
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

International Conference PhysicA.SPb/2019

Journal of Physics: Conference Series 1400 (2019) 044027

IOP Publishing

doi:10.1088/1742-6596/1400/4/044027

1

 

 

 

 

 

 

Summation of divergent field-theoretical series for exact and 

variable values of asymptotic parameters: numerical estimates 

for the ground-state energy of a cubic anharmonic oscillator   

K B Varnashev 

Department of Physics, St.-Petersburg State Electrotechnical University “LETI”, Prof. 

Popov Str. 5, St. Petersburg, 197376, Russia  

 

E-mail: k.varnashev@mail.ru 

 

Abstract. Using, as an example, the calculation of the ground-state energy of a cubic 

anharmonic oscillator, we demonstrate a new approach to summation of divergent series. Our 

approach based on the Borel-Leroy transformation in combination with a conformal mapping 

does not require the knowledge of exact values of asymptotic parameters that determine the 

large-order behaviour of the series. Resumming field-theoretical expansions by varying the 

asymptotic  parameters  in a wide range of their exact values, we postulate the independence of 

the result of numerical analysis from the asymptotic parameters and based on this criterion we 

give a numerical estimate of the ground state energy of the cubic anharmonic oscillator for 

different values of the parameters of expantion and anisotropy, taking into account various 

orders of perturbation theory. We demonstrate good agreement between the results of our 

numerical calculations and the estimates obtained in the framework of the resummation 

technique using exact values of the asymptotic parameters. The results we achieved for the 

simplest anisotropic model allow us to apply this approach to investigate more complicated 

field-theoretical models describing real phase transitions in condensed matter physics or 

elementary particle theory, where the perturbation theory used has no small parameter of 

expansion and the exact values of the asymptotic parameters of the model are unknown. 

 

1. Introduction 

In the paper we discuss the problem of summation of divergent series arising in various fields of 

physics. For example, when studying critical behavior of models describing phase transitions in real 

substances using the field-theoretical renormalization group (RG) approach, important physical 

quantities, such as fixed points (PT) of RG equations or critical exponents governing the anomalous 

behavior of the thermodynamic functions at the phase transition point, are represented by power series 

in a certain parameter. Unfortunately, the parameter of these expansions does not belong to the range 

of convergence of the perturbative series. A typical situation is when the radius of convergence is zero 

and the resulting series are at least asymptotic. On the other hand, these series can contain important 

physical information relevant to predicting the critical behavior of real systems. To extract reliable 

information from them, they should be processed by a proper resummation procedure [1]. 
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At present, there are several resummation methods such as the simple Pade, Pade-Borel, or Pade-

Borel-Leroy techniques, whose application is, however, limited to the series with coefficients 

alternating in sings. For the more sophisticated method, first proposed in [2] and based on the Borel 

transformation combined with a conformal mapping, this limitation is not crucial. This resummation 

technique has been elaborated and used systematically for various phase transition problems, and is 

now regarded to as a most sophisticated procedure [3-6]. However, it requires a knowledge of the 

exact asymptotic high-order behaviour of the series. As a rule, the coefficients of the series  
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where the numbers a and b characterize the main divergent part. Nowadays these parameters are found 

only for the simplest models [6-11], and calculating them for the complex anisotropic field-theoretical 

models including several coupling constants in their Landau-Ginzburg-Wilson Hamiltonians is a most 

difficult problem as yet unsolved. 

The main goal of this investigation is to suggest a new approach to summation of divergent series. 

Our method is based on the Borel-Leroy transformation in combination with a conformal mapping, 

and does not imply knowledge of the exact asymptotic parameters. The proposed resummation 

technique is tested on simple model functions expanded in their asymptotic power series and applied 

to estimating the ground state energy of simple quantum mechanical problems, including that of an  

isotropic anharmonic oscillator. Then, our method is used to estimate the ground state energy of 

anharmonic oscillator with cubic anisotropy for several values of the expansion parameter and the 

parameter of anisotropy. The numerical estimates obtained are compared with those obtained by 

processing the corresponding series, taking into account the exact values of the asymptotic parameters. 

 

2. The method of summation, its testing and application 

Below, we attempt to overcome the outlined above difficulties and suggest a new approach to  

summation of divergent field-theoretical series, that is based on the standard technique of Borel 

transformation combined with a conformal mapping [1-3] but which does not involve the exact values 

of the asymptotic parameters. We start from the Borel-Leroy transformation of some physical quantity 

F(g) in the form [3] 

                                     2
0 0

( )
( ; , ) ( )

[1 ( )]

b
k

x

k a g

k

xx

agag

xw
F g a b dA e

w x









 
  

 
  .                              (1) 

Conformal mapping 

1 1

1 1

x
w

x

 

 
  

transforms the complex cut-plane C\[-1,-∞) (x) onto the unity circle of the plane (w) so that the semi-

axis [0,∞), the domain of integration, goes over into the interval [0,1). Obviously inside the unit circle 

the series converges. 

The coefficients Ak(λ) are determined from the equality 
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and the Borel transform B(x) is the analytical continuation of the series 

 
( 1)

kk

k
k

f
x

b ka   
  

 



International Conference PhysicA.SPb/2019

Journal of Physics: Conference Series 1400 (2019) 044027

IOP Publishing

doi:10.1088/1742-6596/1400/4/044027

3

 

 

 

 

 

 

absolutely convergent in the unit circle, fk being the coefficients of the original series. An additional 

parameter λ is chosen from the condition of the most rapid convergence of the series (1), i.e., from 

minimizing the quantity 
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where L is the step of truncation and FL(g;a,b) is the L-partial sum for F(g;a,b). In the regular scheme 

[2-6], parameters a and b are related to the exact asymptotic values a0 and b0. Since we deal in practice 

only with a part of the series in which the asymptotic regime might not be established, we vary 

parameters a and b in the neighborhood of their exact values. Our principle observation is that the 

results of processing FL(g;a,b) exhibit very weak dependence on the transformation parameters a and b 

as they vary over a wide range. This dependence becomes weaker with the growth of the 

approximation order. Moreover, the smaller the parameter of expansion g, the better this property 

holds. So, we made the stability of the result of processing with respect to variations of a and b the 

foundation of our technique for the summation of divergent series [12]. Such an approach allows us to 

apply transformation (1) even if the exact asymptotic behavior of the series being processed is 

unknown. 

 

Table 1. Numerical estimates for the ground state energy of isotropic anharmonic oscillator, g=1 
L 8 9 10 11 12 Exact value 

E(L) 1.392376 1.392357 1.392344 1.392349 1.392351 1.392352 

 

A detailed analysis of the formulated resummation scheme applied to the simple model functions 

(zero-dimensional field theory and Euler function) expanded into their asymptotic series 
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was performed in [12]. So, let us demonstrate here how our approach to summation works to calculate 

the ground state energy E(g) for several simple quantum mechanical models. We consider first the 

isotropic anharmonic oscillator [13] with the Hamiltonian 
42 .H gxx   

We observe the same stability of the result of processing E(g) with respect to the parameters a and b as 

for the model functions. The estimates for the ground state energy at g=1 are listed in Table 1 

according to the approximation order L. For L=8, our numerical result is by one order closer to the 

exact value than the number 1.391655±0.004562 found in [14] on the basis of Wynn’s ε-algorithm. 

We also studied the ground state energy E(g) of the Yukawa potential 
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The dependence E(g) presented in Figure 1 is in agreement with the known results [14,15]. The exact 

critical value of g when the bound state disappears is gc = 1.190612…. Using Winn’s ε-algorithm [14] 

gives us the value gc = 1.1836. The best estimate in the frame of our approach yields gc = 1.191. 

Finally, the ground state energy E(g) of the cubic anharmonic oscillator with the Hamiltonian 
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depending of the anisotropy parameter δ and the value of the coupling constant g was investigated in 

[9]. Those calculations were based on knowledge of the exact values of the asymptotic parameters. 

The ground state energy estimated on the basis of our approach proved to be very close to the values 

of [9]. The results given by the two different methods are listed in Table 2. In the framework of our 

resummation scheme we also observed the stability of the result of processing E(g) with respect to the 

variation of the asymptotic parameters a and b. 

 

 
Figure 1. Dependence of the ground state energy E(g) for the Yukawa potential from the 8-th 

approximation order 

 

 

Table 2. Numerical estimates of the ground state energy of the cubic anharmonic oscillator for 

various anisotropy parameters δ, coupling constant g and approximation order L 
Results by Kleinert et al [9], g/4=0.1 

L/δ -2.5 -1.5 -0.5 0.5 1.5 

7 1.217107 1.192033 1.164803 1.134735 1.100604 

9 1.217107 1.192034 1.164810 1.134736 1.100604 

11 1.217107 1.192035 1.164810 1.134739 1.100604 

Our estimates, g/4=0.1 (0≤b≤60, 0.5≤a≤1.5) 

L/δ -2.5 -1.5 -0.5 0.5 1.5 

12 1.21705 1.19203 1.16480 1.13473 1.00600 
Results by Kleinert et al [9], g/4=1.0 

L/δ -2.5 -1.5 -0.5 0.5 1.5 

7 1.941172 1.862806 1.733888 1.669172 1.535454 

9 1.941172 1.862815 1.733909 1.669188 1.535425 

11 1.941180 1.862823 1.733924 1.669199 1.535418 

Our estimates, g/4=1.0 (0≤b≤60, 0.5≤a≤1.5) 

L/δ -2.5 -1.5 -0.5 0.5 1.5 

12 1.9411 1.8627 1.7731 1.6691 1.5363 

 

3. Conclusion 

To sum up, let us formulate the results achieved in the present work. An approach to summation of 

divergent series has been suggested. The method employs the Borel transformation combined with a 

conformal mapping. It relies upon the stability of the result of processing on transformation 

parameters and therefore does not require knowing the exact asymptotic behavior of the series. The 

method has been tested on the functions expanded in their asymptotic series and applied to estimating 

the ground state energy of isotropic and cubic anharmonic oscillators. The principal observation is that 

within our approach, summation of the perturbative series of both simple and complex (anisotropic) 
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models exhibits the same behaviour. This allows one to apply the developed technique to process 

divergent series arising in a number of anisotropic models describing phase transitions in real 

substances [6, 16-22]. It can be expected that the proposed summation method may be useful in other 

fields of physics, for example in QCD, where one deals with divergent series, but conventional 

resummation techniques are inapplicable. 
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