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The supersymmetrlc ~ quantlzatlon formula proposed by Comtet, 

Bandrauk and Campbell Is shown to be seen as a supersymmetrIc 

counterpart of the WKB quantizatlon formula. 

I. Introduction 

In recent years, supersymmetrlc quantum mechanics [1] has attracted 

considerable attention. In particular, the supersymmetrlc WKB formula 

proposed by Comtet, Bandrauk and Campbell [2] is a sl/rprlse a/%d some- 

thing worth attending to. The formula of Comtet, Bandrauk and Campbell 

(the CBC formula in short) provides exact enerEy quantlzatlon for a 

variety of nonrelatlvlstlc systems [2,3]. 

The standard semlclasslcal WKB quantization formula, 

x 
b 

f x  {2M[E-V(x ) ] } t / 2  dx = (n+~)=5 (n=O,1,2 ) (1) 
4 

where E = V(Xa ) = V(Xb)' i s  known to y i e l d  exact energy spec t ra  f o r  a 

c e r t a i n  c lass  o f  systems prov ided tha t  ad hoc mod i f i ca t i ons  are made to 

the p o t e n t i a l  term [4 ] .  For instance, the exact energy spectrum of  the 

hydrogen atom can be obta ined from the formula (1) i f  the wel l -known 

Langer replacement, ~(~+I) + (~+~)z i s  applled. In contrast, the CBC 

formula [2], 

b 

f~ {2M[E-¢2(x)]} I/2 dx = n~h (n=0,1,2 .... ) (2) 
% 

a 
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where E=E+Eo, VCx)-Eo=¢2(x)-(h2/2Vr~)d¢/dx , and E=¢2(xa)=#2(xb) , can 

reproduce with no ad hoc modification all the exact results that have 

been obtained from the WEB formula (I) modified with the Langer-llke 

term. Despite its surprising success, it is unclear why the CBC formula 

(2) works magically well. In fact, the CBC formula has never been ~ -  

blguousl y verified. Furthermore, there is no qualitative explanation of 

the observed exactness of the formula C2). It is certainly important to 

understand the real nature of the CBC formula in relation to the 

formula. The aim of this paper is not to verify the CBC formula but to 

report our observations which might shed light on the understanding of 

the CBC formula. 

2. Transformations of Vsu-iables 

We start with the observed fact that the CBC formula (2) provides 

exact energy spectra at least for the following three systems; 

a) the one-dlmensional harmonic oscillator, 

b) the three-dlmensional harmonic oscillator, and 

c) the PSschl-Teller oscillator. 

For convenience, let us call these three the elementary systems. 

Our first observation is that any of the examples that have been 

reported exactly soluble via the CBC formula is reducible to one of the 

three elementary systems by a change of variable. The CBC action (2), 

if the variable x is changed into y=fCx), is written as 

W = ~v b {2HIE - # a C x ) ] / [ f ' C x ) ] Z } t / a  dy. C3) 
a 

I f  the s u p e r p o t e n t i a l  # (x )  has the form, CaCx)/f 'aCx)=C + Z(Y) ,  where C 

i s  a cons tan t  and Z(Y) i s  a we l l -behaved f u n c t i o n  o f  y, then the CBC 

formula can be put into the form 

W = ~v b {2M[~ - 2(y)]}I/2 dy, (4) 
a 

where ~ =C-C, ~2(y)=xCy)+C-E/f'z(y) and C is an adjustable constant. 

What we are claiming is that by an appropriate change of variable the 

transformed squared superpotential ~2Cy) of (4) can be put into one of 

the following forms; 

Ca) Z C y  ) = ~ y2 C-= ~ y < ®) 

(b)  Z C y )  = ~ y2 + ~y-Z + • (0 ~ y < =) 

(c) ZCy) ~C~-I 2 2 = )sec Cay)+~C~-l)csc Cay). CO ~ y ~ ~la). 
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For instance, the modified Morse potential, V(x)=Ae -zax - Be -ax, has 

the superpotentlal of the form, #2(x)=Ae-2ax - [B-ah(A/2M)I/2]e -ax - Eo, 

where E ° is the ground state energy of the Morse system. If we let 

e-aX = y2 (0 s y < ~), then we have ~ = C + 4a'2[B - ah(2m) "I/2] and 

~z=(4A/a2)y2 - (4E/a2)y -2 + C. Thus the CBC action for the Morse system 

is transformed into the CBC action for the radial harmonic oscillator. 

Since the solution of the radial harmonic oscillator is already known, 

the energy spectrum of the Morse system is determined by comparison of 

the constants involved. Similarly, the actions for the Kepler problem 

(in two as well as three dimensions), the charged particle in a uniform 

magnetic field, the Dirac-Coulomb problem among others can be reduced 

to the action of the radial harmonic oscillator. The actions for the 

Rosen-Morse potential, the Hulth~n potential (including the Yukawa 

potential limit), the Kepler problem in a hypersphere and many others 

are reducible to that of the PSschl-Teller potential. It is instructive 

to mention that these examples are soluble not only by the standard 

Schr~dinger methods but also by the algebraic methods [S] and the path 

integral methods [6]. 

3. Conversion of ~ into CBC 

Since the three elementary systems can be solved exactly and many of 

the Integrable examples are reducible to the elementary systems, the 

exactness of the CBC formula for a wide class of examples is no longer 

a mystery. For the one-dlmensional harmonic oscillator, in particular, 

the WKB formula can be reduced to the form of the CBC formula. Verifi- 

cation of this is rather simple and omitted here. What remains to be 

clarified is why the CBC formula is exact for the last two elementary 

systems. 

Our next observation provides no solution for the remainlnE mystery, 

but presents a curious fact that the WKB formula with the LanEer-llke 

modification can be converted to the CBC formula by 

(a) the replacement, n + n - I/2, in the case of the one-dimenslonal 

harmonic oscillator, 

(b) the combined replacements, n + n - 1/2 and ~ + ~ + I/2, in the 

case of the radial harmonic oscillator, and 

(c) the replacement, n ÷ n - I/2, combined with the changes of para- 

meters, say ~+ ~ + I/2 and I + A + I/2, in the case of the 

PSschl-Teller oscillator. 
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Let us examine consequences of the above replacements by rewriting 

the WKB formula in the form, 

t 
~[ [ ( ~ 2 ) ~  2 - v°~f(x) + E.]dt = (~ + I/2)~h, (s) 

where Veff(x) is the effective potential modified with the Langer-llke 

term. Upon replacement, the equation (S) changes into 

t 

[~ [ c ~ 2 ) i "  - %.(~) + ~o ]d t  = n . h ,  C8) J a  

where En = En_I/2 and Veff(^ x) is the transformed effective potential 

The time integral over a half period can be converted into the space 

^ N ^ 
E =E +E 
n n 0 

i n t e g r a l  o v e r  t h e  r ange  (Xa, Xb) be tween  the  two t u r n i n g  p o i n t s ,  

N 

~b {2M[~n_Oeff(x ) ]}t/2 dx = n~h. 
a 

Now we shall show that for the three elementary systems, 

$eff (X)=•e(X) + ~0' SO that 

(7) 

and 

En-Veff(x)=En - @2(x), (8) 

with which (7) coincides with the CBC formula (2). 

(a) The One-Dimensional Harmonic Oscillator: 

In this case, Vefr(X)=V(x)=@2(x)=M~2/2 and En=(n+I/2)h~. By n÷n - 1/2, 

=E =r~u and E =0. Consequently, we have E =E and VeffCx)=@2(X), 
n n-I/2 0 n n 

arrivln E at the CBC formula for the one-dimenslonal oscillator. 

(b) The Radial Harmonic Oscillator.: 

The radial potential of the harmonic oscillator in three dimensions is 

V(r)=(M~2/2)P 2 + ~(~+l)h2/(2Mr2). With the Langer modification, it 

becomes Veff(r)=(M~2/2)r2 + (~+I/2)2h2/(2Mp2). The superpotential cor- 

responding to the radial potential V(r) has the form #2(r)=(M~2/2)r2 + 

(£+l)2hm/(2Mr 2) - (~+l)h~. The energy spectrum for this oscillator is 

E =(2n+~+3/2)h~, and E =2nh~. In this case, the replacement n ÷ n - I/2 
n n 

alone does not lead us to any significant result, but if we associate 

with the above replacement another replacement, ~ ÷ ~+I/2, then we get 

n=(2n + ~ + l)h~, Eo=(~ + l)h~, and hence En = ~n -~0" Also we have 

$eff(r) = (M~2/2)r 2 + (~+l)2h2/(2Mr 2) = @2(r)+E O. Thus, we obtain the 

desired relation (8). 
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(c)  The P ~ s c h l - T e l l e r  O s c i l l a t o r :  

The P~schl-Teller potential, V(x) = Vo{~;(~-l)csc2(ax) + X(A-l)sec2(ax)} 

where V =~2h2/(2M), ~:>I, k>l, and O-<x-<T[/a, when the Langer-llke correc- 
o 

tlon is made, becomes Ill(x) = Vo{(~-I/2)2csc2(ax)+(k-I/2)2secZ(ax)}. 

With this modified potential, the WKB formula yields the exact energy 

spectrum En=Vo(2n+~+X)2, from which we obtain En=Vo(2n+~+A)2-Vo(s:+A) 2. 

The superpotentlal #(x) formed from the original potential V(x) gives 

~b2 (x) =Vo{ ~2csc2 (ax) +12sec2 (ax) } -Vo (K+I) 2. By replacements, n+ n-I/2, 

~:+~+I/2, a/%d A+A+I/2, we get F. =V (2n+~+A)2=E and V o = V (~+k) 2 =E 
n 0 n 0 O" 

Hence, En =~'n -~'0 and Veff(x)=%{~:2csc2(ax)+A2sec2(ax) }= ¢2(x)+E O. Thus, 

we see that this system satisfies the relation En-Ve£f(x) = E -¢2(x). 
n 

This observation does not immediately explain why the CBC formula is 

exact for the last two elementary systems, but is indeed interesting. 

The replacements apply not only to the WKB quantum number n but also to 

the parameters involved. Although the parameter quantization itself may 

be achieved within the scheme of dynamical symmetry [7], the 1/2 shift 

operations of quantum numbers cannot be accommodated within the conven- 

tional framework of quantum mechanics. Our observation seems to suggest 

that the CBC formula is a supersymmetric counterpart of the WKB formula 

in a broader framework where the I/2 shift operations is well defined. 

Until a logical ground for the replacement procedure is provided, the 

exactness of the CBC formula would remain as a mystery. 

I. E. Witten, Nucl. Phys. B188 (1881) 513. 

2. A. Comtet, A.D. Babdrauk and D.K. Kampbell, Phys. Lett. BISO, 159 

(198S), 

3. R. Dutt, A. Khare and U.P. Sukhatme, Phys. Lett. B181, 29S (1986); 

Am. J. Phys. SS, 163 (1988). 

4. C. Rosenzweig and J.B. Krieger, J. Math. Phys. 8, 849 (1988). 

5. L. Infeld and T. Hull, Rev. Mod. Phys. 23, 21 (1951). 

8. A. Inomata, in Path Summation: Aohievments and Gaols, eds. S. 

Lundqvlst et al. (World Scientific, 1988) p. 114. 

7. A.O. Barut, A. Inomata and R. Wilson, J. Phys. A 20, 4075 (1987) 

and 4083 (1987). 

403 


