nNc and mNc can take non-zero

values but do not have to be equal (because two U(Nc) Young tableaux with

different numbers of leftmost columns of Nc boxes correspond to the same

SU(Nc) tableau), and ni = mi = 0 for i > Nc. This leads to a character

expansion

∑
ni≥0,1≤i≤Nc−1,nNc ,mNc≥0

(tu)
∑Nf
i=1 initNcnNcuNcmNc

×[n1, . . . , nNc−1, nNc , 0, . . . , 0]SU(Nf )1

×[0, . . . , 0,mNc , nNc−1, . . . , n1]SU(Nf )2 (5.27)

When Nf = Nc, this simplifies to

1

(1− tNc)(1− uNc)
∑

ni≥0,1≤i≤Nc−1

(tu)
∑Nc
i=1 ini

×[n1, . . . , nNc−1]SU(Nc)1 [nNc−1, . . . , n1]SU(Nc)2 (5.28)

We have shown how to obtain the character expansion. We will now discuss

how relations and higher syzygies arise from the character expansion in the

case of Nf ≥ Nc.

For Nf < Nc, we recall that the character expansion is generated by

the mesonic generators [1, 0, . . . , 0; 0, . . . , 0, 1]tu (with the semicolon sepa-

rating representations of the two SU(Nf ) representations); we know that

there are no others, and no relations, but it is easy to check explicitly

that these generate the full expansion. These are also generators for Nf ≥
Nc, but we also have two generators [0, . . . , 0, 1Nc , 0, . . . , 0; 0, . . . , 0]tNc and

[0, . . . , 0; 0, . . . , 0, 1Nc , 0, . . . , 0]uNc , with the notation denoting that the 1 is

in the Nc-th position from the left if before the semicolon and from the right

if after, so they are singlets in the case of Nf = Nc.

We can easily observe that the coefficient of [. . . , 1Nc , . . . ; . . . , 1Nc , . . .]t
NcuNc

(or the singlet tNcuNc in the Nf = Nc case) (here we simplify the notation;

all unspecified Dynkin labels are zero) in the character expansion is 1; how-

ever it can be constructed from the generators in two ways, firstly as one

of the terms in the Nc-th symmetrization of [1, . . . ; . . . , 1]tu, and secondly

as a product of the two baryonic generators, so we must subtract one back

out as a relation. This is the ∗B∗B̃ = det(M) relation when Nf = Nc and

its generalization to Nf > Nc strictly.
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We also know that, for Nf > Nc strictly, the character expansion does

not contain any terms with a non-zero Dynkin index in the Nc + 1-th or

any higher position, either from the left if before the semicolon or from the

right if after. However, the product of the meson and the baryon contains a

term [. . . , 1Nc+1, . . . ; . . . , 1]tNc+1u, which must also be removed as a relation.

This is the M.∗B = 0 relation (where the star denotes the Hodge dual). The

M.∗B̃ = 0 relation is similar but with the antibaryon. These are the two

primary relations, as we saw earlier.

Following on from the second invariant above, we see at order tNc+2u2 we

have only two representations in the character expansion: [2, . . . , 1Nc , . . . ; . . . , 2]

and [0, 1, . . . , 1Nc , . . . ; . . . , 1, 0]. However, products of two symmetrized mesonic

generators and one baryonic one give the following sum (understanding the

order tNc+2u2):

[2, . . . , 1Nc , . . . ; . . . , 2] + [1, . . . , 1Nc+1, . . . ; . . . , 2] + [0, 1, . . . , 1Nc , . . . ; . . . , 1, 0]

+[1, . . . , 1Nc+1, . . . ; . . . , 1, 0] + [. . . , 1Nc+2, . . . ; . . . , 1, 0]

The product of the M.∗B = 0 relation with another mesonic generator

subtracts the following terms back out (order again understood):

[1, . . . , 1Nc+1, . . . ; . . . , 2] + [1, . . . , 1Nc+1, . . . ; . . . , 1, 0] + [. . . , 1Nc+2, . . . ; . . . , 2]

+[. . . , 1Nc+2, . . . ; . . . , 1, 0]

We see that we must add back in [. . . , 1Nc+2, . . . ; . . . , 2] to get the desired

character expansion. This is our first higher syzygy (only for Nf > Nc + 1).

The others can be obtained in similar fashion, order by order, though they

can also be obtained, along with the primitive invariants and relations, by

taking the plethystic logarithm of the Hilbert series.

Returning to the expression of the Hilbert series as rational functions,

here are the partially (un)refined and fully unrefined series, calculated using
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Mathematica, for A2 = SU(3) for 3, 4 and 5 flavours:

g(3,A2)(t, u) =
1 + tu+ t2u2

1− t3)(1− u3)(1− tu)8
=

1− t3u3

1− t3)(1− u3)(1− tu)9

g(3,A2)(t, t) =
1− t+ t2

(1− t)10(1 + t)8(1 + t+ t2)
=

1 + t3

(1− t2)9(1− t3)

=
1 + t2 + t4

(1− t2)8(1− t3)2

g(4,A2)(t, u) = (1− t3)−4(1− u3)−4(1− tu)−12 ×

(1 + 4tu− 4t4u+ 10t2u2 − 16t5u2 + 6t8u2 +

4t3u3 − 16t6u3 + 8t9u3 − 4tu4 + 2t4u4 −

4t7u4 + 6t10u4 − 16t2u5 + 20t5u5 − 4t8u5 −

16t3u6 + 38t6u6 − 16t9u6 − 4t4u7 + 20t7u7 −

16t10u7 + 6t2u8 − 4t5u8 + 2t8u8 − 4t11u8 +

8t3u9 − 16t6u9 + 4t9u9 + 6t4u10 − 16t7u10 +

10t10u10 − 4t8u11 + 4t11u11 + t12u12)

g(4,A2)(t, t) =
(1 + t2)(1 + 3t2 + 4t3 + 7t4 + 4t5 + 7t6 + 4t7 + 3t8 + t10)

(1− t2)12(1− t3)4
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g(5,A2)(t, u) = (1− t3)−7(1− u3)−7(1− tu)−16 ×

(1 + 3t3 + t6 + 9tu+ 2t4u− 16t7u+ 45t2u2 −

75t5u2 + 15t8u2 + 15t11u2 + 3u3 + 74t3u3 −

292t6u3 + 245t9u3 − 65t12u3 + 2tu4 + t4u4 −

313t7u4 + 595t10u4 − 300t13u4 + 50t16u4 −

75t2u5 − 45t5u5 + 150t8u5 + 210t11u5 −

315t14u5 + 75t17u5 + u6 − 292t3u6 + 731t6u6 −

210t9u6 − 140t12u6 − 35t15u6 + 50t18u6 −

16tu7 − 313t4u7 + 1634t7u7 − 2090t10u7 +

715t13u7 − 35t16u7 + 15t2u8 + 150t5u8 +

675t8u8 − 2175t11u8 + 1650t14u8 − 315t17u8 +

245t3u9 − 210t6u9 − 725t9u9 + 100t12u9 +

715t15u9 − 300t18u9 + 595t4u10 − 2090t7u10 +

1775t10u10 + 100t13u10 − 140t16u10 − 65t19u10 +

15t2u11 + 210t5u11 − 2175t8u11 + 3900t11u11 −

2175t14u11 + 210t17u11 + 15t20u11 − 65t3u12 −

140t6u12 + 100t9u12 + 1775t12u12 − 2090t15u12 +

595t18u12 − 300t4u13 + 715t7u13 + 100t10u13 −

725t13u13 − 210t16u13 + 245t19u13 − 315t5u14 +

1650t8u14 − 2175t11u14 + 675t14u14 + 150t17u14 +

15t20u14 − 35t6u15 + 715t9u15 − 2090t12u15 +

1634t15u15 − 313t18u15 − 16t21u15 + 50t4u16 −

35t7u16 − 140t10u16 − 210t13u16 + 731t16u16 −

292t19u16 + t22u16 + 75t5u17 − 315t8u17 +

210t11u17 + 150t14u17 − 45t17u17 − 75t20u17 +

50t6u18 − 300t9u18 + 595t12u18 − 313t15u18 +

t18u18 + 2t21u18 − 65t10u19 + 245t13u19 −

292t16u19 + 74t19u19 + 3t22u19 + 15t11u20 +

15t14u20 − 75t17u20 + 45t20u20 − 16t15u21 +

2t18u21 + 9t21u21 + t16u22 + 3t19u22 + t22u22)
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g(5,A2)(t, t) = (1− t2)−15(1 + t)−1(1− t3)−7 ×

(1 + t+ 10t2 + 23t3 + 68t4 + 135t5 + 281t6 + 446t7 +

695t8 + 895t9 + 1090t10 + 1115t11 + 1090t12 + 895t13 +

695t14 + 446t15 + 281t16 + 135t17 + 68t18 + 23t19 +

10t20 + t21 + t22)

We see that, when the series are partially or fully unrefined, that the frac-

tions simplify. For example, there are 25 generators at order tu and 10 each

at orders t3 and u3 for the 5-flavour series, but the powers of (1−tu), (1−t3)

and (1− u3) in the denominator are 16, 7 and 7 respectively.

We see immediately that the totally unrefined series, when written in

lowest terms, do not have their denominators in Euler form when the number

of flavours is not 4. We also observe that the difference between the degree

of the denominator and that of the numerator is equal to the number of

degrees of freedom in the fundamental fields, in both the partially refined

(counting t and u degrees of freedom separately) and fully unrefined cases:

g(3,A2)(t, u)(t) : 1.3 + 1.0 + 8.1 = 2 + 3.3

g(3,A2)(t, t) : 10.1 + 8.1 + 1.2 = 2 + 6.3

g(4,A2)(t, u)(t) : 4.3 + 4.0 + 12.1 = 12 + 4.3

g(4,A2)(t, t) : 16.1 + 12.1 + 4.2 = 12 + 8.3

g(5,A2)(t, u)(t) : 7.3 + 7.0 + 16.1 = 22 + 5.3

g(5,A2)(t, t) : 15.2 + 1.1 + 7.3 = 22 + 10.3

This can be explained in terms of the form of the Molien-Weyl integral,

where the plethystic exponential contains one factor of a given fugacity

in the denominator for every degree of freedom in a matter field counted

by that fugacity and the Haar measure contains no factors of any global

symmetry group fugacities. We expect it to also be the case when dealing

with fully refined series. (As explained in [1], this also explains why the

numerator is palindromic in the non-freely generated cases; in the freely

generated cases it is trivially palindromic because it is 1.)

We now move on to the other infinite families of (classical) Lie groups,

SO(N) and Sp(N), which were discussed in [2].
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5.4.2 SO(N) gauge group without adjoint

In the theory with gauge group SO(Nc), there is only one type of field,

transforming in the vector (or fundamental) of the gauge group and the

fundamental of the global symmetry group, so the latter is simply U(Nf ).

The number of flavours can take any value, because the second Dynkin index

of the vector of SO(Nc) is 2, which is even.

This time, when using the plethystic exponential and Molien-Weyl inte-

gration analytically, we usually use the Cartesian basis for the weights of the

fundamental, with the weights being ±ei, 1 ≤ i ≤ n for Nc = 2n (denoted

Dn) and with an extra zero weight for Nc = 2n + 1 (denoted Bn). The

positive roots are ei ± ej for 1 ≤ i < j ≤ n, and for Bn, ei for 1 ≤ i ≤ n.

(All roots, positive and negative, are expressible as the difference of two

weights of the fundamental, i.e. it is the antisymmetric square.)

Returning to character expansions, the plethysm of the vector of SO(N)

over a given partition λ contains exactly one singlet when all the λi for

1 ≤ i ≤ N − 1 are even and those for i > N are zero; λN can be odd or

even, because columns of length N reduce to singlets and can be cancelled

out; the column of N boxes is an invariant. This leads to a character

expansion of the form, for Nf < Nc,∑
ni≥0,1≤i≤Nf

t
∑Nf
i=1 2ini [2n1, . . . , 2nNf−1]SU(Nf ) (5.29)

and for Nf = Nc,

∑
ni≥0,1≤i≤Nf t

∑Nf−1

i=1 2ini+Nf iNf [n1, . . . , nNf−1]SU(Nf )

= 1

(1−tNf )

∑
ni≥0,1≤i≤Nf−1 t

∑Nf−1

i=1 2ini [n1, . . . , nNf−1]SU(Nf ) (5.30)

and for Nf > Nc,∑
ni≥0,1≤i≤Nc

t
∑Nc−1
i=1 2ini+NciNc [2n1, . . . , 2nNc−1, nNc , 0, . . . , 0]SU(Nf ) (5.31)

We can again derive the generators - [2, . . .]t2 and (forNf ≥ Nc) [. . . , 1Nc , . . .]t
Nc

- the relations, [. . . , 2Nc , . . .]t
2Nc (for Nf ≥ Nc) and [1, . . . , 1Nc+1, . . .]t

Nc+2

(forNf ≥ Nc+1), and the higher syzygies, the first being [2, . . . , 1Nc+2, . . .]t
Nc+4
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(for Nf ≥ Nc + 2), from the character expansion. The generators corre-

spond to M ij = δabQiaQ
j
b (the mesons) and Bi1...iNc = εa1...aNcQi1a1 . . . Q

iNc
aNc

(the baryons), and the relations to BB = M . . .M (schematically) and

M.∗B = 0, similar to the SU(N) case but with differences in detail because

there is only one type of fundamental field. For Nf < Nc the number of

generators is the number of fields left massless by the Higgsing construction

as in the SU(N) case, and again for Nf > Nc the need for higher syzy-

gies can be seen from the over-cancellation of the generators exceeding the

dimension of the moduli space by the relations, and so on...

We observe that the SU(Nf ) representations in the character expansion

of the SO(Nc) SQCD theory can be obtained by adding the Dynkin labels

of the two SU(Nf ) groups in the SU(Nc) theory, reversing the order of

the second set of labels, and setting u = t, although only one term is kept

when multiple terms in the SU(Nc) expansion coalesce to the same one in

the SO(Nc) one, and the same applies with the generators, relations and

higher syzygies (again keeping only one if there are multiples). This relates

to the fact that the quiver diagram can be formed by ‘folding’ that of the

SU(Nc) theory, taking the symmetric (orientifold) projection and restricting

the global symmetry group to its diagonal SU(Nf ) subgroup.

Again returning to the expressions of the Hilbert series of rational func-

tions, here are the partially (un)refined and fully unrefined series for SO(3)
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for 3, 4, 5, 6 and 7 flavours, calculated using Mathematica:

g(3,SO(3))(t) =
1− t+ t2

(−1 + t)6(1 + t)5
=

1 + t3

(1− t2)6

g(4,SO(3))(t) =
1− 2t+ 4t2 − 2t3 + t4

(1− t)9(1 + t)7)
=

1 + t2 + 4t3 + t4 + t6

(1− t2)9

g(5,SO(3))(t) =
1− 3t+ 9t2 − 9t3 + 9t4 − 3t5 + t6

(1− t)12(1 + t)9

=
1 + 3t2 + 10t3 + 6t4 + 6t5 + 10t6 + 3t7 + t9

(1− t2)12

g(6,SO(3))(t) =
1− 4t+ 16t2 − 24t3 + 36t4 − 24t5 + 16t6 − 4t7 + t8

(1− t)15(1 + t)11

= (1− t2)−15(1 + 6t2 + 20t3 + 21t4 + 36t5 + 56t6 + 36t7 + 21t8 +

20t9 + 6t10 + t12)

g(7,SO(3))(t) =
1− 5t+ 25t2 − 50t3 + 100t4 − 100t5 + 100t6 − 50t7 + 25t8 − 5t9 + t10

(1− t)18(1 + t)13

= (1− t2)−18(1 + 10t2 + 35t3 + 55t4 + 126t5 + 220t6 + 225t7 +

225t8 + 220t9 + 126t10 + 55t11 + 35t12 + 10t13 + t15)

Here they are for B2 = SO(5) with 5, 6 and 7 flavours:

g(5,B2)(t) =
1− t+ t2 − t3 + t4

(1− t)15(1 + t)14)
=

1 + t5

(1− t2)15

g(6,B2)(t) =
1− 2t+ 4t2 − 6t3 + 9t4 − 6t5 + 4t6 − 2t7 + t8

(1− t)20(1 + t)18

=
1 + t2 + t4 + 6t5 + t6 + t8 + t10

(1− t2)20

g(7,B2)(t) = (1− t)−25(1 + t)−22(1− 3t+ 9t2 − 19t3 + 39t4 − 48t5 + 56t6 −

48t7 + 39t8 − 19t9 + 9t10 − 3t11 + t12)

= (1− t2)−25(1 + 3t2 + 6t4 + 21t5 + 10t6 + 15t7 + 15t8 + 10t9 +

21t10 + 6t11 + 3t13 + t15)

Again we observe that the difference between the degree of the denominator

and that of the numerator is equal to the number of degrees of freedom in

the fundamental fields, and again it is the case that when the Hilbert series is

written as a rational function in lowest terms for Nf ≥ Nc, the denominator

is not in Euler form.
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5.4.3 Sp(N) gauge group without adjoint

Again there is only one type of field, transforming in the vector (or fun-

damental) of the gauge group Sp(Nc) and the fundamental of the global

symmetry group U(Nf ), where Nf must be even (and is often written as

2Nf ) because the second Dynkin index of the fundamental of Sp(Nc) is 1,

which is odd. We again use the Cartesian basis for the weights of the fun-

damental, with the weights being ±ei, 1 ≤ i ≤ Nc for Sp(Nc). The positive

roots are ei ± ej for 1 ≤ i ≤ j ≤ Nc and 2ei for 1 ≤ i ≤ Nc. In this case

all roots, positive and negative, are expressible as the sum of two weights

of the fundamental, i.e. it is the symmetric square.

Returning to character expansions, the plethysm of the vector of Sp(N)

over a given partition λ contains exactly one singlet when λ2i = λ2i−1 for all

integer i, or alternatively when all the λTi are even where λT is the transpose

of λ. The character expansion is as follows:

∑
ni≥0,1≤i≤min(Nf ,Nc)

t
∑min(Nf ,Nc)

i=1 2ini [0, n1, 0, . . . , 0, nNf−1, 0]SU(2Nf ) (5.32)

with all odd-indexed Dynkin labels being zero.

This also results from folding the SU(Nc) quiver diagram, but keeping

the antisymmetric orientifold projection; the global symmetry group is en-

hanced to SU(2Nf ).

The generators are [0, 1, 0, . . .]t2; there are no baryons since they break

up into products of Nc mesons (which are contracted using a symplectic,

i.e. antisymmetric, trace). By inspection, when Nf ≥ Nc, there is a relation

[. . . , 12Nc+2, . . .]t
2Nc+2 and a second-order syzygy [1, . . . , 12Nc+3, . . .]t

2Nc+4.

Here are analytic expressions for the Hilbert series for C3 = Sp(3) with
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4, 5 and 6 flavours:

g(4,C3)(t) =
1 + t2 + t4 + t6

(1− t2)27
=

1− t8

(1− t2)28

g(5,C3)(t) =
1 + 6t2 + 21t4 + 56t6 + 81t8 + 81t10 + 56t12 + 21t14 + 6t16 + t18

(1− t2)39

=
1− 45t8 + 99t10 − 55t12 − 55t18 + 99t20 − 45t22 + t30

(1− t2)45

g(6,C3)(t) = (1− t2)−51(1 + 15t2 + 120t4 + 680t6 + 2565t8 + 6777t10 +

12965t12 + 17775t14 + 17775t16 + 12965t18 + 6777t20 + 2565t22 +

680t24 + 120t26 + 15t28 + t30)

From the second form of the 5-flavour series, we see the 45 generators

at order 2 in the [0, 1, 0, . . .] representation, the 45 relations at order 8

in the [. . . , 0, 1, 0] representation and the 99 second-order syzygies in the

[1, 0, . . . , 0, 1] representation as required, and also the 55 third-order syzy-

gies in the [2, 0, . . .] representation.

Again we observe that the difference between the degree of the denomina-

tor and that of the numerator is equal to the number of degrees of freedom

in the fundamental fields; however here the denominator is in Euler form.

5.4.4 SU(N), SO(N), Sp(N) and G2 gauge groups with adjoint

We only give a simple statement of the results here: the SO(N) series

with one flavour are freely generated (though still with the gauge group

broken completely), those with two flavours and the SU(N), Sp(N) and G2

series with one flavour are complete intersections, though with the number

of relations being N rather than 1 in the Sp(N) case, and all series with

higher numbers of flavours are non-complete intersections. We again observe

that the difference between the degree of the denominator and that of the

numerator, in both the (anti)fundamental and adjoint fugacities, is once

again equal to the number of degrees of freedom in the fundamental fields

of that type.

Having set the scene, we now move on to the main part of this chapter of

this thess, which is the Hilbert series of supersymmetric QCD theories with

exceptional gauge groups.
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5.5 Hilbert series for exceptional gauge groups

Having set the scene with an overview of the already-published results for

the classical Lie groups, we will now present new results detailing Hilbert

series of exceptional gauge groups.

We will begin by introducing the exceptional Lie groups, firstly in terms of

composition algebras which we will define, and secondly in terms of Dynkin

diagrams.

A composition algebra A is an algebra with a function n : A → R such

that

∀a, b ∈ A, n(ab) = n(a)n(b) (5.33)

When the composition algebra is such that ab = 0 =⇒ a = 0 or b = 0, the

function n is called the norm and the algebra is called a (normed) division

algebra [47]. (A division algebra is also one in which division is possible, for

any a and b in A there are unique elements x and y for which a = bx and

a = yb. Unless the algebra is commutative, x and y are not necessarily the

same.) There are four normed division algebras, R, C, H and O, the first

being ordered, commutative and associative, the second losing ordering, the

third commutativity and the last associativity, though it is still alternative

(i.e. associative when two of the three arguments are the same). (At the

next level up we have the sedenions, which do not form a division algebra

because there are cases of two non-zero sedenions multiplying to give zero,

and there are no Lie groups based on them.)

For any division algebra A, the projective space APn is defined as the set

of points in An+1 − 0n+1 identified under (z1, . . . , zn+1) ∼ (λz1, . . . , λzn+1)

for nonzero λ and zi not all zero in A.

Weighted projective spaces, which are often more useful than ‘ordinary’

ones when describing moduli spaces and Hilbert series as in [1], are defined

similarly: WAPn[a1:...:an+1] for positive integers ai is the set of points in An+1−
0n+1 identified under (z1, . . . , zn+1) ∼ (λa1z1, . . . , λ

an+1zn+1) for nonzero λ

and zi not all zero in A.

The simple Lie groups, except for G2 which is the automorphism group

of the imaginary octonions, are defined as the isometry groups (preserving

distances, i.e. norms (or their square roots), between points) of projective
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spaces as follows:

An = Isom(CPn+1)

Bn = Isom(RP2n+1)

Cn = Isom(HPn)

Dn = Isom(RP2n)

G2 = Aut(ImO)

F4 = Isom(OP2)

E6 = Isom((O× C)P2)

E7 = Isom((O×H)P2)

E8 = Isom((O×O)P2)

Because the octonions are not associative, one can only go up to two levels

in the projective space, thereby giving only a finite number of groups, the

exceptional groups.

Another way of defining the exceptional groups is in terms of Dynkin

diagrams. Fully connected Dynkin diagrams are constrained by the require-

ment that all roots be linearly independent. If there is a triple line between

two nodes, there can be no other nodes, giving G2. If there is a double line,

there can be any number of nodes all joined by single lines and without

branches attached to either node giving Bn or Cn when attached to the

long root or the short root respectively, but there can only be one node at-

tached to each by a single line if there are nodes attached to both, giving F4.

If there are only single lines, there can only be one node (if any) attached to

three other nodes, and the reciprocals of the number of nodes attached to

the central node (including the central node itself) must add up to greater

than 1, giving Dn, E6, E7 and E8.

The En groups arise in string theory in two ways:

• as the U-duality groups when type II (A or B) string theory or M-

theory is compactified down to (11−n) dimensions; while the T-duality

group affects only NS-NS fields (the metric, dilaton and Kalb-Ramond

fields), the U-duality group mixes NS-NS and R-R fields. When n is

6 or greater, the extra vector fields formed by dualization of the Aµνρ

fields in M-theory or the Kalb-Ramond (Bµν) and R-R fields give
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rise to (complex) representations of the (non-compact forms of) the

exceptional groups, and the scalars form representations of their cosets

by their maximal compact subgroups. (The 28 vectors in the n = 7

case are self-dual giving rise to the 56 fundamental representation of

E7; for n = 8 vectors are dual to scalars so there are no ‘vectors’

as such, and this seems to correspond to the fact that there is no

‘fundamental’ separate from the adjoint for E8.) 5

• E8×E8 is one of the two possible gauge groups for the heterotic string.

In the fermionic construction, it arises through allowing one set of 16

oscillators to have (NS or R) boundary conditions independently of the

other 16; in terms of SO(16) representations this gives two massless

combinations of 120, the adjoint of SO(16), and 128, the spinor.

Since the massless bosons must be in the adjoint of the gauge group

(whatever that is), there must be a group containing SO(16) whose

adjoint decomposes to give this; this group is E8, and there are two

copies. In the bosonic construction it is simply one of the only two

even self-dual lattices in 16 dimensions, the other being Spin(32)/Z2.

E6 has been considered as a possible gauge group for a grand unified theory

(GUT), since it contains the standard model gauge group SU(3)×SU(2)×
U(1) (via SU(5) then SO(10) which are also candidate GUT gauge groups)

and has chiral representations. When the E8×E8 heterotic string theory is

compactified on a Calabi-Yau 3-fold, one of the E8 groups is broken down

to E6 × SU(3) and then to E6 by imposition of the holonomy.

We will now discuss Hilbert series for the exceptional gauge groups, start-

ing with G2 and then moving on to F4, E6 and E7. (We do not work with

E8 because it has no fundamental other than its adjoint.)

5.5.1 G2 gauge group

Because the second Dynkin index of the fundamental is even, having the

value 2, Z2 anomaly cancellation does not require the number of flavours to

be even, unlike in the SU(N) case, where it is the total number of quark

and antiquark fields that must be even (in all cases investigated so far they

5For n between 4 and 7, the vectors transform in the [0, . . . , 0, 1, 0] representation (using
conventions in [24] and [72]); in all cases the scalars transform in the adjoint of En
cosetted out by its maximal compact subgroup.

237



have been equal so their sum is necessarily even) and the Sp(N) case where

the second Dynkin index of the fundamental is 1.

We reproduced the results of [6] for up to 4 flavours (the complete in-

tersection case). As for SU(N) and Sp(N) (but not SO(N), at least with

matter in the vector representation), the first relation occurred at the num-

ber of flavours given by I2(Ad)/I2(Rmat), in this case 4, and at the order

given by I2(Ad), which is twice the dual Coxeter number of G2, in this case

8.

The refined series are as follows:

PL(g(1,G2)(t)) = t2

PL(g(2,G2)(t)) = [2]t2

PL(g(3,G2)(t)) = [2, 0]t2 + [0, 0]t3

PL(g(4,G2)(t)) = [2, 0, 0]t2 + [0, 0, 1]t3 + [0, 0, 0]t4 − [0, 0, 0]t8

The unrefined series for up to 10 flavours (we have calculated them up to
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16 flavours) are as follows:

g(1,G2)(t) =
1

1− t2

g(2,G2)(t) =
1

(1− t2)3

g(3,G2)(t) =
1

(1− t2)6(1− t3)

g(4,G2)(t) =
1− t8

(1− t2)10(1− t3)4(1− t4)
=

1 + t4

(1− t2)10(1− t3)4

g(5,G2)(t) = (1− t2)−14(1− t3)−7(1 + t2 + 3t3 + 6t4 + 3t5 + 7t6 + 8t7 + 7t8 + 3t9 +

6t10 + 3t11 + t12 + t14)

g(6,G2)(t) = (1− t2)−18(1− t3)−10 ×

(1 + 3t2 + 10t3 + 21t4 + 30t5 + 75t6 + 120t7 + 165t8 +

220t9 + 315t10 + 330t11 + 330t12 + 330t13 + 315t14 +

220t15 + 165t16 + 120t17 + 75t18 + 30t19 + 21t20 +

10t21 + 3t22 + t24)

g(7,G2)(t) = (1− t2)−22(1− t3)−13 ×

(1 + 6t2 + 22t3 + 56t4 + 132t5 + 379t6 + 792t7 +

1539t8 + 2912t9 + 5146t10 + 7902t11 + 11641t12 +

16220t13 + 20727t14 + 24178t15 + 27111t16 + 28308t17 +

27111t18 + 24178t19 + 20727t20 + 16220t21 + 11641t22 +

7902t23 + 5146t24 + 2912t25 + 1539t26 + 792t27 +

379t28 + 132t29 + 56t30 + 22t31 + 6t32 + t34)

g(8,G2)(t) = (1− t2)−26(1− t3)−16 ×

(1 + 10t2 + 40t3 + 125t4 + 400t5 + 1320t6 + 3440t7 +

8565t8 + 20296t9 + 44146t10 + 87760t11 + 165885t12 +

293760t13 + 484152t14 + 749168t15 + 1098065t16 +

1510640t17 + 1953290t18 + 2388256t19 + 2762723t20 +

3006160t21 + 3088820t22 + 3006160t23 + 2762723t24 +

2388256t25 + 1953290t26 + 1510640t27 + 1098065t28 +

749168t29 + 484152t30 + 293760t31 + 165885t32 +

87760t33 + 44146t34 + 20296t35 + 8565t36 + 3440t37 +

1320t38 + 400t39 + 125t40 + 40t41 + 10t42 + t44)
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g(9,G2)(t) = (1− t2)−30(1− t3)−19 ×

(1 + 15t2 + 65t3 + 246t4 + 975t5 + 3665t6 + 11490t7 +

34605t8 + 97745t9 + 254106t10 + 614670t11 +

1406060t12 + 3015525t13 + 6072051t14 + 11549384t15 +

20789430t16 + 35353485t17 + 56945075t18 + 87075099t19 +

126401415t20 + 174199340t21 + 228323595t22 +

284797560t23 + 337968425t24 + 381719832t25 +

410741685t26 + 420953780t27 + 410741685t28 +

381719832t29 + 337968425t30 + 284797560t31 +

228323595t32 + 174199340t33 + 126401415t34 +

87075099t35 + 56945075t36 + 35353485t37 + 20789430t38 +

11549384t39 + 6072051t40 + 3015525t41 + 1406060t42 +

614670t43 + 254106t44 + 97745t45 + 34605t46 +

11490t47 + 3665t48 + 975t49 + 246t50 + 65t51 + 15t52 + t54)

g(10,G2)(t) = (1− t2)−34(1− t3)−22 ×

(1 + 21t2 + 98t3 + 441t4 + 2058t5 + 8722t6 + 31998t7 +

112497t8 + 368138t9 + 1114707t10 + 3162468t11 +

8463202t12 + 21284768t13 + 50484807t14 + 113363042t15 +

241238152t16 + 486846282t17 + 933833944t18 +

1704845582t19 + 2964447333t20 + 4914491846t21 +

7776829413t22 + 11754525288t23 + 16979480803t24 +

23456748996t25 + 31009542807t26 + 39241573086t27 +

47552486211t28 + 55200676926t29 + 61398005196t30 +

65438823594t31 + 66842005296t32 + 65438823594t33 +

61398005196t34 + 55200676926t35 + 47552486211t36 +

39241573086t37 + 31009542807t38 + 23456748996t39 +

16979480803t40 + 11754525288t41 + 7776829413t42 +

4914491846t43 + 2964447333t44 + 1704845582t45 +

933833944t46 + 486846282t47 + 241238152t48 +

113363042t49 + 50484807t50 + 21284768t51 + 8463202t52 +

3162468t53 + 1114707t54 + 368138t55 + 112497t56 +

31998t57 + 8722t58 + 2058t59 + 441t60 + 98t61 + 21t62 + t64)
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Nf 7Nf No. No. No. broken No. unbroken Unbroken
invariants relations gens gens gauge group

1 7 1 0 6 8 A2

2 14 3 0 11 3 A1

3 21 7 0 14 0 ∅
4 28 15 1 14 0 ∅

Table 5.2: Numbers of invariants, relations and broken and unbroken gen-
erators and unbroken gauge groups for G2 SQCD theories with
Nf flavours of quarks in the fundamental representation

Those up to 8 flavours could be calculated from the unrefined series up to

order t24 obtained from LiE, since we knew the powers to which (1 − t2)

and (1−t3) were raised in the denominator given the arithmetic progression

started at 4 flavours; they agreed with those calculated in [6]. Those for 9

and 10 flavours were calculated, with the patterns continuing, and those for

up to 8 flavours checked further, using Mathematica.

As with the SU(3), SO(3) and SO(5) cases checked earlier, the difference

between the degree (as a polynomial) of the denominator and that of the

numerator is equal to the number of degrees of freedom in the matter fields

when the moduli space is not freely generated, i.e. the numerator is not

just 1. Since the power of (1− t2) increases by 4 for each extra flavour, that

of (1 − t3) by 3 and the number of matter d.o.f. by 7, that should give an

increase of the degree of the numerator by 4.2 + 3.3 − 7 = 10, and this is

indeed the case.

One can express the unrefined series in the following general form:

g(Nf ,G2)(t) =
P10Nf−36(t)

(1− t2)4Nf−6(1− t3)3Nf−8
, Nf ≥ 4 (5.34)

where PN (t) denotes an as yet unconstrained polynomial of degree N . It

turns out that this polynomial is palindromic, which means the moduli space

of the theory is Calabi-Yau. We were able to calculate the Hilbert series

exactly in Mathematica up to 16 flavours, and in all cases this formula was

satisfied.

The numbers of invariants, relations and broken and unbroken generators

and unbroken gauge groups for a given number of flavours are given in Table

5.2:
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Nf d(2) d(3) deg P (t) dim(M)

1 1 0 0 1

2 3 0 0 3

3 6 1 0 7

4 10 4 4 14

Nf ≥ 4 4Nf − 6 3Nf − 8 10Nf − 36 7Nf − 14

Table 5.3: Powers of (1− tn) in denominator of unrefined Hilbert series for
G2 SQCD theories with Nf flavours with 1 ≤ Nf ≤ 3 and upper
and lower bounds for 4-flavour case

The dimension of the moduli space, also known as the Krull dimension,

is given by the degree of the pole at t = 1 when the Hilbert series is written

in the form

HS(t) =
P (t)∏

n(1− tn)d(n)
(5.35)

where P (t) is a polynomial with a non-zero value at t = 1 and d(n) are

functions of Nf (or the various NR in the case of multiple types of matter

field) for each n, taking positive values only for a finite number of positive

n and zero otherwise. The dimension of the moduli space is given by the

sum of the d(n), i.e.
∑

n d(n).

The rate of increase of the d(n) with the number of flavours follow the

same pattern as that of the dimension of the moduli space, increasing at

an increasing rate until the ‘critical’ number of flavours is reached and at a

constant rate thereafter. We summarize this information in Table 5.3:

We also, following [4], calculated invariants for the case of arbitrary num-

bers of flavours using the ‘trial and error’ approach noted earlier. We found

all the invariants, relations and higher syzygies up to order 24 and for up to

20 flavours, i.e. with no more than 20 rows in the Young tableau. We found

that they agreed with those found in [4] up to order 11, but were different for

orders 12 and 13, which is where [4] stopped. There are over 3000 different

invariants (including relations and higher syzygies) up to order 24, some of

which occur over 8000 times, so we do not list them here, but we summarize

their numbers in Tables 5.4 and 5.5, the first for invariants and even-order

higher syzygies and the second for relations and odd-order higher syzygies:
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5.5.2 F4 gauge group

Because the second Dynkin index of the fundamental is again even, this

time 6, Z2 anomaly cancellation does not require the number of flavours to

be even.

We reproduced the results of [6] for up to 3 flavours (the complete in-

tersection case). As for SU(N), Sp(N) and G2 (but not SO(N), at least

with matter in the vector representation), the first relation occurred at the

number of flavours given by I2(Ad)/I2(Rmat), in this case 3, and at the

order given by I2(Ad), which is twice the dual Coxeter number of F4, in

this case 18.

The refined series are as follows:

PL(g(1,F4)(t)) = t2 + t3

PL(g(2,F4)(t)) = [2]t2 + [3]t3 + [0]t4

PL(g(3,F4)(t)) = [2, 0]t2 + [3, 0]t3 + [0, 2]t4 + [0, 1]t5 + [0, 0]t6 + [0, 0]t9 − [0, 0]t18

The unrefined series are as follows:

g(1,F4)(t) =
1

(1− t2)(1− t3)

g(2,F4)(t) =
1

(1− t2)3(1− t3)4(1− t4)

g(3,F4)(t) =
1− t18

(1− t2)6(1− t3)10(1− t4)6(1− t5)3(1− t6)(1− t9)

=
1 + t9

(1− t2)6(1− t3)10(1− t4)6(1− t5)3(1− t6)

Again, the difference between the degree (as a polynomial) of the denomina-

tor and that of the numerator is equal to the number of degrees of freedom

in the matter fields when the moduli space is not freely generated (here for

3 flavours): 6.2 + 10.3 + 6.4 + 3.5 + 1.6− 3.26 = 9 as required.

The numbers of invariants, relations and broken and unbroken generators

and unbroken gauge groups for a given number of flavours are given in Table

5.6:

For the case of one adjoint matter field and nothing else, H is always given

by U(1)rank(G). This is always completely broken by the addition of more

matter fields whatever the representation(s), even in the case of 1 flavour
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Nf 26Nf No. No. No. broken No. unbroken Unbroken
invariants relations gens gens gauge group

1 26 2 0 24 28 D4

2 52 8 0 44 8 A2

3 78 27 1 52 0 ∅

Table 5.6: Numbers of invariants, relations and broken and unbroken gen-
erators and unbroken gauge groups for F4 SQCD theories with
Nf flavours of quarks in the fundamental representation

of matter in the vector representation of SO(N) in which case the moduli

space is freely generated, and hence the dimension of the moduli space is

given by the sum of those of the non-adjoint matter representations as in

[3].

We revisit the empirical observation
¯

from the cases of G2 and classical

groups: when the Hilbert series has a non-trivial numerator, i.e. the moduli

space is not freely generated but is instead either a complete intersection or

a non-complete intersection, the degree of P (t) (as a polynomial, i.e. the

highest exponent of t rather than the value of P (t) at t = 1) is given by the

degree of the denominator as a polynomial minus the number of degrees of

freedom, i.e.

degP (t) = (

∞∑
n=1

nd(n))− (
∑
R

NRdim(R)) (5.36)

This is also the case for the Hilbert series of the one-instanton moduli spaces

found in [42], and also those for finite groups in [19] with the number of

‘degrees of freedom’ in the latter case being replaced by the value of N for

which the finite group is a subgroup of SU(N).

In the one-instanton case with classical gauge and global symmetry groups,

the number of degrees of freedom in bifundamental fields is always given by

2kN with the 2 coming from the existence of two types of bifundamental

which are complex conjugate to each other in the (S)U(k) (with gauge group

SU(N), the U(1) from U(N) being absorbed into the gauge U(k)) case and

from the global group being Sp(N) (or CN ) if the gauge group is SO(k) and

vice versa in the other cases. In the U(k) case there were also two adjoint

matter fields with 2k2 degrees of freedom, but this is projected down to

the symmetric 2nd-rank tensor in the SO(k) gauge group case (because it
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contains the centre-of-mass piece), giving k(k + 1) d.o.f., and the antisym-

metric 2nd-rank tensor in the Sp(k) case, giving 2k(2k − 1) d.o.f. We then

subtract twice the dimension of the adjoint, because we have constraints at

order t2 transforming in the adjoint; this gives overall differences in degrees

of 2kN for the U(k) case, 2k(N + 1) in the SO(k) case and 2k(N − 2) in

the Sp(k) case. (These are also the dimension of the moduli spaces of these

theories.) In all cases the difference in degree is k times the dual Coxeter

number of the global symmetry group. It is also shown in the same paper

that the same applies, at least for one instanton, for exceptional groups.

The finite subgroups of SU(2) covered were:

• Ak = Zk,

• Dk+2 = Dih(k), the dihedral group of order 2k, with elements repre-

senting reflections multiplied by i from their Euclidean forms to give

them determinant 1, and

• the exceptional cases E6, E7 and E8, for which the degrees of the

numerators were the same as the (dual - for simply laced groups they

are the same) Coxeter number of the corresponding Lie group and the

orders of the group were the same as the sum of the squares of the

Coxeter labels of each node in the extended Dynkin diagram of the

group.

Those of SU(3) covered were the infinite families Zn×Zn, ∆(3n2) (including

the Valentiner group ∆(27), or the case n = 3, covered in [22]) and ∆(6n2)

and exceptional cases which we will not list here. In all cases listed the

moduli space was a complete intersection.

Because of the computational difficulty involved in calculating Hilbert

series, whether refined or unrefined, in Mathematica by either the residue

method or the method described in [6], we initially tried to calculate it via

the same method by which we calculated the unrefined Hilbert series for D4

with up to 12 vectors (no spinors or conjugate spinors) and G2 with up to

8 flavours, starting with the character expansion up to some order (24 for

G2 and 22 for D4), converting each representation to its dimension in the

SU(N) group where N is the number of flavours and summing them for

each order to get an unrefined series, remembering that the powers of the

(1− tn) terms in the denominator increase at the same rate and so does the
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highest power of t in the numerator, multiplying the unrefined series by the

denominator, taking the series up to half the required power and completing

the palindrome, observing that any terms between half the required power

and the order to which terms were taken do fit the palindromic pattern.

This method is limited by the order to which terms were taken, the highest

power in the numerator must not exceed twice this order, hence we could

only calculate up to 12 vectors in D4 and 8 flavours in G2.

We tried to calculate the Hilbert series for F4 with 4 flavours by this

method, but were unsuccessful. We will see why this was the case in the

next few paragraphs.

Following (5.35), we define the d(n) as in the G2 case, and they have

the same properties as in that case. Because the rate of increase of the

powers of (1 − tn) (or at least the minimum polynomials of e2πi/n, as in

the SU(N) and SO(N) cases discussed earlier) increases until the complete

intersection is reached, the values of the various d(n) for gauge group F4

with 4 fundamentals must be bounded below by

d(n)|Nf=4 ≥ 2d(n)|Nf=3 − d(n)|Nf=2 (5.37)

However, they must sum to the dimension of the moduli space, which is

26Nf − 52 = 52. The remaining 8 must be distributed across the various

values of d(n) in some way. They must also be bounded above by the

number of primitive invariants at that order which are relevant to the case

of that number of flavours, i.e. whose Young tableaux (possibly including

leftmost columns of Nf boxes) have Nf rows or fewer, and the upper bound

is the sum of the dimensions of all relevant tableaux with n total boxes. For

orders (i.e. number of boxes) up to 6, these are summarized in Table 5.7:

One sees that the upper bounds for d(n), 2 ≤ n ≤ 6 must be 10, 20, 20, 20

and 20 (from both primitive invariants at order 6) respectively. Calculating

the lower bounds from the values at 2 and 3 flavours, we summarize this

information, and the dimension of the moduli space, in Table 5.8:

Knowing that the d(n) must sum to 52, the combination giving the lowest

possible degree for the polynomial in the denominator, and hence for the

numerator, has d(n) respectively 10, 20, 14, 6 and 2, giving a numerator of

degree 10.2 + 20.3 + 14.4 + 6.5 + 2.6− 26.4 = 74. Half of this is 37, which is

greater than the maximum order to which we calculated the series order by
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Order Young tableau SU(4) representation Dimension

2 [2,. . .] [2,0,0] 10

3 [3,. . .] [3,0,0] 20

4 [0,2,. . .] [0,2,0] 20

5 [0,1,1,. . .] [0,1,1] 20

6 [0,0,2,. . .] [0,0,2] 10

6 [2,0,0,1,. . .] [2,0,0] 10

Table 5.7: Young tableaux (in SU(N) representation form) corresponding to
primitive invariants of F4 SQCD theories and the corresponding
representations and dimensions in the case Nf = 4

Nf d(2) d(3) d(4) d(5) d(6) deg P (t) dim(M)

1 1 1 0 0 0 0 2

2 3 4 1 0 0 0 8

3 6 10 6 3 1 9 26

4 ≥ 9 ≥ 16 ≥ 11 ≥ 6 ≥ 2 ? 52
≤ 10 ≤ 20 ≤ 20 ≤ 20 ≤ 20

Nf ≥ 3 ? ? ? ? ? ? 26Nf − 52

Table 5.8: Powers of (1− tn) in denominator of unrefined Hilbert series for
F4 SQCD theories with Nf flavours with 1 ≤ Nf ≤ 3 and upper
and lower bounds for 4-flavour case
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order (21), so we could not use this method to obtain the unrefined series.

We did in the end calculate the unrefined Hilbert series for F4 with 4 fun-

damentals using Mathematica (it took 7 days!), and obtained the following

expression:

g(4,F4)(t) = ((1− t2)10(1− t3)16(1− t4)14(1− t5)8(1− t6)4)−1 ×

(1 + 4t3 + 6t4 + 12t5 + 26t6 + 44t7 + 89t8 + 176t9 +

314t10 + 556t11 + 980t12 + 1648t13 + 2758t14 + 4544t15 +

7243t16 + 11344t17 + 17460t18 + 26244t19 + 38812t20 +

56332t21 + 80090t22 + 111820t23 + 153365t24 + 206328t25 +

272824t26 + 354492t27 + 452314t28 + 567224t29 +

699270t30 + 846968t31 + 1008792t32 + 1181428t33 +

1360194t34 + 1540076t35 + 1715048t36 + 1877856t37 +

2022566t38 + 2142856t39 + 2232850t40 + 2288704t41 +

2307904t42 + 2288704t43 + 2232850t44 + 2142856t45 +

2022566t46 + 1877856t47 + 1715048t48 + 1540076t49 +

1360194t50 + 1181428t51 + 1008792t52 + 846968t53 +

699270t54 + 567224t55 + 452314t56 + 354492t57 +

272824t58 + 206328t59 + 153365t60 + 111820t61 + 80090t62 +

56332t63 + 38812t64 + 26244t65 + 17460t66 + 11344t67 +

7243t68 + 4544t69 + 2758t70 + 1648t71 + 980t72 +

556t73 + 314t74 + 176t75 + 89t76 + 44t77 + 26t78 +

12t79 + 6t80 + 4t81 + t84)

As we see, the d(n) are 10, 16, 14, 8 and 4 respectively, giving a numerator

of degree 84.

Recalling the unrefined series for F4 with 3 flavours, the case of the com-

plete intersection, we obtained the following general expression for the un-
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Nf d(2) d(3) d(4) d(5) d(6) deg P (t) dim(M)
Nf ≥ 3 4Nf − 6 6Nf − 8 8Nf − 18 5Nf − 12 3Nf − 8 75Nf − 216 26Nf − 52

Table 5.9: Powers of (1− tn) in denominator of unrefined Hilbert series for
F4 SQCD theories with Nf ≥ 3 flavours

refined Hilbert series of F4 with more than 3 fundamentals:

g(Nf ,F4)(t)

=
P75Nf−216(t)

(1− t2)4Nf−6(1− t3)6Nf−8(1− t4)8Nf−18(1− t5)5Nf−12(1− t6)3Nf−8

(5.38)

and we can complete the last row of Table 5.8, which we do in Table 5.9: The

refined series would have the d(n) equal to the numbers of invariants at each

value of n, giving a numerator of degree 10.2+20.3+20.4+20.5+20.6−26.4 =

276, or 69 in each flavour fugacity. (The [2, 0, 0, 1, . . .] invariant, which

has 4 rows and therefore does not occur in the 3-flavour case, may not be

required, which would reduce the degree of the denominator, and therefore

the numerator, by 60 to 216 (the numerator), or 54 in each flavour; we will

see later that this is indeed the case.)

We also calculated invariants for the case of arbitrary flavour numbers

using the ‘trial and error’ approach noted earlier. This was done for G2, E6

and E7 in [4], but not for F4.

• The first order at which constraints occur is 11, which again is equal

to the sum of the highest (9) and lowest (2) orders of generators in the

case of the complete intersection (here 3 flavours). Again, constraints

appear at order 11 at the next flavour up (here 4 flavours), and there

are no invariants at this order with 4 flavours (indeed we do not find

new ones here until we get to 7 flavours).

• There are single-column invariants with 9 and 17 boxes. The column

of 26 boxes is not an independent invariant, but rather a product of

these two invariants.

Table 5.10 shows the number of invariants of F4 (including second- and

higher even-order syzygies) and Table 5.11 the number of relations (in-

cluding higher odd-order syzygies) for a specific ‘mass’ level (i.e. number
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of fields) having a specific number of rows (i.e. the minimum number of

flavours at which they appear) in their Young tableaux. The levels are

specified in the first column of the table and the (minimum) number of

flavours in the top row.

We see from the first table that the ‘primary’ invariants follow a diagonal

pattern, with the minimum number of flavours at which a new invariant

appears with a given number of boxes increasing with the number of boxes

until we get the 17-box single column invariant and the 18-box invariant

with a column of 16 boxes; up to order 21 there are no more invariants with

Young tableaux as much as 13 boxes deep! We expect that these latter

‘invariants’ may be higher syzygies and therefore that the former ones may

be all the primary invariants, and therefore the weighted projective space

can be determined in similar fashion to those for SU(N) gauge groups in

[1], though it is necessarily more complicated, however the determination of

the primary relations or first-order syzygies still has some way to go. The

emergence of the relations does begin to follow a diagonal pattern too after

order 18 (twice the dual Coxeter number and the order of the relation in the

complete intersection case at 3 flavours), however. The first second-order

syzygy (linear dependence between primary invariants and relations) occurs

at 6 flavours at order 16 and at orders 17 and above (up to 21 at least) they

occur at 4 flavours which is the lowest number for which the moduli space

is not a complete intersection.

5.5.3 E6 gauge group

Unlike G2 and F4, the Dynkin diagram of E6 has a symmetry about the

axis containing the 3 and 6 nodes (in the notation of [24] and [72]; in that

of [5] they are the 4 and 2 nodes) and it has complex representations 6, the

[1, 0, 0, 0, 0, 0] and [0, 0, 0, 0, 1, 0] being complex conjugates of each other.

In this section, we call the first representation the fundamental and fields

transforming in it quarks or flavours (denoted by Qia and counted by t) and

the second the antifundamental and fields transforming in it antiquarks or

antiflavours (denoted by Q̃ai and counted by u).

Because the second Dynkin index of both the fundamental and the an-

6This does not always follow from the Dynkin diagram having a symmetry, i.e. for
SO(4n) the two spinor representations are inequivalent but they are self-conjugate, as
is the vector representation of SO(8) where there is a triality between all three.
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tifundamental is 6, Z2 anomaly cancellation does not require either the

number of each or the total number to be even. Without loss of generality,

we take the number of flavours to be greater than or less than the number

of antiflavours (we can easily permute t and u if required).

Both the refined and unrefined series are calculated in [6], but only for

the case with no antiflavours. Those for up to 4 total flavours are known,

however.

For the case with no antiflavours, and up to 4 flavours, the refined series,

calculated by inspection of the character expansion, are as follows:

PL(g(1,0,E6)(t, u)) = t3

PL(g(2,0,E6)(t, u)) = [3]t3

PL(g(3,0,E6)(t, u)) = [3, 0]t3 + [0, 0]t6

PL(g(4,0,E6)(t, u)) = [3, 0, 0]t3 + [0, 0, 2]t6 + [0, 0, 0]t12 − [0, 0, 0]t24

The unrefined series are as follows:

g(1,0,E6)(t, u) =
1

1− t3

g(2,0,E6)(t, u) =
1

(1− t3)4

g(3,0,E6)(t, u) =
1

(1− t3)10(1− t6)

g(4,0,E6)(t, u) =
1− t24

(1− t3)20(1− t6)10(1− t12)

=
1 + t12

(1− t3)20(1− t6)10

Again, the difference between the degree (as a polynomial) of the denomina-

tor and that of the numerator is equal to the number of degrees of freedom

in the matter fields when the moduli space is not freely generated (here for

4 flavours): 20.3 + 10.6− 4.27 = 12 as required.

The numbers of invariants, relations and broken and unbroken generators

of the gauge group and the unbroken gauge groups are listed in Table 5.12:

Because of memory constraints, we were unable to calculate the unrefined

Hilbert series for the 5-flavour case. However, as with the case of F4 with

4 flavours where we were able to calculate the unrefined series, we can

calculate lower and upper bounds for the degree of the numerator. As for
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(Nf , Na) 27Nf No. No. No. broken No. unbroken Unbroken
+27Na invariants relations gens gens gauge gp

(1,0) 27 1 0 26 52 F4

(2,0) 54 4 0 50 28 D4

(3,0) 81 11 0 70 8 A2

(4,0) 108 31 1 78 0 ∅

Table 5.12: Numbers of invariants, relations, broken and unbroken genera-
tors and unbroken gauge groups for E6 SQCD theories with up
to 4 flavours and no antiflavours

Order Young tableau SU(5) representation Dimension

3 [3,. . .] [3,0,0,0] 35

6 [0,0,2,. . .] [0,0,2,0] 50

Table 5.13: Young tableaux (in SU(N) representation form) corresponding
to primitive invariants of E6 SQCD theories and the correspond-
ing representations and dimensions in the case of 5 flavours and
no antiflavours

F4, we have, shifting the number of flavours up by one, and defining the

d(n) as in (5.35):

d(n)|Nf=5 ≥ 2d(n)|Nf=4 − d(n)|Nf=3 (5.39)

Again they must sum to the dimension of the moduli space, which is

27Nf − 78 = 57. The remaining 8 must be distributed across the various

values of d(n) in some way. They must also be bounded above by the

number of primitive invariants at that order whose Young tableaux have

Nf rows or fewer. Only orders divisible by 3 are relevant to the case of E6

with no antiflavours; for the series up to 4 flavours the only orders to occur

are 3 and 6 (though there is an invariant of order 12 that is absorbed into

the relation, and one of order 9 that arises in the 5-flavour case), and these

are as in Table 5.13:

One sees that the upper bounds for d(3) and d(6) must be 35 and 50 re-

spectively. Calculating the lower bounds from the values at 3 and 4 flavours,

we summarize this information in Table 5.14:

We see by inspection that the case giving the numerator of lowest degree

has (1− t3) raised to power 35 and (1− t6) to power 22 in the denominator,

and this gives a numerator of degree 3.35 + 6.22− 5.27 = 102. The highest

possible numerator, assuming (1 − t3) and (1 − t6) are the only factors in
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Nf d(3) d(6) deg P (t) dim(M)

1 1 0 0 1

2 4 0 0 4

3 10 1 0 11

4 20 10 12 30

5 ≥ 30 ≥ 19 ? 57
≤ 35 ≤ 50

Nf ≥ 4 ? ? ? 27Nf − 78

Table 5.14: Powers of (1− tn) in denominator of unrefined Hilbert series for
E6 SQCD theories with Nf flavours with 1 ≤ Nf ≤ 4 and upper
and lower bounds for 5-flavour case

the denominator, occurs for the case of denominator (1 − t3)30(1 − t6)27,

giving a numerator of degree 3.30 + 6.27 − 5.27 = 117. The refined series

would have degree 3.35 + 6.50− 5.27 = 270, or 54 in each flavour fugacity.

(We will see in Section 5.6 that this gives an upper bound of 54 too on

the degree of the numerator in each flavour fugacity in the F4 refined series

with 4 flavours, meaning that the [2, 0, 0, 1, . . .] invariant plays no role in

the PE/denominator term in this series.)

When we introduce antiflavours, we get the following refined series for up

to 4 total flavours:

PL(g(1,1,E6)(t, u)) = tu+ t3 + u3 + t2u2

PL(g(2,1,E6)(t, u)) = [1]tu+ [3]t3 + [0]u3 + [2]t2u2 + [0]t4u

PL(g(3,1,E6)(t, u)) = [1, 0]tu+ [3, 0]t3 + [0, 0]u3 + [2, 0]t2u2 + [0, 2]t4u

+[0, 1]t5u2 + [0, 0]t6 + [0, 0]t9u3 − [0, 0]t18u6

PL(g(2,2,E6)(t, u)) = [1; 1]tu+ [3; 0]t3 + [0; 3]u3 + [2; 2]t2u2 + [0; 1]t4u

+[1; 0]tu4 + [1; 1]t3u3 + [0; 0]t4u4 + [0; 0]t6u6 − [0; 0]t12u12
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(Nf , Nf ) 27Nf No. No. No. broken No. unbroken Unbroken

+27Nf invariants relations gens gens gauge gp

(1,1) 54 4 0 50 28 D4

(2,1) 81 11 0 70 8 A2

(2,2), (3,1) 108 31 1 78 0 ∅

Table 5.15: Numbers of invariants, relations, broken and unbroken genera-
tors and unbroken gauge groups for E6 SQCD theories with up
to 4 total flavours including at least one antiflavour

The unrefined series are as follows:

g(1,1,E6)(t, u) =
1

(1− tu)(1− t3)(1− u3)(1− t2u2)

g(2,1,E6)(t, u) =
1

(1− tu)2(1− t3)4(1− u3)(1− t2u2)3(1− t4u)

g(3,1,E6)(t, u) = (1− t18u6)(1− tu)−3(1− t3)−10(1− u3)−1(1− t2u2)−6(1− t4u)−6

×(1− t5u2)−3(1− t6)−1(1− t9u3)−1

g(2,2,E6)(t, u) = (1− t12u12)(1− tu)−4(1− t3)−4(1− u3)−4(1− t2u2)−9(1− t4u)−2

×(1− tu4)−2(1− t3u3)−4(1− t4u4)−1(1− t6u6)−1

Again, the difference between the degree (as a polynomial) of the denomina-

tor and that of the numerator is equal to the number of degrees of freedom

in the matter fields when the moduli space is not freely generated, as in the

(3,1) and (2,2) cases here:

g(3,1,E6)(t, u)(t) : 3.1 + 10.3 + 1.0 + 6.2 + 6.4 + 3.5 + 1.6 + 1.9 = 18 + 3.27

g(3,1,E6)(t, u)(u) : 3.1 + 10.0 + 1.3 + 6.2 + 6.1 + 3.2 + 1.0 + 1.3 = 6 + 1.27

g(2,2,E6)(t, u)(t) : 4.1 + 4.3 + 4.0 + 9.2 + 2.4 + 2.1 + 4.3 + 1.4 + 1.6 = 12 + 2.27

The numbers of invariants, relations and broken and unbroken generators

of the gauge group and the unbroken gauge groups are listed in Table 5.15:

In Table 5.16 we show the invariants corresponding to each term in the

denominator and their dimensions in the (4,1) case:

We will revisit the issue of the form of partially refined series later in

Section 5.6, but for now we will still present, in Table 5.17, the lower and

upper bounds for the powers d(n,m), defined similarly to in (5.35), of the

factors in the denominator as in the cases of the fully unrefined series with
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Order(t,u) Young tableau SU(4) representation Dimension

(2,2) [2,. . .] [2,0,0] 10

(3,0) [3,. . .] [3,0,0] 20

(4,1) [0,2,. . .] [0,2,0] 20

(5,2) [0,1,1,. . .] [0,1,1] 20

(6,0) [0,0,2,. . .] [0,0,2] 10

Table 5.16: Young tableaux (in SU(N) representation form) corresponding
to primitive invariants of E6 SQCD theories and the correspond-
ing representations and dimensions in the case of 4 flavours and
one antiflavour

Nf d(0, 3) d(1, 1) d(2, 2) d(3, 0) d(4, 1) d(5, 2) d(6, 0) deg P (t, u) dim(M)
1 1 1 1 1 0 0 0 0 4
2 1 2 3 4 1 0 0 0 11
3 1 3 6 10 6 3 1 9,3 30
4 1 4 ≥ 9 ≥ 16 ≥ 11 ≥ 6 ≥ 2 ?, ? 57

≤ 10 ≤ 20 ≤ 20 ≤ 20 ≤ 10
Nf ≥ 3 1 Nf ? ? ? ? ? ?, ? 27Nf − 51

Table 5.17: Powers of (1− tnum) in denominator of unrefined Hilbert series
for E6 SQCD theories with Nf flavours with 0 ≤ Nf ≤ 3 and
1 antiflavour and upper and lower bounds for 4-flavour and 1-
antiflavour case

only one type of flavour that we have been investigating so far, because

these are still the same, though we do not as yet know how the notion of

the dimension of the moduli space, i.e. the degree of the pole at t = 1, could

be determinable from even partially refined series:

In this case, the generator of the chiral ring [0, 0, 2, . . .] is at order t6 and

the generator [2, 0, 0, 1, . . .] is at order t6u3. Since there are no generators

of the second type in the complete-intersection case (3 flavours and 1 anti-

flavour), we guess for now that it does not occur in the denominator of the

(partially) unrefined series for 4 flavours and 1 antiflavour.

We see that the unbroken gauge group depends only on the total number

of flavours, not whether they are all flavours or some or all are antiflavours.

We do not expect that this should always be the case, however. If we were

to set u = t in the partially (i.e. distinguishing flavours and antiflavours)

unrefined series to fully unrefine them, we would not obtain the same Hilbert

series as for the theory with the same number of total flavours but with all

being of the same type. The powers of t and u in any term in either the

Taylor series expansion of the Hilbert series or its expression as a rational
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function always differ by a multiple of 3.

The exponents of (1− t2u2), (1− t3), (1− t4u), (1− t5u2) and (1− t6) in

the denominators of the unrefined Hilbert series of E6 with Nf flavours and

1 antiflavour are the same as those of (1 − tn), 2 ≤ n ≤ 6 in those of the

unrefined Hilbert series for F4 with Nf flavours. That of (1− tu) is Nf , and

that of (1 − u3) is 1, and the numerators in the Nf = 3 cases are 1 + t9u3

and 1 + t9. Now, we recall that F4 is the unbroken or residual gauge group

when one flavour (or antiflavour) of E6 is given a vacuum expectation value,

each remaining (anti)flavour of E6 decomposes into one fundamental of F4

and one scalar giving Nf scalars in total, and there is only one (cubic) fully

symmetric invariant of the VEVved (anti)fundamental of E6. We revisit

this in Section 5.6.

As we see later, the absence of the (1 − t6u3) term in the denominator

for the (4,1), i.e. 4 flavours and 1 antiflavour, case could reduce the degree

of the numerator of the refined F4 series for 4 flavours to 216, or 54 in

each flavour. We also will see that this upper bound also arises from the

5-flavour, no-antiflavour case for E6.

We also, following [4], calculated invariants for the case of arbitrary

flavour numbers, with no antiflavours, using the ‘trial and error’ approach

noted earlier. We summarize our results as follows:

• We again found the same invariants as in [4] for each mass level up

to 18, and with there being constraints at orders 15 and 18, we found

the same constraints too.

• We found 28 more invariants at order 21, and 597 (!) constraints.

• The first order at which constraints occur is 15, which again is equal to

the sum of the highest (12) and lowest (3) orders of generators in the

case of the complete intersection (here 4 flavours). Again, constraints

appear at order 15 at the next flavour up (here 5 flavours), and there

are no invariants at this order with 5 flavours (indeed we do not find

new ones here until we get to 8 flavours).

• In this case, the column of 27 boxes is an independent invariant, since

there are no simpler invariants consisting of a single column. We only

need to check this up to order 13.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[3] 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[6] 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

[9] 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

[12] 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0

[15] 0 0 0 0 0 0 0 1 3 1 0 0 0 0 0

[18] 0 0 0 0 0 0 0 0 0 3 5 1 0 0 0

[21] 0 0 0 0 1 1 1 0 0 0 0 6 14 4 1

Table 5.18: Invariants and even-order higher syzygies of E6 SQCD theories
with no antiflavours arranged by total number of boxes in Young
tableau (down) and minimum number of flavours (across)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[3] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[6] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[9] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[12] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[15] 0 0 0 0 2 2 1 0 0 0 0 0 0 0 0

[18] 0 0 0 0 3 13 24 17 7 0 1 0 0 0 0

[21] 0 0 0 0 6 35 99 154 158 103 39 2 1 0 0

Table 5.19: Relations and odd-order higher syzygies of E6 SQCD theories
with no antiflavours arranged by total number of boxes in Young
tableau (down) and minimum number of flavours (across)

Table 5.18 shows the number of invariants of E6 (including second- and

higher even-order syzygies) and Table 5.19 the number of relations (in-

cluding higher odd-order syzygies) for a specific ‘mass’ level (i.e. number

of fields) having a specific number of rows (i.e. the minimum number of

flavours at which they appear) in their Young tableaux. The levels are

specified in the first column of the table and the (minimum) number of

flavours in the top row. (Only the results at order 21 are new, those at

lower orders match those in [4].)

We see that the first second-order syzygies occur at order 21, with one each

arising at 5, 6 and 7 flavours. As in the F4 case, there is a diagonal pattern

with the primitive invariants in that the minimum number of flavours at

which new invariants occur for a given order increases with the order, but

in this case there is not an ‘end’ to the primitive invariants and there does

not seem to be one in sight. We expect to have to go to order 33 at least
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before we can confirm the end, though we know there is an invariant with

one column of 27 boxes; the differences with the F4 case are that invariants

occur only at orders divisible by 3 and also that the only single-column

invariant is the one of 27 boxes which is the dimension of the fundamental

representation of E6, while in the F4 case we have single-column invariants

with 9 and 17 boxes.

We did the same thing with the number of antiflavours fixed at 1, which

was not done in [4].

Tables 5.20, 5.21, 5.22 and 5.23 show the number of invariants of E6

(including second- and higher even-order syzygies) and Tables 5.24, 5.25,

5.26 and 5.27 show the number of relations (including higher odd-order

syzygies) for a specific ‘mass’ level (i.e. number of fields) having a specific

number of rows (i.e. the minimum number of flavours at which they appear;

note the difference with the F4 case, as here we can have ‘antiflavours’,

or flavours of antifundamentals; in this section the number of antiflavours

is fixed at 1) in their Young tableaux. The levels, with the number of

fundamental fields first and the number of antifundamental fields second,

are specified in the first column of the table and the minimum number

of flavours (of fundamentals) in the top row. (There is also the (1 − u3)

invariant solely in the antiflavour, which we cannot accommodate in these

tables but we state here that it is present.)

There are diagonal patterns similar to in the F4 case, but they are less

clear and harder to visualize in this presentation.

Summing the number of invariants of each type for each number of flavour

fields in the invariant over numbers of antiflavour fields, we show in Table

5.28 the numbers of invariants and even-order higher syzygies, and Table

5.29 the numbers of relations and odd-order higher syzygies, for each number

of quark fields.

By inspection, with the exception of the invariant at order tu, the number

of ‘net’ invariants (i.e. primary invariants and even-order higher syzygies

minus primary relations and odd-order higher syzygies) for a given number

of flavours and number of flavour fields in the invariant, summed over the

number of antiflavour fields, is the same for the E6 case with one antiflavour

as for the F4 case. We show this in Tables 5.30 and 5.31 for the case

of invariants containing 21 flavour fields (assuming the ‘invariants’ to be

second-order syzygies):
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4 5 6 7 8 9 10

F4 2nd-order 191 6455 36345 75147 81796 57695 26850

F4 relations 0 0 0 1 0 452 1381

E6 2nd-order 194 6461 36414 76158 86102 66124 37053

E6 relations 3 6 69 1012 4306 8881 11584

Table 5.30: Comparison of numbers of net invariants at order 21 in flavours
for E6 with one antiflavour and F4 (part 1)

11 12 13 14 15 16 17 18 19 20

F4 2nd-order 5681 2 0 0 0 0 0 0 0 0

F4 relations 2202 5336 5389 2733 942 245 58 10 1 0

E6 2nd-order 18721 7379 2337 997 216 80 36 12 5 0

E6 relations 15242 12713 7726 3730 1158 325 94 22 6 0

Table 5.31: Comparison of numbers of net invariants at order 21 in flavours
for E6 with one antiflavour and F4 (part 2)

Though the analysis is too long to present here, the actual invariants

(including relations and higher syzygies), again excluding that at order tu,

also match when those for E6 are summed over the number of antiflavour

fields in the invariant. This is more evidence that suggests the ‘Higgsing’

that we will discuss later in Section 5.6.

5.5.4 E7 gauge group

Because the second Dynkin index of the fundamental is again even, this

time 12, Z2 anomaly cancellation does not require the number of flavours

to be even.

The refined and unrefined series for up to 3 flavours are known results,

though they are not in [6].

The refined series are as follows:

PL(g(1,E7)) = t4

PL(g(2,E7)) = [0]t2 + [4]t4 + [0]t6

PL(g(3,E7)) = [0, 1]t2 + [4, 0]t4 + [0, 3]t6 + [2, 0]t8 + [0, 0]t12 + [0, 0]t18 − [0, 0]t36
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Nf 56Nf No. No. No. broken No. unbroken Unbroken
invariants relations gens gens gauge group

1 56 1 0 55 78 E6

2 112 7 0 105 28 D4

3 168 36 1 133 0 ∅

Table 5.32: Numbers of invariants, relations, broken and unbroken genera-
tors and unbroken gauge groups for E7 SQCD theories with up
to 3 flavours

The unrefined series are as follows:

g(1,E7) =
1

1− t4

g(2,E7) =
1

(1− t2)(1− t4)5(1− t6)

g(3,E7) =
1− t36

(1− t2)3(1− t4)15(1− t6)10(1− t8)6(1− t12)(1− t18)

=
1 + t18

(1− t2)3(1− t4)15(1− t6)10(1− t8)6(1− t12)

Again, the difference between the degree (as a polynomial) of the denomina-

tor and that of the numerator is equal to the number of degrees of freedom

in the matter fields when the moduli space is not freely generated (here for

3 flavours): 3.2 + 15.4 + 10.6 + 6.8 + 1.12 = 18 + 3.56 as required.

The numbers of invariants, relations and broken and unbroken generators

of the gauge group and the unbroken gauge groups are listed in Table 5.32:

Because of memory constraints, we were again unable to calculate the un-

refined Hilbert series for the 4-flavour case. However, we can again calculate

lower and upper bounds for the degree of the numerator. As for F4 (and

E6 with one more flavour), we have, again defining then d(n) as in 5.35,

d(n)|Nf=4 ≥ 2d(n)|Nf=3 − d(n)|Nf=2 (5.40)

Again they must sum to the dimension of the moduli space, which is

56Nf − 133 = 91. The remaining 28 must be distributed across the

various values of d(n) in some way. They must also be bounded above by

the number of primitive invariants at that order whose Young tableaux have
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Order Young tableau SU(4) representation Dimension

2 [0,1,. . .] [0,1,0] 6

4 [4,. . .] [4,0,0] 35

6 [0,3,. . .] [0,3,0] 50

8 [2,0,2,. . .] [2,0,2] 84

12 [0,0,4,. . .] [0,0,4] 35

Table 5.33: Young tableaux (in SU(N) representation form) corresponding
to primitive invariants of E7 SQCD theories and the correspond-
ing representations and dimensions in the case of 4 flavours

Nf d(2) d(4) d(6) d(8) d(12) deg P (t) dim(M)

1 0 1 0 0 0 0 1

2 1 5 1 0 0 0 7

3 3 15 10 6 1 18 35

4 ≥ 5 ≥ 25 ≥ 19 ≥ 12 ≥ 2 ? 91
≤ 6 ≤ 35 ≤ 50 ≤ 84 ≤ 50

Nf ≥ 3 ? ? ? ? ? ? 56Nf − 133

Table 5.34: Powers of (1− tn) in denominator of unrefined Hilbert series for
E7 SQCD theories with Nf flavours with 1 ≤ Nf ≤ 3 and upper
and lower bounds for 4-flavour case

Nf rows or fewer. Only orders divisible by 2 are relevant to the case of E7;

up to 3 flavours we have invariants at orders 2, 4, 6, 8 and 12, and we expect

only these orders and these invariants to contribute to the denominator of

both the unrefined and refined series; though there is an invariant of order

18 that is absorbed into the relation, and three of order 10, two others of

order 12 and yet more of higher orders that arise in the 4-flavour case, we

do not expect them to contribute (i.e. we expect no factors of (1 − t10)),

just as the [2, 0, 0, 1, . . . ] invariant does not contribute in the case of gauge

group F4.

The relevant invariants are as shown in Table 5.33:

One sees that the upper bounds for d(n) for n equal to 2, 4, 6, 8 and

12 must be 6, 35, 50, 84 and 35 respectively. Calculating the lower bounds

from the values at 3 and 4 flavours, we summarize this information in Table

5.34:

We see by inspection that the case giving the numerator of lowest degree

has d(n) at 6, 35, 36, 12 and 2, giving a numerator of degree 2.6+4.35+6.36+
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8.12 + 12.2− 4.56 = 264, this is the lower bound. The refined series would

have a numerator of degree 2.6 + 4.35 + 6.50 + 8.84 + 12.35− 4.56 = 1320,

or 330 in each flavour fugacity!

We also, following [4], calculated invariants for the case of arbitrary

flavour numbers using the ‘trial and error’ approach noted earlier. We sum-

marize our results as follows:

• We found the same invariants as in [4] for each order up to 18.

• We found 2686 (!) more invariants at order 20, two of which have a

column of 11 boxes, and 15 constraints.

• The first constraints occur at order 20, which is the sum of the highest

(18) and lowest (2) orders of generators in the 3-flavour case which is

the complete intersection case. 18 is the dual Coxeter number of E7.

(The same pattern occurs for G2 (2+4=6), F4 (2+9=11) and E6 with

no antiflavours (3+12=15).)

• At 4 flavours, only constraints (9 of them) occur at order 20. New

invariants occur at that order at 5 flavours, 75 of them (!), along with

5 more constraints. The final constraint at order 20 emerges at 6

flavours.

• Invariants can only have columns of up to 56 boxes, since this is the

dimension of the fundamental representation of E7. However, rela-

tions and higher syzygies can have columns with more than 56 boxes.

It would be an extremely time-consuming task to even approach ob-

taining these, however.

• Unlike in the E6 case, since there is a completely antisymmetric in-

variant with 2 boxes, the column of 56 boxes is not an independent

invariant but rather the 28th power of the former.

Table 5.35 shows the number of invariants of E7 (including second- and

higher even-order syzygies) and Table 5.36 the number of relations (in-

cluding higher odd-order syzygies) for a specific ‘mass’ level (i.e. number

of fields) having a specific number of rows (i.e. the minimum number of

flavours at which they appear) in their Young tableaux. The levels are

specified in the first column of the table and the (minimum) number of
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1 2 3 4 5 6 7 8 9 10 11 12

[2] 0 1 0 0 0 0 0 0 0 0 0 0

[4] 1 0 0 0 0 0 0 0 0 0 0 0

[6] 0 1 0 0 0 0 0 0 0 0 0 0

[8] 0 0 1 0 0 0 0 0 0 0 0 0

[10] 0 0 0 3 0 0 0 0 0 0 0 0

[12] 0 0 1 2 5 1 0 0 0 0 0 0

[14] 0 0 0 4 10 15 1 0 0 0 0 0

[16] 0 0 0 5 30 49 37 4 0 0 0 0

[18] 0 0 1 5 60 178 195 114 15 1 0 0

[20] 0 0 0 0 75 482 879 792 389 67 2 0

Table 5.35: Invariants and even-order higher syzygies of E7 SQCD theories
arranged by total number of boxes in Young tableau (down) and
minimum number of flavours (across)

flavours in the top row. (Only the results at order 20 are new, those at

lower orders match those in [4].)

5.6 Higgsing

In ‘normal’ (i.e. non-supersymmetric) gauge theories, the Higgs mechanism

is the breaking of the symmetry group that occurs in the vacuum when

the potential has a minimum at a non-zero value of the matter field(s). It

is often associated with spontaneous symmetry breaking in φ4 scalar field

theories where the mass squared takes on the appearance of being negative

(‘tachyonic’) but actually gives a non-zero vacuum expectation value (VEV)

for the scalar(s).

Before fixing the gauge, the choice of vacuum leads to the appearance of

a number of massless scalar modes called ‘Goldstone bosons’. There is one

for every generator of the gauge group that does not leave the vacuum state

invariant, i.e. every generator that is ‘broken’ by the choice of vacuum. (The

unbroken subgroup is called the ‘stability subgroup’ or ‘little group’, similar

to the case in string theory where it is the part of the Lorentz symmetry that

commutes with the momentum; when the unbroken gauge group is SU(N),

SO(N) or Sp(N) and the matter is in the (anti)fundamental representation,

the little group is the same but with N −1, when it is in a non-fundamental

representation or the group is exceptional the patterns must be learned, or

277



1 2 3 4 5 6 7 8 9 10 11 12

[2] 0 0 0 0 0 0 0 0 0 0 0 0

[4] 0 0 0 0 0 0 0 0 0 0 0 0

[6] 0 0 0 0 0 0 0 0 0 0 0 0

[8] 0 0 0 0 0 0 0 0 0 0 0 0

[10] 0 0 0 0 0 0 0 0 0 0 0 0

[12] 0 0 0 0 0 0 0 0 0 0 0 0

[14] 0 0 0 0 0 0 0 0 0 0 0 0

[16] 0 0 0 0 0 0 0 0 0 0 0 0

[18] 0 0 0 0 0 0 0 0 0 0 0 0

[20] 0 0 0 9 5 1 0 0 0 0 0 0

Table 5.36: Relations and odd-order higher syzygies of E7 SQCD theories
arranged by total number of boxes in Young tableau (down) and
minimum number of flavours (across)

‘guessed’ from the number of unbroken generators left over.) One can then

go to ‘unitary gauge’, following the procedure in [41], where the Goldstone

bosons are ‘eaten’ by the massless gauge fields making them massive and

breaking the gauge group to the corresponding little group. There is one

broken generator for every Goldstone boson. Each eaten scalar has 1 degree

of freedom, the massless gauge field D−2 in D dimensions, and the massive

vector field D − 1, so there is no mismatch.

In supersymmetric gauge theories, the ‘eating’ of a Goldstone boson by a

massless gauge field to give a massive vector field is extended to the eating

of a massless chiral multiplet (in N = 1) or hypermultiplet (N = 2) by a

massless vector multiplet to give a massive vector multiplet. In both cases

the number of (on-shell) degrees of freedom in the two massless multiplets is

the same (respectively 4 and 8 including CPT conjugates) and the number

in the massive vector multiplet is twice this (including CPT conjugates in

the N = 1 case but not the N = 2 case).

In the standard model, the Higgs mechanism also gives rise to fermion

masses. Because neutrinos were only observed in their left-handed form (and

antineutrinos right-handed), the right-handed electron, muon and tau lepton

were assigned to singlets of the ‘weak isospin’ SU(2) part of the gauge group,

while their left-handed equivalents combined with their respective neutrinos

to form doublets. The same procedure was applied to quarks, even though

in this case both members of every isospin (no ‘weak’ here) doublet were
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known to be massive. Left-handed quarks and leptons form doublets of the

SU(2), and the right-handed ones form singlets. Fermion mass terms can

only occur by the interaction of left- and right-handed fermions, which as

they transform differently under SU(2) means explicit mass terms cannot

occur in the Lagrangian; instead, a new scalar (Higgs) field transforming as

a doublet of SU(2) must be introduced to give a gauge-invariant Yukawa-

like term which gives rise to fermion masses when the Higgs acquires its

VEV.

(The true ‘super-Higgs mechanism’ is not merely the supersymmetric

extension of the non-supersymmetric Higgs mechanism, which breaks no

supersymmetry, only the gauge symmetry, but rather spontaneous super-

symmetry breaking by gravitinos eating ‘goldstinos’, which are not the su-

perpartners of Goldstone bosons but arise independently and by a different

process, in supergravity rather than gauge theories.)

Since the scalar potential in a supersymmetric gauge theory can come

from both the F- and D-term constraints, both can give rise to Higgsing of

the gauge group. In SQCD, the (classical) superpotential is zero so only

D-term constraints contribute. The procedure for SU(N) gauge groups is

described in [6].

In [1], the Higgsing is used to ‘derive’ the form of the Hilbert series for

Nf < Nc − 1. At a generic point in the moduli space, the VEVs for the

quark and antiquark fields can be rotated to make the top left Nf × Nf

submatrix diagonal and the rest zero; the gauge group SU(Nc) is broken

to SU(Nc − Nf ), its subgroup which commutes with the VEVs, and the

number of broken generators is given by

(N2
c − 1)− ((Nc −Nf )2 − 1) = 2NfNc −N2

f (5.41)

Since the number of fundamental fields is 2NfNc, the number that remain

massless after Higgsing is N2
f . These can be parametrized in terms of the

original fields as

Ma
b = Qai Q̃

i
b (5.42)

These are not the same ‘type’ of the field as the original fields in that they

are products of more than one of them; this is not inconsistent with the

construction as in [41].

The same procedure is followed in [2] to give the Hilbert series forNf < Nc
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in SO(Nc) theories and Nf ≤ Nc (or Nf < Nc + 1) in Sp(Nc) theories and

gives gauge-invariant fields of the same type as for SU(Nc) (mesonic, i.e.

constructed with traces, although the symplectic trace is antisymmetric).

For higher values of Nf , the gauge group is completely broken leaving a

moduli space of dimension 2NfNc −N2
c + 1, but the number of invariants,

which now includes baryons (i.e. constructed with determinants), exceeds

the number of generators and so there must be relations between them too,

and when we compute the form of the relations we see they over-cancel the

extra generators so there must be higher syzygies between the relations and

the primitive invariants, and so on...

In [44], the Higgsing of E6 progressively to F4 and D4 = SO(8) (though

not A2 = SU(3)) is demonstrated explicitly by expressing it and its repre-

sentations in terms of its maximal subgroups SU(3)× SU(3)× SU(3) and

SU(6)×SU(2) and their representations. The (anti)fundamental represen-

tation, of dimension 27, can be written as a triplet of three 3x3 matrices, or

as a 6x6 antisymmetric matrix and a general 2x6 matrix, with the elements

of the two being identified appropriately. The VEV can be rotated so that

it takes the form of one of the 3x3 matrices being equal to the identity

with the other two remaining zero, and consequently the 6x6 matrix takes

the form σ2 × 13 with the 2x6 matrix remaining zero. This breaks the two

SU(3)× SU(3) corresponding to the un-VEVved 3x3 matrix to their diag-

onal subgroup SU(3) and the SU(6) to Sp(6) (or Sp(3) if one prefers, in

any case it is C3); one sees that F4 has SU(3)× SU(3) and SU(2)× C3 as

subgroups, demonstrating the Higgsing. Similarly giving a VEV to a second

flavour is shown to break one SU(3) to its Cartan subgroup U(1)×U(1) and

C3 to the product of three SU(2); these are the subgroups of D4 ‘normal’

to SU(3) and SU(2) respectively, showing the second Higgsing.

(We can see by inspection that giving a VEV to one single antisymmet-

ric second-rank tensor of SU(2N) does result in a residual gauge group

of Sp(2N), Sp(N) or CN depending on notation (we will use Sp(N)); the

SU(2N) gauge group has dimension 4N2−1, there are N(2N−1) fundamen-

tal fields and there is one invariant at order N , giving N(2N + 1) unbroken

generators, which is the number of generators of Sp(N). (Note the second

Dynkin index of this representation is 2N − 2 and therefore even so we can

have theories with only one ‘flavour’ of them.) A second antisymmetric

second-rank tensor, in either the [0, 1, 0, . . . , 0] or [0, . . . , 0, 1, 0] representa-
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tion (assume WLOG the first one was in the first of these), decomposes

to a symplectic traceless second-rank antisymmetric tensor and symplectic

trace and the first of these further Higgses Sp(N) down to SU(2)N , as in

the example above.)

In general, however, Higgsing of exceptional groups, and of classical groups

by matter in non-(anti)fundamental representations, is not demonstrated

explicitly and is usually assumed simply from finding a subgroup of the

original group with the required number of generators (i.e. the unbroken

ones of the original group). We follow this procedure here too, determining

the Higgsing from the invariants (i.e. the Hilbert series).

Higgsing, in principle, involves ‘integrating out’ the broken (i.e. made

massive) generators of the gauge group by flowing to a mass scale much

lower than the mass of the broken generators, which is that of the VEVs

of the fundamental fields of the original theory to which non-zero VEVs

were given. Other than its application in SQCD to determine the number

and form of the gauge invariant and hence still massless new fields, it is also

used in brane tiling theories, where the Higgsing is implemented by removing

one edge from the fundamental domain (as the corresponding field is now

massive) and coalescing the gauge groups corresponding to faces on opposite

sides of the edge. The Higgsing procedure gives rise to a toric diagram

with one fewer external point; however rather than using a ‘trial and error’

method of choosing a point to remove and using the ‘inverse algorithm’ to

go from toric diagram to brane tiling (as opposed to the ‘forward algorithm’

going from brane tiling to toric diagram and Hilbert series), the new perfect

matchings, Chern-Simons levels (in M2-brane theories) and other properties,

and hence the new Hilbert series, are calculated from the new tiling. (Since

there is no inverse algorithm yet formulated for M2-brane theories, this

second method is the only one that can be used for them.)

In these theories the reverse process of un-Higgsing can be easily imple-

mented by adding an edge to the fundamental domain and splitting the

gauge group corresponding to the face into two new ones. (Integrating

out massive fields is also the rationale behind only considering ‘irreducible’

brane tilings, i.e. those in which every node is connected to at least three

other nodes of the opposite colour, because a node connected to only two

other nodes corresponds to a term of order 2 in the fundamental fields and

this would give rise to a mass for those fields, this is described in [39] and
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[29].)

Higgsing is also seen in string theory, in particular in the closed bosonic

string when, in the simplest example, the string is compactified on one

circular dimension of radius R and we have extra massless vector modes

and therefore an enhanced SU(2)×SU(2) symmetry when R = α′1/2 where

α′ is the string scale. When R moves away from the critical value, these

extra massless modes gain a mass proportional to (R−α′1/2) and the gauge

group is broken to U(1) × U(1). This is explained in more detail in [53].

Enhanced gauge groups, and thus Higgsing, also occur for the heterotic

string (of either type), but not for type IIA, IIB or I strings. Yet another

example occurs with gauge theories on D-branes; when initially there are

N branes coincident the gauge group is U(N), but when they are separated

the strings between them gain a mass proportional to the separation of the

two branes on which they end and the gauge group is broken to a product

of U(Ni) where i counts the number of different positions of the separated

branes and Ni is the number of branes at position xi, with the Ni summing

to N .

The smallest classical groups that contain F4, E6 and E7 are SO(26),

SU(27) and Sp(28) respectively and cannot be Higgsed to the corresponding

exceptional groups anyway because the smallest representations that contain

the adjoints of the exceptional groups are the adjoints of the larger groups

and the presence of an adjoint field necessarily Higgses the classical group

down to its maximal torus U(1)r where r is 13, 26 and 28 respectively, and

this does not contain the exceptional group.

In this section, we do not derive the number or form of the gauge invariant

quantities by counting the number of generators of the gauge group broken

by the Higgsing, but rather, inspired by the relations between the Hilbert

series for F4 theories with a specified number of flavours and those for E6

with the same number of flavours and one antiflavour, we compare Hilbert

series for other gauge groups related by Higgsing on only some of their

fundamental fields, i.e. the one antiflavour in these E6 theories.

As opposed to E6 and F4, however, we will start with the simpler case of

B3 = SO(7) and D4 = SO(8) being Higgsed to G2, and G2 being Higgsed

to A2 = SU(3).

We will also demonstrate cases where the Higgsed flavours are not dis-

tinguished in the original Hilbert series from those remaining in the child
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theory, in which case the original series will have to be refined.

The comparisons of Hilbert series for gauge groups related by Higgsing,

along with the classical-group cases where Nc is simply reduced to Nc−Nf

(with Nf being the number of Higgsed flavours, not the total number), that

we will investigate in this thesis are as follows. We show how the adjoint and

the field(s) being Higgsed on decompose under the branching to the residual

gauge group, giving rise to a number of invariants in the Higgsed fields equal

to the number of scalars in the decomposition of the matter fields but not

the adjoint, and in brackets how any other potentially relevant fundamental

representations of the original group decompose in the residual group. (For

D5 = SO(10) the two types of spinors are conjugate to each other; for

D4 = SO(8) they are both self-conjugate, but we will still call them spinors

and conjugate spinors.)

• B3 to G2 on one spinor

– Adjoint: 21→ 14 + 7

– Spinor: 8→ 7 + 1

– (Vector: 7→ 7)

• D4 to B3 on one vector, spinor or conjugate spinor (WLOG vector)

– Adjoint: 28→ 21 + 7

– Vector: 8v → 7 + 1

– (Spinor, conjugate spinor: 8s,8c → 8)

• D4 to G2 on one each of two types of field

– Adjoint: 28→ 14 + 2.7

– Vector, spinor, conjugate spinor: 8v,8s,8c → 7 + 1

• D5 to G2 on two spinors or conjugate spinors (it is not Higgsed at all

by one spinor and goes to A3 on one of each type)

– Adjoint: 45→ 14 + 4.7 + 3.1

– Spinor, conjugate spinor: 16, 1̄6→ 2.7 + 2.1

– (Vector: 10→ 7 + 3.1)

• E6 to F4 on one (anti)fundamental
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– Adjoint: 78→ 52 + 26

– (Anti)fundamental: 27, 2̄7→ 26 + 1

• E6 toD4 on any combination of two fundamentals or antifundamentals

– Adjoint: 78→ 28 + 2.8v + 2.8s + 2.8c + 2.1

– (Anti)fundamental: 27, 2̄7→ 8v + 8s + 8c + 3.1

• E7 to E6 on one fundamental

– Adjoint: 133→ 78 + 27 + 2̄7 + 1

– Fundamental: 56→ 27 + 2̄7 + 2.1

• E7 to D4 on two fundamentals

– Adjoint: 133→ 28 + 4.8v + 4.8s + 4.8c + 9.1

– Fundamental: 56→ 2.8v + 2.8s + 2.8c + 8.1

• F4 to D4 on one fundamental

– Adjoint: 52→ 28 + 8v + 8s + 8c

– Fundamental: 26→ 8v + 8s + 8c + 2.1

• G2 to A2 on one fundamental.

– Adjoint: 14→ 8 + 3 + 3̄

– Fundamental: 8→ 3 + 3̄ + 1

When the gauge group is Higgsed to its residual subgroup by all or some

of the matter fields, the non-singlets in the decomposition of the matter

fields cancel out that of the adjoint of the gauge group leaving behind the

adjoint of the residual group and possibly some singlets, and the number

of invariants is the number of singlets in the decomposition of the matter

fields minus the number in the decomposition of the adjoint of the gauge

group.

It is also possible for a group to be partially Higgsed only on one or some

rather than all of the invariants. For example, F4, E6 and E7 with one

flavour, one flavour and one antiflavour and two flavours respectively can

be Higgsed on only the 2nd-order symmetric invariant (at order t2), the

delta invariant between a flavour and an antiflavour (at tu) and the 2nd-

order antisymmetric invariant (at t2) respectively to give B4, D5 and B5
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[34]. There are 1, 2 and 3 vectors left over from the decomposition of the

matter fields that can then further Higgs these gauge groups down to D4

as is the case for full Higgsing in the first place. We do not consider this

partial Higgsing in this thesis, but we summarize it here:

• E6 to D5 on the delta invariant of one fundamental and one antifun-

damental

– Adjoint: 78→ 45 + 16 + 1̄6 + 1

– Fundamental: 27→ 16 + 10 + 1

– Antifundamental: 2̄7→ 1̄6 + 10 + 1

• E7 to B5 on the 2nd-rank antisymmetric invariant of two fundamentals

– Adjoint: 133→ 55 + 2.32 + 11 + 3.1

– Fundamental: 56→ 32 + 2.11 + 2.1

• F4 to B4 on the 2nd-rank symmetric invariant of one fundamental

– Adjoint: 52→ 36 + 16

– Fundamental: 26→ 16 + 9 + 1

The decomposition of E7 to B5 involves an intermediate step to D6 × A1,

where the adjoint decomposes as 133 → (66,1) + (3̄2,2) + (1,3) and the

fundamental as 56 → (32,1) + (12,2). The two spinors of D6 map to the

unique spinor of B5, the adjoint to the adjoint plus a vector and the vector

to a vector plus a scalar.

We also list below the Higgsings of higher special orthogonal groups by

matter in spinor representations, where there is no general rule as there

is for Higgsing by vector matter and the residual gauge groups have to be

‘guessed’:

• B4 to B3 on one spinor (invariant at order 2)

– Adjoint: 36→ 21 + 8 + 7

– Spinor: 16→ 8 + 7 + 1

– (Vector: 9→ 8 + 1)

• B5 to A4 on one spinor (invariant at order 4)

– Adjoint: 55→ 24 + 10 + 1̄0 + 1
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– Spinor: 32→ 10 + 1̄0 + 5 + 5̄ + 2.1

– (Vector: 11→ 5 + 5̄ + 1)

• D6 to A5 on one spinor (invariant at order 4)

– Adjoint: 66→ 35 + 15 + 1̄5 + 1

– Spinor: 32→ 15 + 1̄5 + 2.1

– (Conjugate spinor: 3̄2→ 20 + 6 + 6̄)

– (Vector: 12→ 6 + 6̄)

• D7 to G2 ×G2 on one spinor (invariant at order 8)

– Adjoint: 91→ (14,1) + (1,14) + (7,7) + (7,1) + (1,7)

– Spinor, conjugate spinor: 64, 6̄4→ (7,7)+(7,1)+(1,7)+(1,1)

– (Vector: 14→ (7,1) + (1,7))

D5 = SO(10) has no single-row invariants in either the spinor or the con-

jugate spinor so it is not Higgsed by one flavour of spinor matter of either

type.

The Higgsing of B4 to B3 on one spinor must also be broken into two steps,

the first being the decomposition into D4, where the B4 adjoint becomes

28 + 8v, the spinor 8s + 8c and the vector 8v + 1. The difference is that

here the second decomposition into B3 does not take the vector of D4 into a

vector plus scalar of B3, but rather one of the two spinor representations of

D4 decomposes as such, with the vector and the other spinor of D4 becoming

B3 spinors. Another way to see this is that Higgsing B4 on a vector takes

it to D4, under which the B4 spinor breaks up into one each of the two D4

spinors and they Higgs D4 down to G2, while Higgsing B4 on the spinor

first takes it to B3; this is further Higgsed to G2 by one spinor but to A3 by

a vector, and since progressive Higgsing must be independent of the order,

the B4 vector must decompose to a B3 spinor (plus scalar).

The Higgsing of D7 to G2 × G2 is discussed in [4]. Higgsing D7 on one

vector breaks it to B6, while the spinor (either one) remains unchanged,

while Higgsing G2 on one fundamental breaks it to A2; we deduce therefore

that one spinor of B6 Higgses it to A2×A2. (There are two fully symmetric

invariants, at orders 4 and 8, so the dimensions match; 78− 64 + 2 = 16.)
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5.6.1 B3 gauge group

B3, or SO(7), is not an exceptional group, but it does have G2 as a sub-

group. This is important phenomenologically because when M-theory is

compactified down to 4 dimensions on a 7-manifold, the holonomy group of

the 7-manifold is a subgroup of SO(7), and G2 is the subgroup that breaks

the spinor of SO(7), the 8, down to a 7 and a singlet. The 32 supercharge

of the SO(1, 10) Lorentz group of M-theory decomposes into a 4 × 8 of

SO(1, 3) × SO(7), and we require N = 1 for a phenomenologically consis-

tent theory. Imposing G2 holonomy on the 7-manifold achieves this, not

that the actual construction of a (compact) such manifold is trivial.

The double cover of SO(7), called Spin(7), is the other important ‘special’

holonomy subgroup according to Berger’s classification of reduced holon-

omy groups, though less important than G2. The 32 supercharge of the

SO(1, 10) Lorentz group of M-theory decomposes into a 2 × (8s + 8c) of

SO(1, 2)×SO(8); Spin(7) can be embedded into Spin(8), the double cover

of D4 = SO(8), in three ways, each choosing one of the three 8-dimensional

representations to decompose to a vector plus scalar of Spin(7) and the

other two become spinors. In this context we choose one of the spinors to

decompose into the vector plus scalar, while the other remains a spinor; this

gives one singlet out of 16 total Spin(8) spinor degrees of freedom, preserv-

ing only 1/16 of the supersymmetry, i.e. we have N = 1 in 3D. (Similarly,

when D4 decomposes to A3 = SU(4), i.e. we compactify on a Calabi-Yau

4-fold, one spinor becomes the ‘vector’ 6 plus two scalars and the other

4+ 4̄. There are only two singlets out of 16 total degrees of freedom, so 1/8

of the supersymmetry is preserved and we have N = 2 in 3D.)

The spinor of B3, which is [0, 0, 1] in Dynkin notation, has 8 degrees

of freedom. By either taking the plethystic exponential of its character,

weighted by a counting fugacity t, and performing Molien-Weyl integration,

or simply by inspection of the singlets in successive symmetrizations, one

sees that there is only one primitive totally symmetric invariant of the spinor

at order 2. The explicit symmetrization is as follows:

Symk[0, 0, 1]B3 =

b k
2
c∑

m=0

[0, 0, k − 2m]B3 (5.43)

We see that there is one singlet at every even order, which interestingly is
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the same as for the vector! Converting this to a Hilbert series, we get

g(1,0,B3)(t, u) =
1

1− t2
(5.44)

The refined series, with the number of spinors, counted by t, listed first

followed by the number of vectors counted by u, are as follows for total

number of matter fields up to 5:

PL(g(1,0,B3)(t, u)) = t2

PL(g(2,0,B3)(t, u)) = [2]t2

PL(g(3,0,B3)(t, u)) = [2, 0]t2

PL(g(4,0,B3)(t, u)) = [2, 0, 0]t2 + [0, 0, 0]t4

PL(g(5,0,B3)(t, u)) = [2, 0, 0, 0]t2 + [0, 0, 0, 1]t4 − [0, 0, 0, 0]t10

PL(g(2,1,B3)(t, u)) = [2]t2 + [0]t2u+ [0]u2

PL(g(3,1,B3)(t, u)) = [2, 0]t2 + [0, 1]t2u+ [0, 0]u2

PL(g(4,1,B3)(t, u)) = [2, 0, 0]t2 + [0, 0, 0]t4 + [0, 1, 0]t2u+ [0, 0, 0]t4u+ [0, 0, 0]u2

−[0, 0, 0]t8u2

PL(g(1,2,B3)(t, u)) = [0]t2 + [2]u2

PL(g(1,3,B3)(t, u)) = [0, 0]t2 + [0, 0]t2u3 + [2, 0]u2

PL(g(1,4,B3)(t, u)) = [0, 0, 0]t2 + [0, 0, 1]t2u3 + [0, 0, 0]t2u4 + [2, 0, 0]u2 − [0, 0, 0]t4u8

PL(g(2,2,B3)(t, u)) = [2; 0]t2 + [0; 1]t2u+ [0; 0]t2u2 + [0; 2]u2

PL(g(3,2,B3)(t, u)) = [2, 0; 0]t2 + [0, 1; 1]t2u+ [0, 1; 0]t2u2 + [0, 0; 2]u2 − [0, 0; 0]t6u4

PL(g(2,3,B3)(t, u)) = [2; 0, 0]t2 + [0; 1, 0]t2u+ [0; 0, 1]t2u2 + [2; 0, 0]t2u3 + [0; 2, 0]u2

−[0; 0, 0]t4u3 − [0; 0, 0]t4u6

The (partially, keeping t and u separate) unrefined series, including the

cases for 6 and 7 spinors and no vectors which are not complete intersec-

tions, which were calculated as for those for G2 with 5 to 8 flavours by

unrefining the character expansion and knowing the arithmetic progression
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of the exponents of (1− t2) and (1− t4), are as follows:

g(1,0,B3)(t, u) =
1

1− t2

g(2,0,B3)(t, u) =
1

(1− t2)3

g(3,0,B3)(t, u) =
1

(1− t2)6

g(4,0,B3)(t, u) =
1

(1− t2)10(1− t4)

g(5,0,B3)(t, u) =
1− t10

(1− t2)15(1− t4)5
=

1 + t2 + t4 + t6 + t8

(1− t2)14(1− t4)5

g(6,0,B3)(t, u) = ((1− t2)18(1− t4)9)−1 ×

(1 + 3t2 + 12t4 + 28t6 + 57t8 + 78t10 + 92t12 + 78t14 +

57t16 + 28t18 + 12t20 + 3t22 + t24)

g(7,0,B3)(t, u) = ((1− t2)22(1− t4)13)−1 ×

(1 + 6t2 + 43t4 + 188t6 + 701t8 + 1966t10 + 4621t12 + 8708t14 + 13818t16 +

17976t18 + 19782t20 + 17976t22 + 13818t24 + 8708t26 +

4621t28 + 1966t30 + 701t32 + 188t34 + 43t36 + 6t38 + t40)

g(2,1,B3)(t, u) =
1

(1− t2)3(1− t2u)(1− u2)

g(3,1,B3)(t, u) =
1

(1− t2)6(1− t2u)3(1− u2)

g(4,1,B3)(t, u) =
1− t8u2

(1− t2)10(1− t4)(1− t2u)6(1− t4u)(1− u2)

g(1,2,B3)(t, u) =
1

(1− t2)(1− u2)3

g(1,3,B3)(t, u) =
1

(1− t2)(1− t2u3)(1− u2)6

g(1,4,B3)(t, u) =
1− t4u8

(1− t2)(1− t2u3)4(1− t2u4)(1− u2)10

g(2,2,B3)(t, u) =
1

(1− t2)3(1− t2u)2(1− t2u2)(1− u2)3

g(3,2,B3)(t, u) =
1− t6u4

(1− t2)6(1− t2u)6(1− t2u2)3(1− u2)3

g(2,3,B3)(t, u) =
(1− t4u3)(1− t4u6)

(1− t2)3(1− t2u)3(1− t2u2)3(1− t2u3)3(1− u2)6

Both the spinor and the vector have second Dynkin index 2 (it is always 2
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for a vector of an SO(N) group, and for a spinor it is the dimension divided

by 4), and the adjoint has Dynkin index 10, which is equal to twice the

dual Coxeter number of SO(7). By the formula, the complete intersection

should occur at 5 total spinors and vectors. As we know from [2], this

does not occur for 5 vectors (but rather at 7), but it does when at least

one fundamental field is a spinor. The first relation should occur at (total)

order 10; this is the case for 5 spinors, for 4 spinors and 1 vector and for 3

and 2 respectively but not for 2 and 3 (where it has order 7, though here

two relations appear and the second is at order 10) or for 1 and 4, where it

appears at order 12 (recall there is no relation for 5 vectors, the relation for

7 vectors has order 14).

In the cases where there is exactly 1 spinor field, with Nv vectors (i.e. the

(1, Nv) cases), we see that removing the (1−t2) term from the denominator,

setting t to 1 and then relabelling u as t gives the Hilbert series for G2 with

Nv flavours.

Refining them further by setting u = t, one can determine the dimension

of the moduli space, which is the order of the pole at t = 1. This is equal to

the number of degrees of freedom in the fundamental fields (8 per spinor,

7 per vector) minus the number of broken generators of the gauge group.

We see that the residual gauge group depends only on the total number of

flavours, not how many are spinors and how many vectors, as long as at least

one is a spinor; this follows from the fact the Higgsing by one spinor gives G2

and both spinors and vectors decompose to fundamentals, although spinors

give an extra scalar which accounts for the extra degree(s) of freedom and

the extra dimensions of the moduli space. The fully refined series for the
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complete intersections (5 total spinors and vectors) are as follows:

g(5,0,B3)(t, u) =
1 + t2 + t4 + t6 + t8

(1− t2)14(1− t4)5

g(4,1,B3)(t, u) =
1 + t5

(1− t2)11(1− t3)6(1− t4)

g(3,2,B3)(t, u) =
1 + t2 + t4 + t6 + t8

(1− t2)8(1− t3)6(1− t4)3

g(2,3,B3)(t, u) =
1 + t2 + t4 + t5 + t6 + t8 + t10

(1− t2)8(1− t3)3(1− t4)3(1− t5)2

g(1,4,B3)(t, u) =
1 + t6

(1− t2)11(1− t5)4

Returning to the partially (un)refined series, in all the cases which are either

freely generated or complete intersections, we can easily combine the U(1)

counting and SU(N) fugacities into U(N) fugacities ti (or ui etc), 1 ≤ i ≤
N , with the character of the fundamental being simply the sum of all the

ti. With the usual Dynkin weights used for SU(N) weights, recall that the

formula for conversion from U(1)× SU(N) to U(N) is as follows:

tz1 → t1 (5.45)

t
zi
zi−1

→ ti, 1 < i < N

t/zN−1 → tN

Both methods are explored in [1] and [2], the first for the character expan-

sion, the second for the initial calculation of the refined series.
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Writing the refined Hilbert series in this new form, we obtain

g(2,0,B3)(t, u) =
1

(1− t21)(1− t1t2)(1− t22)

g(3,0,B3)(t, u) =
1∏

1≤i≤j≤3(1− titj)

g(4,0,B3)(t, u) =
1

(
∏

1≤i≤j≤4(1− titj))(1− t1t2t3t4)

g(5,0,B3)(t, u) =
1−

∏5
i=1 t

2
i

(
∏

1≤i≤j≤5(1− titj))(
∏

1≤i<j<k<l≤5(1− titjtktl))

g(2,1,B3)(t, u) =
1

(1− t21)(1− t1t2)(1− t22)(1− t1t2u)(1− u2)

g(3,1,B3)(t, u) =
1

(
∏

1≤i≤j≤3(1− titj))(1− t1t2u)(1− t1t3u)(1− t2t3u)(1− u2)

g(4,1,B3)(t, u) = (1− (
4∏
i=1

t2i )u
2)(

∏
1≤i≤j≤3

(1− titj)−1)(1− t1t2t3t4)−1

× (
∏

1≤i<j≤4

(1− titju)−1)(1− t1t2t3t4u)−1(1− u2)−1

g(1,2,B3)(t, u) =
1

(1− t2)(1− u2
1)(1− u1u2)(1− u2

2)

g(1,3,B3)(t, u) =
1

(1− t2)(1− t2u1u2u3)(
∏

1≤i≤j≤3(1− uiuj))

g(1,4,B3)(t, u) = (1− t4
4∏
i=1

u2
i )(1− t2)−1(

∏
1≤i<j<k≤4

(1− t2uiujuk)−1)

× (1− t2u1u2u3u4)−1(
∏

1≤i≤j≤4

(1− uiuj)−1)

g(2,2,B3)(t, u) = (1− t21)−1(1− t1t2)−1(1− t22)−1(1− t1t2u1)−1(1− t1t2u2)−1

× (1− t1t2u1u2)−1(1− u2
1)−1(1− u1u2)−1(1− u2

2)−1

g(3,2,B3)(t, u) = (1− t21t22t23u2
1u

2
2)(

∏
1≤i≤j≤3

(1− titj)−1)(
∏

1≤i≤j≤3

(1− titju1)(1− titju2)−1)

× (
∏

1≤i<j≤3

(1− titju1u2)−1)(1− u2
1)−1(1− u1u2)−1(1− u2

2)−1

g(2,3,B3)(t, u) = (1− t21t22u1u2u3)(1− t21t22u2
1u

2
2u

2
3)(1− t21)−1(1− t1t2)−1(1− t22)−1

× (
3∏
i=1

(1− t1t2ui)−1)(
∏

1≤i<j≤3

(1− t1t2uiuj)−1)(
∏

1≤i≤j≤2

(1− titju1u2u3)−1)

× (
∏

1≤i≤j≤3

(1− uiuj)−1)
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We see that when we choose one of the ti fugacities (usually the highest

numbered one, i.e. tNs denoting the number of spinors by Ns), remove

(1 − t2i ) (corresponding to the invariant in the Higgsed spinor) from the

denominator and then set the fugacity to 1, we get Ns−1 factors in (1− tj)
for j < Ns; these correspond to the scalars in the decomposition of the

remaining spinors, so removing these and relabelling the ui fugacities ui →
ti+Ns−1 for 1 ≤ i ≤ Nv, we get the G2 Hilbert series for (Ns + Nv − 1)

flavours.

We will now consider the case with 1 spinor and 5 vectors, for which we

calculated the Hilbert series using Mathematica. We still list the number

of spinors (here fixed at 1) first, but switch the order of the fugacities, so u

counts the number of spinor fields and t the number of vector fields. This

is to facilitate comparison with the G2 series, where with only one type of

matter field we used t to count them.

g(B3,1,5)(u, t) = (1 + 3u2t3 + 5u2t4 + u4t6 + 5u4t7 − 5u4t9 −

u4t10 − 5u6t12 − 3u6t13 − u8t16)/((1− t2)15(1− u2)(1− t3u2)7)

The (1− u2) term again corresponds to the symmetric invariant of order 2

of the spinor, and there are no (1 − t) terms in the denominator because

there are no further spinors that decompose under G2 into a 7 and a scalar.

Vectors of SO(7) do not decompose under G2, while the adjoint gives an

adjoint and a fundamental.

We see that the power of (1 − t2) in the denominator is not 14, as in

the G2 series, but rather 15, which is the number of invariants of order

2; these transform as a second-rank symmetric tensor of the global SU(5)

with dimension 15. As we will see later, this will cause issues when we con-

sider reversing the Higgsing process (‘un-Higgsing’) and trying to construct

Hilbert series of ‘parent’ gauge groups, in this case B3, in terms of those of

‘child’ groups, here G2.

Nevertheless, removing the (1−u2) term from the denominator and setting

u to 1 (there are no (1−t) terms) does still result in the G2 Hilbert series for

5 flavours, factoring out a (1− t2) from both numerator and denominator.

The power of (1− t3u2) in the denominator, 7, is the same as that of (1− t3)

for the G2 case. (This invariant arises because the 3rd antisymmetric power
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of the [1,0,0] vector representation and the 2nd symmetric power of the

[0,0,1] spinor both contain the 35-dimensional [0,0,2]. It transforms in the

[0, 0, 1, . . .] representation of the global SU(Nv), as for the G2 case.)

Fully unrefining this by setting u = t and thereby identifying vector and

spinor fields, we obtain the following Hilbert series:

g(B3,1,5)(t, t) = (1 + t2 + t4 + 3t5 + 6t6 + 3t7 + 6t8 + 3t9 + 7t10 +

8t11 + 7t12 + 3t13 + 6t14 + 3t15 + 6t16 +

3t17 + t18 + t20 + t22)/((1− t2)15(1− t5)7)

The dimension of the moduli space is the degree of the pole at t = 1, which

is 22. This is equal to the number of degrees of freedom in the fundamental

fields, 1 spinor and 5 vectors giving 1.8 + 5.7 = 43, minus the dimension of

the gauge group, 21, because the gauge group is completely broken.

The series for 1 spinor and 6 and 7 vectors are given below. Note that in

the 7-vector case, the power of (1−t) is 28, but that of (1+t) is only 27. We

present two forms of the series, the first in lowest terms and the second with

both numerator and denominator multiplied by (1 + t) to remove terms of

order t from both. The power of (1− t3u2) does follow the same arithmetic

progression as that of (1 − t3) in the G2 case. In all cases, removing the

(1 − u2) term, setting u to 1 and putting the resulting fraction into lowest

terms results in the same Hilbert series as for G2 with Nv flavours.

We were unable to obtain the series for 1 spinor and 8 vectors because

of memory constraints; we expect however that the power of (1 + t) follows

an arithmetic progression from 5 vectors on, but that of (1 − t) continues

to be the dimension of the second-rank symmetric tensor of SU(Nv), or the

number of invariants of order 2.
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The series for 1 spinor and 6 vectors is as follows:

g(B3,1,6)(u, t) = (1 + 10t3u2 + 15t4u2 + 20t6u4 + 60t7u4 −

70t9u4 − 21t10u4 + 10t9u6 + 45t10u6 −

196t12u6 − 126t13u6 + 105t14u6 + 70t15u6 −

6t17u6 − t18u6 + t12u8 + 6t13u8 − 70t15u8 −

105t16u8 + 126t17u8 + 196t18u8 − 45t20u8 −

10t21u8 + 21t20u10 + 70t21u10 − 60t23u10 −

20t24u10 − 15t26u12 − 10t27u12 −

t30u14)/((1− t2)21(1− u2)(1− t3u2)10)

Here, not only does the power of (1− t2) in the denominator (21) not match

that in the G2 series with 6 flavours (18), but we have instances, the first

occurring at t9, of there being two terms in the numerator with the same

power of t but different powers of u and therefore there not being a direct

mapping of terms from the G2 series to this series. This makes the process

of reversing the Higgsing, or ‘un-Higgsing’, difficult if not impossible.

1 + 5t4u2 − 5t6u4 − 10t7u4 − 5t9u4 − t10u4 +

5t9u6 + 10t12u6 + 10t13u8 + 5t16u8 − t15u10 −

5t16u10 − 10t18u10 − 5t19u10 + 5t21u12 + t25u14

1 + 5t4 − 5t6 − 10t7 − t10 + 10t12 + 10t13 − t15 −

10t18 − 5t19 + 5t21 + t25

The series for 1 spinor and 7 vectors is as follows, presented in the two ways
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described earlier:

g(B3,1,7)(u, t) = (1− t+ t2 − t3 + t4 − t5 + t6 + 22t3u2 + 13t4u2 −

13t5u2 + 13t6u2 − 13t7u2 + 13t8u2 − 13t9u2 +

113t6u4 + 216t7u4 − 216t8u4 − 274t9u4 +

78t10u4 − 78t11u4 + 78t12u4 + 190t9u6 +

580t10u6 − 580t11u6 − 2458t12u6 + 302t13u6 +

2344t14u6 + 8t15u6 − 294t16u6 − 84t17u6 +

113t12u8 + 461t13u8 − 461t14u8 − 3655t15u8 −

881t16u8 + 8819t17u8 + 3613t18u8 − 7014t19u8 −

2814t20u8 + 1506t21u8 + 846t22u8 − 90t23u8 −

106t24u8 − 6t25u8 + 6t26u8 + t27u8 + 22t15u10 +

111t16u10 − 111t17u10 − 1373t18u10 − 783t19u10 +

6075t20u10 + 6357t21u10 − 10584t22u10 −

10584t23u10 + 6357t24u10 + 6075t25u10 −

783t26u10 − 1373t27u10 − 111t28u10 + 111t29u10 +

22t30u10 + t18u12 + 6t19u12 − 6t20u12 −

106t21u12 − 90t22u12 + 846t23u12 + 1506t24u12 −

2814t25u12 − 7014t26u12 + 3613t27u12 +

8819t28u12 − 881t29u12 − 3655t30u12 − 461t31u12 +

461t32u12 + 113t33u12 − 84t28u14 − 294t29u14 +

8t30u14 + 2344t31u14 + 302t32u14 − 2458t33u14 −

580t34u14 + 580t35u14 + 190t36u14 + 78t33u16 −

78t34u16 + 78t35u16 − 274t36u16 − 216t37u16 +

216t38u16 + 113t39u16 − 13t36u18 + 13t37u18 −

13t38u18 + 13t39u18 − 13t40u18 + 13t41u18 +

22t42u18 + t39u20 − t40u20 + t41u20 − t42u20 +

t43u20 − t44u20 + t45u20)/((1− t2)27(1− t)(1− u2)(1− t3u2)13)
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g(B3,1,7)(u, t) = (1 + t7 + 22t3u2 + 35t4u2 − 13t10u2 + 113t6u4 +

329t7u4 − 490t9u4 − 196t10u4 + 78t13u4 +

190t9u6 + 770t10u6 − 3038t12u6 − 2156t13u6 +

2646t14u6 + 2352t15u6 − 286t16u6 − 378t17u6 −

84t18u6 + 113t12u8 + 574t13u8 − 4116t15u8 −

4536t16u8 + 7938t17u8 + 12432t18u8 − 3401t19u8 −

9828t20u8 − 1308t21u8 + 2352t22u8 + 756t23u8 −

196t24u8 − 112t25u8 + 7t27u8 + t28u8 + 22t15u10 +

133t16u10 − 1484t18u10 − 2156t19u10 + 5292t20u10 +

12432t21u10 − 4227t22u10 − 21168t23u10 −

4227t24u10 + 12432t25u10 + 5292t26u10 − 2156t27u10 −

1484t28u10 + 133t30u10 + 22t31u10 + t18u12 +

7t19u12 − 112t21u12 − 196t22u12 + 756t23u12 +

2352t24u12 − 1308t25u12 − 9828t26u12 − 3401t27u12 +

12432t28u12 + 7938t29u12 − 4536t30u12 − 4116t31u12 +

574t33u12 + 113t34u12 − 84t28u14 − 378t29u14 −

286t30u14 + 2352t31u14 + 2646t32u14 − 2156t33u14 −

3038t34u14 + 770t36u14 + 190t37u14 + 78t33u16 −

196t36u16 − 490t37u16 + 329t39u16 + 113t40u16 −

13t36u18 + 35t42u18 + 22t43u18 + t39u20 + t46u20)/((1− t2)28(1− u2)(1− t3u2)13)

Fully unrefining, we obtain the following Hilbert series, in each case pre-

sented first in lowest terms with (1 + t) factors in the denominator and

secondly with all factors in the denominator being of the form (1− tn) with
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n > 1:

g(B3,1,6)(t, t) = (1 + 2t+ 4t2 + 6t3 + 9t4 + 22t5 + 51t6 +

90t7 + 145t8 + 210t9 + 311t10 + 482t11 + 689t12 +

896t13 + 1118t14 + 1350t15 + 1642t16 + 1944t17 +

2110t18 + 2160t19 + 2180t20 + 2160t21 + 2110t22 +

1944t23 + 1642t24 + 1350t25 + 1118t26 + 896t27 +

689t28 + 482t29 + 311t30 + 210t31 + 145t32 + 90t33 +

51t34 + 22t35 + 9t36 + 6t37 + 4t38 + 2t39 +

t40)/((1− t2)19(1 + t)2(1− t5)10)

g(B3,1,6)(t, t) = (1 + t2 + t4 + 10t5 + 16t6 + 10t7 + 16t8 + 10t9 +

36t10 + 70t11 + 36t12 + 15t14 + 10t15 + 60t16 +

10t17 − 136t18 − 116t19 − 30t20 − 40t21 − 30t22 −

116t23 − 136t24 + 10t25 + 60t26 + 10t27 + 15t28 +

36t30 + 70t31 + 36t32 + 10t33 + 16t34 + 10t35 +

16t36 + 10t37 + t38 + t40 + t42)/((1− t2)21(1− t5)10)
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g(B3,1,7)(t, t) = (1 + 4t+ 12t2 + 28t3 + 58t4 + 130t5 + 311t6 +

713t7 + 1523t8 + 2996t9 + 5611t10 + 10267t11 +

18223t12 + 31020t13 + 50499t14 + 78835t15 + 119213t16 +

175282t17 + 249373t18 + 342255t19 + 453810t20 +

583258t21 + 729077t22 + 885489t23 + 1041499t24 +

1186222t25 + 1311646t26 + 1410834t27 + 1476500t28 +

1499934t29 + 1476500t30 + 1410834t31 + 1311646t32 +

1186222t33 + 1041499t34 + 885489t35 + 729077t36 +

583258t37 + 453810t38 + 342255t39 + 249373t40 +

175282t41 + 119213t42 + 78835t43 + 50499t44 + 31020t45 +

18223t46 + 10267t47 + 5611t48 + 2996t49 + 1523t50 +

713t51 + 311t52 + 130t53 + 58t54 + 28t55 + 12t56 +

4t57 + t58)/((1− t2)23(1 + t)4(1− t5)13)

g(B3,1,7)(t, t) = (1 + 2t2 + 3t4 + 22t5 + 39t6 + 45t7 + 75t8 +

68t9 + 224t10 + 420t11 + 360t12 + 282t13 + 300t14 +

334t15 + 1010t16 + 464t17 − 1318t18 − 1562t19 − 887t20 −

662t21 − 742t22 − 4256t23 − 5217t24 + 110t25 + 2873t26 +

1075t27 − 349t28 − 1424t29 + 4074t30 + 9272t31 +

4074t32 − 1424t33 − 349t34 + 1075t35 + 2873t36 +

110t37 − 5217t38 − 4256t39 − 742t40 − 662t41 − 887t42 −

1562t43 − 1318t44 + 464t45 + 1010t46 + 334t47 + 300t48 +

282t49 + 360t50 + 420t51 + 224t52 + 68t53 + 75t54 +

45t55 + 39t56 + 22t57 + 3t58 + 2t60 + t62)/((1− t2)27(1− t5)13)

As with the only partially unrefined series in the 7-vector case, the powers

of (1− t) and (1 + t) in the denominator are different in both cases, though

this time there are extra powers of (1 + t). The dimensions of the moduli

spaces are again given by the dimension of the pole at t = 1, which are 29
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and 36; they are again equal to the number of degrees of freedom in the

fundamental fields (50 and 57 respectively) minus the number of broken

generators, which is again all 21.

For Nv ≥ 5, the fully unrefined Hilbert series can be written in the fol-

lowing form:

g(B3,1,Nv)(t, t) =
P18Nv−68(t)

(1− t2)4Nv−5(1 + t)2Nv−10(1− t5)3Nv−8
(5.46)

This gives a moduli space of dimension 7Nv − 13 = 7Nv + 8 − 21, and a

(degree of denominator)-(degree of numerator) of 7Nv + 8 as required.

As we did for E6 with one antiflavour, we will now calculate invariants for

the case of arbitrary vector flavour numbers, with one spinor flavour, using

the ‘trial and error’ approach noted earlier. We summarize our results as

follows:

Tables 5.37, 5.38, 5.39 and 5.40 show the number of invariants of B3 (in-

cluding second- and higher even-order syzygies) and Tables 5.41, 5.42, 5.43

and 5.44 show the number ofrelations (including higher odd-order syzygies)

for a specific ‘mass’ level (i.e. number of fields) having a specific number of

rows (i.e. the minimum number of flavours of vectors at which they appear,

with the number of spinor flavours fixed at 1) in their Young tableaux. The

levels, with the number of vector fields first and the number of spinor fields

second, are specified in the first column of the table and the minimum num-

ber of flavours (of vectors) in the top row. As in the E6 with one antiflavour

case, we cannot accommodate the (1− u2) invariant solely in the spinors in

these tables, but we understand it is present.

Summing the number of invariants of each type for each number of vector

fields in the invariant over numbers of spinor fields, we show the number of

invariants (including even-order higher syzygies) at each order in the vector-

counting fugacity in Table 5.45 and the number of relations (including odd-

order higher syzygies) in Table 5.46:

By inspection, the number of ‘net’ invariants (i.e. primary invariants and

even-order higher syzygies minus primary relations and odd-order higher

syzygies) for a given number of vectors and number of vector fields in the

invariant, summed over the number of spinor fields, is the same for the

B3 case with one spinor as for the G2 case. We show this in Tables 5.47

and 5.48 for the case of invariants containing 21 vector fields (assuming the
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5 6 7 8 9 10 11

G2 6th-order 0 3 15 28 32 29 23

G2 5th-order 33 1049 6086 15016 22485 23980 20453

B3 6th-order 19 361 2200 6192 10445 12368 11748

B3 5th-order 52 1407 8271 21180 32898 36319 32178

Table 5.47: Comparison of numbers of net invariants at order 21 in vectors
for B3 with one spinor and G2 (part 1)

12 13 14 15 16 17 18 19 20

G2 6th-order 15 8 4 2 0 0 0 0 0

G2 5th-order 14626 9210 5038 2433 966 318 69 9 0

B3 6th-order 9387 6730 4281 2531 1329 654 267 101 26

B3 5th-order 23998 15932 9315 4962 2295 972 336 110 26

Table 5.48: Comparison of numbers of net invariants at order 21 in vectors
for B3 with one spinor and G2 (part 2)

‘invariants’ to be second-order syzygies):

Though the analysis is too long to present here, the actual invariants

(including relations and higher syzygies) also match when those for B3 are

summed over the number of spinor fields in the invariant. This echoes

the parallels between E6 with one antiflavour and F4 which we discovered

earlier.

5.6.2 D4 gauge group

D4 is again not an exceptional group, but we recall that it is Higgsed to B3

by one vector, and by triality, also by one spinor or one conjugate spinor.

It can be decomposed to B3 in three ways, each choosing one of the three

fundamental representations to decompose into a vector and scalar of B3,

with the other two becoming spinors. If there are more fields of the same

type, they become vectors of B3, with an additional scalar; fields of the

other two types become spinors of B3:

D4(Nv, Ns, Nc)→ B3(Ns +Nc, Nv − 1)

with the number of fields of each type being permuted if the field being

Higgsed on is actually a spinor or conjugate spinor.

The second Dynkin index of all three fundamental representations is 2,
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for the vector it is defined to be so and for the spinors one can show it either

by triality or by the fact that it is the dimension, which is here 8, divided by

4. That of the adjoint is 12, which is equal to the (dual) Coxeter number.

One expects therefore that the complete intersection would occur at 6 total

flavours and with the relation at total order 12, again except for the case

where all fundamental fields are the same, here WLOG vectors, where we

know it to occur at 8 flavours with the relation at order 16.

The refined series for up to 6 total flavours, or 8 if they are all the same

type (WLOG vectors) are as follows: (note the number of vector fields comes

first, then spinors, then conjugate spinors; though when there are two types

of fields present they are usually considered to be spinors and conjugate
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spinors, though the fugacities t and u are used here rather than u and v)

PL(g(Nf ,0,0,D4)) = [2, . . .]t2, 1 ≤ Nf ≤ 7

PL(g(8,0,0,D4)(t, u, v)) = [2, 0, 0, 0, 0, 0, 0]t2 + [0, 0, 0, 0, 0, 0, 0]t8 − [0, 0, 0, 0, 0, 0, 0]t16

PL(g(1,1,0,D4)(t, u, v)) = t2 + u2

PL(g(2,1,0,D4)(t, u, v)) = [2]t2 + u2

PL(g(3,1,0,D4)(t, u, v)) = [2, 0]t2 + u2

PL(g(4,1,0,D4)(t, u, v)) = [2, 0, 0]t2 + [0, 0, 0]t4u2 + u2

PL(g(5,1,0,D4)(t, u, v)) = [2, 0, 0, 0]t2 + [0, 0, 0, 1]t4u2 + u2 − [0, 0, 0, 0]t10u4

PL(g(2,2,0,D4)(t, u, v)) = [2; 0]t2 + [0; 2]u2 + [0; 0]t2u2

PL(g(3,2,0,D4)(t, u, v)) = [2, 0; 0]t2 + [0, 0; 2]u2 + [0, 1; 0]t2u2

PL(g(4,2,0,D4)(t, u, v)) = [2, 0, 0; 0]t2 + [0, 0, 0; 2]u2 + [0, 1, 0; 0]t2u2 + [0, 0, 0; 2]t4u2

−[0, 0, 0; 0]t4u4 − [0, 0, 0; 0]t8u4

PL(g(3,3,0,D4)(t, u, v)) = [2, 0; 0, 0]t2 + [0, 0; 2, 0]u2 + [0, 1; 0, 1]t2u2 − [0, 0; 0, 0]t6u6

PL(g(1,1,1,D4)(t, u, v)) = t2 + u2 + v2 + tuv

PL(g(2,1,1,D4)(t, u, v)) = [2]t2 + [0]u2 + [0]v2 + [1]tuv

PL(g(3,1,1,D4)(t, u, v)) = [2, 0]t2 + [0, 0]u2 + [0, 0]v2 + [1, 0]tuv + [0, 0]t3uv

PL(g(4,1,1,D4)(t, u, v)) = [2, 0, 0]t2 + [0, 0, 0]u2 + [0, 0, 0]v2 + [1, 0, 0]tuv + [0, 0, 1]t3uv

+[0, 0, 0]t4u2 + [0, 0, 0]t4v2 − [0, 0, 0]t4u2v2 − [0, 0, 0]t8u4v4

PL(g(2,2,1,D4)(t, u, v)) = [2; 0]t2 + [0; 2]u2 + [0; 0]v2 + [1; 1]tuv + [0; 0]t2u2

PL(g(3,2,1,D4)(t, u, v)) = [2, 0; 0]t2 + [0, 0; 2]u2 + [0, 0; 0]v2 + [1, 0; 1]tuv + [0, 1; 0]t2u2

+[0, 0; 1]t3uv − [0, 0; 0]t6u4v2

PL(g(2,2,2,D4)(t, u, v)) = [2; 0; 0]t2 + [0; 2; 0]u2 + [0; 0; 2]v2 + [1; 1; 1]tuv + [0; 0; 0]t2u2

+[0; 0; 0]t2v2 + [0; 0; 0]u2v2 + [0; 0; 0]t2u2v2 − [0; 0; 0]t4u4v4

The unrefined series, including the non-complete intersection cases for 9,
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10, 11 and 12 vectors but no spinors or conjugate spinors, are as follows:

g(Nv ,0,0,D4) =
1

(1− t2)
1
2
Nv(Nv+1)

, 1 ≤ Nv ≤ 7

g(8,0,0,D4)(t, u, v) =
1− t16

(1− t2)36(1− t8)
=

1 + t8

(1− t2)36

g(9,0,0,D4) =
1 + t2 + t4 + t6 + 10t8 + t10 + t12 + t14 + t16

(1− t2)44

g(10,0,0,D4) = (1− t2)−52(1 + 3t2 + 6t4 + 10t6 + 60t8 + 57t10 + 56t12 + 57t14 +

60t16 + 10t18 + 6t20 + 3t22 + t24)

g(11,0,0,D4) = (1− t2)−60(1 + 6t2 + 21t4 + 56t6 + 291t8 + 648t10 +

1078t12 + 1562t14 + 2112t16 + 1562t18 + 1078t20 +

648t22 + 291t24 + 56t26 + 21t28 + 6t30 + t32)

g(12,0,0,D4) = (1− t2)−68(1 + 10t2 + 55t4 + 220t6 + 1210t8 +

4378t10 + 11495t12 + 24530t14 + 45695t16 + 62270t18 +

68354t20 + 62270t22 + 45695t24 + 24530t26 + 11495t28 +

4378t30 + 1210t32 + 220t34 + 55t36 + 10t38 + t40)
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g(1,1,0,D4)(t, u, v) =
1

(1− t2)(1− u2)

g(2,1,0,D4)(t, u, v) =
1

(1− t2)3(1− u2)

g(3,1,0,D4)(t, u, v) =
1

(1− t2)6(1− u2)

g(4,1,0,D4)(t, u, v) =
1

(1− t2)10(1− t4u2)(1− u2)

g(5,1,0,D4)(t, u, v) =
1− t10u4

(1− t2)15(1− t4u2)5(1− u2)

g(2,2,0,D4)(t, u, v) =
1

(1− t2)3(1− u2)3(1− t2u2)

g(3,2,0,D4)(t, u, v) =
1

(1− t2)6(1− u2)3(1− t2u2)3

g(4,2,0,D4)(t, u, v) =
(1− t4u4)(1− t8u4)

(1− t2)10(1− u2)3(1− t2u2)6(1− t4u2)3

g(3,3,0,D4)(t, u, v) =
1− t6u6

(1− t2)6(1− u2)6(1− t2u2)9

g(1,1,1,D4)(t, u, v) =
1

(1− t2)(1− u2)(1− v2)(1− tuv)

g(2,1,1,D4)(t, u, v) =
1

(1− t2)3(1− u2)(1− v2)(1− tuv)2

g(3,1,1,D4)(t, u, v) =
1

(1− t2)6(1− u2)(1− v2)(1− tuv)3(1− t3uv)

g(4,1,1,D4)(t, u, v) =
(1− t4u2v2)(1− t8u2v2)

(1− t2)10(1− u2)(1− v2)(1− tuv)4(1− t3uv)4(1− t4u2)(1− t4v2)

g(2,2,1,D4)(t, u, v) =
1

(1− t2)3(1− u2)3(1− v2)(1− tuv)4(1− t2u2)

g(3,2,1,D4)(t, u, v) =
1− t6u4v2

(1− t2)6(1− u2)3(1− v2)(1− tuv)6(1− t2u2)3(1− t3uv)2

g(2,2,2,D4)(t, u, v)

=
1− t4u4v4

(1− t2)3(1− u2)3(1− v2)3(1− tuv)8(1− t2u2)(1− t2v2)(1− u2v2)(1− t2u2v2)

As with the B3 case, the residual gauge group is the same for any given

total number of fundamental fields, as long as they are of at least 2 different

types; the reason is that Higgsing on one field reduces the gauge group to

B3, with all other fields of the same type becoming vectors (plus a scalar)
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and fields of other types becoming spinors, and further Higgsing on one

spinor reduces the gauge group to G2, and now all fundamental fields of D4

decompose to fundamentals of G2 plus scalars.

Recalling that the number of invariants for E6 with 2, 3 or 4 total flavours

was the same however many were fundamentals and however many antifun-

damentals, we see that this is not the case with 2 total spinors here; there

are three invariants, at order t2, for 2 spinors of the same type, but only 2,

at orders t2 and u2, for one of each type.

The moduli space is the dimension of the pole at t = 1 in the fully unre-

fined series when all fields are identified and counted by the same fugacity

t; it is equal to the number of degrees of freedom in the fundamental fields,

which here is 8 times the total number of fields, minus the number of bro-

ken generators of the gauge group. This is easy to see by inspection for the

freely generated cases and the cases with only one type of field (WLOG only

vectors); for the complete intersections with more than one type of field the

fully refined Hilbert series are as follows:

g(5,1,0,D4)(t, t, t) =
1 + t2 + t4 + t6 + t8 + t10 + t12

(1− t2)15(1− t6)5

g(4,2,0,D4)(t, t, t) =
1 + t4 + t6 + t10

(1− t2)13(1− t4)5(1− t6)2

g(3,3,0,D4)(t, t, t) =
1 + t4 + t8

(1− t2)12(1− t4)8

g(4,1,1,D4)(t, t, t) =
1 + t4 + t6 + t10

(1− t2)12(1− t3)3(1− t5)4(1− t6)

g(3,2,1,D4)(t, t, t) =
1 + t4 + t8

(1− t2)10(1− t3)6(1− t4)2(1− t5)2

g(2,2,2,D4)(t, t, t) =
1 + t6

(1− t2)9(1− t3)8(1− t4)3

In all cases the moduli space has dimension 20, which is the number of

fundamental fields (48) minus the dimension of the group (28).

Recall that Higgsing of E6 on two total flavours of fundamentals or an-

tifundamentals, or F4 on one fundamental, gives D4 as the residual gauge

group, and the (anti)fundamental of E6 and fundamental of F4 both decom-

pose under D4 to give a vector, a spinor and a conjugate spinor, plus scalars
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Nf 24Nf No. No. No. broken No. unbroken Unbroken
invariants relations gens gens gauge group

1 24 4 0 20 8 A2

2 48 21 1 28 0 ∅

Table 5.49: Numbers of invariants, relations, broken and unbroken genera-
tors and unbroken gauge groups for D4 SQCD theories with up
to 2 flavours each consisting of a vector, spinor and conjugate
spinor

to fill out the representation of the parent group. From now on we will only

consider these cases, where the number of vectors, spinors and conjugate

spinors are equal and identified by the same fugacities t or ti. Identifying t,

u and v in the (1,1,1) and (2,2,2) cases, we have the following refined series:

PL(g(1,1,1,D4)(t, t, t)) = 3t2 + t3

PL(g(2,2,2,D4)(t, t, t)) = 3[2]t2 + ([3] + 2[1])t3 + 3[0]t4 + [0]t6 − [0]t12

The unrefined series are as follows:

g(1,1,1,D4)(t, t, t) =
1

(1− t2)3(1− t3)

g(2,2,2,D4)(t, t, t) =
1− t12

(1− t2)9(1− t3)8(1− t4)3(1− t6)
=

1 + t6

(1− t2)9(1− t3)8(1− t4)3

The numbers of invariants, relations and broken and unbroken generators

of the gauge group and the unbroken gauge groups are listed in Table 5.49:

The invariants and their form in the 3-flavour case are as shown in Table

5.50:

One sees that the upper bounds for d(n) for n equal to 2, 3 and 4 must

be 18, 27 and 27 (the latter two 26 and 18 excluding the invariants that do

not occur in the 2-flavour case) respectively. Calculating the lower bounds

from the values at 1 and 2 flavours, we summarize this information in Table

5.51:

We were unable to calculate either the refined or unrefined Hilbert series

in the 3-flavour case; from these bounds we know that the minimum degree

of the numerator of the unrefined series, assigning each of the 8 ‘remaining’
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Order Young tableau SU(3) representation Dimension

2 3[2,. . .] 3[2,0] 18

3 [3,. . .] [3,0] 10

3 2[1,1,. . .] 2[1,1] 16

3 [0,0,1,. . .] [0,0] 1

4 3[0,2,. . .] 3[0,2] 18

4 3[1,0,1,. . .] 3[1,0] 9

Table 5.50: Young tableaux (in SU(N) representation form) corresponding
to primitive invariants of D4 SQCD theories and the correspond-
ing representations and dimensions in the case of 3 flavours

Nf d(2) d(3) d(4) deg P (t) dim(M)

1 3 1 0 0 4

2 9 8 3 6 20

3 ≥ 15 ≥ 15 ≥ 6 ? 44
≤ 18 ≤ 26 ≤ 18

Nf ≥ 2 ? ? ? ? 24Nf − 28

Table 5.51: Powers of (1− tn) in denominator of unrefined Hilbert series for
D4 SQCD theories with Nf flavours with 1 ≤ Nf ≤ 2 and upper
and lower bounds for 3-flavour case

poles to the lowest possible order maintaining the bounds, is 2.18 + 3.20 +

4.6 − 3.24 = 48, and the highest is 2.15 + 3.15 + 4.14 − 3.24 = 59. If

we include the [0,0,1] and 3[1,0,1] invariants, the refined series has order

2.18 + 3.27 + 4.27− 3.24 = 153 (51 in each flavour), and if we do not, it has

order 2.18 + 3.26 + 4.18− 3.24 = 114 (38 in each flavour).

We could try calculating the (refined) Hilbert series through un-Higgsing

of the Hilbert series for A2 with 6 flavours of both quarks and antiquarks,

identifying fugacities ti = ui and then the ti in groups of 3. Recall that one

flavour of V+S+C in D4 decomposes to give three each of the fundamental

and antifundamental plus six scalars in A2, and the adjoint gives the adjoint

of A2 plus three quark-antiquark pairs and two scalars, so the 3-flavour

(V+S+C) case of D4 corresponds to the 6-flavour case of A2 with 12 added

scalars.
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5.6.3 D5 gauge group

While D5 is not an exceptional group, it follows the ‘sequence’ of exceptional

groups down from E8 by progressively removing the rightmost node in the

Dynkin diagram, drawing them so that the ‘off-line’ node is attached to

the third node from the left. As with the En groups, it is the group that

arises from Kaluza-Klein toroidal compactification of n = 5 dimensions of

M-theory (or n − 1 = 4 of either type II string theory), though the actual

U-duality group is only its discrete subgroup D5(5)(Z) (or En(n)(Z)).

The second Dynkin index of both spinor representations is 4, because

the normalization of the vector to have Dynkin index 2, for any special

orthogonal group, means that the spinors have a value of the dimension of

the representation, which is here 16, divided by 4. That of the adjoint is 16,

which is equal to the (dual) Coxeter number. One expects therefore that

the complete intersection would occur at 4 total flavours of spinors, with

the relation at total order 16.

The refined series, for up to 4 total spinors, are as follows:

PL(g(2,0,D5)(t, u)) = [0]t4

PL(g(3,0,D5)(t, u)) = [0, 2]t4

PL(g(4,0,D5)(t, u)) = [0, 2, 0]t4 − [0, 0, 0]t16

PL(g(1,1,D5)(t, u)) = tu+ t2u2

PL(g(2,1,D5)(t, u)) = [1]tu+ [2]t2u2 + [0]t4

PL(g(3,1,D5)(t, u)) = [1, 0]tu+ [2, 0]t2u2 + [0, 2]t4 + [2, 0]t5u

−[0, 0]t9u− [0, 0]t12u4

PL(g(2,2,D5)(t, u)) = [1; 1]tu+ [2; 2]t2u2 + [1; 1]t3u3 + [0; 0]t4 + [0; 0]u4

+[0; 0]t6u2 + [0; 0]t2u6 − [0; 0]t6u6 − [0; 0]t8u8

We see that the relation in the (4,0) case, and the higher of the two relations

in the (3,1) and (2,2) cases, indeed is at total order 16.
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The partially unrefined series are as follows:

g(2,0,D5)(t, u) =
1

1− t4

g(3,0,D5)(t, u) =
1

(1− t4)6

g(4,0,D5)(t, u) =
1− t16

(1− t4)20
=

1 + t4 + t8t12

(1− t4)19

g(1,1,D5)(t, u) =
1

(1− tu)(1− t2u2)

g(2,1,D5)(t, u) =
1

(1− tu)2(1− t2u2)3(1− t4)

g(3,1,D5)(t, u) =
(1− t9u)(1− t12u4)

(1− tu)3(1− t2u2)6(1− t4)6(1− t5u)6

g(2,2,D5)(t, u) =
(1− t6u6)(1− t8u8)

(1− tu)4(1− t2u2)9(1− t3u3)4(1− t4)(1− u4)(1− t6u2)(1− t2u6)

=
(1 + t3u3)(1 + t2u2 + t4u4 + t6u6)

(1− tu)4(1− t2u2)8(1− t3u3)3(1− t4)(1− u4)(1− t6u2)(1− t2u6)

Recalling that the number of invariants for E6 with 2, 3 or 4 total flavours

was the same however many were fundamentals and however many antifun-

damentals, we see that this is not the case with 2 total spinors here; there

is only one invariant, at order t4, for 2 spinors of the same type, but there

are 2, at orders tu and t2u2, for one of each type. There are no invariants at

all when there is only one spinor (of either type); this can be seen from the

general formula for the symmetric power of the spinor, which is as follows:

Symk[0, 0, 0, 0, 1]D5 =

b k
2
c∑

m=0

[m, 0, 0, 0, k − 2m]D5

As we see, the singlet only occurs for k = 0.

The dimension of the moduli space is given by the order of the pole at

t = 1 in the fully unrefined (setting u to t) series, and is given by the number

of degrees of freedom in the fundamental fields minus the number of broken

generators of the gauge group. It can be seen by inspection of the partially

refined series, except in the (3,1) case where the relation does not factorize

into terms in the denominator and we must therefore write the series in its
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(Nf , Na) 16(Nf +Na) No. No. No. broken No. unbroken Unbroken
invariants relations gens gens gauge group

(1,1) 32 2 0 30 15 A3

(2,0) 32 1 0 31 14 G2

(3,0) 48 6 0 42 3 A1

or (2,1)
(4,0) 64 20 1 45 0 ∅
(3,1) 64 21 2 45 0 ∅

or (2,2)

Table 5.52: Numbers of invariants, relations, broken and unbroken genera-
tors and unbroken gauge groups for D5 SQCD theories with up
to 4 total flavours of spinors

fully unrefined form to show the dimension:

g(3,1,D5)(t, t) =
(1 + t2 + t4 + t6 + t8)(1 + t4 + t8 + t12)

(1− t2)2(1− t4)11(1− t6)6

We see the dimension is 19, which is equal to 64 (the number of matter

degrees of freedom) minus 45 (the dimension of D5 which is completely

broken by the Higgsing). This is the same as in the (4,0) and (2,2) cases.

The numbers of invariants, relations and broken and unbroken generators

of the gauge group and the unbroken gauge groups are listed in Table 5.52:

We see that although the Higgsing on two spinors of the same type gives

a different residual gauge group (G2) to doing it on one spinor of each type

(A3 = SU(4)), subsequent Higgsing on another flavour of either type of

spinor is the same in both cases (A1 = SU(2)). This occurs because either

spinor of D5 decomposes to two G2 fundamentals (and two scalars), and

these Higgs G2 to A1, while it would decompose to two flavours (quark plus

antiquark) of A3 and Higgsing on these would also give A1 as the final gauge

group.

We will demonstrate the Higgsing of the (4,0) case on 2 flavours using the

SU(4)×U(1) notation as follows. Higgsing on the fourth flavour, we obtain

using the method outlined in the B3 (with only spinors) case earlier:

• [0, 2, 0; 4]→ [2, 0; 2] + [1, 1; 3] + [0, 2; 4] - so no scalars or invariants, as

expected from the fact that D5 is not Higgsed by just one flavour

• [0, 0, 0; 16]→ [0, 0; 12] (relation)

Performing the second Higgsing on the third flavour, we obtain:
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• [2, 0; 2]→ [0; 0]+[1; 1]+[2; 2] - one invariant from Higgsed two flavours,

two scalars from decomposition of one remaining spinor of D5 to two

fundamentals of G2 and two scalars

• [1, 1; 3]→ [1; 1] + [2; 2] + [0; 2] + [1; 3] - two scalars from decomposition

of the other remaining spinor

• [0, 2; 4]→ [2; 2] + [1; 3] + [0; 4]

• [0, 0; 12]→ [0; 8] (relation)

We see that we have remaining (3[2] + [0])t2 + 2[1]t3 + t4 − t8. Identifying

the fugacities t1 with t3 and t2 with t4 in the refined series for G2 with 4

flavours, which corresponds to the mapping of Dynkin labels from SU(4) to

SU(2) as [n1, n2, n3] → [n1 + n3] (simply discarding n2!), we find that the

[2, 0, 0]t2 + [0, 0, 1]t3 + t4 − t8 indeed map to this.

Higgsing the (3,1) case on two of the three flavours, we have, doing it on

the third flavour:

• [1, 0; 1; 1] → [0; 0; 1] + [1; 1; 1] - one scalar from decomposition of re-

maining flavour, discard this in second step

• [2, 0; 2; 2]→ [0; 0; 2] + [1; 1; 2] + [2; 2; 2]

• [0, 2; 4; 0]→ [2; 2; 0] + [1; 3; 0] + [0; 4; 0]

• [2, 0; 5; 1]→ [0; 2; 1] + [1; 3; 1] + [2; 4; 1]

• [0, 0; 9; 1]→ [0; 6; 1] (relation)

• [0, 0; 12; 4]→ [0; 8; 4] (relation)

Higgsing again on the second flavour:

• [1; 1; 1]→ [0; 1]+[1; 1] - second scalar from decomposition of remaining

flavour

• [0; 0; 2]→ [0; 2]

• [1; 1; 2]→ [0; 2] + [1; 2]

• [2; 2; 2]→ [0; 2] + [1; 2] + [2; 2]
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• [2; 2; 0] → [0; 0] + [1; 0] + [2; 0] - one scalar from decomposition of

antiflavour plus one invariant in Higgsed flavours

• [1; 3; 0] → [1; 0] + [2; 0] - second scalar from decomposition of anti-

flavour

• [0; 4; 0]→ [2; 0]

• [0; 2; 1]→ [1; 1]

• [1; 3; 1]→ [1; 1] + [2; 1]

• [2; 4; 1]→ [1; 1] + [2; 1] + [3; 1]

• [0; 6; 1]→ [3; 1] - relation cancels out invariant in last step

• [0; 8; 4]→ [4; 4] - relation

We can, after discarding the invariants and scalars, reassemble these latter

into SU(2) representations (taking t→ tz, u→ t/z):

• 3([0; 2] + [1; 1] + [2; 0])→ 3[2]t2

• 2([1; 2] + [2; 1])→ 2[1]t3

• [1; 1]→ [0]t2

• [2; 2]→ [0]t4

• [4; 4]→ [0]t8 (relation)

We see that this matches the Higgsing of the (4,0) case on two flavours,

and therefore also matches the G2 Hilbert series for 4 flavours (with the

mapping from SU(4) to SU(2) understood).

Higgsing the (2,2) case on the two antiflavours is simple, just set u to

1, one obtains one invariant in the Higgsed antiflavours from [0; 0]u4, four

scalars from the decomposition of the flavours from [1; 1]tu and the same

Hilbert series as for the other two Higgsings.

The process of un-Higgsing would seem to be particularly hard in this

case, in the case of Higgsing on one flavour and one antiflavour or two

antiflavours there is the difficulty with the antiflavour(s) as we have seen

with B3, in the case of Higgsing on two flavours there are the issues that
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Order(t,u) Young tableau SU(3)× SU(2) representation Dimension

(2,2) [2,. . .;2] [2,0;2] 18

(2,6) [0,1,. . .;0] [0,1;0] 3

(3,3) [1,1,. . .;1] [1,1;1] 16

(4,0) [0,2,. . .;0] [0,2;0] 6

(6,2) [0,3,. . .;0] [0,3;0] 10

Table 5.53: Young tableaux (in SU(N) representation form) corresponding
to primitive invariants of D5 SQCD theories and the correspond-
ing representations and dimensions in the case of 3 flavours and
2 antiflavours

Nf d(0, 4) d(1, 1) d(2, 2) d(2, 6) d(3, 3) d(4, 0) d(6, 2) deg P (t, u) dim(M)
0 1 0 0 0 0 0 0 0 1
1 1 2 3 0 0 0 0 0 6
2 1 4 9 1 4 1 1 14,14 19
3 1 6 ≥ 15 ≥ 2 ≥ 8 ≥ 2 ≥ 2 ?, ? 35

≤ 18 ≤ 3 ≤ 16 ≤ 6 ≤ 10
Nf ≥ 2 1 2Nf ? ? ? ? ? ?, ? 16Nf − 13

Table 5.54: Powers of (1− tnum) in denominator of unrefined Hilbert series
for D5 SQCD theories with Nf flavours with 0 ≤ Nf ≤ 3 and
2 antiflavours and upper and lower bounds for 3-flavour and
2-antiflavour case

the Higgsing must be done twice and also that the SU(2) representations

must be ‘expanded’ into SU(4) ones in some way. We will not discuss this

further here.

Returning to the calculation of Hilbert series with 5 total spinors, we were

again unable to do so using Mathematica because of memory constraints.

Once again, however, we provide in Table 5.53 the analysis of the lower and

upper bounds based on the lower cases, with the number of antiflavours

(conjugate spinors) fixed at 2 in the first case and 1 in the second case:

The lower and upper bounds for the powers of (1− tnum) in the denom-

inator in the (Nf , 2) case are shown in Table 5.54:

Setting u = t, the coefficients of (1 − t2) in the 3-spinor case is fixed at

2Nf = 6, that of (1−t4) is between 18 and 29, that of (1−t6) between 8 and

16 (or 20 if the [0,0,1;3] invariant is considered) and that of (1− t8) between

2 and 10. Knowing the moduli space must have dimension 35 = 5.16− 45,

there must be 6, 18, 8 and 2 at each order with one extra at order 4, 6

or 8; the degree of the numerator must range between 6.2 + 18.4 + 8.6 +

2.8 − 5.16 + 4 = 72 and 76. (That for 5 spinors and no conjugate spinors
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Order(t,u) Young tableau SU(4) representation Dimension

(2,2) [2,. . .] [2,0,0] 10

(4,0) [0,2,. . .] [0,2,0] 20

(5,1) [2,0,1,. . .] [2,0,1] 36

Table 5.55: Young tableaux (in SU(N)× SU(N) representation form) cor-
responding to primitive invariants of D5 SQCD theories and the
corresponding representations and dimensions in the case of 4
flavours and one antiflavour

Nf d(1, 1) d(2, 2) d(4, 0) d(5, 1) deg P (t, u) dim(M)

1 1 0 0 0 0 2

2 2 3 1 0 0 6

3 3 6 6 6 21,5 19

4 4 ≥ 9 ≥ 11 ≥ 12 ?, ? 35
≤ 10 ≤ 20 ≤ 36

Nf ≥ 3 Nf ? ? ? ?, ? 16Nf − 29

Table 5.56: Powers of (1− tnum) in denominator of unrefined Hilbert series
for D5 SQCD theories with Nf flavours with 1 ≤ Nf ≤ 3 and
1 antiflavour and upper and lower bounds for 4-flavour and 1-
antiflavour case

necessarily has order 35.4− 5.16 = 60).

For the case with one antiflavour, we have the invariants as in Table 5.55:

And in Table 5.56 are the (bounds for the) powers in the denominator:

Similarly, in the fully unrefined case we have powers of (1 − t2) fixed at

Nf = 4, of (1 − t4) between 20 and 30 and of (1 − t6) between 12 and 36

respectively. With these necessarily adding up to 36, one of the powers must

be reduced by one; supposing it is the power of (1 − t2), the numerator is

of degree 3.2 + 20.4 + 12.6− 5.16 = 78.

5.6.4 E6 gauge group

We have already considered Higgsing of E6 with Nf flavours and one an-

tiflavour on the antiflavour, where we remove the (1 − u3) factor from the

denominator, set the antiflavour fugacity u to 1 and remove factors of (1−t)
(in the partially unrefined case) or (1− ti) (fully refined) to get the F4 series

with Nf flavours. In this section we will consider Higgsing in more general

theories with either no antiflavours or 2 or more of them, and also Higgsing
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on more than one (anti)flavour, although we have already dealt with the

case of exactly 2 antiflavours in the D4 section, E6 being Higgsed to D4 on

two total flavours.

We have already described the explicit Higgsing in terms of explicit rep-

resentations of E6 fundamentals as three 3×3 matrices, corresponding to its

decomposition as its maximal subgroup SU(3)3, and also as a 6×6 antisym-

metric matrix and a 2× 6 matrix, corresponding to that as SU(6)×SU(2),

which is also a maximal subgroup, and how the interaction of the breakings

of the subgroups results in the breaking of E6 to F4 and D4 progressively;

this is described in more detail in [44].

The k-th symmetric product of the fundamental of E6 is given by the

following formula:

Symk[1, 0, 0, 0, 0, 0]E6 =

b k
3
c∑

m=0

b k−3m
2
c∑

n=0

[m, 0, 0, 0, k − 2m, 0]E6

This expression shows that we do have symmetric invariants solely in flavours

or antiflavours, the primitive one being of order 3.

This can be expressed in PE form as follows:

PE(t[1, 0, 0, 0, 0, 0]E6) =
1

1− t3
∞∑
m=0

∞∑
n=0

[m, 0, 0, 0, n, 0]tm+2n

For the Hilbert series, we consider first the case with up to 4 flavours but no

antiflavours. As before, we rewrite the refined series in terms of fugacities

ti for 1 ≤ i ≤ Nf :

g(1,0,E6)) =
1

1− t3

g(2,0,E6)) =
1

(1− t31)(1− t21t2)(1− t1t22)(1− t22)

g(3,0,E6)) =
1

(
∏

1≤i≤j≤k≤3(1− titjtk))(1− t21t22t23)

The invariants at order 3 are as for 3 flavours but with i, j and k ranging

from 1 to 4 instead of 3; that at order 12 is
∏4
i=1 t

3
i and the relation at order

24 is
∏4
i=1 t

6
i , which reduces to a (1 +

∏4
i=1 t

3
i ) term in the numerator.
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Because the invariants at order 6 transform in the [0, 0, 2, . . .] representa-

tion ([0,0,2] of SU(4) specifically), we cannot list them easily in a product

form similarly to above. (This is not an issue for 3 flavours because it reduces

to [0,0], i.e. the singlet.) They are given by the second symmetric product

of the [0,0,1] representation, i.e. Sym2(t1t2t3 + t1t2t4 + t1t3t4 + t2t3t4).

When the theory is Higgsed on one flavour, the factor (1−t3Nf ) is removed

from the denominator, then tNf is set to 1 and terms in (1 − ti) for 1 ≤
i ≤ Nf − 1, corresponding to the scalars arising from the reduction of the

remaining flavours to F4, are removed too.

When Nf = 2 in the original theory, after removing the (1 − t32) term

and the one scalar, we are left with one invariant t21 and one t31, which is

the same as in the F4 theory with one flavour. When Nf = 3, there are

two scalars and we are left with 3, 4 and 1 invariant at orders 2, 3 and 4

respectively, again as for F4 with one less flavour. In the Nf = 4 case, the

Higgsing results in the following invariants, after removing the (1− t34) term

and the three scalars from tit
2
4 (here i, j, . . . take values 1 to 3):

• titj , i ≤ j (from titjt4) in the [2,0] representation of SU(3), there are

6 of them

• titjtk, i ≤ j ≤ k (unchanged) in [3,0] (10)

• t2i t2j , i < j and t2i tjtk, i 6= j 6= k (cancelling out t24) in [0,2] (6) (the

second symmetric power of t1t2 + t1t3 + t2t3)

• t2i t2j tk, i 6= j 6= k (cancelling out t4) in [0,1] (3)

• t21t22t23 (unchanged) in [0,0] (1)

• t31t32t33 (cancelling out t34) in [0,0] (1)

• t61t62t63 (cancelling out t64) (relation) in [0,0] (1)

In U(4)→ U(3), or SU(4)×U(1)→ SU(3)×U(1) notation, with the U(1)

charge being the order of the invariant, we have

• [3, 0, 0; 2]→ [0, 0; 0] + [1, 0; 1] + [2, 0; 2] + [3, 0; 3]; first term is invariant

of t4, second is scalars

• [0, 0, 2; 6]→ [0, 2; 4] + [0, 1; 5] + [0, 0; 6]
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• [0, 0, 0; 4n]→ [0, 0; 3n], here for n = 3 (invariant) and n = 6 (relation)

We see that, in the freely generated and complete intersection cases, Hig-

gsing of E6 theories with Nf flavours and no antiflavours on one flavour

results in the F4 theory with Nf − 1 flavours.

We will now consider theories with both flavours and antiflavours (still no

more than 4 total). We have already seen the Higgsing on one (anti)flavour

when there is only one of this type of field, so we will not consider this case

further. This time we will write the plethystic logarithm of the series in ti

form:

PL(g(1,1,E6)(t, u)) = tu+ t3 + u3 + t2u2

PL(g(2,1,E6)(t, u)) = (t1 + t2)u+ t31 + t21t2 + t1t
2
2 + t32 + u3 + (t21 + t1t2 + t22)u2

+t21t
2
2u

The first case has already been covered, whether we Higgs on t or u; Hig-

gsing the second on t2 gives rise to the one (cubic) invariant of the Higgsed

flavour, two scalars from the decomposition of the remaining flavour and

the antiflavour, three invariants at order 2, four at order 3 and one at order

4, as required for the F4 theory with 2 flavours.

For simplicity we will stick with SU(Nf ) (and SU(Na)) notation for the

(3,1) and (2,2) cases:

PL(g(3,1,E6)(t, u)) = [1, 0]tu+ [3, 0]t3 + [0, 0]u3 + [2, 0]t2u2 + [0, 2]t4u

+[0, 1]t5u2 + [0, 0]t6 + [0, 0]t9u3 − [0, 0]t18u6

PL(g(2,2,E6)(t, u)) = [1; 1]tu+ [3; 0]t3 + [0; 3]u3 + [2; 2]t2u2 + [0; 1]t4u

+[1; 0]tu4 + [1; 1]t3u3 + [0; 0]t4u4 + [0; 0]t6u6 − [0; 0]t12u12

In the (3,1) case, Higgsing on one of the 3 flavours decomposes the SU(3)×
U(1)(×U(1)) global symmetry group to SU(2)× U(1)(×U(1)):

• [1, 0; 1; 1] → [1; 1; 1] + [0; 0; 1]; second term corresponds to scalar in

decomposition of antiflavour

• [3, 0; 3; 0]→ [3; 3; 0] + [2; 2; 0] + [1; 1; 0] + [0; 0; 0]; last term is invariant

in Higgsed flavour, previous one is scalars in decomposition of other

two flavours
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• [0, 0; 0; 3]→ [0; 0; 3]

• [2, 0; 2; 2]→ [2; 2; 2] + [1; 1; 2] + [0; 0; 2]

• [0, 2; 4; 1]→ [0; 4; 1] + [1; 3; 1] + [2; 2; 1]

• [0, 1; 5; 2]→ [0; 4; 2] + [1; 3; 2]

• [0, 0; 6; 0]→ [0; 4; 0]

• [0, 0; 9; 3]→ [0; 6; 3]

• [0, 0; 18; 6]→ [0; 12; 6] (relation)

The first U(1) (the second term) gives the overall power of the ti fugacities,

and the SU(2) (the first term) their breakdown into t1 and t2 powers; the

second U(1) (the last term) gives the power of u. F4 only has one type of

fundamental, so we must incorporate the u fugacity into the ti; we relabel

u to tNf (here t3). Summing terms with the same sum of the two U(1)

charges into SU(3)× U(1) representations, one obtains:

• [1; 1; 1] + [2; 2; 0] + [0; 0; 2]→ [2, 0; 2]

• [3; 3; 0] + [0; 0; 3] + [1; 1; 2] + [2; 2; 1]→ [3, 0; 3]

• [2; 2; 2] + [1; 3; 1] + [0; 4; 0]→ [0, 2; 4]

• [0; 4; 1] + [1; 3; 2]→ [0, 1; 5]

• [0; 4; 2]→ [0, 0; 6]

• [0; 6; 3]→ [0; 0; 9]

• [0; 12; 6]→ [0; 0; 18] (relation)

These are the same invariants and relations that occur in the F4 theory with

3 flavours, as expected.

In the (2,2) case, we Higgs on one of the antiflavours and decompose the

second SU(2)× U(1) to U(1):

• [1; 1; 1; 1] → [1; 1; 1] + [1; 1; 0]; second term is scalar in decomposition

of remaining antiflavour

• [3; 3; 0; 0]→ [3; 3; 0]
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• [0; 0; 3; 3]→ [0; 0; 3] + [0; 0; 2] + [0; 0; 1] + [0; 0; 0]; last term is invariant

in Higgsed antiflavour, previous one is scalars in decomposition of

flavours

• [2; 2; 2; 2]→ [2; 2; 2] + [2; 2; 1] + [2; 2; 0]

• [0; 4; 1; 1]→ [0; 4; 1] + [0; 4; 0]

• [1; 1; 0; 4]→ [1; 1; 2]

• [1; 3; 1; 3]→ [1; 3; 2] + [1; 3; 1]

• [0; 4; 0; 4]→ [0; 4; 2]

• [0; 6; 0; 6]→ [0; 6; 3]

• [0; 12; 0; 12]→ [0; 12; 6] (relation)

Since these are the same as in the Higgsing of the (3, 1) case on one of the

3 flavours, they again recombine to form the same invariants and relations

as in the F4 theory with 3 flavours, as required.

When considering higher (total) numbers of flavours, unfortunately be-

cause of memory and processor constraints we were unable to calculate

Hilbert series, even the unrefined cases, for any of the cases with 5 total

flavours or more, i.e. any non-complete intersections, unlike in the case of

B3 with one spinor and up to 7 vectors. We do have the unrefined series for

F4 with 4 flavours, but not the refined series.

We will now move on to the case of Higgsing on more than one (anti)flavour.

Recall that the residual gauge group is D4. The refined Hilbert series for

the case with no antiflavours are as follows:

PL(g(3,0,E6)(t, u)) = [3, 0]t3 + [0, 0]t6

PL(g(4,0,E6)(t, u)) = [3, 0, 0]t3 + [0, 0, 2]t6 + [0, 0, 0]t12 − [0, 0, 0]t24
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and when there are antiflavours:

PL(g(2,1,E6)(t, u)) = [1]tu+ [3]t3 + [0]u3 + [2]t2u2 + [0]t4u

PL(g(3,1,E6)(t, u)) = [1, 0]tu+ [3, 0]t3 + [0, 0]u3 + [2, 0]t2u2 + [0, 2]t4u

+[0, 1]t5u2 + [0, 0]t6 + [0, 0]t9u3 − [0, 0]t18u6

PL(g(2,2,E6)(t, u)) = [1; 1]tu+ [3; 0]t3 + [0; 3]u3 + [2; 2]t2u2 + [0; 1]t4u

+[1; 0]tu4 + [1; 1]t3u3 + [0; 0]t4u4 + [0; 0]t6u6 − [0; 0]t12u12

Higgsing the (3,0) case on two flavours, the invariants at order 3 give the 4

invariants of the Higgsed flavours, 3 scalars corresponding to the reduction

of the remaining flavour to a vector, a spinor, a conjugate spinor and three

scalars, two invariants at order 2 (t21t2 and t21t3 in the original theory) and

one at order 3 (t31 which remains unchanged). That at order 6, t21t
2
2t

2
3, reduces

to t21, another invariant at order 2, giving 3 in total, along with 1 at order 3.

This is as in the D4 theory with one flavour of (vector+spinor+conjugate

spinor).

Higgsing the (2,1) case on the two flavours, we get the 4 invariants of

the Higgsed flavours from the [3]t3 term, two scalars from the [1]tu term

(remember u is the fugacity we are keeping, though the SU(2) Dynkin label

relates to t) and one from [0]t4u giving 3 in total, 3 invariants at order 2

from [2]t2u2 and one at order 3 from [0]u3, again as in the D4 theory with

one flavour of V+S+C.

Higgsing the (2,1) case on one flavour and one antiflavour, we get the four

invariants of the Higgsed flavours one each from the first four terms, three

scalars from the first, second and fourth terms, three invariants of order 2

from the second, fourth and fifth terms and one invariant of order 3 from

the second term, again as in the D4 theory with one flavour of V+S+C.

We will not show the various Higgsings of the three E6 theories with

4 total flavours, but they all give the 4 invariants of the two Higgsed

(anti)flavours and the 6 scalars from the decomposition of the two remain-

ing (anti)flavours, and the 9 invariants at order 2, 8 at order 3, 3 at order

4 and one at order 6 and the relation at order 12, which are the same as in

the D4 theory with two flavours of V+S+C, as required.

We will now consider reversing the process and un-Higgsing on F4 series.

Reverting temporarily back to the case with exactly one antiflavour, we
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recall that in the non-complete intersection case of B3 with one spinor and

Nv ≥ 5 vectors, the power of (1− t2) (where t is the vector fugacity) is not

the same as that in the G2 series with Nv fundamentals, but rather that of

(1 − t) goes as the dimension of the quadratic invariant [2, . . .] in SU(Nv)

and that of (1+ t) goes as 6Nv−15 for Nv ≥ 5 (as far as we know, i.e. up to

7 vectors). Therefore by analogy we do not expect the powers, of (1− t2u2),

(1− t3), (1− t4u), (1− t5u2) and 1− t6, to be the same in the E6 series with

one antiflavour (although that of (1− t3u2) in the B3 series is the same as

that of (1− t3) in the G2 series).

We know, however, that they are at least as high, because after removal

of the (1− u3) and (1− tu)Nf factors corresponding to the invariant in the

Higgsed antiflavour and the scalars resulting from the decomposition of the

Nf fundamentals under F4, and setting u to 1, the Hilbert series are the

same (in their lowest terms).

Assuming that they are the same, as our lower bound, we see therefore

that the degree of the numerator in t, the flavour fugacity, of the E6 unre-

fined Hilbert series with 4 flavours and 1 antiflavour is at least 84, which is

the degree of the numerator of the unrefined series for F4 flavours; the four

extra powers coming from the (1 − tu)4 in the denominator are cancelled

out by the four extra degrees of freedom which become scalars under the

decomposition. As for the degree in u, we have, again as a lower bound,

1.3+4.1+10.2+16.0+14.1+8.2+4.0−1.27 = 30. As for the B3 case with

one spinor, however, we do not expect to be able to do the un-Higgsing.

We will now return to un-Higgsing of F4 theories to E6 theories with only

one type of fundamental field, WLOG flavours. Recall that for Higgsing E6

withNf flavours on one flavour, there is one cubic invariant from the Higgsed

flavour and one scalar from the decomposition of each of the remaining

flavours, and the refined series for F4 are as follows:

PL(g(1,F4)(t)) = t2 + t3

PL(g(2,F4)(t)) = [2]t2 + [3]t3 + [0]t4

PL(g(3,F4)(t)) = [2, 0]t2 + [3, 0]t3 + [0, 2]t4 + [0, 1]t5 + [0, 0]t6 + [0, 0]t9 − [0, 0]t18

In the 1-flavour (of F4) case, the invariant from the Higgsed flavour, the

scalar and the two invariants assemble into a [3] of SU(2) at order 3, as for E6

with 2 flavours; in the 2-flavour case, the invariant from the Higgsed flavour
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is in the [0;0] representation of SU(2)×U(1) and the scalars are in [1;1] and

these along with the quadratic assemble into a [3,0;3] of SU(3)×U(1), with

the [0;4] becoming a [0,0;6], as for E6 with 3 flavours. In the 3-flavour case,

we have the invariant from the Higgsed flavour in [0,0;0] and the scalars in

[1,0;1]; assembling them into SU(4)× U(1) representations, we have

• [0, 0; 0] + [1, 0; 1] + [2, 0; 2] + [3, 0; 3]→ [3, 0, 0; 3]

• [0, 2; 4] + [0, 1; 5] + [0, 0; 6]→ [0, 0, 2; 6]

• [0, 0; 9]→ [0, 0, 0; 12]

• [0, 0; 18]→ [0, 0, 0; 24] (relation)

These are as in the E6 theory with 4 flavours, as required.

For us to be able to un-Higgs the 4-flavour F4 case to E6 with 5 flavours,

we would need to know the 4-flavour F4 Hilbert series in its refined form,

which we are not close to at the moment (the numerator has degree 216,

or 54 in each flavour fugacity). We could try to derive this latter series by

un-Higgsing the D4 series with 3 flavours of V+S+C, which as things stand

we would have to obtain itself by un-Higgsing the A2 series with 6 flavours,

identifying quark and antiquark fugacities and then the flavours in groups

of 3.

Un-higgsing to the case of E6 with Nf ≥ 3 or more flavours and 2 an-

tiflavours would have to start from D4 with Nf flavours of V+S+C and

would face the same problems as with obtaining E6 Hilbert series with Nf

flavours and one antiflavour from those of F4 with Nf flavours.

5.6.5 E7 gauge group

We recall that E7 is Higgsed by one fundamental to E6, with any remaining

fundamentals being decomposed to a fundamental 27, an antifundamental

2̄7 and two scalars. Recall the E7 refined series:

PL(g(1,E7)) = t4

PL(g(2,E7)) = [0]t2 + [4]t4 + [0]t6

PL(g(3,E7)) = [0, 1]t2 + [4, 0]t4 + [0, 3]t6 + [2, 0]t8 + [0, 0]t12 + [0, 0]t18 − [0, 0]t36
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We can write the PL in the 2-flavour case in terms of distinct fugacities t1,

t2 as follows:

PL(g(2,E7)) = t1t2 + t41 + t31t2 + t21t
2
2 + t1t

3
2 + t42 + t31t

3
2

Higgsing this on t2 gives the invariant in the Higgsed flavour, two scalars

resulting from the decomposition of the remaining flavour and one invariant

at order 2, two at order 3 and one at order 4.

We will again use the SU(3)× U(1) notation for the 3-flavour case:

• [0, 1; 2] → [0; 2] + [1; 1]; second term is one scalar for each of flavours

1 and 2

• [4, 0; 4]→ [4; 4] + [3; 3] + [2; 2] + [1; 1] + [0; 0]; last term is invariant in

Higgsed flavour 3, previous term is other scalar for each of flavours 1

and 2

• [0, 3; 6]→ [0; 6] + [1; 5] + [2; 4] + [3; 3]

• [2, 0; 8]→ [2; 6] + [1; 5] + [0; 4]

• [0, 0; 12]→ [0; 8]

• [0, 0; 18]→ [0; 12]

• [0, 0; 36]→ [0; 24] (relation)

Setting u = t in the E6 series with Nf = Na, we get the following series:

PL(g(1,1,E6)(t, t)) = t2 + 2t3 + t4

PL(g(2,2,E6)(t, t)) = ([2] + [0])t2 + 2[3]t3 + ([4] + [2] + [0])t4 + 2[1]t5

+([2] + [0])t6 + [0]t8 + [0]t12 − [0]t24

We see that the series resulting from Higgsing of E7 series with 2 and 3

flavours on one flavour are the same as these, as required.

We will again Higgs the series for 3 flavours on 2 of those flavours, where

the residual gauge group is D4:

• The [0,1] term gives rise to one invariant of the Higgsed flavours (from

t2t3) and two scalars (from t1t2 and t1t3).
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• The [4,0] term gives five more invariants of the Higgsed flavours, four

more scalars, three invariants at order 2 in t1, two at order 3 and one

at order 4.

• The [0,3] term, which is the 3rd symmetric power of (t1t2 + t1t3 +

t2t3), gives rise to one invariant of the Higgsed flavours, two further

scalars, three invariants at order 2 in t1 and four invariants at order 3.

This completes the 7 invariants on the two Higgsed flavours and the

8 scalars from the decomposition of the remaining 56 of E7 into two

(vector+scalar+conjugate spinor) flavours of D4 and eight scalars.

• The [2,0] term gives rise to 3 invariants at order 2, 2 at order 3 and

one at order 4.

• The [0,0] term at order 12 gives rise to one invariant at order 4, that

at order 18 gives one at order 6 and the relation at order 36 gives a

relation at order 12. In total at orders 2, 3 and 4 we get 9, 8 and

3 invariants, as in the D4 theory with two flavours of V+S+C, as

required.

Considering un-Higgsing on one flavour from E6 with (Nf , Nf ) (they must

be equal) to E7 with Nf + 1 flavours, there is one (quartic) invariant in the

Higgsed flavour and 2Nf scalars from the decomposition of the remaining

flavours under E6. In the (1,1) case, 1+t+t2+t3+t4 from the PL augmented

by the invariant and scalars assemble to give a [4] at order t4, and the extra

terms t + t3 give [0] at orders t2 and t6 as required for E7 with 2 flavours.

In the (2,2) case, the invariant forms a [0] at order 0 and the four scalars

two [1]s at order 1, so we have:

• [0; 0] + [1; 1] + [2; 2] + [3; 3] + [4; 4]→ [4, 0; 4]

• [1; 1] + [0; 2]→ [0, 1; 2]

• [3; 3] + [2; 4] + [1; 5] + [0; 6]→ [0, 3; 6]

• [0; 4] + [1; 5] + [2; 6]→ [2, 0; 8]

• [0; 8]→ [0; 12]

• [0; 12]→ [0; 18]
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• [0; 24]→ [0; 36] (relation)

These are as in the E7 theory with 3 flavours, as required.

When going to higher number of flavours, for which we know the degree

of the numerator is at least 264 even in the unrefined series (and 1320,

330 in each flavour, in the refined one!), there is also the issue of obtaining

the E6 series for (Nf , Nf ) specifically, rather than some other combination

of 2Nf total flavours, for Nf ≥ 3, since the Higgsing process on E6 with

arbitrary (Nf , Na) leaves no trace of how many of the original fields were

fundamentals and how many antifundamentals, since they both decompose

to the same F4 fundamental under Higgsing on one (anti)flavour, and so on

etc.

We will not discuss the un-Higgsing on two flavours from D4 up to E7

here.

5.6.6 F4 gauge group

We recall that F4 is Higgsed by one fundamental to D4, with any remaining

fundamentals being decomposed to a vector, a spinor, a conjugate spinor

and two scalars. Recall the F4 refined series:

PL(g(1,F4)(t)) = t2 + t3

PL(g(2,F4)(t)) = [2]t2 + [3]t3 + [0]t4

PL(g(3,F4)(t)) = [2, 0]t2 + [3, 0]t3 + [0, 2]t4 + [0, 1]t5 + [0, 0]t6 + [0, 0]t9 − [0, 0]t18

We can write the PL in the 2-flavour case in terms of distinct fugacities t1,

t2 as follows:

PL(g(2,F4)) = t21 + t1t2 + t22 + t31 + t21t2 + t1t
2
2 + t32 + t21t

2
2

Higgsing this on t2 gives the invariant in the Higgsed flavour, two scalars

resulting from the decomposition of the remaining flavour and three invari-

ants at order 2 and one at order 3, as in the D4 theory with one flavour of

V+S+C as required.

As when Higgsing the (3,0) and (3,1) cases for E6 gauge group and the

3-flavour case for E7, we will use the SU(3)× U(1) notation:

• [2, 0; 2] → [2; 2] + [1; 1] + [0; 0]; last term is quadratic invariant in
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Higgsed flavour 3, second term is one scalar for each of flavours 1 and

2

• [3, 0; 3] → [3; 3] + [2; 2] + [1; 1] + [0; 0]; last term is cubic invariant in

Higgsed flavour 3, previous term is the other scalar for each of flavours

1 and 2

• [0, 2; 4]→ [0; 4] + [1; 3] + [2; 2]

• [0, 1; 5]→ [0; 4] + [1; 3]

• [0, 0; 6]→ [0; 4]

• [0, 0; 9]→ [0; 6]

• [0, 0; 18]→ [0; 12] (relation)

We obtain the two invariants of the Higgsed flavour, two scalars for each of

the remaining flavours, nine invariants at order 2 transforming in three [2]

representations of SU(2), eight at order 3 in one [3] and two [1]s and three

at order 4 and one at order 6 all transforming in [0]s, plus one relation at

order 12 also transforming in a [0] of SU(2), as required.

Higgsing on two flavours, the reduced gauge group is A2 = SU(3). We

get the 8 invariants of the two Higgsed flavours (3 quadratic, 4 cubic, one

quartic), 8 scalars from the decomposition of the remaining flavour to three

(3 + 3̄) pairs and eight scalars, and the nine quadratic and two cubic (iden-

tifying quark and antiquark fugacities ti and ui) invariants and one relation

at order 6, as required.

We cannot demonstrate Higgsing of F4 theories with higher numbers of

flavours, because we have not been able to compute the refined series, which

has a numerator of degree 216 (54 in each flavour) in the 4-flavour case.

We will now consider un-Higgsing on one flavour from D4 with Nf flavours

of V+S+C up to F4 with Nf + 1 flavours. Recall the refined series for D4:

PL(g(1,1,1,D4)(t, t, t)) = 3t2 + t3

PL(g(2,2,2,D4)(t, t, t)) = 3[2]t2 + ([3] + 2[1])t3 + 3[0]t4 + [0]t6 − [0]t12

There are two invariants from the Higgsed flavour of F4 and two scalars from

each of the Nf remaining flavours. For Nf = 1, we have 2 + 2t + 3t2 + t3;
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1 + t+ t2 gives [2]t2, 1 + t+ t2 + t3 gives [3]t3, and t2 gives [0]t4, as required

for F4 with 2 flavours. For Nf = 2 we have two scalars in the [0] of SU(2)

and four scalars forming 2[1], so we have:

• [0; 0] + [1; 1] + [2; 2]→ [2, 0; 2]

• [0; 0] + [1; 1] + [2; 2] + [3; 3]→ [3, 0; 3]

• [2; 2] + [1; 3] + [0; 4]→ [0, 2; 4]

• [1; 3] + [0; 4]→ [0, 1; 5]

• [0; 4]→ [0, 0; 6]

• [0; 6]→ [0, 0; 9]

• [0; 12]→ [0, 0; 18] (relation)

This is as for F4 with 3 flavours, as required.

Again, un-Higgsing D4 with Nf ≥ 3 flavours of V+S+C to F4 with Nf +1

flavours requires knowledge of the refined series in the D4 case. This should

be obtainable by un-Higgsing A2 with 3(Nf−1) flavours, indeed the Nf = 3

case should be obtainable via Mathematica since it is the result of Higgsing

the F4 theory with 4 flavours and is therefore necessarily less complex, but

has not been found so far.

5.6.7 G2 gauge group

When the theory with Nf flavours is Higgsed on one of them, the gauge

group is broken to A2 = SU(3) and the remaining Nf − 1 flavours each

decompose into one fundamental of A2, one antifundamental and one scalar.

We begin by writing the refined series for up to 4 flavours in terms of

U(Nf ) fugacities ti:

PL(g(1,G2)(t)) = t2

PL(g(2,G2)(t)) = t21 + t1t2 + t22

PL(g(3,G2)(t)) = t21 + t1t2 + t1t3 + t22 + t2t3 + t23 + t1t2t3

PL(g(4,G2)(t)) = (
∑

1≤i≤j≤4

titj) + t1t2t3 + t1t2t4 + t1t3t4 + t2t3t4 + t1t2t3t4

−t21t22t23t24
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By inspection, Higgsing on tNf gives in each case one invariant in the Hig-

gsed flavour, (Nf − 1) scalars resulting from the decomposition of the other

flavours and (Nf − 1)2 invariants at order 2, and in the case Nf = 4,

2 = 2(
Nf−1

3 ) invariants at order 3 and one relation at order 6, as in accor-

dance with the A2 series with Nf − 1 flavours (where each flavour consists

of a quark and an antiquark) identifying each quark fugacity ti with the

corresponding antiquark fugacity ui.

5.7 Adjoint SQCD

We will just provide a brief summary of Hilbert series of exceptional gauge

groups with adjoint matter, and SO(N) groups (for N ≥ 7) with spinor

matter. We were unable to obtain any series through Molien-Weyl integra-

tion in Mathematica.

As we know, the Hilbert series of any group with one adjoint and no other

matter is given by
∏rank(G)
i=1 (1−sdi)−1, where di is the dimension of the i-th

Casimir invariant of the group. Adjoint matter therefore always Higgses

a group down to its maximal torus U(1)rank(G), generated by the Cartan

subalgebra of its corresponding Lie algebra. (This is similar to the effect

that happens in non-SQCD SUSY gauge theories where the scalars in the

vector multiplets, rather than the hypermultiplets or chiral multiplets, are

given VEVs; the group is broken to U(1)rank(G) there too, and this is the

origin of the term ‘Coulomb branch’ for this branch.)

B3 with one spinor and one adjoint gives a complete intersection:

1− t8s18

(1− t2)(1− s2)(1− s4)(1− s6)(1− t2s2)(1− t2s4)(1− t2s6)(1− t4s6)(1− t4s9)

We can use the Higgsing: the spinor Higgses B3 to G2, under which the

adjoint of B3 breaks down into an adjoint and a fundamental of G2. The

Hilbert series of G2 with one fundamental and one adjoint is a complete

intersection [3]:

1− s12t6

(1− s2)(1− s6)(1− s3t)(1− t2)(1− s2t2)(1− s4t2)(1− s3t3)(1− s6t3)
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We see that, removing the (1 − t2) term from the denominator of the B3

series and setting t to 1, we get the same series as if we set t = s in the

G2 series. We must identify t and s because the adjoint of B3 maps to the

adjoint, counted by s, and the fundamental, counted by t, of G2.

By triality, the Hilbert series of D4 with one spinor (of either type) and

one adjoint is freely generated, and that of two spinors of the same type

and one adjoint is a complete intersection. However, that of one spinor of

each type and one adjoint is a non-complete intersection. We can see this

by Higgsing on, say, the spinor; the adjoint decomposes to the adjoint and

vector of B3 and the conjugate spinor to a spinor of B3. Higgsing on this

second spinor breaks the adjoint to the adjoint and fundamental of G2 and

the vector becomes a fundamental; this leads to the Hilbert series for G2

with two fundamentals and one adjoint, which we know to be a non-complete

intersection.

All other cases of Hilbert series of exceptional groups with one adjoint

and some other matter, or of SO(N) groups with spinor matter, are non-

complete intersections. We show this again by Higgsing for B4 with one

adjoint and one spinor; the spinor Higgses B4 to B3 and the adjoint breaks

up into an adjoint, a vector and a spinor of B3, and we saw earlier that this

gives a non-complete intersection.

5.8 Conclusions

In this section of this thesis we have achieved and shown the following:

• G2 theories with 1, 2 and 3 flavours have a moduli space which is

freely generated, for 4 flavours it is a complete intersection, and for

5 or more flavours it is a non-complete intersection. The invariants,

relations and higher syzygies agree with those found in [4] up to order

11 but not at orders 12 or 13, which is the highest order reached in

that paper.

• F4 theories with 1 and 2 flavours have a moduli space which is freely

generated, for 3 flavours it is a complete intersection, and for 4 or

more flavours it is a non-complete intersection.

• E6 theories with 1, 2 and 3 total flavours (flavours plus antiflavours)

have a moduli space which is freely generated, for 4 total flavours it
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is a complete intersection, and for 5 or more total flavours it is a non-

complete intersection. This time, the invariants, relations and higher

syzygies found in the cases with no antiflavours agree with those found

in [4] all the way up to order 18, the highest found in that paper.

• E7 theories with 1 and 2 flavours have a moduli space which is freely

generated, for 3 flavours it is a complete intersection and for 4 or

more flavours it is a non-complete intersection. Again the invariants,

relations and higher syzygies agree with those found in [4] up to order

18. (Note: these results are known except for F4 with 4 flavours, some

of the higher flavour numbers of G2 and the invariants not mentioned

as being in [4].)

• These results agree with the formula for the ‘critical’ number of (total)

flavours at which the moduli space is a complete intersection (and

freely generated for fewer flavours and a non-complete intersection for

more), which is, except for the cases of SO(N) gauge groups with

matter in the vector representation (where it is N), given by

N crit
f =

I2(Ad)

I2(Rmat)

where I2(R) is the second Dynkin index of a specified representation

R, Ad is the adjoint representation of the gauge group and Rmat is

the representation in which the matter flavours transform. The second

Dynkin index of the adjoint representation is equal to twice the dual

Coxeter number of the group.

• The invariants found for F4 with Nf flavours agree with those found

for E6 with Nf flavours and one antiflavour, excluding the one at

order tu, summed over the number of antiflavour fields (i.e. setting

the antiflavour fugacity u to 1).

• The same relationship exists between G2 and B3 with one spinor.

We associate this relationship, in both cases, to the fact that the

antifundamental of E6, and the spinor of B3, Higgs the group down

to F4 and G2 respectively.

• However, while the invariants (summed over the number of antiflavour
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or spinor fields) are the same, we cannot use this property to un-Higgs

the simpler theory to the more complex one, because the powers of

(1− t2) in the denominator are not the same in the B3 and G2 cases

and we expect similar discrepancies between the E6 and F4 series.

• We found the same relationship between D4 with Nf flavours consist-

ing of a vector, a spinor and a conjugate spinor, and E6 Higgsed on

Nf flavours and 2 antiflavours.

• We believe that we found all the primitive invariants of F4; the highest

invariant that seems to be primitive is the 18-box invariant [2, . . . , 116, . . .]

in the notation of Section 5.4.1.

• We also went to order 24 (from 13 in [4]) for G2, 21 (from 18) for E6

(and the same for the case with antiflavours) and 20 (from 18) for E7,

and did up to 21 for B3 with one spinor and any number of vectors,

19 for D4 with V+S+C flavours and 21 for E6 with 2 antiflavours.

The formulae for the Higgsing relations between (partially (un)refined)

Hilbert series are as follows:

g(G2,Nf )(t) = lim
u→1

(1− u2)g(B3,Nf ,1)(t, u)

= lim
u,v→1

(1− u2)(1− v2)(1− tuv)Nf g(D4,Nf ,1,1)(t, u, v)

g(B3,Ns,0)(t) = lim
u→1

(1− u2)g(D4,Nf ,1,0)(t, u)

g(F4,Nf )(t) = lim
u→1

(1− u3)(1− tu)Nf g(E6,Nf ,1)(t, u)

g(D4,Nf ,Nf ,Nf )(t, t, t) = lim
u→1

(1− u3)4(1− tu)2Nf (1− tu4)Nf g(E6,Nf ,2)(t, u)

5.9 Discussion and outlook

Because of memory constraints, we were unable to compute the Hilbert

series, even unrefined, for E6 with more than 4 total flavours, E7 with more

than 3 flavours, F4 with more than 4 flavours (we were lucky to be able to

calculate it for 4 flavours!), B3 with 1 spinor and 8 or more vectors, D4 with

more than 7 total flavours of matter not all of the same type (vector, spinor

and conjugate spinor) and D5 with more than 5 total flavours of spinor

matter.
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There are two methods we could try to overcome these problems. One

way, as we have seen, is to obtain (refined) Hilbert series by un-Higgsing,

as we have done for the freely generated and complete intersection cases.

However, this method has limitations. Firstly, it requires the refined series of

the ‘child’ theory, which is often itself difficult to obtain. Secondly, in cases

where the parent theory has more than one type of basic field that maps

to the same field in the child theory, added complications arise, especially

when there is only one of one particular type of field in the parent theory,

such as 1 spinor of B3 or 1 antiflavour of E6.

An alternative method is to try to find an alternative picture of the the-

ory with the same global symmetry group but a different gauge symmetry,

a phenomenon known as duality. Duality occurs in many other areas of

physics, such as T-duality in string theory relating two circular or toroidal

compactifications where the radii satisfy R′ = α′

R , and also in string the-

ory S-duality between strong and weak coupling and U-duality which is the

combination of these two, and the general gauge-gravity duality, of which

the AdS/CFT correspondence is the most important case, of a gauge theory

in d dimensions giving another, usually simpler, picture of a gravity theory

in d+1 dimensions. The dualities considered here, though, are between two

gauge theories, usually considered as an electric-magnetic duality, like that

in Maxwell’s theory.

Though it has not been relevant to much of the discussion in this paper,

fields in a supersymmetric gauge theory have a charge under the so-called

R-symmetry, or the R-charge. The R-symmetry group is the subgroup of

the internal symmetry group that does not commute with the supercharges,

i.e. for U(1) R-symmetry group, [R,Qα] = Qα, [R, Q̃α̇] = −Q̃α̇. The R-

symmetry group is determined by N and by the number of dimensions, e.g.

for 4 dimensions it is (S)U(N ) (special for N = 4) but for 6 dimensions

it is Sp(NL) × Sp(NR), because there are two types of (symplectic Weyl-

Majorana) supercharge. The R-charge is usually used to refer to one specific

U(1) subgroup of the whole R-symmetry.

In simple SQCD theories with only one type of field (or two types which

are conjugate to each other), the R-charge of a matter field is given by,
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where Ri is the representation in which the i-th matter field transforms:

R(Q) =
(
∑

i I
2(Ri))− I2(Ad)∑

i I
2(Ri)

In the case of one (or two conjugate) types of field, all the Ri are the same;

however if the fields have the same invariants, e.g. when both the vector and

(conjugate) spinor have a quadratic invariant, this formula is used for more

than one type of field, as in [4] for D8 = SO(16). (In brane tiling theories

there may be more than one U(1) subgroup of the R-symmetry group, so

determining which combination is the R-charge may involve a complicated

minimization procedure. In the theories discussed in [42], a toric variety of

dimension 3 always has 3 U(1) charges from the metric, one is the R-charge

and the other two are the other mesonic charges.)

If there is a superpotential, it must have R-charge 2, because the R-charge

of dθ is -1.

If there exists a gauge-invariant quantity with R-charge less than 2/3, the

theory must have a dual [4].

Seiberg’s original formulation of his duality, as in [77], relates SQCD

with Nf flavours of matter in the fundamental Q and antifundamental Q̃

of SU(Nc), with the fundamentals transforming in the fundamental of one

SU(Nf ) and as a singlet of another and the antifundamentals as a singlet

of the first and the antifundamental of the second, for 3
2Nc ≤ Nf ≤ 3Nc,

to a similar theory with Nf flavours of matter in the fundamental q and

antifundamental q̃ of SU(Nf −Nc), a meson as a basic field transforming in

the antifundamental of the first SU(Nf ) and the fundamental of the second

(rather than as a gauge-invariant combination which is schematically qq̃),

and a superpotential W ∼Mqq̃.

Seiberg-like dualities for exceptional gauge groups are outlined in [34].

Some of the dualities seem incredible, because they are between non-chiral

SO(N) theories (for 7 ≤ N ≤ 10) and chiral SU(N − 5) ones, but the

resemblances are demonstrated, although as with most dualities they are

not always rigorously defined. Their relevance to exceptional group theories

is that exceptional groups can be Higgsed, including by the partial Higgsing

on only one of their invariants, to SO(N) groups with N between 7 and 11,

and SO(7) is also Higgsed by a spinor to G2.

In brane-tiling theories, Seiberg duality is the same as toric duality, where
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one brane tiling is ‘dualized’ by moving the nodes of another face and cre-

ating new lines and faces to give another tiling that gives the same toric

diagram when the forward algorithm is applied. As with (un)Higgsing,

though, non-brane-tiling cases are considerably more complicated both to

formulate and to understand.

So far, the duality between two theories related by Seiberg or other duality

is not manifest in the Hilbert series, at least not when calculated classically;

it is stated in [25] that the duality exchanges the classical and quantum

branches, so unless there is a way of calculating quantum moduli spaces

for the dual theory, it is difficult to use. Such a method does exist for

instanton moduli spaces, where the Coulomb branch of 3d N = 2 gauge

theories on quiver gauge theories specified by quivers in the shape of the

extended Dynkin diagram for a given gauge group, not necessarily simply

laced, is the same as the instanton moduli space for that group, at least for

one instanton [60, 61, 62, 63].

We hope to develop these methods further and use them to calculate

Hilbert series, invariants and other properties that we have not yet been

able to do using the methods discussed in this thesis.

5.10 A sample LiE program

A sample LiE [5] program used to compute the refined Hilbert series is as

follows. This program computes the refined Hilbert series for E6 with 5

flavours and one antiflavour, using t as the fugacity for the flavours and

u for the antiflavour. (In this particular example, as in all examples with

exactly one antiflavour, there is a missing generator u3 corresponding to a

term (1− u3) in the denominator, which can be manually added in.)

on monitor

maxobjects 99999999

maxlev=21;

nf=5;

for i = 0 to maxlev do

for part row partitions(i) do

part1=null(nf);

valid=1;
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if (i<=nf) then

for j = 1 to i do part1[j]=part[j] od;

else if (part[nf+1]==0) then

for j = 1 to nf do part1[j]=part[j] od;

else valid=0;

fi;

fi;

if (valid) then

part2=null(nf-1);

for j=1 to nf-1 do part2[j]=part1[j]-part1[j+1] od;

symm=plethysm(part1,[1,0,0,0,0,0],E6);

uind=null(maxlev+1);

for k = 1 to length(symm) do

repwt=expon(symm,k);

if (repwt[2]==0) && (repwt[3]==0) && (repwt[4]==0) && (repwt[5]==0) then

uind[repwt[1]+2*repwt[6]+1]+=coef(symm,k);

fi;

od;

for j=1 to maxlev+1 do

if (uind[j]) then

print(uind[j]+" "+part2+" t^"+i+" u^"+(j-1));

fi;

od;

fi;

gcol;

fi;

od;

od;
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