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The supersymmetric WKB quantization formula proposed by Comtet,
Bandrauk and Campbell is shown to be seen as a supersymmetric

counterpart of the WKB quantization formula.

1. Introduction
In recent years, supersymmetric quantum mechanics (1] has attracted

considerable attention. In particular, the supersymmetric WKB formula
Proposed by Comtet, Bandrauk and Campbell [2] is a surprise and some-
thing worth attending to. The formula of Comtet, Bandrauk and Campbell
(the CBC formula in short) provides exact energy quantization for a
variety of nonrelativistic systems [2,3].

The standard semiclassical WKB quantization formula,

b4
J'b<zmu:-vtx)1}"2 dx = (n+§-)nh (n=0,1,2,...) (1)
xa
where E = V(xa) = V(xb), is known to yleld exact energy spectra for a
certain class of systems provided that ad hoc modifications are made to
the potential term [4]. For instance, the exact energy spectrum of the
hydrogen atom can be obtained from the formula (1) if the well-known
Langer replacement, £(&+1) * (£+% 2, is applied. In contrast, the CBC
formula [2],
§b
j; (2M[E-¢2(x)])1/2 dx = nth (n=0,1,2,...) (2)

X
a
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where E=E+E, V(x)-E_=¢°(x)-(h°/v2H)d¢/dx, and E=¢2(§a)=¢2(§b), can
reproduce with no ad hoc modification all the exact results that have
been obtained from the WKB formula (1) modified with the Langer-like
term. Despite its surprising success, it is unclear why the CBC formula
(2) works magically well. In fact, the CBC formula has never been unam-
biguously verified. Furthermore, there is no qualitative explanation of
the observed exactness of the formula (2). It is certainly important to
understand the real nature of the CBC formula in relation to the WKB
formula. The aim of this paper 1s not to verify the CBC formula but to
report our observations which might shed light on the understanding of
the CBC formula.

2. Transformations of Variables

We start with the observed fact that the CBC formula (2) provides
exact energy spectra at least for the following three systems;

a) the one-~dimensional harmonic oscillator,

b) the three-dimensional harmonic oscillator, and

c¢) the P8schl-Teller oscillator.
For convenience, let us call these three the elementary systems.

Our first observation is that any of the examples that have been
reported exactly soluble via the CBC formula is reducible to one of the
three elementary systems by a change of varlable. The CBC action (2),

if the variable x is changed into y=f(x), is written as

1/2

W= J’;" {2MIE - ¢%(x) 1718 ()15 172 ay. (3)
a

If the superpotential ¢(x) has the form, ¢2(x)/f’2(x]=c + x(y), where C
is a constant and x(y) is a well-behaved function of y, then the CBC

formula can be put into the form
W= j':," (2M(& - ()1} dy, (4)
a

where & =C-C, ¢2(V)=x(y)+E-E/f'2(y) and C is an adjustable constant.
What we are claiming is that by an appropriate change of variable the
transformed squared superpotential wa(y) of (4) can be put into one of

the following forms;

(a)  ¢iy) =ay® (-0 =y < w)
(B)  9°(y) =y’ + By + 7 (0=y<w
(¢)  ¢*(y) = k(k~1)sec?(ay)+r(A-1)csc>(ay). (0 sy s na).
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For instance, the modified Morse potential, V(x)=Ae *** - Be™*, has
the superpotential of the form, ¢2(x)=Ae'zax - [B-ah(A/2M)%1e™* - Eo'
vhere Eo is the ground state energy of the Morse system. If we let
e ™ = y2 (0 sy <w), then we have & = C + 42"%[B - an(2m)™?] and
¢2=(4A/a2)y2 - (4E/a?)y'2 + C. Thus the CBC action for the Morse systeﬁ
is transformed into the CBC action for the radial harmonic oscillator.
Since the solution of the radial harmonic oscillator is already known,
the energy spectrum of the Morse system is determined by comparison of
the constants involved. Similarly, the actions for the Kepler problenm
{in two as well as three dimensions), the charged particle in a uniform

magnetic field, the Dirac-Coulomb problem among others can be reduced
The actions for the

(including the Yukawa

to the action of the radial harmonic oscillator.
Rosen-Morse potential, the Hulthén potential

potential 1imit), the Kepler problem in a hypersphere and many others
are reducible to that of the Péschl-Teller potential. It is instructive
to mention that these examples are soluble not only by the standard
Schridinger methods but also by the algebraic methods [5] and the path

integral methods (6].

3. Conversion of WKB into CBC
Since the three elementary systems can be solved exactly and many of

the integrable examples are reducible to the elementary systems, the

exactness of the CBC formula for a wide class of examples is no longer
a mystery. For the one-dimensional harmonic oscillator, in particular,

the WKB formula can be reduced to the form of the CBC formula. Verifi-

cation of this is rather simple and omitted here. What remains to be

clarified is why the CBC formula is exact for the last two elementary
systems.

Our next observation provides no solution for the remaining mystery,
but presents a curious fact that the WKB formula with the Langer-like

modification can be converted to the CBC formula by
(a) the replacement, n + n ~ 1/2, in the case of the one-dimensional

harmonic oscillator,

(b) the combined replacements, n+ n - 172 and ¢ + £ + 1/2, in the
case of the radial harmonic oscillator, and

(¢) the replacement, n -+ n ~ 1/2, combined with the changes of para-

meters, say k+ k+ 1/2 and A+ A + 1/2, 1in the case of the

Pdschl-Teller oscillator.
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Let us examine consequences of the above replacements by rewriting
the WKB formula in the form,

t
L" [(w2)%® - V__(x) + Eldt = (n + 1/2)nh, (5)

a
where V;fr(X) is the effective potential modified with the Langer-like
term. Upon replacement, the equation (5) changes into

t
[>tovasd - v ) + £ Jat = nmn, (5)
ta eff n
where £ = E and V (x) is the transformed effective potential.
n n~-1/2 eff
The time integral over a half period can be converted into the space

integral over the range (§a,§b) between the two turning points,

b P 172
J;a {2M[En—Veff(x)]} dx = nmh. (7)

Now we shall show that for the three elementary systems, f;=§ +£  and
& _,2
v;rr(X)—¢ (x) + Eo’ so that

P ~ 2
En Veff(XJ=En - ¢°(x), (8)
with which (7) coincides with the CBC formula (2).

(a) The One-Dimensional Harmonic Oscillator:

In this case, V__ (x)=V(x)=¢°(x)=Mu’/2 and E =(n+1/2)hw. By n+n - 1/2,
En=Emd/2=nhw and ﬁo=0. Consequently, we have ﬁ%=§n and V;ff(x)=¢2(x),
arriving at the CBC formula for the one~dimensional oscillator.

(b) The Radial Harmonic Oscillator:

The radial potential of the harmonic oscillator in three dimensions is
V(r)=(Mw>/2)r® + &(&+1)h°/(2Mr®).  With the Langer modification, it
becomes Ve“_(r')=(Mw2/2)r2 + (2+1/2)%R%/(2Mr?%). The superpotential cor-
responding to the radial potential V(r) has the form ¢2(r)=(Mw2/2)r2 +
(+1)°n%/(2Mc®) - (&+1)hw. The energy spectrum for this oscillator 1is
En=(2n+2+3/2)hw. and En=2nhw. In this case, the replacement n + n - 1/2
alone does not lead us to any significant result, but if we associate
with the above replacement another replacement, £ - £+1/2, then we get
ﬁn=(2n + &+ 1how, E=(f+ 1)hw, and hence En = En—ﬁo. Also we have
v () = M2)r® + (+1)%n%(2ur%) = ¢°(r)+E. Thus, we obtain the
desired relation (8).
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(c) The Psschl-Teller Oscillator:

The P¥schl-Teller potential, V(x) = Vo{n(n-l)csca(ax) + A(A-1)sec?(ax)}
where Vb=a?h2/(2M), k>1, A>1, and O=x=n/a, when the Langer-like correc-
tion is made, becomes V;rf(x) = VB{(K—1/2)zcscz(ax)+(1—1/2)25ecz(ax)}.
With this modified potential, the WKB formula yields the exact energy
spectrum E =V (2n+k+2)%, from which we obtaln E =V (2n+cr)®-V_(k+d)Z,
The superpotential ¢(x)} formed from the original potential V(x) gives
¢2(x)=Vo{Kacscz(ax)+xzsec2(ax)}—Vo(n+l)2. By replacements, n- n-1/2,
K+k+1/2, and A»A+1/2, we get f!n=VD(2n+K+A)2=En and  E= V_(k+)? =E,.
Hence, En=ﬁn-ﬁo and V;rr(xJ=Vb{n2csc2(ax)+Azsec2(axJ)= ¢2(xl+ﬁo. Thus,

We see that this system satisfies the relation ﬁn—Veff(x) = En —¢2(x).

This observation does not immediately explain why the CBC formula is
exact for the last two elementary systems, but is indeed interesting.
The replacements apply not only to the WKB quantum number n but also to
the parameters involved. Although the parameter quantization itself may
be achieved within the scheme of dynamical symmetry [7], the 1/2 shift
operations of quantum numbers cannot be accommodated within the conven-
tional framework of quantum mechanics. Our observation seems to suggest
that the CBC formula is a supersymmetric counterpart of the WKB formula
in a broader framework where the 1/2 shift operations is well defined.
Until a logical ground for the replacement procedure 1is provided, the

exactness of the CBC formula would remain as a mystery.
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