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Zusammenfassung

In dieser Dissertation werden stark-rationale, holomorphe Vertex-Operator-Algebren und reflektive
Modulformen untersucht. Wir beginnen damit, einer Vertex-Operator-Algebra mit zentraler Ladung
¢ = 24 ihre Lie-Algebra der physikalischen Zustiande zuzuordnen und studieren die zugehorige Lie-
Klammer mit Hilfe von No-Ghost-Isomorphismen als bilineare Abbildung von Gewichtsraumen der
Vertex-Operator-Algebra. Eine sorgfiltige Analyse des No-Ghost-Theorems liefert Methoden, die eine
explizite Beschreibung dieser Abbildungen durch Vertex-Algebra-Operationen erméglicht. Im An-
schluss zerlegen wir solche holomorphen Vertex-Operator-Algebren gemafl ihrer affinen Unterstruk-
tur und zeigen, dass die zugehorigen Charakter vektorwertige Modulformen liefern. Hierfiir werden
Kowurzelgitter geeignet mit einfachen Strémen angereichert. Die Anhebung zu einem automorphen
Produkt liefert die Produktseite der Nenneridentitat der zugehorigen Lie-Algebra der physikalischen
Zustinde. Da dies eine verallgemeinerte Kac-Moody Algebra ist, folgt, dass das automorphe Produkt
reflektiv ist. Schlussendlich studieren wir Gitter, welche reflektive Modulformen tragen. Dabei zeigen
wir, dass es nur endlich viele solcher Gitter mit gerader Signatur, die skalierte hyperbolische Ebenen
abspalten, gibt. Wir bestimmen explizite Schranken fiir die Stufe.






Abstract

In this thesis we mainly study strongly rational, holomorphic vertex operator algebras and reflective
modular forms. First we associate the Lie algebra of physical states to a vertex operator algebra of
central charge ¢ = 24. We study the corresponding Lie bracket as a bilinear map between weight
spaces of the vertex operator algebra. This makes use of no-ghost-isomorphisms. A careful analysis
of the no-ghost theorem yields methods to evaluate those bilinear maps explicitly in terms of vertex
algebra operations. Then we decompose such holomorphic vertex operator algebras according to their
affine substructure and show that the corresponding characters are vector-valued modular forms for
a coroot lattice, suitably enriched by simple currents. The associated automorphic product yields the
product side of the denominator identity of the Lie algebra of physical states. Since this is a generalized
Kac-Moody algebra it follows that this automorphic product is reflective. Finally we study lattices that
admit a reflective modular form. We show, that there are just finitely many such lattices of even
signature, which split rescaled hyperbolic planes. We determine explicit bounds for the levels.
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1 Introduction

Automorphic products, generalized Kac-Moody algebras and vertex operator algebras are three differ-
ent but highly related objects in mathematics with appearances in algebraic geometry, number theory
and conformal field theory. Vertex algebras were first introduced by Borcherds in [Bor86], as an at-
tempt to formalize structures from conformal field theory. Later Frenkel, Lepowsky and Meurman
slightly altered this definition and introduced vertex operator algebras in [FLM89]. Their goal was to
axiomatize a suitable structure that is a Z-graded representation V¥ of the monster group M such that
each McKay-Thompson trace function

Te(g)(7) = D trye(9)d" (1)

defines a Hauptmodul, i.e. a biholomorphic map from some Riemann surface I'\H of genus 0 to P*(C).
Here T is a suitable arithmetic subgroup of SLy(R). The construction of such a representation V' was
achieved in [FLM89] and it turned out, that this space is in fact a holomorphic vertex operator algebra
of central charge ¢ = 24. Furthermore Frenkel, Lepowsky and Meurman essentially proved the Haupt-
modul property for a large subgroup of M. Finally in [Bor92] Borcherds studied the monster Lie algebra
m?, which is a generalized Kac-Moody algebra, that can be derived from V¥ by use of a certain quanti-
zation process. Using the denominator identity and twisted versions of it he found recursion formulas
for the coefficients of the McKay-Thompson trace functions that imply the Hauptmodul property for
all elements of M. Based on this work extensive research was done in automorphic forms, vertex op-
erator algebras and generalized Kac-Moody algebras. A particular achievement, due to the work of
many scientists, was the classification of all holomorphic vertex operator algebras V' of central charge
¢ = 24, with nontrivial weight-1 subspace Vj. In this thesis we want to make some contribution to
this research. In the first section we to study the Lie bracket of Lie algebras like m” more carefully
and derive an explicit expression in terms of vertex algebra operations of V. This answers a ques-
tion raised by Borcherds in [Bor92]. In the second section we want to associate to each holomorphic
vertex operator algebra of central charge ¢ = 24, with nontrivial V}, a suitable automorphic product
which encodes the root structure of the corresponding Lie algebra of physical states. This automor-
phic product will turn out to be reflective, which means that its divisor is supported on roots of the
corresponding lattice. Finally we want to describe some results concerning the classification problem
of such reflective automorphic products.

Vertex operator algebras, generalized Kac-Moody algebras and automorphic prod-
ucts

Vertex operator algebras are in essence a Z-graded vector space
V= (2)

with a complicated collection of multiplications. Those multiplications are defined by the vertex oper-
ator Y (-, z), which associates to each element v € V' a formal operator-valued distribution

Y(v,2) = Z vpz "t € End(V)[[zHY]], (3)
neZ

that satisfies a collection of axioms. The most important axiom is the so called locality axiom, which
yields relations between the modes v,, for different elements v € V. A further crucial property of a
vertex operator algebra is the existence of a conformal structure, which is a Virasoro vector w € V3 such
that the corresponding modes defined by

Y(w,2) = Z L,z "2 (4)

neL



generate a representation of the Virasoro algebra on V. This means that for some complex number
c € C we have ,
n°>—n

This complex number ¢ € C will be called the central charge of V. We may introduce certain regularity
assumptions and call a vertex operator algebra V' strongly rational if they are satisfied. In this case V has
a well-understood representation theory and the category of modules has a rich structure. In particular
there exists a tensor product called the fusion product and denoted by X. We call such a strongly

6n+m,OCIdV . (5)

the moonshine module V¥ is an example of a holomorphic vertex operator algebra of central charge
¢ = 24. Yet there are other interesting holomorphic vertex operator algebras of central charge ¢ = 24
and a first important observation is, that the subspace V; of V' carries the structure of a Lie algebra
with the Lie bracket [v, w] = vow € V; for v, w € V. Due to work of Schellekens in [Sch93] and Dong
and Mason [DMO04] it is known that V] satisfies precisely one of the following statements:

1. Vi =0.

2. V] is abelian of rank 24. In this case V' is isomorphic to the lattice vertex operator algebra V,,
which correspond to the Leech lattice A.

3. V] is a semi-simple Lie algebra of rank 24 or less.

In [FLM89] Frenkel, Lepowsky and Meurman conjectured that in the case V; = 0 the vertex operator
algebra V is isomorphic to the moonshine module V¥. This conjecture is therefore called the FLM
conjecture. It is still open, however. Yet the case where V; is semi-simple is fully understood. In
[Sch93] a complete classification of all possible semi-simple Lie algebras V; was obtained. It turns
out that there are precisely 69 of such Lie algebras. This list of Lie algebras is called Schellekens’ list.
Schellekens subsequently conjectured that for each such Lie algebra there exists a unique holomorphic
vertex operator algebra of central charge ¢ = 24 that realizes this Lie algebra. This conjecture was
proved in recent years by joint effort of many people. We may now discuss some important Lie algebras.
Remember that a simple Lie algebra gg can be constructed by generators and relations. For every simple
root «; of go one can find elements e;, f; and h; in go that satisfy certain relations depending on the
Cartan matrix of gg. One may relax the conditions on a matrix to be a Cartan matrix a bit to introduce
generalized Cartan matrices. Those can now be used to define Kac-Moody algebras by generators and
relations. These are infinite dimensional Lie algebras which still have almost all the properties of
a simple Lie algebra. In particular they have a Cartan subalgebra, a root space decomposition and
simple roots. There exists a well-understood theory of highest-weight modules for such Lie algebras
and we have a denominator identity for them. A difference to simple Lie algebras is that there might
be imaginary roots. Those are roots of non-positive length. Yet such an imaginary root can never be
simple. An excellent standard textbook for this topic is [Kac90]. The theory of highest-weight modules
of Kac-Moody algebras is of particular importance for the theory of vertex operator algebras. This is
because suitable irreducible modules of Kac-Moody algebras carry the structure of a strongly rational
vertex operator algebra, which are called affine vertex operator algebras. This type of vertex operator
algebras plays an important role in Schellekens’ work because the vertex operator subalgebra of V'
which is generated by V; is of this type. We discuss this in more detail later. In a series of papers
[Bor86], [Bor88], [Bor91] and [Bor95b] Borcherds found a generalization of Kac-Moody algebras by
relaxing the conditions on generalized Cartan matrices even further. Let I be some index set, then a
symmetric matrix A = (a;;); jer is called Borcherds-Cartan matrix if it satisfies a;; < 0if i # j and
if a;; > 0 implies % € Zfor all j € 1. Given a Borcherds-Cartan matrix A, a universal generalized
Kac-Moody algebra is a Lie algebra g(A) with generators e;, f; and h;; for i, j € I such that:

1. sly-relations: [ei, f]] = hij, [hij, ek] = 04 j0ikCk and [hi]’, fk] = _5i,jaikfk'

2. Serre relations: If a;; > 0 then ad(e;)'~2%3/%i (e;) = ad(f;)!—2%/%i(f;) = 0.



3. Commutativity: If a;; = 0 then [e;, ;] = [fi, f;] = 0.

A generalized Kac-Moody algebra is any Lie algebra that is isomorphic to a quotient g(A)/C, where
g(A) is a universal generalized Kac-Moody algebra and C' a subalgebra of its center. We usually assume
that h;; is contained in C'if 7 # j and put h; = h;;. This definition is in fact slightly more restrictive
than the usual one but enough for our purpose. Similar to Kac-Moody algebras a generalized Kac-
Moody algebra has a Cartan subalgebra and a root space decomposition. Yet a major difference is that
there might be simple imaginary roots and they may not longer be linearly independent. Yet we can
still introduce a root lattice R by the free Z-span of all simple roots h;. We may equip this lattice with
a bilinear form by use of the Borcherds-Cartan matrix A by setting (h;, h;) = a;;. We can introduce
a Weyl group generated by reflections o, which correspond to real roots r as usual. Furthermore we
have a meaningful representation theory and even have a denominator identity given by

e’ T[ @ —e )™M = 37 e(w)w(S). (6)

acA L weW

Here p is a Weyl vector and A" is the set of positive roots. S is a suitable sum of imaginary roots.
One of the most famous generalized Kac-Moody algebras is certainly the monster Lie algebra m?. We
may project its root lattice into the Cartan subalgebra of m?, which yields a lattice of rank 2. In fact
this lattice is isomorphic to II; ; and we may consider this as a root lattice as well. Applying the same
projection to the denominator identity yields

I =) =) - ), (7)
m>0,n€Z
where we have p = ¢(1:0) and ¢ = e(®Vand the numbers c(-) are the Fourier coefficients of the J-
function -
J(r)=74(1)— 744 = Z c(n)g™ = q¢71 + 04 196884¢ + O(¢%). (8)
n=-—1

We will come to the construction of the monster Lie algebra in more detail later. For now we focus
on another remarkable observation. Clearly the expression in (7) does not just have meaning as a
formal expression but defines a holomorphic function with certain modular properties, since j is a
modular function. It is a general observation, that denominator identities of interesting generalized
Kac-Moody algebras tend to have modular properties. By this we mean that their product sides define
modular forms on suitable spaces. This may serve as a motivation for a more systematic construction
of orthogonal modular forms introduced by Borcherds in [Bor95a] and [Bor98]. Let L be an even lattice
of signature (n,2). We may set V(C) = L ®z C and introduce a space

K(L):={[Z] e P(V(C)):(Z,Z2)=0,(Z,Z) < 0}". 9)

Here -1 means that we fix a choice out of two connected components of this space. It is furthermore
natural to consider the affine cone over (L), defined by

K(L):={Z e V(C)~ {0} :[Z] € K(L)}. (10)

The discriminant kernel of O(L) is the subgroup O(L) of finite index of O(L) which acts trivially in

the discriminant D(L) = L' /L. We set I'(L) = O(L) N O* (V). Take a subgroup I C I'(L) of finite

index and a unitary character x : I' = C*. A meromorphic function ® : K(L) — C is called modular
form of weight k € Z for T" and  if for all Z € K(L) we have

S(MZ)=x(M)P(Z)VM €T (11)

d(tZ) =t *®(Z) VYt € C*. (12)



Such a function is an orthogonal modular form and we may furthermore call them homogeneous. Later
we will need such modular forms for rational weight as well but we ignore this for now. This simplifies
the discussion a bit. For a rational vector v € L ®z Q with (v, v) > 0 we define the associated rational
quadratic divisor by

Ky(L) :={[Z] € K(L) : (Z,v) = 0}. (13)

In the affine cone we denote the corresponding rational quadratic divisor of v € L®zQ with (v,v) > 0
by
vt = Ku(L):={Z € K(L) : [Z] € K,(L)}. (14)

Now we want to discuss a construction for such modular forms. The Weil representation ppz,) of the
metaplectic group Mp,(Z) is defined on the group algebra C[D(L)] of the discriminant form D(L) =
L' /L. We may call a holomorphic function f : H — C[D(L)] a vector-valued modular form of weight
k € Z for pp if it satisfies

f(mr) = ¢(r)* ppry(m) f(7) (15)

for every (m, ¢) € Mp,(Z). Remember that m = (Z b) is a matrix in SL2(Z) and ¢(7) is a holomor-

d

phic function such that ¢?(7) = cr+d. A direct consequence of the invariance under (T, 1) € Mp,(Z)
is that f has a Fourier expansion

foy= > > [Hlm)e(nt)e,. (16)
)

yeD(L) n€Z—q(y

We assume that all Fourier coefficients [f,](n) with n < 0 are integers, i.e. [f,](n) € Z. Then there
exists a, up to a constant factor, uniquely determined orthogonal modular form ®; which possesses
a product expansion around some cusp and has a divisors which is a linear combination of rational
quadratic divisors. More precisely for every primitive v € L with v? > 0 the rational quadratic divisor
v has vanishing order

2
Z [fa:v-i—L] <—$21}2> . (17)
0<z€Q,zvel’

We call ® the automorphic product associated with f. This is the main result of [Bor98]. We call a
primitive element v € L a root of L, if its corresponding reflection, which is defined by

2(v, )
2

oy(z) =2 — viorz e L®Q, (18)
is contained in O(L). We call an orthogonal modular form reflective if its divisor is a linear combination
of rational quadratic divisors v which correspond to roots v of L.

The Lie algebra of physical states

Let V be a strongly rational holomorphic vertex operator algebra of central charge ¢ = 24. We consider
the conformal lattice vertex algebra Vi, , associated to the hyperbolic plane II; ;. The tensor product
V @ Vi, , carries the structure of a conformal vertex algebra of central charge c = 26 and we denote
the Virasoro operators corresponding to the conformal structure by L(k) for k € Z. We may introduce
the subspaces of physical states for every n € Z by

P"={veVeWy, : L(m)v=0forallm > 0and L(0)v = nv}. (19)

Of particular interest will be the quotient P'/L(—1)P° because it turns out that for 2,y € P! the
bracket, defined by [z,y] = [zoy], equips this space with the structure of a Lie algebra. Since V is
strongly rational it carries a unique invariant bilinear form (-, -) scaled such that (1,1) = 1. This in



turn induces an invariant bilinear form (-, -) on the Lie algebra P! /L(—1)P". We denote its kernel by
ker(-, -) and introduce the Lie algebra

a(V) = (P'/L(-=1)P") [ker(-, ). (20)

This Lie algebra obviously carries an invariant non-degenerate bilinear form (-, -) and will be called the
Lie algebra of physical states associated with V. This construction is called the old-covariant quantiza-
tion of V' and has a few remarkable properties. First of all notice that the natural II; ; -grading of Vi, ,
induces a natural I; ;-Lie algebra grading of g(V'). Let us denote the corresponding weight spaces by
g(V)q for a € 11 1, then we have

s(V)= B (V) (21)

aell 1

Similarly the group of automorphisms Aut(V') of V' induces a natural group of automorphisms G acting
on g(V'). Of course this group is in general just a subgroup of the group of Lie algebra automorphisms
of g(V'). We may apply this construction to the moonshine module V' to obtain the monster Lie
algebra m? = g(V%) and its natural action of the monster group M, which is induced from the group
of automorphisms Aut(V?) = M of V!. There exists a Lie algebra involution 6 : g(V) — g(V) which
satisfies 0(g(V)a) = 9(V)—q for every r € II; 1 and which preserves the bilinear form (-, -) and the
group action of G. We may use this involution to introduce the contravariant bilinear form

('7')0 = _(79(>)7 (22)
whose restriction to g(V')o X g(V')q is non-degenerate for every o € Iy ;.

Theorem (no-ghost theorem). Let V' be a strongly regular holomorphic vertex operator algebra of central
charge cyy = 24 with a group of automorphisms G and let its associated Lie algebra of physical states be
g(V). Take 0 # o € II 1. There exists a linear isomorphism

N Vl_%z — g(V)a (23)

that preserves the group action of G and satisfies that for allv,w € V| .2 we have
2

(v, w) = (11a(V); 10 (w))o- (24)
For oo = 0 there exists a linear isomorphism
mo: Vi@ (Ih ®C) — g(V)o (25)
that preserves the G-action and the corresponding bilinear forms as in the case o # 0.

The no-ghost theorem is a remarkable result originally proved by physicists in [GT72] and discussed
by mathematicians in [Fre85] and [Bor92]. If we assume that V' has a suitable real structure Vg with a
positive-definite bilinear form (-, -), the no-ghost theorem implies that the contravariant bilinear form
(+,-)o is also positive-definite, when restricted to root spaces g(Vr), with r # 0. Therefore the Lie
algebra of physical states does not contain any ghosts, i.e. vectors of negative length. This justifies
the name of the theorem. But this aspect does not really matter for us, therefore we don’t make any
positivity assumptions. In Borcherds’ paper [Bor92] the no-ghost theorem is of particular importance
because it allows the computation of the root multiplicities of roots of the monster Lie algebra m?. This
is because the root grading of m? is simply given by the II1 1-grading of m! and therefore o € II1 1 has
multiplicity

mult(e) = dim(mf,) = dim(V;"__, 1) (26)

Now it is possible to evaluate those multiplicities explicitly because the character chy is given by
the J-function defined by (8). This information is necessary to obtain the denominator identity (7).



This together with suitable twisted denominator identities yield the recursion formulas that determine
the McKay-Thompson trace formulas mentioned above. This finishes Borcherds’ proof of the Haupt-
modul property. Of course we can use the no-ghost isomorphisms 7, to define bilinear maps between
subspaces of the vertex operator algebra V. More precisely for elements o, 3 € II; 1 we can define
maps

{'a '}04,3 : Vvlfoz2/2 X ‘/1752/2 - Vvlf(a+,8)2/27 (fU, w) = 7);41.5([7704(“)7 Uﬂ(w)]) (27)
In section 15 of [Bor92] Borcherds asks for an explicit description of this bracket just in terms of vertex
algebra operations of V. Clearly we can generalize this question to arbitrary holomorphic vertex
operator algebra V' of central charge ¢ = 24. The first section of this thesis is concerned with an
answer to this question. This is one of the main results of this thesis. In order to do this notice that in
the construction of the no-ghost isomorphisms 7, there is some ambiguity, since those maps depend
on certain choices of operators acting on H(a) = V ® Vi1, , o for o € II1 ;. By picking a standard
basis e, f € II; 1 with e? = f2 = 0and (e, f) = 1 it is possible to make these choices in a consistent
way, however.

Theorem (Theorem 3.4.9). Assume o, 3, + 3 ¢ e+. We may putn = 1 — 0‘72 andm =1 — % For
v €V, andw € V,, we have

{v,whaps = (28)
6%)2 DD > S, [n)Ss[mle(m) L(—m) (i, (v)ii5, (w).  (29)

r=0 s=0 I1,lo0=0 k€Z mEB(l1+l2+k—(a,B))

Of course we have to explain some notation in order to make sense of this result. Here ¢ is a choice of
a 2-cocycle for the lattice vertex algebra Vi, ,. Furthermore the operators i] and j; are suitable linear
combinations of products of Virasoro operators. By m we simply denote certain tuples of numbers.
L(—m) is then just L(—my)--- L(—m,) if m = (m,---,m,). Finally by expressions like S,[n]
we denote the number S,.(1,--- ,n), where S, is the r-th symmetric polynomial in n variables. We
find that {v, w}, g can be expressed in terms of vertex algebra operations of V, so this is an answer
to Borcherds question. Unfortunately this formula becomes rather complicated quickly and might
therefore not be suitable for explicit computations.

Vertex operator algebras and reflective modular forms

In this section we study strongly rational holomorphic vertex operator algebras of central charge ¢ =
24 and their connection with reflective automorphic products. We exclude the cases V; = 0 and
V} abelian from this discussion. This work was strongly motivated by [CKS07]. Therein Creutzig,
Klauer and Scheithauer study vertex operator algebras associated to particular entries of Schellekens’
list. Namely those with Vi = AJ_;  forp = 2,3,5,7and r = m. They prove that the
corresponding Lie algebras of physical states are generalized Kac-Moody algebras and evaluate their
denominator identities explicitly. As a consequence of the assumption that V' is strongly rational we
may equip V' with an invariant bilinear form (-, -) which we scale such that (1,1) = —1. Here by
invariant we mean a certain invariance property with respect to the vertex operator Y (-, z). This is
explained in more detail in the main section. Since g := V) is semi-simple we may decompose it
into simple Lie algebras g; and we define numbers k; by (-, )|g;xg; = ki(-,-). Here (-, -) denotes the
invariant bilinear form on g; which is scaled such that the highest root 6 of g; satisfies (6, 60) = 2. It is
well-known that we have k; € Z~ and we write

Vi=g=01k D Dok, (30)

The corresponding Cartan subalgebra will be denoted by h = b1, @ - - - @ b, .. We denote the affine
Kac-Moody algebra corresponding to g; by §;. The associated simple affine vertex operator algebra of
level k; is Ly, (ki Ao). Now the vertex operator subalgebra V' (g) C V generated by V1 is isomorphic to

Ly, (k1Ag) ® - -+ ® Ly, (krAo). (31)



This is a result of Dong and Mason, obtained in [DM06]. Furthermore by use of Proposition 4.1 in
[DM04] we know that this isomorphism preserves the conformal structure. So we can consider V as a
V (g)-module. Yet since V'(g) is also strongly rational, we know that V' can be decomposed into finitely
many irreducible V' (g)-modules. We obtain a decomposition

V= @ m(AL, - ,AT)LQI(Al)®-~®L@7,(AT). (32)
A17...7A7'

Here the A’ are dominant integral weights of level k; of g;, which parametrize the irreducible modules
of the vertex operator algebra L, (k;Ag). We may use the coroots ¢; as a basis of h, that spans a
sublattice with bilinear form (-, -) that is isomorphic to

L=Qi(k)® & Qr(ky). (33)

Since the Cartan subalgebra h acts semi-simply on V' we may define a formal character
xv (v, q) =Try (GQWiUOqL()*l) : (34)

Clearly we can identify h with L ® C and as usual we write ¢ = €27, Yet it turns out that this formal
character defines a holomorphic function on (L ® C) x H and as a consequence of Theorem 1.1 in
[KM15] we obtain the following Proposition.

Proposition. The character xy : (L ® C) x H — C is a nearly holomorphic Jacobi form of weight 0
and lattice index L.

By this we mean that xy defines a holomorphic function and satisfies the relations

b
o (g ) e ()t
xv (z+ 7L+ h,7) = exp(—mi((l,1)T + 2(I,h)))xv(z,T), (36)

for all Z € SLy(Z) and I, h € L. This property was already used by Schellekens in [Sch93]

b
d
to determine certain equations which yield strong restrictions on the structure of the Lie algebra g
and the decomposition (32). By solving them he proved his classification result. We can also define a
vector-valued modular form fy for the Weil representation pp with D = D(L) of weight —dimT(h) by

use of the theta decomposition of xy . This is

xv(zt)= > fualr)O%(z, 1), (37)

XeD(L)

where ©%(z, 7) are the usual lattice theta functions associated with L. For a fixed lattice the functions
xv and fy encode the same information, so we may as well work with fy- and do so in the following.
A simple current S of a vertex operator algebra V' is an irreducible module of V" such that each fusion
product S X M with another irreducible module M is once again irreducible. For strongly rational
simple affine vertex operator algebras Lg (kAg), corresponding to a simple Lie algebra go, we can
introduce a certain subset of the simple currents, the so called cominimal simple currents. Those are
precisely the simple currents that correspond to cominimal weights of the Lie algebra gyo. We may
consider the set Sy consisting of cominimal simple currents of V' (g) that are contained in V. This just
means that S € Sy if and only if m(S) # 0, where m(.S) is the multiplicity of the irreducible module S
in the decomposition (32). In fact Sy is an abelian group under the fusion product, which acts naturally
on the set of all irreducible modules of V'(g), that are contained in V. The corresponding multiplicities
are invariant under this action and therefore we can consider Sy -orbits of the decomposition (32).
Since V' (g) appears with multiplicity 1 it is clear that each cominimal simple current in V' appears



with multiplicity 1. It turns out that there is an isotropic subgroup Gy of the discriminant form D(L)
which is naturally isomorphic to Sy and will therefore be called the subgroup of cominimal simple
currents of D(L). We construct an even lattice by

H= |J g+L. (38)
geGy

It turns out that the vector-valued modular form fy satisfies that

1. fory ¢ H' C L' we have fy, = 0and

2. fory € L' and g € Gy we have fy g1y = fv.

We may view fy as a vector-valued modular form for the Weil representation of D(H ). The fact that
fv is essentially a character of V implies that V' carries a natural H'-grading with respect to the semi-
simple action of . Now we can consider the Lie algebra of physical states g(1) associated to V. The no-
ghost theorem implies that we have a natural subspace H C g(V') which is isometric to h & (II; ; ® C)
and preserves the semi-simple action of f on V,, with respect to the no-ghost isomorphisms. This
induces a natural H' @ II; ;-grading, i.e. we have

sV)= P galV). (39)
acH'@I 1
We obtain H = go(V') and find that this is a self-centralizing subalgebra of g(V'). This allows us
to view (39) as a root space decomposition with respect to H, which we therefore view as a Cartan
subalgebra of g(V'). The no-ghost theorem can furthermore be used to check that the multiplicity of
0# a € H @11 ; is given by

Oé2
mult(a) = [fv.a] (—2> ) (40)

For o = 0 the no-ghost theorem implies mult(0) = [fy,0](0) +2 = dim(h) + 2, which is of course just
the dimension of the Cartan subalgebra 7 of g(V'). For the rest of the discussion we may assume that
V has a real form with positive-definite structure. We make this assumption to prove the following
theorem. Yet we conjecture that this assumption will turn out to be unnecessary.

Theorem (Theorem 4.5.6). Assume thatV has a real form with positive-definite structure. The Lie algebra
g(V) is a generalized Kac-Moody algebra with Cartan subalgebra H and root lattice R = H' & II ;.

Since adding hyperbolic planes to a lattice does not change its discriminant form we may view fy asa
vector-valued modular form for the Weil representation corresponding to the lattice H ©1Iy 1 @111 1 of

weightk = 1— dim(gﬁ. Clearly its Fourier coefficients are integers, so we can consider the associated
automorphic product @y .

Theorem (Theorem 4.5.9). Assume that V' has a real form with positive-definite structure. The automor-
phic product Oy, associated to the vector-valued modular form fy is holomorphic, strongly reflective and
of singular weight.

This is one of the main results of this thesis. Notice that we call a reflective modular form strongly
reflective if the multiplicity of each rational quadratic divisor r, which corresponds to a root, has
multiplicity O or 1. In the following we will give a brief sketch of the proof. The fact that each Fourier
coeflicient of fy, is a non-negative integer already implies that @y, has to be holomorphic. Because
of [fv,0](0) = dim(h) we obtain that fy is of singular weight. In order to prove that ®y is strongly
reflective we have to make use of the fact that g(V) is a generalized Kac-Moody algebra. Let r €
H @ 1I; 1, with 2 > 0, be primitive such that ®y, vanishes on r+. Of course this implies that there
exists a suitable z € Q¢ such that zr € H' ©1I; ; and 27 is a root of g(V). Because of (z7)? > 0 this
is already a real root and so no scaling of zr can be another root of g(V'). This implies mult(r+) = 1.
Since zr is a real root of g(V) it is furthermore clear that the corresponding reflection o, = o, is
contained in the Weyl group W. Yet we have W C O(R) = O(H' ® 1I;1). This implies that the
reflection o, is contained in O(H @ 1II; ;). Therefore ®y is strongly reflective.



The classification of reflective modular forms

Early in the study of reflective modular forms Gritsenko and Nikulin conjectured in [GN98] that up
to scaling there are just finitely many lattices of signature (n, 2) that admit a reflective modular form.
This question was then studied extensively by Gritsenko and Nikulin themselves as well as several
other authors. Namely Barnard in [Bar03], Dittmann in [Dit19], Scheithauer in [Sch06], Wang in
[Wan19c], [Wan21], [Wan19a] and Ma in [Ma17], [Ma18]. In several of these papers full classifications
where obtained in special cases. In the case of lattices with prime level N = p a full classification of
reflective lattices was achieved in [Wan19c]. Furthermore one of the main results of [Ma18] is that
there are just finitely man reflective lattices that carry a reflective modular form with bounded slope.
Here we say that a reflective modular form has bounded slope if the multiplicities in its divisor satisfy
certain restrictions. Apart from these additional assumptions this answers the question of Gritsenko
and Nikulin. But it seems to be complicated to derive sharp explicit bounds on the levels IV of such
reflective lattices by use of these results. Yet this was achieved in the case of lattices with squarefree
level and some further assumptions in [Dit19].

Theorem ([Dit19, Theorem 1.1.]). There are only finitely many even lattices L of signature (n,2),n > 4
and squarefree level N that split I 1 & II; 1 (N) and carry a nonconstant reflective modular form.

A crucial part of this statement is that the level N of such a reflective lattice has to solve an inequality
induced by the valence formula for T'o(N). This inequality can be solved explicitly and it is possible
to give a table of all solutions. We aim to generalize this statement to lattices of even signature but
arbitrary level V. Notice that lattices of squarefree level automatically have even signature therefore
this does not have to be assumed. In the following let L be an even lattice of even signature (n,2)
with n > 4 and level N that splits IT; ; @ II; 1 (N). We may assume that ® : K(L) — C is a nonzero
holomorphic reflective modular form of weight k € Z. As a consequence of Bruiniers’ converse theorem
we know that ® has to be an automorphic product. See [Bru14] for details. Hence there exists a vector-
valued modular form f for the Weil representation pp with D = D(L) of weight £ = 1 — % with
suitable integrality condition on the Fourier coefficients such that ® = ® . A crucial first step will be
to characterize reflective automorphic products ® by properties of f.

Proposition (Prop. 5.1.2). If the automorphic product ® ¢ of f is reflective, then for every X € D(L)
the component f of f satisfies: If fx has a pole at ico, then there exists a divisor d|N such that d\ = 0
and )‘72 = é(mod Z). Furthermore there exists a number ¢y € C, such that the Fourier expansion of fy
satisfies

A7) = exg 1 + O(1), (41)

For simplicity we may assume in the following discussion that fj has a pole of order 1 at ic0. The next
step is to associate to each such vector-valued modular form f a suitable nonzero nearly holomorphic
modular form g for I'g(/V) of weight £ = 1 — & and some character, that satisfies strong bounds on
the pole orders at cusps. More precisely we want a nonzero modular form gy € M} (I'o(N), x), such
that the expansion g, of gy at the cusp s of I'g(JV) satisfies

g9s(1) € O (q_“IS)) : (42)

Here by t(s) we denote the width of the cusp s of I'g (V). The existence of such a modular form then
implies strong bounds on the level N of the lattice L, which can be made explicit. Before we discuss
this in more detail we will introduce a construction for such a modular form g;. In the special case
of squarefree level N a construction for the modular form g; was already obtained in [Bar03] and
[Dit19]. Yet their method has no generalization to the case where NN is not squarefree. We have to
find such a modular form by other means. Roughly our result is that we can always construct such a
modular form g, by taking a suitable linear combination of components of f. We will sketch this in



more detail. Assume first that the discriminant form D can be decomposed as D = Dq @ Do, then for
v =wv1 +v3 € D1 & Dy and wy € Dy we can define a pairing by

(v, wg) = (v2,w2)v1 € Dy, (43)

where (-,-) is the usual sesquilinear form on C[Ds]. Of course, if we have a holomorphic function
f + H — C[D] the reduction f'(t) = (f(7),ws) is a holomorphic function f’ : H — C[D;] as
well. Assume now that f is a vector-valued modular form for the Weil representation on D with
character x but possibly just for some subgroup I'g(Ng) of SLa(Z). Notice that we do not have to
consider metaplectic covers here since we assume D to have even signature. Furthermore let the level
of D be M and denote the levels of D; by M; for ¢ = 1,2. The numbers Ny, M; and My shall be
mutually coprime. In particular this implies M = M; Ms. In this setting it is possible to find a vector
wy € C[Dy], supported by isotropic elements of Ds, such that f/(7) = (f(7),w2) defines a vector-
valued modular form for the Weil representation pp, of I'g(NyM>) for some character x’. Notice that
we may decompose D(L) in its p-adic components by

D(L) = D;D;nl D---P Dp;nr (44)

if N = p]"™ .- p" is a prime decomposition. Now we may apply such reduction steps to the vector-
valued modular form f, corresponding to the reflective automorphic product ® ¢, such that we obtain
a nearly holomorphic modular form gy € M;(To(N), ). The task is to make sure that after each
such step the new vector-valued modular form has suitably bounded pole orders and is still nonzero. It
turns out that this can be done in a systematic way such that g; satisfies bounds of the pole orders at
cusps as in (42). Notice that this construction is just possible if each p-adic Jordan block Dpm of D(L)
contains a nonzero isotropic element. We make sure that this is the case by assuming that L splits
II;,1 (IV). The assumption that fj has a pole at ico is crucial to make sure that g; # 0. Now we may
apply the valence formula as given in Theorem 4.1.4 in [Ran08] to g; and obtain an inequality

ST ) e (e))

p|N d|N

Without too much effort we find that this inequality bounds & by 12, which in turn implies n < 26.
We may furthermore deduce explicit bounds on N for each such k.

Theorem (Theorem 5.4.3). There are just finitely many even lattices L of even signature (n,2) withn > 4
and level N that split I 1 ® II, 1(N) and carry a reflective automorphic product ® y such that fy has a
pole of order 1 at ico. Moreover explicit bounds for the level N are given in Table 1.

We have to explain what the entries in Table 1 mean. Take a solution N of the inequality (45) for some
k = —1,---,—12. Then the exponents m; in the prime decomposition N = pi"* - - - p"** are bounded
by the corresponding entries in this table. We write — instead of 0 because we view this as a trivial
solution. Finally, we have to discuss a generalization of this method, which also works in the case
where fj does not have a pole at ic0. First, we observe that some component of f must have a pole at
100, since otherwise f would vanish. Around this observation we can now build a reduction method,
which always yields a nonzero reduction f’ for a nonzero modular form f. Yet this reduction f’ will in
general just be a modular form for I'; (V') and the bounds of the pole orders, at the cusps of this group,
are weaker as in (42). This method can now be used to construct a nearly holomorphic scalar-valued
modular form g for I'1 (IV), of weight k£ and some character y, that satisfies

_B@N)
a(r) €0 (a0 ), (40
for a certain bound function B. Here g, is the expansion of g¢ at the cusp s of I'y (V) and ¢(s) is the

width of this cusp. As above, the valence formula implies an inequality, which can just be solved by
finitely many integers V.
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Table 1: Bounds on exponents in a prime factorization of N.

Theorem (Theorem 5.4.5). There are just finitely many reflective even lattices L of even signature (n, 2)
and level N that split I 1 & II; 1 (N'). Moreover we can give explicit bounds for the levels N.

In this case we can again derive a table, similar to Table 1. Yet the obtained bounds will be much bigger.
Mainly this is due to the fact that we work with I'; (V) and the bound function B.
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2 Preliminaries

In this section we discuss preliminary structures that are necessary for this thesis. We start with lattices
and modular forms and later discuss generalized Kac-Moody algebras and vertex operator algebras. In
particular we are going to discuss affine vertex operator algebras, which are very important for the
later sections. Almost everything in this section is well-known and discussed elsewhere. We follow
many of those sources, as indicated in the text.

2.1 Lattices and discriminant forms

In this subsection we start with lattices and discriminant forms for which important sources are [EH12],
[Nik80] and [CS98]. A lattice L is a free Z-module of finite rank d with a non-degenerate symmetric
bilinear form (-,-) : L x L — Z. Its ambient space V is the rational vector space L ®z Q and we
can naturally extend the bilinear form (-,-) to V. By Sylvesters law of inertia the bilinear form (-, -)
can be diagonalized over QQ and the number of positive eigenvalues 7 is independent of the particular
diagonalization. Of course the number of negative eigenvalues s = d — r is also determined and we
call the pair (r, s) the signature of (V, (-, -)). The signature of L is simply the signature of its ambient
space. The number r — s will usually be called signature as well. For some free Z-generatorsey, --- , eq
of L we call the symmetric matrix G = ((e;, €;));; the Gram matrix of the lattice L with respect to
those generators. The determinant det(G) is independent of the choice of generators and we call it the
discriminant of L, denoted by disc(L). We call a lattice integral if (x,y) € Z for all z,y € L and even
if (z,x) € 2Z for all x € L. From now on we assume that any lattice L is even. For such a lattice L
the dual lattice is

L'={veV:(vz)€ZVrecL} (47)

Clearly L' is also a lattice and we call D := D(L) := L'/L its discriminant group. We easily observe
that |D(L)| = disc(L). For A = [x] € D(L) we set gp(\) = ¢(x)(mod Z), which is clearly a well-
defined element in Q/Z. The level of L is the smallest positive integer N such that Ngp(A) = 0 for
all A\ € D. An even lattice L will be called unimodular if D(L) = 0. A discriminant form is a finite
abelian group D with a non-degenerate quadratic form gp : D — Q/Z, this is a map with

1. gp(aX) = a?qp(A) foralla € Z and A € D and
2. (A p)=gpN+ p) —agp(A) — gp(p) is a non-degenerate bilinear form on D x D.

For a rational number x € Q we set
A2
D(a;)—{'yED:2—x(modZ)}. (48)

The discriminant group D(L) of an even lattice L together with its associated quadratic form gp(y,
is a discriminant form. An element z € L is called isotropic if ¢(x) = 0 and analogously we call an
element A € D of a discriminant form D isotropic if gp(\) = 0. Furthermore we call a subgroup
U C D isotropic if each element A € U is isotropic. Assume there is an even lattice L C H C L/,
then U = H/L C D(L) defines an isotropic subgroup and conversely for every isotropic subgroup
U C D(L) the set

Hy=H=|JA+L (49)

AeU

is an even lattice. This shows that even overlattices of L are uniquely parametrized by isotropic sub-
groups of D(L). Another important invariant of an even lattice is its genus. The genus of an even
lattice L is the set of all even lattices M of the same signature as L such that L ®z, Z, = M ®z Zp,
where 7Z,, are the p-adic integers, for every prime p. An important result about the genus of even lat-
tices is that two even lattices are in the same genus if and only if they have the same signature and
their discriminant forms are isomorphic. See Corollary 1.9.4 in [Nik80] for this. We can now introduce

12



a genus symbol II,. ;(D), which is the genus of all even lattices of signature (r, s) and discriminant
form D. Like abelian groups discriminant forms can be decomposed into indecomposable components
albeit not necessarily in a unique way. Following [CS98] and [Nik80] Scheithauer [Sch09] gave a nice
overview of all possible non-trivial p-adic Jordan components. This is

1. For p an odd prime and ¢ = p™ > 1 the non-trivial p-adic Jordan components of exponent q are
(q)*™ for n > 1. The indecomposable p-adic Jordan components of exponent g are (¢)*! and are
generated by an element v with ¢y = 0 and g = %(mod Z) for an integer a with (%) = %L
Such components have level q and their p-excess is given by

p — excess((q)*") = n(q — 1) + 4k (mod 8), (50)

where k = 1 if g is not a square and the sign is —1 and k£ = 0 otherwise. We furthermore set
(@) = e(—(p — excess((q)*"))/8).

2. For ¢ = 2™ > 1 the non-trivial even 2-adic Jordan components of exponent ¢ are (q)ljf% and the
indecomposable even 2-adic Jordan components of exponent g are (q)ﬁﬁ. They are generated by

two elements \, 1 € (q)5> with g\ = qu = Oand (\, ) = %(mod Z) and 7—22 = ”72 = 0(mod Z)
for (q);* and g = “72 = %(mod Z) for (q)g 2. And their oddity is given by

oddity((¢)F2™) = 4k (mod 8), (51)

where k& = 1 if q is not a square and the sign is —1 and k = 0 otherwise.

3. For ¢ = 2™ > 1 the non-trivial odd 2-adic Jordan components of exponent ¢ are (¢)i" with
n > 1land t € Z/8Z. The indecomposable components are (q)til with (%) = =+1 and are

generated by an element v with ¢y = 0 and g = ;—q(mod 7). The level of those components is
2q. And their oddity is given by

oddity((q)F>™) = t 4 4k (mod 8), (52)

where k£ = 1 if q is not a square and the sign is —1 and k£ = 0 otherwise. We furthermore set
72((9)*?") = e(oddity((q)*>")/8).

To add two Jordan components of the same exponent ¢ one has to multiply their signs, add their ranks
and add their subscripts ¢ if they have any. Every discriminant form can be constructed as a sum of
the above components and is determined up to isomorphism by its decomposition in p-adic Jordan
components. The signature sign(D) € Z/8Z of a discriminant form is the signature of any even lattice
L with D = D(L). In Theorem 1.3.1 of [Nik80] Nikulin showed that two even lattices L; and L2 have
isomorphic discriminant forms if and only if there are even unimodular lattices S; and So, such that
L1® 51 = Lay®Ss. Yet an unimodular lattice S of signature (7, s) satisfies —s = 0(mod 8). Therefore
the signature of a discriminant form is well-defined. One important property of the signature is the
oddity formula

sign(D) + Z p — excess(D) = oddity(D) (mod 8). (53)

p=3

Assume D is a discriminant form of level N and c any integer. Since ¢ acts by multiplication as a
group homomorphism on D we can consider its kernel D, and its image D¢. D¢ is the orthogonal
complement of D, in D. We furthermore define D* to be the set of elements « € D that satisfy

2
c% + (a,y) = 0 (mod Z) (54)
for all v € D.. In [Sch09] Scheithauer showed that D" is a coset of D¢, i.e. there is an element

Ze € D such that D = x. 4+ D°. To describe x, more precisely fix a Jordan decomposition of D and
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assume 2%||c. If the 2-adic Jordan component of D of exponent 2* is even we have z.. = 0. Otherwise
we set z, = (2871, ... 2k=1). Furthermore in Proposition 2.2 of [Sch09] Scheithauer proved that for
a = x. + ¢y € D the value of
2
i

¢+ (#e,7) (mod Z) (55)

does not depend on the choice of 7. We denote this number by %Z (mod Z).

2.2 The Weil representation and modular forms

In this subsection we introduce the Weil representation and discuss vector-valued modular forms. A
nice overview of this topic is given in [Bru04]. Further sources are [Bor98] and [Sch09]. The complex
upper half plane will be denoted by H and for 7 € H we write 7 = z + ¢y, with z € Rand y € R..
For any complex z € C we put ¢(z) = ¢>™# and denote by \/z = 2!/2 the principal branch of the
square root. This is arg(y/z) €] — /2, 7/2]. In general for b € C we write 2° = ¢"°¢(2), where Log(2)

a b o
g | we write jim,7) = cr +das
usual. Taking m € SLy(IR) we let ¢ be any holomorphic function on H with ¢(7)? = j(m, 7). The set
of all possible pairs (m, ¢) will be denoted by Mp,(IR) and can be turned into a group by

(m1, ¢1(7)) (M2, P2(7)) = (m1ma, ¢1(A27)P2(T)). (56)

This group will be called the metaplectic group and is a double cover of SLy(R), realized by the choice
of a square root. There is an obvious covering map Mp,(R) — SL2(R) and we define Mp,(Z) by the
inverse image of SLy(Z) under this map. The group Mp,(Z) is well-known to be generated by

(54
()

()9

S? = (ST = Z. (60)

is the principal branch of the logarithm. For a matrix m =

And with

we have the equation

Let D be a discriminant form with quadratic form ¢p = ¢ and associated bilinear form (-,-). We
write ¢, for the standard basis of the group ring C[D] with v € D. The standard scalar product
on C[D], denoted by (-, -), is linear in the first variable and anti-linear in the second and defined by
(ex,eu) = 0y - On C[D] we can define the structure of a unitary representation pp of Mp,(Z) by

2
pp(T)ey =e (—é) ey (61)
pp(S)e, = DV S~ gy, (62)
Dl D
The element Z acts as
pp(Z)ey = e(sign(D)/4)e—. (63)

The dual Weil representation p}, on C[D] is given by p},(m)ex = pp(m)ey for m € Mpy(Z). An
important property of the Weil representation is that we have

PD1®D, = PD; & PD,- (64)
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We make use of this fact by introducing certain partial pairings between discriminant forms. Assume
for simplicity that D = D1@® D and level(D;) = M, fori = 1,2 with M = My Ms and (M7, Ms) = 1.
For A = A1 + A2 € D1 ® Dy = D we identify ¢) with ¢y, ® ¢y, as usual and we define for v € C[D]

(ex,v) = (eny;v)en, € C[Dy]. (65)

We extend this by linearity to a partial pairing (-, -) : C[D] x C[D3] — C[D;]. Clearly we have for all
v € C[Ds] and w € C[D] that

pp, (m)(w,v) = (pp, (m) @ ldw, v) Vm € Mp,(Z). (66)

Let f(7) = >_,ep f+(7)ey be a holomorphic function with values in C[D]. For (m, ) € Mpy(Z) we
define a slash-operator acting on f by

(fIzP (m, ) (1) = ¢(r) "2 pp' (m) f (7). (67)

A holomorphic function f : H — C[D] will be called modular form of weight k € %Z for the represen-
tation pp if

(f1%" (m, @))(1) = f(7) V(m, §) € Mpy(Z). (68)
If f is a modular form and meromorphic at i0co we call it a nearly holomorphic modular form. If f is
holomorphic at ¢co we call it a holomorphic modular form and finally if it vanishes at 0o we call it a
cusp form. It is well-known and easy to prove that, as a consequence of the invariance under 7', the
modular form f has a Fourier expansion

f(r) = Z Z ay(n)e(n)ey. (69)

~vED neZ—q(y)

We furthermore call

Z Z ay(n)e(nt)ey (70)
v€D neZ—q(v),n<0
the principal part of f. Assume that the discriminant form D is represented by an even lattice L of
signature (n,m), i.e. D = D(L). Let f be a modular form for the Weil representation on D. Then it
is possible to reduce the lattice L to an even sublattice such that f can be reduced to a modular form
for the discriminant form of this sublattice. Assume L has a primitive isotropic element [ € L. The
lattice L; := I/l is integral and has signature (n — 1,/m — 1). Fix v € L’ such that (,1) = 1. We get
a natural identification
L= L, :=Lnltnyt (71)

Following [Bru04, Section 2.1] we study some properties of L;_ /L; . The divisor div(l) € Z of [ is
defined by (I, L) = div(l)Z. We can chose ¢ € L such that (/,{) = div(/). Such an element can be
represented uniquely by

¢ = Qn+div(l)y + 7l (72)
with div(l) € Z € Lj_, and r € Q. One of its distinguished properties is ﬁ(l) € L'. The Proposition
2.2 in[Bru04] tells us furthermore that

L=1L;,®¢ZDIZL. (73)
Considering the sublattice
b={ e L :(\I1)=0(moddiv(l))} (74)

we can decompose A € Ljas A = N, +yy+al withe € Q, y € div(l)Z and \; , € L;,. This allows
us to introduce an isomorphism of lattices by

(A 0)

I I _ Y
pilo = Lig A Ay =

Cly- (75)
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One easily finds that p(L) = L, such that we have a surjective map p : Ly/L — L; /Ly . Next we
want to reduce the modular form f to a modular form f, . for the Weil representation of D(L; ). We
define a function fr,  : H — C[D(L;,)] by

fo,(m)= > S fy(r)es. (76)

BeL; /Ly vELy/Lyp(v)=P

In Theorem 5.3. of [Bor98] it is proved that f7, _ is a nearly holomorphic modular form for the Weil
representation on D(L; ) of weight k if f is a nearly holomorphic modular form for the Weil rep-
resentation on D(L) of weight k. We call fr,  the reduction of f to the lattice L;,. Of course we
have

pp(Z7)ey = e(sign(D)/2)ey, (77)
so if the signature of D is even we find that we can consider pp as unitary representation of SLy(Z).
Since we are mainly interested in discriminant forms of even signature we specialize to this case for the

rest of this subsection. Scheithauer showed in Theorem 4.7 of [Sch09] that the matrix m = <i Z) €

SLy(Z) acts as

pp(m)e, = £V J%' 5 A0/ 20BNl D) 79)

on C[D], where ¢ is a root of unity that depends on m and D. We will write { = {p(m) if we want
to highlight this dependance. Take any congruence subgroup I of level N, i.e. I'(N) C T" C SLy(Z)
and any character of finite order x of I with I'(/V) C ker(x). We can define a vector valued modular
form of weight £ € Z for the congruence subgroup G with character x to be a holomorphic function
f : H — C[D] that satisfies
(f[EPm)(r) = x(m) f(r) ¥m € T. (79)
Let s be any cusp of I' and take My € SLy(Z) such that Mgioo = s. We can define f at the cusp s by
f5(m) = (F1R” Ms) (7). We set
s, =T N M T M, (80)

and call the smallest positive integer t(s) such that +7%(*) € T'_ the width of the cusp s. For simplicity
we assume —1 € T, then the width is the smallest positive integer such that T*) € T'S_. We define
T, € T by T%) = M T, M, and for any component fs,5 of fs we obtain

Fon (T + () = X(Ts)e(—t(s)7%/2) fory (7). (81)
Since X has finite order we get that x(75) is a root of unity, i.e. we find rs € Q such that x (7s) = e(r5).

We put g(7) = fs(t(s)7) and obtain g( + 1) = x(Ts)e(~t(s)y%/2)g(1) = e(rs — t(s)7?/2)g(7).
Altogether we obtain a Fourier expansion of f at the cusp s by

fs(m) = Z Z as (n)%?(s)- (82)

YED neZ+(rs—t(s)y2/2)

In [Bor00] the numbers 7 are evaluated in the special case of certain Dirichlet characters for I' =
I'o(N). Next we specialize the discussion to I' = I'; (V). We may denote the level of the discriminant
form D by M and assume (N, M) = 1. We furthermore assume that we can decompose D as D =
Dy & Dy with discriminant forms D; of level M; = level(D;) for i = 1,2. We assume (M, M3) =1
and obtain M = M;M,. For a fixed rational number x € Q we embed D(z) into D such that
v € C[D(x)] is just an element v = > cp arey € C[D] withay = 0if A ¢ D(x). Let f : H — C[D]
be a modular form for I'; (V) with character x of I'; (V) of finite order with I'(N) C ker(y). For
example for z € Q with Nz € Z we can define such a character by x,(M) = e(—bzx) with M =
a b
d

defined by (65). Of course this is a holomorphic function.

€ I'i(N). We define ' : H — C[D1] by f'(7) = (f(7),v). Where (-, -) is the partial pairing
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Proposition 2.2.1. Take a vector valued modular form f of weight k for pp for I'1(N) with character
X- Forz € Q and any v € C[Dy(x)] the holomorphic function f’, defined by f'(7) = (f(7),v) is a
vector valued modular form for pp, for I't (N My) with character x X 5. Let s be a cusp of I'1 (N Mz) and
My € SLy(Z) with Mgico = s. We can consider s as a cusp of I'1(N) and write fs = f|xMs. Then
f = F/|kM, is given by

fé(T) = Z ( Z (pDQ(MS)eAQ’U)(f$)>\1+>\2(7—)) €A (83)

M€ED \A2€D>

Proof. A direct consequence of (78) is that
P (M)ex, = XDa(M)X22/2(M)eary = Xaz/2(1m)ers (84)

“ 2 € I'y(Ms). Notice that we have xp,(m) = 1 and d\2 = A2, because of
a = d = 1(mod My). Using this we can compute for m € I'; (N M) that
(1" m)(r) = j(m,7)~*ppy (m) f' (m7)
= {j(m, 7) " pp, (m) @1df (m), v)

(85)
(86)
j(m,7) 7" @ pp, (m)pp' (m) f (m7), v) (87)
(88)
(89)

for all m =

85
86

=
= (x(m)ld ® pp,(m) f(1),v)

88

= > x(m)(Id @ pp,(m) fr, 12, (T)er, v) 89
\eD

= Y > xm)xa(m)(ex,, v) friea(Ten, (90)
M ED1 A2€D2(x)

= x(m)xz(m)f'(7). (91)

So f’ is indeed a vector valued modular form as stated in the proposition. The statement about f!
follows by a similar argument. O

An important special case is v = 3"y p, () axex € C[D2(0)], i.e. v is supported by isotropic elements
of Ds. If v furthermore satisfies agy = a) for all A € D2(0) and d € (Z/M>Z)* we call it invariant
under (Z/MsZ)*.

Proposition 2.2.2. Take a vector valued modular form f of weight k for pp for Io(N) with Dedekind
character x. For anyv € C[D2(0)] invariant under (Z/M2Z)* the holomorphic function f’, defined by
/(1) = (f(7),v) is a vector valued modular form for pp, for To(N Ms) with character xxp,. Let s be
a cusp of o (N My) and M € SLy(Z) with Mgico = s. We can consider s as a cusp of I'o(N') and write
fs = flkMs. Then f; = f'|;.M; is given by

for) = ( > (PDQ(Ms)%,v)(fs)A1+A2(T)) ex- (92)

MED1 \A2€Do

Proof. This proof makes use of

pD,(M)ex, = XD, (m)ear, (93)
for any m = Z € T'o(My) which is a consequence of (78) as well. The rest of the reasoning is
similar to the proof of Proposition 2.2.1. O]
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2.3 Jacobi forms of lattice index

In this subsection we introduce Jacobi forms of lattice index, which are closely related to vector-valued
modular forms for the Weil representation. A classical introduction is [EZ13]. Further sources are
[CG13] and [GN] and there are well-written expositions in [Wan19b] and [Moc19]. The book [CS17]
gives another short introduction. We especially follow [Wan19b] closely. We assume that L is an even
positive-definite lattice. As usual we denote is bilinear form by (-, -) and its dual lattice by L’. To the
lattice L we can associate its Heisenberg group

H(L®R) :={[z,y;r] :z,y € LR, r € R}, (94)
equipped with the group structure defined by
[z1,y1;57m1][T2, Y23 m2] = [21 + 22,91 + Y2511 + 12 + 1/2((21, ¥2) — (22, 91))]- (95)
The integral Heisenberg group is given by the subgroup

H(L):={[z,y;r] :z,y € L,r +1/2(z,y) € Z}. (96)
Form = (Z Z) € SLa(R) we set

mlz,y;r] == [dz — cy,ay — bz : 7] = [(z,y)m ;7] € H(L ® R). (97)

This defines an action of SLy(R) on H(L ® R) and we can consider the semi-direct product SLy(R) x
H(L ® R) with the group structure

(ml, hl)(mg, hg) = (mlmg, (m;lhl)hg) (98)

We denote this group by I'/ (L ® R) and call it the Jacobi group. The integral Jacobi group is given by
the subgroup
I'/(L) := SLy(Z) x H(L). (99)

Let ¢ be a holomorphic function on H x (L ® C). We can define slash-operators |,m and |h for k € Z,
m = (‘CL b) € SLy(R) and h = [z, y;7] € H(L ® R) by

d
= j(m,7) Fexp [ —mi oz 2) mr, —
(@lim)(r.2) = i(m. ) exp (i) (2 ) (100)
(plkh)(1,2) = exp (mi((x, )T + 2(x, 2) + (x,y) + 2r)) ¢(7, 2 + 2T + y). (101)
By use of (m, h) = (m, [0,0;0])(Id, h) we can set
(¢l (m, h))(7, 2) = (¢|K(m, [0, 0;0]))(7, 2)(¢[k(1d, h))(7, 2). (102)

This defines an action of the Jacobi group I'/ (L ® R) on the space of such functions. We can introduce
such slash-operators for half-integers k£ € %Z as well. But one has to introduce suitable multiplier
systems or replace the Jacobi group by a suitable double cover. Since we are not in need of this we just
refer to the literature. See [CS17], [Wan19b] and [GN]. A holomorphic function ¢ on H x (L ® C) will
be called weakly holomorphic Jacobi form of weight k and index L if it satisfies

(@l (m, h))(7, 2) = ¢(7,2) V(m, h) € H(L) (103)
and admits for some n; € Z a Fourier expansion like

$(r,2)= > fn, 1) (E2) (104)

n>ny,lEL’
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If a weakly holomorphic Jacobi form ¢ satisfies f(n,l) = 0 foralln < 0and! € L' we call it a weak
Jacobi form. We put N (n,l) := 2n — (I,1) and call ¢ a holomorphic Jacobi form if f(n,l) = 0 unless
N(n,l) > 0. Finally we call ¢ a cusp form if f(n,l) = 0 unless N(n,l) > 0. The number N(n,[) is
called the hyperbolic norm of the Fourier coefficient f(n,[) and we call

Z f(TL, 1)62m’(n7+(l,z)) (105)

n>ny,leL'N(n,l)<0

the singular part of ¢. The corresponding spaces of Jacobi forms will be denoted by J};’I’} Jir> JkL
and Ji ;. Given a positive-definite lattice L we can define the Jacobi theta series of L for A € D(L) by

Ok(r,z)= Y emiliriaea), (106)
lEN+L

It is well known that those functions converge locally uniformly on H x (L ® C) and therefore define
holomorphic functions on this space. The function ©X(7, 2) = 3", D(L @ Y(7, z)e) has many remark-

able properties. For example ©% (7, 0) defines a vector valued modular form of weight % for the
Weil representation pp(r) and the metaplectic group Mp,(Z). This is a special case of Theorem 4.1. in
[Bor98]. For fixed 7 € H the functions ©%(7, 2) are linearly independent and any weakly holomorphic
Jacobi form ¢ € J,gflf‘ can be decomposed as

= Y A)ex(r,z). (107)

AeD(L)

We call this the theta decomposition of ¢. See in particular the discussion in section 1 of [CG13] and
the literature cited therein. In fact the functions f)(7) define a nearly holomorphic modular form

fo(T) = Xaep) [A(7)ex of weight k + rank( ) € 37 for the Weil representation pp(r) for the full
metaplectic group Mp,(Z).

Theorem 2.3.1 (theta decomposition). Let L be an even positive-definite lattice. For a weakly holomor-
phic Jacobi form of weight k € 7Z and index L the map

o fs (108)

defines an isomorphism from the space of weakly holomorphic modular forms J{* of weight k and index
L to the space of nearly holomorphic modular forms M}H rank(L) (PD(L)) ofwelght k+ %() for pp(r)
Restricted to the subspace of holomorphic (resp. cusp) ]aco?)i forms this induces an isomorphism to the
space of holomorphic (resp. cusp) vector valued modular forms.

For further details about the theta decomposition see [Wan19b] and [Gri12]. Especially useful is
[Moc19] and the literature therein. Notice in particular that the space of Jacobi forms J;;’ I depends

on a particular even positive-definite lattice, whereas the space of modular forms Mk+”‘““( L) (,0 D( L))
rank(L)

just depends on the discriminant form D(L) of this lattice.

2.4 Orthogonal modular forms

Orthogonal modular forms are meromorphic functions defined on suitable domains, associated to the
orthogonal group of some lattice, that have some invariance property under a suitable group action.
Due to their importance in algebraic geometry, number theory and representation theory those func-
tions are studied extensively in the literature. Here we give a brief introduction to this topic and discuss
automorphic products, a particularly important class of orthogonal modular forms. The fundamental
references are [Bor95a] and [Bor98]. A further important exposition is [Bru04]. A slightly different
approach towards automorphic products was taken in [GN]. The following discussion is based on
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[Wan19b], [Bru04] and [Bor98]. A hermitian symmetric space H is a connected hermitian manifold
such that each point p € H is an isolated fixed point of an involutive holomorphic isometry. A her-
mitian symmetric space will be called irreducible if its only possible decomposition into a product of
hermitian symmetric spaces consists of itself. We can distinguish three different types of hermitian
symmetric domains. Those types are the euclidean type, the compact type and the non-compact type.
For us just the non-compact type matters. We call a hermitian symmetric space, that can be written as
a product of irreducible hermitian symmetric spaces of non-compact type, a hermitian symmetric do-
main. Let H be a hermitian symmetric domain and fix any point p € H, which will be called base point.
We denote the group of isometries of H by I(H). The following theorem is crucial in the understanding
of hermitian symmetric domains.

Theorem 2.4.1. Let H be a hermitian symmetric domain and p its base point.
1. I(H) carries a natural Lie group structure.
2. The subgroup K, :={g € I(H) : g(p) = p} is compact in I(H) and the map
I(H)*/Kp — H, 9K}, — g(p) (109)
is an isomorphism of real C'*°-manifolds.

3. The quotient I(H)° / K, can be canonically equipped with the structure of a complex manifold such
that this isomorphism is holomorphic.

4. Conversely for a pair of a connected Lie group G and a closed subgroup K the quotient G/K can
be equipped with the structure of a hermitian symmetric domain if certain condition are satisfied.

The statement of this theorem is a combination of Theorem IV 3.3. in [Hel01] and Proposition VIII 4.2.
in [Hel01]. This book is in fact a general reference for hermitian symmetric spaces. We refer the reader
to it for any further details. Using this statement we can consider a hermitian symmetric domain H as
a certain quotient of Lie groups G/ K. We can now think of modular forms as meromorphic functions
on GG/H that have certain invariance properties under a suitable discrete subgroup I' C G. In the
following we are mainly interested in orthogonal modular forms. Those are modular forms defined on
hermitian symmetric domains of the form O(n + 2)/O(n) x O(2). Before this we introduce a more
explicit description of such hermitian symmetric domains. Let L be an even lattice of signature (n, 2)
with n > 4. We denote its real and complex ambient spaces by V = L @z Rand V(C) = V ®@g C
respectively. We set

K(L):={[Z] e P(V(C)):(Z,Z)=0,(Z,Z) < 0}. (110)

Here - means that we fix a choice out of two connected components of this space. The orthogonal
group O(V) has a natural subgroup O (V') of index 2 which preserves K(L). In fact for a choice of
base point p € (L) the space KC(L) carries the structure of a hermitian symmetric domain that repre-
sents the quotient D, = O™ (V') /Stab,(O1(V')). We call (L) the projective model of the hermitian
symmetric domain Dy. Notice that there are further possibilities to describe the quotient D, in a more
explicit way. For example there are the Grassmannian models. See [Bru04] and [Bor98] for this. We
stick to the projective model and introduce the affine cone over IC(L) by

K(L):={Z e V(C)~{0}:[Z] € K(L)}. (111)
For a rational vector v € L ®z Q with (v,v) > 0 we define the associated rational quadratic divisor by
Ky(L) :={[Z] € K(L) : (Z,v) = 0}. (112)

In the affine cone we denote the corresponding rational quadratic divisor of v € L®7Q with (v,v) > 0
by
vt = Ku(L):={Z € K(L) : [Z] € K,(L)}. (113)
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The discriminant kernel of O(L) is the subgroup O(L) of finite index of O(L) which acts trivially in

the discriminant D(L) = L' /L. We set I'(L) = O(L) N O* (V). Take a subgroup I C I'(L) of finite
index and a unitary character x : I' = C*. A meromorphic function ® : K(L) — C is called modular
form of weight k € Z for T" and x if for all Z € K(L) we have

®(MZ) = x(M)®(Z)VYM €T (114)
d(tZ) =t *®(Z) VYt € C*. (115)

In the following we will call such a modular form homogeneous. This is motivated by equation (115).
The modular variety of orthogonal type is given by the quotient I'\KC(L). It is well-known to carry the
structure of a complex space. By the theory of Baily and Borel [BB66] we know that this space has a
compactification, the so called Baily-Borel compactification F\IC(L)BB. More precisely they showed
that I'\KC(L) can be extended to a set F\IC(L)BB by certain boundary components of dimension 0 and
1, such that this set has a natural structure of a complex space that extends the structure of I'\C(L). In

fact '\ KC (L)BB even carries the structure of a projective variety. We call those boundary components
the cusps of IC(L) or I'\K(L) respectively. A 0-dimensional cusp of (L) can be represented by a
primitive isotropic vector I € L. In the following we discuss what it means to expand a modular
form ® at such a cusp. We consider the lattice L; and fix v € L’ such that (I,~) = 1. Following the
discussion on the previous section we introduce the lattices L;, = L NI+ N~ and L{, and use all
other notations from there. We assume furthermore that L; , contains an isotropic element. Using
L®C=1L;,®CoCy@Clwecanwrite Z;, = Z +ay+blfor Z; € Lo Cand Z € L;, ® C. The
following elaboration is based on Section 3.2 in [Bru04]. In the affine cone (L) we define subsets

K(L), :={Z, e K(L): (Z,1) =1}. (116)

Notice that a vector Z;, = X +iYy, € V(Z) satisfies Z? = 0and (Z, Z1) < Oifand onlyif X7 1 Y7,
and X? = Y? < 0. So X, and Y7, span a 2-dimensional negative definite subspace in V. A primitive
isotropic vector I must therefore satisfy (Zz,1) # 0if [Z;] € K(L). We can use this to express (L)
in a disjoint union

K(L)= | (L) (117)

aeC*

for any primitive isotropic vector [ € L. Furthermore the set
{Z=X+iYel,oC:(Y,Y) <0} (118)
has two connected components and one of them gets mapped into /(L) by
Z =21 =12+ 7+ (=a(2) —q(n)l. (119)
We denote this connected component by H;. We can write
H; =L, @ R+iCT. (120)

Here C is called the positive cone and defined to be the connected component of {Y € L;, ® R :
(Y,Y) < 0} which is contained in H;. By pr;(Z) = Z + v + (—q(Z) — q())l we can define a map
H; — KC(L); which is biholomorphic. Of course the map K(L); — K(L) defined by Z;, — [Z7] is
also biholomorphic, so we get a composition of biholomorphic maps
| N [

H; — K(L); — K(L). (121)
The space H; will be called the tube domain of IC(L) corresponding to [. Of course the space H; and the
projection pr; depend on the choice of v € L but we keep this implicit. For A € L ® Q with positive
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norm we can introduce subsets A of H; similar to (113). Assume \ = Ay +ay+blfor N, € L, ®Q
and a,b € Q. We put
M ={ZcH: (pr;(Z),\) =0} C H,. (122)

and for 5 € L'/Landm € Z — %Qwe set

H(B,m) = U At c H. (123)
AEB+L,g(N)=m

Notice that the subsets A\ and H (3, m) have codimension 1 within H;. We can furthermore introduce

a divisor on Hj
> At (124)
AELB+L,g(A)=m

which is supported by H (3, m) and called a Heegner divisor. We will call the connected components
of

Hy \ H(5,m) (125)
the Weyl chambers of index (3, m). To each Weyl chamber W we can associate a Weyl vector pg (W)
in L; , ® R but we refer to the literature for the definition. See Definition 3.5. in [Bru04]. Due to the
decomposition in (117) we find a unique number J; (g, Z) € C* and an element g - Z € Hj such that

gpr(Z) = Ji4(9, Z)pr,(9 - Z) (126)

for any g € O*(L) and Z € Hj. This defines an action of O (L) on H;. For a meromorphic function
F : K(L) — C we can define a meromorphic function F; : H; — C by F; = F o pr;. Assume that

® is a meromorphic modular form of weight & for a finite index subgroup I' C T'(/) and a character
X : ' = C*. Then ®; satisfies

O|,g(Z) == J14(9,2) " (g Z) = x(9)®:1(Z) VZ € H,. (127)

We call ®; the expansion of ® at the cusp l. Of course a modular form @ is uniquely determined by its
expansion ®; at the cusp . So far we just worked with integral weights k € Z. For now we assume
that k is a rational number, i.e. kK € Q. This discussion relies on section 3.3 in [Bru04]. We fix a choice
of holomorphic logarithm Log(j(g, Z)) for each g € O (V') and Z € H such that we can define

j(g, Z)F = Moel(9.2)), (128)

For every rational k € Q there exists a map wy from O (V) x OF (V) to the set of roots of unity of
order bounded by the denominator of £ such that

(9192, Z)*F = wi(g1,92)i (g1, 922)"g(g2, Z)*. (129)

Notice that wy, just depends on k(mod Z). Let ' C O™ (V') be a subgroup as above. A multiplier system
of weight k of I is a map

x:T=Sl={teC:|t|=1} (130)
that satisfies

x(9192) = wi(g1, 92)x(91)x(92)- (131)
for all g1, g2 € I'. If k is an integer the definition of a multiplier system reduces to a character of I". So

far we we just considered modular forms ® defined on K(L).

Definition 2.4.2. Take k € Q. Let I' C I'(L) be a subgroup of finite index and x a multiplier system
of weight k. A meromorphic function ® : H; — C is called meromorphic modular form of weight r
and multiplier system x with respect to I, if

®(9Z) = x(9)j(9.2)" ®(2) (132)

for all g € I'. If ® is holomorphic on H; we call it a holomorphic modular form.
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This is Definition 3.18. in [Bru04]. In the following we will work with this definition of modular forms,
since it makes it easier to consider modular forms of rational weight £ € Q. If ® is a homogeneous
modular form of integer weight k € Z with some character x for a group I', then its expansion ®; at
the cusp [ is a modular form in the sense of Definition 2.4.2. Let f be a nearly holomorphic modular
form of weight k = 1 — 5 for the Weil representation ppr). We assume that the Fourier coefficients
[f+](n) contributing to the principal part, i.e. withn < 0, satisfy [f,](n) € Z. The Weyl chambers with
respect to f are the connected components of

H\ U U H(B,m). (133)

BeLy/L m<0,[fg](m)#0

For each such Weyl chamber W and each 8 € L{;/L and m € Z — %2 we find a Weyl chamber Wjg ,,,
of index (3, m) such that W C Wj,,,. We can define the Weyl vector pyy, s attached to W and f by

PW,f:% >, > 1fslm)pgm(Wam). (134)

BGLG/L mEZ—%,m<O

For any Weyl chamber W with respect to f and every A € L;  we write (A, W) < 0if (A, w) < 0 for
eachw € W.

Theorem 2.4.3 (Borcherds 1998). Let L be an even lattice of signature (n, 2) forn > 3. Take a primitive
isotropic vector | € L and some~y € L' with (I,7) = 1. As above we consider the space H;. Let f be
a nearly holomorphic modular form of weight k = 1 — 5 for the Weil representation pp(r). We assume
that the Fourier coefficients [ f,](n) contributing to the principal part, i.e. withn < 0, satisfy [f,](n) € Z.
Then there exists a meromorphic function ®¢ : H; — C with the following properties:

1. The function ® is a meromorphic modular form of rational weight W& for the group I'(L) and
some multiplier system x of finite order. If [ fo](0) is an even integer than X is just a character.

2. The only zeros or poles of ®; are on rational quadratic divisors ML for X € L with (\,\) > 0 are
zeros or poles of vanishing order

2
> aarzl (—3«“2/\2> : (135)

0<z€Q,z\eL!

3. For each Weyl chamber W C M with respect to f the modular form ® has an infinite product
expansion converging in a neighborhood of the cusp l. Up to a constant this product is given by

e((Z, pw,z)) H H (1—e((8,7) + (2, )\)))[fd}(—AQ/Q). (136)
XEL] (A W)<0S€Lj/L,p(8)=A+Ly -

Here pyy, s is the Weyl vector attached to W and f.

This is Theorem 13.3 in [Bor98]. The precise formulation is Theorem 3.22 in [Bru04]. A meromorphic
modular form @y will be called an automorphic product of the nearly holomorphic modular form f. A
necessary condition for a meromorphic modular form to be an automorphic product is of course that
its divisor is linear combination of rational quadratic divisors. Yet for suitable lattices this property is
also sufficient. See in particular the work of Bruinier in [Bru04] and [Bru14].

Theorem 2.4.4 (Bruiniers converse theorem). Let L be an even lattice of signature (n,2) withn > 4
such that there is a positive definite lattice and a positive integer m with L = K @ I 1 @ II; 1(m). Then
every modular form for the discriminant kernel I'(L) whose divisor is a linear combination of rational
quadratic divisors is a multiple of a Borcherds product of a nearly holomorphic modular form for the Weil
representation.
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In the following we specialize the discussion to automorphic products where we assume that the divisor
has special properties. Let L be an even lattice of signature (n, 2). Remember that the divisor of r € L
is the positive integer div(r) given by (7, L) = div(r)Z. The element r € L is called primitive if
Qr N L = Zr. 1t is easy to see that an element r € L is primitive if and only if there is an element
v, € L’ such that (r,v,) = 1. Notice that this does not depend on the assumption that L is an even
lattice. We can characterize primitive elements by that in any rational lattice with non-degenerate
bilinear form such that (L) = L.

Lemma 2.4.5. Foreveryr € L\ {0} wesetr* := di%(r)r € L'. This element has the following properties:
1. The element r* € L' is primitive and we have Qr N L' = Zr*.
2. Foreveryr € L\ {0} and every q € Q with qr € L we have div(qr) = qdiv(r) and (qr)* = r*.

3. Foreveryr € L\ {0} we have ord([r*])|div(r) and ord([r*]) = div(r) if and only if r is primitive
in L.

4. For a primitive element r* € L’ we can set ro = ord([r*])r* and this element is primitive in L.

Proof. We have (r, L) = div(r)Z. This implies that (r*, L) = Z and therefore r* is primitive in L’.
Obviously we have Qr N L' = Zr*. Assume ¢ € Q satisfies gr € L, then we have

div(qr)Z = (qr, L) = qdiv(r)Z. (137)

This implies div(qr) = ¢div(r) and (¢r)* = r* is a direct consequence. Because of div(r)r* € L we
obviously have ord([r*])|div(r). If r is primitive then ord([r*])r* = Orcﬁ‘(/[(?;)])r € Limplies 7% ([(T )]) €Z,
so we get ord([r*]) = div(r). Now we assume that ord([r*]) = div(r) and gr € L for some g € Q. We
have seen above that (¢r)* = r* and ord([(r)*]) = ord([(¢r)*])|div(gr). But we also have div(gr) =
qdiv(r) = gord([(r)*]) and this implies ¢ € Z. Therefore r € L is primitive. Let now r* € L’ be
any primitive element of L’. Of course we have r¢ := ord([r*])r* € L. Since r* is primitive we find

vy € L with (r*,v,«) = 1. This implies

div(r)Z = (ro, L) = ord([r*])(r*, L) = ord([r*])Z. (138)
We obtain div(rg) = ord([r*]) and this implies that 7 is primitive. O
For a vector r € L’ with r2 # 0, the corresponding reflection o, : L ® Q — L ® Q is defined by

2(r, x)
(r,7)

Definition 2.4.6. A primitive vector r € L of positive norm will be called a root or reflective if o, is
an automorphism of L.

or(x) =z — rforr e L ® Q. (139)

Clearly a primitive vector € L is a root if and only if ﬁ—g € L'. A rational quadratic divisor 7 is

called reflective if r is a root of L. For simplicity we will call a reflective rational quadratic divisor 7+
a reflective divisor.

Lemma 2.4.7. Let L be an even non-degenerate lattice and r € L a primitive element. The following
statements are equivalent:

1. The vector r is a root in L.

2. We have #r* € L.

3. The number (7"%)2 is an integer and we have ord( [r*])]ﬁ
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Proof. We start with 1. = 2.: Since 7* is primitive we find v,» € L with (v«,r*) = 1, so we get
ﬁr* = vy« — op(vp+) € L. Next we show 2. = 3.: Since r* is primitive we find an element v,» € L

such that (r*,v,») = 1. We obtain that # = (%, vT*) must be an integer. The statement is a

direct consequence. Finally we discuss 3. = 1.: The statement directly implies that o,.(z) € L for all
x € L. So o, is an automorphism of L. Since r is primitive it is also a root. O

For the following discussion we fix a primitive isotropic vector [ € L and v € L' with (I,y) = 1. We
may assume that L; , contains at least one non-trivial isotropic vector as well.

Definition 2.4.8. Let L be an even lattice of signature (n,2) and k € Q. A non-constant meromorphic
modular form ® : H; — C of weight & for the finite index subgroup I' C T'(L) is called reflective if
its divisor is a linear combination of reflective rational quadratic divisors. We call the modular form
® strongly reflective if it is holomorphic and the multiplicity of each reflective quadratic divisor r i
either 0 or 1.

S

Of particular interest for us will be reflective automorphic products, i.e. automorphic products that are
reflective modular forms. We will furthermore say that a reflective modular form is reflective with a
2-root if there is a root r € L with r?> = 2 and div(r) = 1, such that this reflective modular form
satisfies mult(r+) # 0.

2.5 Kac-Moody algebras and their representation theory

Semi-simple Lie algebras are well-known to have a realization by generators and relations. Essentially
one associates to each simple root «;, of such a Lie algebra, some generators ¢;, f; and h; which satisfy
a collection of relations determined by the Cartan matrix of the Lie algebra. A particular feature of
those Cartan matrices is that they are positive-definite. Conversely, some properties of those matrices
can be used to define such Cartan matrices in an abstract way. The construction by generators and
relations now yields precisely the semi-simple Lie algebras. It turns out that this construction still
gives interesting Lie algebras, if the conditions on those Cartan matrices are loosened in a certain way.
In particular, if we omit the positive-definiteness we obtain Kac-Moody algebras. The corresponding
matrices are then called generalized Cartan matrices. Usually they are infinite dimensional but besides
that, they have properties similar to those of semi-simple Lie algebras. For example they have a sensi-
ble root structure and a well understood theory of highest-weight modules. A very important subclass
of such Kac-Moody algebras is given by the affine Kac-Moody algebras. Their most intriguing property
is, that we don’t have to construct them by generators and relations. This is because there is a construc-
tion for affine Kac-Moody algebras by extension of simple Lie algebras. In this subsection we give a
brief introduction to those Lie algebras and discuss this construction in detail. Excellent introductory
literature about Kac-Moody algebras is [Kac90], [KP84], [KW88] and [KMPS90]. Since this topic is
important in string theory and conformal field theory there is also excellent literature from physics,
namely [Fuc95] and [GO86]. For an introduction to semi-simple Lie algebras see [Hum12]. The follow-
ing elaboration is based on all those sources. In particular [Kac90]. For the sake of simplicity we focus
on untwisted affine Kac-Moody algebras. Let g be a simple Lie algebra with Cartan subalgebra f and a
root system A. We fix a choice of simple roots

M= {a1, - ,a,} Ch (140)
and denote the corresponding set of coroots by

O={d1, -, dn} CH". (141)
We introduce the Cartan matrix A = (a; j)1<i j<n of g by a; j = (i, &;) as usual. Here by (-, -) we

denote the usual pairing. The Killing form of g will be denoted by (-, -) x and the normalized invariant
bilinear form (-, ) is the Killing form rescaled such that (0, 0) = 2. Here we denote by 6 the highest

25



root of g. Since g is simple there can just be two root lengths and the highest root 0 is always a long
root. Under the identification of h with h* induced by (-, -) we can identify &; with 2a;/(c, o;). The
corresponding fundamental weights A; € h* are defined by

Ai(aj) = (52',]'. (142)

For such a simple Lie algebra g the corresponding untwisted affine Kac-Moody algebra is

g=Clt,t ' ]®g®CK @ Cd. (143)

Here K is a central element in d is a derivative such that the Lie bracket [-, -] of § is defined by
[t" @2, t" @y] = """ @ [z, y] + Mmooz, y) K (144)
[d,t" ®@y] =nt" @y. (145)

We introduce the commutative subalgebra
h=haCK @ Cd (146)

of g. We call b the affine Cartan subalgebra or simply Cartan subalgebra of g. By extending A € h*
trivially to h* we get h* C h*. We define elements Ag,d € h* by Ag(h @ Cd) = 0, Ag(K) =1
d(h ® CK) =0and 6(d) = 1. It is clear that we obtain

A

h* =bh* @ CAy @ Co. (147)

We define a projection - : h* — b* by *|p+ = id|p+ and *|ca,ecs = 0. By ag = 0 — 6 we can define a
simple root and it is well known that

H:{a(]valv"' aan} (148)

is a set of simple roots of §. Furthermore by ¢p = K — 0 we can define a simple coroot such that

~

H:{d()vdlv"' 7dn} (149)

is the corresponding set of coroots of §. As in the finite case we can define a matrix A = (a; ;)o<i j<n
by a;; = (o, &;). This is the so called generalized Cartan matrix of g. Of course we can reproduce the
finite Cartan matrix A by deleting the 0-row and 0-column. Following §6.1 in [Kac90] we can associate
to each simple root o; certain numerical labels a; and d;, the so called Coxeter labels and dual Coxeter
labels. Using those labels we introduce the numbers

h= Z a; and (150)
=0

h=>"a, (151)
=0

which we call Coxeter number and dual Coxeter number. In §6.1 of [Kac90] we can find a table with
those numbers for all simple untwisted affine Kac-Moody algebras. Using the fact that dg = 1 we can
write

0= Zaiai € @ and (152)
i=0

K = Zdl&z € Q, (153)
i=0
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where () and Q are the root lattice and coroot lattice of g, i.e. the Z-span of the roots and coroots
respectively. Another important property of the Coxeter labels is G;|a; and the fact that for some
symmetric matrix B we have

A= diag(GO/éOa o aan/dn)B (154)

Next we need to extend the normalized bilinear form (-, -) to §. We do this by
(" @z, 1" ®y) = dnm(z,Y), (155)
t" @z, K)=({t"®z,d) =0, (156)
(K, K) = (d,d) = 0 and (157)
(K,d) = ao. (158)

This bilinear form induces a identification map v : 6 — 6* that satisfies

CVLZV(CVYZ) = a;q;, (159)
v(K) =4 and (160)
v(d) = aply. (161)

The induced normalized bilinear form (-, -) on h* satisfies

(ag, ) = (ai/ai)a; Vi, j =0, (162)
(i, No) =0Vi=1,---,n (163)
(ag, Ag) = ay * and (164)
(Ao, Ag) =0 (165)
For A € 6* we can now write _
A=A+ (N K)Ag+ (A Ag)d. (166)
The Weyl vector p € b*, defined by (p, ¢;) = 1 and (p, d) = 0 satisfies

p=7p+hi. (167)

There is a very interesting connection between the dimension dim(g) and the length of the Weyl vector.
More precisely we have the strange formula of Freudenthal-de Vries, which is

Ip]" _ dim(g) (168)
2h 24
For every simple root o; € II we define a reflection r; acting on h* by
ri(A) = A — (A, &)y (169)

The group generated by all r; is called affine Weyl group and denoted by W. Take w = r;, ---r;, € W.
We call such an expression reduced if w can’t be written as a product of reflections ;, corresponding
to simple roots, with less then s factors. In this case we call s the length of w and denote it by e(w )
We denote the set of all roots of g by A. Of course we can construct real forms bR and bR of h and h*
simply by considering the R-span of the simple roots or coroots respectively. The fundamental Weyl
chamber is

C:{hGGR:(ai,MZO, fori =0,---,n}. (170)

For w € W the sets w(C') are called Weyl chambers. Of course we can introduce the dual fundamental
Weyl chamber by
C={Nebh: (@A >0, fori=0,---,n} (171)

and the dual Weyl chambers by w(C). A root av € A will be called real if there is w € W such that
w(a) is a simple root. We denote the set of real roots by A" and the set of positive real roots by A’f.
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Proposition 2.5.1 ([Kac90, §5.1]). Let « be a real root of an untwisted affine Kac-Moody algebra §. Then
we have:

1. mult(a) = 1.
2. ka is aroot if and only if k = £1.

3. If B € A then there exist nonnegative integers p and q related by the equationp — q = (3, &), such
that B+ ka € AU{0} ifand only if —p < k < ¢, k € Z.

4. For the bilinear form defined above we have (a,«) > 0 and if o« = Y kjcy;, then ki(a;, a4) €
(o, )Z.

A root o € A which is not real will be called imaginary and we denote the set of imaginary roots by
A'™ and the set of positive imaginary roots by AY". We have A" = A" U (—=AY™).

Proposition 2.5.2 ([Kac90, §5.2]). Imaginary roots have the following properties:
1. The set A"™ is W -invariant.
2. For every a € AU™ there exits a unique root 3 € —C that is W -equivalent to c.
3. The root o € A is imaginary if and only if (o, o) < 0.
Next we want to express the roots A of § in terms of roots A of g. Following §6.3 in [Kac90] we get
A = {45, 426,435, --- } and A" = {5,26,35,---} (172)

for the imaginary roots. The real roots are given by

A ={a+nd:acAnecz} (173)
and the positive real roots are
A’f:{a—l—néeAre:an,n>0}UZ+. (174)
We can define subset fi of g by
ir= P fa- (175)
aEA L
Of course we have the property
g=n_>®gony (176)
and obtain
Ug) =Um-)@U@@) @ U(5y). (177)

We denote the Weyl group of g by W and discuss its relation with 1. See §6.5 in [Kac90] for this and
further details. For o € h* we introduce an endomorphism ¢, on h* by

ta(N) = A+ (N, K)a — (A, a) + %\a|2<)\, K))o. (178)

For o, B € h* and w € W we have

tats = targ and t,(q) = wtaw ™. (179)

v

We can introduce a sublattice M of hy by M = v (Q) C Q. Of course this is just the coroot lattice of

g embedded into h. By (178) we can define a faithful action of the lattice M on 6* Considered as a
subgroup of GL(h*) we denote the corresponding group by 7" and call it the group of translations. The
finite Weyl group W and the group of translations can both be considered as subgroups of W.
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Proposition 2.5.3. The Weyl group W is a semidirect product W = W x T.

As usual we can introduce fundamental weights A; of § by A;(a;) = d;; and their relation to the
fundamental weights A; of g is

A = Kz + a; Ao. (180)
We can write A € h* as
i=0

with labels n;, = (A, ;) and ¢ = (A, d). The number (A, K) will be called the level of A. In the
following we introduce some basic representation theory for affine Kac-Moody algebras. This is highly
influenced by sections §9 to §12 in [Kac90]. Consult this for any further details. We consider a g-module
V which is G-diagonalizable, such that its weight spaces V), are finite-dimensional. For A\ € b* we
introduce D(A\) = {u € h* : ;1 < A}. Assume furthermore that there are finitely many Ay, --- , A; €
6* such that

P(V)c D). (182)
We define the category O of g by taking all g-modules V' with the previously mentioned properties as

objects. The morphisms are just the homomorphisms of g-modules. A g-module V' in category O is
called highest-weight module of highest weight A € P(V') if there is a nonzero vector vy € V such that

fiyvp = 0and hvy = A(h)vp forall h € h and (183)

U(g)oa = V. (184)

A highest-weight module M (A) of highest weight A € b is called Verma module of highest-weight A if
every g-module of highest-weight A is a quotient of M (A).

Proposition 2.5.4 ([Kac90, Prop. 9.2.]). Take A € .
1. There exists a unique Verma module M (A) up to isomorphism.
2. Viewed as a U(fi_)-module M (A) is free of rank 1 and generated by a highest-weight vector.
3. M(A) contains a unique proper maximal submodule M'(A).

As a consequence of this proposition there is a unique irreducible highest-weight module L(A) =
M (A)/M'(A) of highest-weight A. Furthermore it is well-known that any irreducible module in cat-
egory O is of this form for some highest-weight A € b. For an object V in the category O we call a
vector v € V) primitive if there is a submodule U C V such thatv ¢ U and fi;v C U. The module V'
is generated by its primitive vectors as a g-module. If a weight A € P(V') admits a primitive weight
vector we call it primitive as well. Next we consider formal sums of the form

Z c(\)e?, (185)

Aeh*

where ¢(\) € C with the property that ¢(\) = 0 for \ not contained in the union of finitely many
D(j1). We denote the set of all such formal sums by £. By extension of e*e# = e**# we can turn this
set into a associative commutative algebra over C. See §9.7 in [Kac90] for details. In particular we can
define an action of the Weyl group W on € by w(e*) = ¢V, For a module V in category O we write
multy (A) for dim(V),) so that we can introduce the formal character of V by

ch(V)= > multy(N)e €&. (186)
AeP(V)
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The character of a module V' is one of its most important invariants. We can define Kostants partition
function K by
[T (1= ()™ = 37 K(B)e(B). (187)

CZEA+ ﬁef)*

Then the multiplicities of the weights of the Verma module M (A) are given by
multM(A) ()\) = K(A — )\) (188)

Usually a module V in category O does not possess a composition series but there are related structures,
such that we can still define a multiplicity [V : L(u)] of L(p) in V. The multiplicity of L(u) in V' is
nonzero if and only if p is a primitive weight of V. Using those multiplicities we can express the
character ch(V) as

ch(V) = > [V : L(A)]ch(L(X)). (189)

Aep*

See sections §9.6 and §9.7 [Kac90] for details about this. The study of the characters ch(L())) is an
important task in the representation theory of Kac-Moody algebras. Following §10 in [Kac90] we
introduce

P={hebh*:(\&)eZfori=0,---,n}, (190)
P, ={heP:(\c&)>0fori=0,---,n}and (191)
P,y ={heP:(\d&)>0fori=0,---,n}. (192)

We call P the weight lattice of § and its elements are called integral weights. Elements in P, are called
dominant weights and elements in Py are called regular dominant weights. We call an irreducible
module L(A) integrable if A € P.. See §3 and §10 in [Kac90] for details and an alternative approach.
Integrable modules have many remarkable properties. See in particular § 10 in [Kac90]. We discuss a
few of those properties in the following. Starting with the fact that for A € P, we have

multy,y)(A) = multz,p) (w(N)) for w € W. (193)

So the multiplicities of the weights A\ € P(L(A)) are invariant under the Weyl group W. Another way
to express this fact is

w(ch(L(A))) = ch(L(A)). (194)

In the following we mainly work with irreducible integrable modules L(A), therefore we simplify
notation by multy («) for multy,(»)(a), chp for ch(L(A)) and P(A) for P(L(A)).

Theorem 2.5.5 (character formula). Take A € Py. Let L(A) be the corresponding irreducible integrable
module of §. Then we have

oy = Swew w)ew(d+p) ~ p) 199

HaEA+(1 _ e(_a))mult/\(a) .

A famous special case of this theorem is A = 0. In this case we get chy = chy = 1" = 1 so that we
obtain the denominator identity

T @ e(—a)™@ = 3 c(w)e(w(p) - p). (196)

OZEA+ weW

Another important property is the multiplicity formula

multy (A) = Z e(w)K(w(A+p) — (A+p)). (197)
weW

A direct consequence of the multiplicity formula is

multy  ,5(A + ad) = multy (A) Va € C. (198)
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So far we considered formal characters chy, i.e. formal expansions in a certain C-algebra £. Now we
focus on analytic properties of functions induced by such characters. Notice therefore that ¢* induces

a holomorphic function on b by h + eV For any module V in category O we define a function
hichy(h) = Y multy(\)e. (199)
AeP(V)

We define the set Y (V') to be the subset of b on which this series converges absolutely. We define sets

Y ={heh: Z mult(a)|e M| < 00} and (200)
aceAL
Yy = {h € b :Re({o,h)) > N fori =0,--- ,n}. (201)

For A highest-weight module V' we have that Y (V) is a convex set and
YnY,cY(V). (202)

See Lemma 10.6 in [Kac90] for this. We go back to the special case V' = L(A) with A € P;. An explicit
description of Y(L(A)) is given in §11.10 of [Kac90]. Assume that (A, &;) # 0 for some i, then the
region of absolute convergence of chy is

Y(L(A) ={heh: Y mult(a)le M| < oo} = {h € b:Re((d, h)) > 0}. (203)

OZEA+

In particular we see that the region of absolute convergence Y (L(A)) does not depend on the choice
of A € P,. Following Proposition 10.6 in [Kac90] we find that ch, defines a holomorphic function on
Int(Y (L(A))). We call this holomorphic function the character of L(A) and denote it by chy. Further-
more the series 3,y [ (w)e” (A7) converges absolutely on Int(Y (A)) as well. We need to understand
more about the weights P(A) of an irreducible module L(A) with A € Py.

Proposition 2.5.6 ([Kac90, Prop. 11.4]). Let A € Py and A\, u € P(A). Then
1. (A,A) — (A, p) > 0 and equality holds if and only if A = 1 € WA.
2. |A+ p|> — |\ + p|? > 0 and equality holds if and only if \ = A.
If the highest-weight A of some highest-weight module V" has level (A, K) then we say that also the
module V has level (A, K). For A € P, we obtain
k= (\NK) = zn:di@\, &;) € Z>o. (204)

On L(A)) the element K has to act as multiplication by (A, K') but obviously also by (A, K'), since its
kernel is a submodule. We obtain (A, K) = (), K) for all A € P(A). Note that we have

P =) "7ZA; + Céand (205)
=0
Py =Y "7\ +Cs. (206)
1=0
We set furthermore
PF={AeP:(\K)=k}and PF = PEnP,. (207)

Proposition 2.5.7 ([Kac90, Prop. 12.5.]). Take A € P¥. Then L(A) satisfies:

L P(A)=W{re P, :X<A)

31



2. P(A) = (A + Q) N convex hull of WA.
3. If \,pu € P(A) and p lies in the convex hull of W\, then multy (1) > multy (\).

4. P(A) lies in the paraboloid {\ € b% : [N? + 2k(\, Ag) < |A|%; (X, K) = k} and the intersection
of P(A) with the boundary of this paraboloid is W A.

5. For A € P(A) the set of t € Z such that A — t§ € P(A) is an interval [—p, +00) withp > 0 and
t — multy (X — t0) is a nondecreasing function on this interval. Moreover, if v € g_5, x # 0 then
the map x : L(A)x—t5 — L(A)r—(141)5 s injective.

6. Setn'® = @D.~0 0—ns then L(A) is a free U (n(d)) -module.

We call a weight A € P(A) maximal if A + § ¢ P(A). The set of maximal weights of L(A) will be
denoted by max(A) and we have a disjoint union

PN = |J {A—-nd:neZi}. (208)
A€max(A)

Now we follow §12.7 in [Kac90] by introducing the modular anomaly of A by

A 2 2
= @ - @. (209)
2(k+h) 2h
For \ € 6* we set
AP (210)
ma ) =My — ——.
AN AT o
Now we can introduce the string function of A € b by
CA _ _—mA O Z 1 - —nd
N =e " multy (A — nd)e . (211)

neC

The string functions converge absolutely to holomorphic functions on Y (L(A)) and have a some re-
markable properties. Assume therefore that A € P¥ and A\ € P(A). Of course we have (A,d) =
(X, d)(mod Z). As a consequence we can rewrite (211) as

ch = e7mand Z multa (A — nd)e "™ (212)
ne(A—A,d)+7

for any A € b*. Using this we find that the string function cﬁ\\ just depends on A(mod C9) and using
(198) we find that it also just depends on A(mod C9). This together with invariance under the Weyl
group W = W x T in (213) we obtain

Cﬁ(,\)+k7+a5 =c) forw € W,y € M,a € Cand (213)

cﬁ\wa‘; = cf\\ fora € C. (214)

For each A € h* with level(\) = k > 0 we can furthermore introduce its associated theta series
A2 1
0, = e—wé Z et()\) _ ekA() Z e—§k|’y|2(5+k"y. (215)
teT teM+k—IN

A crucial property of those theta series is that we have

Oxtkatas = O\ Va € M,a € C. (216)
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We can now introduce the normalized character x5 = e ™A%ch,. The normalized character just de-

pends on the class A(mod C9). This allows us to consider the weight lattice P (mod C0d). we make use
of this in the theta decomposition

XA = > AO). (217)
AEPk mod (kM+6C)
Following §13.2 in [Kac90] we chose an orthonormal basis vy, - - - , v, of hr and introduce coordinates
of b by
n
v = 2mi (Z ziv; — Td + uK) . (218)
i=1

As usual set z = Y| zjv; € b, such that we can write (z,7,u) for v € b. The space of absolute
convergence of chy can now be parametrized as

Y ={(z,7,u): z € h,t,u € C,Im(7) > 0}. (219)

Since chy, ©, and cﬁ converge to holomorphic functions on Y we can write chy = chy(z, 7, u),

Ox = Ox(2,7,u) and ¢y = ¢} (7). It is easy to see that ¢} does not depend on z and u. As usual we

write ¢ for 2™ and obtain

A (T) = g™ Z multy (A — nd)q"™. (220)
neC

The theta series © ) can now be written in more classical terms as well. We have

Ox(z, 7, u) = e2miku Z qk72/2€2m'k('y,z)' (221)
YEMAk=1N

In fact those functions are not just holomorphic but satisfy remarkable modularity properties.

Theorem 2.5.8 ([Kac90, Thm. 13.8.]). Let § be an affine untwisted Kac-Moody algebra as above. Take
A e Pf_ for some k > 0.

1. We have ) (2. 2)
z Z, 2
XA (7 -——,u—- ) - Z SA,A’XA/(Z7 T, U) (222)
T T 2T B
APy (mod Cé)
and '
xa (z, 74+ Lu) = XM A (2, T, ). (223)
Where the matrix S is given by
— . _ 2ni(A4p,w(A/+7))
Saar = i8HM (ke + R)M|TH2 ST e(w)e Kt : (224)

weW

2. The linear span of the normalized characters x 5 for A € P_]ﬁ(mod C9) is invariant under the action
of SLo(Z) defined by

a b B z ar+b c(z,2)
(c d>f(z’7’u)_f(c7'—|—d’c7'—i—d’u_2(cr—i—cl)>' (225)

The matrix § = S, = (Sa,a/) A ave P (mod C5) is unitary and symmetric. Of course the theta functions

O, and the string functions ¢} have similar transformation properties.
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Theorem 2.5.9 ([Kac90, Thm. 13.5.]). The theta function ©) satisfies

1 i T —
or(2-Lu-C) o2 T RO, @20
T T we Pk (mod kM+CS)
O\ (z, 7+ 1,u) = em|’\‘2/k@,\(z,7, u). (227)

Now we may come to the transformation properties of the string functions.

Theorem 2.5.10. Let § be an affine untwisted Kac-Moody algebra of rank n + 1 as above. Take A € Pfj
forsomek > 0 and A € 6* Then we have
Af 1 / —1/2( .+ \—n/2 2mi OX) s
al——)= |M'/ kM| (—iT) Z Spnve ooy (1) (228)
A’GPf (mod C§),\ € Pk (mod kM+C4)

CQ (r+1) = eQWi(mA,A+<)\*Aad>)C§ (7). (229)

Finally we discuss an important theorem about a certain subset of fundamental weights. See § 13.11 in
[Kac90] for details of this. We can label the simple roots by the set {0, - - - ,n} as usual. An important
subset of this index set is given by

J={0<j<n:a; =1}, (230)

where a; is, as usual, the Coxeter label of the simple root ;. Remember that a; = 1 implies d; = 1
and therefore we have a; = & forall j € J.

Theorem 2.5.11 ([Kac90, Thm. 13.11.]). For A € Pf we have
2k(A, p) > h(A, A) (231)
and the equality holds if and only if A = kAj(mod C§) with j € J.

Later we will be in need to find bounds on pole orders of string functions at ¢0c. The following propo-
sition will be helpful in this.

Proposition 2.5.12 ([Kac90, Prop. 13.11.]). Let A € P¥, k > 0 and A\ € P(A). Then we have

2
P L (232)
’ 2h k+h

with equality if and only if A = kA;(mod Co) with j € J and A = w(A) for somew € W.

2.6 Generalized Kac-Moody algebras

In the beginning of the previous section we explained that we can generalize semi-simple Lie alge-
bras by weakening certain assumptions on Cartan matrices that yield Lie algebras by a construction
with generators and relations. In this section we discuss a further generalization of generalized Car-
tan matrices, which we will call Borcherds-Cartan matrices. By use of generators and relations we can
associate to each Borcherds-Cartan matrix a generalized Kac-Moody algebra. Those are Lie algebras
which generalize both, semi-simple Lie algebras and Kac-Moody algebras. For generalized Kac-Moody
algebras over the real numbers R see [Bor88], [Bor91], [Bor95b] and [Jur98]. A further short intro-
duction is given in section §11.13 of [Kac90]. For generalized Kac-Moody algebras over the complex
numbers a good discussion is given in [Car16]. We will work with generalized Kac-Moody algebras
over both, fields in the following. Since mostly it does not matter, if we work over R or C we will keep
the field implicit. The following exposition is based on all those sources. Let I be a countable index set
and A = (a;j); jer a real matrix. We call A a Borcherds-Cartan matrix if the following properties are
satisfied:
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1. A is symmetric, this means a;; = aj; forall ¢, j € I.
2. a;; <0if i # j.
3. a;; > 0 implies that % € Zforallj € 1.

Let A be a Borcherds-Cartan matrix with index set I. The universal generalized Kac-Moody algebra g(A)
associated with A is the complex Lie algebra with generators e;, f; and h;; for 7, j € I and relations
fori,j,k,l € I

1. sly-relations: [ei, f]] = hij, [hija €k] = 6i’jaikek and [hij7 fk] = _5i,jaikfk-
2. Serre relations: If a;; > 0 then ad(e;)! ~2%4/%: (e;) = ad(f;) =2/ (f;) = 0.
3. Commutativity: If a;; = 0 then [e;, e;] = [f;, f;] = 0.

Following the arguments in section 3 in [Jur98] we can introduce subalgebras ny,n_ and h(A) of g(A)
generated by all e;, all f; and h;; for i, j € I respectively. They yield a direct sum decomposition

g(A)=ny  ®h(A) dn_. (233)

We can introduce an invariant symmetric bilinear form (-, -) on g(A) which is uniquely determined
by (e;, f;) = 6; . This bilinear form satisfies (h;, hj) = a;j, where we write h; = hy; for alli € I.
The element h;; vanishes unless the i-th and the j-th row of A are equal, i.e. a;; = aj forallk € I.
Furthermore elements h;; lie in the kernel ker(-, -) and are central in g(A). The center ¢ of g(A) is
contained in h(A). For a family (n;);cs of positive integers with n; = n; if h;; # 0 we can introduce a
Z-grading of g(A) by deg(e;) = —deg(f;) = n; Vi € I and denote the corresponding spaces by g(A),,

for n € Z. We obtain a decomposition

9(A) = P a(A) (234)

neEL

with g(A)o = h(A) and G,, L G, unless n + m = 0. Notice that the spaces G,, might not have
finite dimension. A Lie algebra g is called generalized Kac-Moody algebra if there is a generalized
Cartan matrix A such that for a subspace C' C ¢ of the center of g(A) the Lie algebra g is isomorphic to
g(A)/C. Notice that this is a slightly more restrictive definition than the one usually given. In [Bor95b]
and [Car16] the definition of a generalized Kac-Moody algebra also contains all extensions of such Lie
algebras by suitable commutative Lie algebras of outer derivations. We consider such extensions as
well but will not call them a generalized Kac-Moody algebra in the following. Of course a generalized
Kac-Moody algebra g has generators ¢;, f; and h;; for ¢ € I which are just the classes of e;, f; and
hi; in the quotient g(A)/C. We denote the span of all /;; by ) and observe h = h(A)/C. Yet notice
that since C' is contained in the center ¢ it is also contained in the kernel of the bilinear form (-, ).
This implies that the generalized Kac-Moody algebra g carries a natural invariant bilinear form which
satisfies (e;, fj) = 0; ; and (h4, hj) = aj;. The Z-grading given in (234) induces a natural Z-grading of
g. We denote the corresponding weight spaces by g,,. A central element ¢ € g is contained in h and
satisfies (c, h; ;) = 0. This implies that ¢ € ker(,-). So the center of g is contained in the kernel of
the bilinear form (-, -). If the bilinear form (-, -) of g is non-degenerate we find that g has trivial center.
This implies g = g(A)/c, where c is the center of g(A) and not just a subset of the center. See Theorem
3.1. in [Jur98] and the discussion afterwards. We introduce derivations d; : g — g by

di(ej) = —di(fj) = 51’,]‘ forallé,j € 1. (235)

They form a commutative Lie algebra d with the obvious commutator bracket and we introduce the
extension

g =gx0d=(g(4)/C) x. (236)
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The extended Lie algebra g® has a Cartan subalgebra h® given by
b =h x 0. (237)
We can now consider the dual space (h°)* = h* @ 0* and introduce for o € (h¢)* spaces
g, ={xeg:[hz]=alh)xVhe b} (238)

It is easy to see that we have h = g(,. As usual we call & € (h¢)* arootif & # O and g/, # 0. If v is
root then we call g/, its root space. The dimension dim(g,,) will also be called the multiplicity of « and
denoted by mult(«) for any o € Q. For i € I we define a root «v; by [h, e;] = a;(h)e; for every h € h°.
Those roots are called simple roots. This is similar to the construction of the root spaces of Kac-Moody
algebras. The only difference is that we don’t have to work with the extended Cartan subalgebra h¢ in
this case. The reason for this is that without this extension the simple roots c; might not be linearly
independent. Since n is spanned by elements of the form z (i1, - -+ ,i,) = [es,, [€iy, - [€i,_15€0,] -+ ]]
it is clear that ny can be decomposed into root spaces g,,, where « can be written as & = ;7 ni;
with n; € Z>¢. Such roots will be called positive and we denote the set of all positive roots by A . The
eigenvalue of d; for the eigenvector z(i1,- - - ,,) counts how often i appears in the tuple (i1, - , ;)
therefore it is clear that g/,  is spanned by e;. This implies that the root spaces of simple roots are 1-
dimensional. By replacing e; with f; we get a similar decomposition for n_ where each root « satisfies
a = ) ;e nia; withn; € Z<g. Those roots will be called negative and we denote the set of all negative
roots by A_. Using this we get

ny= P gl (239)

aEAL

We denote the set of roots of g by A. This set satisfies A = Ay UA_. See [Kac90], section 2 of [Jur98]
and [Bor88] for details. Altogether we obtain the abstract root space decomposition of g

g=ha P g, (240)

a€A

The Z-span of all simple roots will be denoted by () and is called the root lattice and we denote its real
ambient space by Ry and its complex ambient space by R. Of course R is a subspace of (h®)*. Since
the simple roots are linearly independent they form a basis of R and we can equip both (), Rr and R
with a symmetric bilinear form (-, -) by

(Oéi, Oéj) =a;; V1,5 € I. (241)

Obviously the values of (-, -) over Ry are contained in IR, since the Borcherds-Cartan matrix A just has
real entries. We call a root @ € A real if (a, &) > 0 and imaginary otherwise. The real simple roots
are precisely the simple roots «; with a;; > 0. We will write Ij for the subset of I defined by a; > 0.
We can define a Weyl vector p € Ry by

a2
(p, i) = ?’ Viel. (242)

This vector is clearly well-defined since the simple root are linearly independent. If possible we identify
the Weyl vector p with a vector p € Ry that satisfies (p, ;) = a?/2 for all i € I. In this case we call
a fixed choice of such a vector Weyl vector as well. We denote the set of simple roots by II. For the set
of real simple roots we write I1"® and for the set of imaginary simple roots we write II"™*. Analogously
we write A for the set of all real roots and A for the set of all imaginary roots. We can introduce
the Weyl chamber by

C={re€Rp:(r,a;) <0, Vi€ Ip}. (243)
For a real simple root o; we define a linear isometry r; : R — R by
Q(A, (li)
i(A) = A= i 244
n() = A= 2 2s)
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We call this map the reflection associated with the real simple root o; € 1I"®. Clearly such reflections
preserve the root lattice ) and satisfy 7;(«;) = —c;. The group W generated by all r; for i € Iy is
called the Weyl group of g. Naturally we have W C GL(R). For a detailed discussion of the Weyl
group see section 2 in [Jur96], section §11.13. in [Kac90] and [Bor88].

Proposition 2.6.1 ([Bor88, Prop. 2.1.]). Every positive root o« € Q) is conjugate under the Weyl group
W to a simple real root or a positive root in the Weyl chamber C'.

Since the Weyl group is a group of isometries it is clear that & € A is conjugate to a real simple root
if and only if « is a real root. The following proposition is based on Proposition 2.3. in [Jur96].

Proposition 2.6.2. The Weyl group W and the roots A have the following properties:

1. A real root v € A" satisfies dim(g.,) = 1 and is conjugate under the Weyl group to a real simple
root. Furthermore o is a sum of real simple roots.

2. A imaginary root o € A™ is conjugate to an element in the Weyl chamber C.

3. The elementw € W preserves the dimension of the root spaces, i.e. we have dim(g;}(a)) = dim(g.,)
foralla € Q.

4. We have those identities:

WA™ = A" (245)

WA™ = Aim (246)

AT = —A"® (247)

A = _Am (248)
W(A™NAL) =A™NA, (249)

For simplicity in the following we assume that the Weyl vector p can indeed be considered as an element
in R. See section 4 in [Bor88] for details. We can consider the usual formal exponential expressions e
for any 1 € R with the property that we have e#t* = ete* for A\, u € R. There is a natural action of
the Weyl group W on such expressions and we can consider infinite formal sums over such expressions.
Notice that the product of two such sums might not be well-defined but we consider their product if
it is well-defined. This is similar to the case of Kac-Moody algebras. Let s be any sum of elements in
1, We set €(s) = (—1)™ if s is the sum of m distinct pairwise perpendicular elements and €(s) = 0
otherwise. Then we set S = e 3" €(s)e~*%, where this sum runs over all sums of elements in IT"". A
fundamental result about generalized Kac-Moody algebras is that they have a denominator identity

e J] (1—e )™M = 3 e(w)w(S). (250)

aEA L weW

This result is due to Borcherds. See [Bor88] and furthermore the discussion in [Kac90] and [Jur98]. The
denominator identity is of fundamental importance in the theory of generalized Kac-Moody algebras. It
also played a crucial role in Borcherds’ proof of the moonshine conjecture. We now introduce our first
non-trivial example of a generalized Kac-Moody algebra. See [Bor92] and [Jur98] for this discussion.
We consider the J-function, i.e. the nearly holomorphic SLy(Z)-invariant modular function whose
Fourier expansion is

J(1) =j(r) — 744 = i c(n)q™ = ¢~ + 04 196884¢ + O(¢%). (251)

n=-—1
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Let A be the symmetric matrix with blocks indexed by —1,1, 2, 3, - - - where the block (4, j) has entries
—(i 4 j) and size ¢(i) x ¢(j). This is

2 0 0 |—1 -1
0 |-1 -1 -2 -2

h 0l-1 .- —1|-2 ... —2/...

A=|"TT9 .7 23 ... 3| (252)
-1 -2 -2 -3 -3

Clearly this matrix satisfies the axioms of a Bocherds-Cartan matrix, therefore we can construct an
associated universal generalized Kac-Moody algebra g(A?).

Definition 2.6.3. The monster Lie algebra m" is the generalized Kac-Moody algebra g(A?)/c, where ¢
is the center of g(A?).

The monster Lie algebra is the most famous generalized Kac-Moody algebra because of its importance
in Borcherds’ proof of the monstrous moonshine conjecture. Notice that his definition of the monster
Lie algebra is very different from ours. In fact one of the most remarkable properties of this Lie algebra
is that it has a natural action of the Conway-Norton monster group M. Clearly our definition is not
useful to recognize such a M-action. This action comes naturally by Borcherds’ definition, however.
We will discuss this later. Of course it is clear that this definition is not useful to see if a given Lie
algebra is a generalized Kac-Moody algebra or not. Yet in [Bor91] and [Bor95b] Borcherds found a
characterization for generalized Kac-Moody algebras which can be used to do this.

Theorem 2.6.4 ([Bor91, Thm. 1]). A real Lie algebra g that satisfies the following condition is a general-
ized Kac-Moody algebra.

1. g can be Z-graded as ¢ = ®pecz0n, with g, finite dimensional for n # 0.
2. g has an involution w which maps g,, to g_,, and acts as —1 on gg.

3. g has a symmetric invariant bilinear form (-, -) which is preserved by w and such that g,, and g,
are orthogonal unless m = —n.

4 Ifg € gn, g # 0 andn # 0, then (g,w(g)) > 0.

Usually it turn out to be hard to construct the involution w explicitly. Therefore it is often hard to use
this characterization. In [Bor95b] Borcherds gave a more flexible characterization, which also has a
complex version. This is given in [Car16]. Yet in the following we will just make use of the version
given above. For the following discussion we will make a few additional assumptions on the structure
of the generalized Kac-Moody algebra g under consideration. We introduce subspaces

go={x €g:[h,z] =alh)xVh e h} (253)

for every a € h* and call such an a # 0 a root if g, # 0. Assume that the Cartan subalgebra h of g
is self-centralizing and finite-dimensional. This implies that we have ) = gg. Furthermore we assume
that g has a root space decomposition

0= g (254)

ach*
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and that all root spaces g, are finite-dimensional. Clearly the root space decomposition is closely
related to the abstract root space decomposition defined in (240). Since ) C h® we can consider restric-
tions o/|ye = o € h* for any o’ € A and we obtain

ga= P g (255)

o |pe=a

This sum runs over all roots o/ € A with o|ye = @ € h*. Furthermore we assume that the invariant
bilinear form (-, -) of g is non-degenerate. As a consequence all generators h;; in  vanish for i # j
and we can identify h with its dual h* by this bilinear form. In particular every root o € h* can be
identified with an element h € b which we call a root as well. We define an isometry between the
ambient space of the root lattice and the Cartan subalgebra p : R — h by a; — h;. This map usually
has a large kernel, since the generators h; are not linearly independent. Regardless it is common to
call the generators simple roots and call the sublattice p(Q) of b the root lattice. We call h € b a root
if its preimage p~!(h) contains a root of A. Under this map an element A € R gets mapped to the
element h = p(\) which satisfies

Ag(R') = (h,h') VK € b. (256)

So h € hisarootifand only if it corresponds to a root in the root space decomposition (254) under the
identification of h with h*. Let &« € A" be a real root then it is easy the see that h = p(«) has exactly
one root in its preimage p~!(h), which is o of course. Yet several different imaginary roots a € A
can get mapped to the same element h € h under p. This might lead to some ambiguity since we also
called the number dim(g,,) the multiplicity of the root c. Usually all roots in the preimage p~*(h;) of
a simple root h; will be simple roots in (), but this does not have to be the case. If the Weyl vector p
defines an element in R we can clearly map it into ) and call its image Weyl vector as well. For ¢ € Iy
we can define an isometry 7} : h — b by

2(h, h;)
(his hi)

ri(h) = h — hi (257)
and this induces a natural action of the Weyl group W on h which commutes with p. See the discussion
in section 4 of [Bor92] for more details of this. In the following we apply those notational changes to
the root system of the monster Lie algebra m?. It turns out that the root lattice p(Q) is isomorphic to the
lattice II; ; and under this identification the positive simple roots in II; ; are precisely the elements (TIL)

withn = —1,1,2,3,---. Here (_11) is the only positive real simple root, so all (711) forn=1,2,3,---

are imaginary. Under this map all imaginary simple root «;, corresponding to a column in the j-th
column of blocks in the matrix A%, get mapped to the simple root (;) Therefore this imaginary simple
root has multiplicity ¢(j). See Theorem 7.2. in [Bor92]. A generalized Kac-Moody algebra g is clearly
determined if its simple roots and their scalar products are given, since this determines the Borcherds-
Cartan matrix. Yet for a fixed Cartan subalgebra h with bilinear form (-, -) a generalized Kac-Moody

algbera g is also determined, up to isomorphism, by its root multiplicities.

Proposition 2.6.5 ([Car16, Lemma 3.4.4.]). Let g1 and gs be generalized Kac-Moody algebras with finite-
dimensional Cartan by, and ba, which are self centralizing such that all root spaces in the decomposition
(254) are finite-dimensional. Given an isometric isomorphism f : 1 — bo, then this map can be extended
to a Lie algebra isomorphism f : g1 — g2 if and only if the root multiplicities are identical under the
isometry.

2.7 Vertex operator algebras

In this subsection we give a brief introduction to vertex operator algebras and their most important
properties. There is extensive literature on this subject to which we refer the reader for any details.
For example there is [FBZ04], [LL04], [Kac98] and [FHLS93]. A recent and well-written introduction
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is also given in [M6116]. The following discussion is highly influenced by those sources. Before we
can come to the definition of vertex operator algebras we have to discuss some formal calculus. We
closely follow [FBZ04] on this. Fix a complex vector space V. For formal variables 21, - - - , z,, we can
introduce the space

V[[Zit17 T 723:1]] = {A(Zl, e 72”) = Z Aiqf"/inzil o 'Z;L'ln : Ailv“'vi’n € V} (258)

i1, in €L

of formal distributions. Assume for a moment that V' is not just a complex vector space but a C-algebra.

For formal variables wy, - - - , w,, and a corresponding formal distribution B(wy, - - - , w,,) we can con-
sider a product A(zy, -+, 2,)B(w1, -+ ,wy,) as an element in V[[zit}, -+, 251 wil, - wE!]] but
in general it does not make sense to consider a product of two elements in V[[2;-}, - - -, 2F!]] since the

coeflicients might not be well-defined. One of the most important formal distributions is the formal

0-function, defined by
5(z) =D 2" e C[lz]. (259)
ne”Z
A fundamental property of the d-function is that

f(2)8(z) = f(1)d(z) for all f(2) € C[z*]. (260)

Another basic but important relation for formal variables x and y is

) (i) ) (z) =y 1o (;) . (261)

See section 2.1 in [LL04] for this. We know introduce the space of formal Laurent series with values in
V by

Vi((z)) = {A(z) = i Apz" Ay, € Vandn € Z} . (262)
n=N

If V is a C-algbera than so is V'((z)) since products A(z)B(z) make sense for formal Laurent series

A(z),B(z) € V((z)). For formal variables v and w we can now consider spaces C((2))((w)) and

C((w))((2)). Here C((z))((w)) is the space of formal Laurent series in the variable w with values in

C((z)) and C((w))((2)) is the space of formal Laurent series in the variable z with values in C((w)).

Those spaces are not equal of course, for example we have > °2 27 "w" € C((z))((w)) but also
202 "w™ ¢ C((w))((2)). Yet we have the crucial

C((2)(w)) N C((w))((2)) = Cllz, wll[z~", w]. (263)

The field of fraction of C[[z, w]] will be denote by C((z, w)). Following [LL04] we set S = {w, z, wtz}
and define the subalgebra C((z, w))s of C((z,w)) generated by 2!, w*! and (z4w)~!. We can define
embeddings ¢, ,,C((z,w))s = C((2))((w)) and ¢, .C((2,w))s = C((w))((z)) by defining them on
the generators of C((z,w))s. The definition on z*! and w*! should be obvious and on (z + w)~! we

define

[e.9]

w((z£w) ) =Y (F)" " " € C((2))((w)) and (264)
n=0
aw((z 2 w) ™) = = Y (F) w2 € C(w))((2)). (265)
n=0

1

For an element v € C[[z, w]][z7}, w™!] of course we have ¢, ,,(v) = ) -(v). Notice furthermore that

in C[[z*!, wT!]] we have

5(2) = el = )7 = el lz = w) ) (266)



We also need certain expressions in three variables zg, z1 and z9. Namely we need to consider expres-

sions like 25 10 (%) We will as usual expand those expressions as in

Lz, 2 (5 (Z1Z—Oz2>> — Z (—1)™ (;) zg ey ey (267)

mEZZO,nEZ

This is common in the literature and so the embedding ¢, ., is usually omitted. See [FHLS93] or [LL04]
for this. Basic properties of those expressions are

_ 22 + 2 _ 21— 2
Lag.zg? 0 <20> = 12y 207y 0 < ! °> and (268)
21 z2
_ 21 — %2 — Z9 — 21 _ Z1 — 20
bz1,22%0 'S < ) — lzp,z1%0 's ( ) = lz1,20%2 15 ( ) . (269)
20 —Z0 22

The following treatment of fields and their locality is based on [FBZ04].

Definition 2.7.1. Let V' be a complex vector space. A field is a formal distribution

A(z) = Z Ajz77 € End(V)[[z7 Y] (270)

JEZL

such that we have for any v € V that Ajv = 0 for j large enough. This just means A(z)v € V((z)).
Assume now that the vector space V is Z>o-graded with homogeneous subsets V,, = {v € V :
deg(v) = n}. We call a field A homogeneous of conformal dimension A € Z if the modes A; are
homogeneous of degree —j + A. For fields A(z) and B(z) we have the make sense out of the com-
position A(z)B(w) in the following. Take v € V and p € V* then we can consider the usual pair-
ing (p, A(2) B(w)v) € C[[z*!,w*!]]. Using the properties of a field we observe (p, A(z) B(w)v) €
C((2))((w)) and (p, B(w)A(z)v) € C((w))((2))-
Definition 2.7.2. Two fields A(z) and B(w) are local with respect to each other if for every v € V
and p € V* there is an element

f'va = C[[z7w]”zilvw717('z_w)il] (271)
such that (p, A(2) B(w)v) = tzw(fo,p) and (p, B(w)A(2)v) = tw,2(fuv,p). In other words

(P, A(2) B(w)v) and (p, B(w) A(z)v) (272)
are just different expansion of the element f;, ,.

Furthermore we have that two fields A(z) and B(w) are local if and only if there is an integer N € Z>¢
such that
(z —w)V[A(2), B(w)] = 0 (273)

holds in End(V')[[2*!, w*!]]. For further details about this formal calculus the reader may consult the
literature indicated above. For a field A(z) we set

Ay(z) = Z Apz"and A_(z) = Z Apz". (274)

n>0 n<0

Given two field A(z) and B(w) we want to make sense out of the expression A(z)B(w)|,=. This is
usually not possible but following [FBZ04] we can introduce the normally ordered product of the fields
A(z) and B(w) by

: A(z)B(w) : = Ay (2)B(w) + B(w)A_(z) (275)
=y (Z ApBpz ™4 BnAmzm1> w L (276)
neZ \m<0 m>0
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The normally ordered product of two fields has now basically all properties we want from a product
of fields. This means that the specialization : A(z)B(w) : |.—, makes sense and we denote it by
: A(2)B(%) :. Furthermore For any v € V and p € V* we get

(p,: A(2)B(w) : v) € Cllz,w])[=~", w]. (277)
For three fields A(z), B(z) and C(z) we can define

A(2)B(2)C(2) i=: A(2)(: B(2)C(2) 3) : (278)
and extend this definition to any finite number of fields in the obvious way.

Definition 2.7.3 (Vertex algebras). A vertex algebra is a collection of data:

1. A Z-graded complex vector space
oo
V=, (279)
which we call space of states.
2. A vector 1 € Vj which we call vacuum vector.
3. A translation operator T': V — V of degree 1.

4. Alinear operator Y (-, 2) : V — End(V)[[z*!]] which maps each A € V, to a field

= > Ayt (280)
meZ
of conformal dimension 7, i.e. deg(A,,) = —m +n — 1.

This data satisfies the following properties:

1. We have Y (1, z) = Idy and for any A € V we have
Y (A, 2)1 e V[Z]] (281)
such that we can evaluate Y (A, 2)1|,—¢o = A. This is the vacuum axiom.

2. For any A € V we have
[T.Y(A,2)] = 0.Y (A, 2) (282)
and T'1 = 0. We call this the translation axiom.

3. For A, B € V we demand that Y (A, z) and Y (B, z) are local with respect to each other. This is
the locality axiom.

The locality axiom is the most important property of a vertex algebra. There are several ways to state it.
Given all other axioms we could replace it by the Borcherds identity which states that forany [, k,m € Z
and any A, B € V we have

Z <l> ((_l)jAm-i-l—jBk:—i-j ( )j+ Bk:—i—l —J m+] Z < > n-HB m+k—n- (283)

=0 \J

Yet another equivalent formulation is the Jacobi identity which states that for any A, B € V' we have

— 22 — 21

Loy a0 0 ( ) Y (A, 21)Y (B, 22) — tay.21 25 0 ( —

1
=1z .20%9 0 <

)Y(B,zg)Y(A, )
20

— 20

) Y(V(A, 20)B, 20). (284)

<2
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See [FHLS93] and [LL04] for details of the Jacobi identity. For computations the Borcherds identity
will turn out to be the most useful formulation of locality axiom. Another useful formula, which is a
direct consequence of the Borcherds identity is the commutator formula. 1t states that for A, B € V
we have

m

[Am;Bk] = Z ( ><AnB>m+kn (285)
n
n>0
We can introduce the Virasoro Lie algebra or just the Virasoro algebra of central charge c to be the Lie
algebra Vir spanned by L,, for n € Z and a central element C' over C with relations
3—n

n —
[Lyp, Liy] = (n—m) Ly + ——

5 OntmoC. (286)

We will call a module M of the Virasoro algebra Vir a Virasoro module of central charge ¢ € C if the
central element ' acts as cldy;. Such a module Let V' be a vertex algebra and denote its homogeneous
subspaces by V;, for n € Z>q as above. We call a vector w € V3 a conformal vector of central charge
¢ € C of V if the modes L,, defined by

Y(w,2) = Z Lz "2 (287)
nez

and the element C' = cIdy induce the structure of a Virasoro module of central charge ¢ € Con V.
This just means that we have for n, m € Z that

3 _
s, mocldy. (288)

[Ln, L] = (n — m) Lym + 12

Furthermore we demand that Lov = nv for v € V,, and L_; = T'. This means in particular that V
can be decomposed into Lg-eigenspaces of the Virasoro algebra and this eigenspace decomposition
coincides with the Z>o-grading of the vertex algebra.

Definition 2.7.4. A pair (V,w) consisting of a vertex algebra V' and a conformal vector of central
charge ¢ € C such that dim(V},) < oo for all n € Z and dim(V},) = 0 for n sufficiently negative will
be called vertex operator algebra. We call w the Virasoro vector of this vertex operator algebra and c its
central charge.

Of course we can introduce the usual substructures like vertex operator subalgebras, ideals and homo-
morphisms of vertex operator algebras. Clearly we have those structures for vertex algebras as well.
See chapter 1 in [FBZ04] and chapter 3.9 in [LL04] for details of this. Vertex algebras are quite sophis-
ticated objects, therefore it is hard to construct explicit examples. Yet there is a construction using
generators and relations that can be used to build many examples. In the following we discuss this
construction briefly following [FBZ04]. Given a Z>¢-graded complex vector space V/, a non-trivial
vector 1 € Vj and an endomorphism 7" of V' of degree 1 . Assume that S is a countable ordered set
and {a® },egs a collection of homogeneous vectors in V. Furthermore we assume that for each v € S
we are given a field

a®(z) = Z a%z "1 € End(V)[[zFY] (289)

nez

such that the following conditions hold:
1. For all @« € S we have a®(2)1 = a® + 2(---).
2. T1 =0and [T,a%(z)] = 0.a%(z).
3. The filed a®(z) are mutually local.

4. V is spanned by
aj! -+ -ajm1for j; < 0. (290)
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Theorem 2.7.5 (Reconstruction theorem). Under the above assumptions the assignment

1 —J1—1 « —Im—1 o
(_]1—1)'(—]7)1—1)' :azh la 1(2)"'8z]m 'a m(z): (291)

defines a vertex algebra structure on V. Moreover this is the unique vertex algebra structure on V with
the property that Y (a®, z) = a®(2).

Y(a?‘l1 e a;-"mml, z) =

For this theorem and further details see section 3.6. in [FBZ04]. Above we introduced the Virasoro
algebra Vir. We set Virg = CLy@CC and Vir,, = CL_,, such that we get the structure of a Z-graded
Lie algebra
Vir = @@ Viry. (292)
nes
This is just the ad(Lg)-eigenspace decomposition. Following Remark 6.1.1 in [LL04] we note that
instead of a gradation by degree this is a gradation by weight. We define a few subsets of Vir by

Vir<, = @ Virg and Virs,, = @ Viryg. (293)
k<n k>n
We furthermore introduce Vir_ = Vir<_; and Viry = Virsy. For any complex number ¢ € C we

introduce a 1-dimensional representation C. of Vir< by letting C' act as multiplication by ¢ and L,
acts trivially for n < 1. The induced representation of Vir is given by

V(C, O) = U(VZ?“) ®U(Vir§1) Ce. (294)

We denote the element 1 ® 1 by v.. By use of the Poincaré-Birkhoff-Witt theorem we find that V (¢, 0)
has a basis
L(—ny) - L(—ny)v. (295)

forny > ng > --- > n, > 2. Of course this space has a natural Z>(-grading given by the eigenspaces
of L. This is

V(c,0)n, = spanc({L(—n1) -+ - L(—ny)ve : 0y + -+ - +np = n}). (296)
We can introduce an element w = L_sv. and a field
Y(w,2) =T(z) = Z Lnz"""2 € End(V (¢, 0))[[zF1]). (297)
neL

Furthermore we set 1 = v, and T" = L_;. We observe that this data satisfies the conditions given
above. Therefore by use of the reconstruction theorem V' (¢, 0) can be equipped with a unique vertex
algebra structure such that Y (w, z) = T'(z). Finally we notice that the vector w € V (¢, 0); satisfies all
the properties of a conformal vector of central charge c of the Vertex algebra V (¢, 0). As a consequence
the vertex algebra V'(c, 0) is a vertex operator algebra of central charge ¢ with Virasoro vector w. We
call this vertex operator algebra the Virasoro vertex operator algebra of central charge c. This is our first
non-trivial example of a vertex operator algebra. Assume now that V' is a vertex operator algebra of
central charge ¢ € C with Virasoro vector w. Consider the smallest vertex operator subalgebraU C V.
Of course this is the vertex operator subalgebra generated by the Virasoro vector w and isomorphic to
V' (e, 0). We find that any vertex operator algebra of central charge c has V (¢, 0) as a vertex operator
subalgebra. Vetex algebras have furthermore an interesting representation theory which we are going
to discuss now. This is a huge field therefore we have to refer to the literature for details again. See
[FHLS93] and [LL04] for the basics. We follow their approach closely. Let V' be a vertex algebra.

Definition 2.7.6. A V-module is a vector space W equipped with a linear map
Yiv (-, 2) : V — End(W)[[zF1]] (298)

such that all the defining properties of vertex algebra that make sense hold. This means that Yy (v, z) is
a field in End(W)[[2*1]] for every v € V and furthermore:
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1. We have the vacuum property Yy (1, z) = Idyy and

2. we have the Jacobi identity, i.e. for any A, B € V we have

22— 2

_ Z1 — & _
Lz 2020 L5 <1202> Yw (A, 21)Yw (B, 22) — L2y,21 2 ) ( ) Yw (B, z2)Yw (A, 21)

_ZO

= 12y 2075 0 (Zl 2_2 ZO) Y (Y (A, 20)B, z2). (299)

For any v € V we call Yy (v, 2) the vertex operator on W associated with v € V. Of course we can
always consider V itself as a V-module. We call it the adjoint module. Assume now that V' is a vertex
operator algebra with Virasoro vector w € V5. Let W be a V-module, where we consider V' as a vertex
algebra. Then we can define operators L,, € End(WW) for n € Z by

Y (w, z) = Z Lpz" "2, (300)
nez

Proposition 2.7.7 ([LL04, Prop. 4.1.5]). Let V be a vertex operator algebra and W a V -module viewed
as a vertex algebra then the endomorphisms L, satisfy:

(L1, Yin (0, 2)] = Y (D10, 2) = 0. (0, 2) forv € V. (301)

Furthermore for n,m € Z we have

3

[Lyy Ln] = (0 — m) L + %5n+m7ocldw. (302)

This shows that we can consider a V-module W as a Virasoro algebra module of central charge c.

Definition 2.7.8. Let V' be a vertex operator algebra. A V'-module is a module W of V' viewed as a
vertex algebra such that
W = pecWh, (303)

where we have

Wi, ={w € W : Lyw = hw}. (304)

Furthermore we assume that the subspaces W}, of weight h vectors are of finite dimension and W, = 0
if Re(h) is sufficiently negative.

Sometimes in the literature it is assumed that the V'-module W is graded by Q. For example this is
assumed in [FHLS93]. For us this does not make a huge difference since all modules we will need
in the following have a Q-grading. We call a subspace U C W a V -submodule of W' if it satisfies
Yiw(v,2)u € U((z)) forallv € Vand u € U. A V-module W will be called irreducible if has
no non-trivial submodules. A vertex operator algebra V' will be called simple if its adjoint module
is irreducible. We can easily introduce the usual notions like V -module homomorphisms,V -module
endomorphisms and V -module isomorphisms and so on. See section 4.5 in [LL04] for details. Given
a homogeneous v € V. Then the mode v,, acts with weight wt(v,,) = wt(v) —n — 1 on W. Asa
consequence for any o € C the space

Wi = P W (305)
hea+7Z

is a V-submodule of W. Notice that if W is irreducible there is a @ € C such that W = W/,
We denote the minimal element » € « + Z such that W}, # 0 by p(WW) and call it the conformal
weight of W. Assume that we have vertex operator algebras V; and V5 of central charge cj,co € C
respectively. Furthermore assume that we are given modules W7 and W of V; and V5. The tensor
product Vi ®c Vs carries a natural structure of a vertex operator algebra. We define the grading by
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deg(v; ®vg) = deg(v1) + deg(v2) and introduce a vacuum vector 1 = 1; ® 1o, where 1; is the vacuum
vector of V; for i = 1,2. We can furthermore introduce a translation by 7' =T ® Ids + Id; ® 75 and
finally a vertex operator

Y(A1 ® A, Z) = Y(Al, Z) & Y(AQ, Z) (306)

So far this defines the structure of a vertex algebra on V; ® Vb, which we call the tensor product of V;
and V5. By
W=w1 ®12®11 ®ws (307)

we can define a Virasoro vector for V; ® V5 such that this tensor product carries the structure of a
vertex operator algebra of central charge ¢ = ¢; + c3. A direct consequence of (306) is

(A @)=Y  Aip® Ay (308)
n+m+1==k

Clearly this operator makes sense since applied to any vector in V; ® V5 just finitely many summand
can be non-zero. The tensor product W; ®c W5 can now be equipped with the structure of a V; ® V5-
module by

Yw,ocws (Ul & v2, Z) = Yw, (Ul, Z) ® Yw, (UQ, Z). (309)

See section 1.5 [FBZ04], section 4.6 in [LL04] and [FHLS93] for details and proofs for those statements.
Of course we can extend those tensor products to any finite number of vertex operator algebras and
modules. Since we consider all vertex algebras over the complex numbers we usually omit the subscript
-c in the tensor product ®c. This tensor product should not be confused with the fusion product M, Xy,
M5 of two V-modules M7 and Ms. Before we can introduce this, we need a few further construction
involving modules. We mainly follow [FHLS93] in this. Therefore we might simply assume that the
V-modules are Q-graded, such that we meet the definition of V'-modules therein. So we assume that
the V-module W has a grading

W = Wh. (310)
neQ
Its graded dual is
W = w,. (311)
neQ

The adjoint vertex operator Y is the linear map

Y’ :V = End(W')[[zFY]],v — Y'(v,2) = Z vl 2L (312)
nez

where we have v], € End(WW’) as usual, which is characterized by the condition

V!0, 2y w) = (W', Y (551 (2~ 2) 0w, 2~V u) (313)
forallv € V,w' € W andw € W. We may equip W with the obvious Q-grading given by W,, = W .
Theorem 2.7.9 ([FHLS93, Thm. 5.2.1.]). The pair (W', Y") carries the structure of a V -module.

We call the V-module W' the V -module contragredient to W or simply the contragredient module of W .
The contragredient module W’ of W has a few remarkable properties. We discuss them now following
section 5.3 in [FHLS93].

Proposition 2.7.10 ([FHLS93, Prop. 5.3.1.]). There are natural identifications between the contragredient
module of the contragredient (W')" and W and between the double-adjoint operatorsY" (-, z) and Y (-, z).
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Notice furthermore that W is irreducible if and only if W is irreducible. The existence of a nondegen-
erate bilinear form (-,-) on W such that W,, L. W,, for n # m is equivalent to linear isomorphism
¢ : W — W that preserves the gradation by

(P(w1), w2) = (w1, w2). (314)
Such a linear isomorphism is a V' -module isomorphism if and only if we have
(Y (v, 2)wy, wa) = (wy, Y (L1 (=272 Loy, 27 Hwy) (315)

forallv € V and wy, ws € W. We call such a bilinear form invariant. So this tells us that a V-module
can be equipped with an invariant bilinear form if and only if it is isomorphic to its contragredient
module. For elements v,w € V we can use (315) and the fact that Res, (2 ~'Y (v, 2)1) = v to prove

(v,w)1 = Res, (z_lY(eZLl(—z_Q)Lov, z_l)w) : (316)

We call a vertex operator algebra V' self-contragredient if its adjoint module is isomorphic to its con-
tragredient module. We get that a vertex operator algebra can be equipped with an invariant bilinear
form if and only if it is self-contragredient.

Proposition 2.7.11 ([FHLS93, Prop. 5.3.6.]). Let V be a self-contragredient vertex operator algebra
equipped with the invariant bilinear form (-, ) then this bilinear form is symmetric.

Usually we assume self-contragredience for a vertex operator algebra, since an invariant symmetric
bilinear form is a strong useful structure to work with. But this is usually not enough. We need to
assume certain further regularity properties to get a better understanding of the V'-modules. What we
call a V-module is usually called ordinary V -module in the literature. This helps to distinguish them
from certain more general types of modules which are weak modules and admissible modules. A weak
module M of a vertex operator algebra that satisfies all properties of a V-module except that we don’t
assume that it carries a grading. A weak module W is called admissible if it carries a Z>(-grading

W= @ Wn) (317)

n€Zso
such that for any r,m € Z, n € Z>o and a € V. we have
amW(n) Cc W(r+n—m—1). (318)
Of course any ordinary module is admissible, therefore we get
{ordinary V-modules} C {admissible V-modules} C {weak V-modules}. (319)

See [DLM97] for the details of those definitions. We call an admissible module simple if its only Z>¢-
graded submodules are 0 and W. A vertex operator algebra V is called rational if every admissible
V-module is a direct sum of simple admissible V' -modules. Following Remark 2.4 [DLM97] we note
that if V' is rational then every simple admissible module is ordinary and it has only finitely many
simple inequivalent modules. Those simple admissible modules are of course irreducible as ordinary
modules and we denote the set of all those irreducible ordinary modules up to isomorphism by Irr(V).
A vertex operator algebra is called regular if each weak module is a direct sum of irreducible ordinary
modules. Of course every regular vertex operator algebra is also rational. One important property of
the tensor product is that it preserves regularity, i.e. if V; and V5 are regular vertex operator algebras
then is V] ® V5 regular as well. Next we define the space

Co(V) = spanp({v_ow : v,w € V}). (320)

We call a vertex operator algebra Cy-cofinite if the space C2(V') has finite codimension. Finally we
call a vertex operator algebra of CFI-type if Vj = C1. This condition is also called Zhus cofiniteness
condition. Now we can clarify the relations between these conditions. In [Li99] it is proved that every
regular vertex operator algebra is Ca-cofinite.
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Theorem 2.7.12 ([ABD04, Thm. 4.5]). A vertex operator algebra V' of CFI-type is regular if and only if
it is Cy-cofinite and rational.

We are mainly interest in vertex operator algebras that are rational and Ca-cofinite.

Theorem 2.7.13 ([DLMO00, Thm. 11.3]). Take a rational and Ca-cofinite vertex operator algebraV'. Then
the central charge of V is rational and each irreducible module has rational conformal weight.

A strongly rational vertex operator algebra is a vertex operator algebra that is self-contragredient, irre-
ducible, regular and of CFT-type. A strongly rational vertex operator algebra is of course Cs-cofinite
and rational by Theorem 2.7.12. In the following we discuss the most important properties of their
modules. We follow section 5.4. in [FHLS93] for the introduction of intertwining operators.

Definition 2.7.14 ([FHLS93, Def. 5.4.1.]). Let V be a vertex operator algebra and let (W1, Y1), (Wa, Y>)
and (W3, Y3) be three V-modules. An intertwining operator of type (WYV%@) is a linear map

W1 — Hom(Wa, W3){z}, 2z — Y(w, 2) Z wpz "L (321)
neC

such that all properties of a module action that make sense hold. That is, for v € V, w; € Wj and
wy € Wy
(w1)nwa = 0 for n sufficiently large (322)

and the following Jacobi identity holds for the operators Y (v, -), Y (w1, -) acting on the element w:

Vo i 16 ( - ZQ) Ya(0, 21)V(wr, z2)ws — 12y 012516 (_ZOZI> V(wr, 22)Ya(v, 21)ws
= 12 20%9 15 ( . ZO) Y(Yi(v, z0)w1, z9)wa. (323)
Furthermore we assume the translation axiom
0, Y(w1,2) = Y(L_qwy, 2). (324)

Notice that all appearing expressions are algebraically meaningful. In [FHLS93] the definition is just
for Q-graded modules but we use the more general version since we introduced modules that way.
This does not make a difference for strongly rational vertex operator algebras, however. Notice that
it is common to denote an intertwining operator by 3/1‘//1/[/3W We denote the space of intertwining

operators of type (W1 i) by I (W1 iv,)- The fusion rules are the numbers

g . W-
Ny, = dim I <W1 I?;V2> (325)

Of course we already have seen examples of intertwining operators because the vertex operator Y is
an intertwining operator of type (VVV) and the vertex operator Yyy is an intertwining operator of type

(VWW) for any V-module W. In general the fusion rules might be oo, but this is not the case for strongly

rational vertex operator algebras. For any intertwining operator )V € [ (W Wo ) we can introduce an
adjoint operator )’ by

(V' (w1, 2)wy, wa) = (wh, V(e (—272) 0 wr, 27 w) (326)
for w; € Wi and w; € W/ andi =1,2,3.
Theorem 2.7.15 ([FHLS93, Thm. 5.5.1.]). The adjoint operator Y’ of an intertwining operator Y of type

"2 ).

I(WYV{“;VQ) is an intertwining operator of type I(W v
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We can of course consider the double-adjoint operator )" and by Proposition 5.5.2. in [FHLS93] we
know that this operator equals the intertwining operator Y such that the correspondence ) +— )’

defines a linear isomorphism from [ ( ) to I'( As a consequence we get

Wi W’)
Nitw, = Ny? Wy (327)

By use of skew-symmetry we can associate an operator J* : Wy ® Wi — Wj3[[z%!]] to any J €
1 (W1 WQ) by

V*(we, 2)wr = "1 Y(wy, —2)ws (328)
for any w; € Wi and we € Wy, Y* is an intertwining operator of type I(y {’;V ) and satisfies Y** = Y
therefore we obtain a linear isomorphism by ) +— V* from I ( iv,) to I ( Ws iv,)- We obtain
W, 1%

For simplicity we can write V;; for N W then we get
Nijk = No(i)o(j)o(k) (330)

for any permutation o of {i, j, k}. This properties is called the Ss-symmetry of the fusion rules. See
section 5.5. in [FHLS93] for details.

Definition 2.7.16 ([Li98, Def. 3.1]). Let V' be a vertex operator algebra and W, and W5 be V-modules.
A fusion product of the ordered pair (W7, W3) is a pair consisting of a V-module W; Ky, W5 and an

intertwining operator F (-, z) of type (WV}E‘{,VV;/Q) such that for any V-module U and any intertwining

operator ) of type (WlUWQ) there is a unique V'-module homomorphism ¢ : W; Xy Wa — U such
that Y(-,z) = ¢ o F(+, 2).

By the usual argument we can check that the a fusion product W; Xy W is uniquely determined up
to a unique isomorphism if it exists. Of course it is not at all clear that such a fusion product exits. The
theory of fusion products is vast and complicated therefore we just discuss the principal statements.

Theorem 2.7.17 ([Li98, Thm. 3.20]). Assume that V' is a rational vertex operator algebra and (W1, W5)
a ordered pair of V -modules, then a fusion product W1 Ky Wy exists.

In the following we assume that V' is a strongly rational vertex operator algebra. For V' -modules W7,
W5 and W3 we have

W3
H 2 ~7 1
omy (W Xy W, W3) (Wl W2>’ (331)

therefore we have dim Homy (W7 Ky Wy, W3) = wa’ . This isomorphism maps each homomor-
phism ¢ € Homy (W1 Xy Wy, W3) to ¢po F(+, z), where ]—" is the intertwining operator corresponding
to the fusion product. A few further remarkable properties are the commutativity and the associativity
of the fusion product. Notice that those properties just hold for the underlying V'-module structure,
however. We have

Wi Ky Wy =2 Wo Xy W1 (332)

and

Wi Ky (We Ky Wa) = (W Ky W) Ky W, (333)

where both isomorphisms are isomorphisms of V'-modules. We introduce the fusion algebra of V'

vivV)= @ Cw. (334)
Welrr (V)
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The algebra structure is defined by linear extension of

WiBy Wo = > Ny, Wa. (335)
Wi€elrr(V)

The sum on the right is isomorphic to W; Xy W5 as a V-module because of Schurs lemma and the
fact that dim (Homy (W7 Xy Wa, W3)) = ]\TI/VII,/I3 W, Since we assume that V' is strongly rational we
know that V' is simple. Therefore it is contained in Irr(V'). Following Remark 3.5 in [Li98] we know
that V Xy, W = W for any V-module W, so we get that V' acts as a unit on the fusion algebra V(V/).
We call a V-module U a simple current, if its fusion product with any irreducible module is irreducible
again. As a first consequence we get that a simple current has to be U irreducible since V' is irreducible
therefore we get that U = V Xy, U has to be irreducible. We denote the subset of simple currents of
Irr(V') by S(V') and notice that this set is closed under the fusion product. This is a simple consequence
of the associativity.

Proposition 2.7.18 ([LY08, Cor. 1]). Assume that V' is a strongly rational vertex operator algebra. Then
the following holds.

1. Every simple current V -module is irreducible.
2. An irreducible V-module U is a simple current if and only if U Xy, U' = V.

3. The set of simple currents S(V') forms a multiplicative abelian group in V (V') under the fusion
product.

Recall that U’ denotes the contragredient V-module of U. In the following we introduce characters
of modules and their relation to the fusion algebra. For any v € V that is homogeneous we write
(V) = Ugeg(v)—1 Such that this operator has degree 0. We can then introduce the formal graded trace

of W by

Trwv (v, q) = ") "= Ztrw aryan (0(0))g" (336)

The formal graded trace can be extended by hnearlty to all of V. Zhu studied those traces in his
landmark paper [Zhu96] and showed that those traces in fact converge for ¢ = ™" to holomorphic
function on the upper half plane H. Furthermore Zhu introduced a certain deformation of the grading
of vertex operator algebra which we will call Zhus second grading. We denote the weight spaces with
relation to this grading by V/,,) such that we have

oo
V=V, (337)
and we denote the corresponding degree operator by deg[-] to separate it from the degree operator

deg(-) that correspond to the usual grading.

Theorem 2.7.19 ([Zhu96]). Let V' be a strongly rational vertex operator algebra of central charge c and
W € Irr(V). Then:

1. Let q = e*™7. Then the formal sum Try (v, T) converges to a holomorphic function on the complex

upper half plane H.

2. Letv € Vi) be of degree k in Zhus second grading. Then there is a representation

JoAvam SLQ(Z) — GL(V(V)) (338)
of SLo(Z) on the fusion algebra V(V') such that for any v = (CCL Z) € SLy(Z) we have
Trw (v,97) = (et +d)* Y p(V)war Tras (v, 7). (339)
MEeIrr(v)
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The precise version of this theorem is from [VEMS17] and can also be found in [M6116]. Since the
functions Tryy (v, 7) are linear independent this representation is uniquely determined. We call it Zhus
representation. The specialization

chyy (1) = Try (1, 7) = ¢?W) 2 Z dim(W,(wyn)q"” (340)

1 01
elements S = py(S) and T = py (T') are of particular importance. The Verlinde formula is a relation
between the matrix S and the fusion rules. The particular version for vertex operator algebras is due
to Huang and one of the deepest and most important results in the entire field. See [Hua08]. Once
again we state the version given in [VEMS17].

is called the character of W. Since SLy(Z) is generated by S = (O —01> and T — <1 1) the

Theorem 2.7.20. Let V' be a strongly rational vertex operator algebra. Then

1. The matrix S is symmetric and S? is the permutation matrix sending W to its contragredient module
W'. Moreover Sy # 0 for W € Irr(V).

2. The fusion rules satisfy the Verlinde formula

SmuSNuUSw U
Nifn= Y,

341
Svo (341)

Uelrr(V)

The translation matrix T satisfies
Twm = owmTw = 5W’M€27ri(p(W)—i)_ (342)

In the following we introduce quantum dimensions and discuss further properties of the S-matrix. This
follows [DJX13]. Let V be a strongly rational vertex operator algebra and M a V-module. The quantum
dimension of M is given by

o (i
qdimy, (M) = lim Smy) w1 (iy)

y—0 chy (iy) (343)

Clearly this definition can be extended to more general vertex operator algebras V, but then it is not
clear if such a quantum dimension exists for any V'-module W. We assume that V" is strongly rational
and has irreducible modules W; for some index set ¢ € I with 0 € I and V' = W). Then all quantum
dimensions exist if the conformal weights p(W;) are positive for all i € I \ {0}. Furthermore all
quantum dimensions are positive numbers. See Lemma 4.2. in [DJX13]. We can introduce the global
dimension of V by

glob(V) = qdim, (W;)*. (344)

il
Proposition 2.7.21 ([DJX13]). We assume that V is a strongly rational vertex operator algebra with
irreducible modules W; fori € I. We assume 0 € I and write V. = W). Then the quantum dimensions
have the following properties:
1. gdimy,(W;) = Swiv,

T Svyv

2. qdimv(WZ‘ X Wj) = qdimV(Wi)qdimV(Wj).
3. glob(V) = s@%

4. qdimy,(W;) = 1 if and only if W; is a simple current.
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Finally we need to discuss some further relations between the fusion rules, the S-matrix and the quan-
tum dimensions.

Proposition 2.7.22. Let V be a strongly rational vertex operator algebra with irreducible modules W
fori € I andV = Wy. Then we have

SW¢7Wk8Wj,Wk = SV,VC]dimv(Wk) Z NMW//; W]-SWhWk (345)
i€l

and furthermore we have

Swiw, =Svv Y N%kwj qdimy (W) Tw, Tw, Ty, Ty (346)
el
Proof. This is an explicit computation that makes use of the Verlinde formula. O

2.8 Affine vertex operator algebras

Affine vertex operator algebras are vertex operator algebras, which are build on integrable highest-
weight modules of certain affine Kac-Moody algebras. They are of particular importance in physics,
since they represent Wess-Zumino-Witten models in conformal field theory. An original source is
[FZ92]. Further expositions are given in [FBZ04], [LL04] and [Kac98]. For a perspective more re-
lated to physics [Fuc95] and [FMS12] are a good source. This section is based on the entire discussion
in section 2.5 and we keep all notations from there. In particular we assume again that g is a simple
Lie algebra. As usual we denote the corresponding affine Kac-Moody algebra by § and consider its
subalgebra

g =Clt,t'|®g®CK. (347)

This space is of course equipped with the restricted Lie algebra structure of §. We can introduce a
degree by deg(z(n)) = —nandsetg’ = g®tC[t], ¢, = g®@t'C[t ] and gj = g ® t' & CK.
Notice that g’ is the subspace of positive degree and that g/, is the subspace of negative degree. We
put b’ = g, @ ¢’ and denote the 1-dimensional representation of b’ on which K acts as k € C and g’
acts trivially by Cj. We introduce the vacuum representation of level k of g’ as

Vi(g',0) = U(g") ®u(er) Cr. (348)

More general for any 1 € h* we can consider the irreducible module L(u) of highest-weight p of g.
We can introduce a g’-module Vi (g, 1) by

Vi(g', 1) = U(g") ®@uery L), (349)

where we let K actas k on L(u). We denote the maximal proper g’-submodule of Vi (g, ut) by Ji(g', 11)
and introduce the irreducible g’-module

Li(g's 1) = Vilg', 1)/ Ji(g', ). (350)

Proposition 2.8.1 ([FZ92, Prop. 2.1.1.]). Ly(g¢’, 1) is the unique g’-module satisfying the following
properties.

1. Li(g, ) is irreducible as a g’-module.
2. The central element K acts as kId on Li(g', 11).

3. Vy={a € Li(g', n) : ¢_a = 0} is the irreducible g-module with highest-weight ju.
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We denote the vector 1 ® 1 € Vi(g¢',0) by vg. Let J% fora = 1,-- - ,d with d = dim(g) be a basis of g.
Of course we can span Vi (g’, 0) by elements of the form

JH (=n1) - T (= v, (351)
where we have a; = 1,--- ;dandn; > Oforall? =1,--- ,r. We introduce a degree by
deg(J (—nq)--- JU (—np)vg) =n1 + -+ + Ny (352)

Finally for every J* = J%(—1)v) we introduce fields

Y(J(=1vg,z) = J%2) = Z J%n)z"""1 € End(Vi (g, 0))[[zF1]). (353)
ne”L

Using the reconstruction theorem we get that Vj(g’, 0) is a vertex algebra. In the following we assume
k—+h # 0. For our choice of a basis J* fora = 1, - - - | d we denote its dual basis by J, fora =1,--- | d,
i.e. we have

(J Jp) = dap (354)
foralla,b=1,--- ,d. The Sugawara vector is
1 d
w= i H) a;l Jo (1) J*(—1)vy,. (355)

In fact the Sugawara vector is a conformal vector of central charge

kdi
c(g, k) = k‘f(f). (356)

Equipped with the Sugawara vector as Virasoro vector Vi (g’,0) has a natural structure of a vertex
operator algebra of central charge c(g, k). See [FBZ04], [LL04] and [FZ92] for this construction. Let
I C Vi(g',0) be a vertex operator algebra ideal. Then Vi (g’,0)/I is a vertex algebra as well. If we
have 1 ¢ I andw ¢ I then Vi (g’,0)/I is a vertex operator algebra of central charge ¢(g, k). Let now
Jr(g’,0) be the maximal proper submodule of Vi (g’,0) for & # 0 we have 1 ¢ Ji(g,0) as well as
w ¢ Ji(g',0), therefore Li(g',0) = Vi(g',0)/Jx(g’,0) is a vertex operator algebra of central charge
¢(g, k). Since L (g’,0) is an irreducible g’-module it is a simple vertex operator algebra.

Theorem 2.8.2 ([FZ92, Thm. 3.1.3.]). Let k be a positive integer, then the vertex operator algebra Ly, (g’, 0)
is rational. Let p run through all integrable weights such that (u,60) < k, then Li(g’, 1) provides a
complete list of irreducible Ly (g',0)-modules.

In order to get all regularity properties we need for the vertex operator algebra Ly(g’, 0), we come to
the following statement.

Theorem 2.8.3 ([DLM97, Thm. 3.7.]). Let k be a positive integer, then the vertex operator algebra
Li(g',0) is regular.

From now on we assume that k is a positive integer. Since Ly (g’,0) is clearly of CFT-type it has to be
Cy-cofinite by Theorem 2.7.12.

Theorem 2.8.4. Let k be a positive integer, then the vertex operator algebra Ly (g',0) is strongly rational.
For every integral A € h* with (\,0) < kweset A = kAg+ )\ € h* and introduce the vacuum anomaly

_ (A2 ) (02N -
2(k + h) 2(k + h)
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The vacuum anomaly h, is exactly the conformal weight of the module L (g’, A). See Corollary 12.8.
in [Kac90]. We can define an action of d € § on Li(g’, ) by

d — hald — L(0). (358)

It turns out that this extends to a natural action of § on Lj(g’, \) under which we have a natural §-
module isomorphism from Ly (g’, \) to L(A). Using this we can naturally identify the vertex operator
algebra Ly (g’,0) with L(kAg). Furthermore, the set of irreducible modules L (g’, \) for integrable
A € b* with (A,0) < k can be identified with L(A) for A € P} and A(d) = 0 along the map
A= A =FkAg+ ). See section §12.8 in [Kac90] and section 6.6 in [LL04] for details of this construction.
From now on we will work with this realization of the simple affine vertex operator algebras. Clearly
the characters chy(x)(7) are given by xA(0,7,0). The S-matrix, defined by Zhus theorem 2.7.19 is
given explicitly by (224). In chapter 2.5 we usually worked with classes [A] € P¥(mod C§). Since
each such class has a unique representant which satisfies A(d) = 0 we will usually identify the class

with this representant. In this sense we can parametrize irreducible L(kAp)-modules by classes in
P¥(mod C9).

2.9 The moonshine module and Schellekens’ list

Holomorphic vertex operator algebras are vertex operator algebras with, up to isomorphism, just one
irreducible module. Their classification is of particular importance because of its relations to the classi-
fication of even and unimodular lattices. Much progress has been made in this field and many people
contributed to this. We will give a brief introduction to this topic but focus on the case of central charge
¢ = 24. The most basic construction of holomorphic vertex operator algebras makes use of even, uni-
modular and positive-definite lattices L. We briefly introduce this well-known construction in the
following. See [LL04], [Kac98] and [FBZ04] for details. A nice exposition is also given in [Mol16]. We
set h = L ®z C and consider this as an abelian Lie algebra with invariant bilinear form. We introduce
an affine Lie algebra b, the Heisenberg algebra, by

h=bhoCt] e CK (359)
where K is a central element in this Lie algebra and we have
[z @ 1",y @] = (@, y)nbntmo K (360)

for n,m € Z and z,y € bh. For simplicity we will usually write z(n) for z ® t". We introduce
subalgebras of h by b = h @ tC[t], h— = h @ t7'C[t ™) and hp = h @ t® & CK. We finally set
b = b & ho. Of course we can introduce degrees by deg(z(n)) = —n and consider the usual grading
by degree here. For | € C let C; be the 1-dimensional module of b on which we have Kv = [v and
h(n)v =0forallv € C, h € h andn > 0. We call [ the level of C;. We introduce the h-module

V6<l70) = U(G) ®U(6) C (361)

of level [. We write 1 = 1 ® 1 in this space. Let Ay, - - hy be a basis of b, i.e. we have d = rank(L),
then it is clear that V; (1,0) is spanned by elements

zp(—ng) - z1(—m1)l (362)

Where we have z; € {h1,---hgq} andn; > Oforalli = 1,--- k. We introduce a Z>(-grading of
Vi (1,0) by

deg(zp(—nk) - 21(—n1)1) = ng + -+ - + na. (363)

Using this we obtain as Z>-graded vector spaces that

V;(1,0)=U(h-) = S(h-). (364)

54



For every h € ) we can now introduce a field

Y(h(=1)1,2) = h(z) = Z h(n)z™" ! e End(Vﬁ(l,O))[[zilH. (365)
neZ

By use of the reconstruction theorem we find that this defines a vertex algebra structure on V; (1,0)
which we call the Heisenberg vertex algebra of level [. We denote the dual basis of hy,--- ,hg by
hl,---, h¢ then we find that

1,
W= ;h (=1)hi(=1)1 (366)

is a conformal vector such that we can turn V; (1,0) into a conformal vertex operator algebra of central
charge d. We call it the the Heisenberg vertex operator algebra of level l. Tt is well-known that there
exists a 2-cocycle € : L x L — {#£1} such that ¢(a, ) = (—1)% and €(a, B)e(B,a) = (—1)@P),
This is just one possible choice for this 2-cocycle. See [Kac98] and [LL04] for details. We consider the
twisted group algebra C[L] defined by the complex span of e for o € L and multiplication e®e® =
e(a, B)e“rB. We can consider the vector space

Vi, = V;(1,0) ® C[L]. (367)

By keeping all previous notations form the Heisenberg vertex operator algebra and o € L we find that
this space is spanned by the
xp(—ng) - x1(—n1)1 ® e*. (368)

Clearly this defines a natural L-grading of V7, and for o € L we denote the corresponding weight
space by (V7)o We can furthermore introduce a Z>-grading of V7, by
(@, @)

deg(xk(—nk)~--x1(—n1)1®eo‘) =ng+---+n+ 5 (369)

We introduce an action of h on C.[L] by h(n)e® = Ke® = 0 for all n # 0 and
h(0)e* = (h, a)e® (370)

for all h € h. We extend this action to V7, along the tensor product in the obvious way. For o = 0 we
can introduce fields

Y(h(=1)1®e% 2z) = h(z) = Z h(n)z"""L. (371)
nez

For o # 0 we set
o oo o oo 57
Y(1®e" z) =e*2%xp a(—n)— | exp a(n)— (372)

where 2® acts on V7, as 2#(0). More precisely for h € b we define 2" by 2"v = 2Py for v € (VL)g.
We can furthermore define a vacuum vector of V7, by 1 ® €? and abuse notation by denoting it by 1 as
well. By use of the reconstruction theorem we can introduce a vertex algebra structure on V. This is

the lattice vertex algebra associated to L. Let again hy,--- , hy be a basis of h and h',-- - , h? its dual
basis, then
1,
w= §;h (=1)hi(—1)1 (373)

is a conformal vector of central charge ¢ = rank(L). The vertex algebra V7, equipped with this confor-
mal vector as Virasoro vector, is called the conformal lattice vertex algebra of central charge ¢ = rank(L)
associated with L. In general this is not quite a vertex operator algebra since the restrictions on the
dimensions of the weight spaces might not be satisfied. If the lattice L is positive-definite then V7, is
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in fact a strongly rational vertex operator algebra. See [Don93], [DLM97] and [DLMO00] for details of
this. A direct and easy computation reveals that the Virasoro operators Ly, are given by

d
Ly = %Z Z :hi(n)hi(m) : . (374)

i=1 n+m=~k
Let L be an even positive-definite lattice. In [Don93] it is proved that for A € L’ the space
Vier = VG(I,O) ®CE[/\+L} (375)

can be equipped with the structure of an irreducible V7, -module that up to isomorphism just depends on
[A\] € L'/ L. Furthermore each irreducible V,-module is of this form. In particular we have V1, = V.
See Theorem 3.1. in [Don93]. Another interesting property is that the fusion product of two irreducible
V1-module is given by

Vair By, Virr = Vagpt L (376)

As a consequence we find that every irreducible V7, -module is a simple current and the fusion algebra

V (V1) is isomorphic to C[L'/L)].

Definition 2.9.1. A strongly rational vertex operator algebra is called holomorphic if each of its irre-
ducible modules is isomorphic to its adjoint module.

As a consequence of Zhus theorem 2.7.19 we know that the character chy of a holomorphic vertex
operator algebra V' of central charge ¢ has to be a modular function for SLy(Z) for some character
p : SLa(Z) — C*. It can be shown that p(S) = 1, therefore the equation (ST)3 = S? in SLy(Z)
implies that p(T)? = 1. Yet we know that p(T) = e~ ?™31 so we obtain 8|c. This is a fundamental
result about about holomorphic vertex operator algebras. An even, unimodular, positive-definite lattice
L always satisfies 8|rank(L). A proof for this can be given by similar arguments or simply observe
that the associated vertex operator algebra V7, is holomorphic and has central charge ¢ = rank(L). So
for every even, unimodular, positive-definite lattice L we can construct a holomorphic vertex operator
algebra.

Theorem 2.9.2 ([DM04, Thm. 1 and Thm. 2]). Let V' be a holomorphic vertex operator algebra of central
charge c.

1. Assume c = 8. Then 'V is isomorphic to Vg, the holomorphic vertex operator algebra associated to
the lattice Eg.

2. Assume c = 16. Then V is isomorphic to Vi, where L is one of the two even, unimodular, positive-
definite lattices of rank 16.

For central charge ¢ > 32 there is no reasonable classification of holomorphic vertex operator algebras
in sight. One of the reasons for this is that there is not even a classification for even, unimodular,
positive-definite lattices L that satisfy rank(L) > 32. For lattices of rank 24 we have Niemeiers classi-
fication, however.

Theorem 2.9.3 (Niemeier). Up to isomorphism there are precisely 24 even unimodular positive-definite
lattices of rank 24 and they are uniquely determined by their root lattices.

For each Niemeier lattice L we can consider the corresponding lattice vertex operator algebra V. In
particular we can do this for the Leech lattice A, the unique Niemeier lattice without roots. Here, a root
is simply an element v € A with length v? = 2. The associated vertex operator algebra is the V) Leech
lattice vertex operator algebra of central charge 24. Yet there are more holomorphic vertex operator
algebras of central charge ¢ = 24 then just the 24 lattice vertex operator algebras. The most famous
example is the moonshine module V1. This vertex operator algebra was first constructed in [FLM89].
Essentially they took the Leech lattice vertex operator algebra V), and considered the orbifold of a
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certain automorphism o € Aut(V}y) of order 2. By this construction one extends the fixed-point vertex
operator algebra V{ by an irreducible module of it such that the corresponding space can be equipped
with the structure of a holomorphic vertex operator algebra. This is a rather complicated construction
and all of [FLM89] is dedicated to it. A few of the remarkable properties of the moonshine module are
that we have Vlh = 0and

chy:(7) = j(7) = ¢~ + 0+ 196884q + O(¢?). (377)

Yet the most important property of V7 is that its automorphism group Aut(V?) is isomorphic to the
Conway-Norton monster group M. This is precisely the M-representation that appears in Borcherds’
proof of the moonshine conjecture. We may now introduce a fundamental invariant of a holomorphic
vertex operator algebra V' of central charge ¢ = 24. This is its weight-1 space V7, equipped with a Lie
algebra structure by [v, w] = vow for v, w € V.

Theorem 2.9.4 ([DM04, Thm. 3]). Let V' be a holomorphic vertex operator algebras of central charge
c = 24. Then the Lie algebra V} is reductive and exactly one of the following:

1. Vi1 =0.
2. V] is abelian in which case V' is isomorphic to the Leech lattice vertex operator algebra V.

3. V1 is a semi-simple Lie algebra of rank 24. In this case V' is isomorphic to a Niemeier lattice vertex
operator algebra.

4. V1 is a semi-simple Lie algebra and its rank is less than 24.

In the following we will focus on the case, where V] is semi-simple. The symmetric, non-degenerate,
invariant bilinear form of V, which is unique up to scaling, will be denoted (-, -). We assume it nor-
malized such that (1,1) = —1. We decompose V] into simple Lie algebras g; and we define numbers
ki by (-, )|gixg; = Ki(+, ). In fact we have k; € Z~(. See [DM06]. We denote this decomposition by

Vi=g=011 D DOk (378)

The corresponding Cartan subalgebra will be denoted by
b="b1k & Dby, (379)
The vertex operator subalgebra V' (g) = (V1) generated by V; turns out to be isomorphic to
L, (k1Ao) ® - - @ Ly, (krAo). (380)

See [DM06] for this. By use of Proposition 4.1 in [DM04] we know that their Virasoro vectors are equal.
This allows us to consider V" as a V' (g)-module. Since V' (g) is strongly rational we know that V' can
be decomposed into finitely many irreducible V' (g)-modules. We obtain

V= @ m@A'- ALy (AH) @+ ® Ly, (A"). (381)
AL, AT

This decomposition was first studied by Schellekens in [Sch93], where he classified all possible Lie
algebra structures of V] and all induced decompositions (381).

Theorem 2.9.5 (Schellekens’ list, [VEMS17, Thm. 6.4.]). Let V' be a strongly rational holomorphic vertex
operator algebra of central charge c = 24. Then either Vi = 0 or dim(V1) = 24 andV is isomorphic to the
Leech lattice vertex operator algebra or V; is isomorphic to one of 69 semi-simple Lie algebras described
in Table 1 of [Sch93].
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We refer to this list of Lie algebras as Schellekens’ list in the following. This result was reproved in
[VEMS17] by similar arguments and in [VELMS21] by use of the very strange formula. The last approach
does not reproduce the V' (g)-module decomposition, however. Of course it is not at all clear that for
every Lie algebra g in Schellekens’ list there is a holomorphic vertex operator algebra V' of central
charge ¢ = 24 with V| = g. This problem was addressed in recent years by a community of people
and their joint effort led to the following theorem.

Theorem 2.9.6. For every Lie algebra g # 0 in Schellekens’ list there exists a unique holomorphic vertex
operator algebra V' of central charge c = 24 with V| = g.

The cyclic orbifold construction developed in [M6l16] and [VEMS17] was an important contribution
to this question. For every nontrivial Lie algebra in Schellekens’ list it can be used to construct a
holomorphic vertex operator algebra of central charge ¢ = 24 that yields this Lie algebra as its weight-
1 space. See in particular [MS19]. An excellent overview on this topic is given in [LS19] and the
literature cited therein. Yet the case V; = 0 is still wide-open. In [FLM89] Frenkel, Lepowsky and
Meurman, conjectured that a holomorphic vertex operator algebra V' of central charge ¢ = 24 with
Vi = 0 is isomorphic to the moonshine module V. This conjecture is also called the FLM conjecture.
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3 The Lie algebra of physical states and the no-ghost theorem

Motivated by the old covariant quantization in physics we can associate to a vertex operator algebra a
certain Lie algebra of physical states. This was famously used by Borcherds to construct the monster Lie
algebra, which is the Lie algebra of physical states of the moonshine module V%, An important tool of
his proof of the monstrous moonshine conjecture was the famous no-ghost theorem from string theory.
Using it, one can identify root spaces of the Lie algebra of physical states with certain subspaces of the
corresponding vertex operator algebra. This makes it possible to determine the root multiplicities
in terms of Fourier coefficients of the character of the vertex operator algebra. Furthermore those
identifications can be used to lift the Lie bracket to bilinear maps on suitable weight spaces of the
vertex operator algebra. In [Bor92] Borcherds asked for an explicit description of such maps in terms
of vertex algebra operations. The main result of this section is an explicit answer to this question. First
we discuss Borcherds’ sketch of proof of the no-ghost theorem and restate most of the results in terms
of an important operator E. This operator will turn out to be crucial to describe the identifications,
induced by the no-ghost theorem. Now we can use this to evaluate the Lie bracket explicitly in terms
of vertex operator operations.

3.1 The old covariant quantization and the no-ghost theorem

In this section we introduce the old covariant quantization of certain modules of the Virasoro Lie
algebra. Based on this structure we discuss the famous no-ghost theorem form string theory. The
first proof of the no-ghost theorem was given in [GT72]. A related but slightly different approach
was taken in [Fre85]. This was highly influential for the following discussion. We follow this source
in particular in the proof of the no-ghost theorem. The most prominent application of the no-ghost
theorem was in Borcherds proof of the Hauptmodul part of the monstrous moonshine conjecture. See
[Bor92]. Therein a sketch of proof for the no-ghost theorem is given as well. It follows the approach
in the previously mentioned sources. As usual we denote the Virasoro Lie algebra by Vir. Let V be a
complex Vir-module with the following properties:

1. V is of central charge ¢ = 24, i.e. the central element C' € V'ir acts as multiplication by 24 on

V.

2. V is equipped with a non-degenerate symmetric bilinear form (-, -) such that L_,, is the adjoint
operator of L,,. We call this property Virasoro-invariance.

3. The operator Ly defines by V,, = {v € V : Lyv = nv} a weight grading
V=V, (382)
n=0

and we assume that each weight space V,, is finite-dimensional.

4. the subspace V{) has dimension 1 and is spanned by an element 1, which we call vacuum. We
furthermore assume (1,1) = 1 and L,1 =0 foralln > —1.

Definition 3.1.1. We call a Vir-module V, which satisfies the previously discussed properties, a
lowest-weight module of central charge ¢ = 24 of the Virasoro Lie algebra V'ir.

Let V be a lowest weight module of central charge cyy = 24 of Vir. We easily check that V,, L V,,,
unless n = m. We consider the conformal lattice vertex algebra Vi, , associated to the Lorentzian
lattice 113 1 in rank 2 which has central charge ¢y, ; = 2. Where the conformal structure of Vi, , is
given as usual by (373). As in section 2.9 we write ) = II; ;1 ® C. Then this conformal vertex algebra
has a natural II; ;-grading, given by

Vi 0 =S(h-) ® e (383)
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for a € Iy 1. The Vir-module V' ® Vp, , has central charge ¢ = cy + e, , = 26. The vertex algebra
Vi, , carries a symmetric non-degenerate bilinear form (-, -)i, , which we assume normalized such

that (1,1),, = —1. Together with the bilinear form (-,-) of V' this induces a natural symmetric
non-degenerate bilinear form (-,-) on V ® Vi, , by
('7') = <7> ® ('7')111,1' (384)

Since in the following we will act with the Virasoro Lie algebra Vir on V, Vi, , and on V & Vi, ,
we will denote the Virasoro operators that act on V' ® Vi, , by L(n) for n € Z. This helps to avoid
misunderstandings. In particular the adjoint operator of L(n) is L(—n) for all n € Z, i.e. we have for
allv,w € V® Vi, , andn € Z that

(L(n)v,w) = (v, L(—n)w). (385)

The Virasoro operators that act on V ® Vi, ; will also be denoted by L(n), yet for the Virasoro operators
acting on V' we write Ly,. The space of primary states of V' ® Vi, , is given by

P={veVeW, : Lk)v=0Vk> 0} (386)
The operator L(0) induces a natural weight grading of P and we write
P" ={v e P:L0)v =nv}. (387)

We furthermore have a natural II; 1 -grading of V' ® V7, ,, simply given by subspaces V' @ V7, , o for
a € IIj ;. In the following we are going to denote this space by H(«). For each v € II; 1 we introduce
subspaces P(a) = PNV ® Vi1, ; o and P"(a) = P" N P(c) and notice that we have

P=  P(a)and (388)
a€ll; 1

P'= @ P*(w). (389)
a€lly 1

This is due to the fact that each weight-« space Vi, ; o of VI, , is closed under the Virasoro Lie algebra.
The kernel ker(-, -) of the bilinear form on P! is homogeneous with respect to the II; 1 -grading of P!
and its II; ;-grade spaces are given by

ker(-,")o = {v € P(a) :v L P(—a)}. (390)
Definition 3.1.2. On the conformal vertex algebra Vj;, ; we can define a linear involutive map 6 by
0(e®) = (o, —a)(=1)(@*/2e=> and O(h(n)) = —h(n) (391)

foralla € I3, h € 1 ® Cand n € Z. Clearly this extends to an involution on V' ® Vj;, , by
) = 1d ® 0. We can use it to define a non-degenerate bilinear form on V' ® Vi, , by

We call (-, -)o the symmetric contravariant bilinear formon V ® Vy, ;.

The involution 6 clearly commutes with the Virasoro operators, since it defines an automorphism of
the conformal vertex algebra structure of Vy;, , and acts as the identity on V. By a direct computation
we can check that 0 preserves the bilinear form (-, ), ,,i.e. for v, w € Vi1, , we have

((9(’1)),9(11]))111’1 = (v7w)111,1' (393)
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We observe directly that a similar equation holds for (-,-) on V' ® Vy, ;. Altogether we find that ¢
preserves the subspaces P and P" but maps H(«), P(a), P"(«) and ker(-,-)o to H(—a), P(—a),
P"(—«) and ker(+, -)_,. We furthermore have

ker(,)o = ker (('7 '>0|P1(a)><P1(a)) : (394)

The advantage of the contravariant bilinear form (-, -)g over (-, -) lies in the fact, that we can restrict it to
spaces H («), P(«) and P"(«) and obtain a meaningful Virasoro-invariant bilinear form. In particular
the restriction of (-, -)o to H(«) is non-degenerate.

Proposition 3.1.3. The If, 1-grading of Vir, , naturally induces a I, 1 -grading of the space P* /ker(-, "),
i.e. we have

Pl/ker(-,) = @@ P'(a)/ker(:,")a- (395)

Oz€HL1

The involution 6 on V' & Vi, , induces a natural linear involutive map
0: P! /ker(-,-) — P'/ker(-,-), (396)

which maps P'(a)/ker(-,-)o to P(—a)/ker(-,-)—q for every o € I, 1. The induced symmetric non-
degenerate contravariant bilinear form

('7')0 = _(79()) (397)
is just the induced bilinear form of (-,-)o on V @ Vi, ;.

Let G be a group of lowest weight Vir-module automorphisms that acts on V. This means that every
element of g acts as a linear automorphism on V' which commutes with all Virasoro operators L,, and
C' and preserves the bilinear form (-, -) and the vacuum 1. Clearly since G commutes with Ly it also
preserves the corresponding Lg-grading. We will call such a group G a group of symmetries of the
lowest-weight Vir-module V' of central charge cyy = 24. We extend the action of G to V' ® Vp, , by
letting it act trivially on Vi, ,. This action commutes with the Virasoro operators L(n) and C' acting
on the space V' ® Vi, , and preserves the bilinear form. This implies that it preserves the spaces P, P",
P(a), P"(c) and ker(, -),, and therefore defines a natural action G-action on the quotient P! /ker(-, -)
which preserves its II; 1-grading.

Definition 3.1.4. Let V' be a lowest-weight Vir-module V' of central charge ¢,y = 24 with a group of
symmetries G. We introduce the space

a(V) = P! /ker(-,) (398)

equipped with a natural non-degenerate bilinear form (-, -), an involution # and a contravariant bilinear
form (-, -)g. Furthermore a II; ;-grading as in (395) and a group of symmetries G and call it the spaces
of physical states of V.

In the remainder of this section we are going to study the structure of the space of physical states in
more detail.

Theorem 3.1.5 (no-ghost theorem). Let V' be a lowest-weight Vir-module V' of central charge cyy = 24
with a group of symmetries G and let its space of physical states be g(V'). Take o € II; ;. The subspace
9(V)a of a(V) is naturally isomorphic toV, .2, as a G-module with G-invariant bilinear form if oo 7 0

2
andtoVy & (I ® C) ifa = 0.

This formulation of the no-ghost theorem is from [Bor92], where everything is done over the real
numbers R, however. First the no-ghost theorem was proved in [GT72]. If we assume that the Vir-
module V is a real Vir-module with positive-definite bilinear form then it can be proved that the space
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of physical states can naturally equipped with a bilinear form (-, -)9 whose restriction to g(V'), with
r # 0 is positive-definite. This implies that the space g(V'), does not contain any ghosts, which are
vectors of negative norm. This aspect of the no-ghost theorem does not matter for us in the current
section and we don’t assume any such real and positive-definite structure for the Vir-module V in the
following. We will just work with non-degenerate bilinear forms over the complex numbers C. The
following discussion mainly follows [Fre85] and [Bor92]. By similar methods the no-ghost theorem
was also proved in [Jur98]. We start with the case 0 # o € II; ;. We fix an element w, € II 1 such
that (wa, w,) = 0 and (wq, @) = 1. In the following discussion we will make constant use of (309).
For n € Z we introduce operators

Ko(n) = (1@ we(—1)1)(n) =1d @ wa(n). (399)

Notice that in the literature it is not common to indicate the element a € II; ; with a subscript (-),, but
we do this because later we will have to work with several element in II; ; at the same time. Before
we discuss its properties we state some useful standard relations that hold in Vi, ,. For , 8 € b and
n, m € Z we have

[a(m), B(n)] = (o, B)mdn1m,0 and (400)
[L(m),a(n)] = —na(n + m). (401)

See (8.6.42) and (8.7.13) in [FLM89]. With those relation we easily check on V @ Vi, , that forn,m € Z
we have

[Ka(m), Ko(n)] = 0and (402)
L(m), Ko(n)] = —nKy(m +n). (403)

Clearly for v € H(«) and tuples A = (A1, -+, A\p) and o = (g1, - -+, o) With A, 1 € N we can set
Uy = L(=D)M - L(—n)M Koy (=1)M - Ko (—m)Fmo. (404)
Now we define a few important subspaces of H («) by
« P(a) to be the space P N H(«a) and we have P!(a) = P! N P(a).
« K(«) is the subspace of H(«) annihilated by all K, (n) for n > 0.
« T(a) is the intersection P(a) N K (a) and T () is the intersection P!(a) N K (a).

« G(a)isthespanofall ty , := L(—1)M - L(—n)* Ko (=1)#1 - - Ko(—m)*mt for Aj, pj € N
with 35, A + 375 5 > 0and t € T'(«).

« K'(«) is the subspace of G(«) generate by all ¢ ,, with z1 # 0.
« S(a) is the space of spurious vectors in H (), those are all vectors spanned by ¢y , with X # 0.
« N is the radical of the bilinear form in P(«), this is P(a) N.S(a). N is given by P(a) N .S(a).
+ Ve® is the subspace, defined by V' © e®.
In the following we need a more detailed discussion of the properties of those subspaces of H («).
Lemma 3.1.6 ([Bor92, Lemma 5.1/5.2]). We have
1. For a fixed vectort € T'(cv) of nonzero norm the set of all ty , is linearly independent.
2. For an orthogonal basis ty, of T'(cv) the set (ty,)» ,, defines a basis of H(c).

3. We obtain H(a) = T(a) ® G(a), K(a) = T(a) @ K'(0) and H(a) = K (o) ® S(«).
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4. We also have K (o) = Ve* @ K'(a) and G(a)) = K'(a)) & S(«).
5. The restriction of the bilinear form (-, -)o to T'(«) is non-degenerate and K'(«) is the kernel of the
bilinear form (-, -)p on K(«).
Proof. Proves for the statements in this lemma are given in [Bor92] and [Jur98]. O

We define a generating series

Ko(2) =2Y (1@ wa(—1)1,2) = Z Ka(n)z™" =1d2° + Ky(2) (405)
nez

on H(«). This makes sense because of K, (0) = Id. It can be checked that its formal inverse K (z)~*
is well-defined on H (<), more precisely we have formally

Ko(2) ™' = (14 Ko(2)) ' =1 - Ko(2) + Ko(2)* = Ko(2)> + — -+ - . (406)

This is possible because for any fixed v € H(«) we have K§*(z)v = 0 for m € N sufficiently large.
Using this we can define operators D, (n) on H(«) by

Da(n) = /C Ka(z)*lz"%. (407)

Here by [ -dz we denote a formal contour integral over some suitable contour C' around z = 0. To
perform explicit computations it is useful to have another description of the operators D, (n). We

define

Dy (n,m) := > Ko(ky) - Kolkm), (408)
k1+"'+k'm:n7kly"‘ 7k7n7£0

and D, (n,0) := d,,. Those operators are just the modes of the field K" (%), more precisely we have

Kj'(z) = Z Dy (n,m)z"". (409)
neZ\{0}
We use this to obtain -
Da(n) = Y (=1)"Da(n,m). (410)
m=0

By a direct computation we can see that just finitely many summands in (408) can act nontrivially on
any element in v € H(«) and for m sufficiently large we have D, (n, m)v = 0. Of course this is the
same computation that shows K{*(z)v = 0 fur m sufficiently large. This implies that D (n, m) and
D, (n) are well-defined operators on H («) and we could use (408) and (410) as definitions.

Lemma 3.1.7. For integers k,n € Z and m € N we have
1. [L(k),Dq(n,m)] = mkDy(k +n,m—1) — (k+mn— mk)Dy(k + n,m) and
2. [L(k),Dq(n)] = —(2k + n) Dy (k + n).

Proof. We prove those statements by direct computation. We have

[L(k)v Da(nv m)] = L(k)7 Z Ka(kl) e Ka(km) (411)
kit thkm=nk1, km7#0
=mk Z Ka(kl) T Ka(kmfl) (412)
ki+-+km—_1=n+k,k1, km—17#0
— (k4 n —mk) > Ko(k1) - Kol(km) (413)
k1+"'+1€m:n+k7k17"' 7km7£0
=mkDy(n+k,m—1)— (n+k—mk)Dy(n+ k,m) (414)
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Using this result we obtain
[L(k), Da(n)] = > (=1)™[L(k), Da(n,m)] (415)

= i (=)™ (mkDy(k+n,m —1) — (k+n —mk)Dy(k +n,m)) (416)

m=0
= Z(—l)m (=(n+2k)) Do(n+ k,m) (417)
m=0
—(2k +n)Dq(n+ k). (418)
Now the lemma is proved. O

Definition 3.1.8. For every a € II; ; we introduce the operator E, on H(«a) by
o0
Eo = (Da(0) = 1)( Z ) + L(=n)Da(n)). (419)

The operator E,, is of fundamental importance for the ongoing discussion. Therefore we are in need
of explicit formulas for the commutator of F,, with L(n), K,(n) and D,(n). We start with the easiest,
which is
[Ka(n), Eq] = —nKy(n) Vn € Z. (420)
This equation is easy to prove by use of (402).
Proposition 3.1.9. On the space H («) the operator E,, satisfies for alln € 7 that
3—n

[L(n), Eal = —nLin) + "4

(¢ — 26) Dy (n). (421)

Proof. By alengthy but direct computation similar to the proof of Lemma 3.1.7 we obtain

1), > (Da(~R)L(E) + L(~k)Da(k) | = )
k=1
n31; ”(c —26)Dy(n) —2nDy(n) + 2nDy(n)L(0) — nD,(0)L(n) (423)

and
[L(n), (Da(0) — 1)(L(0) — 1)] = —2nDy(n)L(0) + nDy(0)L(n) + 2nDy(n) — nL(n).  (424)
Both equations together imply the statement of the proposition. O

Of course during the entire section we assumed that ¢ = 26. So the statement of Proposition 3.1.9
really just is

[L(n), Eq] = —nL(n). (425)

The reason why we did not state the proposition like that is to make clear that it is this commutator
formula where the property ¢ = 26 becomes crucial.

Lemma 3.1.10. For any « € II; 1 and all k;,n € Z and m € N we have

[Ko(k1) - Ko(kr), Eo) = —(k1 + - + k) Ko (k1) - - - Ko (ky) (426)
[Da(n’ m)7 Ea] = —nDqy (na m) (427)
[Da(n), Eo] = —nDa(n) (428)
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Proof. The first equation can be proved by induction over r. The second and third equation are direct
consequences of this. 0

In summary we showed that for X (n) = K,(n), Do(n), L(n) we have [X (n), E,] = —nX (n) for all
n € 2.

Proposition 3.1.11. The operator E, has eigenvectors
Eotyy=—(M+2Xo+ -+ 0y 4+ p1n + 202+ -+ mpim)tr (429)

We fix an orthogonal basis tj, of T'(«) and consider the eigenvectors (t)» ,, of Ei which satisfy:

1. The eigenvalues of E,, are all nonpositive integer.

2. The space H (o) is spanned by the eigenvectors (i), of Fq.

3. The space G(«) is spanned by the eigenvectors (ti.)x , of Eo with X # 0 or ji # 0.

4. The space S(«) is spanned by the eigenvectors (ty,)x,, of Eq with A # 0.

5. The space K () is spanned by the eigenvectors (ty,)o., of Eq.

6. The space K'(«) is spanned by the eigenvectors (ty,)o,, of Eq with 1 # 0.

7. The space T'(«v) is spanned by the eigenvectors (t)o.0 of Eq.

Proof. The equation (429) is a direct computation that makes use of E,t = 0 for ¢t € T'(«). Which
follows from Dy (0)|g () = id. The rest of the statement is just a reformulation of Lemma 3.1.6 in
terms of the operator E,. O]

Definition 3.1.12. The decomposition of H(«) into eigenspaces of E,, defines projections into those
spaces. We denote the projection into 7'(«v), the eigenspace corresponding to the eigenvalue 0, by

P:H(a) = T(a). (430)

Since we furthermore have a direct sum K () = Ve® & K'(«) and therefore H(a) = Ve*® K'(a) ®
S(a) we also get an induced projection

P H(a) — Ve®. (431)

Lemma 3.1.13 ([Bor92, Lemma 5.3]). The restriction P|yco of P to Ve® defines a linear isomorphism
from Ve to T(a) and its inverse is given by P'|p(q).

Proof. The restriction P|yca defines a linear map from Ve® to T'(ax). Clearly P’|p(,) defines a linear
map from T'(«) to Ve®. Since their compositions just yield the identity maps on the corresponding
spaces the statement is proved. O

Lemma 3.1.14 ([Bor92, Lemma 5.5]). P!(«) is the direct sum of T*(«) and N'!.

Proof. We have to show that each p € P! can be written as ¢ + n for unique elements ¢ € T'*(a) and
n € N1. We know that we can write p = k + s for unique k € K'(a) and s € S1(«). Because S(a) is
spanned by elements ¢y , with A # 0 and t € T'(«) it is clear that the operator E, preserves spurious
states. This means E,s € S(«a) for each s € S(a). For p € P!(a) we get

Eop = Z L(_m>Da(m)p € S(a) (432)

m=1
Together this implies E,k = Eqp— Eys € S(a). But because E,, preserves K («) this yields E,k = 0
since we have S(a) N K(a) = {0}. This proves k € T'(a) and we get s = p — k € P!(a) since

T'(a) C P'(a). Finally observe s € N! = P(a) N Si(a). O
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In [Bor92] Borcherds gives a different proof for this lemma. In both proofs it is crucial that the Virasoro
algebra acts with central charge ¢ = 26. We need this here because otherwise the operator F, would
not satisfy equation (429).

Proposition 3.1.15. For every 0 # « € II; 1 we can define a linear isomorphism
Mo Vicazja = 8(V)a = PYa)/Nt, v [P(v® e®)], (433)
which preserves the G-invariant bilinear forms, i.e. forv,w € V|_,2 /o we have
(v, w) = (V@ ", W e)o = ([P(v@ )], [P(w @ e”)])o = (1a(v), Na(w))o- (434)

Furthermore this linear isomorphism preserves the group action of G, i.e. forg € G andv € V| _,2 /5 we
have

gNa(v) = 1a(gv). (435)

Proof. Since the linear isomorphism (P)|y .o preserves the L(0)-grading it is clear it defines a linear
isomorphism from V;_ 2 pe® to T (a). Using Lemma 3.1.14 we find that each class P' () /N con-
tains a unique representant in 7' (c), therefore the map 7, defines a linear isomorphism. For the
invariance of the bilinear form we evaluate

(v@e*,w®eY)y = —(v,w)(e”,0(e”)) = —(v,w)(1, ), , = (v, w). (436)

The equation (434) is a direct consequence of this. For g € G and v ® e* = t + k with t € T' () and
k € N! we have
(gv) ® e® = gt + gk = gt(mod N1), (437)

since the group action of G preserves T (o) and N'!. This is a consequence of the fact that G commutes
with the Virasoro operators and preserves the bilinear form. O

Proposition 3.1.16. We have
g(Vo=Viwe’alh; ®C, (438)

and the map
M : Vi@ (Ih1®C)—g(V)y, vtarsv@e +1®a(—1)e (439)

defines a linear isomorphism that preserves the bilinear forms and the group action of G.

Proof. First we notice that we have
HO0)=VieLaVoS(H-) o =PY0). (440)

The first equation is clear and for the second we have to check that each element of the form v ® e 4
1®h(—1)e’ forv € Vj and h € 111 ; ® C vanishes under all L(n) for n > 0. Clearly we have Lijv = c1
for some constant ¢ € C. We get

c¢=(Liv,1) = (v,L_11) = 0. (441)

For each h € II; ; ® C we can check by use of (374) that L(1)h(—1)e’ = 0. Since the restriction
of the bilinear form (-, )y to this space P(0) is clearly non-degenerate we obtain go(V) = P(0).
Therefore the map 7 defines a linear isomorphism that preserves the group action of G. Next we have
to consider the bilinear forms. For v, w € V; we have

(v® el we ey = (v,w) (e e (442)
= —(v,w)(e’, (")), , (443)
= —(v,w)(e’, ")y , (444)
= (v, w). (445)
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For h1, he € 1111 ® C we obtain

(1®hi(=1)e”, 1 ® ha(—=1)e”)g = (1, 1)(h1(=1)e’, ha(=1)e) (446)

= —(1,1) (1 (=1)€’, 0(ha(=1)e"))ry, , (447)

= (L, 1)(h1(-1)e", h2( 1)e ), , (448)

—(1,1)(°, [h (1), B (=)}, (449)

= —(1,1)(h1, h2)(e", ")y , (450)

= (h1, h2). (451)

Because of v @ € | 1 ® h(—l)eo forv € Vi and h € II; ; ® C the statement is proved. O

Clearly the combination of Proposition 3.1.15 and Proposition 3.1.16 just yields the no-ghost theorem.
Notice that we can use the operator E,, to describe the projection P : H(«) — T'(«) in a more explicit
way. For z € H(a) we have

12
Pr = 1:[1@ + Eu)x (452)

where d € N is sufficiently large such that L(k)x = 0 for all k > d. For v € V,, we obtain

1
n!

-

Pv®e” = (i + Ey)v®e” ZS n)Elv ® e®, (453)

1

]

where Sj are the usual symmetric polynomials in n variables. For short we denote the number
Sy(1,---,n) by Sy[n].

3.2 The Lie algebra of physical states

In the previous section we assumed that V' is a lowest-weight Vir-module of central charge ¢y = 24
and studied its space of physical states g(V'). In this section we specialize the discussion to the case
where V' is a vertex operator algebra of central charge ¢ = 24. We assume furthermore that V' is
self-contragredient, i.e. that it carries a non-degenerate symmetric invariant bilinear form (-, -). This
invariant bilinear form shall be normalized such that (1,1) = 1. Furthermore we assume that the
vacuum 1 spans the space Vj over C. Those assumptions turn V' into a lowest-weight Vir-module of
central charge cyy = 24 in the sense of Definition 3.1.1. Notice that we assume all those properties
throughout the entire section. Clearly this turns V' ® Vi, , into a conformal vertex algebra of central
charge ¢ = 26.

Proposition 3.2.1. Let V' be a vertex operator algebra of central charge ¢ = 24 which satisfies all
assumptions made above. The space

g'(V)=P!/L(-1)P" (454)
can be equipped with the structure of a Lie algebra by use of the bracket
[ ]2 g' (V) < g'(V) = g'(V), ([2], [y]) = [woy]. (455)

The subspace L(—1) P° is furthermore contained in ker(-, -) and therefore the invariant bilinear form (-, -)
of P! can be restricted to the quotient ¢'(V') and induces a bilinear form which is invariant under the Lie
algebra structure, i.e.

([, v], w) + (v, [u,w]) =0 (456)

forallu,v,w € g'(V'). The Iy 1 -grading of Vi, , induces a natural II, 1 -Lie algebra grading of g'(V'), i.e

we have
D a.(v) (457)

acllh 1
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and

[0.(V),85(V)] C gois(V). (458)

Proof. The fact that this bracket defines a Lie algebra structure is a standard computation that makes
use of the Borcherds identity of the vertex algebra V' ® Vi, . Since the adjoint of L(—1) is L(1) and
P! vanishes under L(1) it is clear that L(—1)P? is contained in the kernel of the bilinear form. [

Since we prefer a space with a non-degenerate bilinear form we can consider the quotient
8(V) =g (V)/ker(:,-). (459)
Clearly this quotient preserves the Lie algebra structure and the II; ;-grading. Furthermore we have
a(V) = g'(V)/ker(:, ) = P' [kex(-, ), (460)

such that the underlying vector space of the Lie algebra g(V') coincides with the spaces of physical
states of V. The bilinear form (-,-) and the II; ;-grading coincide under this identification as well
therefore we can equip the space of physical states of V' with a natural Lie algebra structure. Assume
that the group of symmetries G of V' is a group of vertex operator algebra automorphisms then the
induced group of symmetries of g(V') is a group of Lie algebra automorphisms that preserves the
invariant bilinear form and the II; ;-Lie algebra grading.

Definition 3.2.2. Let V' be a self-contragredient vertex operator algebra of central charge cyy = 24
and assume that the corresponding bilinear form (-, -) is scaled such that (1,1) = 1. Furthermore we
assume Vj to be spanned by 1. Assume that G is a group of vertex operator algebra automorphisms
of V. The Lie algebra of physical states g(V') of V with symmetry group G is the Lie algebra structure
on the spaces of physical states of V' induced by the Lie algebra structure of g’(V') together with its
invariant bilinear form (-, -) and the Lie algebra grading

gV)= @ a.(V). (461)

aEIILl

In Definition 3.1.2 we introduced an involution 6 on V' ® Vj;, ; which is clearly an involution of con-
formal vertex algebras since it acts as the identity on V. This implies that # induces a Lie algebra
involution # on g(V') that preserves the bilinear form the commutes with the group of symmetries G
and satisfies

9(904(‘/)) = g—a(v) (462)
for all @ € II; 1. This allows us to introduce a contravariant bilinear form
(7)o =—(-0()) (463)

on g(V') such that its restriction to each II; ;-grade space g, (V') is non-degenerate. Notice that the
contravariant bilinear form is not invariant in general, since we have

(a,[z,b])o = ([a,8(x)],b)o (464)

for a, b,z € g(V'). We can apply the no-ghost theorem 3.1.5 to study the II; ;-grade spaces g, (V') for
« € Il ;. For every o € IIj; \ {0} this yields a linear isomorphism 7, : Vi_q2/5 — g(V)q that
commutes with the group action of G and satisfies for every v, w € V;_,2/, that

<U7w> = (Ua(U)J)a(w))U (465)
Clearly we obtain for every o € II; ; \ {0} that

dim(ga (V) = dim(V;_y2 ). (466)
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We can now discuss the case & = 0. The Proposition 3.1.16 induces a linear isomorphism 1y : Vi @
(Il 1 ® C) — g(V')p which for all v, w € Vj and o, 8 € II 1 ® C satisfies

(no(v + a),mo(w + B))o = (v, w) + (a, B). (467)

Yet we are not just interested in the value of the contravariant bilinear form (-, -)o but also in the values
of invariant bilinear form (-, -) on go(V'). Forall v,w € Vj and o, 5 € II; ; ® C we have

(no(v + @), no(w + B)) = —(v,w) + (e, B). (468)

This is a direct consequence of (e°, eO)HL1 = —1. So far we discussed how we can transport the group
action and the bilinear forms from V to g(V'). Yet the most interesting structure of g(V') is its Lie
algebra structure and we can use the no-ghost isomorphisms to transport the Lie bracket to V.

Definition 3.2.3. For o, 5 € II; ; \ {0} we define maps

Cdas tVy o X V2 =V, e @) o i ly(ia@)ms@)). (469

2

More explicitly for v € Vi_,2 and w € V}_g2 5 we have
{v,w}ap =P ((Pv & e*)o(Puw @ ). (470)

Borcherds asked in section 15 of [Bor92] for an explicit description of the map {-, -} g in term of vertex
algebra operations on V in the special case of the moonshine module V = V. In the remainder of
this section we want to derive such an explicit description.

3.3 Schur polynomials and the lattice vertex algebra V7, ,

In this section we discuss the lattice vertex algebra Vf, ; in more detail. In particular we introduce the
corresponding Schur polynomials. We aim to evaluate the projection P’ explicitly for certain elements
of spaces of the form H(f) for § € II;; \ {0}. As usual we fix an element wg € II; ; such that
(B,wg) =1 and (wg, wg) = 0 and introduce the corresponding operators K 3(n) as in section 3.1.

Definition 3.3.1. For a € II; | we define the Schur polynomials S,j(oz) in vertex operators of Vp, ;, by

E(e®, )t :=exp (i a(—m)j:) = i S (a)2”. (471)
m=1 k=0

By comparing coefficients of the formal derivation of equation (471) we get

k
kS () =Y St (@)a(—m). (472)
m=1
In the following we fix o, B € II; 1 and chose wg as usual. We define numbers
A(m) == —(a, ws) (1 = (a,wg))"™ ™! (473)

and check by direct computation that in the case (o, wg) # 0 they satisfy the equation

m—1
A(i) = — (

i=1

(a’wﬁ)A(m) + 1) : (474)

In fact we can check, that this equation determines the numbers A(m) already.
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Lemma 3.3.2. For a non-negative integer k and a non-negative integer m we have

[L(—k) i —k—h)SE (). (475)

Proof. We prove this by induction over m. The statement is clearly valid for m = 0 and m = 1. Assume
now that the statement holds for all m < mq for some mgy. We get

i <—k> Siho(@) ws)
= [ Z mo—i(@)a(=1) (477)
_ Wlmi (L(-k)S},,_s(@)a(—i) — 5, (@)a(~i)L(~k)) (478)
::;5é;(QL@*ﬂﬁﬂ—@]+CN—®LC—M)$%_Aa)—cd DS, (@L(=k))  (79)
=;0§(<za< (k+ )5 (@) + a(=D)L(=k), S}, _i(a)]) (450
= w,llo (ﬁlw( (k +1))Smy—i +Z njﬁ:lia —k—§)Sh i ](a)> (481)
- = <m2a< (k+ )87, o >+j§§a<—<k+j>>< o= S, ]<a>) 452)
-3 a(ck =5}, (o) s
Each step i:those equations is easy to verify therefore the statement is proved. O

Notice that we have to commute elements of the form «(n) and a(m) to obtain equation (482). The
assumption that £ is non-negative makes sure that all the commutators, that appear, vanish. Otherwise
the statement would look a bit more complicated. In order to determine the projection P’ of expressions
like v ® k:S,j(a)eB we need two lemmas which help us to determine such projections recursively.

Lemma 3.3.3. Fork € Nandv € V we have
k
v® kST (a Z m)v @ L(—m)S;_ (a)e’ (mod G(B)). (484)

Proof. The elements 3 and wg clearly form a basis of II; ; ® C and we have o« = (o, wg) + cwg for
some constant ¢ € C. Furthermore the dual basis of (3, ws) is given by (ws, 8 — B%ws) and we use
this to compute

L(=m)e® = B(—=m)e® + wp(=1)(---)e’ + -+ wg(—m)(- - )e’. (485)
If (o, wg) = 0 we obtain & = cwg and this implies
v @ kS (a)e” = 0(mod G(3)). (486)

Because of A(m) = 0 for all m = 1,--- ,k the statement is proved in this case. Form now on we
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assume (o, wg) 7 0. This allows us to compute

v S,;im(oz)L(—m)eﬁ =v® SJr () (B(= ) +wg(—=1)(-- -)eﬂ + et wg(—m)eﬁ) (487)

=0 @ S, (@)B(=m)e” + Kg(=1)(--+) + -+ Kg(=m)(---)  (488)
= v® S, (a)B(—=m)e’ (mod G(8)) (489)
1
= U®S_maa—meﬁmodGﬁ . (490)
g @ SEm(@)a(-m)e (mod G(3)
Now we can compute
k
> A(m)v @ L(-m)S;,, (a)e’ (491)
m=1
k k—m
= Z A(m) <S+ ( )L(—m)eﬁ + a(—m — h)S,j m h(oz)eﬁ> (492)
m=1 h=1
k k 1
=— Z v@ S (a)a(—m)e” + Z A(m) + 1) v® Sy, (a)a(—m)e’
m=1 m=1 (Oé, wﬁ)
(493)
k k—m
+ Z A(m)v @ a(—m —h)S;~, , (a)e’ (mod G(B)) (494)
m=1 h=1
k k 1
=— Z v® S, (@)a(-—m)e’ + Z ( A(m) + 1) v® S (a)a(—m)e’
m=1 m=1 (Oé, ’UJ/B)
(495)
k i—1
+Y (DS AG) | v @ al—i)Si (@)’ (mod G(3)) (496)
=2 \j=1
k
=— Z v® S (a)a(-m)e’ = —v® kS (a)e? (497)
m=1
In this computation we used the change of indices ¢ = m + h and 5 = m and the fact
( ! A(l) + 1) =0 (498)
(O[, wﬂ) '
This is precisely the statement of the lemma. O]
Lemma 3.3.4. Fork € Nandv € V we have
k
kP (v S (a)e’) =" A(m v @ S (a)e?). (499)
m=1
Proof. We have ¢ | A(m)L(—m)(v® S, (a)e®) = 0 (mod G(3)). We immediately get
k
Z A(m)L_pv @ St Z A(m)v ® L(— )S,j_m(a)eﬁ (500)
m=1
= k:v ® S,j( )eP (mod G(B)). (501)
Since the kernel of P’ is precisely G(3) we are done. O
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Before we can come to the main result of this section we have to introduce some notation. In the
following we will write N for the set of positive integers. We define sets

BI(k) := {m = (mq,--- ,m;) GNi:ml—i—--'—}—mj =k}, (502)
B°(k) := 0 and B°(0) := {0 = (0)} for k € N, and j € N,. Clearly we have B7(k) = () for j > k.

We use those sets to define

k
B(k)= | B/(k). (503)
=0
For later use we define the numbers p(k, 5) to be the cardinality of B’(k) and polynomials
k
dip = > p(k,m)T™. (504)
m=0

We have numbers ¢(m) = ngl mﬁ(imi)mk and c¢(0) = 1. We also write L(—m) = L_p; -+ L_pm,

and L(—0) = Id. All this prepares us to state and prove the main result of this subsection.
Proposition 3.3.5. Forv € V and k € N we have
P'(ve S (a)e’) = ij Y. dm)L(-mjo= Y c(m)L(—m)v. (505)
J=0meBi(k) meB(k)
Proof. We prove this by induction. The case & = 0 is clear. Notice that we have
B k) ={(m,m):m=1,--- ,k—1,me B'(k—m)} (506)
={(m,m):m=1,--- ,k—j,me B (k—m)}. (507)

Therefore for any function X, defined on the sets B’ (k) we have

k=1 k—m k=1 k—1 k
> > X(mm)) = Yoo X((mm) =) Y X(m). (508)
m=1 j=1 meBi(k—m) j=1m=1meBi(k—m) J=2m'eBi(k)

Taking into account that @c(m) = ¢(m/) and L(—m/) = L(—m)L_,, for m’ = (m, m) we can

carry out the induction using (508) and get

P'(v@S (a)e?) (509)
Ak — A
— Ec)L"“U + (k)P’(L_mv ® S, (a)e?) (510)
m=1
k—1 k—m
AR s A S em)L(~m)L (511)
k = k= :
m= J=1 meBi(k—m)
k—1 k—m
— AW A o) L(-m) Lo (512)
m=1 j=1 meBi(k—m)
k
— AL ey () L(—m Yo (513)
i=2 m'eBit (k)
k
=D c(m/)L(—m/)v (514)
7=0m’€Bi (k)
= Y cm)L(-m)v (515)
m/eB(k)
This is precisely the statement of the proposition if we substitute m’ with m. O
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3.4 The Lie bracket of the Lie algebra of physical states

In this section we come to one of the main results of this thesis, an explicit formula for the bracket
(470). In order to prove this we have to evaluate the term (Pv ® ¢®)o(Pw ® €°)(mod G(a + B)) in
a suitable way, such that we can compute its projection under P’ explicitly. Since those projections
depend on a choice of an element w, € II; ; with (o, w,) = 1 and w? = 0 for every o € II; 1 \ {0}
there is some ambiguity in those projections. Yet it is possible to make these choices in a compatible
way, such that the corresponding operators K, (n) are closely related.

Lemma 3.4.1. The lattice II, ; contains elementse, f € I 1 such that
1. e2=f>=0and(e,f)=1and
2. foralla € I 1 with a® # 0 we have (o, €) # 0 and («, f) # 0.

Each pair e, f with this properties spans Il 1 ® C and v = ae + bf satisfies v> = 0 if and only ofa = 0
orb=0.

Proof. The lattice II; 1 can be given explicitly by Ze & Z f with e? = f2 = 0 and (e, f) = 1. Clearly
e, f is a pair with the properties in the statement. Assume now e, f be any such pair. This pair spans
II; ; ®C because otherwise we would have e = cf for some ¢ € C but this clearly contradicts (e, f) = 1.
A direct consequence of v = ae + bf is v? = ab. This implies v2> = O ifand only ifa = 0 or b = 0. [

Of course the statement of this lemma is obvious and the proof is easy. We just state it to collect all
the statements by which we characterize such a basis e, f.

Definition 3.4.2. We fix a pair of elements e, f in Il ; as in Lemma 3.4.1. For @ € II; ; with a? #0
and a = nf €Il we set

We = e (516)
(w, )
and for o = ne € II; ; we set
1
Wy = . 517
« ('U)’, Oé)f ( )

From now on we chose a pair e, f as in Definition 3.4.2 and keep it fixed. For every 0 # o € II; ; we
define w,, as in this definition. Clearly if o, 5 € II; ; satisfy o, 3 ¢ et we get for all n € Z that

1
(avwﬁ)

Ko(n) = (B, wa)Ks(n) = Ks(n). (518)

Definition 3.4.3. Fork € N, and j = 0,--- ,k — 1 we define polynomials p? € Z[T] by
1. pISZkaorj:O,
2. p?ZTpﬁ’"ler?:} forj=1,---,k—2and
3. pf | =kTforj=k—L

In the following we will evaluate the polynomials pg? at special places, which are usually integer. Of
course for m € Z we denote the corresponding value by p;? (m).

Lemma 3.4.4. Take« € II1 1. For k € N and m € Z we have

k—1
[Da(m), E5] = =" ph(m) Dy (m)EL. (519)
7=0
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Proof. We prove this by induction. For k¥ = 0 the statement is clear and for k¥ = 1 the statement is
given in Lemma 3.1.10. Assuming the statement for k we get

[E£T, Do(m)] =Eo[EL, Do(m)] + [Ea, Do (m)|ES (520)
k—1
=" ph(m)EaDa(m)E, + py(m)Da(m)E: (521)
=0
1 | |
= pj(m)(mDo(m)E}, + Da(m)EL) (522)
7=0
+ p(m) Dy (m)EX (523)
:plg (m)(m)D,, (m)Eg (524)
k—1
+ 3 [P m)mDa(m) Y, + pl_y(m) Da(m) E] (525)
j=1
+ pii_1 (m) Do (m) g + py(m) D(m) EX (526)
=pt; (m)(m) Do (m)E (527)
k—1
+ 3 (shmym + Py (m)) Da(m)E, (528)
j=1
+ (pi_1(m) + pg(m)) Do (m) E (529)
k
=>" P (m) Do (m)EL,. (530)
7=0

This proves the statement.

Now we will start to evaluate the maps {-, -}, g. Remember the polynomials dj, defined in (504). As
explained above for a number x € C we denote the evaluation of the polynomial dj, at by di(x).

Lemma 3.4.5. Assume v, 3,a+ 3 ¢ e*. Forx € K(a),y € K(B) andn € N, k € Z we have
(Dal=n)2)sy = (~1)"dn (e, B))24ny (mod Gt + 5)) and (s31)
zr(Dp(—n)y) = dn((a, wp))zk—ny (mod G + B3)). (532)

Proof. Because of a, B, + 3 ¢ e we have that K,(j)y = (wa, 8)K3(j)y and Ku(j)y = (wa,a +

B)Katp(j)y fory € K(B) andy € K(a+ B) for all j € Z. See (518) and the corresponding
discussion. Using this and the Borcherds identity (283) we get

(Ka(—n)z)py =Y (—1) (_jn> (Ka(=n = ) (@k459) — (=1)"2p—pn—j (Kal5)y)) (533)
§=0
= —(=1)"(wa; B)zk—ny + Kagp(—n)(--+) + Kayp(-n —1)(---) + -+ (539)
= —(—1)"(wq, B8)Tk—ny (mod G(a + B)). (535)
Using this we obtain
(D(_n7 m)x)ky = Z (Ka(_nl) T Koe(_nm)x)ky (536)
ni+-+nm=n,ni, - ,Nm>0
= Z (=)™ ™ (we, B)™ Tk —ny (mod G(a + B)) (537)
ni+-+nm=n,ni, - ,Nm>0
= (= 1) (1w, B p(m, M)k (mod Gl + B) (538)

Here we used that K, (n)z vanish for all positive n. Taking the sum over m yields the stated result for
D(n). The second equation can be proved analogously. O
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Definition 3.4.6. For fixed o, 8 ¢ e with a + 3 ¢ el we denote the numbers d,,((wq, 3)) and
dn((a, wg)) by d(n) and d'(n) respectively. For m € N we set

¢i(m) = (=)™ d(m)p5 " (~m) (539)
and for (m;,--- ,m1) € N/ we recursively define
k .
(my, - ma) = (=1)™d(m1) Y pi (—ma) ey (my, -+ ma). (540)
=]
Furthermore we define
5’f(m) = d’(m)plg*l(fm) (541)
and again we define recursively
6§(mj,--- ,my) = d'(mq sz [ (=my)é 1(7nj,~- ,M3). (542)

Explicit evaluation of the recursive definition of the maps c;‘? in (540) gives

c?(mj, s my) = (=)™t g my) - d(my) (543)
i1—1 17 2—1 . 2
PO
Z Yoo > P (Emp T (=ma) g T (= my), (544)
11=7 i2=7—1 ij-1=1

A similar formula can be derived for E? (mj,---,mq).

Lemma 3.4.7. Assume o, B, + 3 ¢ e*. Fork € Ny, h € Z andv,w € V we have for allz € K(«)
andy € K () that

k
(Bgv@ ey =3 3. ci(m)((L(m)v) ® e) |y (mod G(a + B)) and (545)

k
wn(Bfw®e?) =3 37 & m)anjm (L(m)w) @ e”) (mod G(a + B)). (546)

Proof. We prove this statement by induction. Let us assume k£ = 1. We evaluate

(Eqv @ e*)py (547)
= Z (Da(—n)(Lnv @ €%)),y (548)

-1
3 (1) (L ® € _ny(mod Gl + B)) (549)

n=1

Here we made use of Lemma 3.4.5. This proves the case k = 1. Now we are ready to do the induction
step by assuming the statement for some k and proving it for £+ 1. During this computation we denote
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E,, simply by E. We obtain

(E*y @ ey (550)
o
= > (E*D(—=m)Lmv @ e*)ny (551)
m=1

00 k—1
=> ({D(—m)Ek + Zp?(—m)D(—m)Ej} Lo ® ea) y (552)
h

m=1 3=0
= > (=1)"pi(—=m)d(m)(Lmv @ €*)py (mod G(a + ) (553)
m=1
o k
+ Z Zp?(—m) (D(—m)Eijv ® ea)h Y (554)
m=1j=1
= i (=1)™p5(—=m)d(m)(Lmv @ €*)py (555)
m=1
© k
+ 30 Y (1) (~m)d(m) (B Lyv © )y (mod G(a + B)) (556)
m=1j=1
= > (=1)"pf(=m)d(m)(Lnv © €*)ny (557)
m=1
oo k j .
+ Z Z(—l)mp;‘?(—m)d(m) Z Z cl(m) (L(m)Lmv ® ea)hflmlfm y (mod G(a + f3))
m=1;j=1 =1 meN?{
(558)
= i (=1)™pg(—=m)d(m)(Lmv @ €*)py (559)
m=1

k J oo '
+ Z Z ) (—=1)"pf(=m)d(m)c] (m) (L(m) Lo ® €)), iy (mod G(a+ 3))

j=li=1m=1 meNzr
(560)
=" (=1)"pf(—m)d(m)(Lmv ® )y (561)
m=1
k+1k+1 .
+ (—1)m1p?_1(—m1)d(m1)6‘§:11 (m) (L(m’)v ® ea)h,\ﬂ/\ y (mod G(a + 3))
=2 j=i m'eNi_
(562)
= > (=1)"pf(—m)d(m)(Lmv @ €*)py (563)
m=1
+1 k+1 '
+ {(=0mp_y (=m)d(m)] = (m) } (L(m)v © ), 0y (mod Gla + )
=2 MENE} Jj=t
(564)
k+1
= T m) (L(m)v) @ €)p— gy (mod G(a + B)) (565)
=1 meN?,

We used the previous results of this section and changed the indices several times. The second equation
follows analogously. O
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Definition 3.4.8. For k € N and n € N we set

k
=> Y d(m)L(m), (566)

=1 meBi(n)
Z >oo@ m) and (567)
i= 1m€Bz(n)

o =Jn = Gonld. (568)

As usual for v,w € V we denote the evaluation of i¥ and j* at these vectors by i (v) and j% (w)
respectively. Assume once again that o, 3, + 8 ¢ e*. Fork € N,h € Z, v,w € V,z € K(a) and
y € K(B) we have

(Efv ® e*)py = i(i’;(u) ® e*)p_ny (mod G(a + B)) and (569)
n=0
on(Blw @ ) = i Th—n (¥ (w) ® €%) (mod G(a + B)). (570)

This is clearly just a reformulation of the statement of Lemma 3.4.7 by use of the operators i¥ and
j¥. We are now ready to come to the first main result of this thesis. This is the explicit evaluation of
the maps {-, -}, g in terms of vertex algebra operations. In the special case V' = V!, where we have

g(V?) = m!, this answers question (4) in section 15 of [Bor92].

Theorem 3.4.9. Assume o, 5, + [ ¢ et. We may putn =1 — %2 andm=1— %2 Forv € V,, and
w € V,, we have

{v w}ag = (571)

ZZ Z > > Sy [n]Ss[mle(m) L(—m) (if, (v)d5, (w)).  (572)

r=0s= 0l1 lo= OkGZmEB(ll+lg+k7(a,ﬁ))

n'm'

Proof. For elements v € V,, and w € V,;,, we may use (453) to obtain
(Pv®e)o(Pw® e’ ,m| Z Z S.[n Ei(v @ e*)oEj(w @ eP). (573)
r=0s=0

Remember that it is enough to evaluate this expression modulo G(« + 3), since this is precisely the
kernel of P’. As a first step in this direction we may use (569) and (570) to obtain

Ei(v®e*)oEj(w® e”) Z Z (i7 (v) @ €*)—t,—1, (7, (w) @ €”)(mod G(a + B)).  (574)
11=0105=0

Using (308) and (471) we compute

(1;1 (’U) ® ea)*llfb (jlg( ) ® 6 Z 1l1 k)lg S]—;_ll_;_b_(aﬁ) (a)ea+6' (575)
kEZ

Now we are in a decent spot because we can use Proposition 3.3.5 to compute the projection P’ of
expressions like this. Putting all those formulas together the statement follows. O
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4 From vertex operator algebras to reflective modular forms

In [Sch93] Schellekens studied the Lie algebra structure of the weight-1 subspaces V; of holomorphic
vertex operator algebras V' of central charge ¢ = 24. His remarkable result was that there are just 71
possibilities for this Lie algebra. Furthermore he determined in each case the corresponding decompo-
sition of V into affine modules. Subsequently he conjectured that for each such Lie algebra there exists
a unique holomorphic vertex operator algebra with central charge ¢ = 24, that realizes this Lie algebra.
For the cases 1} # 0 this conjecture is no proved by work of several authors. In [CKS07] Creutzig,
Klauer and Scheithauer studied holomorphic vertex operator algebras of central charge ¢ = 24 with
Vi=A) 4,forp=2357andr = % in more detail. Using the explicitly known decom-
position in affine modules of V' they extend the coroot lattice of V; by a suitable isotropic subgroup
of simple currents. Then they show that this lattice is the dual lattice of the root lattice of the Lie
algebra of physical states g(1"), which turns out to be a generalized Kac-Moody algebra. Finally they
find that the automorphic product associated to a character of V' yields precisely the denominator
identity of this Lie algebra and is reflective. In this section we essentially want to repeat this program
for a holomorphic vertex operator algebra V' of central charge ¢ = 24 with semi-simple Lie algebra
Vj. The main difference to [CKS07] is that we don’t use any explicitly given decomposition of V' into
affine modules. As a consequence we will have to replace several explicit computations in [CKS07] by
abstract arguments. This makes our result independent of Schellekens’ list.

4.1 Cominimal simple currents of affine vertex operator algebras

Let g be a simple Lie algebra and take & € Z~(. In this subsection we give an introduction to cominimal
simple currents of the simple affine vertex operator algebra Lg(kAo). These are essentially simple cur-
rents, whose action on the irreducible modules is induced from an outer automorphism of the extended
Dynkin diagram of g. We furthermore discuss a well-known but important symmetry of the S-matrix
of Ly(kAg) under those simple currents. This will be an important tool to show that the group of
cominimal simple currents can be viewed as a subgroup of the discriminant form D (M (k)), where as
usual M is a coroot lattice of g. For simplicity we will usually just write L(kAg) for Ly(kAg) and use
all notations from the chapters 2.5 and 2.8. Most of the content in this section is well-known. See in
particular [KP84], [KW88] and [CKS07]. See also the fifth section in [Fuc95]. The best source for the
previously mentioned symmetry of the S-matrix of Ly (kAg) under the action of the cominimal simple
currents is [FMS12]. The irreducible modules of L(kA¢) are parametrized by A € P} with A(d) = 0.
Usually we will write Pf(mod C6) for the set of such elements. This keeps implicit that we always
chose the unique representant which satisfies A(d) = 0. In (230) we introduced a set J with j € J if
and only if the corresponding Coxeter label satisfies a; = 1.

Definition 4.1.1. An irreducible module L(A) of L(kAg) will be called cominimal simple current if
A = kA for some j € J.

Following Proposition 5.1. in [DLM96] it is clear that each cominimal simple current is a simple current
of L(kAg). In fact it turns out that almost all simple currents of affine vertex operator algebras of
L(kAg) are cominimal simple currents. More precisely, the only simple affine vertex operator algebra
which has a simple current that is not cominimal is L ;_ (2Ag). See for example [Fuc95]. Yet in the
following we will just work with cominimal simple currents. Using the Table Aff 1 in [Kac90] we get
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the following list of all cominimal simple currents:

Apg i ko, -+ kA, (576)
B : kMo, kA (577)
Cri t ko, kA, (578)
Dok t kAo, kA, kAp_1, kA, (579)
Eo o : kAo, kAy, kAs (580)
Ery : kAo, kA (581)
Esy : kAo (582)
Fup : kAo (583)
G : kAo (584)

In Theorem 5.10 of [DLM96] it is proved that the direct sum of all cominimal simple currents of an
affine vertex operator algebra L(kAg) can be equipped with the structure of an abelian intertwining
algebra. In the following we want to study the fusion product of a cominimal simple current with any

other irreducible module of L(kAg). The coroot lattice Q of g is contained in h but in section 2.5 we
introduced the map v : h — b* which maps Q to the lattice M with which we identify the coroot
lattice @ in the following. We therefore write M instead of Q and consider it as a subset of h*. The
dual lattice M’ of M is just the weight lattice P, i.e. the Z-span of the fundamental weights A; of g.
As in section 2.5 we indicate by a symbol - that the object - corresponds to a simple Lie algebra g and
not to an affine Kac-Moody algebra g. Clearly for a non-negative integer k € Z~o we have

P* = kAg + P 4 C54. (585)

This allows us to identify an element A € P* (mod C§) with an element A in P. We consider the
lattice M (k) whose dual lattice is given by 3 P(k). We define a map

. 1

which is an isomorphism of free Z-modules. Clearly we can extend this map to P* simply my mapping

A € P*to 1(A). We denote this map by ¢ as well. We can check that for A\;, A € P this map satisfies
(A1, A2)

(¢(M), L(E))M(k)f =5 (587)

In the last equation we equipped the bilinear form (-, -) y7()r of M (k) with a subscript - y7() to remind
us that this bilinear form has to be considered rescaled by k. In fact ¢ induces an isomorphism of
discriminant forms

— 1—
t:P/kM — %P(k:)/M(k) = D(M(k)). (588)
Notice that the quadratic form of P/kM is given by
~ A
45 ([A]) = ( 5% )(mod Z), (589)

for elements A € P. A special property of the cominimal simple currents is that for every i € J we
have

h(kA;) = a = > + . (590)
2(k+ h) 2(k+h)  2(k+h)k
CR(RALEA) R A (kAL ERA) (Mg A)
© 2(k+ h)k " 2k + )k 2k "y (91)
(RN, e(kAG)) pr ey (592)
— 5 :
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In this computation we make use of Theorem 2.5.11. We can use ¢ to define a map by

ex i P* — D(M(E)), A s [l(A)] = [;A} . (593)

Proposition 4.1.2. For every positive integer k € Z~q the map ek‘Pj(mod cs) Is injective.

Proof. We take A', A? € P} with A'(d) = A%(d) = 0 and have for j = 1,2 that

A =3"nlA, (594)
1=0
with ng > 0and
k=n)+ > am]. (595)
=1

1— 1— 1 2
i=1 i=1
By pairing with ¢; this yields

n
nj —nj =ky ridi,d;) € kZ. (597)

=1
Clearly we have —k < n; - n? <kforalj=1,--- ,n. Sowe get n} - n? = —k,0,k forall j. If we
have njl — n? = 0 for all j the proof is done so lets assume that there exists jy with njl-o — n?o =k, ie.
we have n]lo = kand n?o = 0. This is just possible if G;, = 1 and n} = 0 for all | # jo. Now n} — n}

either vanishes for all [ # jy or there is a unique ly with nllo — nl20 = —k in which case we get leO =k.
Then we must have @, = 1 and n? = 0 forall [ # 0. Altogether we find that the difference %F - %F
is either of the form A; for [ with d; = 1 or of the form A; — JTJ foriand j withd; = a; = 1. A

case-by-case inspection shows that such elements can’t be contained in Q unless = O ori = j. [

The Proposition 4.1.2 allows us to view the set of irreducible modules of L(kAg) as a subset of the
discriminant form D(M (k)), which we will do in the following. Next we introduce a certain group of
outer symmetries of §. This exposition is based on [KP84] and [KW88]. We denote the coweight lattice

of g by P. This is the lattice in h which is spanned by the coweights A;, defined by

<K¢, Oéj> = 6i,j' (598)

This lattice can be mapped into h* by v and we denote its image by Ly := V(ﬁ) The corresponding
group of translations is

Ty = {ta To € Lo}. (599)

Here t,, is just the translation defined by (178). We consider the group Wy := Ty x W. The Weyl group
W = T x W is obviously a subgroup of Wy, because of T' C Tp. As in section §6.6 of [Kac90] and
section 4.8 of [KP84] we can introduce an affine action of Wy on by by

af(w) = wVw € W and (600)
af(to)(N) = A + a Vo € Lo, \ € by. (601)

For A € b with (\, K) = 1 we have
w(A) = af(w)(A). (602)



An important subgroup of Wy is given by
Wit ={oceWy:0A; =A4}. (603)

An important property is W N Wy~ = {1}. Let Aut(IT) be the group of symmetries of the Dynkin
diagram of g. This group acts naturally on P by oA; = A, ;) for o € Aut(ﬁ). It furthermore turns
out that W(f acts as a group of permutations on the set of fundamental weights. More precisely for
every w € W, there exists an element o, € Aut(II) such that w(A;) = A, i)(mod Co) for all
fundamental weights A;. The map w ~ 0, defines a natural embedding of W into Aut(f[) and
it maps W;" onto the unique normal subgroup of Aut(f[) which is isomorphic to the abelian group
P/Q. See Proposition 1.3 in [KW88] for details. We clearly have a; = Uy, i) and d; = dg,, ;) for
alli = 0,---,n. Therefore the action of W preserves P, (mod C§) and P} (mod C§). This can be
considered as an action on the set of irreducible modules of the vertex operator algebra L(kA(). Those
permutations induce furthermore a simply transitive action of W on the set .J and this action can be
described equivalently by the action of af(WW;") on the set

J={A;:jeJ}. (604)
See Proposition 4.27 in [KP84] for a proof. We obtain a natural bijection
Wit — I, w s af(w)0. (605)

We denote the preimage of A; for i € .J under this map by w;. Using that for w = t,w € Wy
we clearly have af(w)0 = af(taw)0 = a we get that w; can be expressed as {5-w; for a uniquely
determined element w; € W. This shows that we can associate to each cominimal simple current
S = L(kA;) with ¢ € J a unique element w; € W&' . We will denote it also by wg € WS‘ and the
corresponding permutation will be denoted by og. The following lemma is based on Proposition 5.1 in
[CKS07] and the proofs are almost identical.

Lemma 4.1.3. Letog € W be the symmetry of the Dynkin diagram of §, corresponding to a cominimal
simple current S of L(kAy), then we have

Zi&)) (1) = X (1) forall A € P* X € b*. (606)

$)

Proof. First we extend og € W™ C GL(G*) to an automorphism of g. Now we can define a new
g-module structure on Ly(og(A)) by acting with og on g first. Identifying g with itself along og we
find that Ly(05(A)) and Lg(A) can be identified as well. Essentially we just relabeled the simple roots
along the symmetry og. The statement is a direct consequence of this. O

The S-matrix of the vertex operator algebra L(kAg) has a very important transformation property
under this symmetry, more precisely for A, M € Pf (mod Co) and any j € J we have

Sy (MM = 6_2Wi(rj’M)SA,M — 6_27r7:(ek(kAj)aek(M))D(]\/I(k))SA,M. (607)

See equation (14.255) in [FMS12] and the proof therein for the first equation. The second equation is
clear. We denote the weight which corresponds to the fusion product of the cominimal simple current
S with an irreducible module L(A) by S X A.

Proposition 4.1.4. Take A € P_ilf(mod Cd) and j € J. The fusion product of the cominimal simple
current S = L(kA;) with the irreducible module L(A) is given by

L(k‘A]) ®L(k/\o) L(A) = L(wJ(A)) (608)
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Proof. Take any M € P¥ with M(d) = 0, such that L(M) is an irreducible module of L(kAy). Using
(345) we obtain

Skn;, MSAM = Sk, MSkA;RAM- (609)
Using (607) we get
Sin;, MSAM = Skng,MSuw; (), M- (610)
Because of Sy (xa,), (1) # 0 we obtain for all M that
SkA;RAM = Swj(A),M- (611)
Since the matrix S is invertible it can’t have two common rows. Therefore L(kA;) Xy, 5,y L(A) and

L(w;(A)) must correspond to the same row. This implies the statement of the proposition. O

In Proposition 2.7.18 we saw that the set of simple currents of a strongly rational vertex operator
algebra carries the structure of an abelian group. Clearly the fusion product also equips the set of
cominimal simple currents C(kA() with an abelian group structure.

Corollary 4.1.5. The map A : W3 — C(kAo), ws +— s is an isomorphism of abelian groups.

Proof. This map is clearly bijective since the map defined in (605) is bijective. Take cominimal simple
currents S1 = L(kA;) and Sy = L(kA;) in C(kAo) with ¢, j € J. By use of Proposition 4.1.4 we get

S XSy = L(k‘Al) X L(]{ZAJ) = wi(kAj) = wiwj(kAo). (612)
This clearly implies the statement. O

We can use (346) to obtain for i € J and A € Pf that

Sk, . —_ _
5 = qdim(L(A) Tea, Ta Tyalsa Tiny- (613)
kAo, kAo
This directly implies
Ska; A — o 2mi(h(kARA)—~h(kA;)—h(A)) (614)
SkAg,A
and we get by use of (607) that
(€k(l€Ai), ek(M))D(M(k)) = h(k‘AZ XA)— h(k‘Al) — h(A)(mOd Z). (615)

The finite Weyl group W preserves the coroot lattice é and acts therefore on the discriminant form
D(M (k)). For i € J and a fundamental reflection 7; we have
ri(Ai) = Ni — (Mg, &y)ay = Ag — 6; . (616)

This implies that the images of the simple currents ex(kA;) = [A;] for i € J are fixed-points of the
action of W on D(M (k)). Using this we observe that for all i, j € J we have

en(wilkA,) = af(wy) ()] = [&; + &;). (617)

As a consequence we obtain that the restriction of e, to the set of cominimal simple currents C(kAo)
defines an embedding of abelian groups into D (M (k)). Of course we use Proposition 4.1.2 to see that
this map defines an embedding, i.e. is injective.

Definition 4.1.6. We denote the subgroup e (C(kAg)) of D(M(k)) by G and call it the group of
cominimal simple currents in D(M (k)).

The affine action of the group W on b can clearly by used to define an action of Wy on D(M (k)) by

w[A] = [af(w)A] (618)
for w € Wy and A € M(k)'. Take A € P¥(mod CJ), then we have for w; € W that
wier(A) = ex(kAy B A) = [m(8; + 1(A)]. (619)

This can be checked by direct computation.

82



4.2 The affine substructure of a vertex operator algebra and Jacobi forms

In this subsection we consider a holomorphic vertex operator algebra V' of central charge ¢ = 24 such
that the Lie algebra g = V is semi-simple. We may decompose V' as a module under the affine vertex
operator algebra V' (g), generated by V;. It will turn out that a suitable character xy of V' is a Jacobi
form of lattice index and that the components of the corresponding vector-valued modular form fy
have nice properties at ico. We use all the notations and assumptions made in section 2.9. In particular
we decompose g into simple Lie algebras g; and find positive integers k; such that the restriction of the
invariant bilinear form (-, -) of V, which is scaled such that (1,1) = —1, satisfies

<'a'>|9i><gi = kl(v)l (620)

Here (-, -); is the invariant bilinear form of g;, which is scaled such that long roots have length 2. We
denote this decomposition as in (378) and we denote the vertex operator subalgebra generated by V; as
usual by V'(g). It is strongly rational and isomorphic to the tensor product of the affine vertex operator
algebras of level k; generated by the g;. This is (380). We get the usual finite decomposition (381) which
is
V= @ m@- ALy (A) @ ® Ly, (A"). (621)
AL AT

Here A’ runs through all of Pf (mod C9), i.e. the set of all dominant weights of level k; of g;. We
denote the set of all modules appearing in this decomposition of V' by My, i.e. we have

My = {(A',--+ ,A") :m(A', -+ A7) # 0} (622)

In the following we will mostly just write A = (A!,--.  A") for an irreducible module but we also
write L(A) occasionally to make clear that we consider modules and not just weights. The Cartan
subalgebra b of g can be decomposed as

b=b1®--- Dby, (623)

where b; is the Cartan subalgebra of g; and within each h; we denote the coroots of g; by ¢&; ; with
1 < j < dim(h;) = d;. We order those coroots in an obvious way and denote them by ¢; for 1 <[ <
dim(h) = d if we don’t want to make use of the fact that they are contained in a particular subspace
b;. Within b we span a lattice L by the coroots ¢; with bilinear form (-, -). Clearly this lattice satisfies

L=0Q1(k)® - & Qrky), (624)

where Ql is the coroot lattice of g;. We call the lattice L the scaled coroot lattice of g or simply the
coroot lattice if we want to keep the scaling implicit. This lattice is clearly even and positive-definite.
As usual we map the coroot lattice Q; into b; and denote its image by M;, such that we can identify L
with M (k1) & - - - & M,.(k,). We can introduce maps

I
Lt P — kfpz(kz) (625)
i
as in (586) and combine them to amap ¢ : P — L’. Of course we can extend ¢ by linearity to a C-linear
map ¢ : h* — L' ® C. Previously we used the bilinear forms (-, -); to identify b} with b;,. In this sense
we may view P; as a sublattice of h; and may consider L' ® C as h equipped with the bilinear form
(-,). Then ¢ : h* — L' @ C = b is just the usual identification of h* with h by use of (-,-). Yet it
is clear that ¢ does not define an isometry for the usual scalar product (-, -); of P;. Yet for elements
A =3,;At € Pand Ay = 3, A} € P, with A%, A} € P;, we have
AL AL A7, AL .
(1I€2)1+...+(1]€2)’"—(L(A1)7L(A2))L,_ (626)
1 T
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This induces furthermore an isomorphism of discriminant forms
v: P /kiMy & -+ @ Py /k. M, — D(L). (627)

In general we will work with all structures and notations introduced in the sections 2.5, 2.8 and 4.1.
We will indicate the corresponding simple component g; by an index -; or -* and omit such indices for
structures corresponding to g. We can furthermore define a map

e=ep @ - @ep, : PPPa...oP" - D(L) (628)

and use it to embed the set of irreducible modules Irr(V(g)) into D(L) as a set. This is possible since
elur(v(g)) 18 injective, which is a consequence of Proposition 4.1.2. We will call a simple current of V' (g)
a cominimal simple current if it is a tensor product of cominimal simple currents of each component
Lg, (kiAo). We denote the set of all cominimal simple currents of V'(g) by C(V(g)) and observe that
the fusion product defines an abelian group structure on this set. Clearly we just have

C(V(g)) = C(k1Ao) & --- & C(krAo) (629)

as abelian groups. Of course all the structures introduced in section 4.1 can be naturally extended
to this group. For a cominimal simple current S € C(V(g)) and an arbitrary irreducible module
A € Irr (V) (g) we can use (615) to get

(e(S), (M) p(zy = h(S B A) — h(S) — h(A)(mod Z). (630)

We will denote the set of all cominimal simple currents, which are contained in V, by Sy.. This just

means Sy = C(V(g)) N My.

Definition 4.2.1. We denote the subgroup e(C(V (g))) of D(L) by G and call it the group of cominimal
simple currents of D(L). Furthermore we set Gy = G'Ne(My ). This is the subset of cominimal simple
currents contained in V. Of course we have e(Sy ) = Gy.

We decompose any vector v € hasv = v' +- - 4" with v’ € b; and we introduce variables 2 € C%
by

d;
vh =" 2. (631)
=1

The vector v € §h will be considered as an element in I ® C under the identification with the variables
2z =z 4 ... 4 2" € C% for this basis. Yet for v € h and a formal ¢ = 2™ we introduce a formal
character

xv(v,q) =Try <€2m°qL°_1> : (632)
The trace of e2™0g0 on Ly (A') ® -+ ® Lg, (A") clearly satisfies
Trr, (AY@-@Lg, (A7) (ezmoqLO) (633)
= TrLgl(Al) (627””5 qLO) - Trp, (An) (e%wgql’o) (634)
_ TrLﬂl(Al) ( o2V eQﬂiT(h(Al)Id—d)> - Trp, (an) ( p2miVh eZm’T(h(AT)Id—d)) (635)
_ qh(A1)+---+h(AT)TrLﬂ1(Al) <€2m‘(v(1)77-d)) '“TrL@T(Ar) (ezm(vqu)) (636)
= qxar(21,7,0) - xar (27, 7,0) (638)

Here c(k;) is the central charge of Ly, (k;Ao) therefore we have c(k1)+- - -+ c(k,) = 24. And we made
use of h(A?) = myi + 5;¢(k;). See equation (12.8.12) in [Kac90] for this. As a direct consequence we
get

XV(UaQ) = Z m(Alv' T 7AT)XA1(2157—7 0) "'XA”"(ZT77—7O)' (639)
Al’,,,’A'r
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Notice that this was so far a computation of formal series. Yet in section 2.5 we saw that the normalized
characters y i (2%, 7, 0) define holomorphic functions on h x H. Therefore the formal character yy (v, q)
defines a holomorphic function on (L®C) x H which we denote xv (2, 7) with the previously discussed
identification of v € hand z € L&®C. We call this function the character of V and consider the equation
(639) as an equation of holomorphic functions instead of an equation of formal expressions. By z = 0
we clearly just obtain Zhus character chy (7) of V. Characters like xy are also called Facobi trace
functions and were studied extensively by Krauel and Mason in [KM15]. An obvious application of
Theorem 1.1. in their paper yields the relations

b
N
xv (z 4+ 7l+ h,7) = exp(—mi((l,1)T + 2(I,h)))xv(z,T), (641)

d
integral Jacobi group I'/ (L), defined in (99).

for all (Z b) € SLy(Z) and [, h € L. Clearly those relations induce the invariance of xy under the

Proposition 4.2.2. The character xy : (L ® C) x H — C is a nearly holomorphic Jacobi form of weight
0 and lattice index L.

Using Theorem 2.3.1 we know that there exists a vector-valued modular form fy, of weight —dimT(h) for
the Weil representation on C[D(L)] of the metaplectic group Mp,(Z). This modular form is uniquely

determined by the theta decomposition

xv(zm)= > fua(r)OX(z, 1), (642)

AeD(L)

where fy(7) are simply the components of fi. This means that we have

fo(m) = > fualr)er (643)
)

XeD(L

We call this vector-valued modular form the vector-valued modular form associated with V. In the
following we want to determine a more explicit description of the components of this modular form.
In (221) we described a theta series © for every A € b. For A = k;Ag + k;j\; € Pik" with \; € k%ﬁz

we can express this theta series with the usual lattice theta series @Z’E%) which was defined in (106).

More precisely we have

Ox(z',7,0) = Gekvgkiko%im(z ,T) = @[M( )(z ,T). (644)

Usually we will denote a representant of the class \; € D(M;(k;)) by kiAo + k;\; € P*i. We will just
do this if the exact choice of the representant does not matter. The theta decomposition (217) of the
normalized character x : for A’ € Pf can now be written as
. y Mi(ki), i
wEn) = 3 el (MO M E ). (645)
X €D(M; (ki)
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We decompose elements A € D(L) as A = Ay + - -+ + A, with \; € D(M;(k;)) and compute

XV(Z77—) = Z m(Alv"' aAT)XAl(Zl77—)"'XAT(ZraT) (646)
A17,‘,7A7‘
@ M; (ki) i
=Y ] Y e MO o)
AL, AT i=1 ) eD(M D)
= > Z H o Aotk ( @%i(ki)(zi, 7) (648)
AeD(L) A
= > Z H Ck Aotk (T)OX (2, 7). (649)
AeD(L) A

Since the components fi ) of fy for A\ € D(L) are uniquely determined by the theta decomposition
(642) it is clear that we have

fuatr)= > m(A H e Aotk ( (650)
A17,,,7A7‘
For A=A+ -+ X €D(L)and A = (A,--- | A") € Irr(V (g)) we set
T) = H C?ZAOJrki)\i (7) (651)
and m(A) = m(Al,--- A7), such that we can write
fua(r) = 37 mA)ex(n). (652)
ANeMy,

Proposition 4.2.3 (Schellekens’ equation). Let g; be any simple component of the Lie algebra V1, k; its
level and h; its dual Coxeter number, then we have

24h; = ki(dim(Vy) — 24). (653)

See [Sch93], [VEMS17] and [DM04] for this. The equation (653) is very important in Schellekens’ clas-
sification of the weight-1 spaces of holomorphic vertex operator algebras of central charge ¢ = 24,
because it drastically reduces the number of possible Lie algebras. More precisely there are just 221
Lie algebras that solve this equation. They are given in a table in [VELMS21]. We fixa A € D(L). If
C?ZAO i # 0 then there exists a unique element \, € kiAf) + k;A; + Co which is a maximal weight
of A’. We get
7 [ Mpg 7 s
Chhgthons (T) = C? (1) =q N> multy (X — nd)g". (654)
n=0

Using the equations (168) and (653) and Proposition 2.5.12 we get an upper bound on the pole order of

ch(7) by

| ki dim(gi) 24
dioo (H Ch Ao+ ( > me PUIS Z 2h S Z 21 dim(g) =1. (655)
i=1
Clearly equality holds if and only if —m iy, = |§ ;J P foralli = 1,---,r. By use of Proposition

2.5.12 we find that this is possible if and only if each A’ satisfies A’ = kiAj for some j with a; = 1 and
kilo + kil = w(k‘zAz) for some element w € W;, which is the affine Weyl group of g;. Since f) is a
linear combination of such string functions it is clear that for any A € D(L) we have

ordiso(fy) < 1. (656)
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For o € h* we can define
Vo ={v €V :hpv=a(h)vVh € h}. (657)
Since hg preserves the Lo-grading it is clear that we have (V,,), = (V},)q for all n € Z. Clearly if we

have (V,,),, # 0 for some n and «, then o must be contained in the weight lattice, i.e. « € P. The
character of V,, is defined by

ch(Va)(7) = Try, (q"07%) = Zdlm 1, (658)

We take some A € My and study L(A),. We decompose o = @) + - - - + @, with @; € b} and set
a; = kiAo + @;. The space L(A%)z, clearly has character
Lo— c(ky)
ChL(Ai)a—i(T) = TrL(Ai)aﬁ q 24

1 C(k ) M Al
Z multyi (a; —nd)q" ki ey (7). (659)
neC

Using the fact that we have
L(A)o = L(M )z © -+ @ L(A" gy (660)

we obtain

(a1,07) (‘17‘ OM‘)T
L 11 Lot Al

chra), (1) =q Coy (T) - cg:(T) (661)

Now we can compute

chy, (1) = Z m(A)chL(A)E(T) (662)
AeM
=g R S ()l (1) A (1) (663)
AeM
=g fw (7). (664)
Of course the subspace V| of V has the form

Vo=Clehd. -, (665)

this is a direct consequence of the structure of the root space decomposition of V; = g. We obtain
fo(r) = chyy(7) = ¢~ + dim(h) + O(g). (666)
Proposition 4.2.4. The vector-valued modular form fy for the Weil representation pp 1, defined by the

theta decomposition of the character xv (z,T), has weight —dimT(h) and satisfies

ordiso (frn) <1 (667)

for every component at A\ € D(L). This bound is reached if and only if \ € Gy, i.e. X is a class of a
cominimal simple current contained in V. The Fourier expansion of fo(T) is given by

fo(r) = ¢~ + dim(h) + O(q). (668)

Proof. Most of the statement was already discussed above. The only statement that remains to be
checked is that ord;o (f)) = lifand only if A € Gy. If we have A € Gy and A € My with e(A) = A,
then the summand cf\\(T) must have a pole of order 1 at 700, because each component \; satisfies

loil” ki

2h; ki + hi
where \; € k; A} + k;\; + C§ is the unique representant of the class ) that is a maximal weight. This
implies that ord;o(fy) = 1. Conversely ord;o(f)) = 1 implies that there is a A € My such that
ord;eo (cﬁ\\) = 1. But this implies equation (669) for all components A’ and \; of A and \. By Theorem
2.5.12 we get A! = kZA;Z for some j; € J; and we find w' € W; with \; = wz(k,A;L) Here by W;
we mean the affine Weyl group of g;. We easily check that ey, (w'(k;A3)) = e(k;Aj,). So we obtain
A= e(k:lA}1 ++ka A7) € Gy O

MG ks Ao+ X, = — (669)
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4.3 Modular invariants and cominimal simple current extensions

A modular invariant is a quadratic matrix M with non-negative integral entries that satisfies a certain
invariance property under an action of SLy(Z). It turns out that every extension of a vertex operator
algebra Vj defines such a modular invariant and therefore it is an important invariant of such an
extension. In general it is interesting but complicated to classify all modular invariants corresponding
to such a representation of SLy(Z). Yet there are a few special cases where a classification is known.
See for example [DL15] and the literature cited therein for a recent discussion. In this section we
consider the modular invariant corresponding to the extension V' (g) C V, where V is a holomorphic
vertex operator of central charge ¢ = 24 and V (g) the vertex operator subalgebra generated by V;. We
obtain some invariance properties under the action of simple currents for those modular invariants and
finally prove that the extension of V(g) by all cominimal simple currents contained in V' is a simple
current extension of V' (g). Most of the arguments in this section can be found in [Sch93] as well. The
following definition is taken from [DL15].

Definition 4.3.1. Let Vj be a strongly rational vertex operator algebra with irreducible modules
WY = Vo, WP -+, Wg. The corresponding representation of SLy(Z), defined by Theorem 2.7.19 will
be denoted py;, and as usual we set 7 = py;, (1) and S = py;, (S5). Thena (p+ 1) x (p + 1)-matrix M
is called a modular invariant of Vy if

1. Every entry of M is a non-negative integer,
2. Mgp=1and
3. TM =MT and SM = MS.

Let V be a strongly rational extension of V{; and assume that its irreducible modules are given by
Wo =V, Wq,---,W,. Each W; can be decomposed into Vp-modules with multiplicities multyy, (W]Q).
The formal graded traces Tryy, (v, 7) satisfies therefore

P
Trw, (v, 7) = Z multyy, (W]Q)TI‘W(_) (v, 7). (670)
J
i=0
Fori,j = 0,---p we define a matrix M;; by

Trw, (v1, 71)Trw, (v2, 72) (671)

M=

Z(v1,v2,T1,T) =

~

I
:M“ I

MijTI'”r_O (’Ul, Tl)Tr”zo (Ug, 7'2). (672)
i J
0

ZM]

Clearly this matrix is well-defined and uniquely determined since the formal traces of 1} are linearly
independent. A direct consequence of Zhus theorem 2.7.19 is that M is a modular invariant of V. We
furthermore have

q
Mij = multy, (W )multy, (W7). (673)
=0
Not every modular invariant of 1y comes from an extension V but it is still reasonable to try to classify
them. See for example [DL15]. Let now V' be a holomorphic vertex operator algebra of central charge
¢ = 24 such that V] is a semi-simple Lie algebra. As we have seen in the previous chapter V is an
extension of the strongly regular vertex operator algebra V'(g) and it decomposes as (381).

Definition 4.3.2. Let V' be a a holomorphic vertex operator algebra of central charge ¢ = 24 such that
V1 is a semi-simple Lie algebra. We call the modular invariant of V' (g) corresponding to the extension
V(g) C V the modular invariant of V and we denote it by My .
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We denote the matrix entries of the modular invariant of V' by My (A, A’) and find

My (A, A) = m(A)m(N), (674)
where A and A’ parametrize the V' (g)-modules as usual.
Proposition 4.3.3. The modular invariant My of V' satisfies py (q)(7) My = My for ally € SLy(Z).

Proof. Clearly the statement is equivalent to

m(A) =D m(A)py(g)(Van (675)
A/

for all V'(g)-modules L(A) and v € SLy(Z). We are going to prove this statement in the following. We
can equip V' as well as V/(g) with Zhus second grading, which we indicate by subscripts (-)(x). Take

v € V(g)j) C V] As a consequence of Theorem 2.7.19 we get that for v = (i Z) € SLo(Z) we

have

Try (v,77) = (e + d)¥Try (v, 7) = (er 4 d)* Z m(A)Trp (v, 7). (676)
Aelrr(V(g))

Since we can apply the same theorem to the trace function of V' (g) as well we obtain

Try (v,y7) = Z m(A)Trp (v, y7) (677)
Aelir(V(g))
=(er+d)* > mA) Y pveManT(v,T) (678)
A€lrr(V(g)) Nelrr(V(g))
—(cr+d)f Y > mM)pyg(Mana| Trar(v,7) (679)

N elrr(V(g)) | A€k (V (g))

Since the trace functions Tr (v, 7) of V/(g) are linearly independent as functions of v € V(g)y, for all
k € Z>o and 7 € H we can compare coefficients.

Lemma 4.3.4. Take a cominimal simple current S € Sy contained in V' and an irreducible module

A € My contained in V. Then we have h(A) = 0(mod Z) and h(S X A) = 0(mod Z).
Proof. By use of Proposition 4.3.3 we obtain with v = 7" that
m(A) = ™M) () (680)

forall A € Irr(V(g)). Clearly m(A) # 0 implies h(A) = 0(mod Z). If m(S X A) # 0 we are done. So
we assume that m(S X A) = 0. This is clearly just possible if the vertex operator Yy of V restricted to
S ® A vanishes, i.e. if it yields the trivial intertwining operator. Yet if the simple current S os contained
in V' its contragredient module S —1 has to be contained in V as well, since otherwise V can’t be self-
contragredient. Because of SX.S~! = V(g) we get that Y (vg, 2)vg-1 € V(g)((2)) forallvg € S and
vg-1 € S~L. The corresponding intertwining operator can’t vanish, because otherwise the bilinear
form of V would be degenerate. Clearly the modes of some elements defined by Y (vg, 2)vg-1 have
to act nontrivially on A because they contain in particular the vacuum 1. If S~! X A is not contained
in V the Jacobi identity implies a contradiction, because its right-hand side would have to vanish for
allvg € S,vg-1 € S~ and w € A. We obtain that S~! X A must be contained in V. This implies
h(S71X A) = 0(mod Z). Now we evaluate

m(A) =m(SK (ST K A)) (681)
= Z m(A,)eizﬂ-ih(S&A/)SA/ﬂg—lgA (682)

AI
_ Z m(A/)e—27rih(5®/\')e—27rih(571®/\’)SA, A (683)

A/
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Here we made use of the fact that 2(S) = 0(mod Z) and h(A") = 0(mod Z) if m(A’) # 0. This clearly
implies
m(A) _ 6727ri(h(SIZIA)+h(S’1®A))m(A), (684)

since S is invertible. Together m(A) # 0 and h(S~ 'K A) = 0(mod Z) imply that we have h(SXA) =
0(mod Z). O

One of the crucial observations of Schellekens in [Sch93] was, that the multiplicity of a module in (381)
is invariant under the fusion product with a simple current S € Sy . This is the theorem in Section 3

of [Sch93].

Proposition 4.3.5 ([Sch93, Section 3]). The set .Sy of cominimal simple currents contained in V forms an
abelian group under the fusion rules. This group has a natural action on the set My, and the multiplicities
m(+) are invariant under this action, i.e. forany S € Sy and A € My we have

m(SKA) =m(A). (685)

Proof. Take a cominimal simple current S € Sy and any irreducible module A € Irr(V'(g)). We obtain

m(SXA) Z m(A")Sx sma (686)
_ Zm (A/)e—2mi(h(SBA")- h(S)—h(A’))SA,7A (687)
= Z m(A)Syr A (688)
= m(A). (689)

Notice that we made use of Lemma 4.3.4 and the fact that S is contained in V. This equation implies
that S X A is contained in V if and only A is contained in V. In particular the set Sy is closed under
the fusion product and therefore an abelian group. O

In Definition 4.2.1 we introduced the subset Gy, C D(L) of simple current contained in V. A direct
consequence of the fact that Sy is an abelian group under the fusion product is, that Gy is a subgroup
of D(L). Furthermore we clearly have m(kAy) = 1 since the weight-0 space Vj of V has dimension
1. This implies m(.S) = 1 for all cominimal simple currents S contained in V.

Theorem 4.3.6. The restriction of the vertex operator of V to

Ve =V(a)s, = € L(S (690)
SeSy

defines the structure of a Sy -graded simple current extension vertex operator algebra of V (g).

Proof. Since the cominimal simple currents Sy are closed under the fusion product the space V. is
closed under the restriction of the vertex operator of V. This defines the structure of a vertex operator
algebra which extends V' (g) because Y satisfies the Jacobi identity in V' already. Finally we have to
show that V. is simple. Assume J C V. to be an ideal that contains a nontrivial element v € J. Of
course v can be written as a linear combination elements vg € L(S) for some S € Sy. Since the
bilinear form (-, -) of V' is non-degenerate we find an element w € V with (v,w) # 0. Clearly we
can find such an element in w € V. since we have L(S) L W for every irreducible module W of
V(g) except L(S~1!). Now we use (316) to generate the element (v, w)1 in J. Now we can obviously
generate all of V. within J and obtain J = V.. We see that V. is simple. This show that V. satisfies
all axioms of a simple current extension vertex operator algebra as given in [YamO04]. O
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4.4 The simple current glue group and its lattice extension

In this subsection we introduce the simple current glue group Gy and construct a lattice extension H
of L by use of this group. We furthermore show that the vector-valued modular form fy,, which is
associated to V', may be considered as a vector-valued modular form for the Weil representation pp )
on the discriminant form of H. A similar construction was used in [CKS07] as well. Yet we have to
replace some explicit computations by abstract arguments in the proofs of some properties of fy.

Lemma 4.4.1. The subgroup G\ of D(L) is isotropic and we have e(My) C Gi:.
Proof. This statement is an obvious consequence of (630) and Lemma 4.3.4. O

Following the discussion of (49) we may use an isotropic subgroup of the discriminant form of an even
non-degenerate lattice to glue it together and obtain a lattice, which is still even and has the same rank
and dimension.

Definition 4.4.2. We call the group Gy the simple current glue group and we denote the even and
positive-definite lattice generated by Gy and L by

=(Gv,L)= | 9+L (691)
geGy

The lattice H is clearly even since Gy is isotropic. We have H' = (L,Gi:) and H'/H = G /Gy as
abelian groups. Since we also have e(My ) C H’ we can associate to each element in My a class in
H'/H. Clearly such a class can contain more then one element of My . Just observe that each simple
current of My is contained in the class [0].

Proposition 4.4.3. The vector-valued modular form fy, defined by the theta correspondence of the char-
acter xy satisfies:

1. For A € D(L) with~y ¢ Gy we have fy ) = 0.
2. We have fyg.) = fya forallg € Gy and A € D(L).

Proof. Using formula (652) we observe that fy # 0 implies that there is an element A = (Al,.-- A") €
My such that that cf # 0. We make use of (651) and find that for every i = 1,--- ) r we have
CQZAOJrk A, 7 0. For simplicity we may set Ai = kiMg + k;)\;. Since CIXX; # 0 is just possible if ); is a
weight of the module L, (A) it is clear that we find integers ; such that A" — i = >ty a;'-. Take
the cominimal weight k‘ﬂ\% for the Lie algebra g;, i.e. we have [ € J;. Here by J; we denote the set of
indices corresponding to g; such that the Coxeter label a; satisfies a; = 1 for all j € J;. In particular
Ly, (kiA\}) is a cominimal simple current of Lg, (kjAg). As a consequence of a; = 1 we get of = .
Using this we find

(A" — N, ki AD) (Z rjadk, ks Al) — ijrj (agi, kiAf) — ki jrjaﬂ = 0(mod k;Z)  (692)

J=0 J=0 Jj=0

A direct consequence of this is that we must have (e;(A?) — \;, e;(S)) = 0(mod Z) for all cominimal
simple currents S of Lg, (k;Ag). Putting this together we obtain (e(A) — A, g) = 0(mod Z) for every
g € G. Remember that G is the subgroup of cominimal simple currents of D(L). Those are all
cominimal simple currents of V(g) and not just those contained in V. Yet due to Lemma 4.4.1 we
know that we have (e(A),g) = 0(mod Z) for all ¢ € Gy. Altogether we find that f) # 0 implies
(A, g) = 0(mod Z) for all ¢ € Gy . This is the first statement of the proposition. Take a cominimal
simple current S € Sy, which is contained in V. We may assume that S is given by (klAlll, sy kAT
and we set ¢ = ¢(S) € Gy. As usual we have a corresponding symmetry os € W™ and we assume
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that og consists component-wise of symmetries o; € W;",. Here W}, is simply the group of outer
symmetries corresponding to the component g;. We may now compute

Frgma(m) = > m(A)ch,\(7) (693)
AeM
- A%z:v[ m(A) 1l C:;Ao—i-kiATi—&-ki/\i (7) (694)
— Z m(og(A)) Hciiﬁﬁfio+km><ﬂ (695)
AeM i=1
=Y m(A)A () = A7) (696)
AeM

We may now indicate in more detail how the individual steps in this computation work. Remember
that o; is given by w;t ;- for w; a suitable element in the finite Weyl group of g;. We discussed this
1.

in section 4.1. Remember furthermore that the string functions are invariant under the action of the
Weyl group. This implies (695). For the next step we made use of Lemma 4.1.3 and the fact that the
multiplicities m(A) just depend on the orbit of the group Sy of simple currents contained in V. This
proves the statement of the proposition. O

This properties of fy will turn out to be crucial in the following. In the next proposition we study
vector-valued modular forms with such properties and their relation to Jacobi forms. Notice that in
the next proposition the lattice L is an arbitrary positive-definite even lattice and G is any isotropic
subgroup in its discriminant group.

Proposition 4.4.4. Take an even positive-definite lattice L. Let J be a weakly holomorphic Jacobi form of
weight k and index L, i.e. J € J}C‘jj{’ Let f be the vector-valued modular form for the Weil representation
Pp(L) defined by the theta-decomposition of J. For an isotropic subgroup G C D(L) we can extend
the lattice L to an even positive-definite lattice H := (L, G). The vector-valued modular form f has the
properties

1. Fory € D(L) withy ¢ G we have f, = 0 and
2. We have fg-w = fv forallg € G and~y € D(L),

if and only if J is a weakly holomorphic Jacobi form of weight k and index H. In this case the theta-
decomposition of .J for the lattice H induces a vector-valued modular form f for the Weil representation
pp(m) and it satisfies

Sy = fML forally € H. (697)

Proof. First we assume that the vector-valued modular form f has the properties in the statement. Take
g1,92 € Gandr € Q such that r + %(91, g2) = 0(mod Z) and set h = [g1, g2; 7). We have to show
that J(7, z)|x¢[h] = J(, z). First we check for p € H' C L' and [ € ;1 + L that we have

exp[mi((g1,91)7 + 2(g1, 2) + (91, 92) + 2r + (I, )7 + 2(l, 2 + 17 + g2))] (698)
= exp[mi((g1 + 1, g1 + D)7+ 2(g1 + 1, 2) +2(], 92))] (699)
=exp[mi((g1 + 1,1 + )T+ 2(g1 + 1, 2))] (700)

Notice that 4 € N is necessary for (700) the previous equation would hold for 1 € L’ as well. We go
on observing that

O/ (r,2) =Y 0k (r,2). (701)
geG
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Using those facts we can compute

J(r2)kalk] = Y explmi(---)]OF (1,2 + gi7 + g2) [ (7) (702)
~vEL'/L
= > explmi((g1 + g1 + D)7 +2(g1 +1,2)]05 (1,2 + 17 + g2) [ (1) (703)
~yeH'/L
Z ®g1+v 7,2) (1) (704)
~yeH'/L
= > ON(r2)f-q(7) (705)
~yEH'/L
= Z @L (1,2) fy (7 Z 9L (1,2) fy (1) = J(T, 2). (706)
~eH' /L ~eL' /L

In the first equation of this computation we replaced (698) by exp[mi(- - - )]. This show that .J is a Jacobi
form of lattice index H. We consider its theta decomposition now. This is

J(1,2) = Z @5(7’, z)ﬁ,(T) (707)

YEH'/L

- Z Z ®'€+g(7—’ Z)f'y-&-g(T) (708)
vyeH'/H geG

= > (Z Ol (7, 2)) F(7) (709)
yeEH'/H \geG

= > of(rafn). (710)
yeH'/H

Now we proof the other direction of the statement. We assume that J is a Jacobi form of lattice index
H. The corresponding vector-valued modular form for the Weil representation py will be denoted f.
Considering J as a Jacobi form of lattice index L we can associate a vector-valued modular form f’ for
the Weil representation py, to it. Now we lift f to a vector-valued modular form f of pz, by fi = frsn
if \ € H and f\ = 0if A\ ¢ H'. Now we compute

> el 2)fl(r) (711)
yeEH'/H
= > > ek (rafr (712)
yeH'/H geG
= Y elr2)h) (713)
YEH'/L

Z @5(7’,2)]‘2(7) (714)
~yeL'/L

Since the theta decomposition of a Jacobi form defines a unique vector-valued modular form for the
Weil representation we get f = f’. This implies that f has the properties of the proposition. O

Of course we can apply this proposition to fy and find that 'y is a nearly holomorphic Jacobi form of

weight 0 of lattice index H.

Proposition 4.4.5. The character x v is a weakly holomorphic Jacobi form of weight 0 and lattice index
H and the corresponding vector-valued modular form fy satisfies

fra =3 m(A)er(r) (715)
AeM

forall A € D(H). Furthermore the only component which has a pole of order 1 at icc is the component
fo or in other words if fy,x with X # 0 has pole at ico, then its pole order is strictly less than 1.

93



Proof. This statement is essentially a consequence of the previous proposition. Regardless we will give
some details. Instead of fi we denote the vector-valued modular forms corresponding to xy by f*
or f1, depending on the lattice in consideration. The first statement is a consequence of the previous
proposition and the formula for the components follows from f[ﬁH = f[%]L for v € H' and (652).

Assume that f[ﬁH has pole of order 1 at ico for some v € H'. Then f[ﬁ]L has to have a pole of order 1

at 500 as well. Yet in Proposition 4.2.4 we saw that f,YL has a pole of order 1 at ico if and only if v = [v],
is the class of a simple current contained in Sy . But then we already have [v]g = 0. O

In the following we will always consider fy as a vector-valued modular form of weight —dimT(h) for

the Weil representation pp gy of the group Mp,(Z). A direct consequence of (715) is that all Fourier
coeflicients of fy are non-negative integers and we have

fvo(r) = ¢~ ' + dim(h) + O(q). (716)

Of course the discriminant form D(H) may be represented by the lattice Hy = H © II;; & II; ; as
well. This shows that fi, satisfies all necessary conditions of Theorem 2.4.3, such that we can associate
an automorphic product ¢y to fy .

4.5 The Lie algebra of physical states and its root lattice

In this subsection we show that the automorphic product ®y, associated to fy, is a reflective modular
form. In order to do this we have to show that the Lie algebra of physical states g(V') is a generalized
Kac-Moody algebra. This is one of the main results of this thesis. For simplicity we may assume, that V'
has a real form with a suitable positive-definite structure. The reflectivity of ®y, will be a consequence
of the fact, that a product expansion of it describes the root structure of the Lie algebra g(1") explicitly.
More precisely this product is the product side of the denominator identitiy of this generalized Kac-
Moody algebra. Special cases of this result were obtained in [CKS07] already, by use of Schellekens’
list. In this section we make use of all the notations from previous sections. In particular we obtain the
decomposition (381) and construct the lattices L and H by use of the usual non-degenerate bilinear

form (-, -). This is the unique invariant bilinear form of V' such that the vacuum 1 satisfies (1,1) = —1.
Yet in the following we will also have to work with the invariant bilinear form

This is because, as explained in section 3.1 and section 3.2, the vertex operator algebra V' equipped with
the invariant bilinear form (-, -) is a lowest weight Vir-module of central charge c;y = 24 in the sense
of Definition 3.1.1. For this we have to make use of (1,1)’ = 1. Now we can associate to V its Lie
algebra of physical states g(1) as in Definition 3.2.2. We keep all notations and structures introduced
in section 3.1 expect that we write (-, -)’ for the appropriate bilinear form on V. In particular we equip
g(V') with an invariant bilinear form (-, -), a contravariant bilinear form (-, -)o, a I ;-grading

aV)= & a.(v) (718)

7‘6111,1

and some group of symmetries G. We can take G to be the automorphism group Aut(V') of V but this
does not matter in the following. We may fix vectors e, f € Il 1 as in Lemma 3.4.1 such that we can
associate to each r € II; 1 a vector w, € II; ; as in Definition 3.4.2. As usual we denote the induced
no-ghost isomorphisms by 7. For r € Il 1 \ {0} and v, w € V}_,2/5 this means

(777’(0)7777‘(71]))0 = <U7 w>, = —(v,w). (719)
In the case r = 0 we have the no ghost isomorphism

no:Viellis—=gV), v+a—ov® d+1® a(-1)® el. (720)
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Using (468) we find that for all v,w € V; and o, § € II; ; ® C the invariant bilinear form on go (V')
satisfies

(7]0(1) + a)an()(w + ﬁ)) = _<U7 w>/ + (Oé,,B) = <7),U)> + (047,8). (721)
All this is just Proposition 3.1.16. In particular this allows us to embed the Cartan subalgebra h C g =
V1 into g(V)().

Lemma 4.5.1. For everyr € I, 1 the Cartan subalgebra by of g acts asno(h) on g,(V) and on Vi_,2
with the usual action of V1. The no-ghost isomorphism 1), preserves this action, i.e. we have for every
h €bhandv € Vi_,2/y that

Ur(hov) = [nO(h)anr(U”' (722)

Proof. The action of ) decomposes each V;, into weight spaces (V,),, for some e € h*. Clearly we just
have a € P but this does not matter yet. We may assume v € (V,,)1_,2 /2 and obtain

hov = a(h)v Vh € b. (723)

Now we have to evaluate [19(h), 7 (v)]. Notice that (10(h))o is just the operator ho ® Id on V' ® V7, ;.
Since for 7 = 0 the statement is clear we may assume 7 # 0 and set n = 1 —r2/2. Then the class 7,.(v)
has a unique representant t, € 7" (r) given by

ty=Plv®e") ZS Tv@e") e THr). (724)
On the space K!(r) the operator E, acts as

S Dy(n)L(n) (729)
n=1

and therefore commutes with hg ® Id since hg commutes with each L,, on V. Clearly hy ® Id acts by
multiplication with a(h) on v ® € so we get

(ho ®1d)t, = Si[n]E} ((ho ® Id)v ® ") = a(h)to. (726)
=0
We obtain [19(h), n,(v)] = a(h)n,(v) and the statement is proved. O

As usual we denote the real span of the simple coroots of g by hr and consider it as a real form of h. In
the following we identify hr with hj and h with b* by use of the bilinear form (-, -). Notice that this is
slightly different from the identification we used in previous sections. There we identified the Cartan
subalgebras bh;, corresponding to simple components of g, with their dual b by use of a bilinear form
(+, )i normalized such that the longest root of g; has length 2. Using this identification we obtain for
a € P C h*that h € hand = € V, satisfy

hox = a(h)x = (t(a), h)z, (727)

where ¢ : P — L’ is given componentwise as in (625). In this sense we view the lattice L’ simply as
the Z-span of the dual basis of b of the basis of simple coroots @; of b with respect to (,-). In each
component h; this just means

(0 (A7) o) = 0 (728)
and L’ is the Z-span of all ¢ (Aiz) running through all components b; of the Cartan subalgebra b,
equipped with the bilinear form (-, -). We introduce a subspace of g(V') by

H=n(heI; ®C) (729)

and we can view L' as a sublattice of H by embedding along 7. Notice that we equip H with a bilinear
form by restriction of the invariant non-degenerate bilinear form (-, -) of the Lie algebra of physical
states g(V"). We denote this bilinear form on H by (-, -)3 in the following.
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Lemma 4.5.2. We identify the image of L' & II; 1 under no with itself, i.e. we denote it by L' & II, 1. It
is a lattice of full rank within H and satisfies

H=(L®Ih1)®C (730)
as isometric vector spaces.

Proof. Because of h = L’ ® C it is clear that the lattice L' @ 1I; 1 is of full rank. The lattice is equipped
with the bilinear form (-, -) and the space H is equipped with the bilinear form (-,-)%. So equation
(721) shows that 79 induces an isometry. O

For each@ € L' and r € II; ; we define a subspace of g, (V') by
g (V)a ={z € g-(V) : [no(h), 2] = (@, h)z, Vh € b} (731)

Since each Lo-weight space V,, of V can be decomposed as V;, = @, .5(Va)n the Lemma 4.5.1 can be
used to obtain a decomposition

o (V)= P a(Va (732)

acl’

Fora =a+r € L' @1I;; we introduce eigenspaces
9a(V) = 6r(V)a (733)
which clearly satisfy
9o (V) ={xz € g(V): [h,z] = (h,a)yx Vh € H}. (734)
This implies a decomposition into H-eigenspaces of g(V') by

sV)= P ga(V). (735)

OZGL,@HLl

In the following we will just work with this decomposition therefore an expression like g, (V') always
corresponds to a space of the form g,(V)g. In particular by go(V') we mean the weight space corre-
sponding to 0 € L' ®1II; ; which is go(V')o. This decomposition has the usual properties of a root space
decomposition, in particular we have

[ga(v)v gﬁ(v)] C ga-i—,B(V)' (736)

This is a direct consequence of the Jacobi identity of the Lie algebra g(V).

Definition 4.5.3. We call &« € L' ®11; ;1 a root of g(V') if go (V) # 0 and « # 0. The Z-span R of all
roots of g(V') is a sublattice of L' & II; ; and will be called the root lattice of g(V').

So far we have seen that fy is a nearly holomorphic vector-valued modular form of weight k = — din;(h)

for the Weil representation of the discriminant form D(H). As explained above already, we may view
fv also as a vector-valued modular form for lattices like H; = H © 1I;; and Hy = H ©II1; © I 1
of signature (n+ 1, 1) and (n + 2, 2), respectively. This is obvious because those lattices represent the
same discriminant form. We will switch between these lattices constantly in the following. In the next
proposition we will view fy once again as a modular form for the lattice L or more precisely L © 11y ;.

Proposition 4.5.4. Let V' be a holomorphic vertex operator algebra of central charge c = 24 such that
V1 is a semisimple Lie algebra. The subspace H of the Lie algebra of physical states g(V') is equal to go (V)
and a self-centralizing subalgebra which has a natural totally real form given by

Hr=n(hr @M1 QR)=(L'® L) QR, (737)
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i.e. all roots act with real eigenvalues. For « € L' @ II; ; the dimension of the corresponding root space

9a(V) is given by

dim(ga(V)) = fva <—O;2> fora € L' ® 11\ {0} and (738)
dim (go(V)) = dim(b) + 2. (739)

As a consequence the root lattice R of the Lie algebra of physical states g(V') is contained in the lattice
H @ LmycLl @ I, 1, which implies that we have a decomposition

sV)= P ga(V). (740)

OtEH/@HLl

Proof. The subset H is clearly contained in go(V'). Conversely we must have go(V) C H, since we
have hh = g for the semi-simple Lie algebra g = V. This directly implies that # is self-centralizing.
In order to see that Hp is a totally real form we have to check that (-, -)5 is real-valued over Hg and
that all roots of g(V) are contained in Hg. Both is clear since (-, -) is real-valued over L' & 1I; ; and
all roots are contained in this lattice. Equation (739) is a direct consequence of this discussion. We take

a=a+re L@, and some o € h* with 1(a’) = @,

ga(V)=09,(V)a = nr((Va/)l—r2/2) (741)

as a consequence of Lemma 4.5.1. Using the equation (664) we obtain

chy (1) = qgfvya(T). (742)

The equation (738) is a direct consequence of this. Using Proposition 4.4.3 we know that fy, = 0
unless & € H' @114 1, so it is clear that the root lattice R of g(V/) is contained in H' ®1I; ;. Altogether
we have proved the statements. O

Remember that the root lattice R of g(V') is the sublattice of H'@IIM spanned by all roots « € H’@Hl,l
of g(V), ie. all elements that satisfy g,(V) # 0. In the following we will determine this lattice
explicitly.

Proposition 4.5.5. The root lattice R of g(V') is given by R = H' ® I ;.

Proof. In this proof we consider fy as a vector-valued modular form for the Weil representation of
D(H;) and write f instead of fy for simplicity. Of course we have R C H' ® IIy 1. First we have to

2

show that H ©1I; ; C R. Take r € II; ; with 72 = 0. We obtain [f;] (—%) = [fo0](0) = dim(h) # 0.
Therefore r is contained in . Since II1 ; can be spanned by such elements we have II; ; C R. Take
a € H. We can clearly fin [ € II; ; such that [f,4] (—%) = [fo] (—%) # 0. We obtain
a + 1 € R. But this implies

Hollijy CRC H @1 ;. (743)

This allows us to few R/(H @ 1II; 1) as a subset of the discriminant form D(H). Clearly it is enough
to prove H' @ II; 1 C R, but this is equivalent to ' C H @& II; ;. Therefore we have to show that
r € R satisfiesr € H & II; ;. Observe first that if A ¢ R then f\, = 0, since otherwise we could

choose [ € II; ; with [f)] (— ()‘ng)z) # 0 but then we would have A € R. A contradiction. Now we
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compute

e(sign(D(H))/8)

' (ST) = , 744
i) = LRt S dm it (144
e(sign(D(H))/8)
= T e((r,5))fs(7) (745)
DU penoron s ’
e(sign(D(H))/8)
= T fa(7) (746)
|D(H)] ﬂeR/g@nm) ’
= fo(ST). (747)
We used f3 = 0if 5 ¢ Rand (r,3) € Z for all 3 € R. This implies f, = fy. Because of f,(7) =
fo(t) = ¢! + O(1) we obtain [r] = 0 by Theorem 4.4.5 but this just shows r € H & 11 ;. O

So far we discussed some properties of the Lie algebra of physical states g(V'), in particular its root space
decomposition. Next we need to achieve a more structural result similar to the observation in [CKS07]
that the Lie algebras of physical states associated to the vertex operator algebra studied therein are
generalized Kac-Moody algebras. In order to prove this we make some additional assumptions about
the structure of the vertex operator algebra V. We say that V' has a real and positive-definite structure
if V satisfies the following properties:

1. V has a real form Vi such that Vi ; is given by the split real form of V.

2. We furthermore assume that Vr has an involutive, isometric vertex operator algebra automor-

phism g, such that (v, Og(v))’ > 0 forallv € Vg \ {0}.

In the following we assume, that ' has a real and positive-definite structure. Of course making an
assumption like this is rather unpleasant. This is because in practice it is usually hard to verify, that
a vertex operator algebra has such a structure. Yet we make this assumption because it drastically
simplifies the proof of the next theorem.

Theorem 4.5.6. Assume that V has a real and positive-definite structure. The Lie algebra g(V') is a
generalized Kac-Moody algebra with Cartan subalgebra H and root lattice R = H' & II; ;.

Proof. We can apply the old covariant quantization to the real form Vg such that we obtain a corre-
sponding Lie algebra of physical states g(Vr). We may now check, that g(V) satisfies the condition
in Theorem 2.6.4. Since we assume that Vg ; is the split real form of V it contains its Cartan, i.e. the
real span of its simple roots. We denote it by hg, as above. This, together with the previously obtain
results over the complex numbers, yields a decomposition

Vo= P W (748)
acH'

Of course here we made use of the identification of hi with hg, as explained above. This induces a Lie

algebra grading of g(V&), given by

sVe)= P ga(Ve) (749)
acH'@Il 1

and we have go(Vr) = Hg. Of course Hp is a Cartan subalgebra of g(Vr) and has a natural semisimple
action on each root space g, (Vg). It is given by the bilinear form (-, -)3, of Hr. Remember that on
the lattice vertex algebra Vi, ; we have an involution # which maps Vi, , - to Vi, ,,— and acts as —1
on Vi, ;0. Of course, here we really work with the usual real form of V7, ,. The tensor product map
fr ® 0 now induces a natural involution w on the Lie algebra g(Vgr). It maps go(VRr) to g—(Vr) and
acts as —1 on go(VR). Both statements are a direct consequence of the fact that g maps Vi o to Vg _q
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for o« € H'. Takearoot o € H @111 and 2,y € go(V). By use of the no-ghost theorem 3.1.5
we find that we have —(z,w(y)) = (v, fg(w))’ for suitable elements v, w € Vg with 7,(v) = z and
No(w) = y. The symmetric invariant bilinear form —(-, -) preserves w, we have go(Vg) L gg(Vr)
unless o + 5 = 0 and —(z,w(x)) > 0 for all x € g, (V) with o # 0 and = # 0. So the last thing we
have to check is the existence of a suitable Z-grading. We may choose a vector ' € (H' ® 111 ;) ® Q,
which is regular, i.e. we have (h/, ) # Oforall &« € H'®1I; 1 \ {0}. Rescaled suitably we may assume
(W, ) € Z and for every n € Z we set

gn= P a.(Vr) (750)

(a,h')=n

Of course this defines a Z-grading of g(Vg). We have go = go(Vr) and each g, is clearly finite
dimensional, since each g, (Vi) is finite dimensional. The rest of the statement is clear and so we
observe, that g(VR) is a generalized Kac-Moody algebra with root lattice R = H' @ II; ;. Of course
its complexification g(V') is then a generalized Kac-Moody algebra as well with root lattice R = H' &
1 ;. O

The proof of this theorem is similar to Borcherds’ proof of Theorem 6.2 in [Bor92]. We expect it to be
possible to prove this theorem without the assumption, that V' has a real and positive-definite structure.
In order to do this one would have to use Lemma 3.4.2. in [Carl16], which is a characterization of
complex generalized Kac-Moody algebras. The only difficulty is the verification of the 6th condition in
this lemma. Unfortunately, this seems to be hard. Yet it is an interesting question for further research.
Above we introduced the lattice Hy of signature (n+2,2). We fix abasis e, f, e, f2 of I} 1 ®1I; ; with
the usual properties, ie. €2 = f2 = €3 = fZ = 0 and (e, f) = (ea, f2) = 1. Clearly we also assume
(e,e2) = (e, f2) = 0and (f,e2) = (f, f2) = 0. This allows us to write every ho € Hs as

ho =h+ae+bf + cea + dfs (751)

for h € H and a,b,c,d € 7Z. We are going to identify the lattices H; and H with the sublattices

of Hy defined by c = d = 0anda = b = ¢ = d = 0 in equation (751) respectively. We may

set | = eg and vy = fo to construct the usual tube domain Hj of the space K(H3). In particular we

obtain (H3);, = H;. Since we already discussed that we can view fi- as a modular form for the Weil
n+2

representation on D(Hz) of weight & = 1 — 3= and the Fourier coefficients of the components of fy/

are non-negative integers all assumptions of Theorem 2.4.3 are satisfied.

Definition 4.5.7. We associate to fy its automorphic product @y : H; — C. This automorphic form
is holomorphic and of singular weight, since the Fourier coefficients of fi, are non-negative integers
and we have [fy(](0) = dim(h) = n.

In the following we just consider the automorphic product @y, associated with fi-. We understand all
multiplicities mult(r+) of rational quadratic divisors 7+ with respect to this orthogonal modular form.

Lemma 4.5.8. Letr* € H' ® I, 1 & II, 1 be primitive. Then there exists a primitive \* € H' & I, 1 with
[7*] = [M\*] and (r*)? = (\*)2. We setr = ord([r*])r* and X = ord([\*])\*. They are both primitive
and we have mult(r+) =mult(\*) and r is a root in H @ 211y 1 if and only if \ is a root in H & IT 1.

Proof. Assume we have r* = h+ 1y + Iy for h € H' and l1, 5 elements in the corresponding copies of
I 1. Choose a primitive [ € II; ; with 1? = l% + l% and set A* = h 4 [. This is a primitive element
in H' @ II; ; and we obviously get [r*] = [\*] and (r*)? = (A\*)?. The multiplicities are equal since
we have [fv’[m*]} (—n2(\*)?/2) = [fv’[mﬂ*]} (—n2(r*)2/2) for all positive integers n. For the last
statement we use Lemma 2.4.7 and apply it to both 7* and \*. O

We are now ready to prove one of the main results of this thesis. Remember that we assume that V'
has a real and positive-definite structure. Otherwise we would not know that g(V) is a generalized
Kac-Moody algebra with root lattice R = H' ¢ 11; ;.
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Theorem 4.5.9. The automorphic product ®v, associated to the vector-valued modular form fy, is
strongly reflective and of singular weight.

Proof. The fact that we have [fy0](0) = dim(h) directly implies, that ®y is of singular weight. Since
each Fourier coefficient of fy is a non-negative integer is is clear that @y is holomorphic. Assume
that r € H» is a primitive vector such that mult(r+) # 0. We have to show that r is a root of H and
mult(r+) = 1. As usual we set r* = dw(r) r. This is a primitive element in H). Using Lemma 4.5.8 we

can replace r* by \* € H' @ 1I; ; and have to show that A is a root of H & II; ;. We have

[e'e) *\2
mult(A\) = Z:: Frx] (- (/\2) ) (752)

and let ng be the minimal integer such that [ f,,x«] ( ng (>\2 ) # 0. But this number is the multiplicity

of the real root & = ng\* of the generalized Kac-Moody algebra g(V'). It is a well-know fact of
the theory of generalized Kac-Moody algebras that real roots have multiplicity 1 and ko must have
multiplicity O unless £k = —1,0, 1. So we get

*\2
mult( A1) = [fror<] (—n% ()\2) ) =1 (753)

Since « is a root of g(V') we furthermore get a)\ =0, € W CO(R) = O(H' ®11; 1), where W is the
Weyl group of g(V'). As a consequence we get (A*)Q A* e (H' @Il ;) = H ®11; 1 but this implies that
Ais aroot of H @1l 1. This is just an application of Lemma 2.4.7. g

100



5 Classification of reflective automorphic products

Reflective modular forms are holomorphic modular forms for the orthogonal group of some lattice,
such that their divisor is a linear combination of reflective rational quadratic divisors. These modular
forms play an important role in different areas of mathematics. In particular in algebraic geometry,
number theory, the theory of reflection groups and conformal field theory. In conformal field theory,
or more particular the theory of vertex operator algebras, their importance comes form the fact that
denominator identities of interesting generalized Kac-Moody algebras tend to define reflective modular
forms. Classification results of reflective modular forms therefore have strong consequences for all of
those field. This is an active area of research and there have been several recent contributions. In the
first section we sketch some of these results as a preparation for our own research work. Then we
will discuss a new reduction method, which can be used to reduce a vector-valued modular form f
with small pole orders to a scalar-valued, nearly holomorphic modular form ¢ for a suitable congruence
subgroup with character. This scalar-valued modular form will still have small pole orders at cusps
of this congruence subgroup. Finally the valence formula implies strong bounds on the levels of the
possible congruence groups that admit such modular forms g. Since vector-valued modular forms
f, that correspond to reflective automorphic products ® ¢, have small pole orders, we can apply this
method in this case. We obtain strong restrictions on the level of a lattice that can carry a reflective
automorphic product. Together with known bounds on the rank of such lattices this implies, that there
are just finitely many reflective lattices, which split certain hyperbolic planes.

5.1 Reflective modular forms

In this section we want to introduce some recent results in the classification problem of reflective
modular forms. Important starting points are [Bor00] and the PhD thesis [Bar03]. In the case of
squarefree level contributions were made by Scheithauer in [Sch06] and [Sch17]. Those results were
extended by Dittmann in [Dit19] and [Dit18]. Furthermore Wang contributed several classification
results in [Wan19c], [Wan21], [Wan19a] and [Wan19b]. In particular he obtained a full classification of
lattices of prime level, that carry a reflective modular form. Wangs work is partly based on methods that
rely on Jacobi forms instead of vector-valued modular forms, as it is done in the work of Scheithauer and
Dittmann. A more geometric approach was taken by Ma in [Mal7] and [Ma18]. A detailed overview
of all recent results was given in [Wan19b]. In the following we will reduce the discussion to the case
of lattices, which carry not just a reflective modular form but a reflective automorphic product. Yet
for many lattices this does not make a difference since we have Bruiniers converse theorem 2.4.4. All
the papers above are an important source for the following discussion as well as a motivation for our
own research. Throughout this section we let L be an even lattice of signature (n, 2). If an even lattice
has odd signature, then its level is divisible by 4. So, if we assume the level of the lattice L to be
squarefree, it is obviously of even signature. This simplifies the discussion because the structure of the
discriminant form D(L) gets less complicated. We will not assume that the level of L is squarefree.
Yet we will assume, that its signature is even. Let ® be a holomorphic reflective automorphic product

of weight ko € Z. We put k = 1 — & and assume that f € M,L (PD(L)) is a vector-valued modular
form that lifts to @, i.e. we have ® = ®;. Since the lattice L is of even signature we will view f
as a vector-valued modular form for the full modular group SLy(Z) instead of its metaplectic cover
Mpy(Z). The reflectiveness of an automorphic product ® ¢ can be characterized by its corresponding
vector-valued modular form.

Proposition 5.1.1 ([Dit19, Prop. 4.3.]). Suppose L has squarefree level and splits II; 1. Then the auto-
morphic product @y is reflective if and only if the corresponding vector-valued modular form f satisfies:

1. Ify € D(L) has order m and corresponds to roots, then the Fourier coefficients of f., at ico is

£ (1) = ey 1 ma ™+ O(1) (754)

withcy, _1/m > 0 and
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2. fy is holomorphic at ico for all other vy € D(L).
Moreover, @ is strongly reflective if and only if all ¢, _y,,, are at most 1.

Since we do not make the assumption that the level of L is squarefree we need a more general charac-
terization.

Proposition 5.1.2. We assume that L is an even lattice of signature (n,2) withn > 3 that splits II ;.
Let f be a nearly holomorphic modular form of weight k = 1 — 4 for the Weil representation pp(r,). We
assume furthermore that the Fourier coefficients of f, which contribute to the principal part, are integers.
If the automorphic product ® ¢ of f is reflective then for X € D(L) the components fy of f satisfy: If fx
has a pole at ico, then there exists a divisor d|N such that d\ = 0 and )‘72 = 1(modZ). Furthermore
there exists a number c\ € C, such that the Fourier expansion of f\ satisfies

Ar) = exg™1 + O(1). (755)
If furthermore ® ¢ is reflective with 2-roots then we have [ fo](—1) #
)

Proof. We assume that @ is reflective. We fix A\ € D(L) and assume that there exists an x > 0

such that [f)](—x) # 0. Of course we have )‘72 = z(mod Z). Let ng be the maximal integer such that
[fnon] (—nd) # 0. We fix a representant A € L' for the class A € D(L) and choose a primitive [ € I; 1
such that p* := noA+1 is primitive in L’ and satisfies (11*)? = 2n3x. As above we set 1 = ord([u*])u*.
This is a primitive element in L and we get

oo *\2 o
mult(p Z frpe] (— (/”L2)> =Y [ fanon] ( n n0x> [fror](—ngz) # 0, (756)

n=1

by the maximality of no Since @ is reflective we get that i is a root of L. By use of Lemma 2.4.7 we
geta d|N with d = o )2 and dp* € L. We obtain z = %d and ngd\ € L. Clearly we have n%d)\ eL
L)

and n3d|N as well. A direct consequence of this is that # < 1 and this implies that there can be at
most one number x > 0 with the property that [f\](—xz) # 0. Altogether we have proved that f) has
the stated property. Assume now that ® is reflective with 2-root, then we find / € L such that 2=2
and div(l) = 1 with mult(l*) # 0. Clearly we have [* = [ and therefore we get

0 # mult(I*) = i[fm*} (—nQ(l;)z> = i[fo] (=n?) = [fol(-1). (757)

n=1

This is the statement we wanted to show. O

The proof of this proposition is quite similar to the proof given by Dittmann in [Dit19], which clearly
was an important source of ideas.

Definition 5.1.3. We say that an even lattice of even signature (n,2) is reflective if there exists a
nonzero reflective modular form ® on K(L). In this case we also say that L admits a reflective modular
form. If there exists even a nonzero reflective automorphic product on l@(L) we say that L admits a
reflective automorphic product.

This definition allows us to restate the question of the classification of reflective modular forms in terms
of a classification of reflective lattices. We gain some flexibility by this since it allows us to manipulate a
reflective modular form in certain ways. For example if a lattice admits a reflective modular form it also
admits a symmetric reflective modular form, which is a reflective automorphic form invariant under
O(D(L)). The reason for this is that we can always symmetrize a reflective modular form without
losing its reflectiveness.

Proposition 5.1.4. Let L be an even lattice of even signature (n,2) withn > 4 that splits Il 1. If L
admits a reflective automorphic product its signature is bounded by n < 26.
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Proof. We assume that L is an even lattice as in the statement that admits a reflective automorphic
product ® which correspond to a vector-valued modular form f for the Weil representation on C[D(L)]
of weight k = 1 — % for the group SLa(Z). A direct consequence of equation (78) is that the component
fo of f is a nearly holomorphic modular form of weight & for the group I'o(/N) with character x p(z).
Here N is the level of the discriminant form D (L) and X p(r, is the associated character. So we have
fo € ML(To(N), XD(1))- Let s be a cusp of I'g(IN), then the expansion fo s of fy at s is clearly just
a linear combination of components f) of f for A\ € D(L). Using Proposition 5.1.2 we find that the
vanishing orders of fy at cusps have to be bounded by

—-1< Ords(fo) = Ordioo(fo,s). (758)

Notice that if ® is nonzero its weight ky = [f(’]# has to be nonzero as well. This implies fop # 0 and

so the valence formula as given in Theorem 4.1.4 in [Ran08] yields the inequality

> [PSL2(Z)s : PTo(IN)s] ords(fo) < % [PSL2(Z) : PTo(N)] .- (759)
s€LG(N)\P1(Q)

Using the bounds on ord,( fy) we find

—k
o [PSL2(Z) : PTo(N) < B [PSLs(Z), : PTo(N)s], (760)
s€lo(N)\PH(Q)
which directly implies —& < 12 but this is equivalent to n < 26. O

The statement of this proposition a well-known and can also be proved by the observation, that A f €
Moy (To(N), xp). Here A is, as usual, the modular discriminant. Yet this proof clearly demon-
strates the strength of equation (759). In the following we will write (s) for the width of the cusp s,
ie. t(s) = [PSLa(Z)s : PTo(N)s] and we put eg(N) = [PSLa(Z) : PT'o(NN)]. So for every 0 # g €
M} (To(N), X (1)) we have the inequality

Y ts)ord(e) < (). (761)
SeTo(NAPL(Q)

In order to restrict the set of lattices that admit a reflective automorphic product we will have to find
bounds on the level IV of those lattices. This is done in the case of lattices of squarefree level IV that
split I} 1 & II; 1 (V) in [Dit19]. To do this one has to find a suitable nearly holomorphic modular form
g € Mi(To(N),x p(r)) that satisfies bounds on the vanishing order that are even stronger than those
given in (758). For this we may replace the vector-valued modular form by its symmetrization

1

o€Aut(D(L))

This is a symmetric vector-valued modular for the Weil representation of C[D(L)]. i.e. a vector-valued
modular form that is invariant under the group Aut(D(L)). As a consequence of Corollary 5.5 in
[Sch15] one finds a nearly holomorphic modular form g € M ,; (Fo(N), Xp(r)) that satisfies

(7)) = Frowvy,g0(T) = > 9lkM(T)pp(zy (M~ ")eo. (763)
MeTo(N)\SL2(Z)

The modular form g satisfies the bounds of the vanishing orders we seek.

Lemma 5.1.5 ([Dit19, Lemma 4.4.]). Let L be an even lattice of signature (n,2) and squarefree level
N that splits Il ; @ IL 1(N), then the modular form g € M} (To(N), XD(r)) associated to a reflective

1
automorphic product, as above, satisfies g, € O (q_t(s)> for every cusp s of T'o(N).
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Putting this modular form into (761) yields an inequality that just can be solved by finitely many natural
numbers N € Z>.

Theorem 5.1.6 ([Dit19, Theorem 1.1.]). There are only finitely many even lattices L of signature (n,2),
n > 4 and squarefree level N that split II; 1 & II; 1(N) and carry a nonconstant reflective modular form.

One of the aims of this section is to generalize this theorem to the case of lattices with even signature
but possibly non-squarefree level. This will be a further principal result of this thesis. In this proof the
only difficulty is to associate to each vector-valued modular from f, which corresponds to a reflective
automorphic product ®, a suitable scalar-valued modular form g € M, ,L, (Fo(N), xp(r)) which satisfies
strong bounds of pole orders at cusps. The equation (761) will then imply a bounds in the corresponding
level N. Since N is also the level of the corresponding lattice the theorem follows.

5.2 A partial reduction to I'y(N)

In this section we introduce a method which allows us to reduce a vector-valued modular form f for
a Weil representation on a discriminant form to another vector-valued modular form f’ for a Weil
representation on some smaller discriminant form. An important property of this method is that if the
components of the modular form f have small pole orders, then the reduced modular form f’ will have
the same property. The idea is essentially to consider suitable linear combinations of the components
of f, such that all poles at cusps, that don’t satisfy suitable bounds, cancel each other. During the whole
section we consider a discriminant form D of level M with even signature and take an even lattice L
of signature (n, 2) with discriminant form D(L) = D. Let f : H — C[D] be a vector-valued modular
form for the Weil representation of the group I'g(/V) of weight & = 1 — & for some Dirichlet character
X of Tg(N). We assume that the component fj of f has a pole of order 1 at ico, i.e. we have

fo(r) =cq™ ' +0O(1) (764)

for some ¢ € C*. Later, we will allow ¢ = 0 but here we make this assumption because it drasti-
cally simplifies the discussion. Following Borcherds in section 8 of [Bor00] we find that a full set of

representatives of the cusps of I'g(IV) is given by ¢ € Q for ¢|[N, ¢ > 0and 0 < a < (C, %) with
(a,c) = 1. Usually we will work with those representatives unless stated otherwise. The width of
the cusp s = ¢ is given by #(s) = and for each such cusp s = % we pick and fix a matrix

N
(¢*,N)

M = (Z Z) € SLy(Z) with & = Mjioc.

Definition 5.2.1. Assume N € Zx satisfies (N, M) = 1. Let f : H — C[D] be a nearly holomorphic
vector-valued modular form for the Weil representation of I'g (V) with character x. We say that f has
small pole orders if f satisfies that for every cusp s of I'g(N') the Fourier expansion fs at the cusp s of
f has the following property: If (f5)(7) has a pole at ico, there exists a divisor d)| M and an integer
v € Z with (z,dy) = 1 such that d\A = 0, 3 = £ (mod Z) and

(Fone 0 (g @ ). (765)

We assume that our vector-valued modular form f has small pole orders in the sense of this definition.
The discriminant D has level M and we take a prime p and an integer m € Zx such that p™|| M. Let
us assume M = M'p™ for some M’ such that (M’,p™) = 1. We can decompose D as

D = D]Vf’ &b me. (766)
First we assume that p is an odd prime, then we obtain a Jordan decomposition of D,m by

Dym ~ (p)™ -+ (p™) (767)
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with ¢, = £1 and n; € Z<g fori = 1,--- ,m. In particular we have n,, # 0 because otherwise we
would have p™ t N. We may take a vector

v=">_ aue, € C[Dpm(0)]. (768)
Merm(O)

which satisfies ag # 0 and is invariant under (Z/p™Z)*. As a consequence of Proposition 2.2.2 we
obtain that f'(7) = (f(7),v) is a vector-valued modular form for the Weil representation on C[D /]
for the group T'o(Np™) of weight k with character Xxp,.. Since f has small pole orders the only
component fy corresponding to an isotropic element A € D that can have a pole at ico is fy. This is
because if f) has a pole at ico for some isotropic A € D there has to be a divisor d)|N with all the
properties discussed above. We directly find dy = 1, however. Now we get A = d A = 0. A direct
consequence is that we have

fo(r) =agfo(r) + O(1) = agvg ™' + O(1). (769)

So f{ has a pole of order 1 at 700 as well. In the following we want to find a vector v as above with
ag # 0 such that f” has small pole orders as well. If this is possible or not will depend on the structure
of the discriminant form.

Definition 5.2.2. We call the p-adic Jordan block D, of D regular if it contains a nontrivial isotropic
element. Otherwise we will call it irregular. Furthermore we will call a discriminant form D regular if
each p-adic Jordan block of it is regular.

For odd prime numbers p it is easy to classify all regular p-adic Jordan blocks. Assume that Dym is
a discriminant form of level p™ with a p-adic Jordan decomposition as in (767). Assume that m > 2
than we may pick an element y € (p")“m"™" of multiplicity mult(y) = 1. Clearly p" 1 is nontrivial
and isotropic, therefore Dy,m is regular if m > 2. Assume m = 1, then there exists an explicit formula
to compute the number of isotropic elements. See Proposition 3.2 in [Sch06].

Lemma 5.2.3. Let p be an odd prime. A p-adic Jordan block D, is irregular if and only if its p-adic
Jordan symbol is (p)*' or (p)f(%l)%

In the following discussion we may assume that Dym is regular. We set some terminology. Let ¢ € Q
be representant of a cusp s of I'g(Np™) with ¢|Np™, 0 < a < (c NL) and (a,c) = 1. Clearly this

fraction also represents a cusp of I'g(N) which we will call s as well. We will denote the width of s
with respect to I'g(IV) by ¢x(s) and with respect to I'og(Np™) by tnpm(s). As proved in Proposition
2.2.2 the components of the expansion at the cusp s of f’ is given by

(fé)h (T) = Z (pDQ (MS)6A27U>(fS>/\1+>\2 (T) (770)

Ao€Do

Lemma 5.2.4. Assume that (fs)x, 1, has a pole at ico for some \y € Dy and Ay € Dpm. Then we
find dl\M’ and da|p™ with dl)\l = 0 and do Xy = 0 and some x,y € Z with (x,d;) = (y,d2) = 1 such

that 7 (modZ) and 4, (mod Z).

Proof Since f has small pole orders we find a divisor do| M = M'p™ with dy(A1 + A2) = 0 and some
xo € Z with (zg,dp) = 1 and M = 72 (mod Z). We set di = (do, M') and dp = (do,p™) and
ﬁnd di A1 = 0 and dao Ay = 0. ObVlously we find 2,3y € Z such that ()‘1) = 37 > (mod Z) and O‘?) =

4 (mod Z). Because of (M’,p™) = 1 we must have d( )% d—‘”/ = M = 0(mod Z). Slnce we
2 M

have (dy, M') = 1 as well this is just possible if already %\lf/ = 0(mod Z) So we find 2 € Z such that

]\3;[// = di, ie. ()‘é)Q = ;-(mod Z). Analogously we obtain y € Z such that % = 4 (mod Z). We

get 79 = 2 =  + 4 (mod Z). But because of (z,d1d2) = 1 we must have (z,d;) = 1 as well.

Analogously we obtain (y, da) = 1. O
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Since we fix a decomposition (767) we can always decompose an A € D,m as

A=A+ +An 771)

with \; € (p?)cimi.

Lemma 5.2.5. Let p be an odd prime and Dpm a p-adic Jordan block with a decomposition as in (767).
Let A € Dpm be an element such that there exists a divisor d|p"™ and an integer x € 7Z with (d,z) = 1
such that d\ = 0 and ’\2—2 = 2(modZ). Assume d = p', then we have A\ = 0 or the multiplicity of \; in
Dym is 1. In this case the multiplicity of X in Dpm is 1 as well.

Proof. Of course we have A\ = 0 if and only if d = 1. So we can assume A # 0 and d = p’ with 1 <
i < m. Notice that (p?)</" is just (Z/p’Z)" as an abelian group. So it is clear that fori +1 < j < m
we find A in (p?)%™ with

A=At A pA L T (772)
) ] )\/_ 2
For every j = 1,--- ,m we find a; € Z such that % = %(modZ) if1 <j <iand ( é) =
%(mod Z) for i +1 < j < m. Putting this together we obtain
r A2 _ax a; 2 Qi+1 2(m—i) dm d7Z 773
i SRR it R Jm (m0d Z). (773)

1 T

By multiplication with p'~! we obtain £ = %(mod Z). Since we have (z,p) = 1 and therefore

& # 0(mod Z) we obtain <+ # 0(mod Z) and (a;, p) = 1. In particular we must have \; # 0. We have
to show that multiplicity of )\; is 1. Assume this statement to be wrong, then we find \, € (p*)<i™
W3

such that \; = p)j. We can furthermore pick an integer a; € Z such that “5+% = %(mod Z). Yet as a

consequence we get % = p?—éQ(mod Z), which is clearly not possible because of (p, a;) = 1. But then
the multiplicity of A; has to be 1. This implies that the multiplicity of A is 1 as well. O

We may introduce a subset of Dpm (0) by
2
I, = {7 € Dpm : mult(y) > p™ ! and % = 0(mod Z)} C (pm)emnm. (774)

Clearly if A € I, then we have for the decomposition A = Ay + --- + A, that \; = 0if i < m, ie.
A = A\p,. We check furthermore that if m > 1 the condition )‘72 = 0(mod Z) is true for all A € Dpym
with mult(\) > p”~!. Furthermore we set I, = I, \ {0} and make an Ansatz

v = Z aye, = ageg + Z auey, (775)
nelp pelp

with the assumption that a9 # 0 and aq4, = a, foralld € (Z/p™Z)* and p € I,,. Let U be any subset
of Dym. We denote its characteristic function by oy, i.e. for v € D) we have dy(v) = 1if v € U and
oy (v) = 0 otherwise.

Lemma 5.2.6. Let s be a cusp of Io(Np™) represented by ¢ withc|[Np™,c > 0and0 < a < (c, Nf:’m>
with (a,c) = 1. Take a matrix My = <CCL Z

D,m be an element such that there are d|p™ and x € Z with (z,d) = 1, d\y = 0 and /\7% = 2(modZ).
If the cusp s satisfies p|c we have

) € SLy(Z) such that s = Mgioco. Furthermore let Ay €

V(Do )eym | - )
(D (Ms)ers,0) = €, (M)ors 0 ——=— 3 6y (W)Te(—a(0)7/2))-  (776)

\/ ‘me’ pelp

106



If the cusp s satisfies p 1 ¢ we have
1

(Pme(Ms)e,\Q,U) = &{p,m (Ms) e(—dey' (A3/2)) Y age(cy' (1, A2)). (777)

|me | pely

Proof. We fix a cusp s of I'o(Np™) and a rational number ¢ € Q which represents this cusp with

the properties ¢|Np™, ¢ > 0and 0 < a < (c N%) with (a,c) = 1. We pick b,d € Z such that

ol

d = M ioo. We decompose c as ¢ = cycpm with

cn = (¢, N) and ¢y;m = (¢,p™). Take u € I,. We start by evaluating (prm (Ms)ey,, e#). Since p is

M, = (Z b) € SLo(Z). Clearly we have s =

an odd prime we obtain Djf, = Dpm = D;fnm. So the elements in D are just the elements v € Dpm

which satisfy mult(y) > ¢,m. We fix an element Ay € D, with the properties as in the statement. By
use of (78) we obtain

(PDym (M), ep) (778)
[(Dpm ey )
= gme (Ms)i Z e(_aﬁc/2 (57 )\2) - bd()\ /2))(d)‘2 + 67 /L) (779)
‘me| 561);5”
[(Dpm )] ) )
= 8 pyepm (11— AX2)ED, (Ms)ﬁe(—a(u — dX9)2/2 — b(p — dXa, Aa) — bd(N2/2))
p pm

(780)

Assume p|cP” in this case we may pick an integer d~! such that d~'d = 1(mod p™). So clearly if
B=pu—d\ € D;fnm we obtain that Ay = d~!(xz — 3) has multiplicity mult(3) > p. But this already
implies A2 = 0 by Lemma 5.2.5. In this case we get

(PD,m (M)eo, ) (781)
V@ )e,ml |
= 0 pepm (1) 2)). (782)
D P
o \/ | Dpm |
So altogether we obtain
I(me)cpml
(prm(Ms)eAQ,U) = {pym (Ms)0x, 0-—F—— 5chnm (w)age(—a(p)?/2)). (783)
p

Let us now assume that p { ¢, i.e. we have c,m = 1. We pick ¢y’ € Z such that cy'cy = 1(mod p™).
Similar to the reasoning above we obtain

(prm (M)e)\m e,u) (784)
=t (M) 3 e(—aB2/2 — b(B, M) — bd(A2/2)) tara (785)
Do 55
— ep 0 (M) ul) (ol (0 = Da/2 -~ dha ) ~WO3/2) (059
»
= £ (M) (et (1 Na) — det (03/2)) (787)
|me|
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So we obtain

1
(P (Mo)ers, v) = €p, (M) ———e(—dey (03/2)) D @ue(er) (1, 0)).  (788)
V/1Dpm]

nelp
This proves the statement. O

Proposition 5.2.7. Let p be an odd prime and assume that the p-adic Jordan block Dym is regular. Then
there exists a solution v for the Ansatz (775) such that f' = (f,v) is a vector-valued modular form for the
Weil representation on C[ D] for the group T'o(Np™) of weight k and character xX p,» with small pole
orders and f|, has a pole at icc of order 1.

Proof. Clearly any solution of the Ansatz (775) yields a vector-valued modular form for the Weil rep-

resentation on C[D /] for the group T'o(Np™) of weight k and character xxp,.. By use of (769) it

is furthermore clear that f) has a pole of order 1 at ioo. If (f}),, has a pole at ico for some cusp s of

To(Np™) and A\ € Dy then Lemma 5.2.4 provides us with a divisor d1|M’ and an integer z € Z
2

with (dq,x) =1,d1A\; = 0and % = -(mod Z). It remains to be checked that each component (),

satisfies

_ 1
(i (7) =0 (g S5 ) (789)
Since we assume f to have small pole orders we know that if ( f5)x,+, has a pole at ico we have

(fs)n+x(r) =0 (qtN(S)d*l%) : (790)

Clearly we have tn,m (s) = tn(s)tym (s) and therefore we just have to find a solution v for the Ansatz
above such that for every cusp s of I'o(Np™) and every Ay we have

d)\z < tpm (5) = (prm (Ms)ekmv> =0. (791)
We write ¢ym = p'||c. We may start with the case that p|c, ie. 1 < 4. The width ¢,i(s) is given by
tyi(s) = (pzpiizm). Since there is nothing to prove if ¢, (s) = 1 we may assume 2 < 2i < m. Asa

consequence of Lemma 5.2.6 we may assume Ao = 0, since otherwise the statement is clear. Take any
p € I and observe i < % < m — 1. It is clear that we have 5Dcfnm (1) = 1. So we are left with the
P

2
evaluation of £ (mod Z). As usual we may pick an integer ¢y’ € Z such that cycy' = 1(mod p™)
2
—1Hyi

and we obtain “7% = ¢y %-(mod Z). We clearly find z/ € (p™)“~™ with u = p™ '/ and some

integery € Z # = = (mod Z). So we obtain

2 .
e (pm—i—1,7\2 ) ) )
; = pli(p 2 M ) = p’Lp2(T)’L7’L*1)‘pim = pm7277’y = O(mod Z) (792)

Putting things together we obtain for every cusp s as above that

(PDym (My)e0,0) = €D, (M) > a. (793)

Let now s = 2 be a cusp such that p { ¢, i.e. ¢, = 1 and t,m (s) = p™. We furthermore assume m > 2.
Let A2 € D,m be as above, so there exists a divisor d, |p™ and y € Z such that (dy,,y) = 1,dy,A2 =0

2 .

and % = %(mod Z). We may assume dy, = p’ and j < m — 1, since otherwise we would not have
2

dy, < tym(s). Similar to the decomposition in (772) we can find an element A/, € (p™)“"" such that

A2 can be decomposed as

A2 = (M) + -+ (A2)mo1 + 2Ny, (794)
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with (A\2); € (p')€™. Using this decomposition it is clear that we have (A2, ) = 0(mod Z). So far
this just works for m > 2. But in the case M = 1 we get ,,(s) = p in this situation so the only choice
for Ao, such that dy, < t,(s),is A2 = 0. But then we clearly have (A2, 1) = (0, ) = O(mod Z). So
for every cusp s with p { c and every A\p with dy, < tym(s) we get

(PDym (My)ers, v) = €, (M) e(~dey' (X3/2)) Y @ (795)
|me‘ nelp

We find that in order to satisfy the condition in (791) a solution for the Ansatz (775) just has to solve

S =0 (796)

Notice that we have \fp| # 0 since Dpm is regular. So we can easily solve this for example we can

putag = land a, = —ﬁ. This solution is invariant under (Z/p™7Z)* and satisfies therefore all the
P

properties we want. O

So far we assumed that p is an odd prime. In the following discussion we assume that p = 2. This
discussion is similar to the discussion for odd primes p. Yet some details are different and this is why
we treat this case separately. We assume that the level M of D is of the form M = M’'2™ with

(M’,2™) = 1. For simplicity we assume furthermore that the 2-adic Jordan decomposition of Dam is
of the form

Dam e~ ()57 -+ (2712 @) (797)
Fori = 1,---,m — 1 we may have t; € Z/8Z or simply ¢; = II, if the i-th component is even. Yet

we demand that the 2-adic Jordan component of maximal exponent 2" is even. Or in other words we
assume that n,,, # 0. If the component of exponent 2’ is even we have 2|n; of course. Once again we
put

2
I, = {’y € Dom : mult(y) > 2™ ! and % = 0(mod Z)} c (2™t (798)

and we set Iy = I \ {0}. As a consequence of Proposition 3.1 in [Sch06] we obtain the following
lemma.

Lemma 5.2.8. Let Dom be a 2-adic Jordan block of the form as in (797). Then Do is irregular if and
only if its 2-adic Jordan symbol is given by (2) ;>

As above we make an Ansatz

v = Z aue, = apeg + Z aye, (799)
pels uefg

with the assumption that ag # 0 and a4, = a, for all d € (Z/2™7Z)* and i € I>. We find that
f'(t) = (f(7),v) is a vector-valued modular form for the Weil representation on C[Dj;] for the
group I'g(N2™) of weight k with character xxp,... This is a consequence of Proposition 2.2.2. This
implies that we are once again left with the evaluation of the pole orders of the components of f’ at
cusps, i.e. we have to show that f’ has small pole orders. Assume (f7),, has a pole at ico using (770)

and Lemma 5.2.4 we find d),|M’ and x € Z with (z,dy,) = 1, d\,\1 = 0 and )‘; = g, (mod Z).
1
Similarly for every Ao € Dam such that (f5)x, 4, has a pole at ico we find d,|2™ and y € Z with
2
(y,dy,) = 1, dy,A2 = 0 and % = %(mod Z). In order to prove that f’ has small pole orders it is
2

once again enough to show that for each pole s of I'o(N2™) and d, we have

d>\2 < tom (S) = (pDzm (Ms)e)\gvv) =0. (800)
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In the evaluation of (p Dym (Ms)er,, v) for odd primes p the Lemma 5.2.5 was clearly quite useful. We

made use of it in the proof of Lemma 5.2.6. For the prime number p = 2 we argue in a slightly different
manner, since this lemma does not directly generalize to this case. We represent the cusp s of T'o(N2"™)
as usual by a fraction ¢ € Q with the usual properties. We decompose ¢ = ¢ com as above and assume
com = 2'. In the case of tom(s) = 1 the condition (800) is trivial so we may assume 2i < m in the
following. Let U be any subset of Dam. We can introduce a characteristic function d;; as above.

Lemma 5.2.9. Let s be a cusp of To(N2™) represented by & with c|[N2™, ¢ > 0and0 < a < (c, %)

a b
d
Furthermore let Ay € Dam be an element such that there are dy,|2™ and x € 7 with (z,d),) = 1,

2
dx, 2 = 0 and % = %(mod 7). We furthermore assume that dy, < tom(s). In the case 1 < i < 2m
2
we have

with (a,c¢) = 1. Take a matrix My = € SLy(Z) such that s = Mgico. We assume 2¢||c.

Dom),. A
(PDym (Ms)er,, v) :Eng(Ms)‘(‘DZ)"(SDS*()\Q)e <—ad2( 2); ) > ap.  (801)
" pelz
In the case i = 0 we have
1 _
(prm (Ms)%,v) = D] e(—dey' (A3/2)) D @ (802)

pelz

Proof. We start with the case 7 = 0. Clearly we have DS, = Dam. For u € I we have

(PDym (M)er,, €p) (803)
_ R 20 _ 2

- §D2m (MS) \/W 62}27” 6( a/Bc/2 b(/Ba )‘2) bd(A2/2))/’Ld)\2+ﬁyu (804)
= Epym (M) ‘D2m|e(—acj_vl (11— dX2)?/2 — b — dA2, Xo) — bd()3/2)) (805)
= €0 (Ma) (e (1, 12) = e (03/2) (806)

So we obtain

(pDQ'm (M) €has U) (807)

= (e 03/2) Y Feley (1 ) (308)
’ 2m| nels

= % (—dey'(A3/2)) > an. (809)
’ 2m| pEl>

Notice that the last equation makes use of (1, A2) = 0(mod Z). This is obvious for ;x = 0. We consider
the case 1 # 0. For m > 1 we have p1 = 2!/ and we have a decomposition

A2 = (A2)1 4+ (A2)m—1 + 2\, (810)

simply because we have dy, A2 = 0 and d), < 2™~! < 2™ = tym(s). In the case m = 1 we obtain
dy, = 1 so we have A\ = 0. So (¢, A\2) = 0(mod Z) is clear as well. This is of course the same
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argument as in the discussion of odd primes p. We consider the case 1 <14 < . For u € I we have

(pD2m (M>e/\27eﬂ) (811)

SOV TANA CEDE R o (—5 (5, %) - bd%) o 812
VIDanl - 5épg, 2 2
Dom). —dA z A2
= EDym (MS)M@E* (1 —dXg)e WA b(p — dAg, Ao) — bd=2 (813)
| Dom | 2 2
(Dam)c (A2)2 A
= ngm (Ms)‘|DQm|‘5D§* ()\2)6 —adz? + bd?2 (814)
The equation (814) needs some further explanation. Because of ¢ < % < m — 1 we have for every

i € I that n — dA\y € DS* if and only if Ay € DS*. Using this it is easy to prove that % =

dQ%(mod Z). We furthermore have (i, A2) = 0(mod Z) as above. Applying this result to v we
obtain

(Dam).c (A2)2 A3 _
(PDym (M)ery, ) = Epom (Ms)‘|DQm|‘5D§*()\2)e —adQT + bd?2 z; Ty (815)
pelz

This is exactly the statement of the lemma. O]

Proposition 5.2.10. Assume that the 2-adic Jordan block Do is regular and of the form as in (797).
Then there exists a solution v for the Ansatz (775) such that f' = (f,v) is a vector-valued modular form
for the Weil representation on C[Dyy] for the group I'o(N2™) of weight k and character XX p,,. with
small pole orders and f) has a pole at ioo of order 1.

Proof. We may pick a solution v for the Ansatz (799) such that ag # 0 and a4, = a, ford € (Z/2™Z)*
and p € Io. As explained above Proposition 2.2.2 implies that f = (f,v) is a vector-valued modular
form for the Weil representation on C[D ;] for the group I'g(IN2™) of weight k and character xx p,.m -
Because of ap # 0 we know that f) has a pole of order 1 at ioco. The Lemma 5.2.9 implies that f’ has
small pole order if }° <7, @, = 0. W can easily pick a v such that this is true as well. For example we
— - _ 1

can set ap = 1 and a,, = TAR O
5.3 A partial reduction to I';(N)

The reduction method of the previous section has the disadvantage that the reduction f’ of a vector-
valued modular form f of small pole order might vanish if the component fj of f does not have a pole
of order 1 at ¢0o. In this section we relax the condition that f has small pole order suitably by use of
a certain bound function B. We then say that f has pole orders bounded by B. Next we introduce an
alternative reduction method, which yields a reduction f’, that has pole orders bounded by B, if f has
this property. Furthermore this reduction f’ is nonzero, if f is nonzero. This does not longer depend
on a pole of fy at 2co. Even though the principal idea is still the same, we have to work with the group
I'1(N) instead of I'g (V). This is because we can no longer work just with isotropic elements and need
more flexibility. Let N € Z> be a non-negative integer with prime decomposition

N =pit--pr. (816)

We have the usual floor-function |2 | which maps x € R to the largest integer n such that n < x.
Furthermore we have the ceil-function [z] which maps x € R to the minimal integer n such that
n > x. For a prime power p" we define a bound function B by B(p") := plz! forr > 2 and B(p") =1
ifr = 0, 1. We may extend this function to all integers by B(nm) = B(n)B(m) in the case (n, m) = 1.
For the natural number N from above we obtain

B(N) = B(pi") - B(py)- (817)
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The basic assumptions in this section are still similar to those in the previous section. We assume
that L is an even lattice of signature (n,2) in the genus corresponding to the discriminant form D,
i.e. we have D = D(L). Let the level of D be M. Throughout this section we consider a nonzero
vector-valued modular form f : H — C[D] for the Weil representation of the group I'; (IV) of weight
k =1 — % for some character y of I'; (V) with (N, M) = 1.

Definition 5.3.1. Assume N € Zx satisfies (N, M) = 1. Let f : H — C[D] be a nearly holomorphic
vector-valued modular form of weight k for the Weil representation of I'; (V) with character x. We say
that f has pole orders bounded by B if it satisfies that for every cusp s of I'; (V) the Fourier expansion
fs at the cusp s of f has the following property: If (f5)(7) has a pole at ico then there exists a divisor
dx|M and an integer = € Z with (x, dy) = 1 such that dy\ = 0, %2 = j-(mod Z) and

(Fre 0 (470 ). (319)

This definition reasonably generalizes what we called modular forms of small pole orders in the last
section. Another way to state the condition (818) is

tn(s)dyordiso ((fs)r) < B(N). (819)

We will usually work with this inequality in the following. We assume that our modular form f has
pole orders bounded by B. Let p be a prime such that there exists m € Zx>g, m > 1 with p™||M. We
write M = M'p™. For any rational number 2 € Q and any vector v € C[Dpm (z)] the holomorphic
function f'(7) = (f(7),v) is a vector-valued modular form for the Weil representation pp, , of weight
k for the group I'; (Np™) with character xx,. Now we want to find such a vector v € C[Dpm (x)] such
that F” has pole orders bounded by B. The following proposition is the main result of this subsection.

Proposition 5.3.2. Let D be a regular discriminant form of level M and assume that the 2-adic Jordan
component Dam, of D, with 2™2||M, is of the form (797). Assume N € Z>q satisfies (N, M) = 1 and
let f : HH — C[D] be a nonzero vector-valued modular form of weight k for the Weil representation of
I'1(N) with character x. Assume f has pole orders bounded by B. Let p be a prime such that there
exists an integer m > 1 with p™||M. We write M = M'p™. Then there exists x € Q and a vector
v € Dym(x) such that f'(1) = (f(7),v) is a nonzero vector-valued modular form of weight k for the
Weil representation pp, , of T'1(Np™) with character xx, which has pole orders bounded by B.

Notice first that there has to exist a cusp s of 'y (/V) and an element # € D such that (fs)s has a pole
at 70o. This is because it is easy to see that each component of f3 of f has to be a nearly holomorphic
modular form for the group I'; (N M) of weight k for some character x’. Yet we have k < 0 therefore
the valence formula implies fg = 0 if f3 does not have a a pole at some cusp of I'; (INM). Yet the
expansion at such a cusp s is a linear combination of components of fs. So if for all cusps s of I'o (N M)
and 3 € D the functions (fs)s are holomorphic at ico then we get f3 = 0 for each 8 € D. This is
clearly not possible if f # 0. Assume (fs)g has a cusp at i00. By assumption f has pole orders
bounded by B, so we find dg|M and « € Z with (z,dg) = 1, dgf = 0 and % = ﬁ(mod 7). We
decompose (3 as 3 = 3’ + B, with 8’ € Dy and B, € Dpm and we write dg as dg = djydg , with
dg = (M'dg) and dg, = (dg,p™). As usual we have dg/ ' = 0 and dg, 3, = 0 and find x1, 29 € Z
with (dgr, x1) = (dg,,22) = 1 such that % = ;—Bl,(mod Z) and @ = ff(mod Z). This is just
Lemma 5.2.4. There exists a cusp sp of I'1 (V) and some § € D such that (fs, )g has a pole at 700 and
ds, is minimal in the sense that if for any other cusp s of I'; (/V) and any other 3 € D the function
(fs)p has a pole at ico, then we have ds, |dg,. We fix an element § € D such that ds, is minimal and for
ds, = p' we call i minimal as well. Let s be any cusp of I'; (V). Then there exists a rational number %
a b

d

with & = Mjioo. Of course the fraction ¢ represents a cusp of I'; (Np™) as well. We denote this cusp

with (a,c) = 1, p™|cand ¢ € I'1(N)s, i.e. 2 represents the cusp s. We chose M = € SLy(Z)
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by s" and we set My = M. Clearly different cusps of I'1 (V') may corresponding to the same cusp
of I'1 (V) but by s’ we always denote the choice induced by this construction.

Lemma 5.3.3. Chose a cusp so of I'1(N) and 0 € D such that (fs,)s has a pole aticc and ds, is minimal.

co do
SLy(Z). We denote the cusp of I't (Np™) represented by > by s, and pick My, = Ms,. We put p =
dodp € Dyr and vy = et € C[Dpm(z)] withx € Q such that x = %Z(modZ). Then the function
f'(1) = (f(7),v0) is a vector-valued modular form of weight k for the Weil representation pp,, of
'y (Np™) with character xx, and we have

ap b
As explained above we represent sg by a rational number ZT()) with p™|co and fix M, = < 0 0) €

52
(f;{))é/ (7_) = pom (Mso)e <_b0d02p> (fso)é(T)' (820)
This implies that <f=:‘6)5/ has a pole at ioo.
Proof. This proof is a direct computation that can easily carried out by use of Proposition 2.2.2. O

The statement of this lemma should be viewed as an analog of equation (764). In the following we will
extend the vector vy such that f’ still has some pole but also has pole orders bounded by B. As above
we start with the case of odd primes p.

Lemma 5.3.4. We assume m = 1 and that D), is regular, then there exists a number x € Q and a vector
v € C[D,(x)] such that f'(1) = (f(7),v) is a nonzero vector-valued modular form of weight k for the
Weil representation pp, ., of I'1(Np™), with character x X, which has pole orders bounded by B.

Proof. Chose a cusp sp of I'1(N) and § € D such that (fs,)s has a pole at ico and dj, is minimal.

Again we represent this cusp by a fraction ¢ as in Lemma 5.3.3 and chose M, = CCL Z) € SLo(Z)

accordingly. We write ds, = p' we either have i = 0 or 4 = 1. Let us assume 5 = 1 first. This is the
trivial case, since for every cusp 5 of I'i (Np) and every 8 € D such that (f3)s has a pole at ico we
have

tnp(8)dgrordiss ((f5)s) < tn(5)dgrpordise((fs)s) < B(N) = B(Np). (821)

Of course we view § as a cusp of I'; (V) if we consider f;. We may pick v as in Lemma 5.3.3 to obtain
a function f’ with all the properties of the statement. We consider the case i=0. Let v € D, be a
nonzero isotropic vector. Clearly v has multiplicity 1 in this case. This implies that ( fs)g/4 has to be
holomorphic at ico for all cusps s of 'y (N) and all 3/ € Dy because of 17y # 0. If we put v = ¥ —e®
we obtain

(£2) (1) = €0, (M) (Fso)sr+0(T) = (Fso)or4(7)) (822)

S0

which has a pole at ico since (fs,)s 10 has a pole at ico. This implies that f’ is nonzero. We have to
show that F has pole order bounded by B. For cusps s of I'1 (N p) that satisfy ¢,,(s) = 1 the statement
is once again trivial. This is because of tx;,(s) = tn(s) in this case. We may assume ¢,,(s) = p. Of
course we have

(foxn ()= > (pp,(Ms)er,,v)(fs)xa, (7). (823)

Ap€Dp

Since for poles coming from summands (fs)x 4, (7) with dy, = p the inequality (819) is obviously
satisfied we just have to show that (pp,(Ms)eg,v) = 0. Since t,(s) = p implies p { ¢ we pick an
integer ¢! € Z with ¢ !¢ = 1(mod p) and compute

0309~ 5,0007 e ) o (o B2 o

Now we have checked that f’ has pole orders bounded by B. O
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From now on we assume that m > 2. Once again pick a cusp so of I'1 (V) and 6 € D such that (fs,)s
has a pole at ico and ds, = p' is minimal. A direct consequence of this is that for every cusp s of
' (Np™) and every A" € Dy, such that (f]), has a pole at ico, we have

B(N)

tn(s)dvp’ (529

Ordioo ((f;)x) S
We will make frequent use of this inequality. Let us assume | %5 | < i for now. As a direct consequence

of (825) we obtain that for every cusp s of I'1(Np™) and every \' € D, we have for any choice of
v € C[Dpm ()] for z € Q that

BN _ B

. 826
tN(S)d)\/pm - thm(S)d)\/ ( )

ordico ((F)x) <

In other words if [ %] < 7 we may pick z € Q and v € C[Dym(z)] as in Lemma 5.3.3. From now
on we assume i < |5 ]. Since we have p"||M it is clear that D,m has a Jordan decomposition as in
(767) with n,, # 0. We take an element 7/ € (p™)“"™™ of multiplicity 1 and put v = p"™~1+'. The
assumption 4 < || implies 0 < m — 2i — 2 and we obtain that + is isotropic and (-, d,) = 0. We
fix a cusp sg and § € D such that (fs,)s has a pole at ico and ds, is minimal as in Lemma 5.3.3. We
use all notations form there and set p1; = dod, and o = dod, + doy. We chose x € Q such that

1o oH

r = 5 = ¥ (mod Z). Now we can introduce

v = €M1 — 6“2 S (C[me(x)]. (827)

We introduce a vector-valued modular form f’ by f'(7) = (f(7),v) of weight k for the Weil represen-
tation pp,,, of I'1 (INp™) with character xx.. Now we evaluate

(Fy)0(7) = €D, (Mo Je(=bodo) ((foo )i, (7) = (fin)s4~(7)) (828)

by a computation similar to the proof of Lemma 5.3.3. Since (fs,)s+(7) can’t have a pole at o0 it
is clear that (f/, )s(7) must have a pole at i00. This implies f' # 0. We have to show that f has
0

pole orders bounded by B. We start with a cusp s of I'; (Np™) and assume that s is represented by a
a b
d

We set cy = (¢, N) and ¢pm = (c,p™) = p” for some 0 < h < m.

rational number ¢ € Q with (a,c) = 1 and pick My = € SLy(Z) with ¢ = Mioo as usual.

Lemma 5.3.5. Let s be a cusp of 'y (Np™) such that h satisfiesm—2i—1 < h. Then forevery \' € Dy
such that (f.) has a pole at ico we have

thm(s)dXordioo((fé)X) < B(Npm) (829)

Proof. Of course we have t,m (s) < ’1’9—7: and m — 2i — 1 < h implies tpm (s) < ’;—T; < p?**1 Using (825)
we obtain

B(N ,
tnpm (8)dyordiss ((f1)a) < tpm (s)d,\/(i)i < B(N)p'*t < B(Np™). (830)
tn(s)dyp
For the last inequality we made use of the assumption i < [ . O

Of course the proof of this lemma is trivial in the sense that we just work with the obvious bound (825).
Therefore this result would hold for any choice of vector v not just the one made in (827).

Lemma 5.3.6. Let s be a cusp of I'1(Np™) represented by < as above. We decompose ¢ as ¢ = cncpm

a b

with cym = p" and pick M = (c d,) € SLy(Z). We assume h < m — 2i — 2. For a fixed element
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p € Dym we have 31 = p1 —dp € Dy, if and only if we have o = po—dp € Dy, In the case 31 ¢ Dy,
we find
(PDym (Ms)ey,v) =0 (831)

and in case 31 € Dy we obtain

5 (832)

) [(Dpm)e|
| (Dpm)|

2 2
[e <—a07v1 (Blic"'” ) e(=b(B1, 1) — e (—acfvl (52;@"” ) e(—b(Ba, u»] (833)

Proof. Notice that we have h < h+i¢+1 < m —i — 1, so we find dy = pm*ifldy' € ng. If
p1 = w1 — dp € Dy, then clearly we have 52 = 51 + dy = p2 — dp € Dy as well. If we have
B2 € Dy we find 81 = B2 — dy € Dy, The equations (831) and (832) are now direct consequences of
(73). O

2
(PDym (Ms)ep, v) = Epm (Ms)e <—bd“

Lemma 5.3.7. Westill assumei < |5 |. Let s be a cusp of 't (Np™) such that h satisfiesh < m —2i—2.
Then for every X' € Dy such that (L) has a pole at ico we have

tnpm (8)dy ordies ((Fo) ) < B(Np™). (834)
Proof. The function (f!), is as usual given by

(fOx() = (pDym (Ms)e, v)(fo)xu(T)- (835)

HED m

Assuming that (f;),+, has a pole at 00 we find d,|p™ and y € Z with (y,d,) = 1, d,pu = 0 and
“72 = %(mod Z). We define 0 <[ <mbyd, = pl. A first property of [ is i < I because 7 is minimal.
It is enough to check that we have

dup(%] <tpm(s) = (prm (Ms)ey, U) =0. (836)

We start the discussion with the case h = 0, i.e. we have p { c. In this case we have t,m(s) = p™. If
m — i — 1 < [in 836 is clearly not satisfied, therefore we may assume [ < m — ¢ — 1 in the following.
Using all notations from Lemma 5.3.6 we obtain Djjm = Dpm and

b _ bt

5 = 5 — d(k,7)(mod Z). (837)

Using this and (832) it is now clear that we have (pp,(Mjs)e,,v) = 0 if we have (1,7) = 0(mod Z).
This is because the expression inside of the brackets |- - - ] in (832) vanishes. Because of p'yt = 0 we can
find a decomposition of 1 as in (772), i.e. we find suitable elements ; € (p)€" in the decomposition
of Dpm such that

p=p et g+ 0" . (838)

We use this decomposition to obtain

(11,7) = "y y) = pm D™ (1 ') = 0(mod Z. (839)

This finishes the case h = 0. We now assume 1 < h < m—2i—2. A first consequence of this is that the
entry d in the matrix Mj has to satisfy p 1 d because of (¢,d) = 1. Above we explained that we have
i < llet us assume 7 < [ first. Of course we have mult((x1);) > p, simply because mult((d,);) > p.
Assume now there exists 51 € ng such that 1 = dyu + 1, then we can decompose this component-
wise along the decomposition (767) as usual and obtain (1); = du; + (51); forevery j =1,--- ,m.
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For j = | we obtain in particular p; = d=*((u1); — (B1)1), where as usual d~! € Z is any integer
such that dd—! = 1(mod p™). Such an integer exists because of p { d. Yet because of mult((31);) > p
and mult((d,);) > p we must have mult(y;) > p as well. Yet this is a contradiction with the fact that
mult(y;) = 1 by Lemma 5.2.5. We find that in the case 7 < [ there can not exist 81 € Djm such that
p1 = dpr+ 1. So the Lemma 5.3.6 implies (pp,m (Ms)ey, v) = 0. We are left with the case [ = 4. In the
following we may assume that 41 = du+ 31 for some 31 € ng since otherwise the statement is once
again clear. Once again by Lemma 5.3.6 it is enough to prove that we have (51, 1) = (52, 1) (mod Z)

B1)Z m B2)Z m
and ( 1)2p ! 2)2” (mod Z) in order to obtain (pp,. (Ms)e,,v) = 0. Using cpm = p" and the
assumption h < m — 2¢ — 2 we can compute this explicitly. O

By putting together all previous results we have now proved Proposition 5.3.2 in the special case of
odd primes p. We are left with the case p = 2. Yet the assumption that the 2-adic Jordan block Dgms
has a decomposition as in (797) makes sure that this discussion is analogous to the case of odd primes.

5.4 Classification of reflective automorphic products on regular lattices

In this section we want to prove one of the main results of this thesis. We assume that L is an even lat-
tice of even signature (n, 2) with n > 4 and level N that splits Iy 1 @1II; ; (V). Our goal is to show, that
just finitely many lattices L, with those properties, are reflective. A first observation is that L satisfies
all assumptions of Bruiniers converse theorem 2.4.4. This implies that every orthogonal modular form
for the discriminant kernel I'(L) on K(L), with rational quadratic divisor, is already an automorphic
product. In particular the lattice L is reflective if and only if it admits a reflective automorphic product
® ;. Here f is a suitable vector-valued modular form. We may now apply the previously introduced
reduction methods to obtain a scalar-valued modular form g for some congruence subgroup, which
satisfies certain bounds for the pole order at any cusp of this congruence group. By use of the valence
formula we will find bounds for the level N of the lattice L. We start with the assumption that L is
reflective with 2-root. This means, that there exists a nonzero reflective automorphic product ®; on
K (L) that has a 2-root.

Lemma 5.4.1. Letp be a prime number andm € Z>( an integer such that p™|| N, then the p-adic Jordan
component of D = D(L) is regular and if p = 2 the 2-adic Jordan component Dam is of the form as in
(797).

Proof. By assumption L splits II; 1 (V') which we may span by ¢ and f with e? = f2 = 0 and (e, f) =
N. Because of I} 1 (N)' = %HM(N) we have %e € 10, 1(N)". So for every p-adic component we can

construct an isotropic element of maximal order in D(L). This already implies the statement. O

Proposition 5.4.2. Let L be an even lattice of even signature (n,2) withn > 4 and level N that splits
IL 1 @ I 1 (N) and is reflective with a 2-root. Then with k = 1 — & the level N satisfies the inequality

(D) <5 (o).

pIN d|N

Let N be a solution of this inequality then the maximal exponent with which a prime number can appear
in the prime decomposition of N is given in Table 2.

Proof. Let L be a lattice with all the properties as in the statement. So there exists an automorphic
product ® ¢ that is reflective with 2-root and corresponds to a vector-valued modular form f for the
Weil representation of SLa(Z) on C[D(L)] of weight k. Using Proposition 5.1.2 we find that f has small
pole orders and fy has a pole of order 1 at i00. As a consequence of Lemma 5.4.1 each p-adic Jordan
component of D(L) is regular and therefore we can use the Propositions 5.2.7 and 5.2.10 to reduce f
step-by-step to vector-valued modular forms for smaller groups and smaller discriminant forms until
we are left with a scalar-valued nearly holomorphic modular form g; of weight & for the group I'g(JV)
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and character x p(z,) which has small pole orders. Notice that each p-adic component Djm of D(L)
has even signature, simply because D(L) has even signature. For odd primes p this is clear and for the
case p = 2 we make use of the oddity formula (53). For a cusp s of I'g(V) the expansion g, of gf at s

__1
satisfies g; € O <q N () > Since g has a pole at 0o we clearly have gy # 0 and so we can apply the
valence formula and obtain that gy solves the inequality (761). We directly obtain

ﬁﬁo(N) < €xo(N), (841)
where €5, (V) is the number of cusps of I'g(/N). Standard expressions for €y(N) and €5, (IN), given in
[DS06], yield the inequality. In order to obtain Table 2 just notice that if IV is a solution of inequality
(840), then so is each divisor of it. Using this fact it is enough to determine for each prime p a maximal
exponent n,(—k) such that p"(=F) solves the inequality. This can easily be done by a computer. [

In Table 2 we write — instead of 0 because 1 is a trivial solution for the inequality (840) if —k < 12.
Clearly many combinations of products of powers of primes that can be build by use of Table 2 will not

1 -2 3 4 -5 -6 -7 -8 -9 -10 -11 -12
27 5 4 3 2 1 1 - - - -
314 3 2 2 1 1 - - - - - -
502 2 1 1 - - - - - - - .
712 1 1 - - - - - - - . .
1ml2 1 - - - - - - - -
1301 - - - - - - - - ..
1701 - - - - - - - -
1901 - - - - - - - - - .
221 - - - - - - - - - L.

Table 2: Bounds on exponents in a prime factorization of V.

solve inequality (840). Yet it is easy to check which combinations do solve the inequality and which do
not. This can now be used to give more explicit upper bounds for the levels NV for any signature (n, 2)
of the lattice L.

Theorem 5.4.3. There are just finitely many even lattices L of even signature (n,2) withn > 4 and level
N that split II; 1 © II 1 (') and are reflective with a 2-root. Moreover, explicit bounds for the levels N are
given in Table 2.

Proof. Using the Propositions 5.1.4 and 5.4.2 we find that the rank n + 2 of L is bounded by 28 and the
level NV is bounded by the entries in Table 2. Since there are only finitely many lattices with fixed rank
and level the statement is proved. O

Now we focus on the case, where fy does not necessarily have a pole at ico. So, we will have to work
with the partial reduction for 'y (IV).

Proposition 5.4.4. Assume that L is an even lattice of even signature (n,2) with n > 4 and level N
that splits Il 1 @© II; 1 (V') and is reflective. Then with k = 1 — % the level N satisfies the inequality

I;“NQJ‘][V <1 — p12> < B(N)Y_¢(d)¢ @r) : (842)

dN

Let N be a solution of this inequality then the maximal exponent with which a prime number can appear
in the prime decomposition of N is given in Table 3.
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Proof. Let L be a lattice with all the properties as in the statement. So there exists a nonzero automor-
phic product ® that is reflective and corresponds to a nonzero vector-valued modular form f for the
Weil representation of SLo(Z) on C[D(L)] of weight k. Using Proposition 5.1.2, we find that f has pole
orders bounded by B. As a consequence of Lemma 5.4.1 we can use the Proposition 5.3.2 to reduce f
step-by-step to vector-valued modular forms for smaller groups and smaller discriminant forms until
we are left with a scalar-valued nearly holomorphic modular form g of weight & for the group I'; (V)

and some character x, which has pole order bounded by B. So for a cusp s of I'; (/V) the expansion
_BWN)
gs of gy at s satisfies gs € O (¢ *N) ). Since gy is nonzero we can apply the valence formula and

obtain that g; solves the inequality (761). We directly obtain

—k

561(1\7) < B(N)exs(N) (843)
Here € (V) is the number of cusps of I'; (V) and €1 (V) is [PSL2(Z) : PT'; (V)] by definition. By use of
standard expressions for €1 (V) and €~ (V), given in [DS06], we obtain the inequality (842). Obtaining
Table 3 amounts to compute explicit bounds for the solutions of the inequality (842). This is slightly
less straightforward but still similar to the previous case in Proposition 5.4.2. O

The inequality (842) has much more solutions than (840). We can observe this directly by comparing
Table 2 with Table 3. This is due to the fact that we have to work with the partial reduction for I'; (V)
and the bound function B. Notice furthermore that in the special case of squarefree level NV a similar
table was given in [Dit19]. We are now ready to come to the main theorem of this section, which is

-1 -2 3 4 5 -6 -7 -8 -9 -10 -11 -12
213 9 9 7 7 5 5 5 3 3 3 3
3 7 5 5 3 3 3 3 3 3 - -
5 5 3 3 3 3 3 - - - - -
7 3 03 3 3 - - - - -
11 3 3 - - - - - - - - -
13 303 - - - - - - oo
17 3 - - - - - - - - .
3 - - - - - - - - - -

—_
\O
W W W W W W W WwWwwaou g

Table 3: Bounds on exponents in a prime factorization of V.

one of the principal results of this thesis.

Theorem 5.4.5. There are just finitely many reflective even lattices L of even signature (n,2) and level
N that split I 1 & II; 1 (N). Moreover, explicit bounds for the levels N are given in Table 3.

The proof of this theorem is similar to the proof of Theorem 5.4.3. Essentially, we just replace the
Proposition 5.4.2 by Proposition 5.4.4 in the reasoning.
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