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Abstract

The main purpose of this thesis is to study quantum-electrodynamics (QED) in the presence of
external background fields. We address this purpose by computing the Delbriick scattering amplitudes
in the low-energy limit, the low-energy N-photon amplitudes in the presence of a constant field, the
low-energy four-photon amplitudes in the presence of a constant magnetic field, the forward Compton
scattering amplitudes in a constant magnetic field and the one-loop vertex correction in an arbitrary
plane-wave field. In most cases, except for the vertex correction, we employ the worldline formalism
to perform all calculations simultaneously for both scalar and spinor QED.

We utilize the previously obtained result of the off-shell four-photon amplitude with two low-
energy photons to calculate the circularly polarized amplitudes for the leading-order contributions to
Delbriick scattering, assuming that the incoming and outgoing photons have low-energy.

We compute the one-loop N-photon amplitudes in a constant background field considering off-
shell low-energy photons in various field configurations. Assuming parallel magnetic and electric
components of the background field enables us to obtain compact representations for these amplitudes
involving only simple algebra and a single global proper-time integral with trigonometric integrands.
Similarly, assuming a constant crossed field, we derive compact expressions for these amplitudes,
represented by a single proper-time integral. The outcome of this integral, for fixed parameters, takes
the form of a factorial function. The latter case is further refined by employing the spinor helicity
formalism, where the helicity components are expressed solely in terms of Bernoulli numbers and
spinor products. Moreover, for an arbitrary constant field, we obtain another representation of these
amplitudes as series expansions in the external field.

As an application, we compute the one-loop four-photon amplitudes in the presence of a pure
magnetic field for off-shell low-energy photons. Using these results, we calculate the polarized am-
plitudes for linear and circular polarizations in two distinct scenarios: when the magnetic field is
coplanar with the scattering plane and when it is orthogonal to it.

We study the polarization flip of a photon scattered by an off-shell particle in the presence of a
magnetic field. Specifically, we compute the Compton scattering amplitudes in a magnetic background
field for off-shell massive particles and on-shell photons under the assumption that the scattering
occurs in the forward direction, aligned along the same axis as the magnetic field. Additionally, we
consider the polarization of the external photons to be perpendicular to each other.

We apply the operator technique within the Furry picture (Volkov states) to compute the general
expression of the one-loop vertex correction in an arbitrary plane-wave background field for the case
of two on-shell external electrons and an off-shell external photon. We show that the ultraviolet
divergence can be renormalized exactly as in vacuum while the infrared divergence is avoided by
introducing a finite photon mass. This calculation completes the study of QED in a plane-wave
background field at one-loop order.

In most cases, except for the Delbriick scattering amplitudes, we perform non-perturbative calcu-
lations, given that the external background fields are taken into account exactly.

Keywords: Quantum electrodynamics, one-loop, amplitude, worldline, operator technique, helicity,
background field, scalar, spinor, low-energy, strong field, plane-wave.
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Chapter 1

Introduction

In quantum-electrodynamics (QED), the classical theory described by Maxwell equations is modified
by the appearance of nonlinear corrections that violate the superposition principle and are due to the
purely quantum effects. Specifically, the prediction made by Dirac [I, 2] regarding the existence of
positrons (the antiparticle of electrons, later discovered by C. D. Anderson [3, 4]) and the uncertainty
principle (expressed as AEAt > h/2 where h is the reduced Plank constant) allow the existence of
virtual electron-positron pairs, i.e., electron-positron pairs that live for a very brief period of time.
This argument can be extended to all existing particles, suggesting that the vacuum can be viewed
as a non-trivial medium replete with quantum fluctuations such as virtual particle-antiparticle pairs.
Therefore, exploring these nonlinear effects through perturbations of the vacuum with external fields
could potentially lead to physics beyond the standard model.

The first quantum correction to the Maxwell Lagrangian that includes nonlinear corrections to
QED was given by H. Euler and W. Heisenberg. They obtained the nonperturbative, renormalized,
one-loop effective Lagrangian for spinor particles in a classical electromagnetic background of constant

field strength [5]. This Euler-Heisenberg Lagrangian can be expressed as'
1 [*dTr _,. (eaT')(ebT) 2
Loy =—= ——e T — S(eT)*F —1 1.1
EH 87r2/0 T3¢ {tan(eaT) tanh(ebT') 3(6 )y ’ (L.1)

h,
where a:(\/m_}_fm 7 b:(m+]_—)l/27 (1.2)

are written in terms of the two invariants of the Maxwell field

1 = = 1 - S
—2F = —§FWF‘“’ =E*-B?%, -G = —EFWF‘“’ =FE-B. (1.3)
The same affective Lagrangian, for scalar particles, was later derived by Weisskopf [6]. Using the
same conventions as for Ly, the Weisskopf Lagrangian is given by
1 dT .2 (eaT’)(ebT) 1
Ly = —e T —(eT)*F —15¢. 1.4
W 1672 /0 T3¢ {sin(eaT) sinh(ebT) + 6(6 ) (14)

The Euler-Heisenberg (1.1) and Weisskopf (1.4) Lagrangians give rise to two significant phenom-
ena: light-by-light scattering and Schwinger pair production [7]. For instance, by expanding the
real part of these effective Lagrangians up to the e* order, it is possible to obtain the low-energy
limit of the four-photon amplitudes, which correspond to the leading contributions to photon-photon
scattering for small photon energies compared to the electron mass. On the other hand, the imag-
inary part leads to the probability of electron-positron pair creation by the constant electric field,
known as the Schwinger effect [7]. However, this probability is extremely small for typical field
strengths, becoming more significant only when the electric field approaches the critical value. Here,
the critical fields strengths of QED are E.,. = m2c®/hle| ~ 1.3 x 1018 V/m for the electric field and
Ber = m2c?/hle| ~ 4.4 x 10" G for the magnetic, i. e. F., = m?/|e| within natural units. For a com-
prehensive review of the effective Lagrangians (1.1) and (1.4), their applications and generalizations,
refer to [3].

1From now on, we use natural units with eg = ¢ = h = 1 and m and e denote the electron mass and charge,
respectively.



2 Introduction

The first calculation of the cross section for photon-photon scattering was done by H. Euler and
B. Kockel [9, 10], in the above mentioned low-energy limit. Shortly later, this was followed by a
calculation of the opposite high-energy limit by A. Akhiezer et al. [11, 12].

The first treatment of the photon-photon scattering amplitude for arbitrary on-shell kinematics
was done by Karplus and Neuman [13, 14]. They analyzed the tensor structure of the four-photon
amplitude, showed its finiteness and gauge invariance. Later, De Tollis [15, 10] recalculated the
amplitude using dispersion relation techniques, which led to a more compact form of the result.

The consideration of four-photon amplitudes with some legs off-shell arises from the realization
that photons emitted or absorbed by an external field in general can not be assumed to obey on-
shell conditions. An important example is Delbriick scattering, the elastic scattering of a photon
by a nuclear electromagnetic field, where the scattered photon can be taken real but the interaction
with the field is described by virtual photons (see Fig. 2.3). This process, and similar ones involving
interactions with the Coulomb field, motivated V. Costantini et al. to study the four-photon amplitude
with two photons on-shell and two off-shell [17]. Moreover, we have investigated the fully off-shell
four-photon amplitudes using the worldline formalism [18, 19, 20]. In [18], they derived an optimized
tensor decomposition for the integrands of these off-shell amplitudes in both scalar and spinor QED.
The development of analytical expressions for these off-shell amplitudes remains an ongoing project,
partly documented in this thesis. In [19, 20] the off-shell four-photon amplitudes involving two low-
energy photons are obtained analytically. The utilization of these results to compute the Delbriick
scattering amplitudes at low energies is a primary focus of this thesis, see Chapter 2.

The presence of external electromagnetic fields in vacuum can polarize its virtual pairs, causing the
vacuum to exhibit medium-like behavior, such as birefringence and dichroism. In the weak-field limit,
the study of vacuum birefringence and dichroism can be conducted using the aforementioned off-shell
four-photon amplitudes or through the Euler-Heisenberg and Weisskopf Lagrangians [21, 22, 23].
Additionally, in the presence of a background field, it is anticipated that a photon may split into two

or more, or conversely, multiple photons may merge into one [24, 25, 26], phenomena which can also
be described by the off-shell four-photon amplitudes.
On the experimental front, the observation of Delbriick scattering [27, 28, 29] and photon splitting

[30] in high energy experiments involving heavy ions represent an indirect confirmation of photon-
photon scattering and consequently, the presence of virtual pair interactions. Moreover, light-by-light
scattering has been observed in heavy-ion collisions [31, 32, 33], although this observation remains
somewhat indirect as the experiment is not purely photonic.

The observability of vacuum birefringence has been extensively investigated experimentally (for
instance see [34, 35, 36, 37] and references therein), yet it has proven elusive in laboratory settings.
Currently, two experiments are being conducted whose aim is to observe this effect: Biréfringence
Magnétique du Vide (BMV) in Toulouse, France [341] and Observing Vacuum with Laser (OVAL)
based in Tokyo, Japan [35]. However, claims of its observation have been made in astrophysical
measurements [38] and further discussed in [39, 40].

The pursuit of understanding photonic processes remains an ongoing focus in current experiments,
particularly in heavy ion collisions, astrophysical observations and laser-assisted experiments. In these
contexts, field strengths of the order of the critical fields E., and/or B, are often encountered, moti-
vating the non-perturbative study of photonic phenomena, for instance, see [41, 42, 43, 44 45]. The
worldline formalism offers various technical advantages in the computation of N-photon amplitudes
in the presence of constant fields [416, 47], plane-wave fields [48] or combined constant and plane-wave
fields [19], for both scalar and spinor QED. Indeed, the advantages of the worldline formalism in-
clude treating scalar and spinor loops in a similar manner, along with the inclusion of all possible
contributions from inequivalent Feynman diagrams in a single expression. Therefore, in the present
thesis, we investigate the N-photon amplitudes in a constant background field for photon energies
small compared to the electron mass by deriving compact expressions for various field configurations,
as detailed in Chapter 3. These derivations closely follow the corresponding calculations in vacuum
[50, 51, 52]. Subsequently, we utilize these results to compute explicit expressions for the low-energy
limit of the four-photon amplitudes in the presence of a pure magnetic field.

The emergence of high intensity lasers and X-ray free-electron lasers (XFELSs) have opened the
possibility of testing QED in new regimes and promises the realization of more sensitive experiments
that would provide direct observations of light-by-light scattering and vacuum birefringence. This
has given rise to new proposals of laser experiments [53, 54, 55, 56, 57] for the direct measurement
of light-by-light scattering. In particular, the Helmholtz International Beamline for Extreme Fields
(HIBEF) has as one of its primary goals to test vacuum birefringence in experimental setups that



combine XFELs and high-intensity lasers [58, 59], see also [60, (1, 62, 63, 64]. Alternatively, the
possibility of measuring vacuum birefringence in Coulomb-assisted setups has been proposed in [65].
In these setups, the abundance of nuclei may imply the presence of electrons, which could interact
with XFEL photons through Compton scattering. Consequently, it becomes essential to examine the
birefringent effects arising from Compton scattering [66]. This aspect is addressed to some extent in
the present thesis utilizing the worldline formalism approach [67, 68, 69, 70], see Chapter 4.

The continuous development and upgrade of optical high-intensity lasers have allowed to reach
record intensity values on the order of 5.5 x 10*2 W /cm? [71]. As a comparison, note that the critical
field of QED (F.. = m?/|e|) correspond to laser intensities on the order of 102 W /cm?. This progress
promises the observation of nonlinear phenomena in a controlled manner [72, 73], and potentially, the
direct observation of Schwinger pair production in the future, which is one of the main motivations
behind increasing the laser intensity.

The use of these high-intensity lasers with intensities 101 —10'® W /cm?, combined with relativistic
electrons (of 46.6 —49.1 GeV), has already proven evidence of nonlinear effects in Compton scattering
and Breit-Wheeler pair production, reported in [74] and [75, 70], respectively. Similar setups have
also been employed to observe radiation reaction effects [77, 78]. These observation demonstrate the
occurrence of nonlinear effects, yet further studies with higher accuracy are still required to validate
QED in the presence of strong background fields or potentially to detect deviations from it.

In experiments involving intense laser beams and relativistic electrons, the controlling parameter

is the so-called classical nonlinearity parameter [79], given by
el 0
mwo

where F{ is the amplitude of the laser field and wy is its angular frequency. This parameter indicates
that the effects of the laser field have to be taken into consideration exactly for & = 1. Additionally,
the so-called quantum nonlinearity parameter

(P FY2
xo= Y Bult 17 (1.6)

where p* is the initial four-momentum of the electron, represents the amplitude of the laser field in
units of the critical field of QED in the initial rest frame of the electron. The strong-field QED regime
is entered when Yo 2 1, meaning that quantum corrections become relevant.

In upcoming facilities such as the Center for Relativistic Laser Science (CoReLS) [30], the Extreme
Light Infrastructure (ELI) [81], the Exawatt Center for Extreme Light Studies (XCELS) [82] and
Apollon [83], testing QED in the strong field regime is one of the primary goals. These facilities

aim to achieve laser intensities on the order of 10?* — 10?* W/cm?. This has motivated the study
of quantum processes in a non-perturbative manner, for instance, nonlinear Compton scattering
[84, 85, 86, 87, 88], nonlinear Breit-Wheeler pair production [89, 90, 91, 92], nonlinear Bethe-Heitler
pair production [93, 94] and nonlinear trident pair production [95, 96]. However, even at one-loop
order the radiative corrections to the probabilities of these processes have never been computed.

The standard theoretical approach to describe a quantum process in a laser field typically involves
working within the Furry picture [97], where the electron-positron field is quantized in the presence of
the background field [98, 99]. However, solving the Dirac equation exactly in the presence of a laser
field is not feasible due to the complexity of real lasers. Instead, a laser field can be approximated
to the ideal case of a plane-wave field, for which analytical solutions of the Dirac equation have been
obtained by Volkov [100]. Therefore, laser interactions are commonly studied within the framework
of the Furry picture and using Volkov states [101, , 87, .

The study of loop corrections in background fields for the high-field limit has lead to the Ritus-
Narozny conjecture [104, , , |, which states that for o > 1 the effective coupling of QED
in a constant crossed field scales as axg/ 3, where o = 2 /47 is the fine structure constant.

In particular, the one-loop vertex correction in the presence of a constant crossed field has been

derived [108, ], showing agreement with the above mentioned Ritus-Narozny conjecture. In the
present thesis, we extend this understanding by deriving a more general result: the one-loop vertex
correction in the presence of a plane-wave field [110], employing a non-perturbative approach, the

operator technique within the Furry picture, see Chapter 5. Here, we confirm the agreement with the
Ritus-Narozny conjecture and discuss its applications in relation to nonlinear effects in, for instance,



4 Introduction

Compton scattering, Breit-Wheeler pair production, Bethe-Heitler pair production, and trident pair
production.

This thesis can be divided into three parts whose main subjects are: light-by-light scattering
in the presence of background fields, Compton scattering in the presence of a magnetic field, and
the one-loop vertex correction in a plane-wave background field. In Chapter 2, we present a short
introduction to the worldline formalism, we review the calculation of the N-photon amplitudes and
the cross sections for light-by-light scattering at low energies. We present the results obtained in
previous works [20, 19] for the off-shell four-photon amplitude with two low-energy photons, for
scalar and spinor QED. Thus, we use these results to obtain the Delbriick scattering cross-sections
at low energies.

In Chapter 3, we present the known worldline master formulas for the N-photon amplitude in
an arbitrary constant background field for both scalar and spinor QED. We use these expressions to
obtain compact formulas for the N-photon amplitudes for fixed field configurations and low-energy
photons and we use these results to compute the four-photon amplitudes in a pure magnetic field for
low energy photons.

In Chapter 4, we present the master formulas for the dressed scalar and spinor propagators in
a constant field and we use these expressions to compute the amplitudes of the off-shell Compton
scattering in a pure magnetic field, in the forward direction.

In Chapter 5, we present a short introduction to the operator technique and the Volkov states
and propagators. The one-loop vertex correction in vacuum is discussed as well and we present the
calculation of the renormalized one-loop vertex correction in a plane-wave field and discuss our results
in relation to gauge invariance, infrared divergences, application as a building block, and strong fields.

The discussion of results is summarized in the conclusions, Chapter 6.

Supplementary information and details are provided in the appendices. In Appendix A, we present
important conventions used in this thesis. In Appendix C, we present a list of integral results that
supplement Section 3.8. In Appendix B, we present supplementary details for some calculations.

Part of the results obtained in this thesis have been published in [110, 18, 19, 60, , , ]



Chapter 2

N-photon amplitudes within the
worldline formalism

In this chapter, our primary aim is to introduce the worldline formalism and the spinor helicity
formalism, both of which will be utilized in this and some subsequent chapters. Here, it is impor-
tant to emphasize that for the worldline formalism, we use the metric tensor in Euclidean space
(g*") = diag(+1,+1,+1,+1), whereas for the spinor helicity formalism, we employ Minkowski space
convention (n*) = diag(+1,—1,—1,—1). We present the general expressions for the one-loop N-
photon amplitudes for off-shell particles, see [18]. We review the low-energy limit of these N-photon
amplitudes (see [51, , 52]) in preparation for the next chapter, wherein analogous results are ob-
tained in the presence of a constant background field. As an application to processes in a background
field, we compute the leading order correction to Delbriick scattering for external photons of low
energies, see [19].

The worldline formalism or “string inspired” formalism is a first-quantized approach for amplitude
calculations whose starting point is the path integral representations already obtained for QED by
Feynman in [115, ] but their computational advantages have been recognized only after the work
of Z. Bern and D. Kosower who, inspired by string theory, developed the field theory limit at tree-
and loop-level using various string models [117, ]. In particular, this approach was first derived
for calculations in quantum chromodynamics. Later, M. Strassler was able to rederive the results
of Bern and Kosower from quantum field theory [119]. Furthermore, Strassler analyzed the QED
photon amplitudes and effective action [120], and noted that the formalism allowed him, using certain
integration by parts that homogeneized the integrand and led to the automatic appearance of photon
field strength tensors, to arrive at an extremely compact integral representation for the four-photon
amplitudes in scalar and spinor QED. The integration by parts procedure was improved in [121, ].
For a pedagogical and more complete review of this formalism, refer to [123, , ]

The worldline formalism has enabled the derivation of several general results that combine the
contribution of every possible independent Feynman diagram in a single master formula. Particularly,
it has allowed to obtain general representations of the N-photon amplitudes in vacuum for scalar and

spinor QED at one-loop order and for off-shell photons [118, , ]. Subsequently, these same
results were extended to include the interaction of a background field exactly, for the cases where
there is a constant background field [46, 47], a plane-wave background field [48] and a combined
constant and plane-wave background fields [19]. This is one of the main subjects of this thesis, the
computation of photon-amplitudes. Specifically, in this chapter, we review the vacuum results for the
low-energy limit of the N-photon amplitudes as in [51, 50, 52] to later derive similar results in the
presence of a constant background field, see Chapter 3 and [111, ].

The above mentioned vacuum N-photon amplitudes [118, , | have been used, in previous
works, to study the off-shell four-photon amplitudes [20, 18, 19] and it is continued in this chapter by

applying these results to compute the leading order correction to the low-energy limit of the Delbriick
scattering amplitudes [19].

The generalization to the open-line case in scalar QED, i.e. the scalar propagator dressed with
N photons, was given in [126, ], and extended to the constant-field case in [67], see Chapter
4. Recently, a computationally efficient worldline representation has also been constructed for the
dressed electron propagator (spinor QED)[68] and also extended to the constant-field case in [69, 70],
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see Chapter 4. Moreover, for both scalar and spinor QED, the dressed propagators in the presence of
a plane-wave field have been derived [128]. Multi-loop QED amplitudes have also been studied using
this approach [129, 47, , , ,

Although in the present the81s we focus on the QED amplitudes, it should be mentioned that

Bern-Kosower type formulas have been derived also for many other cases. See [117, , ] for the
N-gluon amplitudes in quantum electrodynamics, [135, , ] for amplitudes involving gravitons,
[138, 139, 140, 141] for Yukawa and axial couplings, [142, 143] for worldline Monte Carlo and [144, 145]

for pair creation from worldline instantons.

The spinor helicity formalism was originally developed for calculating scattering process at high
energies, where particle masses can be neglected. This approach has been widely used in quantum
electrodynamics and quantum chromodynamics. For historical notes and an extensive pedagogical
review, see [146]. Notably, in the case of photons (usually considered massless), this formalism can be
applied at any energy regime and offers a convenient way to express the polarization states of photons
in terms of helicity projection operators for fermions, enabling efficient amplitude calculations. In
this thesis, we use the advantages of this formalism to supplement the study of photonic amplitudes
for on-shell states. Specifically, we use the results and conventions presented in [147, 51, (9] to study
N-photon amplitudes.

2.1 N-photon amplitudes for scalar and spinor QED

In the worldline approach, the one-loop N-photon amplitude for scalar QED is expressed as the
following path integral representation (see [124, , 18])

Cw [FdT e "
Fecat(k1 €15 kN, en) = (—ZG)N/ —e T/ Dze Jy s Vszal[khéﬂ"'Vszal[kN,EN}-
(0)=a(T)

o T
(2.1)
Here T is the proper-time of the scalar particle in the loop, and the path integral is performed over
the space of all closed loops in (Euclidean) spacetime with periodicity T. Each photon is represented
by the following photon vertex operator, integrated along the trajectory

T
V7 ke] = /0 dre - i(r) k) (2.2)

where ¢ and k are the polarization and momentum of the photon being absorbed or emitted. The path
integral is of gaussian form, and thus can be performed by Wick contractions in the one-dimensional
worldline field theory. Using a formal exponentiation of the factor €-i = e%|., one straightforwardly
arrives at the following “Bern-Kosower master formula”

Lscat(k1,€15 ... kN, en) = (—ie) (Zk‘>/ a (4rT)~ _MTH/ dr;

N (2.3)
X exp Z [le kj —iGiei - kj + 1GE ~5}
ij:l 2 K 7 e J 2 R J E£1€2...EN
Here the dependence on the proper-time parameters T', 71, ..., 7y is encoded in the “worldline Green’s
function” )
T — T
G(Tl,Tg) :| T1—Tg|—%, (24)
as well as its first and second derivatives
G(m1,72) = sgn(m — 72) — 2(7—111;7—2) ,
9 (2.5)
G(T1,TQ) = 2(5(7‘1 — Tg) — T .

Here, dots denote a derivative acting on the first variable, i. e., G(1y,7) = %G(Tl,’rg), and we
abbreviate G;; = G(7;,7;) etc. The notation ’ -, means that, after the expansion of the ex-
ponential, the terms contributing to the amphtude are those that have each polarization vector
€1,...,EnN linearly.
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In [119, 121], it is shown that by expanding the exponential in (2.3) and by performing integration
by parts the scalar N-photon amplitude can always be expressed as (here we have re-scaled the 7-
integrals to the unit circle 7, = T'u;, see Appendix A.3)

dT 2
Dscat(k1,€15- - sk, en) = (—ie) (Zk‘ > / TN (4nT) " Ee T
X H/ dul Qical 1] eXP{ =T Z Glj k k; }

1,7=1

(2.6)

where Qgcal is a polynomial that depends only on products of (G”) and all possible traces of products
of field strength tensors. These traces can be expressed as “Lorentz-cycles” Z,,(i1ia...i,) as

.. 1
Z5(ij) = itr(fifj) =¢e;-kjej ki —e; ek - Ky,
n 2.7)
Zﬁ@lh..jn):tm(IIf”>, (n>3).
j=1

where, f!* is the field strength tensor for the external photon ‘’ and has the following representation
FI = kb — ety (2.8)

In Qgcal, each Lorentz-cycle Z, (i1is . . . i, ) appears multiplied by a corresponding “r-cycle” [119, 121],
which has the following form

G1112G1213 o Gznzl . (29)

This motivated the definition of a “bicycle” [123] as the product of the two
Glivig - in) = GiyiyGiyia - Gi, iy Zn(irig - -ip) . (2.10)
Moreover, the amplitude is not composed only by bicycles, starting from N = 3 there will be
leftovers, called “n-tails” [119], where n, the “length” of the tail, denotes the number of polarization
vectors involved in the tail. In general @y will involve tails with length n = 1,2,..., N — 2. Thus

for our present purposes we will need to know only the one- and two-tails. Those are given by

T Z) = ZGirgi ki

r#£i
. . 1. . . (2.11)
T(Z]) = Z Gire; - krstffj ks + iGijEi '€j|: Z Girk; - k. — Z stkj . k5:| .
s soret i 79

Here it should be noted that G(r,7) = 0, so that, for example, the term with r = 4 drops out in the
sum defining the one-tail. In [123], the polynomials Qsca have been worked out explicitly up to N = 6.
In [122], the general structure of the n-tails is examined by means of integration by parts. Specifically,
a very compact and manifestly gauge-invariant representation of the 2-tail has been derived in [18]
which is the representation that we will use in the case of the four-photon amplitudes.

The above presented representation of the scalar N-photon amplitude is called the “Q-representation”.
This representation has as advantage that it allows one to make the transition from scalar to spinor
QED by a simple pattern-matching procedure, the “Bern-Kosower replacement rule” [117, |: after
the removal of all Gij, the integrand for the N-photon amplitude in spinor QED can be obtained
from the scalar QED one by multiplying the whole amplitude by a global factor of “-2” (for statistics
and degrees of freedom), and applying the following “cycle replacement rule”,

Gl122G12i3 e Ginil - G1112G1213 o Glnh GFhizGFizig T GFinil ) (2'12)

where
Gr(r,7) =sgn(r — 7') (2.13)

is the fermionic Green’s function. This replacement transforms the bicycle G(ilig -++iy,) into the
“super-bicycle”

Gs(iriz -~ -iy) = (GiliQGiQig - Giiy — GriyiyGrigiy - GFin,il)Zn(il Cp) (2.14)
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Then, the one-loop N-photon amplitude for spinor QED can be expressed as

dT f
Capin (k1,15 .1 knyen) = —2(—ie)™ (Zk)/ —TN(4 T)" e’

X H/ du; Qspm(G”,Gp”)exp{ T Z Gij ki - k; }

3,j=1

(2.15)

It is important to mention that the N-photon amplitudes derived within the worldline formalism are
valid for off-shell photons. For further insights into the various representations of these amplitudes,
see [18, 123, 122].

2.2 Spinor helicity for photons

In this section rather than developing the technology of spinor helicity, we will recall some impor-
tant results of such formalism that will be useful in the calculation of photon-amplitudes, adapted
from [147, 51, 69] (see also [146, ]). Here, the metric tensor in Minkowski space (n**) =
diag(1,—1,—1,—1) is employed.

The helicity of a particle is defined as the component of the spin in the direction of the three-
momentum. It is well known that for massless fermions the positive and negative energy solutions of
the massless Dirac equation are identical such that for definite helicity, we have

1 1
ug (k) = 5(1 + v5)u(k) and vy (k) = 5(1 + y5)v(k). (2.16)
These spinors with definite helicity are sometimes called twistors [148]. For the conjugate states, we
have similar relations
I B 1
ug (k) = §u(kz)(1 Fs5) and vy (k) = 51}( (1 F75). (2.17)

In the present case and due to the fact that we are interested in amplitudes with a large number
of momenta, we label them by k;, ¢ = 1,2...N. Using a shorthand notation, the twistors are

6 = ur (ki) =vg(ki), (k7| = ua (ki) = vx (ki) (2.18)
with the basic spinor products
(ig)— = (ig) = (k; k) = u_(ki)us(ky) . (if)+ = [ij] = (& |k;) = up (k) u—(k;) . (2.19)
Some useful identities are (the product of two four-vectors)
(7)) = (k7 |k ) (k] |k7) = 2k; - Ky, (2.20)
the Gordon identity and the projection operator
(M k) = 2k", [K5) (k| = *(1 £ )k, (2.21)
the complex conjugation and anti-symmetry

(i)e =—(ij)s,  ()x=—0ix,  ()+=0, (2.22)

the Fierz rearrangement

(i I ) (Bt |yl k) = 2Lar](sd) (2.23)
the charge conjugation of current
(ki Iy k) = (ky 1"k ) (2.24)

the Schouten identity

(i)(rs) = (ir)(js) + (is)(rj) . (2.25)
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For an n-point amplitude additionally, we have
> [il(iry =0 (2.26)
i=1

due to momentum conservation (basically the same identity as the sum of Mandelstam variables).
The spinor representation of the polarization vector for a photon of definite helicity +1

et (k) = + AL ulFT) (2.27)

g V2 (gFIk*)

The Dirac-gamma matrices in the Dirac representation

0 _ 1 0 i 0 o 5 (0 1

where 1 is the 2 x 2 identity matrix and o° are Pauli sigma matrices

1_( 0 1 2_ [ 0 —i _ (1 0
0—<1O>, J—(i 0), 03—<0_1>. (2.29)

The use of spinor helicity technique allow us to obtain close expression in terms of twistor products
for the Lorentz cycles (2.41) and for products of f; as they appear in the tails of the N-photon
amplitudes. The latter identities were already derived in [51, 69] and are listed below

The polarized field strength tensor for each photon is

:t v v v :t
M = ket et (2.30)

which can be written in terms of twistors as

+ pv 1 v
= —m%flh’*ﬁ Ik . (2.31)
Commutators
[fi‘*,fj_]“” =0. (2.32)
Anticommutators )
{F5 157y = =S tiin™. (2.33)
Factorization of traces
_ _ 1 _ _
tr( Zﬂ: ZL - ...ij) = Ztr( ;lr ;;J)tr(fjl ...ij). (2.34)

Same-helicity traces

(=¥
oN—2

(i1i2)+ (i2i3)+ - (in—1in)+(int1)+ - (2.35)

Chain products (as in the one- and two-tail)

by £k = 5 Ui (1) 2 () (2:36)
By £ 0k = i (i) Gad 4 ) (2.37)
By £ g by = 7 b () ) {iag)- (2.35)

notice that the previous products exhibit a behavior similar to the traces.
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2.3 Low-energy limit of the N - photon amplitudes in vacuum

In this section, we review the the low-energy limit of the N-photon amplitudes in vacuum, adapted
from [50, 18, 51]. This is in preparation for the next chapter, in which similar results are obtained in
the presence of a constant external field. The low-energy limit of the photon amplitudes is defined by
the condition that all photon energies be small compared to the mass of the loop scalar or fermion,

w;<m, i=1,...,N. (2.39)

This condition then justifies truncating all the vertex operators to their terms linear in the momentum.
Note that the leading, momentum-independent term in this expansion integrates to zero for a closed
loop, so that the first non-vanishing contribution to the amplitude are the terms linear in the external
momenta. By adding a suitable total-derivative term, we can write the vertex operator of a low-energy

(LE) photon as
.7
sZaElLE / dTJE (7-) — 1/ dre®(T) fa(7)
2 Jo ¥

where f*¥ = kte¥ — etk” is the photon field-strength tensor. The Wick contraction of a product of
such objects produces products of “Lorentz cycles”

Zn(ivia .. .in) = (;)5"2&(11 fij) , (2.41)

with coefficients that, by suitable partial integrations, can be written as integrals of the “7 - cycles”
G2122 sz - GW1 introduced above. In this way, and with a rescaling 7, = T'u;, we arrive at

(2.40)

)

VIR a] v P ) = exp{zbzn Z Z35 (L iy . m})}
sdan}

. (242)

fifn

where Z5%({iyia...ix}) denotes the sum over all distinct Lorentz cycles which can be formed with a
given subset of indices, e.g. Z$¢({ijkl}) = Z,(ijkl) + Z4(ijlk) + Z4(ikjl), and b,, denotes the basic
“cycle integral”

1
b, :/ duydus . . . du, G12Gaz -+~ Gy (2.43)
0
This integral can be expressed in terms of the Bernoulli numbers 5,, [149]
—2”8—7 n even,
b, = " (2.44)
0 n odd.

Note that (2.42) can be further simplified using the combinatorial fact that

=2n Y Z3%({iriy...in}), (2.45)

all different {i1.vin}

r (f1+...+fN)"}

(n #0). Introducing fior = Zf\il fi, using all this in (2.1) and eliminating the T-integral, we arrive
at the following formula for the low-energy limit of the one-loop N-photon (N > 4) amplitude for
scalar QED is [50]

E
F£Ca1)(k1751;"';kN’€N) (47r)2m2N 4 {Z tot }

here the trivial case N = 2 have been exempted to be able to set d = 4 and we have omitted the
Dirac-delta function of momentum conservation.

The low-energy limit of the one-loop N-photon amplitude for spinor QED is obtained by employing
the above-mentioned Bern-Kosower replacement rule. This rule tell us to simply replace the cycle
integral (2.44) by the “super - cycle integral”

, (2.46)
fi.fn

1
/duldu2 coduy, <G12G23 < Gp1 — Gr12Gras - - GFnl) = (2 - 2”) by (2-47)
0
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and add a global factor of (—2) for statistics and degrees of freedom. Then, the amplitude (N > 4)
become

N oo
(LE ) _ e"I'(N —2) 2n—1y D2n 2n
Lipin J(ki,ers.. . kn,en) = (_2)W expy > (1-2 )%tr( tot) (2.48)
n=1 fifn
Note that in the above derivation on-shell conditions have not yet been used.
2.3.1 Helicity components
In this section, we review the results obtained in [51], where it was shown how to obtain explicit

expressions for all the helicity components of the on-shell N-photon amplitudes for low-energy pho-
tons, using the spinor helicity formalism. This is in preparation for the next chapter, in which similar
results are obtained in the presence of a constant crossed field.

The starting point is to consider the one-loop effective Lagrangians in a constant background field:
Euler-Heisenberg Lagrangian for spinor QED (1.1) and Weisskopf Lagrangian for scalar QED (1.4).
In order to obtain the N-photon amplitude from the one-loop effective Lagrangian in a constant
background field, the filed strength tensor is fixed as

N

Fly =" 1", (2.49)

=0

where, as in (2.8), fI" = kl'e/ — el'kY represents the field strength tensor of an external photon with
momentum k! and polarization €/'. The corresponding amplitude is then obtained by extracting the
terms involving each f1, ..., fn precisely once

T ki ens. .k, en) = Lomyw(iFror) : (2.50)

spin/scal Frefn

Now, assuming fixed polarization for the photons, with L having the helicity ‘+’ and N — L the
helicity ‘—’, and using spinor helicity (see Section 2.2) , it is possible to compute the two Maxwell
invariants. For each polarized photon, the field strength tensor is f; o = kl'e; i Y- sf’” k¥ . Noticing

that
1

v 1 ~ v .
ZFtot WFt/ét =X+t X-> thot ;u/Ftlot = _Z(X-i- - X—) ) (251)

where

=y YW v=5 X (252)

1<i<j<N 1<i<j<N
it is possible to obtain
=—i(VXt —VX-), b= Xt T VX, (2.53)

for the invariants in (1.2). Inserting these expressions into the Euler-Heisenberg Lagrangian (1.1)
and after Taylor series expansion, this Lagrangian can be expressed as

. m? i 2e L N L
‘CEH(ZFtOt) =-2 (47’[’)2 (TfLQ) Z p]n X+ Xf ) (254)
N=4 LLV(,n
where
L N-L B. B
oML — (Z)N/2 (N = 3) _q)N-L-s rs BN—r—s 555
i = (=17 ) 7;()5‘:0( ) rIs!(L—r)! (N —L—s)! (2:55)

and B,, Bernoulli numbers. Similarly, the Weisskopf Lagrangian (see Eq. (1.4)) can be expressed as

. m > 2e N—L
‘CW(ZFtot) = (47‘(’)2 <m2> Z Cscal X+ X s (2.56)
N=4

L even
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where
N,L N/2 Dy N-L (1 B 21473) (1 B 217N+T+S) Brte By—rs (2.57)
= (=1 N —3)! ) S
C(sc'oxl ( ) ( 3) TZ:(:)SZ:; ( ) T!S!(L—T)!(N_L_s)!

According to (2.50), the amplitudes with L ‘+> and N — L ‘=’ helicities are obtained from the
corresponding term in the sum of (2.54) or (2.56) by picking out the terms multilinear in the f;’s.
For L even, it is defined [51]

L L/2)! .
Xz = (x+) % all different = 7(2L//2) {[12}2[34]2 (L —=1)L)* +all permutatlons} ) (2.58)

Xnor =(x-)F

(2.59)

2

(N L)|
= 2@ {<(L +1)(L+2))2((L+3)(L +4))? - (N —1)N)? + all permutations} )

So that, the low-energy N-photon amplitudes with L external photons having helicity ‘4’ and N — L

‘—7 are
(LE) e+, . ptpe— . .= mt (2 \" N+n,L+€ | + (2.60)
F@pm (f1 R fL+1a---afN) = —ZW me Cspm XL XN_L :
for spinor QED and
(LE)( p+ + - — m* 2¢ \ ™ N+n,L+€  + . — 261
Fscal (fl ;---;foL+1;---§fN):W W Cscal X1 XN—L ( . )

for scalar QED. These amplitudes, in the low-energy regime, obey a “double Furry theorem”, meaning
that if there is an odd number of positive or negative helicities, the amplitude vanishes.

2.4 Four-photon amplitudes for scalar and spinor QED

In this section, we present the general expression for the four-photon amplitudes, see [18]. For scalar
QED, we have
(—ie)* d XAl 4og _mrr [ - ¢)
Loca(k1, €15+ s ka,e4) = = (27m) %6 (ky + k2 + k3 + k) — 1" ze HduiQscale
(4m)z o T 0 i
(2.62)
Here, we have already done the usual rescaling 7; = T'u; such that the exponential part is
4
i<j=1
the bosonic Green’s functions are
Gij = G(Ui,’u]‘) = |UZ — ’LL]'| - (UZ — ’LL]')2 s (264)

and the polynomial Qgca is given by !

Qscal = Qscal + Qical + Qcar + Q3 »

;*ml = G(1234) + G(2314) + G(3124),

Seat = G(123)T(4) + G(234)T(1) + G(341)T(2) + G(412)T(3),

Q2.1 = G(12)Te, (34) + G(13) T (24) + G(14) T, (23) + G(23) T (14) + G(24) T, (13) + G(34) T (12)
G(12)G(34) + G(13)G(24) + G(14)G(23) .

scul -

(2.65)

1When comparing with [123] note that there, a different basis was used for the four-cycle component Q*. The two
bases are related by cyclicity and inversion.
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Let us remind that the expression for the bicycle is
Girig---in) = G2122G1213 oGy Dy i) (2.66)

and for the Lorentz-cycle is

. 1
Zy(ij) = §tf(fifj) =¢;-kjej ki —ei-ejki - kj,
(2.67)

Zn(iviz . . .in) = tr(ﬁ fij) . (n>3),
j=1

where f!' is the field strength tensor of each photon (2.8). It is the “tails” that exist in various
versions. For the present computation, we use the one-photon tail T'(¢) of the original Q-representation
[122] and the “short tail” Tsp(ij) (this is the same 2-tail in (2.11) up to total derivatives), introduced
in [18], as the two-photon tail:

:ZGirgi'kr7

i (2.68)
-y e i fi ks '
sh Zj GMGJS L. - kJ .
r,8#1,J L

The spinor-loop result is obtained by employing the Bern-Kosower replacement rule, i.e. replacing
simultaneously every closed (full) cycle G;,;,Gi -G, i, appearing in the integrand of the scalar-
loop with

i2i3 " int1

GiliQGizig te Glnll GFlllQGF’LzZ'g e GFinil ) (2.69)

where Gr;; = sgn(u; — u;) is the fermionic Green’s function. We write the spinor-loop amplitude as

. \4 1 4
Dspin(k1,€13 - 3kase4) = —2((Z€)d (2m) 6% (k1 +ho+ks+ka) / % T e T / I dui Qspin
: 0 0 =1

(2.70)
Thus, apart from a global factor of —2, the only difference to the scalar QED formula (2.62) is the
replacement of Qscal by Qspin according to the rule (2.69). Let us also emphasize that equations
(2.62), (2.70) are valid off-shell, and that the right-hand sides are manifestly finite term-by-term.
The well-known spurious UV-divergences of the four-photon diagrams that usually cancel only in the
sum of diagrams would show up here as logarithmic divergences of the T-integration at T' = 0, but
have been eliminated already at the beginning by the integration-by-parts procedure that led to the
Q-representation, see [122; 18].

To avoid carrying common prefactors, we have defined

; AT’ -y T o)
Doy = /0 T /Ogd“iQ{:;zi}e : (2.71)

2.5 Low-energy limit of the four-photon amplitudes

In this section, our main interest is to compare three different methods of computing the cross section
since it will be useful later for the calculation of the light-by-light polarized amplitudes in the presence
of a constant field (Chapters 3) for some special cases. In order to do so, we explore the cross section
of light-by-light scattering at low energies in vacuum for both scalar and spinor QED.

Here, a photon in the low-energy limit satisfies w; < m, where w; is the energy of the photon and
‘m’ the mass in the loop. From the point of view of the amplitude we only consider the multi-linear
terms in the momenta since this represent the first non-vanishing contribution to the four-photon
amplitude (for more details in the present low-energy limit amplitudes, see Section 2.3 and Refs.
[51, 50, 18]). The four-photon amplitudes at low energies (Fig. 2.1) is known for a long time. For
spinor QED, it can be obtained from the well known Euler-Heisenberg effective Lagrangian [5] (see
Eq. (1.1)) and for scalar QED the corresponding amplitude can be extracted from the Weisskopf
effective Lagrangian [0] (see Eq. (1.4)).
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k1 k3

k4 k2

Figure 2.1: Feynman diagram for the leading order contribution to light-by-light scattering with every photon having
low-energy, indicated by empty bullets at their ends.

The well known amplitudes for the leading order contribution to light-by-light scattering (within

the worldline formalism conventions) are?
acat(kr, €15 ovos kay £4) ¢! {b [Z4(1234) + Z4(2314) + Z4(3124)]
scal (K1,€15 -5 K4, €4) = 75— 1 04[Z4 4 4
' (4m)2m? (2.72)
+ 02 Z25(12) Z5(34) + Z2(23) Z5(14) + 22(31)22(24)}}
for scalar QED, and
2¢t
Fspin(kh E15ees k4, 54) = TN 4 { — 14b4 [Z4(1234) + Z4(2314) + Z4(3124)]
(4m)m (2.73)

1 (—2b2) [Z2(12) Z(34) + Z5(23) Z5(14) + Z5(31) Z5(24)] }

for spinor QED.
The unpolarized differential cross section for the four-photon amplitude I'sphoton, With photons of
the same energy, is [17, , ]

1

do = m |F4photon(

]{il,é‘l;'” ;k‘4,€4)|2 dQ, (274)

here the bar means the average of the amplitude over the polarizations, i.e.,

1
[Faphoton (k1, €15+ 1 ka,ea)|? = 7 > Maphoton (k1,13 -+ 5 ks, €4) [ (2.75)

€i

and the differential of the solid angle d2 = sin 6 df d¢ with 6 being the scattering angle and ¢ the
azimuthal angle. For simplicity we define

do = Z |F4ph0ton(kla €173 k47 64)|2 . (276)

€i

In the next subsections, we compute dé using various methods.

2.5.1 Cross section from polarized amplitudes

Our initial approach to compute the unpolarized cross section involves collecting each polarized
amplitude for fixed kinematics and then averaging over the polarized cross sections. The computation
of the polarized amplitudes is carried out in Euclidean space where the convention of a four-vector is

v = (v,vq). We follow the kinematics set in [14, 15, 16] where the momenta k1, ko are chosen to be
2Here, b; are related to Bernoulli numbers by (2.44) and for this case by = %1 and by = %. The Lorentz cycles

were defined in (2.41).
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incoming while k3, k4 are outgoing
0,0, —w, —iw) ,
0,0, w, —iw) ,

wsinb, 0,wcos b, iw) ,

k= (
ko = (

2.77
ks = ( (2.77)
ks = (—wsinb,0, —w cos b, iw) .

(As)

The linear polarizations €;,”*’ are given by

551) = 5(2” = sgl) = 5511) =(0,1,0,0),
—e? =P = (1,0,0,0), (2.78)
—5:(32) = 8512) = (cos6,0,—sinb,0) ,
1 (2

as discussed in [14], the vectors g;',€; " are pointing in the perpendicular and parallel direction to the
scattering plane, respectively. The set (€§-1), 5;2), k;) forms a right-handed system. The unit vectors
(+

for right e ) and left &‘;_) handed circular polarization are given by

i
+ 1 (2
el — % H )+ el >] . (2.79)

Here, we use the following convention for the polarized amplitudes:

Fs),\clau)l\;s)\];ii\l4 = Fscal/spin (kl» Ei(Al); ka, 5;0\2); ks, 51(),A3)§ kg, 54(1)\4)) . (280)
/ ks
0
k1 s 1 ’j ka

e

Figure 2.2: Kinematics of the four-photon scattering in xz-plane.

It is well known that, for identical photons, the four-photon amplitudes T*1*24s* gatisfy the
following relations [14, 16, 17]

Fllll , F2222 , 1—\1122 _ 1-\2211 , F1212 _ 1—w2121 , 1—\1221 _ F2112 ,
[lH2 _ plizl _ pl2il _ p2Uil 2221 p2212 2122 _ pl222 _ () (2.81)
for linear polarizations, and
F++++ e , F++77 — F77++ ; 1“+7+7 — F7+7+ ) F+77+ — F7++7 ,
F+++, — F++7+ — F*fer — F*erf — 1‘*+7++ — F7+++ — I\erff — FJF,,, (2'82)

)

for circular polarizations. This is a consequence of the invariance under PT' (parity and time-reversal)
transformations. Additionally, for the present case of low-energy photons a “double Furry theorem”

is satisfied by the amplitudes I'*1*2237 wwhich in this case implies [T+t~ = 0 and T = 2222,
Therefore for the unpolarized cross section we have
1 1111 2 1122 2 1212 2 1221 2
|Fsca1/spin(k17€1; e ;k47€4)‘2 = §{| scal/spin| + |Fsca1/spin‘ + |Fsca1/spin| + |Fsca1/spin‘ } (2 83)
1 .
_ ++++ 2 ++—— 2 +—+— 2 +——+ |2
- §{|Fscal/spin| + |Fsca1/spin‘ + |Fscal/spin| + |Fsca1/spin‘ } :
The calculation of the non-vanishing contributions to the four-photon scalar and spinor amplitudes
is a simple task. We computed these amplitudes with the aid of Mathematica [152] and the results

are presented in Table 2.1. These results are in agreement with | 1.

)

3In [16] a misprint in [14] is pointed out where F:p'i":"*' and F:‘Jn__ seem to be interchanged.
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Pol. amplitude Scalar QED Spinor QED
ittt 14(34-cos? §)a?w? . 32(3+cos? f)a’w?
45m4 45m4
riiz2 2(—13+cos? §)a’w* 8(1—7cos? 0)a?w*
45m* 45m*
212 _ 2[14+(—8+3 cos §) cos fla’w* _ 4[31+(22+3 cos §) cos f]a’w?
45m* 45m*
221 _ 2[14+(8+3cos ) cos Ala?w* _ 4[314+(—22+3 cos ) cos fla’w*
45m4 45m4
r++++ 32a°w* _ 176a°w*
45m* 45m*
4(3+cos? 0)a?w? 8(3+cos? §)a’w?
15m? 15ma
r+—+- 8(1+cos 0)%a’w* _ 44(1+4-cos 0)%a’w*
45m4 45m4
r+——+ 8(1—cos §)%a’w? _44(1—0059)2042w4
45m* 45m*

Table 2.1: Polarized amplitudes of light-by-light scattering for scalar and spinor QED.

The differential cross section (2.74), after summing all components in Table 2.1 according to
(2.83), is

d 34 o w8(3 + cos? 0)? d (2.84)
Oscal = T 7ao/0 0 8 .
' 4(90)2(2m)2 mP
for scalar QED, and
139 at 2 M2
dUspin = W ﬁw (3 + cos 9) dQ (285)
for spinor QED.
The total cross section is obtained after integration®
34 56 at
scal = T o /a N = R 5 2.86
sl = 400y2(21) 5 ms (2:86)
139 56 of
Ospin = a 6 (287)

(902 (2m) 5 m® *
and are in complete agreement with the known results. The expression obtained in this section have
been long studied by many scientists within which stand out Euler and Kockel who first studied the
light-by-light cross section [9, 10] for spinor QED and later studied in more detail and for more general
cases by [14, 16, 17]. This cross section nowadays is also found in several textbooks for instance see
[98, , , ]?, and has also been considered in the Born-Infeld theory [155, , 156]. The work
[156] is of particular interest for this section since it contains both results the scalar and spinor QED
cross sections and all elements in Table 2.1 can be compared with their results. Notice that in our
case, the Mandelstam variables are

5 =2ky - ko = —4w?,
t = 2k; - ks = 2w*(1 — cosh),
u =2k - ky = 2w*(1 + cosb).

(2.88)

However, in this chapter, we find more convenient to work with the momenta rather than the Man-
delstam variables. For more details on the early stages of light-by-light scattering see [157].
2.5.2 Cross section from direct polarization sum

In the second approach, we compute the four-photon cross sections by performing the sum over
polarizations according to the following prescription®

S k) et (k) = ¢ — (1~ 2L

A==+

(2.89)

4Here, a factor of % in needed to take into account the equivalence of the two final photons.
5In [154] a misprint in [150] is pointed out in the computation of the cross section.

SHere we clarify the equivalence between different conventions: e?‘) =M (k) = ex(ks).
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It is important to mention that the terms with ‘k%'k}” will not contribute to the cross section due to
the Ward identity (for simplicity, we use the Feynman gauge: £ = 1).

Notice that we can compute the four-photon cross section simultaneously for both scalar and
spinor QED since both amplitudes (2.72) and (2.73) have the following structure

T sphoton (K1, €15 .3 ki, €4) = €0 {cl {24(1234) + Z4(2314) + Z4(3124)} 200
+ 2 2:12) 2(34) + 22(23) Z:(14) + Z2(31)Z2(24) ] } . '

After squaring the amplitude, we notice that it is enough to compute the following seven contri-
butions

dé1(1234) = c2 ¢ ZZ 1234)* Z(1234)
dé2(1234) = ¢2 ¢ ZZ (12)*Z(34)* Z(12)Z(34)
dé3(1234) = c2 ¢ Zz (1234)* Z(2314) ,

d64(1234) = c& ¢3 ZZ (12)*Z(34)* Z(23)Z(14), (2.91)

€q

d55(1234) = ¢ erey Y Z(1234)" Z(12)Z(34)

Eq

do6(1234) = c§erey Y | Z(1234)" Z(23)Z(14)

€

do7(1234) = cjerey Y | Z(1234)" Z(31)Z(24)

€4

every other contribution will be obtained through permutations, such that
7
do = déy (1234) + d62(1234) +2 ) [d&i(1234) +(1-2-3-1)4+(1-3->2-1)]. (292
i=3

In the present case, the amplitudes depend exclusively on the field strength tensors of the photons.
Then, the polarization sum can be carried out with [155]

DA T O L T (2.03)

After summing over polarizations in (2.91) with (2.93), we perform all the contractions of the metric
tensor g"¥ and the momenta k; with the aid of Sympy [158] (a Python package), we obtain

QU
(o]
—

—_
[N}
w
~

( ) =2¢5c} (kiy + kis + kiy + 4k3,k1,)
52(1234) = 4c 002 ky
dé3(1234) = 22 2 (kiy + kis + 3 ki, — 2k%k2, — 2k%,K2,),
d64(1234) = c2 3 (kfy + kis + kiy — 2kL, k%, — 2k3k3,), (2.94)
(1234)
(1234) =
)

U

dé5(1234) = 22 cica (2kiy — kiykis + kiok?))
200 ClCQ (2 k14+k Qk If 3k14)
d67(1234) = 2 Co C1C2 (k12 + k13 + k14 - k%Qk%S —2 k%2k%4 - k%zzki) )

here, we have defined k;; = k; - k;.
The on-shell condition and momentum conservation imply

1
k1o = ksa, kiz = koa, kia=kos, Kisk3s + kiokyy + kasky = 5(% + kis + k1y) . (2.95)

Using these identities and summing every contribution to the cross section, we obtain

dé = 2 (ki 4+ kis + k1) (22¢2 +20¢1 o +6¢2). (2.96)
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Now the last step is to replace the constants ¢y, ¢; and ¢ as their corresponding values in (2.72) and
(2.73).

For scalar QED, we have that ¢y = (4737;14 = 1?727 c1=by= 4—15, co =b%= %7
1 1 at (32)(34)
dOgeal = =55 + —= (ko + ks + ki) 2 dQ. 2.
Tl = Giameat 4 me P12 R R Tggrs (2:97)
For spinor QED, we have that ¢y = %‘Zz, c1 = —14by = 74—;4, cy =4b3 = %,
1 140, 4 4 (32)(139)
dospin = 64(27)%a2 4 m® (Kio + ki3 + Kig) (902 dsy. (2.98)

As a final remark, notice that replacing the momenta in (2.77) into the expressions (2.97) and
(2.98) will exactly reproduce the results in (2.84) and (2.85), respectively.

2.5.3 Cross section from spinor helicity

In the third approach, we adopt the conventions of [147, 51] with the tensor metric in Minkowski
space such that (p*) = diag(1l,—1,—1,—1). In the worldline formalism we work with the metric
(¢") = diag(+1,+1,+1,+1) in Euclidean space. Then in (2.72) and (2.73), we need to perform the
replacement g*¥ — —n*” (see Appendix A) to compute the polarized amplitudes with the spinor
helicity techniques, presented below.

The four-photon amplitude at low energies for two incoming and two outgoing photons can be
expressed as

Paphoton (175 f3% S35 £5) = o {1 [tr(Fifofofo) + tr(fafofo fo) + t(fafrfofu)]

+ % [tr(f1f2)tr(f3f4) + tr(fofa)tr(f1fa) + tr(fgfl)tr(f2f4)} } :
(2.99)

which is exactly the same as (2.80) and here we make emphasis in the dependence on the field strength
tensors of each photon f;. We comment that in the previous section, in particular Eq. (2.90), was not
necessary to fix the polarization propagation. Here, it is important to distinguish between incoming
and outgoing polarizations since (szi)* = ¢; which implies an effective change of the helicity of the
photon. A similar analysis of the light-by-light amplitudes was carried out in [159] for the spinor
part”. In the following we omit the super-indices ‘in’ and ‘out’.

Using the spinor helicity identities introduced at the beginning of this section (more precisely
equations (2.34), (2.35) and (2.25)), we can easily compute the polarized amplitudes for the four-
photon case, for which we obtain

Papnoton (75 £33 53 4) = (301 + e2) (12)%[34P%, (2:100)
Tuphoton (i3 fi s f3 s ) = %0(01 + ) ((12>2<34>2 1 (13)2(24)2 + <14>2<23>2) : (2.101)
Taphoton (fi3 5 5 f55 f1) = %0 (301 + CQ) [23]2(14)2 (2.102)
Pagnoton (i3 5 J5 5 f3) = (301 + 2 ) 2417 (13)”. (2.103)

Notice that we can also derive these expressions from the results presented in Section 2.3, i.e., Ref.
[51]. The contributions of these amplitudes to the cross section are

2
4
Paptoton (773 573 3 F)12 = & (31 + e2) " hta, (2.104)
[Capoton (73 £33 fi73 )P = 2cller + ea)? (kb + Ky + bl ) (2:105)
"In [159] it seems that all photon polarizations are taken to be outgoing, that is why rr+++ and rtt-—— appear

X spin spin
interchanged.
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2
[Capnoton (fi75 f73 fi 3 £ = (3e1 +c2) k. (2.106)

2
|F4photon(fr;f{;f§;fzr)‘2 = Cg (301 +62) kilg . (2107)

From these expressions we can compute dé and obtain exactly (2.96) or replace the four-momentum
of each photon by (2.77) and obtain the results in Table 2.1.

2.6 Four-photon amplitudes with two low-energy photons

In previous works [19, 20], we have derived compact expressions for the off-shell four-photon ampli-
tudes with two photons in their low-energy limit (|ks|, |k4] < m). In the case of d dimensions, we
express the amplitudes entirely in terms of the hypergeometric function o/ and its derivatives. How-
ever, for d = 4 (four space-time dimensions), it becomes possible to write the amplitudes completely
in terms of elementary and trigonometric functions.

In this section, we present the explicit expressions for the off-shell four-photon amplitudes in
d = 4 and with two photons in their low-energy limit, since we utilize these results in the next
section to compute the Delbriick scattering amplitudes. For the sake of compactness, the following
dimensionless variables have been introduced

: */%12
R ki -k arcsmh( )
k12 = — ) Po = : : (2.108)

(4 — k12)(—k12)

Notice that in the following expressions the subindex ‘(34)’ means that photon ks and k4 are in their
low-energy limit.

Scalar QED
For Qscal
. 12 + 8(k12 — 6
F;Lcal(34)(1234) = - 3;;22 )pO Z4(1234) R
12
; 2(k2, — 30k12 + 108) — 8po(5h2, — 48k15 + 1
[lai(30)(2314) = — (kty — 30k15 + 108) — 8po(5hiy — 48k12 + 108) Z4(2314) (2.109)
e ( ) 9m4(k12 — 4)[13%2
a 12 4 8(];’12 — 6)p0
[ai(aa) (3124) = — ey Za(3124).
For Qgcal

 2(k}, — 48k + 180) — 16p0(4kf, — 391 + 90)
9m6 (k1o — 4)k3

) (

(k )kt

Fsca1(34)(123 4) = Z3(123)ka - f4 - k1,

k2 2 2 (2.110)
2(kiy — 48k + 180) — 16po 4k12 — 39k12 + 90)

ImS(k

1Aﬂf3<;a1(34) (412;3) = — Z3(412)ks - f3 - k1 .

12— 4



-1
— 7

I? 12:34) =
scal(34)( ) 90

(12){ [2(

+Piki-fsfa-ka+(142)
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—k12 +2) — 16pg
m6(k12 — 4)](512

ki-f3-fa-ki

+10P, k’z‘f4'k1/€2'f3'k1}7

. 2(k1o — 6) — 16po (k1o — 3
U2 (a0 (13;24) = — (12 G)A pO(Af )22(13)/€1 “fa faka,
ImO (k12 — 4)ki, (2.111)
A 2(];112 — 6) — 16])0(];312 — 3)
I? 23;14) = — ~ - Z5(23)ka - f1 - fa - k2,
scal(34)( ) 9m6(l<:12 74)k%2 2( ) 2 fl f4 2
A 2(2}12 — 6) — 16p0(f§12 3)
Iz, 14;23) = — - - Zy(14)ky - fo - f3 - k1,
scal(34)( ) 9m6(k12—4)k‘f2 2( ) 1 f2 f3 1
A 2(]2)12 — 6) — 16p0(]2:12 - 3)
2 24:31) = — _ - Zo(20) ko - f1- f5 - k.
scal(34)( ) 9m6(k;12 —4)]{%2 2( ) 2 fl f3 2
And finally, for Q22
. 2-8
122 a0 (12,34) = - =0 7,(12) 2,(34),
3m k'12
A~ 24 8po
2 13,24) = ———————75(13) Z(24),
seal(34) ) Omi (s — ) 2(13)Z2(24) (2.112)
- 2 4 8p,
F§3a1(34)(147 23) = — d Z5(14)Z5(23) .

9m4(lA€12 — 4)

Here we have introduced two more functions, P; = Pi(fﬁz) with i = 1,2, which are defined as

(k3 + 2k3, — 210k12 + 900) — 32po(8kF, — 90k12 + 225)

P = : > , 2.113
' mb(k1z — 4)k3, (2.113)
4(—k? k1o — 210) + 48po(3k2, — 30ky2 + 70
p, = A=kt + 55k 80)+ 8p(1<4 12 = 30k12 + 70) (2.114)
m3 (ko — 4)k2,
Spinor QED
For Q;lpin
. 1 k2, + 215 — 12
[ in 34y (1234) = 613 + polky, + 2k1o — 12)] Z4(1234)
’ 3m4(k12 — 4)]'{3%2
. 4[4k2, — 3kyo — 54 — k2 k1o — 2
4 ) (2314) = [k = 8kiz = 54 8p0(k}§+3k12 N g (2314), (2.115)
9m4(k12 — 4)](312
. 16[3 k2, + 2k1o — 12
T in(3a)(3124) = [ +p0(}2+ 12 ) Z4(3124).
3m4(k12 — 4)]@'%2
For Qgpin
N 4(k2, 4 15k15 — 90) + 16po(k2, — 30k12 + 90
D pin(aa)(123;4) = (35 + 19812 = 90) + 18polkyy 2t )23(123)/f2'f4'/€1»
9mS (ki — 4)k3, 2.116)
R 4(k%, + 15k15 — 90) + 16po(k2, — 30k12 4 90) '
e 412;3) = —12 - 12 Z3(412)ky - f3 - ky .
spin(34) ) 96 (hra — )12, 3(412)ks - f3 - k1
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For Q?

spin

4(k1a + 2) + 32po (k1o — 1
12 ) (12:34) = 722(12) (k12 +2) + 32po(krz = 1)
15m6(4 - k12)2k12

ky-fs-fa-ka

2
+15P1/€1 fa-fa-ka+(1<2)

4 -
+3P2k2'f4'k1k2'f3'k1}7

Z5(13)k1 - fo - fa -k,

[? (13;24) = =
in(34
p ) ImO(k1a — 4)k?, (2.117)

. 4(kya — 6) — 32po (k12 — 3

ngin(34)(23; 14) = (12 — ]%;2 )22(23)k2 “fi fa ke,
12

ES 4(/€12 —6) — 32p0 /%12 — 3)

r 14; 23 y . Zo(14)ky - fo - f3 - K1,

spm(34)( ) 9m6 iy — 4 k%2 2( ) 1 f2 fS 1

f‘gpin(34)(24; 31) =

Zy(24)ks - f1- f3 - ka.

And finally, for

spm

16[1 + 2p0(k12

e km” 25(12) Zy(34).

Fbpm(34) (12’ 34)

8(1 + 4po)
r 13,24) = ——————————75(13)Z5(24) , 2.118
spln(34)( ) 9m4(k12—4) 2( ) 2( ) ( )
8(1 + 4p0)
Fspln(34)(14723) = Z2(]-4)ZQ(23),

9mA (e — 4)
Here, we have defined P, = ]514(];12) as

B 2(k3y + 32k2, — 390k15 + 900) 4 16po (k3 — 46k3y 4 270k15 — 450)
! mG(Elg — 4)2]23:132

, (2.119)

_ 2(=23k2, + 200k1s — 420) — 24py (K3, — 18k k1o — 14
Py = (—23k1y + 200k1o 0) - Do ( 124 8k, + 90k12 0) (2.120)
m8 (k12 — 4)?kiy

2.7 Delbriick scattering for low-energy photons

In this section, we use the results in the previous section to compute the Delbriick scattering differen-
tial cross section for scalar and spinor QED under the assumption that the photon that interacts with
the Coulomb field has low-energy (Fig. 2.3). This serves as an example of how to employ an off-shell
amplitude to compute the amplitude of a specific process in the presence of an external background
field. For the spinor QED case, this quantity was computed in detail in [17], therefore we will follow
their conventions for easy comparison.

Here we use our above results for the four-photon amplitudes with two low-energy photons, and
replace the two unrestricted legs 1 and 2 with two Coulomb photons. Furthermore, we now take the
two low-energy photons (3 and 4) on-shell.

The vector potential for the photons from the Coulomb field is given by

Apu(z) = (—Ze, 0) : (2.121)

4rr

and has the following Fourier representation,

A, (z) = eu/ (d4]§4 % 21 5 (ko) e*® (2.122)
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Coulomb

Figure 2.3: Feynman diagram for the low-energy limit of Delbriick scattering. Empty bullets indicate low-energy
photons.

From here the new vertex operator for photons from the Coulomb field read as

z §(ko) [T hw
Vl\?uc[]ﬁg] = e3 /d4k ( 0)/0 dTE'.’i}elk'J'

2 k2
(2m) . (2.123)
Ze /d3k dre. i olkx
= — TE- .
(2m)3 k* Jo !
Thus in the present formalism, the Delbriick scattering amplitudes can be expressed as
111 e*(Ze)? (d3ky)(d3ks) 4cd .
Tyccaisayy = = 2m)50% (k1 + ko + ks + ko)l f scarzny v, (2.124
{ oo {—2} 2 (477)2(2@6/ K2k2 @r) 0T ks + k4 ks + k)l ey, (2:124)

with I { scarza) | as defined in (2.71) and with the results presented in the previous section. Note that

spin(34)
the factor of % that takes the symmetry between legs 1 and 2 into account.
In order to reproduce the result given in [17] for the differential cross section, we employ the
following kinematics

_ ! _ /
:; = E?qu +qq)’f 7 kki = ((()—’z':q’ - t% (2129
where
q' = (wsin6/2,0,0),
k = (0,0,wcos0/2), (2.126)
q = (q1,92,93),
with w as the energy and 6 the scattering angle. The polarizations are chosen as
el =eb =(4,0,0,0),
eh = %(0,—2’)\3 cos6/2,1,+ilssin0/2), (2.127)
el = %(O, —iXgc080/2,1, —idysin6/2),

where \; = +1 fpr right-anAd left-handed circular polarization, respectively. In the following it is
understood that F:o_c;l(B 0= Fscat(34)[as=1,,4=—1 etc. and we will also use the abbreviations

arcsinh (i) 0 0
Py= —=2m2 S =sin -, C = cos — . 2.128
0T WAmE ¢ 2 2 (2.128)

With the kinematics of (2.125) and using conservation of momentum we can write (2.124) as

1)1 e*(Ze)? 4 d3q N
| R = L __(2m)*6 (kS + kY / Iy a . 2.129
{ o) {2} 2(477)2(%)6( m) o(ks + k) la— ' Pla+ a2 {5n6) (2.129)




2.7 Delbriick scattering for low-energy photons 23

For convenience, let us further define

Py = / Lt (2.130)
) = ) Ja—aPlaraP {560} .

Since we are considering the low-energy case, w < m, we neglect contributions of order superior
to w?. We notice that

/ d’q _ /°° /” /2” ¢*sin0'dqdo’ dg'
la—aPla+dal® Jo Jo Jo (g2+w?sin?8)? - 4g2w?sin? £

00 s 21 : 0/d da/ d /
_ / / / sin07dq db 49" | o)
0 o Jo q

Using the kinematics of (2.125), we find

(2.131)

f‘+7 _ 4W2
scal(34) 3m2q4(4m2 + q2)

+ [¢*(2m? + ¢°) — 3m?*(6m” + ¢*)g3]5” — 8m*[¢* — 3(3m® + q2)q§]SQPo} +O0(w?),

{3m?[(6m2 +¢%) = 8m*(3m> + ¢*) Po)(5 — ¢7)

(2.132)
At — 4w? 2 2 2 2 2 2 2 2 2
Fspin(34) = 3q4(4m2 +q2)2 {3<4m +q )[(Gm +4q ) —8m (3m +4q )PO](q2 - ql)
+[¢"(2m? — ¢°) = 3(4m® + ¢*)(6m® + ¢*)43]S” (2.133)
— 8m2[g(m? + ¢%) = 3(4m? + ¢*)(3m* + *)gF|S*Po | + O(w?),
for the helicity non-conserving component, and
f‘++ — L{‘l[(&?ﬂ + q2) _ 8m2(3m2 4 q2)P ](qQ _ q2)
scal(34) 3q4(4m2 + q2) 0J\%2 3
— [3¢°(2m® + ¢%) + 4(6m* + ¢*)g3]C* (2.134)
+4[*(6m* + 4m?¢® + ¢*) + 8m?(3m? + q2)q§]02P0} + 0w,
[+t = 4—(JJ2{(677”L2 +¢*)(16m? +7¢*) (g3 — ¢3)
spin(34) 3¢t (4m? + ¢2)2 2 3

+8[(3m?* + ¢*)(4m® + ¢*)* = 3m"¢*)(¢5 — ¢3) P
— [3¢*(8m" — 2m*¢® — ¢*) + (6m® + ¢*) (16m” + 7¢*)¢3]C* (2.135)
+ 8¢%(12m8 — m*¢® — 5m?¢* — ¢%)C? P,
+8[(3m? + ¢*)(4m?* + ¢*)* — 3m4q2]q§CQP0} +0(w?),
for the conserving ones. To perform the integral over q we use spherical coordinates:
q1 = qcost, go = gsin®’ cos ¢/, g3 = gsin @’ sin ¢’ . (2.136)

The integrals over 6’ and ¢’ are trivial, and what remains to be calculated is

. 16m5%W? /°° dg —6m* +m>q” + ¢* + 24m° Py (2.137)
scal — 3 0 q2 m2q2 (4m2 + q2) ? ’
o 32mS%W? /OO dg —12m* — 4m®¢® — q* + 24m* (2m* + ¢*) Py (2.138)
spin — 3 0 q2 q2 (4m2 + q2)2 ) .
Sy 16mC%0? %0 dg —42m? — 13¢% + 4(42m* + 20m>¢® + 3¢*) Py
1_‘scal =7 a 2 2 2 2 ’ (2139)
9 o ¢ ¢ (4m? + ¢?)
rh, = SR [ g ZSm = B0 € BB It =B = 0B 1a0)
spin 9 o q2 q2 (4m2 + q2)2 . .
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Performing the integral over ¢, we get

~ 15m3.52w? . 573 52%w?
= —_— t = 2.141
scal 32m3 ’ spin 32m3 ’ ( )
~ 3n3C2w? . 7313 C%w?
- 7 7 S 2.142
scal 32m3 ’ spin 288m3 ( )
Finally, the differential cross section is
Za)*a? -
dosca(rsa) = (4(2%6 1 a2, (2.143)
(Za)*a? -
dOspin(Asha) = @ T30 % d. (2.144)
For scalar QED, we have
d = d = (Za)® (3)2 3 (LY (ﬂ)4cos4 040 (2.145)
Oscal(++) = Oscal(——) = & m 16 32 m 9 3 .
2 2
4/ a\2 /15 1 w4 4,0
dUscal(J’,,) = do'scal(,+) = (ZOé) (E) <]_6 <32 (E) Sin §dQ . (2146)
For spinor QED, we find
aoN2 (TN (1N fwyt L0
dOspin(++) = dOspin(——) = (Za) (E) ™ 3 (E) cos idQ’ (2.147)
2 2
4 (N2 (D 1 w\* . 40
dO—spin(-‘,——) = daspin(—+) :(ZO[) (E) (8> <32> (E) S1n idQ’ (2148)

the spinor result is in agreement with [17] while the scalar is new, to the best of our knowledge.



Chapter 3

N-photon amplitudes in a constant
background field

In the context of photon amplitudes in the presence of background fields, the worldline formalism
[124, ] have been used to derive master formulas for the N-photon amplitude in the presence of a
constant [16, 17, , 122], plane-wave [18] and combined constant field & plane-wave [19] background
fields. The previously mentioned master formulas have been derived for the cases in which the particle
in the loop has spin zero or one-half. These master formulas can be used to study the polarization of
the vacuum via, for instance, processes such as vacuum birefringence [65, 64, ], photon splitting
[24, 26, 44], photon merging [25, | and light-by-light scattering [18, 19, 45]. However, in order
to properly study such effects we still need to calculate the multiple Schwinger-parameter integrals
appearing in these master formulas.

Therefore, the approach in this chapter is to consider the simpler master formulas (the constant
background field ones) and assume that all external photons are low-energy. In the next sections, we
present the one-loop N-photon amplitude in the presence of a constant background field for scalar
and spinor QED. In addition to the low-energy assumption, we consider different configurations for
the external constant field. We first discuss the purely magnetic and later we generalized it to the
case in which both electric and magnetic fields are pointing along the same direction. As a third
case, we study the constant crossed field. And finally, we obtain alternative expressions for the case
in which the field is considered arbitrarily constant.

3.1 N-photon amplitudes for scalar QED

Here, we make use of the results found in [46, 47] and later improved in [123, | for the scalar
N-photon amplitude in a general constant field,

N
Fscal(kla €153 kNa EN; F) = (27T)d5d (Z kz) FN,scal(F) B (31)
i=1

for convenience, we defined

N T’ N —d/2,—m?T 1/2 z A
I'nscal(F) = (—1¢ — T (4T 2 det -— / du;
N, 1( ) ( 16) /0 T ( ) e e Li } J I1 ; U

N
1 . 1 ..
X exp Z <2ki “Gpij - kj —ig; - Gpij - kj + 56 OBij '5j>

i.j=1

lin e1e2...en

In the following, to avoid carrying the Dirac-delta function of momentum conservation, we work
exclusively with the amplitudes I'y sca1(F') for scalar and I'y gpin(F) for spinor. In equation (3.2),

25



26 N-photon amplitudes in a constant background field

ko

Figure 3.1: N-photon one-loop Feynman diagram. The double dashed line indicate a particle of spin zero in a
magnetic field.

Z = eT'F and the calligraphic Green’s function and its derivatives are

T Z o .
9Bij = 535 ( e PG 12y — 1> ;

222 \sin Z
. Z Z _'ZG.J,
= e 1) .
Gnij z(mze ) (3:3)

inZ

. 1 /. 22 _za
gBijT<Gij+28-e z ”>,

derivatives are respect to the first parameter and Gj; is the vacuum Green’s function, see (2.64). In
this work, we mainly use re-scaled parameters g'Bij = ,C'}B(ui7 u;), see Appendix A.3.

Note that, contrary to the vacuum case in which the coincidence limit vanishes i. e., G(u,u) = 0,
the Green’s function in the presence of a constant background field Gpg;; and its derivatives have
coincidence limit. Although G p;; is not required for computing the N-photon amplitude, we present
the coincidence limits of the calligraphic Green’s functions'

222

Gpii =icot Z — %, (3.4)

.. 2
gBii = —TZCOtZ.

T
Gpii=— (Zcot Z-1),

As stated in [123, 122], the addition of a constant matrix to Gp;; and Gp,; in (3.2) will have null
effect due to momentum conservation. Then, we can use this fact to get rid of the coincidence limit
of Gpij and Gp;j, we define

Gij = GBij — GBais

. . . 3.5
Gij = GBij — GBii, (3.5)

which allows to write the N-photon amplitude as

< T : z
N scal(F) = (—i N 7TN4 T*d/? —m Td t1/2
wecal(F) = (ie)¥ [ G T ) e T et |
Nl N o1 . 1 .
i=1 i=1

(3.6)

where now the calligraphic Green’s functions G;; and G;; do not have a coincidence limit. This
allows us to work with Iy sca1(F) in an analogous way as in the vacuum case. After expansion of the

1See Appendix B.1.1 for the detailed calculation of one example of such coincidence limits.
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amplitude to linear order in all £1e5...cy we can remove all second derivatives G Bij using integration
by parts with the following choice

0

@QU =Gnij» (3.7)

which makes the calculation of the amplitude completely similar to the vacuum one, giving rise to
the Q-representation of the N-photon amplitude in a constant background field

dT 2
T sca F) = (—i N T arT d/2,.,—m Td t1/2 =
o) = (ie” [T amT) e T et [ E

XH/ du; Qscar (Gij) exp Z ki-Gij-kj o

3,5=1

(3.8)

where Qscal(gij) is polynomial where now the Lorentz-cycles and the so called 7-cycles appearing in

the vacuum case [18] will mix. This motivates the definition of the “Lorentz trace”
. 1\ %2 . . .
G(iriz. . in) = (2> tr(fis - Givio * fin - Ginis - fin - Ginin) » (3.9)

which will appear in Qscal(gij) together with the “n-tails”. For instance, the one- and two-tails, in
this case, are

Tz)zzgi'g.ir'kra

r#£i
(3.10)
T(ij)= Y. e Gir keej-Gis ks + i Gij g | D ki Gir ke — Y k- Gk
i TFL] 545

However, in this work, the inclusion of tails is unnecessary. Specifically, for low-energy photons,
we solely consider terms linear in momenta, as those containing tails are of higher order and thus
negligible. In Section 3.8.1, we use this master formula to compute the low-energy four-photon
amplitudes in a pure magnetic field.

3.2 N-photon amplitudes for spinor QED

The procedure to obtain the spinor amplitude is similar to the one used in vacuum, Eq. (2.12). We
start from the scalar amplitude and apply the generalization of the Bern-Kosower replacement rule
[123, |. In order to apply this rule to the amplitude (3.8), we first need to replace G;; by

éij = Gpij — Gpii + Grii (3.11)

in equation (3.6) to take into account the coincidence limit of the fermionic calligraphic Green’s
function Gp;; = —itan Z, see [122] and Appendix B.1.1. The replacement g” — Qij can be done

directly in (3.8) but for the sake of clarity, we make the replacements Gp,;; — G;; and G Bij — QA” in
(3.2) to obtain

dr ,
T scal(F) = (=ie) / TN (4rT) =2~ det'/ 2{
0

T sinZ}

’
lin €1€5...e N

(3.12)

N
1 N 1 .
X H/ dul exp (2]62 . gij . ]ﬂj — ’i{-:i . Ql-j . kj + 551' . gij 'Ej)

1,j=1
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k>
k3 ka4

ki

kn

Figure 3.2: N-photon one-loop Feynman diagram. The double solid line indicate a particle of spin one-half in a
magnetic field.

which again is justified by momentum conservation as in the previous section. After integration-by-
parts, it can be expressed in a Q-representation as

dT 2
T F) = (— N T arT d/2,—m*T 1/2
N scal(F) = (—ie) /O T ( )" e det sin Z
(3.13)

X H/ du; Qscal gzg €xXp Z ki - gz] i (>

z] 1
in which we can directly use the generalized Bern-Kosower replacement rule. The fermionic-Green’s
function in a constant field is
e—1ZGi;
= Gl (3.14)
ngy Fij cos Z
In the following, we summarize the generalized Bern-Kosower replacement rule [122]:

1. Replace each Lorentz trace by the same trace minus the fermionic Lorentz trace

o

Glivia...in) —  Glivia...in) — Gpliviz...in) = Gs(iria. . .in) (3.15)

where we will refer to Qs(ilig ...1pn) as the “Lorentz super-cycle”, and

On1
. , 1
Gr(iia. .. i) = (2> tr(fiy - GFivio * fis - OFisis - fir, - OFiniy) - (3.16)
2. The scalar determinant must be replaced by the corresponding spinor determinant
Z Z
det?/? | —=— det?/? | ——=—_| . 1
¢ sin Z - ¢ tan Z (3.17)

3. Multiply by the usual factor of —2 for statistics and degrees of freedom.
Therefore, the N-photon amplitude in a constant background field for spinor QED is

FN,spin(F) = _2(—i€)N/ dT

= TN (4rT) =2~ ™'T det!/? [
0

tanz}
(3.18)

X H/ duz Qspln(g’b‘])gF’L] exp Z k g"] j ’

3,5=1

where Qspm(g'ij, Grij) will be determined by Qscal(gij) through the replacement rule. For an example
of it, see Section 3.8.2.

Notice that the generalized Bern-Kosower replacement rule presented in this section is different
from the one in [123] due to the conventions of the calligraphic functions wherein the coincidence
limits are subtracted, see [122].
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3.3 Low-energy limit of the N-photon amplitudes in a constant field
3.3 Low-energy limit of the N-photon amplitudes in a con-
In this section, we study the low-energy limit of N-photon amplitudes in a constant field. Similar as
1), the N-photon amplitude for scalar QED, in terms
3.19
[fn]) . (3.19)

~(LE) [A1] - VW(%E)

stant field
-2

in the vacuum case (see Section 2.3 and [
AT~ /2 —mZTd +1/2 <
(4rT)” ¢ sin Z

of the vertex operator of each photon, is
scal

dT
for low-energy (LE) photons. In the presence of a constant field, the Wick contraction of the vertex

(LE)
FN,scal

(F) = (-io™ [
Z Z H/ du;, G dls ({iria...in})
flmfN(3.20)

[fn ]> («T) exp{

i k=1

operators generalizes to
V’Y(LE)

<VW(LE) [f] - !
where g 5 ({1122 dn}) denotes the sum over all distinct Lorentz traces which can be formed with a
G p(ivizizis) + G (i1i2isis) + Gp(irisisia)

scal

k2

given subset of indices, e.g. QB ({11221314})

ki
ONVW ( )
\\ /
N—=
%kN
(b)

(a)
Figure 3.3: N-photon one-loop Feynman diagrams with every leg low-energy indicated by empty bullets at their ends
the double dashed line indicate a particle of spin zero in a magnetic field. (b): the double solid line indicate a

particle of spin one-half in a magnetic field
It is important to mention that the representation (3.19) precedes (3.2), which is why the Lorentz

(a):
trace is now expressed in terms of g Bij 8
) 1 On1+0n2 . .
gB(legln) - (2> (fn gBiﬂg 'fig '931213 f ngnn)
The Wick contraction of the vertex operators, using combinatorics, can be expressed as
LE LE . cyc
(Vasd®1n] - vagPu), = (o) exp{z fscyaxfmt,...,fm;F)} ,
n=1 fifn
turning the problem of computing the amplitude into the calculation of the cyclic integral
1
Isccyacl(fl,fg,...,fn;F / duldungg(mn),
such that the N-photon amplitude in a constant background field for scalar QED under the assump-
tion of low-energy photons (Fig. 3.3a) becomes
dr N—%—m’T op1/2 z — 1
T T Qe Snz | &P 21 I (feots - - -5 Jrot; F)
n 1een

(LE) (F) _ i )1

r e /
N,scal
0 T
indicates that the Wick contraction includes the interaction with the external constant field

2Here, the subindex
[fi] has been defined in (2.40)

w(LE}
and Vscal
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since this amplitude is completely in terms of Lorentz traces, we can apply the generalized Bern-
Kosower replacement rule, as stated in [123], transforming the scalar cyclic integral into a spinor
cyclic integral

1
Iscgfn(fl, foro s fu; B) = / duy - - dup, {93(12 ...n) —Gr(12...n)|, (3.25)
0
where now the fermionic Lorentz trace is
1 On1+0n2
Gr(iriz.. . in) = (2) tr(fiy  GFivia * fio - GFizis ** fin * OFinia) - (3.26)
Therefore, the N-photon amplitude in a constant field at low energies for spinor QED (Fig. 3.3b) is
N [e’¢) 00
(LE) _ € dI'  N_2 _p2r 1/2 z 1 cyc .
Iy spin(F) = _2(47r)g /0 ?T 2e” ™ 7 det onz | P Z o IG5 (frots « + s frot; F7)
n=1 fifn
(3.27)
In the following sections, we calculate IG75 and I for various field configurations, in four

dimensions (d = 4).

3.4 Case 1: Pure magnetic or electric field

In this section, we focus in the case of a pure magnetic background field of constant strength for which
the calligraphic Green’s functions exhibit simplifications. Following [123], we choose the magnetic
field pointing along the z axis, in Euclidean space,

0 B, 00
F= _fz 8 8 8 (3.28)
0 0 00
We define z = ¢T'B,, the matrices g+ whose sum is the metric tensor
10 00 0 00 O
e . 520
0 00O 0 0 01
and the matrices ry
0 1 0 0 00 0 O
] |
0 0 0 0 00 -1 0
which satisfy the following relations
Z=eTF=zry, r"=(-1"gs, r"'=(=1"rg. (3.31)
Then, we see that
Z7 = (=)™ g, and Zantl — (—)npntle, (3.32)
This allows us to write the scalar and spinor determinants as?
det'/? Lan} - sinzhz ’ det'/? [tanZ] - tarfhz (3:33)

3The calculation of the determinants is straightforward however we present an example of such calculation in
Appendix B.1.3.
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and the calligraphic Green’s functions (3.3) and (3.14) as*

1 1 . .
Gpij =1 |Gpijg— — ?ZABij(Z)g+ + % (Spij(z) — Gpij) iry | .
Grij = Gij g— + Spij(2)g+ — Ay (2)irs (3.34)
. 1 . _
Ibij = (Gij 1 —22Api(2)g+ + 225Bi;(2)iry)

Grij = Grijg— + Srij(2)9+ — Apij(2)irg,

where
Apii(2) = cosh(zGij) 1 Apsi(2) = GF"Sinh(ZGij)
*J sinh z z’ Y Y coshz (3.35)
_ sinh(2Gy;) B cosh(2G;)
SB”(Z)—W, SFZ](Z)_GFZ]W

In order to efficiently perform integration over the wu; variables, we find convenient to introduce
the following functions (here, we include their coincidence limits)

B GZG” 1 B . B 1
Hj(2) = — - Hi5(0) = Gy, H;;(z) =cothz — —|
J sinhz =z J > (3.36)
2Chas .
F e*Cii P o
Hij(2) = Grij cosh 2’ H;;(0) = GFij H;;(z) =tanhz.

Using these functions, A;; and S;; can now be written as

Apig(e) = 3 [HEE) - HE(=2)] . Apig(e) = 5 [HE ()~ HE(=2)]

H5() + B (=2)] 0

N — DN —

1
Spij(z) = 5 {Hﬁ(z) + Hg(*z)} ) Srij(z) =
consequently g Bij» Gri; and their coincidence limits can be expressed as well in terms of H;;

: 1 . 1 ‘
Gpij = HE(0)g- + ng(z)(ng —iry) + §Hi}j.’(—,z)(gJr +iry),

1 ) 1 .
Griy = HEO)g— + 5 HE () (g5 —iry) + 5 HE(=2) (g4 +irs), (338)
Gpii = —HE (z)iry,
Grii = —Hg(z) iy .
The pure electric case is obtained after replacing
g+ < g—, Ty T, z —ieTE,, (3.39)

in (3.38).
The functions Hg () and Hf; (2) have the property of reproducing themselves under integration.
For both functions the following relations are satisfied®

Hys(z1) n Hy3(22)

)
22 — 21 21 — 22

1
H{Y (21, 22) = / dug Hia(z1)Haz(22) = (3.40)
0

1
Hl(i)(zl,ZQ,Z?,):/ dug dus H12(z1)Ha3(22)Hza(23)
0

Hia(21) Hi4(22) + Hia(23)
(22 —21)(z3 —21) (21— 22)(23 —22) (21— 23)(22 — 23)

(3.41)

4See Appendix B.1.2 for the step by step calculation of gBij in a pure magnetic field.
5In Appendix B.1.4, we show how to compute Hg) (21, 22) for scalar and spinor QED.
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1
Hf‘é)(zl,22,23,24):/ duzdusdu4H12(Zl)H23(22)H34(23)H45(Z4)
0

_ Hys(21) n Hi5(22) (3.42)
(22 —21)(z3 — 21)(2a — 21) (21— 22)(23 — 22)(24 — 22)
Hi5(23) n Hi5(24)
(21— 23)(22 — 23)(2a — 23) (21 — za)(22 — 24)(23 — 21)
The above identities can be generalized to
1
Hf?,,)wrl)(zh 29, .y 2n) = /0 dug dug - - - dun, Hio(21)Has(22) -+ - Hy 41y (20)
n n 3.43
Hl(n+1)(ze) ( )
S LN §
¢ T4
/=1 Jj=1,7#¢4
The coincidence limit of the HZ(Jn ) function is
(n) ! H11
Hll (21,22,...,2n) = / dUQ dU3 dun H12(21)H23(22) nl Zn Z (344)
0

This expression can be used for the calculation of the cyclic integrals (3.23) and (3.25). The outcome
of these cyclic integrals will be outlined in the next section. When considering a magnetic and electric
field aligned along the same axis, it is possible to derive a closed expression for the arbitrary n-point
integral in a more symmetric form. This allows us to derive the scenarios of pure magnetic or electric
fields as particular cases.

3.5 Case 2: Magnetic and electric fields parallel to each other

In this section, we focus on the case of a constant background field where both the magnetic and

electric fields point along the z axis (here we follow [123] and the previous section)
0 B, 0
F= —égz 8 8 igz . (3.45)
0 0 —E, O
We define z; = eT'B, and z_ = ieT E,. Similar to the previous section, now the following relations

are satisfied
2% = (—1)" (zi" gy + 22" gf) and  Z7Tl = (-1)" (zi”“ ry + 22 r,) , (3.46)

with g+ and r1 as defined in (3.29) and (3.30), respectively. In this case, the determinants become

Z Zyz_ Z 24z
det!/2 _ + det!/2 _ + 4
¢ tan Z tanh z; tanhz_’ ¢ sin Z sinh z; sinh z_ (347)

and the calligraphic Green’s functions (3.3) and (3.14) in terms of A;; and S;; (3.35) are
Gpij = Spij(2+)9+ — Apij (24 )ity + Spij(2-)g— — Apij(2-)ir-, (3.48)

Grij = Srij(2+)9+ — Apij(24)iry + Spij(2-)9- — Apij(2-)ir— (3.49)

which can also be expressed in terms of H;; as

Gpij = 3 Y. Hi(azs)(gs —airg),
a,Bf==%

1 .
Orij = 5 > Hf(azp)(gs — airg),
a,f=%

(3.50)
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see equations (3.36) and (3.37).
The scalar cyclic-integral (3.23) is

On1+dn2 1

v 1) o1 ton . ) )

I (fis fase oo s F) = (2> / duy - - dun tr(fi, - GBiyiy - fis -G Bigis - fi, -GBiniy) - (3.51)
0

By expressing the calligraphic Green’s functions as in (3.50) and employing (3.44) to integrate, we
obtain

1 Nn+0n1+0n2 B(n)
125 foeee s £iF) = (5) S Y HE(arzsanzs o anzs,)

anfi=t  anBa=t (3.52)
< tr{fi(gs, —onirg,)f2(gp, — 2irp,) - fu(gs, —amirg,)}
Similarly for the spinor cyclic-integral (3.25), we obtain
1 n+0n1+0n2
&mhm%ﬂ—@) Yoo > w{filgs —onirs) o falgs, — anirs,)}
ar,fri=% an,Bn=%
X [Hﬁ(")(alzgl, ey Qi 23,) — Hﬁ(n)(alzgl, ey 23,
(3.53)

After substituting the determinants and considering the results (3.52) and (3.53), the N-photon
amplitudes (3.24) and (3.27), within the field configuration of the present section, become

N dT Zyz_ =1
F(LE) F) = € / TN 2 -m?T A= ey S i F
Niscal (F) (4m2 J, T sinh z; sinh z_ P 221271 scat(frots -+ froti F7) s ’
n= 1. fN
(3.54)
for scalar QED, and
N dT Zy 2 =1
PEE) () — o © / TN-2,—m*T ____ A4E- I (Frots s frons F
Nspin () (4m? Jy T tanh z; tanh z_ P Zl spin(frots - frors F) ;
n 1.
(3.55)

for spinor QED.

It is important to note some properties of these N-photon amplitudes: they are valid off-shell,
they are expressed in a compact form that requires simple algebra to obtain the explicit amplitude
expression and they have only one proper-time integral left. In Section 3.8, we specialize these results
to the four-photon amplitudes in a pure constant magnetic field.

3.6 Case 3: Constant crossed field

In this section, we consider a constant crossed field defined by E L B, F = B where E = |E|
and B = |B|. Since the electric and magnetic fields are perpendicular and equal in magnitude both
invariants F - B and B% — E? vanish. This implies, for the field strength tensor, F3 = 0 so that the
power series in the calligraphic Green’s functions (3.3) and (3.14) terminates at the quadratic order

ouy =T [ (1-302) 20 (1-63) 2+ (e - 1) =],

Gri; = Cij + % (1 - 3ij) Z4 éG’ij (1 - G’fj) 22,
o

. . 2 2\ oo (3.56)
T Gij + 22Gij2 - 6 (1 - 3Gij> Z :| 5

GBij =

e 1 -2
gFij = GFij |:1 — ZGZ‘J‘Z + 5 (1 — Gij) ZQ:| .

N

)
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The coincidence limits, in this case, are

1 1 . ) .
Gpii =T (6 + 9032> ) OBii = —§Z, OFii = —iZ. (3.57)

And, the determinants now become

Z Z
det [tan } det [sin Z] . (3.58)

For instance, in four-dimensions, we could choose the field strength tensor as

0o 0 0 0 0 0 0 0
2 .
Fo|0 0 B 0| o |0 —BY 0 iBE.| (3.50)
0 -B, 0 iE, 0o 0 0 0
0 0 —iE. 0 0 iB,E. 0 E?

from which, it is clear that F3 = 23 = 0. )
Notice that, the calligraphic Green’s functions G;; and Gp;;, as the Neumann series expansion
[123, ] of the Green’s function operator, have the following representation®

2
Gpij =2 (il0p"V]j) (2i2)"
=0

2
Grij =2 (0, V1)) 2i2)".
=0

(3.60)

Now, for the integral of ‘n’ bosonic calligraphic Green’s functions G Bij, we can define a generic bosonic
cycle integral (as in the vacuum case [18]) by

1
sttty = 20T / duy duy -+ duy (ur]0p" [uz) (ua| 05 |us) - (|0
0

The calculation of the previous integral follows from the completeness relation fol duu){u] = 1 and
it can be expressed in terms of the Bernoulli numbers [163, 149]

—2f % { even,
by = (3.62)
0 ¢ odd.

Similarly, for the integral of ‘n’ fermionic calligraphic Green’s functions Gr;;, we have

1 1
2‘51+--~+Zn/ du1~--/ duy, (1)0,(2)(2105%213) -+ (n]oy 1) = (1 — 29T ) by y 4y, . (3.63)
0 0

Therefore, we can use (3.61) and (3.63) to compute the cyclic integrals (3.23) and (3.25), and express
the result in terms of Bernoulli numbers, for the present case. For the scalar cyclic-integral, we obtain

2

On1+dn2 2
cyc 1 .
Isc},al(fl’f%"’?fn;F) = (2> E E Z€1+...+€n bn+£1+...+Zn
£1=0 £,=0 (364)

xtr(fyZZl .fz.zfz...fn.zfn) )
Similarly, by defining h, = (2 — 24) be , the spinor cyclic-integral can be expressed as

1

Op1+0n2 2 2
Iscgicn(flana"'afn;F) = <> Z Z i£1+...+Zn h7L+€1+~..+€n
2 £1=0 £,=0 (3.65)

Xtr(fi 2% fo- 22 fy 20

6The subscript ‘P’ stands for periodic boundary conditions and ‘A’ for anti-periodic.
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Note that, the Lorentz traces can be further simplified due to the symmetry F2- f;- F? = 0, which
has as consequence that the order of interactions in a cycle with the field cannot be greater than the
number of photon in such cycle. Then, the cyclic integrals can be represented as

On1+0ne n
I (fis foy oo fos F) = <1) Z(ieT)zanrztrdiSt (fi-F-forFeo fo- Fefopr fera e fa)

2
£=0

On1+0ne N
Iscgiil(flvawuvfn;F) = <1) Z(z’eT)f P tr4ist (fi-F-fo-F-fo-F-for1-foya--fn),

2
£=0
(3.66)

where ‘tr®"” denotes the sum of all different permutations of F' for a fix set of f;’s. For instance, the
non-null contributions, for n =1 .
trdSU(f - F) = te(fy - F). (3.67)

For n =2
S (fy F o fo - F)=tx(F - f1-F- fo) +tr(F? - f1- fo) +tr(f1- F2 fa). (3.68)
For n =3

eV (fy Fofo-fa)=tx(fi- F-fo- f3) +te(fi- fo- F-f3) +tx(fi- fo- f3- F),

| 3.69
trdlSt(fl-F-fQ'F'fs'F):(lej?Ff?)F)+tr(f1f2Ff3F2+5permOfF7Fz)~ ( )

After substituting the determinants and considering the results in (3.66), the N-photon amplitudes
(3.24) and (3.27), within the field configuration of the present section, become

(LE) 6N > ar N—2_ —m?T — 1 cyc
FN,scal(F) = (471')2 0 ?T € exp E%Iscal(ftotw"vftot;F) o ’ (370)
n= 1---fN
for scalar QED, and
N 0o o0
LE e dT —2 —m? 1 cve
FEV,SILI](F) = _2wA TTN 2e T eXp{Z %Isgin(ftotv"'vftot;F)} ) (371)
n=1 fi..fn

for spinor QED.

It is important to note that these N-photon amplitudes in a constant crossed field are valid off-
shell and the proper-time integral left is straightforward to perform for a fixed number of photons.
Moreover, the PT symmetry becomes manifest in this representation, facilitated by the Bernoulli
numbers (3.62).

In the low-energy limit of the N-photon amplitudes within the worldline, it is well known that the
leading contributions arise from the bicycles (2.10) or (2.14) in the vacuum case and from the Lorentz
traces (3.9) or (3.15) in the constant field case, see [50, 51, 52, 111]. However, in the high-field and
high energy limit of the N-photon amplitudes in a constant crossed field, the leading contributions
may arise from the tails (3.10). In such case, the leading term of the amplitude would be the one
containing the smallest Lorentz trace and the biggest tail. Since the external photons are off-shell, this
presents the opportunity to systematically study the scaling with respect to the quantum nonlinearity
parameter (1.6) for these N-photon amplitudes and even for multi-loop amplitudes, which is related
to the Ritus-Narozhny conjecture [104, , , , ]. This is a subject that is currently under
development.

3.6.1 The plane-wave field limit

It is interesting to recall that a plane-wave field in the low-frequency approximation corresponds
exactly to a constant crossed field. Then, in the light-cone coordinate system of a plane wave prop-
agating along the n direction, the vector potential for a constant crossed field can be chosen as
[165, 44]

A(¢) = Eo(eg +20)0, (3.72)



36 N-photon amplitudes in a constant background field

where ¢ = n,a" with Minkowski space metric (n*) = d1ag(+1 —1,—1,-1), Ey a constant equal in
magnitude to the electric and magnetic field strengths and 50 unitary four vectors orthogonal to n
that can be regarded as the ‘+’ and ‘—’ helicity components of the plane wave field.

Notice that the field strength tensor of a constant crossed field can be seen as the sum of two
‘polarized photon field strength tensors’

F=ff+fy, f&™=klieg" —eg"ky, ki =Eon". (3.73)

For instance, a good choice for the polarization four-vectors 5? = (0, Eg:) in the light-cone basis

[44] is
L (ay +ias) (3.74)

V2

and assuming that, for the external photons, the scattering plane is formed by (n, as), the polarization
for each external photon will be

+ _
€y =

ef = \% [al +ia; X (U’j)} . (3.75)

This imply that for the case of external polarized photons the effective interaction with the constant
crossed field is through identical polarized photons which do not transfer energy.

3.6.2 Helicity amplitudes

The possibility of expressing the constant crossed field as (3.73) motivates the use of spinor helicity
to compute the polarized amplitudes. Here, in order to use the spinor helicity formalism in Section
2.2, we change from the Euclidean (¢"") = diag(+1,+1,+1,+1) to the Minkowski space convention
(n*”) = diag(+1, —1,—1, —1) as indicated in Appendix A.

For the present discussion we focus in the scalar N-photon amplitude since the spinor one follows
analogously. It is convenient to use the representation in (3.20) to express the four dimensional
amplitude (3.24) as

N

LE € dr —m cyc,dis
Fg\/,sc)al(F) = (477)2/0 ?TN 2 T exp{z Z quald ' {f117f22’7fln}7F)}

n=111..

fi-fn
(3.76)

From this expression, we can see that the interaction with the external field in the cyclic integrals
will be determined by the helicity of the external photons. For fixed helicity, the field strength tensor
F is effectively replaced by one of the polarized field strength tensor fOi as

n

On1+dn2
I:Cy;({le R fi27 ey fln}7 F) — (;) Z (ZeT)[ bn+g trdiSt (f“ . fOi .. fiz . fOi . fiz+1 e fln)
- (3.77)

and we have to take into account all the possible combinations in which fOi can appear in the cyclic
integral. Furthermore, the expansion of (3.76) to linear order in fi...fy can be seen as the sum of 0
to N interactions with the field fj, consequence of (3.66). Then, for fixed helicities, we can think of
(3.76) as the sum of N vacuum N-photon amplitudes

EARAS N 4T ) N n
DD (s s £ s s Fs F) = ((4;))2 (2m)*o* (;h) / e YD

0 n=0 ¢=0

00 Or2
X exp {Z Z (;) (leT)T by trdiSt (fll : fiQ """ fzr)}

r=141...7,

(3.78)

9

for L external photons having helicity ‘+” and N — L ‘=’ and with fy11 = fyvi2 = ... = fNin =
fo- Here, we have written the momentum conservation explicitly to emphasize the fact that it is
independent of the “effective photon” momentum kg.

+ ot — o+ + - -
LR b fL+1“'-fNfN+1“'fN+sz+e+1'“fN+n
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Now, we compare the results in [51] and [50] to obtain the following relation (see Section 2.3,
specifically Eq. (2.46) and (2.61))

o] Ona
eXp{Z > (;) (i€T)" by tr™* (i, - i "-fin)}

_ (226T) Cscal XL XN L

N —3)! ’
n=1141...in R R S v ( )

(3.79)

where C’scal are scalar coefficients given in terms of Bernoulli numbers 5,, by

L N—L (1 _ 2171”75) (1 _ 217N+T+8> Br+s BN—’I"—S

oN.L DN/2 (N = 3)! _{\N-L—s (3.80
seal. = (=1 ,;;( ) rlsl(L—r)I(N—-L—s)! )

and X% are twistor products that vanish for L odd. And, for L even we have

L L/2)! )
XE = (x+) % |all different = (2]:%{[12}2[34]2 (L =1)L]* +all permutatlons} , (3.81)
Xn-r = (x ) |all different

N—L (3.82)

N=LY)|
= (2 ,3%)' {((L +1)(L+2))*((L +3)(L+4)%-- (N - 1)N)? +all permutations} .
2

Here, we have provided the explicit expressions for C’scal , X; and Xy_;, as introduced in Section
2.3, following the conventions outlined in Section 2.2. For further details, see [51].

In order to obtain a closed result for the N-photon amplitude in a constant crossed field with L
external photons having helicity ‘+’ and N — L ‘=’ for scalar QED we use equation (3.79) in (3.78).
After integration over T, we obtain

LE _ _
écal)(fl s ST s s fns F) =

N N n
tof 2 Z 216’ oN+nLHE
2 \ m2 Cycal XL+¢ XN—Ltn—¢*
n=0 ¢=0
(3.83)

Analogously, we obtain the N-photon amplitude in a constant crossed field with L external photons
having helicity ‘+” and N — L ‘=’ for spinor QED

4 N N n . n
(LE) g+, . p+p— . .p=py— _o M [2€ 2ie N4n,L+e -
Fspln (fl—‘_""’fz_fL—&-l""’fN’F) - 727 <> Z < C’spin Xz—‘réXN—L-‘rTL—Z’

2 2 2
(4 ) m n=0 ¢=0 m
(3.84)
where C’hpm are spinor coefficients given by
L N—-L B. B
CNE — (—1)N2(N - 3)! —)N-L-s s ONores . 3.85
spin = (=177 ) ;0‘;:0( ) rls!(L—r) (N —L—3s)! (3:85)
In [51], it is shown that the N-photon amplitudes in vacuum obey a double Furry theorem for low-

energy photons, i.e., the number of helicity components in an N-photon amplitudes should be even
otherwise the latter vanishes. In the present case, the N-photon amplitudes in a constant crossed field
do not obey the double Furry theorem, although each contribution to the amplitude does because
X“L‘L are non-zero only for L even. Note that the polarized N-photon amplitudes in a constant crossed
field (3.83) and (3.84) are valid for on-shell external photons, and keep in mind that fyi, = fo for
n > 0 and [ii]+ = 0.

3.7 Case 4: Arbitrary constant field

In this section, we notice that for the general case of an arbitrary constant background field the
calligraphic Green’s functions G;; and Gr;;, as well as in (3.60), can be expressed as the Neumann
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series expansion , ] of the Green’s function operator”

8

Gpiy =2 (105 (2i2)",
=0 (3.86)

8

Grij =2 (110, V) (2i2)" .
=0

Then, using (3.61) to compute scalar cyclic-integral (3.23), we obtain

1
2

On1+dn2 X o)
ittt = (1)1 5 S (2 b

£1=0 £, =0
(3.87)

here, by is given by (3.62). Similarly, we can use (3.61) and (3.63) to compute spinor cyclic-integral
(3.25), obtaining

1

On1tén2 00 00
IS (fis fos ooy fos F) = (2) S Y ittt (f 20 fo B2 2 By
6=0  £,=0

(3.88)

with by = (2 — 2¢) by

Therefore, assuming that external photons have low-energy, the N-photon amplitudes in the
presence of an arbitrary constant background field can expressed as series expansions respect to the
field strength tensor, as indicated by (3.87), (3.88),

—ie)N [ dT 4 Z =1
FSVL,fCLl(F)J(M))g /0 7 TN e det! 2 Lm Z} exp 3 D 5 I (frots - froni F)

n=1

fifn
(3.89)

for scalar QED, and

—ie)V e dr 4 5 Z <1
P8 (p) = =% / SN e T get/? | 2 — I (frots- -+ frots F
N,spm( ) (47‘_)% 0 T € € tan Z €xXp 7;12,” spm(ft ty 7ft ty )

(3.90)

for spinor QED.

In this case, it is also evident that the PT symmetry becomes manifest in the above equations
due to the properties of the Bernoulli numbers (3.62). Specifically, bys+1 = 0 corresponds to an odd
power of the electric charge.

3.8 Low-energy limit of the four-photon amplitudes in a mag-
netic field

In this section, as an application of the formulas obtained above, we compute the four-photon am-
plitude at low energies in a pure magnetic field for both scalar and spinor QED. We point out that
this amplitude for the spinor case have been studied in [15] from the Euler-Heisenberg Lagrangian
[5]. The first step towards the study (within the worldline formalism) of light-by-light scattering in
presence of a magnetic background field, in the following, we present analytical expressions for the
corresponding scalar and spinor amplitudes as well as for the polarized amplitudes (see Appendix C
for the results of the integrals).

"The subscript ‘P’ stands for periodic boundary conditions and ‘A’ for anti-periodic.

ALy s

N
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3.8.1 Four-photon amplitude in a magnetic field for scalar QED

In this section, we study the four-photon amplitude in a constant field for scalar QED (see Fig. 3.4)
obtained from the N-photon amplitude (3.8). In four dimensions, this amplitude is

dr (2
Casan(F) = (i) [ 04y 2o T o {é)}
0

(3.91)
/ duy dus dU3 duy chal z] exp Z k gl]
t,j=1

In the case of N = 4, the polynomial le(g'ij) has the following representation

Qscal(Gij) = Qscal4 + Qsca13 + Qscal2 + Qsca,l22 )
Quear® = G(1234) 4 G(2314) + G(3124) ,

Quear® = G(123)T(4) + G(234)T (1) + G(341)T(2) + G(412)T(3),
Quea” = G(12)T(34) + G(13)T(24) + G(14)T(23) + G(23) T (14) + G(24)T (13) + G(34) T (12),
Queat™ = G(12)G(34) + G(13)G(24) + G(14)G(23) ,

(3.92)

where the Lorentz cycles and tails are given by (3.9) and (3.10) respectively.

Remarkably, the latter representation of the leading light-by-light amplitude in a constant field
follows the structure of the same amplitude in vacuum [18]. This is, in fact, an advantage since the
Q-representation in vacuum has been studied in detail in [122, |, even more, such representation
is known for up to six external photons from which it is straightforward to obtain its extension to
the case of a constant background field. Another advantage of this representation is its compactness
which is due to the removal of the one-cycles G(i).

l

ot g

Figure 3.4: Feynman diagram representing the four-photon amplitude with every incoming photon having low-energy,
indicated by empty bullets at their ends. The double dashed line indicate a particle of spin zero in a magnetic field.
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[ \
\\

In the following, we consider the fully low-energy case, i.e., we consider every photon to have
much less energy than the mass in the loop. For such case, the leading non-vanishing contributions
to the amplitude are those composed fully by Lorentz cycles. Then, the four-photon amplitude at
low energies in a purely magnetic background field for scalar QED is

dT !
Fé(f;fa)l(F) = 042/0 T T2 —m*T . : /0 dul dU2 dU3 dU4 (Qsca14 + Qsca122) ; (393)

sinh z

where a = % is the fine structure constant and z = eT'B,, as in Section 3.4. Here, we have already

used the determinant result (3.33). Notice that this amplitude involves only the following Lorentz
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cycles

G(12) = %tl" (f1g12f2921) )
G(1234) = tr (f1G12f2G23 f3G34 f1Ga1)

of course, they appear with different permutations. Notice that the u; variables are removed after
integration such that we can define

(3.94)

1 ! . .
2) = 5/0 duy dug tr (f1G12f2G21)

1 (3.95)
17(1234) = / duy dus duz duy tr (f1G12f2G23 f3G34f1Ga1)
0
allowing us to write the amplitude as
LE dT —m 4 SC scC sC

L2 (F) = a2/0 o T T e { 56.(1234) + I35(12) T35(34) + 2perm} . (3.96)

Notice that the integrals (3.95) can be expressed in terms of the cyclic integrals (3.52) as

cyc 1 5 5
57(12) = I35 (f1, fos F) + 3 tr (flanJ.cngm). , . . (3.97)
35(1234) = I35 (f1, f2, f3, fa3 F) + tv (f1G Bii f2G Bii f3G Bii faG ia) -

Now, to obtain the pure magnetic case we simply set z; = z = eT'B, and z_ = 0 in (3.52). We must

also recall the coincidence limit Gp,; in a pure magnetic field (see ‘Case 17 in Section 3.4). Then, in
this way, we obtain

35(12) = 5 tr(fig-fag-) + B tr(frge fags) + B e fors) + 155 [tr(frg—fogs) + (g fog-)]
(3.98)

for the two-cycle integral. And

17 (1234) = {ISC tr(f19- f2g- f3g— fag-) + Ii tr(f19+ f29+ f39+ fag+) + L° tr(firy fory fary fary)
[tr(flg f29+ f39+ fagy) + 3pefm} +1 [tr(flg f29-f39- fagy) + 3perm}
15 [t 9~ fag- fag fag) + Bperm| + L [tr(furs for fag- fag-) + Sperm]

+ IE° [tr(f1r+f27'+f3g+f4g+) + 5perm} + Iy [tr(f17‘+f27'+fgg_f4g+) + 11perm] } 7
(3.99)

for the four-cycle integral. Here, the functions I7’s are trigonometric expressions and are explicitly
written in terms of Hﬁ(n) (see Eq. (3.44) and Appendix C.1).

Finally, for the integration over T', we make the change of variables z = eB,T and set the following
conventions

0o 2:2
JE = dze Per = e,
0 sinh z

00 2
{J 217‘]22"]237‘] }:/ dzeiﬁcz {(I;((:)) I;SIZD1581227138155715(13153 ’ (3100)
0

sinh z
2

o0
z
Jse —Becz SC TSC TSC 7SC SC\2 sC\2 sC\2
I35, 56, J37, Jags 59 —/ dze "¢ sinhz{121]23’122123’(121) ,(153)7, (135)7}
0

2

where 8, = 2~ = Zer . Furthermore we use the following notation
eB, B.

4B 2ﬁ2 o] 8 22
1234 & dze Pe® ——T79(1234
(1234) = 2 [ e T 1234,

scal m4

25

m4

(3.101)

225012 34) =

scal

> - z Z2 SC SC
/O dze P o B (12) T35(34).
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This allow us to express the four-photon amplitude in a pure magnetic field as

4,scal

1234) + 55 (2314) + 125 (3124) + 1225 (12,34) + 1227 (23,14) + 1227 (31,24),

scal scal scal
(3.102)

bcal( scal(

for scalar QED. The contribution of a Lorentz four-cycle to this amplitude is

r*B1234) = o%f;
m4

scal

{ch tr(f19- fog— f3g— f19-) + Jitr(f19+ fogs f394 fagy) + I35 tr(firy fory fary fary)
[tr(flg J29- f39—fagy) + 3PCFH1]

Jg {tr(f17"+f27“+f397f497) + 5Perm}
(

{tr(flg f29+ f39+ fa9+) + 3p0rm] +J.
J5¢ {tr(flg—fzg—f3g+f4g+) + 5perm] +
+

Jg {tr iy fary fag— fagy) + 11perm}}
(3.103)

+ J7° {tr(f17“+f27“+f39+f49+) + 5P€1"m}

and of a Lorentz two two-cycle is

252

scal

P20 02,34) = S5 {55 te(fug- fag-) tr(fag- fag-) + T35 tr(f1g+ fags) tr(fags fug+)
T3 _tr(flgffzgf) 6(fag+fug+) + (g1 fog+) tr(fag—Fag-)|
I35 (19— fg-) tr(fars fary) + tr(fir fors) tr(fag- fag-)|
Jas (0(f19-F29-) tr(fag—fag+ + fag+ fag-) + tr(f19- fog+ + f19+f29-) tr(fsg—leg—)}
T35 [6r(f1gs ags) tr(fars fars) + tr(firs fors) 6(fage fage )]
J.
J.

tr(fig4 f2g+) tr(f3g— fags + f3gs fag—) +tr(fig— fogs + fr94 f29-) tr(f3g+f4g+)}

tr(firy fory) tr(fag— fags + f3g+ fag—) +tr(frg— fogr + fr9+ f2g-) tr(f37“+f47“+)]

+ Jos tr(firy fory) tr(fory fary) + J55 tr(frg— fag4 + fr94 f29-) tx(f39— fags + f39+f497)} :
(3.104)
The explicit expressions of J*’s can be found in Appendix C.5 as the integral of trigonometric

functions and as combination of more general functions such as the Hurwitz-zeta and the polygamma
functions (see [153, 166, 167, 168]).

3.8.2 Four-photon amplitude in a magnetic field for spinor QED

In this section, we study the four-photon amplitude in a constant field for spinor QED (see Fig. 3.5)
obtained from the N-photon amplitude (3.18). In four dimensions, this amplitude is

. *dT
Ly spin(F) = 72(726)4/

i & P 4nT) 2 e T det— /2 {taréz)]

1 (3.105)
X / dul du? dU3 dU4 Qipln(gm ) ngj €xp Z k g’L]
0

7,] 1
where, in the case of NV = 4, the polynomial Qspin(gij, Gri;) has the following representation

Qspin(éija Grij) = Qspin” + Qspin” + Qspin” + Qspin”

Oupin” = g’s(1234) + G4(2314) + G, (3124)

Qupin” = G5 (123)T(4) + G+(234) T (1) + G5(341)T(2) + G, (412)T(3) ,

Oupin? = Go(12)T(34) 4+ G.(13)T(24) + G (14)T(23) + G+ (23)T(14) 4 G(24)T(13) + G(34)T(12),
(

Qepin?? = G4(12)G,(34) + G+ (13)G4(24) + G4 (14)G(23)
(3.106)
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Figure 3.5: Feynman diagram representing the four-photon amplitude with every incoming photon having low-energy,
indicated by empty bullets at their ends. The double solid line indicate a particle of spin one-half in a magnetic field.

obtained after the scalar one through the replacement rule described in Section 3.2. Here, the tails
are given by (3.10) and the Lorentz super-cycles are given by

G4(1234) = tr (flé12f2é23f3és4f4é41) —tr (flgF12f29F23f3gF34f4gF41) ,

Gs(123) = tr (flé12f2§23f3é31) - t1”(f1gFlzfngzaJ'pzngm) ; (3.107)

Gs(12) = % [tr (fléleQéﬂ) - tr(flgmengzl)] .

It is convenient to recall that
Gij = Gpij — Gpii + Grii - (3.108)

In the following, we consider the fully low-energy case. The next steps are completely analogous
to the scalar case. The leading non-vanishing contributions to the amplitude are those composed
fully by Lorentz super-cycles. Then, the four-photon amplitude at low energies in a purely magnetic
background field for spinor QED is

o0 1
LE dT 2 z
PSP (F) = —2a* /O T TPe T /0 duy duy dug dug (Qepin® + Qupin?) - (3.109)

Here, we have already used the determinant result (3.33). We define

1 1 A A
7;7(12) = 3 / duy dus [tl" (f1912f2g21> —tr (flgF12f2gF21)} )

0
1 N N A N
IZ?(1234) = / duy dug dus dugy [tr (f1912f2g23f3934f4g41) —tr (f1Gr12f20r23 f3Gr3a faGra1)| ,
0
(3.110)

which in terms of the cyclic integrals (3.53) can be expressed as

I55(12) = I35 (fr, fos F) + St [f1(GBii — Grii) f2(G i — Grii)]

Z,5(1234) = IG5 (fis fo, fas fas F) + tr [£1(GBii — Grii) f2(Gii — Grii) f3(G i — Grii) f1(Gpii — Grii)] -
(3.111)

We set z; = z = eT'B, and z_ = 0 in (3.53) and recall the coincidence limit of the calligraphic
Green’s functions in a pure magnetic field, Section 3.4. Then, in this way, we obtain

755(12) = I5g tr(fig- f29-) + I} tr(fig+ fags) + I tr(firy fory) + 155 [tr(fig- fags) + tr(f19+f29—)} ;
(3.112)
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for the two-cycle integral. And

T37(1234) = {Igp tr(f19- fog— fag— fag-) + B2 tr(frge f2g4 f3g+ fige) + LP tr(firy fors fars fary)
+ ;P [tr(flgf f29+ f39+ fa9+) + 3perm} + ;P {tr(flg,ng,f;gg,ﬁngr) + 3perm}
+ IP [tr(flg—fZQ—f3g+f4g+) + 5perm} + Ig? [tr(f1r+f2r+f3g_f4g_) + 5perm}

+ P [tr(f1r+f27“+f3g+f4g+) + 5perm} +IP |:tr(f17“+f27“+fgg_f4g+) + 11perm} } 7
(3.113)

for the four-cycle integral. Here, the functions I;"’s are trigonometric expressions and are explicitly
written in terms of Hﬁ(n) and Hﬁ(n) (see Eq. (3.44) and Appendix C.1).

Finally, for the integration over T', we make the change of variables z = eB,T and set the following
definitions

tanhz ™’
2

z
tanh z
2

(o]
S S S S S — z 5 5 S S S S )
{J2§, J2gaJ2$»J2sp»ng} = /o dze Pe? tanh 2 {155)1527[25[25, (125))27 (125)27 (152)2}

[e] 22
JEP = / T R ——
0

{JSS,JSRJSS,JS‘Q,JSE}:/O dze P {(I50)*, LGOI I 158, 0 155, IR I35}, (3.114)

and

2 2 2
5 (1234) = ﬂ / dz e P - I37(1234),
0.5 2ﬂ2 ‘ ‘ (3.115)
Pocar (12,34) = =2 =7 /0 dze Pe? taJnhzzﬁ.(m) T32(34) .

This allows us to express the four-photon amplitude in a pure magnetic field as

T (F) = T4 (1234) + T30 (2314) + T4 (3124) + T257 (12, 34) + T35 (23, 14) + T3:7(31,24),
(3.116)
for spinor QED. The contribution of a Lorentz four-cycle to this amplitude is
a2 3 S S| S
ngﬁ(1234) " tr [Jop J19-f29- f39- fag— + T f19+ f29+ f3g+ fags + T5° fir fory fary fary

+ J3° (flg—f29+f39+f4g+ + 3perm) + JiP (f1g—fzg_fgg_f4g+ n 3perm>
+ JZP (f1gffzgf f39+ fag+ + 5Perm) + JP ( fir o fors fag— fag— + 5perm)

+ J;P <f17"+f27’+f39+f4g+ + 5perm) + J;p (f1r+f2r+f3g_f4g+ + llperm)}
(3.117)
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and of a Lorentz two two-cycle is

262
mi

r22:5(12,34) =

spin

{3 6e(fig-fog-) tr(fag-fag-) + T3 tr(frgs fogs) trlfags fags)
+ o1 tr(flg f29- )tr(f39+f4g+)+tr(f19+fzg+)tr(f3g—f4g—)}
+ 3 [tr(flg fag-) trfary firy) + tr(fir fory) tr(fag- fag- )|
I3 (619 F2g-) i fag- fags + fogr Fag-) + tr(frg-Fogr + Frgi fog-) t(fag-frg-)]
38 |6 (frg fog ) tr(fors fars) + te(firs fors) 6(fage fag)|
( )tr(
( )tr(

+ J58 [tr J194 f294) tr(fsg— fags + fag4 fag—) + tr(frg— fag+ + f19+ f29-) tr(f3g+f4g+)}

+ Jog tr Jirg fory ) te(f3g— fagy + f3g4 fag—) +tr(fr9- fag4 + f194 f29-) tr(f37”+f47”+)]

+ Jog tr(firy fory ) tr(fary fary) + Joo tr(frg- fogy + fr9+ fog—) tr(fag— fags + f39+f49—)}
(3.118)

The explicit expression of J;¥ can be found in the Appendix C.6 as the integral of a trigonometric
function and as combination of more general functions such as the Hurwitz-zeta and the polygamma
functions (see [153, 166, 167, 168]).

3.9 Low-energy limit of the polarized four-photon amplitudes
in a magnetic field

In this section, we present explicit expressions for the polarized four-photon amplitudes following the
conventions set in [14, 16].

3.9.1 Magnetic field parallel to the scattering plane: B || k;

In this section, we present the four-photon polarized amplitudes in the presence of a pure magnetic
background field pointing in the z axis. The scattering plane for the external photons is chosen as
the xz-plane. For convenience, we define

DD (ke 650k, €50 kg, €9k, €05 F) = 02 (2m) 108 (kg + kg + kg 4 keg) T2 0230%

scal scal

T (5N kg 630 ki, 59 ka5 F) = =202 (2m) 26 (hy + beg + ks + hg) T2 A2dah
(3.119)

since this allows us to compute simultaneously both polarized amplitudes. Then, we express the
general amplitude I'? in terms of the J;’s functions which must be identified with J:’s (listed in
Appendix C.5) for the scalar amplitudes or J;"’s (listed in Appendix C.6) for the spinor amplitudes.

Here, the momenta and polarizations are chosen as in Section 2.5.1 (we follow the conventions of
[14, 16]) with k1, ko as incoming and k3, k4 as outgoing

= (0,

= (0, 0 w, —zw)
3.120

= (wsin#,0,w cos 0, iw) ( )

= (—wsin, 0, —w cos b, iw)

(Xs)

The linear polarizations €,”*’ are given by

A0 = o) e = eV~ (0,1,0,0
L2 _1.0.0.0) (3.121)
e =¥ = (cos6,0,—sinh,0)
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and for circularly polarized, we have

+ L 1o, . e
e = = [55 )+ e )} (3.122)
where €§-+) and 5;7) are for right and left handed circular polarizations respectively.

For linear polarizations, we find that the polarized amplitudes satisfy the following relations
fB [B2222 fB122 [B2211 [B1212 _ pB2121 [B.1221 _ [B,2112
[PB.1112 _ PB1121 _ £B,1211 _ {iB2111 _ 1B,2221 _ pB2212 _ pB.2122 _ [B1222 _ )

(3.123)

and the result of these linearly polarized amplitudes are

pBaL B (1 = cos® 0) (Jas — Jag + 25 — 6.Ts) + 2(1 + cos® ) (Jag + 2J5)}
fB’2222 L; 5 [ 1 —cos 9 J23 + 2]4) + 2(1 + cos? 9)(J29 + 2J5):|
4
poz2 Z . [ (1 — cos20)(Jas + 2J3) + (1 + cos® 0) (Jag + J5 — JG)}
A wz (3.124)
[B.2211 _ 7|1 cos 20)(Jas — Jog + 25 — 6J5) + (1 + cos 8) (Jag + J5 — J6)}
~B,1212 _ w! _ _ _ _
r = B’ (1 —cos0)?Jag + [~3 + (—6 + cos 0) cos 0] .J5 — [L + (2 + 5cos 6) cos 0] Jg
4
rB.1221 — (e; 2 {(1 +c0s0)?Ja9 + [~3 + (6 + cos ) cos 0] J5 — [1 4 (—2 + 5 cos §) cos G]JG}
For circular polarizations, we find that the polarized amplitudes satisfy the following relations
PBAtt — pB-—— [BoAt—— — PB—tt
PBA—+— _ PB—+—+ PBA——+ _ PB—++-
[BA++— _ pBA+—+ _ PB———+ _ [\B,——+~ (3.125)
PBA—++ _ PB4+ _ PB—+—— _ PBA-——— _
where the non-vanishing circularly polarized amplitudes are
PB,++++ w! 2
PB: =GB [(1 — 082 0)(Jaz + Jos — Jog + 2J5 + 2] — 6.J)
+4(1 + cos? ) Jag + 2(1 + 3 cos? 0)(J5 — Jﬁ)]
4
£BA+—— _ (;37)2 [(1 — 082 0)(Jas + Jas — Jog + 2J3 + 2J4 — 6.J5)
+2(1+ cos? 0)(Jog + 4J5) — 4(J5 — Jg) cos? 0} (3.126)
(B, —+— w? 2
e = AL (1 —cos0)”(Ja9 + 3J5 + Jo)
(B, +——+ w 2
4
PBAt+= = 2 (1~ c0s20)(—Jos + Jas — Jog + 2J5 — 2J4 — 6.J5)

(eB,)?

In the next section we look at the case in which the magnetic field is perpendicular to the scattering
plane.
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3.9.2 Magnetic field orthogonal to the scattering plane: B 1 k;

In this section, we present the four-photon polarized amplitudes in the presence of a pure magnetic
background field pointing in the z axis. The scattering plane for the external photons is chosen as
the zy-plane and we use the same conventions as in the previous section (see Eq. (3.119)). Here we
choose the momenta k1, k2 as incoming and k3, k4 as outgoing

k1 = (0, —w, 0, —iw)

ko = (0,w,0, —iw)

k3 = (wsinf,wcos 6,0, iw)
ky = (

—wsinf, —wcos B, 0, iw)

(3.127)

(A4)

The polarizations ¢,”*’ are given by, for linear polarizations,

5:(11) = Eél) = Eél) = 6511) =(0,0,1,0)
—ef =&l = (1,0,0,0) (3.128)

—5&2) = 3512) = (cosf,—sinh,0,0)

and, for circular polarizations,

1
e = % {55,1) + z'gf)] (3.129)
For linear polarizations, the following relations are satisfied
pB1111 [B.2222 [B.1122 _ {1B,2211 pB.1212 _ B,2121 [B.1221 _ PB.2112
’ ’ ’ ’ (3.130)

B2 _ fB1121 _ {1B,1211 _ {82111 _ pB,2221 _ pB,2212 _ PB.2122 _ PB1222 _ )

and the result of these linearly polarized amplitudes are

pE - (e;i)Q :(1 +2c0s? 0)(Jag + 2J5) + 3(Jag + 2J0) + 2(Ja3 + 2J4)
['B:2222 _ (eg:)z (1 + 20082 0)(Jag + 2J5) + 6(J1 + Jo — 6J7 — 2Jg — Joy)
+ 2(Ja5 — Jog + 2J3) + 3(Jor + st)}
pB122 — (e;i)2 (1 — cos? 0)J5 — Jg cos” 0 +2(J3 + Jy — 3Jg)
+ Jo1 — Joo + Jaz + Jos — Jog + J29} (3.131)
rB1212 - (egi)z {(Jze) + J5 — Jg)cos? 0 — 2(J3 + Jy + J5 — Jo — 3J3) cos O
— (Joz + Jas — Jag) cos O + Joy — Jog — 3J5 + JG}
B2l - (eg:)g {(ng + J5 — Jg) cos? 0+ 2(J3 + Jy + J5 — Jo — 3Jg) cos O

+ (Jo3 + Jos — Jag) cos O 4 Jo1 — Jao — 3J5 + Jﬁ}

For circular polarizations, the following relations are satisfied

[B++t — PB-——=  pBeto— _ Bttt PBo—t- _PBiot—+ B+ _ PBotdo

)

[BoA++— _ PBA+—+ _ PB———+ _ [Bi——+— _ PBA—++ _ PB—+++ _ Bt~ _ PBA———

)

(3.132)
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where these circularly polarized amplitudes are given by

4
A w
B+t = 1B [ —4(1 —2cos? 0)(Js — Jg) +4(1 + 2cos? 0)Jog + 6(Jo + J1 + Jo)

+ 8(J3 + J4) — 12(3J7 + 2Jg) + 3(J20 + Jo7 + JQS)
+6(J21 — Jog — Jou) + 4(J23 + J25 — J26)
4
PBA+-- = ﬁ {G(JO F T Jo) + 8(Js + Ja) +A(5Js — Jg) — 12(3J + 2J5)

+ 3(J20 + Jar + Jag) — 2(Ja1 — Jag + 3J24) + 4(Jag + Jos5 — Jo6 + ng)]

4
O w
B+—t- — 1B {4(,]29 +3J5 — Jg) cos? 6 — 4(Ja3 + J25 — Jog) cos 6
—8(J3+ Jy+ J5 — Jg — 3Jg) cos @ + 6(Jy + J1 + Jo2 — 6J7) (3.133)
+3(J20 + Jor + Jag) — 2(Ja1 — Jaz + 3J24) + 4(J23 + Jas — J26)}
4
o w
[Hr== = 4(eB,)? [4(']29 +3J5 — Jg) cos? 0 + 4(Jog + Jos — Jag) cos f
+8(Js+ Jy+ J5s — Jg — 3Js) cos 0 + 6(Jy + J1 + Jo2 — 6J7)
+ 3(J20 + Jo7 + Jog) — 2(J21 — Jog + 3J24) + 4(Ja23 + Jo5 — J26)}
4
. B w
Bt++- — m |:6(.]0 —J1 —Jo+6J7 + 2J8) - 4(J3 - J4)

+ 3(Joo — Jor — Jag) + 2(Jas + 3Jog — Ja5 + J26)}

In this Sections 3.8 and 3.9 (together with Appendix C), we presented analytic results for the
unpolarized and polarized amplitudes for scalar and spinor QED of the leading contribution to light-
by-light scattering in the presence of a magnetic background field. Notice that these results need
to be studied further in order to compare with observations made in heavy ion collisions such as
[31, 32, 33] (see also [45]) or in astrophysical observations [38, 169] in which it is possible to have very
strong magnetic fields. Further details of the presented results in this chapter can be found in [113].
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Chapter 4

Dressed propagators in a constant
background field

In this chapter, we provide a concise overview of the derivation of the dressed scalar and fermion
propagators in the presence of a constant background field, adapted from [67, 68, 69, 70, , ].
This is done with the aim of investigating the polarization effects resulting from Compton scattering
[66], which could be relevant in the observation of Coulomb-assisted birefringence [65].

Theoretical advancements regarding the propagation of both spin-zero (scalar) and spin one-half
(fermion) particles within the worldline formalism have led to the development of master formulas
for various configurations. The master formula for the propagator of a scalar particle moving from
x to ¢’ and interacting with N photons is derived in [126, ] and later generalized to the spinor
case in [68, 69] (see also [124]). Additionally, the propagator of a scalar particle moving in a constant
background field while interacting with N photons is derived in [67]. The extension to the spinor case
of the latter is presented in [70, 170], formulated in terms of a Grassman path integral (as discussed
in this chapter). Furthermore, the scenario involving a particle moving from x to 2’ dressed with
N photons and in the presence of a plane-wave field is obtained in [128], for both scalar and spinor
QED.

4.1 Dressed propagators in a external field

The propagators of an off-shell scalar and spinor particles propagating from z to 2’ in a background
field in d dimensions are [67, 68, 170]

/ 1
DI (A) = (@537,

/ me I . (4.1)
D (A) = (2| |z) = (m + W) (2| ),

m— W

respectively. Here, we use the subscripts ‘sc’ and ‘sp’ for scalar and spinor respectively. The spinor
propagator is valid only for even dimensions (see [68]). The four-momentum of the particle in the
presence of a background field is

m? + 112 + % F,, [y, "]

I# = —pt — e AP = i0" — e A" (4.2)

and I = ~uIlI* with «,, the Dirac-gamma matrices in Euclidean space, see Appendix A.
The use of Schwinger parameters allow us to express the previous propagators as

Dz ()= [are ™R (A7),
0 o (4.3)
D (A) = (m+ W) / dT e~ K2 (A,T) .
0

49
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The kernels K;’“’C"”/ and Ks‘"f”]f/ are defined as

z(T)=x'
KX (A,T) = (x’|e_TH2|x> = / Da(r) e S
z(0)=z
4.4
z(T)=x' o ( )
stpzl(fLT) = (/| T = HTFu " 2] |3y = / Da(r) e S pe= % Jo 4 Pub ") ,
z(0)=x
where P is the “path-ordering” operator and S[z(7)] is the “worldline action”
T
Eudt
Slz(r)]) = [ dr 1 + ieit A, (z(1))| (4.5)
0
Here, the spin term can be expressed as a path-integral over Grassman variables
,Pe—%e fOT dr Fuu [y 4" — Q_d/stmb_l |:/ Dw(T) e fOT dT[%d’ud’u_ie(d"i‘%n)uFH”(¢+%n)u] , (46)
c
with the boundary condition C' = {¢*(0) + ¢*(T') = 0}. The ‘symb’ function is
(Z\/ﬁ) symb (,yalag...an) _ nalnag . nan ’ (4'7)
where y*192-%n ig the totally antisymmetric product of gamma matrices
YEIaR T = gz tn glagfer yfen g =1,2,.n (4.8)
n!
and €212 the Levi-Civita symbol satisfying the convention £'? = 1234 = 1. For instance,
1
Bl — 53 (9 =899, (4.9)

which correspond to the case n = 2.

It is important to point out that these expressions for the propagators are valid for any vector po-
tential A, (z) and that for their representation in momentum space the Fourier transform is employed.
The position space propagators are expressed as

sc/sp /dd /dd l(p93+17 * ) Dsc/sp(A) (410)

for initial momentum p and final —p’, as shown in Fig. 4.1.

4.2 Dressed propagators in a constant field

Now we consider the propagators interacting with N external photons (propagator dressed with N
photons) in the presence of a constant background field. In order to produce the external photons we
choose one background field A%; as a sum of plane waves. And for the constant field A%, we consider
the Fock-Schwinger gauge in which the gauge condition is (z — z.),A*(z) = 0, centered in z.. Then
the total vector potential A* is

A”(I(T)) _ Al]([( ( )) +A Za 1 ik () F;w( ( )7‘%)”7 (4'11)
with this choice, the field strength tensor is

F;u/ 7_ _ sz,ul/ ik (T) + Féiya (412)
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kz kn—1
ki kn

!

p —P

Figure 4.1: Feynman for the scalar or spinor propagator dressed with N-photons. Double lines indicate that the
particles is in the presence of a constant background field.

where
I = klel — ekt (4.13)

is the field strength tensor of each photon.
The use of the vector potential (4.11), and since the terms contributing to the propagators are
those that are multilinear in all polarizations [67, 70, ], the QED propagators in this case become

= / e T KT (A, T) (4.14)
0
and

S (Act) /dTe*Tm (m+ Wet0r) pr(Act’T—€Z¢ M KE N (A, T | (4.15)

=1

for an off-shell scalar and spinor particle dressed with N photons, respectively. Here, the external
photons can be taken as off-shell or on-shell right away. Here we have used the following convention
I, ., =10, + §FL”(¢' — x), and the short hand notation

ct,z’
DN (Aet) = DaclActlz, 2’ k213 ko, 22; i by en) (4.16)

The kernel for scalar particles can be written as [67]

’ 1/2 1 ’ ’ . N
K2 (Aet, T) = (—ie)™ (4nT) 412 [det <Sm Z)] oI Dzt 2 )t i ke

i(z! —x)H v
« H/ dr; e Lot T : Ziv: [(Tl+lzg°1)%w it (1 129501) UEJ (417)

% ezj\szl(kiéijkj72i ity ki —eit Ale;)

lin g1--en

The kernel for spinor particles is [70]

N —d/2 z Yz — (@ —2)Zcot Z(a' —a)+ iy ke
spN(AcmT) (—ie)™ (4nT) det | — e 1T i=1

sin Z
" H/ dT eq(z ;z)“ Ej\le |:(Ti+i2g0l)p,ukl:_z(l 7,ZgB(J¢) UE;I:I (418)

N .
> ezi,jzl (kiéijkj_2l € éijkj_gi.é;jgj)

S]’(](FctaT)

lineg;--en

where the “spin-term” is!

S%(FCMT) _ 27d/28ymb—1 |:/ D/(/)(T)e_ J"OT dq—[%'l/}'t/)—i('l[;-&-%?])(cht—Zil 5(T—Ti)fi>(w+%'r)):| . (419)
C

1Here, v’ is not a Lorentz index. It indicates that the structure of the Dirac-gamma matrices originates from this
spin-term.
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For the moment, we do not perform the Grassman path integral, we do it later using Wick contractions
for specific cases, see [124] for path integrals and Wick contractions.

Here, A;; = A(7i, 7;) is the Green’s function in a constant background with Dirichlet boundary
conditions which can be expressed in terms of the calligraphic Green’s functions as

A7) = 5 G5(7,7) ~ Go(r,0) — G5 (0,7) +G5(0,0)]
1

§(g'3(77 )~ Gp(r, 0)) : (4.20)

A7) = —50(n ),

.A(T’ T/) =

with *A,; = %A(Ti,rj) Af = %A(Ti,rj) as the first derivative with respect to the first and
J

second parameter rebpectlvely Recall that Z = eF,T and Gy, = G(0,7), Gij = Gpij — GBiis

Gij = s 9_G(r;,7;) are the calligraphic Green’s functions that follow the conventions of Chapter 3 (see

also Appendlx A3).

4.2.1 Off-shell amplitudes in momentum space

In this section, we present the propagators in momentum space for which the Fourier transform have
been taken according to (4.10). In the following expressions the momenta of the external photons
can be considered as off-shell or on-shell while momentum of the mass particle can only be off-shell.
In order to take the on-shell limit, it is necessary to first remove all spurious poles at p? = p’2 = m?.
Note that the on-shell calculation is not covered in this thesis, for such case, it is advise to follow the
procedure presented in [128] and references therein.

For the momentum space, we use the short hand notation

N
Dycysp(Act|p,p's k115 k2, €95 .k en) = (2m)%67 <p+p +) ki ) SC/SP N (4.21)
i=1
for the propagator. And similarly,
N
Ksc/sp(Act7 T|P7PI§ k17 €13 k27 €253 kN7 EN) = (27T)d5d (p + pl + Z kl) Kff/sp N> (422)
i=1

for the kernel.
The dressed scalar propagator, in momentum space, with /N external photons in a constant back-
ground field is given by [67]

D = / dTe T K2 (4.23)
0
with the kernel

’ 1/2 N - )
Kffzv = (—ie)N [det( Z)} / o TbT (Zcot 2)7"b
COS
‘e

e (ki ky—2ie* A, k=i A e;)

(4.24)

lin e1---en

where

N
1 v . o v 1
b =p'" + T Eﬁ [(Ti +iZGoi)" ki — i (1 - ngBOi)H Civ) - (4.25)

The dressed fermion propagator, in momentum space, with N external photons in a constant
background field is given by [70]

o0

Dy = / dTe=T™
0

(m+y) Ksplf: KftpN - eZ;{ KfrgpNJrkl) without photon < i >)

(4.26)
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Here, we have used
N
(2m)d5¢ <p +r 4 ki> KPPy = 3 o et / dlx / dz P (o) — ), K2\ (Ac, T) . (4.27)
i=1

After performing = and 2’ integrals, K" /N becomes

C
1/2 Bil\ kj—2ie; A kj—e;°A®
)] / dr; by, e ig= g (il =200 A ey —ei Al e)

Kff:/N = iy, (tan Z)*” (—ie)N [det <cosZ

% e—TbT(ZcotZ)’lb SX/'(Fct;T)

lin e1--en

(4.28)

Finally, the spinor kernel in momentum space is

1/2 N A o re
):| / dr e ide l(kiéijk‘j—Ql €; éijk]‘—ai éijsj)
K2

pp’  _ (. \N
Koy = (—ie) {det (cosZ
(4.29)

% e—TbT(Zcot z)"1 S]’C(FctaT)

lin e1--en

In the following sections, we specialize the propagator expressions (4.23) and (4.26) to the case
of N =2 i. e., the off-shell amplitude of Compton scattering in a constant background field. Subse-
quently, in order to simplify the obtained expression, we consider a pure magnetic background field
of constant strength and special kinematics.

4.3 Off-shell Compton scattering in a constant field for scalar
QED

In this section, we consider the scalar propagator (4.23) for N = 2 and expand it to linear order in
the photon polarizations €; and 5. The amplitude of the scalar Compton scattering in a constant
background field (see Section 4.2.1 and Fig. 4.2) is

dT e~ Tm* KPP (4.30)

sc?

Dec(Act|p, p's k1613 k2, 62) = (21)46% (p+ p/ + k1 + ko)

For this case, the kernel of an off-shell scalar particle in a constant background interacting with two
photons is

1/2
K ! . 1 — co 1
= (=ie)” [det (COSZ)] / dTl/ dry T (Ecct BT

XGZ?, (ki A kj—2iei *A, kj—e; *A%e;)

i,j=1 =ij

(4.31)

)
lin e1e9

where
b= p" Z (7 + 12G0i) ki — (1= 12Gp0i) " 21 - (4.32)

For the explicit expressions of the Green s functions, see the previous chapter or Appendix A.3.
Expanding b in (4.31) such that the dependence on the polarizations is explicit, we can rewrite
the kernel as

1/2
1 - .
K?p/ _ (—ie)2 [det ( ﬂ / dridr e—TbOT(Zcot Z)" b 02k1A k2 +k1A | kitka Ay kn
0

s¢,2 cos Z

« e2ie[* A kit A ke~ (1-iG5102) (2 cot 2) " Hbo] o~ 2iea[*Apyka Ay k1 —(1-iG 520 Z ) (Z cot Z) ™ bo]

% 67261['é;27%(lf’ig'Bl()Z)(ZCOtZ)_l(lfiZg.BQQ)}EQ ,
lin e1e9

(4.33)
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k1 k2

—p—
7 TN
+ N
Py NS4

Figure 4.2: Compton scattering diagram for a scalar particle. The double dashed line indicates that a scalar particle
propagates in a constant field.

where b is the polarization independent part of b*. Notice that this kernel can be written as

Kfcp; = (—ie)? {det (COSZH 1/2 /OT drydry e~ Tz g=2ie1bl g=2icabs o= Ferbiaes . (4.34)
by defining the vectors b/, the matrix by and the function hio as
bo =1/ + | (- 12G01) by + (72 +12Gp0n) b
by = Akt + *Apks — (1 —iGp10Z) (£ cot Z2) by,
by = *Agoks + *Agik1 — (1 —iGp20Z) (2 cot 2) by, (4.35)
%512 ="A%, - % (1-iGp102) (Zcot 2)' (1 —i2Gpo2)
—This = 2k1 A ks + k1A k1 + kaDogoks — THE (2 cot Z2) by .
Expanding the exponential in (4.34) at linear order in each polarization £; and 3, we get
) /2 T 9
ngz = —¢? {det (cosZ)} /0 drydry e~ T M2 [—T€1512€2 + (—2i)%e1by €2b2} . (4.36)
Finally we re-scale to the unit circle 7; = T,
/ 1 \1"* [* 1
Ky = 2¢°T? [det (COS z)] /0 duydug e” "M (Telblgeg +2¢e1b e2b2) : (4.37)

The Green’s function Aij and its derivatives can be written in terms of Gp;;, G Bij and G Bij

2k1A 5ke = k1 [GB12 — GB1o — GBoz2 + GBoo) k2
k1A k1 = k1 [GBoo — GBiol k1,
kaAooke = ko [Gpoo — Gpaol k2,

A, = %(gmz - 9310) ;
*Ay = %(9321 - ngo) : (4.38)
1

A = *(Q'Boo - gBlo) ;

*Agy =2 (gBOO - 9320) ;
1

[l V]

[\V]

*AS, = —=Gpio.
19 2g312

Here, the calligraphic Green’s functions are thought to be written in terms of wu; variables, see Ap-
pendix A.3.
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4.4 Off-shell Compton scattering in a constant field for spinor
QED

In this section, we consider the fermion propagator (4.26) for N = 2 and expand it to linear order in
the photon polarizations €7 and 5. The amplitude of Compton scattering in a constant background
field (see Section 4.2.1 and Fig. 4.3) is

sp,1 sp,1

DY, = /dTe—Tm [(m+p)KW + KPPy — e K20 (hy, e0) — e, K202 (kl,el)] :

(4.39)
Following the scalar calculation, the different kernels of an off-shell spinor particle in constant back-
ground interacting with two photons are

1/2
/ 1 . .
K, = (—ie)? [det (cosZ)} /0 dridry e Thiz g=2icibig=2iesbs o= Ferbizes S (T, Fet)

y
lin €12

1/2
— —2; —92; _2
>:| / dridrs by, e Thlge 2251ble 2ie2bo e Fe1bi2es S;(T, Fct) ,
0

lin e1e2

Kft;[j; = i’yu(tan Z)'M/(—Z.e)Q [det <

S Fa) =2 2 [ [ Dutryem Kl i)
c

cos Z

)

(4.40)

where the vectors 0!, biy and the function hjy were computed in the scalar case, Eq. (4.35).

kl k2

!

P —P

Figure 4.3: Compton scattering diagram for a spinor particle. The double solid line indicates that a spinor particle
propagates in a constant field.

For the one-photon kernel,
Ksp(Act |P,P/§ ki, 51’) = (27‘—)464(]9 +p/ + kz) Ksp 1(ku 51) 9 (441)

we have

cos Z

1 1/2 T
K (ki eq) = (—ie) [det( ﬂ / dr; e Thu@) o=2ihi®) GI(T By f)|
0 e (4.49)

SY(T, Fey, fi) = 272 symb ™" U Dy(r)e o d‘r{%ﬂ”ﬁi(’PJrén)[eF5(TTi)fi](¢+;n)}:| 7
c
where

hi(p/) = .Aiiki — (1 — ig.Bioz) (Z cot Z)il |:p/ + %(Tz + ZZgOz)k7:| y
. . (4.43)
—Thii(p/) = kzéukz -T I:p/ + Tki(n - 'Lgloz):| (Z cot Z)_l [p/ + T(Tl + Zzgoz)k{| .

At this point, it is necessary to perform the fermionic path integral.
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4.4.1 Fermionic path integral and Wick contractions

For the path integral over Grassman variables in equation (4.42), we define

Iy, = / Dip(r [ ar{3vi—i(v+in)leF—s(r—r)fi] (v+3n)}

(4.44)
Of(e1)

and expand up to linear order with respect to 1

Tps = /Cmme‘ fOT dr[3y—i(Y+3n)eF (v+3n)] {1 i (1/,(71) + 77) fi (Mm + ;n)] . (4.45)

The previous path integral will be non-zero only for an even number of ¢(7;) in the integrand. Here
the Gaussian path integral is well known [124] to be

Lyo= / Di(r)e Jy arlgud—i(vgm)er(v+im)] _ 2% det? (cos Z) edn(tan 2)n (4.46)
c
In this case, we have only the following Wick contraction

Je DY (r) ¥(7)¢(7s) e foT dr[Lypi—i(p+3n)eF (v+4n))
fc Dy(r)e [ dr[svi—i(v+dn)eF (v+4n)]

= (Y(r)¥(7)) - (4.47)
This Wick contraction is proportional to the fermion Green’s function in a constant field [123]

d .\ 1
(W) = (ol (45 = 20eF) 1) = 301 (4.48)
Writing Iy 1 in terms of Wick contractions, we get
. 1 v
Toa =T |1 (tw2uty+ o ) 17 (4.49)
Then, in terms of calligraphic Green’s functions

i 1

SI(T, Fe) = det? (cos Z) symb ™" {64"(““12)” [1 - = (g;iﬁl + 77 n ) ‘“’] } , (4.50)

valid for arbitrary even dimension.
Notice that, in d = 4, the exponential in (4.50) has the following Taylor expansion

’i ‘ 1/7i\2
ein(tanZ)n — 1 4 %n(tan Z)n+ 5 (i) n(tan Z)nn(tan Z)n, (4.51)

due to the fact that 5 is a Grassman variable and the square of it is equal to zero. Let’s define

So(2) = symb ™" {e%n(tanz)n} ’

1 (4.52)
S1(Z, f1) = Zsymb™* [ew“aﬂ)”g“u +5 <1+ Jn(tan 2)y ) ' ] .
For the present case, we require the following symbol functions, from (4.7),
1
symb ' (n"n?) = —[y*,4"] = 20", ot = ——[v*,v"],
ymb™"(n"n") = —=[v*,~"] 507" (4.53)

symb ™! (" n7n’) = 7P symb ™ (' PP yt) = MU (iV2) PPyt = 4P P

where £#V°7 is the fully antisymmetric Levi-Civita tensor with 1234

Sp and S7 in terms of gamma matrices, we have

= 1. This allows us to express

. -\ 2

So(Z2) =1+ Ea“y(tan Z) 4+ 2 (Z) gM7P 4P (tan Z)* (tan Z)7°
2 4

1 . (4.54)

S1(Z, f1) = 3 So(Z2) Gy + o™ + %5‘7”‘“’ 75 (tan Z)"p} m.
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Therefore, the spin contribution in equation (4.42) is
SY(T, Fu, f;) = det? (cos Z) [SO(Z) —iSi(2, fi)} . (4.55)

Similarly, the spin contribution in equation (4.40) is
SY(T, Fer) = det? (cos Z) [So(2) —iS1(Z, f1) — iS1(Z, f2) — 52(Zaf1f2)} ) (4.56)

for the step-by-step calculation, see Appendix B.2.1.

4.4.2 One- and two-photon kernels

In this section, we summarize the kernel results at linear order in each polarization ¢; and e2 (here
we have made the re-scaling 7, = T'u;). For the two-photon kernel, we have

, 1 1 1
K, = 2€2T2/ duyduy e~ Th2 |:(T51b1252 +2¢e1by 82172) So 4 €202 S1(f1) 4+ €101 S1(f2) + 252(f1f2)] .
0
(4.57)

The two-photon kernel mixed with the external field is

1
, 1
ngjZ = 24e2T? fy“(tan Z)IW / duydus 67Th12 { |:(a1€1)u6262 =+ (a252)”51b1 + bg (T€1b12€2 +2e1by €2b2>:| So
0

+ bg [6252 S1(f1) +e1b1 S1(f2) + 352(f1f2):| + % [(a1€1)"S1(f2) + (a2e2)"S1(f1)] } )
(4.58)

with a; = %(1 —iZG Boi). And finally, the one-photon kernels are

1
Kgﬁ{)l%l(k%ﬁz) = —el / duy e~ Tha2(+k) [2 g2 ha(p’ + k1) So + Sl(fQ)} ;
0 (4.59)

sp,1

1
KPP 2 (ko) = —eT/ duy e~ Thn( k) [261 hi(p’ + k2) So + Sl(fl)} :
0

Here, we collect the expression of every term in the one- and two-photon kernels. First, the spin
terms are

. LN\ 2
So=1+ %o”“’(tan Z)#V + 2 (i) chvap Vs(tanZ)W(tan Z)ap7

1 v 1% ?: g v
1) = 5 [So G+ + 5o tan )| F

4.60)
]' v g vo v g v o vo (
So(f1f2) = 1 [SO< F11975 + 2G50, F12) + (g;n(f P+ 0" Grhy +4 G0 )
5 i v _afo afuv o afvo
+eIP 7+ §(tanZ)ag (g;ng Pob t e*PrvGRl, +4Ghhe™? )’YS] Jruwf2.00 -
Second, the bosonic terms (which do not contain gamma matrices)
1 . .
bo=p"+ T [ (11 +12Go1) k1 + (12 + 1Z2Gpo2) k2} )
b1 = .Allkl —+ .A12k2 — (1 — igBlOZ) (Z cot Z)ilbo,
by = *Agyko + *Ay k1 — (1 —iGp202) (2 cot 2) by, (4.61)
1 . 1 s _ o
?blg = .A12 — T (1 — 193102) (Z cot Z) 1 (1 — ZZgBOQ) y

7Th12 = 2k1é12k2 + kléllkl + kQAQQkQ — Tbg(Z cot Z)ilbo .
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And third, the bosonic terms for the one-photon kernel

. 1
hi(p') = *Ayki — (1 —iGpinZ) (Zcot Z)7" [p/ + T(Ti + iZQOi)ki:| ;
1 1 (4.62)
—Thii(p') = kildyiks — T |p' + Tki(Ti - igiOZ):| (Zcot 2)~* [P/ + T(Ti + iZgOi)ki:| :

In the next sections, the above expressions are simplified by specializing to a pure magnetic field and
forward scattering.

4.5 Pure magnetic field

In this section, we present the calligraphic Green’s functions in the case of a pure magnetic background
field of constant strength. Following [123], we choose the magnetic field pointing along the x axis, in
Euclidean space,

0 0 O
_ 10 0 By 0
F= 0 -B, 0 o0l (4.63)
0 O 0 0
For convenience, we define the following projectors
0 0 0 0 00 0 O 1 0 0 0
~_ 10 0 1 0 01 00 _ 10 0 0 O
F=lo -1 0 o] =10 01 0] M=1lo 00 of “
0 0 00 00 00 0 0 01
such that for z = eT'B,,, we have that
2 = (-D"gL 2, 2T = () EST and gl 440 =1 (4.65)
Then the calligraphic Green’s function G;; = G(u;, u;) can be expressed as
1 1 1 1 . N
i =T Gij — = -2 |Gy — = 52 156 — Gij| iF'|
oy =7 [(645) m= 5z (C= ) s+ (5= 6
: ) 1\ -
Gpij = Gij g+ Sij g1 — (Cz“ - ) ir,
z (4.66)
. 2 S
QBij = T |:5(’U,1 —Uj)l —gH —zCing_ +ZS” ’LF:| 5
Grij = Grij (gu + CFij g1 — SFij ZF) ,
where, we have defined?
sinh(z G;) sinh(z G;)
S, = J Spis = Y
i) sinh(z) Fig(2) cosh(z) ' (4.67)
cosh(z Gyj) cosh(z Gij) .
Cig(z) = =200 Crig(z) = =2
() sinh(z) Fig(2) cosh(z)
The coincidence limits of the calligraphic functions for this case are
1 1 1
i =—1|= 5o | cothz — — )
gB {6 g+ 5 <CO z z) QL}
(4.68)

. 1 N
Gpii = — <C0thz > P,

z

Gris = —iFtanh z .

2These definitions are independent from those used in Chapter 3.
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The calligraphic Green’s function with no coincidence limit (G;; = Gpi; — Gpsi) can be written as

kS
2z
gij = Gz‘j gy + Sij g1 — (Cij — coth 2) iF.

1 . S
G =T Gijg||_2(0ij—cothz)gl+ (Sij — Gij) i |

(4.69)

In a pure magnetic field, the determinant appearing in the propagators (4.23) and (4.26) becomes

1

det ™2 (cos Z) = : 4.70
¢ (cos Z) cosh z ( )
The pure electric case is obtained after replacing
0 0 0 1
P 0 0 0 O -
F— 0 00 ol gL < g, z —ieTE,, (4.71)
-1 0 0 O

in (4.66).

In the following sections, we apply the field configuration described earlier to compute the scalar
and spinor QED amplitudes for Compton scattering. Our focus is on the forward direction, aligned
with the magnetic background field. In this calculation, we consider the external photons as on-
shell, with linear polarizations assumed to be orthogonal to each other. Our objective is to explore
the polarization effects arising from Compton scattering [66], which could have implications for the
observation of Coulomb-assisted birefringence [65].

4.6 Compton scattering in a magnetic field for scalar QED
In this section, we present the off-shell amplitude of Compton scattering in a pure magnetic back-

ground field of constant strength for scalar QED and specialize it to the forward scattering, aligned
with the direction of the magnetic field. The Green’s function A;; and its derivatives appearing in

(4.30) for a magnetic field in d = 4, after replacing Gg;;, G Bi;j and G Bi; by the expressions in Section
4.5, become

2k1 A0k =Tk - [(Glz — G0 —Go2) g/ — % (Cra — Cro — Cp2 —cothz) g1
+ % (S12 — S10 — So2 — G12 + Gio + Go2) ZF} k2,

k1A k= =Tk - |:G109 + % (coth z — 010)94 k1,

kolAgoko = =T ks - {Gzog + % (cothz — CQO)QJ_:| ko,

‘A, = [(Gw - Glo) gy + (S12 — S10) 91 — (C12 — Cho) Zﬁ‘] , (4.72)

— DN =

Ay =2 [(Gzl — Ga0) g + (S21 — S20) g1 — (Ca1 — C20)Z'F] ;

[\V]

1 A
‘A, = ) [GIOQH + S1091 + (cothz — Cqp) ’LF} ,

1 A
*Ay = ) {Gzogu + Sa2091 + (coth z — Cyp) zF} ,
1

.A;Q = _T [5(uz — Uj) 1-— gH — zOz-j gl + ZSij Zﬁ} .

4.6.1 Forward scattering aligned with the magnetic field

In order to simplify the exponent his and therefore be able to perform the integral analytically, we
make the following assumptions:
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1. We consider the forward direction such that all momenta are parallel to the B-field, implying
that . R
ki-g1 =0, ki - F'=0, p gL =0, p - F=0. (4.73)

2. Both photons are on-shell and their polarizations are perpendicular to each other. Which
implies
k‘i-€j=O, €i-gH=0, 51'6220. (4.74)
These assumptions allow the exponent in (4.37) to become
h12 - (p/ + U]kl + U2k2)2 = pl2 + 2U1 p, . kl + 2’LL2 p/ . ]fz (475)
and the terms linear in the polarizations simplify to (remember z = eB,T)
E1'b120, 52'b2:O7
] A (4.76)
g1 b12 cEQ =2 [—512 + tanhz (810002 + 502010)] 1€1 F cE9.

Then, the kernel in (4.37) becomes

Kpp2 = 2Z€2T(

1
) / duydug e T2 [~ 815 + tanh z (S10Co + S02C10)] €1 - Foey. (4.77)
coshz/ Jy

This means that for the propagator we must perform the following integral

oo

1
I, = ‘/e*Tm2 T < z ) / duydus eiThm [*512 + tanh z (510020 — 520010)] . (478)
coshz/ J
0
All integrals are performed with Mathematica [152], such that the propagator becomes

(P k2 —p - k1)eBy
4[(eBz)? — (0" - k1)?|[(eBz)? — (1" - k2)?]

Dpp2 = 216 €1 F 13} (Isc,l + ISC72 + Isc’g —+ Isc,4) . (479)

Here, we have set

(P -k —p' - k1)eB,
A[(eB2)? — (p" - k1)?][(eBz)? — (p" - k2)?]

where Ig.; can be written in terms of di-gamma functions ¢ (z)

Isc =

(Isc,l + Isc,2 + ISC,S + Isc,4) ) (480)

Tp=1— _m2+p2_(eBm)2+p"kzp’-k1 1 (m?+p*+eB,
se,1 | p ko +p Ky eB, 2eB, ’
Ieo=1-— _m2+p/2+ (eBz)* +p - kap' - k1] 1 m2+p/2+€Bz
se.2 | p ko +p -k eB, 2eB, ’ (4.81)
r B)pr"kzp/'kl 1 m2+(p’+k2)2+eB ’
Is —1— 2 / k 2 _ (6 x x
c,3 _m +(p" + k2) o ks —p eBxﬁ 2B, ,
[ B.)? —p kap k1] 1 m2+ (p +k1)?> + eB
I —-1— 2 / k 2 (@ x x
sod A T S [ %8B, ’
with S(z) defined as (see [166, 167, 168])
1 r+1 x d
s =3[0 (S5) -0 (3)] . v = £ mrG). (1.52)
which also have the following integral representation
x+1 oo et
= dt 4.83
b ( 2 > /0 cosht (4.83)
and series expansion
1 r+b o e_$t E2n —zt = o

n:O n:O

FEs,, are the Euler numbers.
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4.6.2 Minkowski space representation

In the previous sections, we have considered all particles to be ingoing. Now we consider a realistic set
up in which k; is the momentum of the incoming photon while k5 is the outgoing photon. Furthermore,
we change to Minkowski space by applying the following replacements®
Guv — _(77#11) = _diag(la_]-v_la_l)v
ko — =ik,

T — —is, (4.85)
M0,
In particular, for the external photons in the forward direction, we have
kin = win(1,1,0,0),
kout = Wout(la L0, O) ) (4.86)

Ein = (0707 170) 9

Eout = (07 07 07 ]-) )

with pin, Pous parallel to kin, kous and the magnetic field B = (B, 0,0). We use the following definition
Dscal(pimpout; kim €in; kout; Eout B) = (277)4 54 (pin — Pout kin — kout) Dgcal - (487)

Then, the scalar Compton scattering in the forward direction can be expressed as

s 1
. . K B
Dgcal = 26% i - €F - €out/d5 s / duidug e m? g=is(Pout —urkin+uzkour)” K(w, uz eBs) S)a (4.88)
/ 0 cos(eBs)
where
K (1, s, 2) = _sin(z Glg) n sin(z Glo) cos(z Gao) 3 sin(z Gag) cos(z Glo) . (4.89)

sin z sin 2 COS 2 sin z COS 2

Notice that the field strength tensor F** and Minkowski metric n* = /" +77ﬁ ¥ now are expressed

as
0 0 O 0 0 0 O 0 1 0 0 0
00 O 0 0 0 O 0 0 -1 0 O
F = , = , = 4.90
00 0 B =100 -1 o0 M=10 0 0 0 (4.90)
0 0 —B 0 00 0 -1 0O 0 0 0
The scalar propagator (4.88), after integration, can be written as
. Ein ° (GF) * Eout (pout : kout +pout : kin)
Dsca == *162 Isc + Isc + Isc + ISC ) 4.91
: A(eB)E — (Doms - ki 2[(€B)2 — (pons - Fou)?] ot ¥ Fre2 T s Fhsea) o (491)
where?

1 pi, —m?®+eB
2 2 in
Igeq1 =1~— [pin*m *)\—] eBB<2eB> )

1 2. —m?+eB
ISC,Z =1- [pcz)ut 7m2 +>\—] 7ﬂ <pt> )

v 2l 9 9 (4.92)
I =1 — [(Pout + kour)® —m® = A] eLB 5 ((pout + kau;)eB— m® + eB ) |
Lica =1~ [(Pout — kin)? —m® + AL ] e% 3 ((pout - km2)e2B— m? + eB) .
For simplicity, we have defined A1 as
o (B o s Ko o)

Pout * kout ipout : kin
3Notice that in Appendix A and in this section the Wick rotations are different. This is due the fact the here we
consider that m? < p? for the square of the external off-shell momenta.
4In deriving these expression, we have considered that p?> > m? and used that 8(1 — z) = —B(x) for the function

B(=).
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4.7 Compton scattering in a magnetic field for spinor QED

In this section, we present the off-shell amplitude of Compton scattering in a pure magnetic back-
ground field of constant strength for spinor QED and specialize it to the forward scattering, aligned
with the direction of the magnetic field. The fermionic contributions S; of (4.39) for the pure mag-
netic field in d = 4, after replacing the calligraphic Green’s functions by the expressions in Section
4.5, are

So=1+ %J’“’FM tanh z,
. o ) (4.94)
Si(f) = 3 [UW —4 <SO F, — §€Upl“, 75F0p> tanh z} I,

o

1 " " o
Sa(fif2) = 4{50 [2 (gu + Cr1291 — SF121F)W (gu + Cri291 — SFlQ'LF)V — F,, F,,tanh’ Z]

1. A A .
+ EFO‘[} |:(Fuy5aﬁap + FapEaﬂ,“,) tanh z + 4iG 12 (gH 4+ Cr1291 — SplziF)M Eaﬁug] fy5 tanh z
+Euvap” — i <FMVU<TP + Uuuﬁop> tanh z + 4G 12 <g|| + Cri291 — SFlQiF) UW} I
pp
(4.95)

and the bosonic contributions are given by (4.72).

4.7.1 Forward scattering aligned with the magnetic field

In order to simplify the exponents in the kernels and therefore be able to perform the integral
analytically, we make the following assumptions:

1. We consider the forward direction such that all momenta are parallel to the B-field, implying
that

ki-g. =0, ki-F=0, p gL =0, p - F=0. (4.96)

2. Both photons are on-shell and their polarizations are perpendicular to each other. Which
implies

ki'EjZO, Ei'gH:O, 61'82:0. (497)
With such assumptions, the exponents become

hiz = (p) +urks + usks)® = p'* +2u1 p' - k1 + 2uzp’ - ko,
hin(p + ko) = (0 + ko Furk))> =p2 +2p ko +2urp - k1, (4.98)
hgg(p/ + ]Cl) = (p/ + kl + u2k2)2 :p/2 —+ 2])/ . ]{31 —+ 2U2p/ . kg ,

and the terms linear in the polarizations simplify to (remember z = eB,T')

£1.b1 = €1.hy = €9.by = £9.hy = y*(tan Z),,,b5 =0,

61.()12.62 =z [—512 + (510002 + 502010) tanh Z] iﬁl.ﬁ‘.sg s

Y (tan Z),, (ae:)" = —% ztanh z (Sio ¢.+1Cio 'y.}%.si) ,

i (4.99)
So=1+ ia”VFW tanh 2,

Si(fi) = %C’xwfilw = _%i¢i7

So(f1f2) = €pvop f{w QJP 75'
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Then, the kernels become
K7, = ezT/ durdug o~ T2 {2 Soz[ S1a + (S10Ca0 —Sgoclo)tanhz]zgl ol 62+T52(f1f2)} :
Kftzf; = —e’T ztanh z /01 duyduy e~ Th2 {(Sw ¢, +1iCro 7~F-51> Koty + (520 #y +1iCx0 W'F‘@) kl%} ’
sp,1

1
K52 (hy, e0) = T / duy @ TRk g

1
0 +k —T(p'+k k1)?
KPP 2 (ko) = eT | duy e W Rtk g g
0

(4.100)
We recall that the spinor propagator interacting with two photons in a background field is
2
Dé’fi’z = /dTeiTm {(m +¢) Kpp2 + Kftpz —ef) K§;§I)1+kl)(k2352) —ef, K:ép1+k2)(k17€1)} .
0
(4.101)

Notice that for the pure magnetic case in the forward direction, we need to compute the following
integrals

o0

1
Isp71 = /e_Tm2 T/ duidus e_Thl2 z [—512 + tanh z (5’10020 — 520010)] ,
0

0
00

1
Ispg = /emeQ T/ duidus 67Th12 ztanh z [7»912 + tanh z (510020 — Szoclo)] s
0

Qv
I@p 4

0
x 1
I:gj?) / —Tm? T/ duyduy e~ TM2 2 tanh 2 (5’10 g’ +1iCho F””) ,
0
2 1 A

/e*Tm T/ dulduQ efThmztanhz (Sgo gliV‘FiCQO F,uu) y
0

0

1 2 /2 / /
2 -k k
Isps =/e_Tm T2/ duyduy e” ™M = — 2(m jp 2"'79 1+P2 22) -
' J 0 (m? + p?)(m? 4+ p?)[m? 4+ (p' + k2)?|[m? + (v’ + k1)?]

1
, 1
Lpg= [e T T / dug e~ TP Thituzka)* _ ,
P / 0o (m? +p?)[m? + (p' + k1)?]
0
Isp7 = 7eTm2T /1 duy o~ T +hoturkn)? _ ! .
Sp’ 0 (m? +p?)[m? + (p' + k2)?]
0
(4.102)
These integrals can be performed with Mathematica [152] or using the integral identities in [123].
Similar as the scalar calculation, we see that the propagator (4.101) can be written as
Dpr =e (m —|—p/) (2281 F62 Isp 1— €1. FEQ loiaud Fuu Isp 2+ Epvop flwf;p 5 Isp7 )
(4.103)

— ¢ ('Yulslgjs €1v k2¢2 + ’YH«I;;)UA €2v k1¢1 + Lps ¢1%2¢2 + Isp7 ¢2k1¢1) :

Here I, 1 to Isp 4 contain information about the magnetic field. And Iy, 5 to Isp 7 have no interaction
with the magnetic field therefore such terms can not contribute to the on-shell amplitude.
In order to have compact expressions for the integrals (4.102), we define

Dp/ _ m2 +p12, Dp’l _ m2 + (p/ + k1)27

(4.104)
Dp — m2 +p27 Dp’2 — m2 4 (p/ + k2)2,
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and decompose the integrals into four parts as

[sp,l = IO (Isp,ll + Isp,12 + Isp,lB + Isp,l4) 5
Isp,2 = IO (Isp,21 + Isp,22 + Isp,23 + Isp,24) y

v 4.105
I8 s = T30 (Isp 31 + Lsp 32 + Lsp 33 + Lsp3a)"™ ( )
I8y = Tao (Isp,a1 + Lspaz + Ispaz + Lspaa)™”
Now, we simply present the results for each integral. For I, 1
Io = (p' -k —p' - k1)eBy
A[(eBy)? — (¢ - k1)?][(eBy)? — (0 - k2)?]’
B, —p -k B, —p -k D
Lyt = (Bs —p' - k1)(€Bo —p'-2) | 5 ( Dp
(p/ ~ko+p - kl)D 2eB,;
(eBw +p'- kl)(eBa: +p - kQ)
Ipio = — ,
P2 W Fatd/ E)Dy 2eB (4.106)
I - (BB;L + p/ . kl)((’,BI — p/ . k2) Dp/2
=p,13 = ' ky —p' - k1)D 0\ 5B,
(p' k2 —p' - k1)Dypro eB,
_ (eBw - p/ i kl)(EB$ +p/ ) k?) Dp’l
Isp,14 - = + B .
(p/ ! k2 - p, : kl)Dp’l 2€Br

For Iy o

Lpor = -1_ (eBy —p' - k1)(eBy —p' - k2)] -D B (€B$)2+p’~k1p’-k;2] 1 6( D, >
7 (W' k2 + 9 k1) Dy J p ke +p -k

Isp oo = _1+ (eBy +p' - k1)(eBy + ' - k) | — (b, + (eBx)? +p’.k1p’.k2} 1 ﬁ( D, ) |
7 (b k2 +p" - k1) Dy J poka+p -k

Iy 03 = _1 _ (eBy +p' - k1)(eB, *p/'kz)_ D,y (eB;z:)2 p’.klp’.kz] 1 8 (Dp/2>

| e E e ,

(eBy —p - k1)(eBy +p - ko) (eBx)? —p' -kyp’ - ko] 1 Dy
IS - 1 — D / .
P * (0 ko—p ki)Dpr | | ? L o ke —p ki eB, h 2¢B,
(4.107)
For Iy 3
I _ 1
I T 4[(eB,)2 — (¢ - k)0 ko
eBm - . -
Lpa1 = Di(zF +9g1)(eBy —p' k1) — (ieB, F —p k1 g1) < >
p
eB; . » ,
Ips2=—7, (iF —g1)(eBy +p k1) + (ieB, F — p' k1 g1 )B (4.108)
p/
eB, / . n ’
Lsp,33 = 750 F—gi)(eBy+p k) — (ieBy F —p' k1 g1 )B 2
p'2
B, . - )
Isp 34 = ) (iF+g1)(eBy —p' k1) + (ieBy F—pk g1)pB
p’'l
And for Iy, 4
I _ 1
P T A[(eB)2 — (¢ ko)l
eB, . ~ ) .
Lpa1 = D—m(zF +g1)(eBy —p'ka) — (ieBy F —p'kag1) (2 )
P
eB,; ,
Iipa2 = —5 “(iF —g1)(eBy +p' ko) + (ieBy F — pl ko g1 ) (4.109)
p/

By, ~
fmm:—DQ@F+mﬂd%—ﬂb)(wBF’pkwnﬁ< )
p
eBa: e . ral D
Tipas = Dot (i F—g1)(eBy +p ka) — (ieBy F —p'.kagy) ( )
p
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4.7.2 Minkowski space representation

Here, we change to Minkowski space, as we did for the scalar amplitude, by performing the replace-
ments in (4.85), we assume scattering in the forward direction parallel to the magnetic field and
photon kinematics given by (4.86), and we use the following convention

DSpin(pinapout§ Ein, €in; Kout, €out; B) = (27T)4 54(pin — Pout + Kin — kout) Dspin . (4110)

Then, the spinor Compton scattering in the forward direction can be expressed as

00
1
. 2
Dspin = —62 / dss /O dU1dU2 e—HS m {'YILJMZI (U,l, GBS)E;/H %OUt¢out - 'YMJMV (Ug, eBS)Ecy)ut kin¢in

T 2 <m + pout) Ein * (er) * Eout [1 + éZ#VF‘/LV tan(eBs):| K(u17 Uz, eBS)} eiiS(pout7UIkin+UZkout)2 )

(4.111)
where S = L[y# 4¥], K (uq,us, 2) is given by (4.89) and
J(ug, 2) = = (Sm(z Gio) , | 4 LeoszCio) F> . (4.112)
cos z B cosz
The spinor propagator (4.111), after integration, can be expressed as
Dagin = i€?[2 (m+ ., ) - (F) - ont (Tup = 355 Fy i)
p pout p B D, 2 (4113)
- i'YuIsﬂpljgein,v kout¢out - Z"YMIs#py,zl‘fout,v %in¢in:| :
For simplicity we define
/ (EB :l:pout : kin)(eB :l:pout . kout)
= . 4.114
T Ko + (5 (E)pout - i @
Now, let us compute (4.105). For I, 1
Iy = — Pous * Kout + Pout - Fin
4[(6B)2 - (pout : kin)2H(eB)2 - (pout : kout)z} ’
)\/ p2 _ m2
I, - =+ fn 7 49
p,11 p?n — m2 B ( QBB + ) 9
N p2 _ m2
Is — +— _ out 1 .
R g ﬂ( 5p T ) : (4.115)
)‘I ou + kou z— m2
Isp,13 — ++ - s — B ((p t t) + 1) ’
(pout + kout) —m 2eB
)‘/77 out — kzn z - m2
Isp,14:_ P} 2_B((p ! ) +1>
(pout - km) —m 2eB
For Iy, 2 (see (4.93) for Ay definition)
_ N, B
Iip o1 = _1 - plgn_mQ] [Pm —m® — < ) )
- I »
IS =1 +— _ 2 )\ out 1 ,
e R
[ N (Pout + Kout)? — m?
I = [1- ++ _ o ou 2 2 A L out out 1),
P23 (pout + kout)Z - m2:| [(p ¢ + t) mn +] €B ﬁ 2€B *
[ N 1 (Pous — kin)* —m?
Ipos = |1 — [(Pout — kin)? —m? + 1] — o m 1).
P24 L * (pout - kq‘,n)Q - m2:| [(p ‘ ) me +} eB p ( 2eB * )

(4.116)
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For Iy 3
I _ 1
P30 4[(GB) (pout )2 Dout * Kout ’
eB(eB Dout ) p2, —m?
ISHI;),31 = p —m2 (BF UL) - (’L@F + Pout * kin nL)B <2€B +1 5
eB(eB + pout Kin) . Poue — M
Isup,32 pout F +nL |+ (ZBF + Pout * kin nl)ﬂ ;673 +1 s
GB(CB + Pout * kin) 1 . (pout + kout)Q - m2
Il = =F - F out * Kin 1 5
P33 o ko2 —m2 \BL ) T e+ poue - kinn ) 2B +
eB(eB — Pout * kin) 1 . (pout - kzn)2 - m2
% ., = — —F - F out * Kin 1) .
o3 (Pout — kin)? —m? \ B ne )+ (eF + pous n)B 2eB +
(4.117)
And for Iy, 4
I _ 1
A0 [(6B)2 - (pout : kout)ﬂpout : k
¢B(eB + Pout - kout) [ i . P —m?
Isl;,le = ( 2 — th 2 (BF 7]1.) — (ieF = pout - kout 11)B (23 +1
B<eB pout out { . pout —m?
IsMp742 = - pout F + nL + (ZGF — Pout * kout 77¢)5 W + 1 ,
€B(€B + Pout out 1 . (pOUt + kOU«t) — m
", = F— F — pout - kou 1
A (pout + Kout)? (B m) + (e = pout - Kout 118 ( 2B +
BB(BB DPout * k ut) ] . (p ut = k
sup,44 (pout — kz:)2 — 7(;12 BF +nL)— (ZeF — Pout - kout 771_)6 2 2B + 1
(4.118)

In this chapter, we have presented the scalar and spinor amplitude of Compton scattering in
a pure magnetic field for off-shell massive particles and on-shell photons. The integration of such
amplitudes is carried out analytically for the forward scattering in which all particles are parallel
to the direction of the magnetic field. We have checked that the final results (4.91) and (4.113) in
the weak-field expansion (at first order with respect to the B-filed) and on-shell limit reproduce the
expected results [66]. This shows that Compton scattering in a magnetic background field could
lead to the observation of polarization changes that do not correspond to the vacuum birefringence
assisted with Coulomb fields [65].

It is important to mention that our main results (4.91) and (4.113) do not correspond to the
experimental Compton scattering in a magnetic field since we are considering the incoming and
outgoing (scalar or spinor) particles to be off-shell and taking the on-shell limit is not straightforward
when we consider the external field exactly. This is because we use the worldline formalism to
derive such results in which the methods to obtain on-shell amplitudes for external massive particles
are still under development [171, ]. However, these results give us an idea of the important
parameters involved in this scattering process, for instance, our formulas depend mainly on the
parameter eB. We can also notice that the denominators of (4.91) and (4.113): (€B)? — (Pout * kout)?
and (eB)? — (pout - kin)? have poles related to the Landau levels of the corresponding particles, for
which, the cyclotron frequency is w. = eB/m, see [(60] for a more detailed review of the birefringent
Compton scattering.



Chapter 5

Electron propagator in a
plane-wave field: One-loop vertex
correction

In this chapter, we provide a brief introduction to the operator technique, the Furry picture, and the
Volkov states and propagators. We discuss the one-loop vertex correction in vacuum, emphasizing its
renormalization and gauge invariance. This correction is significant in QED due to its connection with
the anomalous magnetic moment of the electron, which has enabled high-precision measurements of
fundamental constants such as the fine structure constant and the anomalous magnetic moment of
the electron [172, 173, 174].

We then present the calculation of the renormalized one-loop vertex correction in an arbitrary
plane-wave field, discussing its relevance to gauge invariance, infrared divergences, application as a
building block, and behavior in strong fields. This is a non-perturbative calculation, given that the
plane-wave field is taken into account exactly.

It is important to note that, unlike in vacuum, extracting a correction to the anomalous mag-
netic moment of the electron from the one-loop vertex correction in a plane-wave field is not well
defined. However, this amplitude completes the study of QED in a plane-wave field at one-loop order.
This completion is significant for future experimental comparisons, as the closer the laser intensities
approach the critical field, the more significant loop corrections become [73].

It is important to point out some conventions used in this chapter that differ from the rest of
the thesis. Here, we use the metric tensor in Minkowski space (n¥) = diag(+1,—1,—1,—1), the
product of two four-vectors is denoted by (zy) = x,y", the energy component of an on-shell electron
is e = y/p? + m? (where p is its kinetic momentum and m its mass) and the polarization of a photon
with momentum g is written as e}'(g).

5.1 Plane waves as a laser approximation

The match between theory and experiment is crucial in the understanding of physical laws. Therefore
to compare experimental data from laser-particle collisions with theory, it is desirable to have a
mathematical description of laser fields. Due to the complexity of lasers, the exact mathematical
description of lasers is not possible. However, a plane wave field is a reasonably good approximation
of a laser, if the radius of the minimal focusing area is much larger than the central wavelength of
the laser pulse [72].

A general plane wave is characterized mainly by the direction of propagation which is represented
by the unit vector n. Then, the plane-wave field is described by the four-vector potential A*(¢),
which only depends on the “light-cone time” ¢ = ¢t — n - @, with ¥ = (¢,2) being the space-
time Cartesian coordinates. Assuming that the vector potential fulfills the Lorenz gauge condition
0 A" =0, A*(¢) — 0 in the limit ¢ — +oo i.e., it is a localized field, and imposing the restriction
A%(¢) = 0 which implies A*(¢) = (0, A(¢)) we have as a consequence that

n-A(¢)=0 and n-A(¢) =0, (5.1)

67
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where A'(¢) = %A(gﬁ). This motivates the use of light-cone coordinates
n* = (1,n), n* = (1,—n)/2, al’ =(0,ay), ah = (0,as). (5.2)

The previous coordinates satisfy the following properties

2

n? = n?

= (naj) = (fla]‘) = 0, (nﬁ) = 1, (aiaj) = —a; a; = —(Sij, (53)
and fulfill the completeness relation
" = ntp¥ + akn” — afal — abal, (5.4)

which indicates that the light-cone coordinates form a complete basis for Minkowski space. Then,
the “light-cone components” of an arbitrary four-vector v* = (v°,v) can be expressed as
v_ = (nw) =0° —v,, = (i) = (v +v,)/2, with v, =n-v, (5.5)

: .

U+
v = (vi1,v12) = —((va1), (vaz)) = (v-a1,v-as).

Notice that the most general form of the vector potential A(¢) is expressed as

A(9) = 1(d)ar +2(¢)az, (5.6)

where 11(¢) and 12(¢) are arbitrary functions that vanish for ¢ — +oo and they satisfy the same
differential properties of the four-vector potential A*(¢), i.e. dubi(¢)a; =0 .

5.2 Dirac equation within the light-cone coordinates

In this section, we review the simpler case of the equation of motion for a spin-one-half particle
propagating in a vacuum, i.e., the Dirac equation. We will first examine this in the usual Cartesian
coordinate system and then in the light-cone system. We will focus on some important aspects that
will be useful for our main calculation later (for more details, see [150, 98]). The Dirac equation is

(P-m)v=o0, (5.7)

in which P* = i0" is the four-momentum operator. We use the convention ¥ = v*v, for a generic
four-vector v*, with 4* being the Dirac-gamma matrices, which satisfy the anti-commutation relations
{y*, "} = 2n*¥. Assuming that the four vectors z* and p# = (e, p) are the eigenvalues of the position
and momentum operators X* and P* with their respective eigenstates |z) and |p) that are normalized
as

(zly) =W (@—y),  (lg) = 2m)*W(p—yq), (5.8)

and satisfying the completeness relations

4 d*p
d*x ‘x><x| =1, (271_)4 |p><p‘ =1. (5.9)
The positive solution of Dirac equation is given by

by (p) = us(p) e "#*) (5.10)

where ug(p) are the free, positive-energy spinors normalized as ul(p)uy (p) = 2¢ §4s. This solution
satisfies the on-shell condition p?> = m?. Here, we can go to the light-cone basis by using (5.4) so that

(z|p) = exp(—i(pr)) = exp[~i(py¢ +p-T —pL -=1)]. (5.11)

Notice that, the eigenvalue equation for the position operator X*|z) = x*|x), in the light-cone
coordinate system, can be re-expressed as

Olz) = (nX)|z) = ¢lz),  Tlo) = (AX)|z) =Tlx),  Xilr) ==z, [z). (5.12)
Here, we have defined

¢ = (nx), T = (nx), x, =(x11,2102) = —((xa1), (za)). (5.13)
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On the other hand, for the eigenvalue equation of the momentum operator P*|p) = p#|p), it is
convenient to write the momenta operators in the light-cone basis

Py = —idy = —(AP) = —(i0; — i0y,)/2, (5.14)
PT = —’iaT = —(nP) = —(ié)t + i@zn), (515)
Pl = (PLJ, PL,Q) = —i(a1 . V, as - V) 5 (516)

for which, the non-null commutators are

[®,Py] = [T, Pr] =1, (X1, Pkl =161, (5.17)
and with the eigenvalues
Pslp) = =p+Ip),  Prlp)=—p-Ip),  and  Pilp) =p.ilp). (5.18)
We can obtain useful shifting identities by recalling the commutation relations [X#*, P¥] = —in*",
which imply
[P*, f(X)] = i0% f(X), (5.19)

where f(X) is an arbitrary function of the four-position operator that can be expanded in Taylor
series and 9% = §/0X,,. Analogously, it can easily be shown that

e (X) pre=if(X) — pr 4 gif(X) (5.20)

and then formally that _ _
) g(P)em ) = g(P+0f(X)), (5.21)

where ¢g(P) is a function of the four-momentum that can be expanded in Taylor series. The same
commutation relations imply that

e 9P) X1 emi9(P) — x1 _ 9ltg(P) and 9P f(X)e 9P = f(X — dpg(P)), (5.22)

where 055 = 9/0P,, and f(X) can be represented by a Taylor series expansion. In particular, we will
consider the case where the functions in the exponents are linear either in X* or in P*
XD g(P)e™ XD = g(P +¢), (5.23)
PV f(X)e PV = f(X —y), (5.24)
where ¢* and y* are constant four-vectors.
Then, in the light-cone basis, the commutation relations [¢, Py] = [T, Pr| = ¢ will imply, in
particular, the identities
' §(Py) e~ = §(Py — a), (5.25)
eibPr f(T) e~ iPr _ f(T—i— b), (5.26)

with a and b being two constants and f(T') and §(Py) being two arbitrary functions.

5.3 Vertex function in vacuum

In this section, since the main goal of this chapter is to compute the one-loop vertex correction in a
plane wave field, it is convenient to review the known result in vacuum (adapted from [150]), with a
particular focus on renormalization and gauge invariance. The complete irreducible! vertex function
is

—ieNs o 1(p, 0, q) = —ied(p — p' — q) us (p") A (p, ') €] (@) us(p) , (5.27)

where, at one-loop order,

A (p,p') = Zy " + AV (p,p') + SAO(p, p') (5.28)

IWe recall that an irreducible diagram is such that it cannot be split into two pieces by removing a single line [175].
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/

p

Figure 5.1: Feynman diagram for the electron one-loop vertex correction.

where Z; is a renormalization constant [118]. For the sake of convenience, we have defined A(M#(p, p')
as the one-loop vertex correction in Feynman-gauge and 5A(5)"(p, p’) the additional contribution to
the one-loop vertex function when considering the internal photon propagator in an arbitrary gauge
as in (5.38) and with the inclusion of a positive photon mass ‘s’ to avoid the infrared divergence.
From Feynman rules, we see that the complete one-loop correction (see Fig. 5.1) in an arbitrary
gauge AWK (p, p') + SA©OL(p, p') is given by

d*k 1 1 1
A(l)M N — 2/ A n 2
(pvp) (4= (277)4 ]{32 —KJQ +207 p/+%_m+207 p—F%—m—&—zO%\’ (5 9)
1 d*k 1 - 1 1 -
SA©R(p, ') = —ie? (1 - = / k o k.
(p.p') = —ie ¢)] emr =402 Yt f-—m+i0 p+k—m+i0
(5.30)

The four-momentum integral in (5.29) can be performed by using Schwinger parameters such that,
we obtain?

° ds du dt
A :_ﬂ/
(p.p') = —ig .

{ 25 (pp") + i7" — p(p's + pu)y™ — A (P's + pu)p’
(5.31)

1 ’ , 2, @ stpw)?
— Z (s 4+ puVH(P's + pu) p e T ,
LW s+ p >}
where S = s+t +u. In the case of (5.30), we can simplify it by noticing that the external spinors in

the expression i, (p') SAEH(p, p')us(p) satisfy the Dirac equation and after straightforward manipu-
lations, we obtain

5A(5)H( /) — e (1= 1 d'k 1 n— 7(&) p (5.32)
b.p ¢)] et 2 — k202 i '

Then, the irreducible vertex function can be decomposed as

A (p,p') = (Z1 + ZO )y + ADE(p,p') (5.33)

note that Z© is a logarithmically divergent constant that depends on the gauge parameter £.
In order to regularize the vertex function, we define the electric charge via

s () My (P, D) s ()|, = T (P) €9 s (p) (5.34)

This condition will fix the renormalization constant as Z; = 1 — Z(® and the renormalization of the
one loop vertex correction as

Ag)“(p,p/) _ A(l)“(p,p/) _ A(l)u(p,p)b&:m7 (5.35)

2Here, for the present discussion, it is more useful to have a symmetric expression for the one loop vertex function.
However, we can further simplify it by taking into account the on-shell condition, Dirac equation and the Gordon
identity, see [150, ,
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where, from (5.31), is obvious that

1 L« dsdudt ;2 i tw? o2 [ 4 (s 4 u)? _
A (p,p) o = i /0 dudt o SR E PSSRSO I SR

It is well known that the renormalized one-loop vertex correction can be expressed as [150, ]

i v
A" (p,p') =" Fa(g®) + 5 " (d), (5.37)
where F(q?) and Fy(q?) are the well-known QED form factors, derived in detail in [150], and whose

explicit expressions are not presented in this thesis but only discussed.

In this context, F»(g?) is usually called the magnetic form factor since it provides the leading
quantum correction to the magnetic moment of the electron. Notably, F5(g?) has been computed at
higher loop orders and subsequently compared with experimental results. These comparisons have
enabled precise measurements of fundamental constants such as the fine structure constant and the
anomalous magnetic moment of the electron [172, , ], marking one of the significant triumphs
of QED. Additionally, it is noteworthy that this form factor exhibits no infrared divergence in the
limit of a massless photon: x — 0.

On the other hand, the form factor F;(g?) has an infrared divergence in the limit x — 0 which, in
order to be removed, it is necessary to apply the Bloch-Nordsieck method [176, ]. In this section
we saw that the gauge-dependent constant Z(¢) can be absorbed in the renormalization constant Z;
nevertheless the complete gauge dependent one loop vertex correction AM® (p, p') +AEX(p, p') have
been considered in [177], where it is discussed the relation between the infrared diverge and the gauge
choice, in particular, with relation to the Yennie-Fried gauge choice 1 — % = 2(1 — 2¢) where € is a
small positive constant.

In the following sections, we generalize the result of the one-loop vertex correction in vacuum to
the one in the presence of a plane-wave field.

5.4 Operator technique

Schwinger first proposed the operator technique [7] as a method to compute transition amplitudes
in the presence of external fields. This method does not require the explicit solution of the Dirac
equation in the external field, as it is sufficient to know the spectrum of certain operators.

We work within the Furry picture [97], an interaction picture used to analyze the interactions
between fermions and bosons in the presence of an external field. This picture assumes that the
external field is strong enough such that it remains unchanged by the interaction with and between
fermions and bosons, the external field satisfy the Lorenz gauge condition d,A* = 0, and the action
vanishes on the boundaries [34].

These assumptions imply, in particular for the spinor QED Lagrangian in the presence of a
background field, that the electron equation of motion will be the Dirac equation in the presence of
the external field and for the photon field the external field will have no effect in the equation of
motion, i.e. the photon propagator remains as in vacuum, which in a general gauge is

d*k e—i(ke) 1\ krEY
D)= | ———— g + (1= ) ——— .
(z) / 20tk 10 [’7 * ( §> 2 +¢o] ’ (5:38)

with & as the gauge parameter. To compute transition amplitudes within the Furry picture, we use
the same Feynman rules as in vacuum except that now we use the Dirac operator in the presence
of the external field (see [37] for a short review of the Feynman rules for the case of a plane-wave
background field).

The Furry picture and the operator technique have been widely applied to study quantum cor-
rections in various background fields. For a constant background field, these applications include the
mass operator [178], N-photon amplitude and polarization operator [179]. For a constant crossed
background field, studies include the polarization operator [41], photon splitting [180, ], the one-
loop vertex correction [108, | and nonlinear double Compton scattering [181]. For a plane-wave
background field, they include the mass operator [182], the polarization operator [183, , 1,
nonlinear Compton scattering [34, 85, 86, 87, 88], nonlinear double Compton scattering [185, I,
Breit-Wheeler pair production [90, 91, 92], radiation reaction [77, 78], trident pair production [95, 96],
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nonlinear Bethe-Heitler pair production [94], photon splitting [44] and photon merging [161, , 26].
This list provides some examples of applications; see also [101, 72, 73] and references therein.

In the following, within the Furry picture, we consider the exact solution of the Dirac equation in a
plane-wave field (Volkov states) and the Dirac propagator in a plane-wave field (Volkov propagator)
to obtain the spectrum of the necessary set of operators required to compute the one-loop vertex
correction in a plane-wave field.

5.4.1 Dirac equation in a plane-wave background field

On the theoretical side, a laser field is often approximated as a plane wave. Therefore, to describe
the propagation of an electron immersed in a laser field, it is important to have the solution of the
Dirac equation in a plane wave field. This solution was first obtained by Volkov, even before the
invention of lasers [100] and it can also be found in text-books such as [150, 98]. The Dirac equation
in a plane-wave background field is

{171(@) - m} U=0, (5.39)

where IT# = P* — e A*(®) is the four-momentum operator in the presence of a plane-wave field. The

positive solution is given by the Volkov state Us(p, ) = E(p, x)us(p) [100], where
E(p,a) = [1 + “MW)] o), (5.40)
2p_
with . ) o
e(pA e A
Sy(x) = —(pz) - / dip [ ( pf“”)) - Qp(‘p)] (5.41)

and us(p) are the free spinors introduced in Section 5.2 (see Appendix B.3.1 for a short derivation of
this result). It is convenient to explicitly write the conjugate Volkov solution U (p, z) = us(p)E(p, ),
where

E(p,x) = [1 + eA(‘W‘} e (@) (5.42)
2p_
Here, E(p, z) and E(p, ) are known as the Ritus matrices [101] and satisfy the following orthogonality
and completeness relations
4, T 4 d'p - 4
/d zE(p,x)E(p,z) = (2m)*6* (p — p') / @ )4E(p, z)E(p,2') = 6% (x —2'). (5.43)
™

The negative Volkov states are Vi (p, ) = E(—p, x)vs(p), where vs(p) are the free, negative-energy
spinors normalized as v (p)vy (p) = 26 Jgsr-

It is important to know the electron propagator in a plane-wave background field which is known
as the Volkov propagator and, it is the Green’s function of the Dirac operator in a plane-wave
background field, defined by

[m(cp) - m} Gz, 2') = 8D (x — o). (5.44)

Notice that the operator G is such that G(z,2') = (z|G|2’) or in other words

1
G=——"—. 5.45
W —m+i0 ( )
Here, we have assumed the Feynman prescription corresponding to the shift m — m —0 [98]. In [103]

is shown that the operator G can be written in the form (see Appendix B.3.2 for a short derivation
of this result)

G= (]71 +m) = (]71 +m)(—1) /Ooo ds e—im2362isPTP¢

i ds,[P_eAL(MS'PTn"‘{l _ é [A(® — 25Pp) — A(‘P)]} :
(5.46)
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Equivalently, G can be written in the form

1 o0 .
G em) = (i) [ dse {14 STl A(@ 4 25Pr) - A@))
W —m2+i0 0 2Pr (5.47)
et LA P i
Alternatively, we can write the Volkov propagator in the Ritus representation [101] as
d*p p+m _
G N = E ——F . 5.48
(@) = [ g Blow) s Blpa) (5.45)

For the present case of a plane-wave background field, we require only the eigenvalues of the
position and momenta operators, which can be used to show that the momentum operator in presence
of the external field satisfies (see Eq. (5.40))

Hz\(¢)U8(p, x) = lw;}(qs) + Z’Mn/\

o Us(p, x), (5.49)

where 5 1o

+ e(PA(ﬁb))n,\ _ € A*(o) A
p_ 2p_

is the classical kinetic four-momentum of an electron in the plane-wave A*(¢), and due to the bound-

ary conditions it satisfy limg_, 40 7r;‘ (¢) = p*. The shifting relation (5.25) imply that

™ (¢) = p* — eAMN9) (5.50)

eilA(6 + ) = A(©) ] A e

o } Us(p, @) .

(5.51)
In addition, it is possible to obtain the Gordon identity for the Volkov states (see Appendix B.3.3)

w%ﬂ@m@wwmﬂmfw+wﬁ+

US’(pl’ SC)’}/MUS(;D, :L') = Us/(p/» {E) |:lTp/(¢> - ﬂ—g(d)) +1 o [ﬂ—p/(¢) — Wp(QS)]V

o o Us(p, ) . (5.52)

Note that, some quantities can be expressed as manifestly gauge-invariant by writing them in
terms of the field strength tensor of the plane-wave

Fv (@) = " AV(9) — 07 AP(9) = nP A () — n” A(9) (5.53)
and its integral .
ﬁww:[»mwww=wmw—www, (5.54)

which is gauge invariant as well. For instance, the kinetic four-momentum 7)) (¢) can be written in

P
the manifestly gauge-invariant form as

Wﬁ(cﬁ) —p epuF A (o) N p T ()T o (d)p” n/\.

p_ 2p3

(5.55)

5.4.2 Feynman rules for Volkov states

In this section, we present the Feynman rules used to compute transition amplitudes in the presence of
a plane-wave field within the Furry picture [37]. These rules, in the coordinate space, follow the same
structure as in vacuum and they include the interaction with the plane-wave field exactly through
the Volkov propagator and states.

The value of a diagram consist of the following factors:

o For each internal fermion propagator, iG(x,x’).
o For each internal photon propagator, —iD*”(z — z').

e For each fermion-fermion-photon vertex, —iey*.
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« For each incoming photon, €}'(q) e ilaz),
» For each outgoing photon, ¢;*(q) etla)
o For each incoming fermion, Us(p, x).

« For each outgoing fermion, Uy (p, x).

« For each incoming anti-fermion, Vi(p, z).
e For each outgoing anti-fermion, Vy(p, x).

Additionally, for each vertex, an integral over the space-time coordinates [ d*z must be included.
These rules reduce to the vacuum Feynman rules for A* = 0.

5.5 Omne-loop vertex correction in a plane-wave field

In this section, we present the calculation of the one-loop vertex correction corresponding to the
Feynman diagram in Fig. 5.2. For this amplitude, we assume that the external photon with four-
momentum ¢ is outgoing and off-shell (¢ # 0), the electron at the initial and final position is
real, i.e., the four-momenta p and p’ are on-shell (p?> = p'? = m?). We denote by s (s’) the spin
quantum number of the incoming (outgoing) electron and by I the polarization quantum number of
the outgoing photon. Then, using Feynman rules (see Section 5.4.2), the amplitude for the one-loop
vertex correction in a plane-wave field can be expressed as

—iels s 1(p, s q) = /d4$d4yd4z Ua (0 y) (=iex) iG(y, 2) (—ie)¢; (a)e" ) iG(z, z)

x (—iev”) Us(p, ) (=) Dy (7 — y),

(5.56)

where, €)'(q) is the polarization four-vector of the outgoing photon and, for the photon propagator
(5.38), we choose the Feynman gauge (£ = 1) such that

d*k ,’7>\u )
Av — —i(kx)
DM (x) / e (5.57)

with 2 the square of a fictitious photon mass, which has been introduced to avoid infrared divergences.

!

P P

Figure 5.2: Feynman diagram for the one-loop vertex correction in a plane-wave field. The double lines indicates
that the electron/positron states and propagators include the exact interaction with plane-wave field.

Now, we can choose to write the internal propagators as operators (see equations (5.46) and
(5.47)) or as Green’s functions (see equation (5.48)). We choose to use operators since with the use
of the completeness relation in (5.9), we can immediately remove two of the integrals such that

. d4k 1 7 i(kx i1(qx) 4* —i(kx
_Zer,s’,l(pap/aQ) = —63/d4l‘/ (27T)4 k2 — k2 440 Us’(p/ax)e (k )'YAGG (@ )¢l (Q)Ge (k )’YAUS(]% l')

(5.58)
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Now the internal propagator can be expressed as in (5.46) and (5.47) to obtain a semi-operator
representation of the amplitude

, d*k 1 -
—iels s 1(p, 1, q) = _63/d4x/ (2m)4 k2 — K2 + iOUS/ (p’,x)’y/\[ﬂ(d)) + -+ m]
1 1

i(qw) 4*
T T FE—msiot 9 o T =m0

X

W(¢) + K +m]nUs(p, x) .
(5.59)

Here, we have used the translation properties in (5.23). Using the fact that the operator II#(¢) satisfy
Dirac equation [W(¢) — m|Us(p, z) = [W(¢) — m|Uy (p',x) = 0, we obtain®

1
W(¢) + k]2 — m? +i0

[QH)\ ((b) + k'YA]Us (p’ LU)

. d*k 1 _
_lers,s’,l(p,p/,q) = —63/d4$/ (27‘(’)4 k.2 _ HZ + 40 US/ (p/,m)[2ﬂ)‘(¢)) + ’YA%]

1
(o) + K2 — m2 +i0

x 17 ¢ (q)

(5.60)
We use the eigenvalue relation (5.49) for IT#(¢) to obtain
d*k - ’
—iels o 1(p ', q) = _63/d4x/ (2m)4 k2 — ;2 +40 Us (', ) 2772’((15) + i(%?/(QS)HA "’7)\}6
x ! ) g1 (q) .
[H(¢) + K]? — m? +i0 C (o) + K2 - m? 440

x [%rp,A(qs) #1880 o | 02t

(5.61)

At this point, it is convenient to use the representation in (5.46) for the first square Volkov propagator
and (5.47) for the second. Then, we obtain

etlax)
—ieTs.o1(p, = d*x d d
ie 1(p:p'sq) e/ / / S/ u —K,2+ZO

CVLA( ) Ak

x Uy (p, x) [27@/,\/ (9) +

fifos ds'[pL—qi+ki—eA | (¢p+25 (p——q—+k_))]? e%[A(¢ + 25(17— —q-+k))— A(¢)]
{H 2(p- —q- +k-) }
el A( — 2u(p- +k-)) — A(9)] } o f A Lk —e AL (9=20/ (p+k- )]
2(p— + k)

e tm’s o —2is(p— —q—+k-_)(Pp—k4+q)

X e

X ¢ (g)e i {1 -

/
> 672iu(P—+k_)(P¢fk+) [2Wp,k(¢) + 2'67/"?@5)”)\ + %7/\ Us (p’ ZE),

(5.62)

where we have exploited the fact that Volkov states are eigenstates of the operators Pr and P, as
n (5.18). Indeed, the only operator remaining in this equation is P,. Now, we use the translation
property in (5.25) which imply (5.51) and, analogously to the vacuum case, we write the amplitude
—iels o 1(p,p', q) in the form

—iels o 1(p, 0, q) = *ie/d‘*mi(q“’)U (0, )T (p, 7', ¢; 9)Us(p, x)ej . (a), (5.63)

3Here, we use the commutator {y#, v} = 2nH¥.
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where

—zm2(5+u)
—Zer“(p,p/, q; Qb) - / / dS/ du — k2440

s LAL) | ePat @)
e . d L,
« 2k ls( k) Fulp—+h)] {”+ beme [ o [T S

(5.64)

oty APtk e AL (9] =i [ du [Ptk —eAL(9,)?

. @ p|-A ry  e2a? (¢
z{—p+(¢u—¢)—f¢ud¢/ |:—e J‘p J‘(d))+ 2;‘
&

:| }Mﬂ(¢’ k’ S?”)'
Here, we have introduced the quantities

bs =+ 2s(p. +k_), (5.65)
¢u = ¢ — 2ulp- +k-), (5.66)

and the matrix

M“(hsvu;qb):{l nt +

i) o) el A6,) — A)
X{” 20+ k) }” {1 2 + k) } (5.67)

M( o) {14 ol A©) 3

el A(Ds) — A(9) } lm )+ "e% /_<¢s>

nx =+ Fya

l2ﬂp A (¢u)

The phase in (5.64) can be written in a compact form by turning the integral from ¢ to ¢, (from
¢ to ¢,,) into an integral in s’ (u’) like that in the third line of (5.64). Using Schwinger parameters,
we can exponentiate the denominator k% — k2 + 40 in the photon propagator and then the quantity
T'*(p,p’, q; ) can be written as

d*k
T (p,p',q;0) = 62/ / ds/ du/ dt 'Sk’ —in* t+2i(kF) ) MH(k, s, u; 0), (5.68)

where S = u + s+t and . N
Fr= / ds'Th, (¢) + / du'Th (). (5.69)
0 0
As next step, we can perform the integrals in d*k analytically by shifting the four-momentum k* by

setting k'* = kM + F¥ /S, which, since all components of F" except F_ depend on k_, implies that
k= k" — G* /S, where

S u
G' = /0 ds'mh, (sr) + /0 du/'7h (Yur), (5.70)
such that G_ = F_ = sp’_ + up_. Here, we have introduced the two shifted phases
s = ¢+ 257" + 2sk_, (5.71)
Vo = ¢ — 2ur_ — 2uk_, (5.72)
where
G_ tp) —uq_
Sl e Sl
T =p_ S 5 , (5.73)
G_ tp_ + sq—
_=p. - — = .74
T-=p-— g 5 (5.74)

After the shift of the four-momentum k*, we can write T'*(p,p’, q; ¢) in the form

e d4]€ S 2, G2 .12~ ~ ~ ~ ~
T (p. ' 4 ) = € / dsdudi / gare L@+ 00 @ BR, (5.75)
0
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where

- epp[Ads) — A(9)]

L=1 o0 , (5.76)
A 7 eViA (%) @

Q* = 2m) () + p -5 (5.77)
A _ e[ A(t)s) — AWu) — A(9)]

. _{H ) =401 f,_ )= o), -

%A (m) ¢
Q™ =2r '(lﬁs) " ’Y/\ga (5.79)
2p_

The integral in d*k in T*(p,p’, q; ¢) is complicated by the fact that the variable k_ is contained
in the argument of the four-vector potential of the plane-wave. Thus, we first compute the integral
in d?k, , which is Gaussian, so that we obtain

T4 (p, . s ) = —z’a/ dsdudt [ dk_dk 152t—i%2+2i5k_k+Mu(k_7k+,S’u)t;(b)’ (5.81)
0 S (2m)?

where

MM (k_, ki, s,u,t;¢) =L [(@’A + k- ) CH(Qx + k—fiyn) — ﬁw YLiCP v | R
+ ky L PCH (Qx + k—ityn) + (@™ + k- ) CPapn] R + kL Ly iy b R
(5.82)

Finally, the integral in dk, results in a delta function and its first and second derivatives all evaluated
at 25k_. This allows us to then compute the integral in dk_ and, after straightforward manipulations,
the resulting expression of I'*(p, p’, q; ¢) can be written as

T (p.p',a;0) = —— %ﬁ,‘dt ‘M{ LSO MGy + 20 R
Ei Gf A n IA A % m d? _; &% ’
i T OO+ QO )R + G g (7)) k=0
and after taking the derivative of the exponential, we get
dsdudt 2, a2
12 /. — —ik“t—1 5
I(p,p',q:¢) = 47r o5 5
IA L é A o Yall
L |SQACHQy + 2iCH 4+ — —— (Y MCHQx + Q" C'yy\) | R
2S dk_
~ 2 ~
TS W S = b |1 (dG? d*G?
2 (L A m I AV o=
Ty grs LLOMHCM RN + QP R] — g | (dk> e |
(5.84)

This expression can be further manipulated especially to simplify its matrix structure. However, it
is first convenient to make the following considerations related to the Ward identity to be fulfilled by

T (p,p',q; ¢) [150]. From now on we assume that ¢_ > 0. Thus, by using the three four-vectors
20
NH =gh — (12(1"_ , (5.85)
o
A= gt 4 S (5.86)
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with ¢ = 1, 2 together with n*, one can build a light-cone basis such that

v = N £ N
q—

— AYAT — AYAS. (5.87)
Then, taking into account that we work in the Lorenz gauge where (gef(¢)) = 0, the quantity
T“(p,p’, q; qﬁ)e;"’#(q) can be written as

* 2 %
T4 (p, o, s d)er ,(q) = el’q_(Q) Lo(p,p',a:0) — qe;’%(q)l“(p,p’, a4 9) (5.88)

— (T, ', ¢ 0)A1)(Aref (q) — (T(p, ', ¢ 0)A2) (A2ei (q))

where T'y(p,p',q;¢) = (T*(p,p’,¢; ¢)qu) and T'_(p,p’, ¢;¢) = (T*(p,p’, q¢; ¢)nyu). Notice that due to
the gauge invariance of QED the term I'y(p, p’, ¢; ¢) does not contribute to any transition amplitude
since, due to the Ward identity, this term cancels out exactly (see [110] for a detailed proof). Then,
from now on we can forget about the term I'y(p,p’, ¢; ¢) and express the amplitude as

, . q2€*,_(q) ; * /
T4(p,p, q; 9)ef . (q) = — ;73 + %(A e (9) + %(AQQ (@) | T-(p:1', 4:0) (5.89)

+T a0, q0)(Mef (@) + T 12,0, ¢ 0) (A€ (q))

with T'y ;(p,p’,q; ) = —(T*(p, 1, ¢; )a; ). Now, we should notice that it is easier to work with the
terms I'_ (p,p’, ¢; ¢) and T'y ;(p,p’, g; @) since in these components many terms will cancel due to the
quantities n* and af'.

First, we consider the component I'_(p,p’, ¢; #), whose structure is particularly easy. In fact,
starting from (5.83), we have that*

Lo (pp 4:0) = — dsgg‘dt ~i =i (SLQMIQAR + 2inh)
- o dsz,;‘dt ikt Kzsmwu) + % + z) h—2G_(f R+Lt,) (5.90)
—dr‘mi — ot @&+ 27_L¢ + 27" ¢R + 2% - %2* i_’ﬂﬁ} ,
where
RS, Af=elA) A9l L=1-l00 p=giael, (590
M=), A=At - @) R=1+500 pmgine, G0

o — (1 + %f_) b <1 _ Zf_“) , G = /0 ds' 7 (1) + /0 Al (), (5.93)
eT/LA/Wu) ) & VLA (%) ,YA%.

A A s
Q" =2m +
Tu T p_ R

QN =2m) +i (5.94)

Finally, for the calculation of the components I' | ;(p,p’, ¢; ¢) we can effectively assume that the
matrix ¢ anticommutes with v*. In the following four equations, with an abuse of notation, we use
the equal symbol also for two matrices that are equal to each other up to terms proportional to n*,
which can anyway be ignored in the computation of I'y ;(p,p’, ¢; ¢). Going through the terms in Eq.

4The quantities with and without ‘tilde’ are related after setting k_ = 0, for instance, C~T'|k_:0 =G
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(5.84) in order of complexity, one can easily show that

G_
n
g M (5.95)

L i, 74G_ ”+4§ ’

LO"R ="+ %Asv

L(PHCHQx + QA CHiiya)R = — ~
= 2", - 27m "
o . ,
PO+ QPO =8 (G- T )

(5.96)

K[ ( S P’ p_

(5.97)

/

+4s (1 + ;,:) it AL — du (1 + ;) Ay

and

LQ'*CHQR = A(memy) (7 + Msv ii Sv“%ﬁu)
S a , 2
+ 22‘}%%/&57“ + 2@}%7“%& - gLC“WSR - §L¢u$C“R (5.98)

_ %Lg (v” N 7‘;4?/_5% B A;VW‘) ¢,

T—

Here, we have used integration by parts to re-express dde ‘ as twice G1:
~lk_=0

GY = % [/ ds' s “ (sr) / du’ u'Th (y, )}
= oo [t = [ @]+ o [untn) - [ ann] .

we have further introduced

(5.99)

Ag/u = eAu(ws/u) ) (5100)

for which the prime on these quantities indicates the derivative with respect to ¢.
Then, putting all together, we obtain the following expressions of the transverse components

Lyi(pp'sq;0):

Iyl a¢) = 277/ dsggdt —in?t—i Gl
x {(25(71-87(-“) +1) <¢ + o ! S7/LA ¢ S¢ %A )
— L(Ca;)¢t R — Lt ,¢(Ca;)R — %LG <¢j ¢24& o 4&;%_%) ¢R
2(GGy) (T- 7" 2G_ (GCLJ)
_ g (p,_ViAs?ij - E?iﬂ/“&u + ¢i — ¢ + %?i 7\4 + # ¢ V")

+2i <<G;aj) + s(Ala;) — U(v“iﬂa’)) It

vifs= 0 ) A i fu- 0 =] g}
(5.101)

Finally, we observe that all the terms in equations (5.89), (5.90), and (5.101) have at most three
gamma matrices except the three terms on the third line of (5.101). These three terms can be easily
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reduced to expressions containing at most five gamma matrices. For the first, we have

L(Ca it R = (4 + o WA, ~ o) 67,

+ (4 + gagr i, ) 016 -Gt ff“

ot

2p_7__ [2(G*(Au7rs) - p: (AuG))Au - (G,AZ +27_ (AUG))%: + (pLAZ +27_ (Auws))$] .

(5.102)

For the second, we have

IR, G(C0)R = 1,0 (4, + 5o WA, — oo
2t a-ap) (4 mqijmu)
i,

2" 7"
(5.103)

+ [2(G* (Asﬂu) - p*(AsG))As - (G*Ai + 2TL(A8G)>¢u + (png + QTL(ASWU))$]

And for the third, we have

L <¢j RS Am@) T <$¢ Aok, Agdg, ¢:> e <¢j4§scf: N cf:Au;ﬁj)

277 27_ p_1’ p T T_

+[(0L + 1) (Gay) + G- (Asay)] ﬁ_ﬁ? +[(p— +7)(Gay) + G_(Auay)] @fu ~ G,
G2 ] A, G2 ) ditd,
{(p HrG p-T- AZ} 2 {(p Hr)G plrl Aﬁ} 2p-T- + 2(Ga;)¢

g —[G-A%L+2p (GA, )]L’Wj

2pl 7l 2p_T_

L o= [(Gaj) + %(Asaj) n %(Auaj)] Agpd, — G2 {(Aj,aj ) | (Busy )] a

S GV (7 WIES

pP-p_ T—

(5.104)

In order to compute, for example, the probability of nonlinear Compton scattering at second order
in a with the above obtained amplitude, it is required to square the sum of the leading order correction
in Fig. 5.3 and all the radiative corrections at one-loop order (corresponding to the diagrams in Figs.
5.2 and 5.6). And, to compute the square of such quantities it is necessary to calculate the trace of
gamma matrices along with the remaining integrals. However, to simplify this task and avoid lengthy
calculations during the final stage, it is important to simplify the matrix structure of the amplitude
as much as possible.

Figure 5.3: Feynman diagram for the leading contribution to nonlinear Compton scattering. The double lines
represent the exact electron states in a plane-wave field (Volkov states).
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Note that, we can further reduce the number of gamma matrices, in the terms with three or more,
by using following the identity

1

ABC = itrmwww = 1O ABE) "

= A(BC) — B(AC) + @(AB) + ie " A" B C?,

(5.105)

where 7v° = i7%91v293 and €**** is the completely antisymmetric tensor with £°123 = 41, which is

valid for three arbitrary four-vectors A*, B*, and C*. However, this reduces the number of gamma
matrices but increases the number of terms.

In the next section, we will further investigate the structure of the vertex correction and discuss
its divergences.

5.6 Renormalization of the one-loop vertex correction

We can see that if we expand the vertex correction I's o ;(p, p’, ¢) respect to the vector potential, the
only ultraviolet divergence will be the same present in vacuum. Then, the regularization of the vertex
correction can be carried out in exactly the same way as in vacuum. Since the Volkov states for the
limit of zero fields reduce to the vacuum states, we can perform the regularization in the quantity
T“(p,p’, q; ¢) by subtracting the vacuum expression A(M#(p, p’) in (5.31) evaluated for ¢* = 0 and
for p = p = m (see [150] for the vacuum case and [103, 109] for the constant crossed field case).
Therefore the regularized amplitude for the vertex correction is obtained via

D0 4 8) = T (01 45 8) = AV (0, ) [y » (5.106)

where A(l)“(p,p)\,,:m is given by (5.36). From the expression (5.36) and since ¢ = 0, it is clear that

ADE(p, p) \Ié:m has only components A(j)“(p,p) |p=m and Aﬁ_l’);‘ (p,p) ‘zﬁ:mv and then that T'r 4(p, ', ¢; @)

Ty(p,p',q; ¢), which can be shown to vanish for A*(¢) =0

Now, we would like to investigate the convergence properties of the proper time integrals in
Tr_(p,p',q;¢) and T 1 j(p,p', q; ¢). It is first convenient to use the following identity [123]

/ds/ du/ dt:/ ds/ du/ dt/ dSé6(S—s—u—t)
0 0 0 0 0 0 0

00 s S s
2/ as ds/ du/ dto(S —s —u—t) (5.107)
0 0 0 0

00 1 1 1
:/ dSSQ/ dac/ dy/ dzé(l—x—y—2z),
0 0 0 0

where in the last line we performed the changes of variables s = xS, u = yS, and t = zS. By setting

1 1 1
/dxdydz:/ dx/ dy/ dzo0(l—xz—y—2), (5.108)
5 0 0 0

it is instructive to report the expression of A(l)“(p, p)|¢:m in terms of the new variables:

oo .
N,y = =it [ as [ dodyaz s mens fudpps oy} 510)
0

because it clearly shows that only the term whose integrand is proportional to i is (logarithmically)
divergent (in the limit S — 0). This divergence is related with the ultraviolet logarithmic divergence
of the vertex-correction function. Keeping in mind that z = 1 —x —y, see (5.108), another divergence
for # 4+ y — 0 arises for a massless photon (k? = 0), which corresponds to the infrared divergence of
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the vertex-correction function. By means of the above change of variables, we obtain

*d ) ) )
Lr_(p,0,q;0) = g7/L/ s /d;vdydz o728 [e_“izs _ e—1m2(1+y)25}
’ 271' 0 S 5

1o}

5 - dS/d:ﬂdydz ei"zzs{eigzs [ (2(7757ru) + 92) —2g-(f R+ Lt,) — gt gb — 1%, ¢
™ Jo 5

+27_Lg + 21" R+ 29§ — ¢* A M } m2¢eim2<w+y)2s[2z(x+y)2]},

(5.110)
and

« < ds - _ig? —im2(x 2
Tr1;p.0,¢:0) = _%¢j/0 g/édxdydze o [e 9°S _ o—im®(z+y) s]
1o}

o] ds/dxdydze*mgzs <ei925 {2(7rsvru) (yij + o ,M f; — gf — A, >

+; (2p A - 2p — i hy > L(Ca;)gtt ,R — Lit §(Ca;)R

A, A, T 7!
—Ig (,zi s T,_yi 2?/i¢i ) gR —2S(gg1) (p,_Msszij - i%?/ﬂﬁu +29-¢t; — 2(ga; )it

+ el 7 +¢u¢-7ﬁ> +2i ((g105) + w(ALay) — y(Ayay)) o+ [33 —(y+2) > ] Aogpd,

— [ (x—i—z) } ¢ 7/L.A } m2¢j6_im2(z+y)2s[2z . (x+y)2]>,

(5.111)
where
Lt R~ (4, + oot - b ) g1,
+ <¢j+ QP‘C,’T,Msatj) (g —9-1.) = A (5.112)
+ sz? 2(9- (Aums) — P (Aug)) Ay — (9-A2 + 27 (Aug))ft, + (P AL + 27_(Aumy))g),
I 00 R = 7,0 (4, + 5 )
+ f,s (p-g —9-1,) (¢ - 2pg_T dpd, ) (5.113)
+[2(9- (Asma) — p-(Dsg) A, = (9-AF + 277 (Ag))ft, + (p- A2 + 277 (A7) )g] QZ@_’
d A Buid, gt ApA,  Agphdg d; A gAud,
Lg<¢j 27! 27_ )gR 2< p_T’ + pT_ ) 9- ( 7! +T)

+ [(Z +10)(9a5) + 9-(Asay)] f W + [(p— +7-)(ga;) + g-(Auag)] WLA - 9%,

/,7_1

o+ g N Aod; [y & ] i, e

p-t- Ul 2T g 2| o T 2ead
?;/_ |:(gaj) + %(Asaj) + f__(Aua])] As%Au _ 92 |:(A7-s/_ag) I (A:_aj):| Wi’

(5.114)
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Figure 5.4: One-loop vertex corrections to (a) nonlinear Compton scattering, (b) nonlinear Breit-Wheeler pair
production, and (c) nonlinear Bethe-Heitler pair production. The double lines indicates that the electron/positron
states and propagators include the exact interaction with plane-wave field.

and where it is clear that also in the case of I'r | ;(p,p’, ¢; ) the only term requiring regularization is
the one analogous to that in the first line of equation (5.110). Due to the above change of variables,
the various quantities appearing in I'r,_(p, p’, ¢; ¢), and I'r 1 ;(p,p’, ¢; ¢) have to be interpreted as

=l —ye =1 —a—ypl —yq-, wl=m0s), Al=A"05) - A"(4), (5.115)

T_=z2p_+2q=(l—-2—y)p_+zq-, T =7h(0s), Al = A*(0g) — A*(¢),  (5.116)
where

=¢+227" S =¢+22[(1 -2 —y)p_ —yq_]S, (5.117)

s =0¢—2yr_S =¢—2y[(1 —z —y)p— +zq_]S. (5.118)

The formal definitions of the other quantities like L, R, C*, @*, and Q' remain unchanged and
the additional quantities

1 1
o= = [ anm @)y [ anpo,s) (5.119)

L G ood [, [t gl 2 [ H(g!
N=gw = |° / Ay (Gns) =y / 407 (Os)
0

/ iz u
275[ (0%) /dmr ]—1—2 S|:7T (0s) — /d???‘(' ns}

which is regular in the limit S — 0 (and also in the limits 7~ — 0 and 77 — 0), have been also
introduced.

and

(5.120)

5.7 Properties of the one-loop vertex correction

Here, the main result for one-loop vertex correction in a plane-wave field —iel's o ;(p, 7, ¢) in (5.63)
is given by the equations (5.89), (5.110), and (5.111). These expression, when the background field
is turned off, reduce to the known result in vacuum, in particular, the one presented in Section 5.3
and in [150]. These results are free of ultraviolet divergences and the infrared divergences have been
avoided by assigning a positive mass « to the photon. The infrared divergence in the case of a massless
photon must be removed to properly evaluate the components I'r _(p, p’, ¢;¢) and T'r 1 ;(p, 7, ¢; @)
numerically. For this purpose, this divergence must be further studied along the lines of [176, ].

Notice that the integrals with respect to d*z = d¢dT d*z, in —iel's s (p,p’,q) in (5.63) can
be performed only for T and x; which lead to Dirac-delta functions for the conservations laws
p— =p_ +q_ and p; = p'| +¢q.. The ¢ integral can not be performed at this point since we are
assuming that the vector potential A*(¢) is arbitrary and depends on the ¢ coordinate.

In Section 5.3, we mentioned that from the physical consequence of the vacuum vertex correction

A(l)“ (p,p’) in (5.37) is the possible extraction of the anomalous magnetic moment of the electron.
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Figure 5.5: Loop corrections the nonlinear trident pair production involving the one-loop vertex correction: (a) and
(b) one-loop, and (c) two-loop. The double lines indicates that the electron/positron states and propagators include
the exact interaction with plane-wave field.

This could suggest to compute the correction to the magnetic moment in the present case of the
vertex correction in a plane-wave field, nevertheless it is difficult because the electron interacts with
the total magnetic field which contains the magnetic field from the external photon and from the
plane-wave. And since it is assumed that the magnetic field from the plane wave is much stronger, we
find the calculation of the anomalous moment to be more suitable when considering only the presence
of the plane wave, as presented in [104].

The fact that the external photon, in our main result, is off-shell allows to use the amplitude
—tel's .1(p,p', q) as a building block to compute loop-corrections of nonlinear quantum processes in
the presence of an arbitrary plane-wave. For instance, in QED, we can use it to compute the nonlinear
one-loop corrections to Compton scattering, Breit-Wheeler and Bethe-Heitler pair production as
shown in Fig. 5.4. Furthermore, it can be used to obtain the one- and two-loop corrections to the
trident pair production, as in Fig. 5.5, although such calculation is already challenging at tree level
[95, 96].

The amplitude —iel's o 1 (p, p’, q) is invariant under gauge transformations of the plane-wave field
and of the interaction field, in particular, referring to the internal photon propagator. From equation
(5.75) and due to the fact that the kinetic four-momentum of an electron in a plane-wave 75 (¢)
is gauge invariant (see (5.55)), it is easy to see that —iel's o ;(p,p’,¢) is invariant under a gauge
transformation of the external plane-wave field, or in other words, by the replacement of the four-
vector potential A*(¢) with A*(p) + 0¥ f(p) = A*(p) + n* f'(¢), for an arbitrary function f(¢) that
depends only on the parameter ¢. Furthermore, it is straightforward to show that by choosing the
photon propagator in an arbitrary gauge, as in equation (5.38), the additional term coming from the
gauge-parameter dependence has the same structure as the tree-level vertex amplitude. At this point,
we can follow the same procedure as in vacuum (see Section 5.3 and Ref. [150]) to absorb such term
in the renormalization of the electric charge.

The amplitude —iel's o ;(p, P, ¢) is not by itself gauge invariant respect to the external photon, in
other words, this amplitude alone does not satisfy the Ward identity. However, the gauge invariance of
QED ensures that the sum of all the one-loop corrections to the nonlinear Compton scattering with an
external off-shell photon (corresponding to the diagrams of Figs. 5.2 and 5.6) fulfill the Ward identity.

p )4 p p p P
(a) (b) (c)

Figure 5.6: One-loop corrections to nonlinear Compton scattering in a plane-wave field. (a) and (b) having as
sub-diagram the mass operator. (c) the contribution with the polarization operator as sub-diagram. The double lines
indicates that the electron/positron states and propagators include the exact interaction with plane-wave field.
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In [183, ], it is shown that the correction in Fig. 5.6c¢ is by itself gauge invariant. Then, if we denote

by i/\/l(?s),’# (p.p',q) e;"(q) the amplitude resulting from the sum of the corrections corresponding to

the diagrams in Figs. 5.2, 5.6a and 5.6b, we can easily show that Mglz/ M(p,p’,q) ¢"* = 0. In such

a calculation, we can see the component I';(p,p’, g; ¢) is exactly canceled by the vertex corrections
corresponding to Figs. 5.6a and 5.6b, see [110].

In [108, ], it is shown that the ratio between the one-loop vertex correction and the vertex
function (tree level) in a constant crossed field for strong fields (o > 1, xo > 1) scales as axg/ % in
agreement with the Ritus-Narozny conjecture [104, , , ]. The same fact can be confirmed,
using the expressions in this chapter, for the case of the one-loop vertex correction in a plane-wave
field. However, the analysis carried out in [110] shows that the terms scaling as axg/ % do not contribute
to any transition amplitudes since those come from the quantity I';(p,p’, ¢; ¢) (the same argument
apply for the scaling in [108, ). Then, the dominant scaling for transition amplitude is provided

by the components I'r, _(p,p’, q; ¢) and I'r 1 ;(p,p’, q; ) which scale as axé/g.
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Chapter 6

Conclusions

In this thesis, we studied various nonlinear processes in the presence of background fields, at the
amplitude level. We have explicitly demonstrated the importance of off-shell amplitudes in the
computation of quantum corrections for phenomena involving the interaction with background fields.
Specifically, we have employed the fully off-shell four-photon amplitudes within the worldline formal-
ism to obtain the circularly polarized amplitudes and cross sections for the scattering of low-energy
photons by a Coulomb field (Delbriick scattering) [18, 19]. In this application of the four-photon am-
plitudes, the results obtained are in agreement with known results for spinor QED [17] and represent
novel results for the scalar QED case.

The low-energy limit of the off-shell one-loop N-photon amplitudes in the presence of a constant
background field was calculated for two different field configurations: parallel magnetic and electric
fields and a constant crossed field. In both cases compact expressions were obtained for scalar and
spinor QED, leaving only one proper-time integral left.

In the case of parallel magnetic and electric fields, we specialize our expressions to the case of the
four-photon amplitudes in a pure magnetic field at low energies, expressing the results in terms of
one proper-time integral, for which we provide a list of analytical results in Appendix C. However,
a more detailed analysis of the polarized and total cross sections is still in preparation. In future
work, the analysis of the helicity components for these N-photon amplitudes within the framework
of Section 2.2 is under consideration, given the advantages of the helicity formalism in calculating
photonic amplitudes.

For a constant crossed field, we also obtain the helicity components by applying the techniques
presented in [50, 51] (Sections 2.2 and 2.3). In this case, every integral can be carried out analyti-
cally, and it is clear that a double Furry theorem is no longer valid due to the interaction with the
background field.

We have observed that in the high-field and high-energy limit of the N-photon amplitudes in a
constant crossed field, the leading contributions may arise from the tails (3.10). Then, it is interesting
to study the scaling with respect to the quantum nonlinearity parameter xo (1.6) for such amplitudes
in future work. Given that the photons are off-shell, this approach can also be used to study the
scaling with respect to x( of multi-loop amplitudes, which is related to the Ritus-Narozhny conjecture
[ ) ) ) ) ]

In addition, we obtained the N-photon amplitudes in an arbitrary constant field and expressed
them as the product of infinite sums of traces. These results seem to have no practical applications,
and the only obvious property that appears is the manifest charge parity indicated by the Bernoulli
numbers.

We made use of the worldline formalism to study the amplitude of Compton scattering in the
presence of a purely magnetic background field for off-shell scalar and fermion particles and on-shell
external photons. Here, due to the complex structure of the integrand in the amplitudes, we have
assumed that the scattering occurs in the forward direction pointing along the same axis as the
magnetic field and with the polarization of the external photons being perpendicular to each other.
This allowed us to perform every integral and obtain compact expressions for the amplitudes. The
outcome of our calculations shows marks of polarization changes in the forward scattering of photons
with scalar or spinor particles in the presence of a magnetic field. However, to properly study the
birefringent Compton scattering, further analysis of the on-shell limit should be performed.

We applied the operator technique within the Furry picture and the Volkov states to compute the
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regularized amplitude of the irreducible one-loop vertex correction to nonlinear Compton scattering
in the presence of a plane-wave field background assuming that the incoming and outgoing electrons
are on-shell, and the external photon is off-shell. The final result is decomposed into the light-cone
components, which allows to obtain compact expressions. We have shown that this vertex amplitude
is invariant under gauge transformations with respect to the plane-wave background field and the
photon propagator. Given that the external photon is off-shell, this result can be used as a building
block to compute loop-corrections of nonlinear quantum processes.

We studied the strong field (£ > 1, xo > 1) behavior of this vertex amplitude and found that its
scaling is in agreement with the Ritus-Narozhny conjecture. We checked the Ward identity and found
that by fulfilling this identity, the component pointing along the external photon direction does not
contribute to transition amplitudes of on-shell states. In the high-field limit, this component exhibits

a dominant scaling behavior with respect to xg, scaling as axg/ 3, while the remaining amplitude

scaling is axé/ 2,

The infrared divergences in this vertex amplitude are cured by including a positive photon mass in
the photon propagator. In future work, we plan to remove these divergences using the Bloch-Nordsieck
method [176, ], to include this result in the cross-section of nonlinear Compton scattering at the
next to leading order.



Appendix A

Conventions

In this thesis, we have used natural units ¢ = ¢ = A = 1 and employed both Euclidean and Minkowski
space conventions. In this section, we present the main differences between these conventions and
point out the sections or chapters in which have been employed. In adition, we present a list of the
worldline Green’s functions used in this thesis.

A.1 Euclidean space

In Chapters 2 to 4, we work within the worldline formalism in Euclidean space with metric tensor
(g*") = diag(+1,+1,+1,+1). However, in Sections 2.5.3, 3.6.2, 4.6.2 and 4.7.2 we use Minkowski
space conventions. In the case of Sections 2.5.3 and 3.6.2, in order to use the spinor helicity formalism
it is more convenient to work in Minkowski space. In Sections 4.6.2 and 4.7.2, we express our results
within the Minkowski space conventions in order to compare with known results as well as to discuss
the physical scenario.

We use the absolute value of the electron charge e = |e|, corresponding to a covariant derivative
D, = 0,+1ieA,. Momenta of external photons in the master formulas are ingoing. The field strength
tensor for a constant field is

B, -B, 0 iE.
—iE, —iE, —iE. 0

The Dirac-gamma matrices in the Chiral representation (conventions for Chapters 9 and 10)

. i
vl=<£i ‘6) 74=i<_01 é) v5=<$ _01>- (A2)

Minkowski space amplitudes with metric (g4;) = diag(—1,+1,+1,+1) are obtained by analyti-
cally continuing

(@")=1 — (gj/)=diag(—1,+1,+1,+1),
B — —ik?, (A.3)
T — 1s.

However, to obtain the convention used in this thesis an extra step should be done. This is, we replace
the metric ¢gi; by n*¥ through

(gh/) = diag(—1,4+1,+1,+1) = — (™). (A.4)
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A.2 Minkowski space
In Chapters 5, we work within the operator technique in Minkowski space with metric tensor (n**) =
diag(+1,-1,-1,-1).

We use e < 0 as value of the electron charge, corresponding to a covariant derivative D =
o* +ie AP,

The field strength tensor for a constant field is

(A.5)

The Dirac-gamma matrices in the Chiral representation

0 _ 0 1 i 0 ot 5 _ -1 0
7—(1()), 7‘(—01‘0)’ v—(o 1>7 (A.6)

where 1 is the 2 x 2 identity matrix and o’ are Pauli sigma matrices

_( 01 _ [ 0 —¢ _ (1 0O
01—<10>, 02_(1' 0), 03—<01>. (A.7)

The Dirac-gamma matrices in the Dirac representation

o_ (1 0 i 0 ot 5_ [ 0
(3 8) (5 ) (1

A.3 Green’s functions in vacuum

1
: ) . (A.8)

In this thesis, we mainly use re-scaled parameters ‘v’ for the worldline Green’s functions. For this
reason, we clarify the relation between the vacuum Green’s functions with ‘7’ parameters and the
re-scaled ones, see table A.1. For more details see [124, 123].

In table A.1, the expressions for the Green’s function follow the convention of [18, 19]. Note that,
the constant factor of ‘T'/6’ is irrelevant for flat space calculations [124], for this reason, it is omitted
in the calculation of the N-photon amplitudes.

T representation u representation: 7; =T u; Comparison of reps.

Gpij = |t — 7l = 7(ri = 75)° = § | Gy = lui — uj| — (wi —u;)* — § | Gp(ri, 7)) = TGp(ui,u )

Gij =i —7j| = 7(ri = 7)° Gij = |ui —uj| — (us — uy)* G(7i,75) = TG(ui, u )

Gij = sign(r; — 1) — %(Tz —75) G” = sign(u; — u;) — 2(u; — uy) G(Ti,Tj) = G(ul,u])
Gij = 26(r; — ;) — 2 Gy = 26(us —uy) — 2 (i) = AC(ui, )
Grij = sign(r; — ;) Grij = sign(u; — uy) Gr(mi, 1) = Gr(us, uj)

Table A.1: Vacuum Green’s functions with string inspired boundary conditions.
Some obvious but useful identities, that we often use, are
-2
Gl =1-4Gy;, (A.9)

Gy =1, (A.10)
—Gr12Gra3Grs = Gia + Gaz + Gy . (A.11)
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A.4 Green’s functions in a constant field

It is convenient to remember that in the case of a constant field we use the following convention for
the field strength tensor
Z=eFT. (A.12)

The Green’s function in a constant background with string-inspired boundary conditions and its
derivatives are [123]

T Z e / :
Go(r:7) = g7 (g 2 +iZCnlr7) 1)

222 \sin Z
. ) Z . * ’
gB(Tv T/) = % < . ZeizZGB(T’T ) — 1) )
S 5 =z . (A.13)
Gp(r, ) =26(r,7") — Tisinze_iZGB(T’T ),
, , e—iZGB(Tﬂ'/)
gF(T,T ) ES GF(T,T ) W
The coincidence limit of the previous functions are
T (cotZ 1
gB(TaT)_2( z _Z2> ’
(A.14)

Gp(r,7) :icotzfé,

Gp(r,7)=—itan Z.

The Green’s function in a constant background with Dirichlet boundary conditions and its deriva-
tives are [67]

Alr,7) = 51G8(r, ) — Gs(7,0) ~ G (0,7) + G(0,0)]
*Alr, ) = 3 (Gn(r )~ G5(7.0)). (A.15)
A (T, T) = —%GB(T, 7).

Here, we have presented a list of the worldline Green’s functions used in this thesis for more details,
see Chapters 3, 4 and references [124, 123].



92

Conventions



Appendix B

Talacha: Complementary detalils

Talacha: Spanish word defined by the dictionary as "long and tiring mechanical work”. Here is used
to refer to the intermediate steps in a calculation to obtain the desired results.

B.1 Light-by-light scattering

B.1.1 Coincidence limit

As an example, we present the step by step calculation (adapted from [123, ]) of the coincidence
limit of (3.14)
Grij = Gy cos(ZGy;) — isin(Z2Gy;) ’ (B.1)
cos Z

and by coincidence limit, we mean Gr(u;, u;) — Gr(ui, u;). Here, in order to compute this limit, we
need to keep in mind that Gr;; and G;; contain one sign-function o;;, which has the property that
afj = 1. Then, the first step is to expand'

Grij

cos Z

Grij =

Zc% Z2G45)? fzzcgnﬂ ZGW)Q”“] , (B.2)

n=0

use the o;; property mentioned before, or equivalently the identity G =1 — 4G}, to obtain

Grij |— n n e n "
gFij = COS% 7;)02”22 (1 — 4G7J) — ’an:;)(:gn_;'_lZQ +1(1 — 4G7]) Gij (B3)
Now, notice that Gp;;Gij = 1 — 2|u; — u;|, such that
1 n n
Irij = % GF”ZCW# (1 —4Gy;)" —znZ;cQ w1 221 — 4G (1 = 2wy — uj)) |, (B4)

and finally, since we have removed all O’ij, we can take the limit u; — u; and consider Gry; = Gy =
Gy = 0. Therefore, we obtain

1

Orij = — cosZ Z Conp1 22" = —itan Z. (B.5)

B.1.2 Calligraphic Green’s functions in a pure magnetic field

Here, we present the step by step calculation (adapted from [123, ]) of G Bij for a magnetic field
in z direction, as in (3.34). First, we look at the series expansion? of Gp;; respect to Z
sin(2Gy;) . [cos(2Gyy) 1 : - o N 2
ij = - = | =Gl nZ" np1 220t B.
IBij sin Z + sin Z Z Gij +nz=:102 +an=:102 +1 (B.6)

1Here ¢, are constant coefficients whose exact expression in not required but can be found in terms of Bernoulli
numbers [166, ]
2Now, the coefficients ¢, depend of the scalar Green’s functions G”
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Here, we should look at the odd and even functions in Z such that using equation (3.32), we obtain

oo oo
Gpij = Gij(g- +9:) + Y can(=1)"2""gy +i D> _ conpr(—1)"2""1ry (B.7)
n=1 n=0
or . .
GB”- = Gijgf + <G” + Z czn(iz)2"> g+ + Z 02n+1(z’z)2”+1r+ , (B.S)
n=1 n=0
now comparing the even and odd parts, we can see that
Gpij = Gijg— + Siziﬁ?g;j) g+ + [Cosi(rf(zif;j) - llz] T+ (B.9)

At this point, it is obvious that

. . nh(zG h(2G 1
Gpij = Gijg- + sinh(=Gy) + - [COS (=Gij) } iry . (B.10)

sinh(z) sinh(z) =z

All other calligraphic Green’s functions in a magnetic field and for the case of Section 3.5 are computed
analogously.

B.1.3 Determinants in a pure magnetic field

As an example, we present the step by step calculation (adapted from [123, 1) of one of the
determinants in (3.33). First, it is important to notice the following series expansion

Z (oo}
=1 zn B.11
sin Z + nZ::l Cn » ( )
where ¢, are constant coefficients that are not important for this calculation. Since 22" = (—1)"22" g, ,
> 1z
— (=122 g, =g ) B.12
—5 =9 +g++;cn( )" g = 0o+ s (B.12)
Then,
sinzh z 0 0 0
Z 0 2 0 0
det | — = det [g, + — i g+] = sinh 2 ) (B.13)
sin Z sinh z 0 0 1 0
0 0 0 1
making obvious that
Z z
det’/? | = | = : B.14
¢ sin Z sinh z ( )

The calculation of the spinor determinant and the determinants in Section 3.5 are similar.

B.1.4 Integration in a pure magnetic field

As an example, we compute (3.40) step by step for both bosonic and fermionic cases.

Scalar QED: First, we write the bosonic functions Hg explicitly

1 1 21 G 220G
B(2 e#1G12 1 e%2G23 1
ng( )(21’22) = /0 dus HlBQ(Zl)HQB3(ZQ) = A dus (Sinh P — Zl> <Si1’1h = — 2,’2) R (B15)

for which, we use the following identity [123]

/1 du 62311 CLG(u,uL) _ Z?:l Sinh(Ci)e =t “
= - mn 9
0 Zi:l Ci

C‘7'1'.7'

(B.16)
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obtaining
1 : : 1
HB(Q) _ ( —21G31 h 22G13 h(— ) _ B.17
13 (21, 22) (29 — z1) sinh 27 sinh 2y ¢ sinh zz +e sinh(=21) 2129 ( )
that simplifies to
HB(Z)(Zl ) = 1 e1G13 B i N 1 e#2G13 B i _ Hg(zl) N HlBg,(zg).
13 ’ (ZQ — Zl) sinh Al Z1 (Zl — ZQ) sinh Z92 ) Z9 — 21 Z1 — %2

(B.18)

Spinor QED: First, we write the fermionic functions Hg explicitly

F(2) ' F P ' 05162 0202
H13 (21,22) = / dUQ H12(21)H23(22) = / d’LLQ GF12 ) GF23 s (Blg)
0 0

cosh z9
for which, we use the following identities [123]
. . . .92
—Gr12Gr23Gr31 = Gi2 + Gas + Ga1 Gpz =1, (B.20)
to get

1

! . .
— | duy (Gia+ Gag + G31) Gppges1Gr2t22G2 B.21
cosh 2; cosh 2 /0 u (Gha + Gas + Gs1) Grage ( )

HiZ? (21, 20) =

Here, we can replace G192, G23 by derivatives of their respective coefficients

1 0 o . ! - -
HEP (21, 20) = —————— ([ —— + =— + Ca1 | Gpu: / dug e*1G12+22G2 B.22
13 (21,22) cosh 21 cosh 25 \ 92 + 92y + Ga1 F13 ; Ug € ( )
and using the identity (B.16), it becomes
1 0 0 . e*1G13 ginh 29 e#2G13 ginh 21
HE®) S S T T e
13 (21’ 22) cosh Z1 cosh z9 F13 821 + 8Z2 +Ga Z1 — %9 + Z9 — 21
(B.23)
Finally, we perform the derivatives and simplify, obtaining
1 enGun 1 enCun HE HE
Hg@)(Zl,ZQ) = Gr13 ( ) = 13(21) + 13(22) . (B.24)
29 —z1coshzy  z1 — 29 cosh zo Z9 — 21 Z1 — 22

B.2 Compton scattering in magnetic field

B.2.1 Spinor path integral for N =2

In order to compute the path integral in the following expression
S;(T, ) = - Symb_l [/ Do) foT dq—{édﬂ[)—i(wﬂ—;n)[eF—é(T—T1)f1—5(T—Tz)f2](¢+«fﬂ])}} (B.25)
c
and re-expressed as (Eq. 4.56), we define

Ty = / D(r)e [ ar{vd—i(v+3n)leF—s(r—r1) f1—8(r—r2) 2] (¥+3m) } (B.26)
C

0(8162)

Expanding up to linear order in €162 we get

Iyam /CDq/;(T)e* fOT dr[gypp—i(+5n)eF (v+3n)] {1 —; <1/,(7-1) + ;n> fi <1/,(7-1) + ;n>

=i (w4 gn) £ (wiem)+ ) = (w0 + 30) £ (w6r0) + 30) (970 + 50) £ (w7 + 5
(B.27)

)}
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Here, as well as in the calculation of ST, the previous path integral will be non-zero only for an even
number of 1(7;) in the pre-exponent. In this case, additionally to (4.47), we have the following Wick
contraction

Je DUT) W) (7 )T ) (m) e fOT dr[gy—i(v+gn)eF (¢+5n)]
fC Di(r)e foT dr[Lvi—i(w+3n)eF (v+4n))

= ((7:)0(7)b(r)o(m)) - (B.28)

It is well know that [124, ]

W) (1) ()9 (1)) = (W ()P (T)) () (1)) — (7)o (70)) (W ()9 (7))
+ (7)Y () ((75) ¢ (7h)) -

Writing the previous integral in terms of Wick contractions

(B.29)

mzzw,o{l_i(wmbunﬂ Ve ((%‘%Hin“n") 2 - [wwwgw@

— (WR) R + (UG ) + AT+ WS — LS (B30)

»P\H

v o 1 v, O vV pO
@rvsm™m’ + 5 <¢1¢2>n n” *%%1/}5)?7”77 + 16 nf’]f{‘ 2p}~
Then, in terms of calligraphic Green’s functions for d = 4 (see Eq. (4.48)), we have

1 n 1 v v : )
I, = 22det? (cos Z) et (2 Z)"{ (gFll + 5”“” ) 1 2 (gl’é22 + 277 K )

1 v (o 1 12 U (on 1 v, O v o
[gFllgF22 +2G15,077, + gg;n’? n’ + 577“77 Gras +2G1an"n” + 1’7“77 7 ﬂpl I 2p} .

(B.31)
This implies that
S3(T, Fey) = det? (cos Z) symb ™~ <e‘in(mnz)77 {1 —35 (an +5n'n ) L ( F22 77 n ) )"
mp Low oo 1w vgop 1P oz
gFllgF22+2gF12gF12 + §gF1177 n+ A Gpas 2951200 + 477 n'n’n”| fi
B.32)
Notice that, we can re-write the previous expression as
SJ(T, Fuy) = det? (cos 2) [SO(Z) CiS1(Z, 1) —iS1(Z, fo) — Sa(Z, o fg)} : (B.33)

Due to the fact that 7% are Grassmann variables whose square are equal to zero, in d = 4, we have

So(Z) = symb™" [ei’"(tan Z)n} =symb™ ! [1+ %n(tan Z)n+ % <i>2 n(tan Z)nn(tan Z)n| . (B.34)
Similarly, we have
S1(Z,f) = %symb*1 {efi"(tanzmg;”n + % (1 + %n(tan Z)n> n"n”} i
S1(Z, f2) = %Symb*1 {ein(ta"z)"g%z + % (1 + %U(tan Z)U) 77”77”} 5
(B.35)

1 _
S2(Z, fif2) = gsymb !

7: v 124 v, o
(1+ 4n(tanZ)n) (g;nn 0’ +n0'n"Grhy +4GEn 0 )

1
+2edn(tan Z)n (gFllgF22 + 2gF12qu2) + -ntn"nnP | f1V 150

2
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On the other hand, the symb functions (see (4.7)) that we require, in this section, are
- v v v v 1 v
symb 1(77N77 ) =—[""] = 20", ot :_5[7/“7'7 ]
symb ™! (nn" 17 nP) = 7P symb ™ (' nPr’nt) = 46770 4P,
1234

(B.36)

where €777 is the fully antisymmetric Levi-Civita tensor with ¢ = 1. Then, in terms of gamma

matrices we have

. o\ 2
So(Z) =1+ %U’“’(tan Z) 2 <;) M9 A5 (tan Z)M (tan Z)°P

1 ) - v
S1(Z, f1) = 3 {So Ghy + o+ %5"”’“’ ~° (tan Z)""} m,
1 v v Z o v (e v
Sl(Za f2) - 5 |:SO gé":‘22 + O'I—L + 55 PR ’)/5(tan Z) p:| fé 9 (BS?)
1 up vo nv o _op pv Hp Vo
S2(Z, fif2) = 1 So (gFllgFQQ + 2gFlng12> + (gFuU to gF22 + 4G 0 )

e o ! (tan 2)°* (g e0for 4 eomges, + 4gmeaﬁvv)75] e

B.3 Strong field QED

B.3.1 Dirac equation in a plane-wave field

In this section, we briefly review the steps to obtain the Volkov states solution (5.40) of the Dirac
equation in a plane-wave field background (adapted from [98]). Notice that the Dirac equation in a
plane-wave field can be written as

1 1
<H2 —m? — 2ieF,wa“”) U= {(ia —eA)? —m? - 2ieFWU’“’} U=0. (B.38)
In which, we have
(10 — eA)’ U = (—8,0" — 2ieA,d" + A, A" U, (B.39)
Fom =2nA", (B.40)

here we have used the Lorenz gauge condition 9, A* = 0. Then, the second order Dirac equation
become

( 0,0/ — 2ie A, 0" + 2 A, A" —m —zenA) =0. (B.41)
Since A = A(¢), we seek a solution as
U=e P H(g). (B.42)
Substituting into Dirac equation, we get
d «
2i(np)%H + {(eA —p)2—m? —ienA'| H=0. (B.43)
The solution of the previous equation is well known to be
Crd g [eA)—p2—m2—iendl(6)) 4,
H(d) = & Jo 4% =) _ B.44
%) erm (B.44)
Then, the solution of the Dirac equation is?
BﬁA . —i f¢ d(t,’w (7
Ulp,z)= |1+ e i Pr)e ™ o 2(np) . B.45
(p. ) 2(np) V2po ( )
Similarly for the conjugate Volkov states, we have
_ i ehA f dg 2 @A M= 2424/
U(p,x) = 1- ¢!(P2) ! ) . B.46
©) = o { 2(np) (B4

3Here, we have used that oA =1 + AA since n2 = 0.
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B.3.2 Green’s function for Dirac operator

In this section, we briefly review the steps to obtain the Green’s function (5.40) of the Dirac operator
in a plane-wave field background (adapted from [98]). The Green’s function of Dirac operator satisfy

(ﬁ - m) G(z,y) =0(x,y), (B.47)

i.e, GG is the inverse Dirac operator that can be expressed as

1 N 1 N o S
G=— = (l4m) ————— = —i(fl+m) / ds s =m?) (B.48)
II—m+1i0 I12 — m2 440 0

It is equivalent to have the operator II+m acting from the left or right. In the last equality, Schwinger
parameter have been used. Notice that

. 1
2 —m? =p2 —p? — —eA 2—m2—7ieFua‘“’
Py — P — [PL 1(9)] 9 i % (B.49)
= 2pypr — [pL — eAL(9)] — m? —iend'(¢).
To disentangle the exponential operator, we write it as
eis{2p¢pT—[pL—eAL(¢)]2_m2_ieﬁA’(¢)} _ L(S) 0215PePT (B50)
Taking the derivative respect to ‘s’, we obtain the following differential equation for L(s)
. . dL , .
jeis(I?—m?) {2p¢pT —pL — 6AJ_(¢)]2 —m2_ ieﬁA/((b)} _ % e2isPoPT | 2%L(s)popr e2isPoPT
(B.51)
which can be written as
- A - dL
—iL(s)eisPspT {[pl —eA L ()P +m? + ieﬁA’(ng)} e~ 2isPePT — d(s) , (B.52)
S
shifting operators, e2SPsPT f(g)e=21P¢PT = f(¢ + 2spr), we get
dL A
df) = —iL(s) {[Pi —eA L (¢ + 2spp)]” +m? + iend' (¢ + QSpT)} , (B.53)
where the solution with initial condition L(0) =1 is
L(S) _ e—i fos ds'{ [pL—eAL (¢+2s/pT)]2+m2+ieﬁz4:/(¢+2s'pq~)} ) (B54)

Then, the Green’s function of Dirac operator in a plane-wave field is*

~ b ~ ~ —i [ ds’ —e s’ *tm i
G = fi(Her)/ ds {1 " ZLn [A(¢+ 2spr) — A(qb)]} o as {Ipa—eAs @25 4m? ) sispepr
0 pr
. (B.55)
Similarly, if we consider II 4+ m acting from the right, we obtain
e i N N —1 i s’ —e —2s’ 2 m A
G = fi/ ds e2isPerT {1 - %4 [A(ff)*QSPT) A(¢>)}} oty s {lpr—ear@2spr 4wt gy
0
(B.56)

B.3.3 Gordon identity

In this section, we derive the Gordon identity in plane-wave field (5.52). First, remember that for
the Volkov states we have

11(¢) Uy(p, ) = p(¢) Us(p, ) = mUs(p, @) . (B.57)

4Here, we have used that oA =1 + AA since n2 = 0.
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We can make use of the previous identity to show that

Us/ (plv m)qus (pv LE) = % {Us/(p/, x)ﬁp/ (QS)’VMUS (pv LE) + ﬁs’ (pla x)’y“ﬁp(qﬁ)Us (p7 (E):| 9

which, using the anti-commutator relation {y*,v"} = 2n**, we can express as

U (0, 21 Us(p,2) = 7O 0l 2) 2724 (6) — 750 (6) + 1 (8)9#] U, )

+ U0l ) [2786) = 7 (817% +75,(9)] Us(p )

Simplifying in terms of o = £[v*,~4"], we finally get

Uy (p', )y Us(p,x) = Us (p', ) {

2m 2m

7rp/(¢) + 75 (o) +i ot [mp (@) — mp(B)],, } Us(p, ) .

99

(B.58)

(B.59)

(B.60)
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Appendix C

Proper-time integrals for the
four-photon amplitude in a B-field

C.1 Relations for the two- and four-cycle integrals

For 2-cycle integral in (3.97), we have used the following identities (see Eq. (3.44))

1
B(2
H11( )(070) = —ga
B(2 B(2 1 — zcoth(z)
H11( )(370) = H11( )(Z’ —2) = -2 (C.1)
1
Hﬁ(Q)(Za z) = Hﬁ@)(—z, —2z) = csch?(2) — -

to simplify such integral result as much as possible. Then, the trigonometric functions I3° in (3.98)
are given by

s 1. B S 1 B(2 B(2
128 = §H11( )(050)7 125 = Z {Hll( )(Z>O) + Hll( )(Z,Z) ’ (C 2)
sc 1 B(2 sc 1 B(2 B(2 '
I35 = SHR® (2,0), 135 = 3 {HA? (2.0) - H{P (2, 2) - 2AH[ ()1}
For the 4-cycle integral in (3.97), we have used the following identities
HG®(2,0,0,0) = H{"(=2,0,0,0) = H}® (=2, 2,0,0),
HZW(2,2,0,0) = HW (=2,-2,0,0),
B(4 B(4
Hll( )(2327250):}[11( )(72’7257250)7 (C 3)
H{ "V (z2,2,2,2) = Hy "V (~2,—2,~2,~2),
Hﬁ(4)(_zv 2% 0) = Hﬁ(4)(_zv —Z, %, O) = H131(4)(_Zv —Z, %, Z) 5
HlBl(4)(_Zv 2,2,2) = HBl(4)(_Za —2,—2,%),

to simplify such integral result as much as possible. The explicit trigonometric expression for every

101
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Hﬁ(4) is
B(4) 1
Hyy (0703070) = 45’
2 —3zcoth(z) +3
HE®(2,0,0,0) = =
(,0,0,0) = = 22ORE 1T
B —422 4 3z coth(z)(z coth(z) +2) — 9
H11(4)(Z727030) = ( 3)2(,4 ( ) ) )
3 — z (coth(z) + z(z coth(z) 4 1)csch?(z)
B(4
Hll( )(2727270) = ( 24 ) ) (0.4)
1 2csch?
Hﬁ(4)(z,z, z,2) = o + csch*(2) + 708(33 () ,
B4 z (coth(z) + zesch?(2)) — 2
Hll( )(—272,2,0) = ( 9,4 ) s
4 — z (coth(z) 4 2(2z coth(z) + 1)esch?(z)
B(4
Hu( )(—z7z,z,z) = ( o ) )
z
Then, the functions I in (3.99) are given by
e = H%(0,0,0,0),
sc _ LB 3 B 1 B(4)
I3 *§H11 (z,z,z,z)Jrngl (— Z,Z,Z,O)Jr —H ' (—2,2,2,2),
1 3
I = §H5(4)(z 2,2,%2) + gHﬁ(4)(—z,z,z,O) - §HB(4)( z,2,2,2) + [HE (2)],
1
I = fHB(Zl)(z z,2,0) + HB(4)( z,2,2,0),
¢ = HE®(2,0,0,0), (C.5)

I = %Hﬁ(‘”(z 0,0,0) + HB(4)(z,z,0,O),
I = %HB(4)( 0,0,0) — B(4)(z,z,0,0),
I = 8HB(4)(z z,2,2) + 8H11( )( z,2,2,0),
I = fHB(4)(z z,2,0) + HB(4)( z,2,2,0).

In the case of fermionic variables, we obtain similar expressions for the integrals (3.44). For 2-cycle
integral in (3.111), we have that

tanh
HE®) (2,0 = HE®) (2, —2) = - 222 (o)

H1F1(2) (2,2) = Hﬁ@)(—z, —z) = tanhz(z) -1,

sp_ L [B@ HEC
130 = ) [Hu( )(070) ( ) }
s 1 B B 1 HE F
I3y = 1 [HM(Q)(Z 0) + H; (2) ] 1 { (2) (2,0) + Hy (2)( )} ; ©n
1 1 1 ’
135 = 7 (B (,0) - HEP )] - £ [HIP,0) - HLP 2] - S1HEG) - HE ()P,
s 17 B2 F(2
p_ =
I3 = 2 [Hu (2,0) - }
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For the 4-cycle integral in (3.111), we have used the following identities

F (4)

@ (2,0,0,0) = (—2,0,0,0) = HL®(=2,2,0,0),
4)(,2 z,0,0) = F(4 (—2,-2,0,0),
4)(,2,2,2,0) 4)( z,—%,—2,0),
4) F(4 (C.8)
(Z,Z,Z,Z) (_27_27_'2’_'2)’
4)( z,2,2,0) = Hﬂ(4)(—z, —2,2,0) = H1F1(4)(—z, —2,2,2),
F(4)( Z,Z,Z,Z) = Hfl(4)(7z7 —Z, *Z,Z),

to simplify such integral result as much as possible. The explicit trigonometric expression for every

H1F1(4) is

HE(0,0,0,0) = %
aH*(2,0,0,0) = %fh() :
Hfrl(4) (2,2,0,0) = tanh(z)(z tar;};(z) +2) -2z ’
Hﬂ(4)(z, 2 2,0) = 2(z tanh(z) + l)iichg(z) — tanh(z) ’ (©9)
Hﬂ(4)(2, z,2,2) = sech*(z) — 23(3(:;)12(2) ,
Hﬂ(4)(—z,z, 20) = tanh(z) ;; sech?(z) ’
Hﬁ(4)(—z,z, 22) = 2(2z tanh(z) + 1)sech?(z) — tanh(2) .
423
Then, the functions I* in (3.113) are given by
P = 75%(0,0,0,0) — H5*(0,0,0,0)
LP = é {Hﬁ(él)(z,z,z,z) - H1F1(4) (z,z,z,z)] + % [Hﬁ(4)(—z,z,z,0) - Hﬂ(4)(—z,z,z,0)}
+ % [Hﬁ(4)(—z,z,z,z) - Hﬁ(4)(—z,z,z,z)} ,
1 = [HEO 22 ) ~ HED (2,2, 2,2)] 4 2 [BED (-2,2,2,0) = HEO(~2,2,2,0)]
5 [ 2222 HEO(2,2,2,2)] + 1A G) - HE G
1= [HE9 Gz, 0) = B Go2,2,0)] + 2 [HEO(2,2,2,0) - HE D (-2,2,2,0)] L (C10)
P = HB(4)(Z,O,0,0) — H%(2,0,0,0),
P = [HH( )(2,0,0,0) — Hfl(4)(z,0,070)} n % [Hﬁ(4)(z,z,070) - Hfl(‘*)(z,z,ao)} ,
P = % {Hﬁ(“)(z,o,o,O) - Hﬁ<4)(z,0,o,0)] - % [Hﬁ(4)(z,z,0,0) - Hﬁ(“)(z,z,o,())] :
17 = = [HED Gz 2) = D 622 2)] + 5 [HEO (2,220 = HEO(—2,2,2,0)] |

, 1 1
IP = -1 [Hﬁ(4)(z,z,z,0) - Hﬁ(@(z,z,z,())} + yi [Hﬁ(4)(—z,z,z,0) - Hﬁ(@(—z,z,z,O)} .
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C.2 Proper time ‘1"’ integrals for the pure magnetic case

In this section, we briefly discuss the procedure to analytically compute the integrals in (3.100) and
(3.114). For such purpose, it is required the following three basic expressions*

P A f+1
/dze Snh(2) 27" (n+ 1)¢ (n +1, 5 , (C.11)
2

/dz e P% 2" coth(z) = 27" 1T (n+ 1) {C (n +1, g) +¢ < +1, B;L)] , (C.12)
/dze 82 27 tanh(z) = 272D (n + 1) {g <n—|—1 5) —2<< +1, ’8:> +¢ <n—|—1,i—|—l>} ,
(C.13)

where ((z,y) is the Hurwitz-zeta function defined by
Z (k+y) ™™ (C.14)

and I'(n) the usual gamma function (see [168]).
Now, we follow the steps presented in [153] for the calculation of integrals of the form

/ dze P f(2) /dze B2 f(2) (C.15)

for 8 a positive constant and f(z) a trigonometric function.
In order to perform integrals of this kind, we first rewrite them as the derivative respect to an
‘artificial’ parameter ‘a’ of one of our basic integrals (C.11), (C.12) or (C.13). For instance,

n sh n—1
/dze_ﬁz Z.LZ(Z) =— {8a /dz e Pz Z} . (C.16)
sinh?®(2) sinh(az) ot

Finally, we make the change of variables 2’ = az and perform the derivative

n—1 -n Nn\n—1 n—1
—Bz z _ / —gz’ o (Z ) — / —Bz Z (ﬂZ B ’I’L)
{aa /dze sinh(az)} ‘ . {8a /dz € sinh(z’) } ‘ ) dze sinh(z)

(C.17)
which returns an expression of the form of (C.11).

We list the different integrals that appear in the four-photon amplitudes in a magnetic field: For

scalar QED
n sh n—1
/dze—ﬂz w =— {aa /dz e P? ,Z} , (C.18)
sinh®(2) sinh(az) ot

n n—2 n
/dze_ﬁz = ! 02 /dze_ﬁz A /dze_ﬁz - (C.19)
sinh®(z) 2 | ¢ sinh(az) sinh(az) . ’
n 2 n—2 n
_p. 2" cosh”(z) 1 / g % / g 5
/dze 7sinh3(z) 5 05 [ dze sinh(az) + [ dze Snh(az) 71, (C.20)
/dz e Bz M = 1 o3 /dz e P L_g — 9, /dz e Pz L_l (C.21)
sinh?(z) 3L sinh(az) sinh(az)’ »
n n—4 n—2 n
—Bz 4 — l 4 —Bz 4 -1 2 / —Bz 4 / —Bz <
/dze sinh®(z) 4! {86“ /dze sinh(oz) 00, [ dze sinh(oz) 9 fdze sinh(az) J |
(C.22)

n this appendix, the integral symbol without limits is understood to be form 0 to oco.
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And for spinor QED

/dz e P* sinfl2(z) =— {8a /dz e P7 n1 coth(az)} ; (C.23)
a=1
dz e P* Z.LSh() _1 0% [ dze P% 272 coth(az) , (C.24)
sinh?®(z) 2 -
/dz e P % = —% {(“)i /dz e P% 2" 3 coth(az) — 40, /dz e P7 n1 coth(az)} ,
sinh®(z) ! -
(C.25)
—Bz z" COSh(Z> 1 4 —Bz .n—4 2 —Bz ,n—2
dze 7" ————F = o 0, [ dze 7% 2" "coth(az) —40; [ dze 7% 2" “ coth(az) ,
sinh”(z) ! -
(C.26)
/dz e P* ﬁz(z) = {Ba /dz e Pz nl tanh(az)} ) (C.27)
a=1
" sinh 1
/dz e P= zs;r;((;) =-3 {82 /dz e Pz 2 tanh(az)} ‘ . (C.28)
cosh”(z

a=1

C.3 Basic integral results for the scalar amplitude

Here, we use (C.11) to write the analytic result of all the integrals appearing in the scalar amplitudes
in terms of the Hurwitz-zeta function ((z,y). So we have

/dzeiﬂz %s;l(li)z) =2""T(n+1) [2( (n, 5—21_1> - ¢ (n—&-l,%)} , (C.29)
/dze*f”® — 2 "I P(n 4 1) [(52 - 1)g(n+1,%> +4§(n—1,%> —4ﬁg<n,$)] ,
C.30)

/dze*&ii%‘if;) — 2" I (4 1) [(ﬁ2+1)q(n+1 5"2”) +4C<n71,%) _48¢ (n%)} ,
(C.31)

/dze_’ﬁz Z;iii}(lg) = 27;71F(n+ 1) l—53<( 'BT) +68%¢ (n, ﬁ;r1>
(C.32)
o T o ) o2 ac(u )]

/dze‘ﬂzsinfl:(z)=2_;_3F(n+1)lﬂ4<(n+ D) s (n ) s (n-1, B
N

71052C(n+1,%> -328¢ (-2 5"2”) +405¢ (n,

+16C(n_3752+1>_4og(n—1,ﬂ2ﬂ)+96(n+1,’8;)]

(C.33)

It is important to mention that J;° contain spurious poles that we remove with the aid of dimensional
regularization. For such we replace z™ — 2" %€ and take the limit of € — 0. Notice that n is different
in every J3°.
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C.4 Basic integral results for the spinor amplitude

Here we use (C.12) and (C.13) to write the analytic result of all the integrals appearing in the scalar
amplitudes in terms of the Hurwitz-zeta function {(z,y). So we have

o iy e 8) e Y] ol (er£) e (oo ).
(C.34)

L U T ECRE) B A R O]

e e f)ve(ren 23]}

(C.35)
Jo G = "“){ e (nrr5) +e(nrr,252)]
o) o o )28
2) 7 ()]

wanfe(neng)we(ien 52)] -8 fe(o
vsfc(n-2.2) +¢(n- 2ﬁ+2)}}

o 28 {7 cr 5) c(ren 23]

sinh®(2) 3
e ) entar - efo12) (o1 22)
¢

(C.39)

It is important to mention that J;* contain spurious poles that we remove with the aid of dimensional
regularization. For such we replace z™ — 2" %€ and take the limit of € — 0. Notice that n is different
in every J:P.
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C.5 Integral results for the scalar QED: J*

Here, we present the explicit expression for each integral in (3.100) as the proper time integral of a
trigonometric function

J5° _ J36 _ Oodze—ﬁz 22
by b2 0 sinh 2’

JS?ZIE ooclzeﬁz< e ZCOShZ>,

2 J, sinh®z  sinh?z
o0 2 9 (C.40)
5 — dz =P 3 z _ zcoshz n z
2 2 0 2 \sinh®z  sinh? 2 sinhz |’
a1 h
B [ ase (L zeohy
o sinhz  sinh®z
; 1 [ 2 <h2 2 h h 2
y S — dz e P 3 .zr +C.Ob 3Z_ z.coz z _z.cost_F .zS 7
2/, 2 \sinh®z = sinh” 2z sinh® z sinh“z  sinh” z
, 1 [ _B 1 cosh? z cosh z z cosh z
Jog = = dze "7 + — — , C.41
®»7 3 /0 (sinh3 z sinh®z  zsinh®z  sinh%z ( )

g — Oodzef*ez 3 1 +cosh2z7 cosh z 7zcoshz n 1 7zcoshz
2 0 2 \sinh®z  sinh®z  zsinh?z sinh* z sinh z sinh?z |’

‘ 1 [~ _ 22 cosh®?z  2zcoshz
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After using the expressions in Section C.3 and implementing the dimensional regularization, we

obtain the following expressions for each J7° in terms of the Hurwitz-zeta function, its first derivative

(respect to the first parameter),the digamma function ¥(z) = ¥ (z) = % and the polygamma
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function (™ (z) = %w(@z
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2We clarify that log(z) is the natural logarithm and T'(z) is the gamma-function.
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Here, we present the explicit expression for each integral in (3.114) as the proper time integral of a
trigonometric function
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After using the expressions in Section C.4 and implementing the dimensional regularization, we
obtain the following expressions for each J;” in terms of the Hurwitz-zeta function, its first derivative
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(with respect to the first parameter), the digamma function and the polygamma function
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