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Abstract

The main purpose of this thesis is to study quantum-electrodynamics (QED) in the presence of
external background fields. We address this purpose by computing the Delbrück scattering amplitudes
in the low-energy limit, the low-energy N -photon amplitudes in the presence of a constant field, the
low-energy four-photon amplitudes in the presence of a constant magnetic field, the forward Compton
scattering amplitudes in a constant magnetic field and the one-loop vertex correction in an arbitrary
plane-wave field. In most cases, except for the vertex correction, we employ the worldline formalism
to perform all calculations simultaneously for both scalar and spinor QED.

We utilize the previously obtained result of the off-shell four-photon amplitude with two low-
energy photons to calculate the circularly polarized amplitudes for the leading-order contributions to
Delbrück scattering, assuming that the incoming and outgoing photons have low-energy.

We compute the one-loop N -photon amplitudes in a constant background field considering off-
shell low-energy photons in various field configurations. Assuming parallel magnetic and electric
components of the background field enables us to obtain compact representations for these amplitudes
involving only simple algebra and a single global proper-time integral with trigonometric integrands.
Similarly, assuming a constant crossed field, we derive compact expressions for these amplitudes,
represented by a single proper-time integral. The outcome of this integral, for fixed parameters, takes
the form of a factorial function. The latter case is further refined by employing the spinor helicity
formalism, where the helicity components are expressed solely in terms of Bernoulli numbers and
spinor products. Moreover, for an arbitrary constant field, we obtain another representation of these
amplitudes as series expansions in the external field.

As an application, we compute the one-loop four-photon amplitudes in the presence of a pure
magnetic field for off-shell low-energy photons. Using these results, we calculate the polarized am-
plitudes for linear and circular polarizations in two distinct scenarios: when the magnetic field is
coplanar with the scattering plane and when it is orthogonal to it.

We study the polarization flip of a photon scattered by an off-shell particle in the presence of a
magnetic field. Specifically, we compute the Compton scattering amplitudes in a magnetic background
field for off-shell massive particles and on-shell photons under the assumption that the scattering
occurs in the forward direction, aligned along the same axis as the magnetic field. Additionally, we
consider the polarization of the external photons to be perpendicular to each other.

We apply the operator technique within the Furry picture (Volkov states) to compute the general
expression of the one-loop vertex correction in an arbitrary plane-wave background field for the case
of two on-shell external electrons and an off-shell external photon. We show that the ultraviolet
divergence can be renormalized exactly as in vacuum while the infrared divergence is avoided by
introducing a finite photon mass. This calculation completes the study of QED in a plane-wave
background field at one-loop order.

In most cases, except for the Delbrück scattering amplitudes, we perform non-perturbative calcu-
lations, given that the external background fields are taken into account exactly.

Keywords: Quantum electrodynamics, one-loop, amplitude, worldline, operator technique, helicity,
background field, scalar, spinor, low-energy, strong field, plane-wave.
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Chapter 1

Introduction

In quantum-electrodynamics (QED), the classical theory described by Maxwell equations is modified
by the appearance of nonlinear corrections that violate the superposition principle and are due to the
purely quantum effects. Specifically, the prediction made by Dirac [1, 2] regarding the existence of
positrons (the antiparticle of electrons, later discovered by C. D. Anderson [3, 4]) and the uncertainty
principle (expressed as ∆E∆t ≥ ℏ/2 where ℏ is the reduced Plank constant) allow the existence of
virtual electron-positron pairs, i.e., electron-positron pairs that live for a very brief period of time.
This argument can be extended to all existing particles, suggesting that the vacuum can be viewed
as a non-trivial medium replete with quantum fluctuations such as virtual particle-antiparticle pairs.
Therefore, exploring these nonlinear effects through perturbations of the vacuum with external fields
could potentially lead to physics beyond the standard model.

The first quantum correction to the Maxwell Lagrangian that includes nonlinear corrections to
QED was given by H. Euler and W. Heisenberg. They obtained the nonperturbative, renormalized,
one-loop effective Lagrangian for spinor particles in a classical electromagnetic background of constant
field strength [5]. This Euler-Heisenberg Lagrangian can be expressed as1

LEH = − 1
8π2

∫︂ ∞

0

dT

T 3 e−m2T

{︃
(eaT )(ebT )

tan(eaT ) tanh(ebT ) − 2
3(eT )2F − 1

}︃
, (1.1)

where
a =

(︂√︁
F2 + G2 − F

)︂1/2
, b =

(︂√︁
F2 + G2 + F

)︂1/2
, (1.2)

are written in terms of the two invariants of the Maxwell field

−2F = −1
2FµνF

µν = E⃗2 − B⃗2 , −G = −1
4Fµν F̃

µν = E⃗ · B⃗ . (1.3)

The same affective Lagrangian, for scalar particles, was later derived by Weisskopf [6]. Using the
same conventions as for LEH, the Weisskopf Lagrangian is given by

LW = 1
16π2

∫︂ ∞

0

dT

T 3 e−m2T

{︃
(eaT )(ebT )

sin(eaT ) sinh(ebT ) + 1
6(eT )2F − 1

}︃
. (1.4)

The Euler-Heisenberg (1.1) and Weisskopf (1.4) Lagrangians give rise to two significant phenom-
ena: light-by-light scattering and Schwinger pair production [7]. For instance, by expanding the
real part of these effective Lagrangians up to the e4 order, it is possible to obtain the low-energy
limit of the four-photon amplitudes, which correspond to the leading contributions to photon-photon
scattering for small photon energies compared to the electron mass. On the other hand, the imag-
inary part leads to the probability of electron-positron pair creation by the constant electric field,
known as the Schwinger effect [7]. However, this probability is extremely small for typical field
strengths, becoming more significant only when the electric field approaches the critical value. Here,
the critical fields strengths of QED are Ecr = m2c3/ℏ|e| ∼ 1.3 × 1018 V/m for the electric field and
Bcr = m2c2/ℏ|e| ∼ 4.4×1013 G for the magnetic, i. e. Fcr = m2/|e| within natural units. For a com-
prehensive review of the effective Lagrangians (1.1) and (1.4), their applications and generalizations,
refer to [8].

1From now on, we use natural units with ε0 = c = ℏ = 1 and m and e denote the electron mass and charge,
respectively.
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2 Introduction

The first calculation of the cross section for photon-photon scattering was done by H. Euler and
B. Kockel [9, 10], in the above mentioned low-energy limit. Shortly later, this was followed by a
calculation of the opposite high-energy limit by A. Akhiezer et al. [11, 12].

The first treatment of the photon-photon scattering amplitude for arbitrary on-shell kinematics
was done by Karplus and Neuman [13, 14]. They analyzed the tensor structure of the four-photon
amplitude, showed its finiteness and gauge invariance. Later, De Tollis [15, 16] recalculated the
amplitude using dispersion relation techniques, which led to a more compact form of the result.

The consideration of four-photon amplitudes with some legs off-shell arises from the realization
that photons emitted or absorbed by an external field in general can not be assumed to obey on-
shell conditions. An important example is Delbrück scattering, the elastic scattering of a photon
by a nuclear electromagnetic field, where the scattered photon can be taken real but the interaction
with the field is described by virtual photons (see Fig. 2.3). This process, and similar ones involving
interactions with the Coulomb field, motivated V. Costantini et al. to study the four-photon amplitude
with two photons on-shell and two off-shell [17]. Moreover, we have investigated the fully off-shell
four-photon amplitudes using the worldline formalism [18, 19, 20]. In [18], they derived an optimized
tensor decomposition for the integrands of these off-shell amplitudes in both scalar and spinor QED.
The development of analytical expressions for these off-shell amplitudes remains an ongoing project,
partly documented in this thesis. In [19, 20] the off-shell four-photon amplitudes involving two low-
energy photons are obtained analytically. The utilization of these results to compute the Delbrück
scattering amplitudes at low energies is a primary focus of this thesis, see Chapter 2.

The presence of external electromagnetic fields in vacuum can polarize its virtual pairs, causing the
vacuum to exhibit medium-like behavior, such as birefringence and dichroism. In the weak-field limit,
the study of vacuum birefringence and dichroism can be conducted using the aforementioned off-shell
four-photon amplitudes or through the Euler-Heisenberg and Weisskopf Lagrangians [21, 22, 23].
Additionally, in the presence of a background field, it is anticipated that a photon may split into two
or more, or conversely, multiple photons may merge into one [24, 25, 26], phenomena which can also
be described by the off-shell four-photon amplitudes.

On the experimental front, the observation of Delbrück scattering [27, 28, 29] and photon splitting
[30] in high energy experiments involving heavy ions represent an indirect confirmation of photon-
photon scattering and consequently, the presence of virtual pair interactions. Moreover, light-by-light
scattering has been observed in heavy-ion collisions [31, 32, 33], although this observation remains
somewhat indirect as the experiment is not purely photonic.

The observability of vacuum birefringence has been extensively investigated experimentally (for
instance see [34, 35, 36, 37] and references therein), yet it has proven elusive in laboratory settings.
Currently, two experiments are being conducted whose aim is to observe this effect: Biréfringence
Magnétique du Vide (BMV) in Toulouse, France [34] and Observing Vacuum with Laser (OVAL)
based in Tokyo, Japan [35]. However, claims of its observation have been made in astrophysical
measurements [38] and further discussed in [39, 40].

The pursuit of understanding photonic processes remains an ongoing focus in current experiments,
particularly in heavy ion collisions, astrophysical observations and laser-assisted experiments. In these
contexts, field strengths of the order of the critical fields Ecr and/or Bcr are often encountered, moti-
vating the non-perturbative study of photonic phenomena, for instance, see [41, 42, 43, 44, 45]. The
worldline formalism offers various technical advantages in the computation of N -photon amplitudes
in the presence of constant fields [46, 47], plane-wave fields [48] or combined constant and plane-wave
fields [49], for both scalar and spinor QED. Indeed, the advantages of the worldline formalism in-
clude treating scalar and spinor loops in a similar manner, along with the inclusion of all possible
contributions from inequivalent Feynman diagrams in a single expression. Therefore, in the present
thesis, we investigate the N -photon amplitudes in a constant background field for photon energies
small compared to the electron mass by deriving compact expressions for various field configurations,
as detailed in Chapter 3. These derivations closely follow the corresponding calculations in vacuum
[50, 51, 52]. Subsequently, we utilize these results to compute explicit expressions for the low-energy
limit of the four-photon amplitudes in the presence of a pure magnetic field.

The emergence of high intensity lasers and X-ray free-electron lasers (XFELs) have opened the
possibility of testing QED in new regimes and promises the realization of more sensitive experiments
that would provide direct observations of light-by-light scattering and vacuum birefringence. This
has given rise to new proposals of laser experiments [53, 54, 55, 56, 57] for the direct measurement
of light-by-light scattering. In particular, the Helmholtz International Beamline for Extreme Fields
(HIBEF) has as one of its primary goals to test vacuum birefringence in experimental setups that
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combine XFELs and high-intensity lasers [58, 59], see also [60, 61, 62, 63, 64]. Alternatively, the
possibility of measuring vacuum birefringence in Coulomb-assisted setups has been proposed in [65].
In these setups, the abundance of nuclei may imply the presence of electrons, which could interact
with XFEL photons through Compton scattering. Consequently, it becomes essential to examine the
birefringent effects arising from Compton scattering [66]. This aspect is addressed to some extent in
the present thesis utilizing the worldline formalism approach [67, 68, 69, 70], see Chapter 4.

The continuous development and upgrade of optical high-intensity lasers have allowed to reach
record intensity values on the order of 5.5 × 1022 W/cm2 [71]. As a comparison, note that the critical
field of QED (Fcr = m2/|e|) correspond to laser intensities on the order of 1029 W/cm2. This progress
promises the observation of nonlinear phenomena in a controlled manner [72, 73], and potentially, the
direct observation of Schwinger pair production in the future, which is one of the main motivations
behind increasing the laser intensity.

The use of these high-intensity lasers with intensities 1018−1019 W/cm2, combined with relativistic
electrons (of 46.6−49.1 GeV), has already proven evidence of nonlinear effects in Compton scattering
and Breit-Wheeler pair production, reported in [74] and [75, 76], respectively. Similar setups have
also been employed to observe radiation reaction effects [77, 78]. These observation demonstrate the
occurrence of nonlinear effects, yet further studies with higher accuracy are still required to validate
QED in the presence of strong background fields or potentially to detect deviations from it.

In experiments involving intense laser beams and relativistic electrons, the controlling parameter
is the so-called classical nonlinearity parameter [79], given by

ξ0 = |e|F0

mω0
, (1.5)

where F0 is the amplitude of the laser field and ω0 is its angular frequency. This parameter indicates
that the effects of the laser field have to be taken into consideration exactly for ξ0 ≳ 1. Additionally,
the so-called quantum nonlinearity parameter

χ0 =
√︁

−(pµFµν0 )2

mFcr
, (1.6)

where pµ is the initial four-momentum of the electron, represents the amplitude of the laser field in
units of the critical field of QED in the initial rest frame of the electron. The strong-field QED regime
is entered when χ0 ≳ 1, meaning that quantum corrections become relevant.

In upcoming facilities such as the Center for Relativistic Laser Science (CoReLS) [80], the Extreme
Light Infrastructure (ELI) [81], the Exawatt Center for Extreme Light Studies (XCELS) [82] and
Apollon [83], testing QED in the strong field regime is one of the primary goals. These facilities
aim to achieve laser intensities on the order of 1023 − 1024 W/cm2. This has motivated the study
of quantum processes in a non-perturbative manner, for instance, nonlinear Compton scattering
[84, 85, 86, 87, 88], nonlinear Breit-Wheeler pair production [89, 90, 91, 92], nonlinear Bethe-Heitler
pair production [93, 94] and nonlinear trident pair production [95, 96]. However, even at one-loop
order the radiative corrections to the probabilities of these processes have never been computed.

The standard theoretical approach to describe a quantum process in a laser field typically involves
working within the Furry picture [97], where the electron-positron field is quantized in the presence of
the background field [98, 99]. However, solving the Dirac equation exactly in the presence of a laser
field is not feasible due to the complexity of real lasers. Instead, a laser field can be approximated
to the ideal case of a plane-wave field, for which analytical solutions of the Dirac equation have been
obtained by Volkov [100]. Therefore, laser interactions are commonly studied within the framework
of the Furry picture and using Volkov states [101, 102, 87, 103].

The study of loop corrections in background fields for the high-field limit has lead to the Ritus-
Narozny conjecture [104, 105, 106, 107], which states that for χ0 ≫ 1 the effective coupling of QED
in a constant crossed field scales as αχ2/3

0 , where α = e2/4π is the fine structure constant.
In particular, the one-loop vertex correction in the presence of a constant crossed field has been

derived [108, 109], showing agreement with the above mentioned Ritus-Narozny conjecture. In the
present thesis, we extend this understanding by deriving a more general result: the one-loop vertex
correction in the presence of a plane-wave field [110], employing a non-perturbative approach, the
operator technique within the Furry picture, see Chapter 5. Here, we confirm the agreement with the
Ritus-Narozny conjecture and discuss its applications in relation to nonlinear effects in, for instance,



4 Introduction

Compton scattering, Breit-Wheeler pair production, Bethe-Heitler pair production, and trident pair
production.

This thesis can be divided into three parts whose main subjects are: light-by-light scattering
in the presence of background fields, Compton scattering in the presence of a magnetic field, and
the one-loop vertex correction in a plane-wave background field. In Chapter 2, we present a short
introduction to the worldline formalism, we review the calculation of the N -photon amplitudes and
the cross sections for light-by-light scattering at low energies. We present the results obtained in
previous works [20, 19] for the off-shell four-photon amplitude with two low-energy photons, for
scalar and spinor QED. Thus, we use these results to obtain the Delbrück scattering cross-sections
at low energies.

In Chapter 3, we present the known worldline master formulas for the N -photon amplitude in
an arbitrary constant background field for both scalar and spinor QED. We use these expressions to
obtain compact formulas for the N -photon amplitudes for fixed field configurations and low-energy
photons and we use these results to compute the four-photon amplitudes in a pure magnetic field for
low energy photons.

In Chapter 4, we present the master formulas for the dressed scalar and spinor propagators in
a constant field and we use these expressions to compute the amplitudes of the off-shell Compton
scattering in a pure magnetic field, in the forward direction.

In Chapter 5, we present a short introduction to the operator technique and the Volkov states
and propagators. The one-loop vertex correction in vacuum is discussed as well and we present the
calculation of the renormalized one-loop vertex correction in a plane-wave field and discuss our results
in relation to gauge invariance, infrared divergences, application as a building block, and strong fields.

The discussion of results is summarized in the conclusions, Chapter 6.
Supplementary information and details are provided in the appendices. In Appendix A, we present

important conventions used in this thesis. In Appendix C, we present a list of integral results that
supplement Section 3.8. In Appendix B, we present supplementary details for some calculations.

Part of the results obtained in this thesis have been published in [110, 18, 19, 66, 111, 112, 113].



Chapter 2

N-photon amplitudes within the
worldline formalism

In this chapter, our primary aim is to introduce the worldline formalism and the spinor helicity
formalism, both of which will be utilized in this and some subsequent chapters. Here, it is impor-
tant to emphasize that for the worldline formalism, we use the metric tensor in Euclidean space
(gµν) = diag(+1,+1,+1,+1), whereas for the spinor helicity formalism, we employ Minkowski space
convention (ηµν) = diag(+1,−1,−1,−1). We present the general expressions for the one-loop N -
photon amplitudes for off-shell particles, see [18]. We review the low-energy limit of these N -photon
amplitudes (see [51, 114, 52]) in preparation for the next chapter, wherein analogous results are ob-
tained in the presence of a constant background field. As an application to processes in a background
field, we compute the leading order correction to Delbrück scattering for external photons of low
energies, see [19].

The worldline formalism or “string inspired” formalism is a first-quantized approach for amplitude
calculations whose starting point is the path integral representations already obtained for QED by
Feynman in [115, 116] but their computational advantages have been recognized only after the work
of Z. Bern and D. Kosower who, inspired by string theory, developed the field theory limit at tree-
and loop-level using various string models [117, 118]. In particular, this approach was first derived
for calculations in quantum chromodynamics. Later, M. Strassler was able to rederive the results
of Bern and Kosower from quantum field theory [119]. Furthermore, Strassler analyzed the QED
photon amplitudes and effective action [120], and noted that the formalism allowed him, using certain
integration by parts that homogeneized the integrand and led to the automatic appearance of photon
field strength tensors, to arrive at an extremely compact integral representation for the four-photon
amplitudes in scalar and spinor QED. The integration by parts procedure was improved in [121, 122].
For a pedagogical and more complete review of this formalism, refer to [123, 124, 125].

The worldline formalism has enabled the derivation of several general results that combine the
contribution of every possible independent Feynman diagram in a single master formula. Particularly,
it has allowed to obtain general representations of the N -photon amplitudes in vacuum for scalar and
spinor QED at one-loop order and for off-shell photons [118, 119, 121]. Subsequently, these same
results were extended to include the interaction of a background field exactly, for the cases where
there is a constant background field [46, 47], a plane-wave background field [48] and a combined
constant and plane-wave background fields [49]. This is one of the main subjects of this thesis, the
computation of photon-amplitudes. Specifically, in this chapter, we review the vacuum results for the
low-energy limit of the N -photon amplitudes as in [51, 50, 52] to later derive similar results in the
presence of a constant background field, see Chapter 3 and [111, 112].

The above mentioned vacuum N -photon amplitudes [118, 119, 121] have been used, in previous
works, to study the off-shell four-photon amplitudes [20, 18, 19] and it is continued in this chapter by
applying these results to compute the leading order correction to the low-energy limit of the Delbrück
scattering amplitudes [19].

The generalization to the open-line case in scalar QED, i.e. the scalar propagator dressed with
N photons, was given in [126, 127], and extended to the constant-field case in [67], see Chapter
4. Recently, a computationally efficient worldline representation has also been constructed for the
dressed electron propagator (spinor QED)[68] and also extended to the constant-field case in [69, 70],

5



6 N -photon amplitudes within the worldline formalism

see Chapter 4. Moreover, for both scalar and spinor QED, the dressed propagators in the presence of
a plane-wave field have been derived [128]. Multi-loop QED amplitudes have also been studied using
this approach [129, 47, 130, 50, 114, 131, 132, 127, 133].

Although in the present thesis we focus on the QED amplitudes, it should be mentioned that
Bern-Kosower type formulas have been derived also for many other cases. See [117, 118, 134] for the
N -gluon amplitudes in quantum electrodynamics, [135, 136, 137] for amplitudes involving gravitons,
[138, 139, 140, 141] for Yukawa and axial couplings, [142, 143] for worldline Monte Carlo and [144, 145]
for pair creation from worldline instantons.

The spinor helicity formalism was originally developed for calculating scattering process at high
energies, where particle masses can be neglected. This approach has been widely used in quantum
electrodynamics and quantum chromodynamics. For historical notes and an extensive pedagogical
review, see [146]. Notably, in the case of photons (usually considered massless), this formalism can be
applied at any energy regime and offers a convenient way to express the polarization states of photons
in terms of helicity projection operators for fermions, enabling efficient amplitude calculations. In
this thesis, we use the advantages of this formalism to supplement the study of photonic amplitudes
for on-shell states. Specifically, we use the results and conventions presented in [147, 51, 69] to study
N -photon amplitudes.

2.1 N-photon amplitudes for scalar and spinor QED
In the worldline approach, the one-loop N -photon amplitude for scalar QED is expressed as the
following path integral representation (see [124, 123, 18])

Γscal(k1, ε1; . . . ; kN , εN ) = (−ie)N
∫︂ ∞

0

dT

T
e−m2T

∫︂
x(0)=x(T )

Dx e−
∫︁ T

0
dτ ẋ2

4 V γscal[k1, ε1] · · ·V γscal[kN , εN ] .

(2.1)
Here T is the proper-time of the scalar particle in the loop, and the path integral is performed over
the space of all closed loops in (Euclidean) spacetime with periodicity T . Each photon is represented
by the following photon vertex operator, integrated along the trajectory

V γscal[k, ε] =
∫︂ T

0
dτ ε · ẋ(τ) eik·x(τ) . (2.2)

where ε and k are the polarization and momentum of the photon being absorbed or emitted. The path
integral is of gaussian form, and thus can be performed by Wick contractions in the one-dimensional
worldline field theory. Using a formal exponentiation of the factor ε · ẋ = eε·ẋ|ε, one straightforwardly
arrives at the following “Bern-Kosower master formula”

Γscal(k1, ε1; . . . ; kN , εN ) = (−ie)N (2π)dδd
(︄

N∑︂
i=1

ki

)︄∫︂ ∞

0

dT

T
(4πT )− D

2 e−m2T
N∏︂
i=1

∫︂ T

0
dτi

× exp
{︃ N∑︂
i,j=1

[︂1
2Gijki · kj − iĠijεi · kj + 1

2 G̈ijεi · εj
]︂}︃⃓⃓⃓

ε1ε2...εN

.

(2.3)

Here the dependence on the proper-time parameters T, τ1, . . . , τN is encoded in the “worldline Green’s
function”

G(τ1, τ2) =| τ1 − τ2 | − (τ1 − τ2)2

T
, (2.4)

as well as its first and second derivatives

Ġ(τ1, τ2) = sgn(τ1 − τ2) − 2(τ1 − τ2)
T

,

G̈(τ1, τ2) = 2δ(τ1 − τ2) − 2
T
.

(2.5)

Here, dots denote a derivative acting on the first variable, i. e., Ġ(τ1, τ2) = ∂
∂τ1

G(τ1, τ2), and we
abbreviate Gij = G(τi, τj) etc. The notation

⃓⃓
ε1ε2...εN

means that, after the expansion of the ex-
ponential, the terms contributing to the amplitude are those that have each polarization vector
ε1, . . . , εN linearly.
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In [119, 121], it is shown that by expanding the exponential in (2.3) and by performing integration
by parts the scalar N -photon amplitude can always be expressed as (here we have re-scaled the τ -
integrals to the unit circle τi = Tui, see Appendix A.3)

Γscal(k1, ε1; . . . ; kN , εN ) = (−ie)N (2π)dδd
(︄

N∑︂
i=1

ki

)︄∫︂ ∞

0

dT

T
TN (4πT )− d

2 e−m2T

×
N∏︂
i=1

∫︂ 1

0
duiQscal(Ġij) exp

{︃
1
2T

N∑︂
i,j=1

Gij ki · kj
}︃
.

(2.6)

where Qscal is a polynomial that depends only on products of (Ġij) and all possible traces of products
of field strength tensors. These traces can be expressed as “Lorentz-cycles” Zn(i1i2 . . . in) as

Z2(ij) = 1
2tr
(︁
fifj

)︁
= εi · kjεj · ki − εi · εjki · kj ,

Zn(i1i2 . . . in) = tr
(︂ n∏︂
j=1

fij

)︂
, (n ≥ 3) .

(2.7)

where, fµνi is the field strength tensor for the external photon ‘i’ and has the following representation

fµνi = kµi ε
ν
i − εµi k

ν
i . (2.8)

In Qscal, each Lorentz-cycle Zn(i1i2 . . . in) appears multiplied by a corresponding “τ -cycle” [119, 121],
which has the following form

Ġi1i2Ġi2i3 · · · Ġini1 . (2.9)
This motivated the definition of a “bicycle” [123] as the product of the two

Ġ(i1i2 · · · in) = Ġi1i2Ġi2i3 · · · Ġini1Zn(i1i2 · · · in) . (2.10)

Moreover, the amplitude is not composed only by bicycles, starting from N = 3 there will be
leftovers, called “n-tails” [119], where n, the “length” of the tail, denotes the number of polarization
vectors involved in the tail. In general QN will involve tails with length n = 1, 2, . . . , N − 2. Thus
for our present purposes we will need to know only the one- and two-tails. Those are given by

T (i) =
∑︂
r ̸=i

Ġirεi · kr ,

T (ij) =
∑︂

r ̸=i,s ̸=j
(r,s) ̸=(j,i)

Ġirεi · krĠjsεj · ks + 1
2 Ġijεi · εj

[︂ ∑︂
r ̸=i,j

Ġirki · kr −
∑︂
s̸=j,i

Ġjskj · ks
]︂
.

(2.11)

Here it should be noted that Ġ(τ, τ) = 0, so that, for example, the term with r = i drops out in the
sum defining the one-tail. In [123], the polynomials Qscal have been worked out explicitly up to N = 6.
In [122], the general structure of the n-tails is examined by means of integration by parts. Specifically,
a very compact and manifestly gauge-invariant representation of the 2-tail has been derived in [18]
which is the representation that we will use in the case of the four-photon amplitudes.

The above presented representation of the scalarN -photon amplitude is called the “Q-representation”.
This representation has as advantage that it allows one to make the transition from scalar to spinor
QED by a simple pattern-matching procedure, the “Bern-Kosower replacement rule” [117, 118]: after
the removal of all G̈ij , the integrand for the N -photon amplitude in spinor QED can be obtained
from the scalar QED one by multiplying the whole amplitude by a global factor of “-2” (for statistics
and degrees of freedom), and applying the following “cycle replacement rule”,

Ġi1i2Ġi2i3 · · · Ġini1 → Ġi1i2Ġi2i3 · · · Ġini1 −GFi1i2GFi2i3 · · ·GFini1 , (2.12)

where
GF (τ, τ ′) = sgn(τ − τ ′) (2.13)

is the fermionic Green’s function. This replacement transforms the bicycle Ġ(i1i2 · · · in) into the
“super-bicycle”

ĠS(i1i2 · · · in) =
(︂
Ġi1i2Ġi2i3 · · · Ġini1 −GFi1i2GFi2i3 · · ·GFini1

)︂
Zn(i1 · · · in) . (2.14)
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Then, the one-loop N -photon amplitude for spinor QED can be expressed as

Γspin(k1, ε1; . . . ; kN , εN ) = −2(−ie)N (2π)dδd
(︄

N∑︂
i=1

ki

)︄∫︂ ∞

0

dT

T
TN (4πT )− d

2 e−m2T

×
N∏︂
i=1

∫︂ 1

0
duiQspin(Ġij , GFij) exp

{︃
1
2T

N∑︂
i,j=1

Gij ki · kj
}︃
.

(2.15)

It is important to mention that the N -photon amplitudes derived within the worldline formalism are
valid for off-shell photons. For further insights into the various representations of these amplitudes,
see [18, 123, 122].

2.2 Spinor helicity for photons
In this section rather than developing the technology of spinor helicity, we will recall some impor-
tant results of such formalism that will be useful in the calculation of photon-amplitudes, adapted
from [147, 51, 69] (see also [146, 148]). Here, the metric tensor in Minkowski space (ηµν) =
diag(1,−1,−1,−1) is employed.

The helicity of a particle is defined as the component of the spin in the direction of the three-
momentum. It is well known that for massless fermions the positive and negative energy solutions of
the massless Dirac equation are identical such that for definite helicity, we have

u±(k) = 1
2(1 ± γ5)u(k) and v∓(k) = 1

2(1 ± γ5)v(k). (2.16)

These spinors with definite helicity are sometimes called twistors [148]. For the conjugate states, we
have similar relations

u±(k) = 1
2u(k)(1 ∓ γ5) and v∓(k) = 1

2v(k)(1 ∓ γ5). (2.17)

In the present case and due to the fact that we are interested in amplitudes with a large number
of momenta, we label them by ki, i = 1, 2...N . Using a shorthand notation, the twistors are

|k±
i ⟩ = u±(ki) = v∓(ki) , ⟨k±

i | = u±(ki) = v∓(ki) , (2.18)

with the basic spinor products

⟨ij⟩− = ⟨ij⟩ = ⟨k−
i |k+

j ⟩ = u−(ki)u+(kj) , ⟨ij⟩+ = [ij] = ⟨k+
i |k−

j ⟩ = u+(ki)u−(kj) . (2.19)

Some useful identities are (the product of two four-vectors)

⟨ij⟩[ji] = ⟨k−
i |k+

j ⟩⟨k+
j |k−

i ⟩ = 2ki · kj , (2.20)

the Gordon identity and the projection operator

⟨k±|γµ|k±⟩ = 2kµ , |k±⟩ ⟨k±| = 1
2(1 ± γ5)/k , (2.21)

the complex conjugation and anti-symmetry

⟨ij⟩∗
± = −⟨ij⟩∓ , ⟨ij⟩± = −⟨ji⟩± , ⟨ii⟩± = 0 , (2.22)

the Fierz rearrangement
⟨k+
i |γµ|k+

j ⟩⟨k+
r |γµ|k+

s ⟩ = 2[ir]⟨sj⟩ , (2.23)

the charge conjugation of current

⟨k+
i |γµ|k+

j ⟩ = ⟨k−
j |γµ|k−

i ⟩ , (2.24)

the Schouten identity
⟨ij⟩⟨rs⟩ = ⟨ir⟩⟨js⟩ + ⟨is⟩⟨rj⟩ . (2.25)
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For an n-point amplitude additionally, we have

n∑︂
i=1

[ji]⟨ir⟩ = 0 (2.26)

due to momentum conservation (basically the same identity as the sum of Mandelstam variables).
The spinor representation of the polarization vector for a photon of definite helicity ±1

ε±
µ (k) = ± ⟨q∓|γµ|k∓⟩√

2 ⟨q∓|k±⟩
. (2.27)

The Dirac-gamma matrices in the Dirac representation

γ0 =
(︄

1 0
0 −1

)︄
, γi =

(︄
0 σi

−σi 0

)︄
, γ5 =

(︄
0 1
1 0

)︄
, (2.28)

where 1 is the 2 × 2 identity matrix and σi are Pauli sigma matrices

σ1 =
(︄

0 1
1 0

)︄
, σ2 =

(︄
0 −i
i 0

)︄
, σ3 =

(︄
1 0
0 −1

)︄
. (2.29)

The use of spinor helicity technique allow us to obtain close expression in terms of twistor products
for the Lorentz cycles (2.41) and for products of fi as they appear in the tails of the N -photon
amplitudes. The latter identities were already derived in [51, 69] and are listed below

The polarized field strength tensor for each photon is

f±µν
i = kµi ε

± ν
i − kνi ε

±µ
i (2.30)

which can be written in terms of twistors as

f±µν
i = − 1

4
√

2
⟨k±
i |[γµ, γν ]|k±

j ⟩ . (2.31)

Commutators
[f+
i , f

−
j ]µν = 0 . (2.32)

Anticommutators
{f±
i , f

±
j }µν = −1

2 ⟨ij⟩2
± η

µν . (2.33)

Factorization of traces

tr(f+
i1

· · · f+
iM
f−
j1

· · · f−
jN

) = 1
4tr(f+

i1
· · · f+

iM
) tr(f−

j1
· · · f−

jN
) . (2.34)

Same-helicity traces

tr(f±
i1

· · · f±
iN

) = (−1)N√
2N−2

⟨i1i2⟩±⟨i2i3⟩± · · · ⟨iN−1iN ⟩±⟨iN i1⟩± . (2.35)

Chain products (as in the one- and two-tail)

kj · f±
i · kj′ = −1

2
√

2
⟨ji⟩± ⟨ij′⟩± ⟨jj′⟩∓ , (2.36)

kj · f+
i1

· f+
i2

· kj′ = 1
4 ⟨ji1⟩+ ⟨i1i2⟩+ ⟨i2j′⟩+ ⟨jj′⟩− , (2.37)

kj · f+
i1

· f−
i2

· kj′ = 1
4 ⟨ji1⟩+ ⟨i1j′⟩+ ⟨j′i2⟩− ⟨i2j⟩− , (2.38)

notice that the previous products exhibit a behavior similar to the traces.
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2.3 Low-energy limit of the N - photon amplitudes in vacuum
In this section, we review the the low-energy limit of the N -photon amplitudes in vacuum, adapted
from [50, 18, 51]. This is in preparation for the next chapter, in which similar results are obtained in
the presence of a constant external field. The low-energy limit of the photon amplitudes is defined by
the condition that all photon energies be small compared to the mass of the loop scalar or fermion,

ωi ≪ m, i = 1, . . . , N . (2.39)

This condition then justifies truncating all the vertex operators to their terms linear in the momentum.
Note that the leading, momentum-independent term in this expansion integrates to zero for a closed
loop, so that the first non-vanishing contribution to the amplitude are the terms linear in the external
momenta. By adding a suitable total-derivative term, we can write the vertex operator of a low-energy
(LE) photon as

V
γ (LE)

scal [f ] = i

2

∫︂ T

0
dτ x(τ) · f · ẋ(τ) = i

2

∫︂ T

0
dτex(τ)·f ·ẋ(τ)

⃓⃓⃓
f
, (2.40)

where fµν = kµεν − εµkν is the photon field-strength tensor. The Wick contraction of a product of
such objects produces products of “Lorentz cycles”

Zn(i1i2 . . . in) =
(︂1

2

)︂δn2
tr
(︂ n∏︂
j=1

fij

)︂
, (2.41)

with coefficients that, by suitable partial integrations, can be written as integrals of the “τ - cycles”
Ġi1i2Ġi2i3 · · · Ġini1 introduced above. In this way, and with a rescaling τi = Tui, we arrive at

⟨︁
V
γ (LE)

scal [f1] · · ·V γ (LE)
scal [fN ]

⟩︁
= (iT )N exp

{︃ ∞∑︂
n=1

b2n
∑︂

{i1...i2n}

Zdist
2n ({i1i2 . . . i2n})

}︃⃓⃓⃓⃓
f1...fN

, (2.42)

where Zdist
k ({i1i2 . . . ik}) denotes the sum over all distinct Lorentz cycles which can be formed with a

given subset of indices, e.g. Zdist
4 ({ijkl}) = Z4(ijkl) + Z4(ijlk) + Z4(ikjl), and bn denotes the basic

“cycle integral”

bn =
∫︂ 1

0
du1du2 . . . dun Ġ12Ġ23 · · · Ġn1 . (2.43)

This integral can be expressed in terms of the Bernoulli numbers Bn [149]

bn =

⎧⎨⎩ −2n Bn

n! n even ,

0 n odd .
(2.44)

Note that (2.42) can be further simplified using the combinatorial fact that

tr
[︂
(f1 + . . .+ fN )n

]︂⃓⃓⃓⃓
all different

= 2n
∑︂

{i1...in}

Zdist
n ({i1i2 . . . in}) , (2.45)

(n ̸= 0). Introducing ftot =
∑︁N
i=1 fi, using all this in (2.1) and eliminating the T -integral, we arrive

at the following formula for the low-energy limit of the one-loop N -photon (N ≥ 4) amplitude for
scalar QED is [50]

Γ(LE)
scal (k1, ε1; . . . ; kN , εN ) = eNΓ(N − 2)

(4π)2m2N−4 exp
{︃ ∞∑︂
n=1

b2n

4n tr(f2n
tot)
}︃⃓⃓⃓⃓

f1...fN

, (2.46)

here the trivial case N = 2 have been exempted to be able to set d = 4 and we have omitted the
Dirac-delta function of momentum conservation.

The low-energy limit of the one-loopN -photon amplitude for spinor QED is obtained by employing
the above-mentioned Bern-Kosower replacement rule. This rule tell us to simply replace the cycle
integral (2.44) by the “super - cycle integral”∫︂ 1

0
du1du2 . . . dun

(︂
Ġ12Ġ23 · · · Ġn1 −GF12GF23 · · ·GFn1

)︂
= (2 − 2n) bn (2.47)
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and add a global factor of (−2) for statistics and degrees of freedom. Then, the amplitude (N ≥ 4)
become

Γ(LE)
spin (k1, ε1; . . . ; kN , εN ) = (−2) e

NΓ(N − 2)
(4π)2m2N−4 exp

{︃ ∞∑︂
n=1

(1 − 22n−1)b2n

2n tr(f2n
tot)
}︃⃓⃓⃓⃓

f1...fN

. (2.48)

Note that in the above derivation on-shell conditions have not yet been used.

2.3.1 Helicity components
In this section, we review the results obtained in [51], where it was shown how to obtain explicit
expressions for all the helicity components of the on-shell N -photon amplitudes for low-energy pho-
tons, using the spinor helicity formalism. This is in preparation for the next chapter, in which similar
results are obtained in the presence of a constant crossed field.

The starting point is to consider the one-loop effective Lagrangians in a constant background field:
Euler-Heisenberg Lagrangian for spinor QED (1.1) and Weisskopf Lagrangian for scalar QED (1.4).
In order to obtain the N -photon amplitude from the one-loop effective Lagrangian in a constant
background field, the filed strength tensor is fixed as

Fµνtot =
N∑︂
i=0

fµνi , (2.49)

where, as in (2.8), fµνi = kµi ε
ν
i − εµi k

ν
i represents the field strength tensor of an external photon with

momentum kµi and polarization εµi . The corresponding amplitude is then obtained by extracting the
terms involving each f1, ..., fN precisely once

Γ(LE)
spin/scal(k1, ε1; . . . ; kN , εN ) = LEH/W(iFtot)

⃓⃓⃓
f1···fN

. (2.50)

Now, assuming fixed polarization for the photons, with L having the helicity ‘+’ and N − L the
helicity ‘−’, and using spinor helicity (see Section 2.2) , it is possible to compute the two Maxwell
invariants. For each polarized photon, the field strength tensor is f±,µν

i = kµi ε
±,ν
i − ε±,µ

i kνi . Noticing
that

1
4FtotµνF

µν
tot = χ+ + χ− ,

1
4Ftotµν F̃

µν
tot = −i(χ+ − χ−) , (2.51)

where
χ+ = 1

2
∑︂

1≤i<j≤N

[ij]2 , χ− = 1
2

∑︂
1≤i<j≤N

⟨ij⟩2 , (2.52)

it is possible to obtain
a = −i(√χ+ − √

χ−) , b = √
χ+ + √

χ− , (2.53)

for the invariants in (1.2). Inserting these expressions into the Euler-Heisenberg Lagrangian (1.1)
and after Taylor series expansion, this Lagrangian can be expressed as

LEH(iFtot) = −2 m4

(4π)2

∞∑︂
N=4

(︃
2e
m2

)︃N N∑︂
L=0

L even

CN,Lspin χ
L
2
+ χ

N−L
2

− , (2.54)

where

CN,Lspin = (−1)N/2 (N − 3)!
L∑︂
r=0

N−L∑︂
s=0

(−1)N−L−s Br+s BN−r−s

r! s! (L− r)! (N − L− s)!
(2.55)

and Bn Bernoulli numbers. Similarly, the Weisskopf Lagrangian (see Eq. (1.4)) can be expressed as

LW(iFtot) = m4

(4π)2

∞∑︂
N=4

(︃
2e
m2

)︃N N∑︂
L=0

L even

CN,Lscal χ
L
2
+ χ

N−L
2

− , (2.56)
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where

CN,Lscal = (−1)N/2 (N − 3)!
L∑︂
r=0

N−L∑︂
s=0

(−1)N−L−s

(︂
1 − 21−r−s

)︂(︂
1 − 21−N+r+s

)︂
Br+s BN−r−s

r! s! (L− r)! (N − L− s)! . (2.57)

According to (2.50), the amplitudes with L ‘+’ and N − L ‘−’ helicities are obtained from the
corresponding term in the sum of (2.54) or (2.56) by picking out the terms multilinear in the fi’s.
For L even, it is defined [51]

χ+
L = (χ+) L

2 |all different = (L/2)!
2L/2

{︂
[12]2[34]2 · · · [(L− 1)L]2 + all permutations

}︂
, (2.58)

χ−
N−L = (χ−)

N−L
2 |all different

=
(︁
N−L

2
)︁
!

2 N−L
2

{︂
⟨(L+ 1)(L+ 2)⟩2⟨(L+ 3)(L+ 4)⟩2 · · · ⟨(N − 1)N⟩2 + all permutations

}︂
.

(2.59)

So that, the low-energy N -photon amplitudes with L external photons having helicity ‘+’ and N −L
‘−’ are

Γ(LE)
spin (f+

1 ; ...; f+
L f

−
L+1; ...; f−

N ) = −2 m4

(4π)2

(︃
2e
m2

)︃N
CN+n,L+ℓ

spin χ+
L χ

−
N−L (2.60)

for spinor QED and

Γ(LE)
scal (f+

1 ; ...; f+
L f

−
L+1; ...; f−

N ) = m4

(4π)2

(︃
2e
m2

)︃N
CN+n,L+ℓ

scal χ+
L χ

−
N−L (2.61)

for scalar QED. These amplitudes, in the low-energy regime, obey a “double Furry theorem”, meaning
that if there is an odd number of positive or negative helicities, the amplitude vanishes.

2.4 Four-photon amplitudes for scalar and spinor QED
In this section, we present the general expression for the four-photon amplitudes, see [18]. For scalar
QED, we have

Γscal(k1, ε1; · · · ; k4, ε4) = (−ie)4

(4π) d
2

(2π)dδd(k1 +k2 +k3 +k4)
∫︂ ∞

0

dT

T
T 4− d

2 e−m2T

∫︂ 1

0

4∏︂
i=1

duiQscal e(·) .

(2.62)
Here, we have already done the usual rescaling τi = Tui such that the exponential part is

e(·) = exp
{︂
T

4∑︂
i<j=1

Gij ki · kj
}︂
, (2.63)

the bosonic Green’s functions are

Gij = G(ui, uj) = |ui − uj | − (ui − uj)2 , (2.64)

and the polynomial Qscal is given by 1

Qscal = Q4
scal +Q3

scal +Q2
scal +Q22

scal ,

Q4
scal = Ġ(1234) + Ġ(2314) + Ġ(3124) ,

Q3
scal = Ġ(123)T (4) + Ġ(234)T (1) + Ġ(341)T (2) + Ġ(412)T (3) ,

Q2
scal = Ġ(12)Tsh(34) + Ġ(13)Tsh(24) + Ġ(14)Tsh(23) + Ġ(23)Tsh(14) + Ġ(24)Tsh(13) + Ġ(34)Tsh(12) ,

Q22
scal = Ġ(12)Ġ(34) + Ġ(13)Ġ(24) + Ġ(14)Ġ(23) .

(2.65)
1When comparing with [123] note that there, a different basis was used for the four-cycle component Q4. The two

bases are related by cyclicity and inversion.
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Let us remind that the expression for the bicycle is

Ġ(i1i2 · · · in) = Ġi1i2Ġi2i3 · · · Ġini1Zn(i1 · · · in) . (2.66)

and for the Lorentz-cycle is

Z2(ij) = 1
2tr
(︁
fifj

)︁
= εi · kjεj · ki − εi · εjki · kj ,

Zn(i1i2 . . . in) = tr
(︂ n∏︂
j=1

fij

)︂
, (n ≥ 3) ,

(2.67)

where fµνi is the field strength tensor of each photon (2.8). It is the “tails” that exist in various
versions. For the present computation, we use the one-photon tail T (i) of the originalQ-representation
[122] and the “short tail” Tsh(ij) (this is the same 2-tail in (2.11) up to total derivatives), introduced
in [18], as the two-photon tail:

T (i) =
∑︂
r ̸=i

Ġir εi · kr ,

Tsh(ij) =
∑︂
r,s ̸=i,j

ĠriĠjs
kr · fi · fj · ks

ki · kj
.

(2.68)

The spinor-loop result is obtained by employing the Bern-Kosower replacement rule, i.e. replacing
simultaneously every closed (full) cycle Ġi1i2Ġi2i3 · · · Ġini1 appearing in the integrand of the scalar-
loop with

Ġi1i2Ġi2i3 · · · Ġini1 −GFi1i2GFi2i3 · · ·GFini1 , (2.69)

where GFij = sgn(ui − uj) is the fermionic Green’s function. We write the spinor-loop amplitude as

Γspin(k1, ε1; · · · ; k4, ε4) = −2(−ie)4

(4π) d
2

(2π)dδd(k1+k2+k3+k4)
∫︂ ∞

0

dT

T
T 4− D

2 e−m2T

∫︂ 1

0

4∏︂
i=1

duiQspin e(·) .

(2.70)
Thus, apart from a global factor of −2, the only difference to the scalar QED formula (2.62) is the
replacement of Qscal by Qspin according to the rule (2.69). Let us also emphasize that equations
(2.62), (2.70) are valid off-shell, and that the right-hand sides are manifestly finite term-by-term.
The well-known spurious UV-divergences of the four-photon diagrams that usually cancel only in the
sum of diagrams would show up here as logarithmic divergences of the T -integration at T = 0, but
have been eliminated already at the beginning by the integration-by-parts procedure that led to the
Q-representation, see [122, 18].

To avoid carrying common prefactors, we have defined

Γ̂{ scal
spin } =

∫︂ ∞

0

dT

T
T 4− d

2 e−m2T

∫︂ 1

0

4∏︂
i=1

duiQ{ scal
spin } e(·) . (2.71)

2.5 Low-energy limit of the four-photon amplitudes
In this section, our main interest is to compare three different methods of computing the cross section
since it will be useful later for the calculation of the light-by-light polarized amplitudes in the presence
of a constant field (Chapters 3) for some special cases. In order to do so, we explore the cross section
of light-by-light scattering at low energies in vacuum for both scalar and spinor QED.

Here, a photon in the low-energy limit satisfies ωi ≪ m, where ωi is the energy of the photon and
‘m’ the mass in the loop. From the point of view of the amplitude we only consider the multi-linear
terms in the momenta since this represent the first non-vanishing contribution to the four-photon
amplitude (for more details in the present low-energy limit amplitudes, see Section 2.3 and Refs.
[51, 50, 18]). The four-photon amplitudes at low energies (Fig. 2.1) is known for a long time. For
spinor QED, it can be obtained from the well known Euler-Heisenberg effective Lagrangian [5] (see
Eq. (1.1)) and for scalar QED the corresponding amplitude can be extracted from the Weisskopf
effective Lagrangian [6] (see Eq. (1.4)).
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Figure 2.1: Feynman diagram for the leading order contribution to light-by-light scattering with every photon having
low-energy, indicated by empty bullets at their ends.

The well known amplitudes for the leading order contribution to light-by-light scattering (within
the worldline formalism conventions) are2

Γscal(k1, ε1; ...; k4, ε4) = e4

(4π)2m4

{︂
b4[Z4(1234) + Z4(2314) + Z4(3124)]

+ b2
2[Z2(12)Z2(34) + Z2(23)Z2(14) + Z2(31)Z2(24)]

}︂ (2.72)

for scalar QED, and

Γspin(k1, ε1; ...; k4, ε4) = − 2e4

(4π)2m4

{︂
− 14b4 [Z4(1234) + Z4(2314) + Z4(3124)]

+ (−2b2)2 [Z2(12)Z2(34) + Z2(23)Z2(14) + Z2(31)Z2(24)]
}︂ (2.73)

for spinor QED.
The unpolarized differential cross section for the four-photon amplitude Γ4photon, with photons of

the same energy, is [17, 150, 151]

dσ = 1
64(2π)2ω2 |Γ4photon(k1, ε1; · · · ; k4, ε4)|2 dΩ , (2.74)

here the bar means the average of the amplitude over the polarizations, i.e.,

|Γ4photon(k1, ε1; · · · ; k4, ε4)|2 = 1
4
∑︂
εi

|Γ4photon(k1, ε1; · · · ; k4, ε4)|2 (2.75)

and the differential of the solid angle dΩ = sin θ dθ dϕ with θ being the scattering angle and ϕ the
azimuthal angle. For simplicity we define

dσ̂ :=
∑︂
εi

|Γ4photon(k1, ε1; · · · ; k4, ε4)|2 . (2.76)

In the next subsections, we compute dσ̂ using various methods.

2.5.1 Cross section from polarized amplitudes
Our initial approach to compute the unpolarized cross section involves collecting each polarized
amplitude for fixed kinematics and then averaging over the polarized cross sections. The computation
of the polarized amplitudes is carried out in Euclidean space where the convention of a four-vector is
v = (v, v4). We follow the kinematics set in [14, 15, 16] where the momenta k1, k2 are chosen to be

2Here, bi are related to Bernoulli numbers by (2.44) and for this case b2 = −1
3 and b4 = 1

45 . The Lorentz cycles
were defined in (2.41).
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incoming while k3, k4 are outgoing

k1 = (0, 0,−ω,−iω) ,
k2 = (0, 0, ω,−iω) ,
k3 = (ω sin θ, 0, ω cos θ, iω) ,
k4 = (−ω sin θ, 0,−ω cos θ, iω) .

(2.77)

The linear polarizations ε(λi)
i are given by

ε
(1)
1 = ε

(1)
2 = ε

(1)
3 = ε

(1)
4 = (0, 1, 0, 0) ,

−ε(2)
1 = ε

(2)
2 = (1, 0, 0, 0) ,

−ε(2)
3 = ε

(2)
4 = (cos θ, 0,− sin θ, 0) ,

(2.78)

as discussed in [14], the vectors ε(1)
j , ε

(2)
j are pointing in the perpendicular and parallel direction to the

scattering plane, respectively. The set (ε(1)
j , ε

(2)
j , kj) forms a right-handed system. The unit vectors

for right ε(+)
j and left ε(−)

j handed circular polarization are given by

ε
(±)
j = 1√

2

[︂
ε

(1)
j ± iε

(2)
j

]︂
. (2.79)

Here, we use the following convention for the polarized amplitudes:

Γλ1λ2λ3λ4
scal/spin = Γscal/spin

(︂
k1, ε

∗(λ1)
1 ; k2, ε

∗(λ2)
2 ; k3, ε

(λ3)
3 ; k4, ε

(λ4)
4

)︂
. (2.80)

k1

k3

k2

k4

θ

Figure 2.2: Kinematics of the four-photon scattering in xz-plane.

It is well known that, for identical photons, the four-photon amplitudes Γλ1λ2λ3λ4 satisfy the
following relations [14, 16, 17]

Γ1111 , Γ2222 , Γ1122 = Γ2211 , Γ1212 = Γ2121 , Γ1221 = Γ2112 ,

Γ1112 = Γ1121 = Γ1211 = Γ2111 = Γ2221 = Γ2212 = Γ2122 = Γ1222 = 0 ,
(2.81)

for linear polarizations, and

Γ++++ = Γ−−−− , Γ++−− = Γ−−++ , Γ+−+− = Γ−+−+ , Γ+−−+ = Γ−++− ,

Γ+++− = Γ++−+ = Γ−−−+ = Γ−−+− = Γ+−++ = Γ−+++ = Γ−+−− = Γ+−−− ,
(2.82)

for circular polarizations. This is a consequence of the invariance under PT (parity and time-reversal)
transformations. Additionally, for the present case of low-energy photons a “double Furry theorem”
is satisfied by the amplitudes Γλ1λ2λ3λ4 , which in this case implies Γ+++− = 0 and Γ1111 = Γ2222.

Therefore for the unpolarized cross section we have

|Γscal/spin(k1, ε1; · · · ; k4, ε4)|2 = 1
2

{︂
|Γ1111

scal/spin|2 + |Γ1122
scal/spin|2 + |Γ1212

scal/spin|2 + |Γ1221
scal/spin|2

}︂
= 1

2

{︂
|Γ++++

scal/spin|2 + |Γ++−−
scal/spin|2 + |Γ+−+−

scal/spin|2 + |Γ+−−+
scal/spin|2

}︂
.

(2.83)

The calculation of the non-vanishing contributions to the four-photon scalar and spinor amplitudes
is a simple task. We computed these amplitudes with the aid of Mathematica [152] and the results
are presented in Table 2.1. These results are in agreement with [14, 16]3.

3In [16] a misprint in [14] is pointed out where Γ++++
spin and Γ++−−

spin seem to be interchanged.



16 N -photon amplitudes within the worldline formalism

Pol. amplitude Scalar QED Spinor QED

Γ1111 14(3+cos2 θ)α2ω4

45m4 − 32(3+cos2 θ)α2ω4

45m4

Γ1122 2(−13+cos2 θ)α2ω4

45m4
8(1−7 cos2 θ)α2ω4

45m4

Γ1212 − 2[1+(−8+3 cos θ) cos θ]α2ω4

45m4 − 4[31+(22+3 cos θ) cos θ]α2ω4

45m4

Γ1221 − 2[1+(8+3 cos θ) cos θ]α2ω4

45m4 − 4[31+(−22+3 cos θ) cos θ]α2ω4

45m4

Γ++++ 32α2ω4

45m4 − 176α2ω4

45m4

Γ++−− 4(3+cos2 θ)α2ω4

15m4
8(3+cos2 θ)α2ω4

15m4

Γ+−+− 8(1+cos θ)2α2ω4

45m4 − 44(1+cos θ)2α2ω4

45m4

Γ+−−+ 8(1−cos θ)2α2ω4

45m4 − 44(1−cos θ)2α2ω4

45m4

Table 2.1: Polarized amplitudes of light-by-light scattering for scalar and spinor QED.

The differential cross section (2.74), after summing all components in Table 2.1 according to
(2.83), is

dσscal = 34
4(90)2(2π)2

α4

m8 ω
6(3 + cos2 θ)2 dΩ (2.84)

for scalar QED, and

dσspin = 139
(90)2 (2π)2

α4

m8 ω
6(3 + cos2 θ)2 dΩ (2.85)

for spinor QED.
The total cross section is obtained after integration4

σscal = 34
4(90)2(2π)

56
5
α4

m8 ω
6 , (2.86)

σspin = 139
(90)2 (2π)

56
5
α4

m8 ω
6 , (2.87)

and are in complete agreement with the known results. The expression obtained in this section have
been long studied by many scientists within which stand out Euler and Kockel who first studied the
light-by-light cross section [9, 10] for spinor QED and later studied in more detail and for more general
cases by [14, 16, 17]. This cross section nowadays is also found in several textbooks for instance see
[98, 151, 150, 153]5, and has also been considered in the Born-Infeld theory [155, 154, 156]. The work
[156] is of particular interest for this section since it contains both results the scalar and spinor QED
cross sections and all elements in Table 2.1 can be compared with their results. Notice that in our
case, the Mandelstam variables are

s = 2k1 · k2 = −4ω2 ,

t = 2k1 · k3 = 2ω2(1 − cos θ) ,
u = 2k1 · k4 = 2ω2(1 + cos θ) .

(2.88)

However, in this chapter, we find more convenient to work with the momenta rather than the Man-
delstam variables. For more details on the early stages of light-by-light scattering see [157].

2.5.2 Cross section from direct polarization sum
In the second approach, we compute the four-photon cross sections by performing the sum over
polarizations according to the following prescription6∑︂

λ=±

εµλ(ki) ε∗ν
λ (ki) = gµν − (1 − ξ)k

µ
i k

ν
i

k2 . (2.89)

4Here, a factor of 1
2 in needed to take into account the equivalence of the two final photons.

5In [154] a misprint in [150] is pointed out in the computation of the cross section.
6Here we clarify the equivalence between different conventions: ε

(λ)
i = ε(λ)(ki) = ελ(ki).
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It is important to mention that the terms with ‘kµi kνi ’ will not contribute to the cross section due to
the Ward identity (for simplicity, we use the Feynman gauge: ξ = 1).

Notice that we can compute the four-photon cross section simultaneously for both scalar and
spinor QED since both amplitudes (2.72) and (2.73) have the following structure

Γ4photon(k1, ε1; ...; k4, ε4) = c0

{︂
c1

[︂
Z4(1234) + Z4(2314) + Z4(3124)

]︂
+ c2

[︂
Z2(12)Z2(34) + Z2(23)Z2(14) + Z2(31)Z2(24)

]︂}︂
.

(2.90)

After squaring the amplitude, we notice that it is enough to compute the following seven contri-
butions

dσ̂1(1234) = c2
0 c

2
1
∑︂
εi

Z(1234)∗ Z(1234) ,

dσ̂2(1234) = c2
0 c

2
2
∑︂
εi

Z(12)∗Z(34)∗ Z(12)Z(34) ,

dσ̂3(1234) = c2
0 c

2
1
∑︂
εi

Z(1234)∗ Z(2314) ,

dσ̂4(1234) = c2
0 c

2
2
∑︂
εi

Z(12)∗Z(34)∗ Z(23)Z(14) ,

dσ̂5(1234) = c2
0 c1c2

∑︂
εi

Z(1234)∗ Z(12)Z(34) ,

dσ̂6(1234) = c2
0 c1c2

∑︂
εi

Z(1234)∗ Z(23)Z(14) ,

dσ̂7(1234) = c2
0 c1c2

∑︂
εi

Z(1234)∗ Z(31)Z(24) ,

(2.91)

every other contribution will be obtained through permutations, such that

dσ̂ = dσ̂1(1234) + dσ̂2(1234) + 2
7∑︂
i=3

[︂
dσ̂i(1234) + (1 → 2 → 3 → 1) + (1 → 3 → 2 → 1)

]︂
. (2.92)

In the present case, the amplitudes depend exclusively on the field strength tensors of the photons.
Then, the polarization sum can be carried out with [155]∑︂

λ=±

f∗µµ′

i fνν
′

i = gµνkµ
′

i k
ν′

i + kµi k
ν
i g
µ′ν′

− gµν
′
kµ

′

i k
ν
i − kµi k

ν′

i g
µ′ν . (2.93)

After summing over polarizations in (2.91) with (2.93), we perform all the contractions of the metric
tensor gµν and the momenta ki with the aid of Sympy [158] (a Python package), we obtain

dσ̂1(1234) = 2 c2
0 c

2
1 (k4

12 + k4
13 + k4

14 + 4 k2
12k

2
14) ,

dσ̂2(1234) = 4 c2
0 c

2
2 k

4
12 ,

dσ̂3(1234) = 2 c2
0 c

2
1 (k4

12 + k4
13 + 3 k4

14 − 2 k2
12k

2
14 − 2 k2

13k
2
14) ,

dσ̂4(1234) = c2
0 c

2
2 (k4

12 + k4
13 + k4

14 − 2 k2
12k

2
13 − 2 k2

13k
2
14) ,

dσ̂5(1234) = 2 c2
0 c1c2 (2 k4

12 − k2
12k

2
13 + k2

12k
2
14)

dσ̂6(1234) = 2 c2
0 c1c2 (2 k4

14 + k2
12k

2
14 − k2

13k
2
14) ,

dσ̂7(1234) = 2 c2
0 c1c2 (k4

12 + k4
13 + k4

14 − k2
12k

2
13 − 2 k2

12k
2
14 − k2

13k
2
14) ,

(2.94)

here, we have defined kij = ki · kj .
The on-shell condition and momentum conservation imply

k12 = k34, k13 = k24, k14 = k23, k2
12k

2
23 + k2

12k
2
31 + k2

23k
2
31 = 1

2(k4
12 + k4

13 + k4
14) . (2.95)

Using these identities and summing every contribution to the cross section, we obtain

dσ̂ = c2
0 (k4

12 + k4
13 + k4

14)(22 c2
1 + 20 c1 c2 + 6 c2

2) . (2.96)
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Now the last step is to replace the constants c0, c1 and c2 as their corresponding values in (2.72) and
(2.73).

For scalar QED, we have that c0 = e4

(4π)2m4 = α2

m4 , c1 = b4 = 1
45 , c2 = b2

2 = 1
9 ,

dσscal = 1
64(2π)2ω2

1
4
α4

m8 (k4
12 + k4

13 + k4
14) (32)(34)

(90)2 dΩ . (2.97)

For spinor QED, we have that c0 = −2α2

m4 , c1 = −14b4 = −14
45 , c2 = 4 b2

2 = 4
9 ,

dσspin = 1
64(2π)2ω2

1
4

4α4

m8 (k4
12 + k4

13 + k4
14) (32)(139)

(90)2 dΩ . (2.98)

As a final remark, notice that replacing the momenta in (2.77) into the expressions (2.97) and
(2.98) will exactly reproduce the results in (2.84) and (2.85), respectively.

2.5.3 Cross section from spinor helicity
In the third approach, we adopt the conventions of [147, 51] with the tensor metric in Minkowski
space such that (ηµν) = diag(1,−1,−1,−1). In the worldline formalism we work with the metric
(gµν) = diag(+1,+1,+1,+1) in Euclidean space. Then in (2.72) and (2.73), we need to perform the
replacement gµν → −ηµν (see Appendix A) to compute the polarized amplitudes with the spinor
helicity techniques, presented below.

The four-photon amplitude at low energies for two incoming and two outgoing photons can be
expressed as

Γ4photon(f in
1 ; f in

2 ; fout
3 ; fout

4 ) = c0

{︂
c1

[︂
tr(f1f2f3f4) + tr(f2f3f1f4) + tr(f3f1f2f4)

]︂
+ c2

4

[︂
tr(f1f2)tr(f3f4) + tr(f2f3)tr(f1f4) + tr(f3f1)tr(f2f4)

]︂}︂
,

(2.99)

which is exactly the same as (2.80) and here we make emphasis in the dependence on the field strength
tensors of each photon fi. We comment that in the previous section, in particular Eq. (2.90), was not
necessary to fix the polarization propagation. Here, it is important to distinguish between incoming
and outgoing polarizations since (ε±

i )∗ = ε∓
i which implies an effective change of the helicity of the

photon. A similar analysis of the light-by-light amplitudes was carried out in [159] for the spinor
part7. In the following we omit the super-indices ‘in’ and ‘out’.

Using the spinor helicity identities introduced at the beginning of this section (more precisely
equations (2.34), (2.35) and (2.25)), we can easily compute the polarized amplitudes for the four-
photon case, for which we obtain

Γ4photon(f+
1 ; f+

2 ; f+
3 ; f+

4 ) = c0

4

(︂
3c1 + c2

)︂
⟨12⟩2[34]2 , (2.100)

Γ4photon(f+
1 ; f+

2 ; f−
3 ; f−

4 ) = c0

4 (c1 + c2)
(︂

⟨12⟩2⟨34⟩2 + ⟨13⟩2⟨24⟩2 + ⟨14⟩2⟨23⟩2
)︂
, (2.101)

Γ4photon(f+
1 ; f−

2 ; f+
3 ; f−

4 ) = c0

4

(︂
3c1 + c2

)︂
[23]2⟨14⟩2 , (2.102)

Γ4photon(f+
1 ; f−

2 ; f−
3 ; f+

4 ) = c0

4

(︂
3c1 + c2

)︂
[24]2⟨13⟩2 . (2.103)

Notice that we can also derive these expressions from the results presented in Section 2.3, i.e., Ref.
[51]. The contributions of these amplitudes to the cross section are

|Γ4photon(f+
1 ; f+

2 ; f+
3 ; f+

4 )|2 = c2
0

(︂
3c1 + c2

)︂2
k4

12 , (2.104)

|Γ4photon(f+
1 ; f+

2 ; f−
3 ; f−

4 )|2 = 2 c2
0(c1 + c2)2

(︂
k4

12 + k4
13 + k4

14

)︂
, (2.105)

7In [159] it seems that all photon polarizations are taken to be outgoing, that is why Γ++++
spin and Γ++−−

spin appear
interchanged.
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|Γ4photon(f+
1 ; f−

2 ; f+
3 ; f−

4 )|2 = c2
0

(︂
3c1 + c2

)︂2
k4

14 , (2.106)

|Γ4photon(f+
1 ; f−

2 ; f−
3 ; f+

4 )|2 = c2
0

(︂
3c1 + c2

)︂2
k4

13 . (2.107)

From these expressions we can compute dσ̂ and obtain exactly (2.96) or replace the four-momentum
of each photon by (2.77) and obtain the results in Table 2.1.

2.6 Four-photon amplitudes with two low-energy photons

In previous works [19, 20], we have derived compact expressions for the off-shell four-photon ampli-
tudes with two photons in their low-energy limit (|k3|, |k4| ≪ m). In the case of d dimensions, we
express the amplitudes entirely in terms of the hypergeometric function 2F1 and its derivatives. How-
ever, for d = 4 (four space-time dimensions), it becomes possible to write the amplitudes completely
in terms of elementary and trigonometric functions.

In this section, we present the explicit expressions for the off-shell four-photon amplitudes in
d = 4 and with two photons in their low-energy limit, since we utilize these results in the next
section to compute the Delbrück scattering amplitudes. For the sake of compactness, the following
dimensionless variables have been introduced

k̂12 = k1 · k2

m2 , p0 =
arcsinh

(︂√
−k̂12
2

)︂
√︂

(4 − k̂12)(−k̂12)
. (2.108)

Notice that in the following expressions the subindex ‘(34)’ means that photon k3 and k4 are in their
low-energy limit.

Scalar QED

For Q4
scal

Γ̂4
scal(34)(1234) = −12 + 8(k̂12 − 6)p0

3m4k̂2
12

Z4(1234) ,

Γ̂4
scal(34)(2314) = −2(k̂2

12 − 30k̂12 + 108) − 8p0(5k̂2
12 − 48k̂12 + 108)

9m4(k̂12 − 4)k̂2
12

Z4(2314) ,

Γ̂4
scal(34)(3124) = −12 + 8(k̂12 − 6)p0

3m4k̂2
12

Z4(3124) .

(2.109)

For Q3
scal

Γ̂3
scal(34)(123; 4) = −2(k̂2

12 − 48k̂12 + 180) − 16p0(4k̂2
12 − 39k̂12 + 90)

9m6(k̂12 − 4)k̂3
12

Z3(123)k2 · f4 · k1 ,

Γ̂3
scal(34)(412; 3) = −2(k̂2

12 − 48k̂12 + 180) − 16p0(4k̂2
12 − 39k̂12 + 90)

9m6(k̂12 − 4)k̂3
12

Z3(412)k2 · f3 · k1 .

(2.110)
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For Q2
scal

Γ̂2
scal(34)(12; 34) = −1

90 Z2(12)
{︄[︄

2(−k̂12 + 2) − 16p0

m6(k̂12 − 4)k̂12
k1 · f3 · f4 · k1

+ P1 k1 · f3 · f4 · k2 + (1 ↔ 2)
]︄

+ 10P2 k2 · f4 · k1k2 · f3 · k1

}︄
,

Γ̂2
scal(34)(13; 24) = −2(k̂12 − 6) − 16p0(k̂12 − 3)

9m6(k̂12 − 4)k̂2
12

Z2(13)k1 · f2 · f4 · k1 ,

Γ̂2
scal(34)(23; 14) = −2(k̂12 − 6) − 16p0(k̂12 − 3)

9m6(k̂12 − 4)k̂2
12

Z2(23)k2 · f1 · f4 · k2 ,

Γ̂2
scal(34)(14; 23) = −2(k̂12 − 6) − 16p0(k̂12 − 3)

9m6(k̂12 − 4)k̂2
12

Z2(14)k1 · f2 · f3 · k1 ,

Γ̂2
scal(34)(24; 31) = −2(k̂12 − 6) − 16p0(k̂12 − 3)

9m6(k̂12 − 4)k̂2
12

Z2(24)k2 · f1 · f3 · k2 .

(2.111)

And finally, for Q22
scal

Γ̂22
scal(34)(12, 34) = −2 − 8p0

3m4k̂12
Z2(12)Z2(34) ,

Γ̂22
scal(34)(13, 24) = − 2 + 8p0

9m4(k̂12 − 4)
Z2(13)Z2(24) ,

Γ̂22
scal(34)(14, 23) = − 2 + 8p0

9m4(k̂12 − 4)
Z2(14)Z2(23) .

(2.112)

Here we have introduced two more functions, Pi = Pi(k̂12) with i = 1, 2, which are defined as

P1 = 2(−k̂3
12 + 2k̂2

12 − 210k̂12 + 900) − 32p0(8k̂2
12 − 90k̂12 + 225)

m6(k̂12 − 4)k̂3
12

, (2.113)

P2 = 4(−k̂2
12 + 55k̂12 − 210) + 48p0(3k̂2

12 − 30k̂12 + 70)
m8(k̂12 − 4)k̂4

12
. (2.114)

Spinor QED

For Q4
spin

Γ̂4
spin(34)(1234) = 16[3 + p0(k̂2

12 + 2k̂12 − 12)]
3m4(k̂12 − 4)k̂2

12
Z4(1234) ,

Γ̂4
spin(34)(2314) = 4[4k̂2

12 − 3k̂12 − 54 − 8p0(k̂2
12 + 3k̂12 − 27)]

9m4(k̂12 − 4)k̂2
12

Z4(2314) ,

Γ̂4
spin(34)(3124) = 16[3 + p0(k̂2

12 + 2k̂12 − 12)]
3m4(k̂12 − 4)k̂2

12
Z4(3124) .

(2.115)

For Q3
spin

Γ̂3
spin(34)(123; 4) = 4(k̂2

12 + 15k̂12 − 90) + 16p0(k̂2
12 − 30k̂12 + 90)

9m6(k̂12 − 4)k̂3
12

Z3(123)k2 · f4 · k1 ,

Γ̂3
spin(34)(412; 3) = 4(k̂2

12 + 15k̂12 − 90) + 16p0(k̂2
12 − 30k̂12 + 90)

9m6(k̂12 − 4)k̂3
12

Z3(412)k2 · f3 · k1 .

(2.116)
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For Q2
spin

Γ̂2
spin(34)(12; 34) = 1

3Z2(12)
{︄[︄

4(k̂12 + 2) + 32p0(k̂12 − 1)
15m6(4 − k̂12)2k̂12

k1 · f3 · f4 · k1

+ 2
15 P̃1 k1 · f3 · f4 · k2 + (1 ↔ 2)

]︄
+ 4

3 P̃2 k2 · f4 · k1k2 · f3 · k1

}︄
,

Γ̂2
spin(34)(13; 24) = 4(k̂12 − 6) − 32p0(k̂12 − 3)

9m6(k̂12 − 4)k̂2
12

Z2(13)k1 · f2 · f4 · k1 ,

Γ̂2
spin(34)(23; 14) = 4(k̂12 − 6) − 32p0(k̂12 − 3)

9m6(k̂12 − 4)k̂2
12

Z2(23)k2 · f1 · f4 · k2 ,

Γ̂2
spin(34)(14; 23) = 4(k̂12 − 6) − 32p0(k̂12 − 3)

9m6(k̂12 − 4)k̂2
12

Z2(14)k1 · f2 · f3 · k1 ,

Γ̂2
spin(34)(24; 31) = 4(k̂12 − 6) − 32p0(k̂12 − 3)

9m6(k̂12 − 4)k̂2
12

Z2(24)k2 · f1 · f3 · k2 .

(2.117)

And finally, for Q22
spin

Γ̂22
spin(34)(12, 34) = −16[1 + 2p0(k̂12 − 2)]

3m4(k̂12 − 4)k̂12
Z2(12)Z2(34) ,

Γ̂22
spin(34)(13, 24) = − 8(1 + 4p0)

9m4(k̂12 − 4)
Z2(13)Z2(24) ,

Γ̂22
spin(34)(14, 23) = − 8(1 + 4p0)

9m4(k̂12 − 4)
Z2(14)Z2(23) ,

(2.118)

Here, we have defined P̃i = P̃i(k̂12) as

P̃1 = 2(k̂3
12 + 32k̂2

12 − 390k̂12 + 900) + 16p0(k̂3
12 − 46k̂2

12 + 270k̂12 − 450)
m6(k̂12 − 4)2k̂3

12
, (2.119)

P̃2 = 2(−23k̂2
12 + 200k̂12 − 420) − 24p0(k̂3

12 − 18k̂2
12 + 90k̂12 − 140)

m8(k̂12 − 4)2k̂4
12

. (2.120)

2.7 Delbrück scattering for low-energy photons
In this section, we use the results in the previous section to compute the Delbrück scattering differen-
tial cross section for scalar and spinor QED under the assumption that the photon that interacts with
the Coulomb field has low-energy (Fig. 2.3). This serves as an example of how to employ an off-shell
amplitude to compute the amplitude of a specific process in the presence of an external background
field. For the spinor QED case, this quantity was computed in detail in [17], therefore we will follow
their conventions for easy comparison.

Here we use our above results for the four-photon amplitudes with two low-energy photons, and
replace the two unrestricted legs 1 and 2 with two Coulomb photons. Furthermore, we now take the
two low-energy photons (3 and 4) on-shell.

The vector potential for the photons from the Coulomb field is given by

Aµ(x) =
(︃

− Ze

4πr , 0
)︃
, (2.121)

and has the following Fourier representation,

Aµ(x) = εµ

∫︂
d4k

(2π)4
Ze

k2 2π δ(k0) eik·x . (2.122)
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Figure 2.3: Feynman diagram for the low-energy limit of Delbrück scattering. Empty bullets indicate low-energy
photons.

From here the new vertex operator for photons from the Coulomb field read as

V γNuc[k, ε] = Ze

(2π)3

∫︂
d4k

δ(k0)
k2

∫︂ T

0
dτ ε · ẋeik·x

= Ze

(2π)3

∫︂
d3k
k2

∫︂ T

0
dτ ε · ẋ eik·x .

(2.123)

Thus in the present formalism, the Delbrück scattering amplitudes can be expressed as

Γ{︁ scal(34)
spin(34)

}︁ =
{︃

1
−2

}︃
1
2

e4(Ze)2

(4π)2(2π)6

∫︂ (d3k1)(d3k2)
k2

1k2
2

(2π)4δ4(k1 + k2 + k3 + k4)Γ̂{︁ scal(34)
spin(34)

}︁ , (2.124)

with Γ̂{︁ scal(34)
spin(34)

}︁ as defined in (2.71) and with the results presented in the previous section. Note that

the factor of 1
2 that takes the symmetry between legs 1 and 2 into account.

In order to reproduce the result given in [17] for the differential cross section, we employ the
following kinematics

k1 = (0,q − q′) , k2 = (0,−q − q′),
k3 = (iω,k + q′) , k4 = (−iω,q′ − k),

(2.125)

where
q′ = (ω sin θ/2, 0, 0),
k = (0, 0, ω cos θ/2),
q = (q1, q2, q3),

(2.126)

with ω as the energy and θ the scattering angle. The polarizations are chosen as

εµ1 = εµ2 = (i, 0, 0, 0),

εµ3 = 1√
2

(0,−iλ3 cos θ/2, 1,+iλ3 sin θ/2),

εµ4 = 1√
2

(0,−iλ4 cos θ/2, 1,−iλ4 sin θ/2),

(2.127)

where λi = ±1 for right-and left-handed circular polarization, respectively. In the following it is
understood that Γ̂+−

scal(34) = Γ̂scal(34)|λ3=1, λ4=−1 etc. and we will also use the abbreviations

P0 =
arcsinh

(︁
q

2m
)︁

q
√︁

4m2 + q2
, S = sin θ2 , C = cos θ2 . (2.128)

With the kinematics of (2.125) and using conservation of momentum we can write (2.124) as

Γ{︁ scal(34)
spin(34)

}︁ =
{︃

1
−2

}︃
1
2

e4(Ze)2

(4π)2(2π)6 (2π)4δ(k0
3 + k0

4)
∫︂

d3q
|q − q′|2|q + q′|2

Γ̂{︁ scal(34)
spin(34)

}︁ . (2.129)
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For convenience, let us further define

Γ̃{ scal
spin } =

∫︂
d3q

|q − q′|2|q + q′|2
Γ̂{︁ scal(34)

spin(34)

}︁ . (2.130)

Since we are considering the low-energy case, ω ≪ m, we neglect contributions of order superior
to ω2. We notice that∫︂

d3q
|q − q′|2|q + q′|2

=
∫︂ ∞

0

∫︂ π

0

∫︂ 2π

0

q2 sin θ′dq dθ′ dϕ′(︁
q2 + ω2 sin2 θ

2
)︁2 − 4q2

1ω
2 sin2 θ

2

=
∫︂ ∞

0

∫︂ π

0

∫︂ 2π

0

sin θ′dq dθ′ dϕ′

q2 + O(ω) .
(2.131)

Using the kinematics of (2.125), we find

Γ̂+−
scal(34) = 4ω2

3m2q4(4m2 + q2)

{︂
3m2[(6m2 + q2) − 8m2(3m2 + q2)P0](q2

2 − q2
1)

+ [q4(2m2 + q2) − 3m2(6m2 + q2)q2
2 ]S2 − 8m4[q4 − 3(3m2 + q2)q2

2 ]S2P0

}︂
+ O(ω3) ,

(2.132)

Γ̂+−
spin(34) = 4ω2

3q4(4m2 + q2)2

{︂
3(4m2 + q2)[(6m2 + q2) − 8m2(3m2 + q2)P0](q2

2 − q2
1)

+ [q4(2m2 − q2) − 3(4m2 + q2)(6m2 + q2)q2
2 ]S2

− 8m2[q4(m2 + q2) − 3(4m2 + q2)(3m2 + q2)q2
2 ]S2P0

}︂
+ O(ω3) ,

(2.133)

for the helicity non-conserving component, and

Γ̂++
scal(34) = 4ω2

3q4(4m2 + q2)

{︂
4[(6m2 + q2) − 8m2(3m2 + q2)P0](q2

2 − q2
3)

− [3q2(2m2 + q2) + 4(6m2 + q2)q2
2 ]C2

+ 4[q2(6m4 + 4m2q2 + q4) + 8m2(3m2 + q2)q2
2 ]C2P0

}︂
+ O(ω3) ,

(2.134)

Γ̂++
spin(34) = 4ω2

3q4(4m2 + q2)2

{︂
(6m2 + q2)(16m2 + 7q2)(q2

2 − q2
3)

+ 8[(3m2 + q2)(4m2 + q2)2 − 3m4q2](q2
3 − q2

2)P0

− [3q2(8m4 − 2m2q2 − q4) + (6m2 + q2)(16m2 + 7q2)q2
2 ]C2

+ 8q2(12m6 −m4q2 − 5m2q4 − q6)C2P0

+ 8[(3m2 + q2)(4m2 + q2)2 − 3m4q2]q2
2C

2P0

}︂
+ O(ω3) ,

(2.135)

for the conserving ones. To perform the integral over q we use spherical coordinates:

q1 = q cos θ′, q2 = q sin θ′ cosϕ′, q3 = q sin θ′ sinϕ′ . (2.136)

The integrals over θ′ and ϕ′ are trivial, and what remains to be calculated is

Γ̃+−
scal = 16πS2ω2

3

∫︂ ∞

0

dq

q2
−6m4 +m2q2 + q4 + 24m6P0

m2q2(4m2 + q2) , (2.137)

Γ̃+−
spin = 32πS2ω2

3

∫︂ ∞

0

dq

q2
−12m4 − 4m2q2 − q4 + 24m4(2m2 + q2)P0

q2(4m2 + q2)2 , (2.138)

Γ̃++
scal = 16πC2ω2

9

∫︂ ∞

0

dq

q2
−42m2 − 13q2 + 4(42m4 + 20m2q2 + 3q4)P0

q2(4m2 + q2) , (2.139)

Γ̃++
spin = 32πC2ω2

9

∫︂ ∞

0

dq

q2
−84m4 − 20m2q2 + q4 + 8(42m6 + 17m4q2 − 2m2q4 − q6)P0

q2(4m2 + q2)2 . (2.140)



24 N -photon amplitudes within the worldline formalism

Performing the integral over q, we get

Γ̃+−
scal = 15π3S2ω2

32m3 , Γ̃+−
spin = −5π3S2ω2

32m3 , (2.141)

Γ̃++
scal = 3π3C2ω2

32m3 , Γ̃++
spin = −73π3C2ω2

288m3 . (2.142)

Finally, the differential cross section is

dσscal(λ3λ4) = (Zα)4α2

4(2π)6 |Γ̃λ3λ4
scal |2 dΩ , (2.143)

dσspin(λ3λ4) = (Zα)4α2

(2π)6 |Γ̃λ3λ4
spin |2 dΩ . (2.144)

For scalar QED, we have

dσscal(++) = dσscal(−−) = (Zα)4
(︂ α
m

)︂2
(︃

3
16

)︃2(︃ 1
32

)︃2 (︂ ω
m

)︂4
cos4 θ

2dΩ , (2.145)

dσscal(+−) = dσscal(−+) = (Zα)4
(︂ α
m

)︂2
(︃

15
16

)︃2(︃ 1
32

)︃2 (︂ ω
m

)︂4
sin4 θ

2dΩ . (2.146)

For spinor QED, we find

dσspin(++) = dσspin(−−) = (Zα)4
(︂ α
m

)︂2
(︃

73
72

)︃2(︃ 1
32

)︃2 (︂ ω
m

)︂4
cos4 θ

2dΩ , (2.147)

dσspin(+−) = dσspin(−+) = (Zα)4
(︂ α
m

)︂2
(︃

5
8

)︃2(︃ 1
32

)︃2 (︂ ω
m

)︂4
sin4 θ

2dΩ , (2.148)

the spinor result is in agreement with [17] while the scalar is new, to the best of our knowledge.



Chapter 3

N-photon amplitudes in a constant
background field

In the context of photon amplitudes in the presence of background fields, the worldline formalism
[124, 123] have been used to derive master formulas for the N -photon amplitude in the presence of a
constant [46, 47, 123, 122], plane-wave [48] and combined constant field & plane-wave [49] background
fields. The previously mentioned master formulas have been derived for the cases in which the particle
in the loop has spin zero or one-half. These master formulas can be used to study the polarization of
the vacuum via, for instance, processes such as vacuum birefringence [65, 64, 160], photon splitting
[24, 26, 44], photon merging [25, 161] and light-by-light scattering [18, 19, 45]. However, in order
to properly study such effects we still need to calculate the multiple Schwinger-parameter integrals
appearing in these master formulas.

Therefore, the approach in this chapter is to consider the simpler master formulas (the constant
background field ones) and assume that all external photons are low-energy. In the next sections, we
present the one-loop N -photon amplitude in the presence of a constant background field for scalar
and spinor QED. In addition to the low-energy assumption, we consider different configurations for
the external constant field. We first discuss the purely magnetic and later we generalized it to the
case in which both electric and magnetic fields are pointing along the same direction. As a third
case, we study the constant crossed field. And finally, we obtain alternative expressions for the case
in which the field is considered arbitrarily constant.

3.1 N-photon amplitudes for scalar QED

Here, we make use of the results found in [46, 47] and later improved in [123, 122] for the scalar
N -photon amplitude in a general constant field,

Γscal(k1, ε1; ...; kN , εN ;F ) = (2π)dδd
(︄

N∑︂
i=1

ki

)︄
ΓN,scal(F ) , (3.1)

for convenience, we defined

ΓN,scal(F ) = (−ie)N
∫︂ ∞

0

dT

T
TN (4πT )−d/2e−m2T det1/2

[︃
Z

sin Z

]︃ N∏︂
i=1

∫︂ 1

0
dui

× exp

⎧⎨⎩
N∑︂

i,j=1

(︃
1
2ki · GBij · kj − iεi · ĠBij · kj + 1

2εi · G̈Bij · εj
)︃⎫⎬⎭ ⃓⃓⃓lin ε1ε2...εN

.

(3.2)

In the following, to avoid carrying the Dirac-delta function of momentum conservation, we work
exclusively with the amplitudes ΓN,scal(F ) for scalar and ΓN,spin(F ) for spinor. In equation (3.2),

25
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Figure 3.1: N-photon one-loop Feynman diagram. The double dashed line indicate a particle of spin zero in a
magnetic field.

Z = eTF and the calligraphic Green’s function and its derivatives are

GBij = T

2Z2

(︃
Z

sin Z
e−iZĠij + iZĠij − 1

)︃
,

ĠBij = i

Z

(︃
Z

sin Z
e−iZĠij − 1

)︃
,

G̈Bij = 1
T

(︃
G̈ij + 2 − 2Z

sin Z
e−iZĠij

)︃
,

(3.3)

derivatives are respect to the first parameter and Gij is the vacuum Green’s function, see (2.64). In
this work, we mainly use re-scaled parameters ĠBij = ĠB(ui, uj), see Appendix A.3.

Note that, contrary to the vacuum case in which the coincidence limit vanishes i. e., G(u, u) = 0,
the Green’s function in the presence of a constant background field GBii and its derivatives have
coincidence limit. Although G̈Bii is not required for computing the N -photon amplitude, we present
the coincidence limits of the calligraphic Green’s functions1

GBii = T

2Z2 (Z cot Z − 1) ,

ĠBii = i cot Z − i

Z
,

G̈Bii = − 2
T

Z cot Z .

(3.4)

As stated in [123, 122], the addition of a constant matrix to GBij and ĠBij in (3.2) will have null
effect due to momentum conservation. Then, we can use this fact to get rid of the coincidence limit
of GBij and ĠBij , we define

Gij = GBij − GBii,
Ġij = ĠBij − ĠBii,

(3.5)

which allows to write the N -photon amplitude as

ΓN,scal(F ) = (−ie)N
∫︂ ∞

0

dT

T
TN (4πT )−d/2e−m2T det1/2

[︃
Z

sin Z

]︃

×
N∏︂
i=1

∫︂ 1

0
dui exp

⎧⎨⎩
N∑︂

i,j=1

(︃
1
2ki · Gij · kj − iεi · Ġij · kj + 1

2εi · G̈Bij · εj
)︃⎫⎬⎭ ⃓⃓⃓lin ε1ε2...εN

,

(3.6)

where now the calligraphic Green’s functions Gij and Ġij do not have a coincidence limit. This
allows us to work with ΓN,scal(F ) in an analogous way as in the vacuum case. After expansion of the

1See Appendix B.1.1 for the detailed calculation of one example of such coincidence limits.
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amplitude to linear order in all ε1ε2...εN we can remove all second derivatives G̈Bij using integration
by parts with the following choice

∂

∂ui
Ġij = G̈Bij , (3.7)

which makes the calculation of the amplitude completely similar to the vacuum one, giving rise to
the Q-representation of the N -photon amplitude in a constant background field

ΓN,scal(F ) = (−ie)N
∫︂ ∞

0

dT

T
TN (4πT )−d/2e−m2T det1/2

[︃
Z

sin Z

]︃

×
N∏︂
i=1

∫︂ 1

0
dui Qscal(Ġij) exp

⎧⎨⎩1
2

N∑︂
i,j=1

ki · Gij · kj

⎫⎬⎭ ,

(3.8)

where Qscal(Ġij) is polynomial where now the Lorentz-cycles and the so called τ -cycles appearing in
the vacuum case [18] will mix. This motivates the definition of the “Lorentz trace”

Ġ(i1i2 . . . in) =
(︃

1
2

)︃δn2

tr(fi1 · Ġi1i2 · fi2 · Ġi2i3 · · · fin · Ġini1) , (3.9)

which will appear in Qscal(Ġij) together with the “n-tails”. For instance, the one- and two-tails, in
this case, are

T (i) =
∑︂
r ̸=i

εi · Ġir · kr ,

T (ij) =
∑︂

r ̸=i,s ̸=j
(r,s)̸=(j,i)

εi · Ġir · krεj · Ġjs · ks + 1
2εi · Ġij · εj

⎡⎣∑︂
r ̸=i,j

ki · Ġir · kr −
∑︂
s̸=j,i

kj · Ġjs · ks

⎤⎦ . (3.10)

However, in this work, the inclusion of tails is unnecessary. Specifically, for low-energy photons,
we solely consider terms linear in momenta, as those containing tails are of higher order and thus
negligible. In Section 3.8.1, we use this master formula to compute the low-energy four-photon
amplitudes in a pure magnetic field.

3.2 N-photon amplitudes for spinor QED

The procedure to obtain the spinor amplitude is similar to the one used in vacuum, Eq. (2.12). We
start from the scalar amplitude and apply the generalization of the Bern-Kosower replacement rule
[123, 122]. In order to apply this rule to the amplitude (3.8), we first need to replace Ġij by

ˆ̇Gij = ĠBij − ĠBii + GFii , (3.11)

in equation (3.6) to take into account the coincidence limit of the fermionic calligraphic Green’s
function GFii = −i tan Z, see [122] and Appendix B.1.1. The replacement Ġij → ˆ̇Gij can be done
directly in (3.8) but for the sake of clarity, we make the replacements GBij → Gij and ĠBij → ˆ̇Gij in
(3.2) to obtain

ΓN,scal(F ) = (−ie)N
∫︂ ∞

0

dT

T
TN (4πT )−d/2e−m2T det1/2

[︃
Z

sin Z

]︃

×
N∏︂
i=1

∫︂ 1

0
dui exp

⎧⎨⎩
N∑︂

i,j=1

(︃
1
2ki · Gij · kj − iεi · ˆ̇Gij · kj + 1

2εi · G̈ij · εj
)︃⎫⎬⎭ ⃓⃓⃓lin ε1ε2...εN

,

(3.12)
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Figure 3.2: N-photon one-loop Feynman diagram. The double solid line indicate a particle of spin one-half in a
magnetic field.

which again is justified by momentum conservation as in the previous section. After integration-by-
parts, it can be expressed in a Q-representation as

ΓN,scal(F ) = (−ie)N
∫︂ ∞

0

dT

T
TN (4πT )−d/2e−m2T det1/2

[︃
Z

sin Z

]︃

×
N∏︂
i=1

∫︂ 1

0
dui Qscal( ˆ̇Gij) exp

⎧⎨⎩1
2

N∑︂
i,j=1

ki · Gij · kj

⎫⎬⎭ ,

(3.13)

in which we can directly use the generalized Bern-Kosower replacement rule. The fermionic-Green’s
function in a constant field is

GFij = GFij
e−iZĠij

cos Z
. (3.14)

In the following, we summarize the generalized Bern-Kosower replacement rule [122]:

1. Replace each Lorentz trace by the same trace minus the fermionic Lorentz trace

ˆ̇G(i1i2 . . . in) → ˆ̇G(i1i2 . . . in) − GF (i1i2 . . . in) = Ġs(i1i2 . . . in) , (3.15)

where we will refer to Ġs(i1i2 . . . in) as the “Lorentz super-cycle”, and

GF (i1i2 . . . in) =
(︃

1
2

)︃δn1

tr(fi1 · GFi1i2 · fi2 · GFi2i3 · · · fin · GFini1) . (3.16)

2. The scalar determinant must be replaced by the corresponding spinor determinant

det1/2
[︃

Z
sin Z

]︃
→ det1/2

[︃
Z

tan Z

]︃
. (3.17)

3. Multiply by the usual factor of −2 for statistics and degrees of freedom.

Therefore, the N -photon amplitude in a constant background field for spinor QED is

ΓN,spin(F ) = −2(−ie)N
∫︂ ∞

0

dT

T
TN (4πT )−d/2e−m2T det1/2

[︃
Z

tan Z

]︃

×
N∏︂
i=1

∫︂ 1

0
dui Qspin( ˆ̇Gij ,GFij) exp

⎧⎨⎩1
2

N∑︂
i,j=1

ki · Gij · kj

⎫⎬⎭ ,

(3.18)

where Qspin( ˆ̇Gij ,GFij) will be determined by Qscal(Ġij) through the replacement rule. For an example
of it, see Section 3.8.2.

Notice that the generalized Bern-Kosower replacement rule presented in this section is different
from the one in [123] due to the conventions of the calligraphic functions wherein the coincidence
limits are subtracted, see [122].
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3.3 Low-energy limit of the N-photon amplitudes in a con-
stant field

In this section, we study the low-energy limit of N -photon amplitudes in a constant field. Similar as
in the vacuum case (see Section 2.3 and [50, 18]), the N -photon amplitude for scalar QED, in terms
of the vertex operator of each photon, is2

Γ(LE)
N,scal(F ) = (−ie)N

∫︂ ∞

0

dT

T
(4πT )−d/2e−m2T det1/2

[︃
Z

sin Z

]︃⟨︂
V
γ(LE)

scal [f1] · · · V γ(LE)
scal [fN ]

⟩︂
F
, (3.19)

for low-energy (LE) photons. In the presence of a constant field, the Wick contraction of the vertex
operators generalizes to⟨︂

V
γ(LE)

scal [f1] · · · V γ(LE)
scal [fN ]

⟩︂
F

= (iT )N exp
{︄ ∞∑︂
n=1

∑︂
i1...in

n∏︂
k=1

∫︂ 1

0
duik Ġdist

B ({i1i2...in})
}︄⃓⃓⃓⃓
⃓
f1...fN

,

(3.20)

where Ġdist
B ({i1i2...in}) denotes the sum over all distinct Lorentz traces which can be formed with a

given subset of indices, e.g. Ġdist
B ({i1i2i3i4}) = ĠB(i1i2i3i4) + ĠB(i1i2i4i3) + ĠB(i1i3i2i4).

(a) (b)

Figure 3.3: N-photon one-loop Feynman diagrams with every leg low-energy indicated by empty bullets at their ends.
(a): the double dashed line indicate a particle of spin zero in a magnetic field. (b): the double solid line indicate a
particle of spin one-half in a magnetic field.

It is important to mention that the representation (3.19) precedes (3.2), which is why the Lorentz
trace is now expressed in terms of ĠBij ’s

ĠB(i1i2 . . . in) =
(︃

1
2

)︃δn1+δn2

tr(fi1 · ĠBi1i2 · fi2 · ĠBi2i3 · · · fin · ĠBini1) . (3.21)

The Wick contraction of the vertex operators, using combinatorics, can be expressed as⟨︂
V
γ(LE)

scal [f1] · · · V γ(LE)
scal [fN ]

⟩︂
F

= (iT )N exp
{︄ ∞∑︂
n=1

1
2n I

cyc
scal(ftot, . . . , ftot;F )

}︄⃓⃓⃓⃓
⃓
f1...fN

, (3.22)

turning the problem of computing the amplitude into the calculation of the cyclic integral

Icyc
scal(f1, f2, . . . , fn;F ) =

∫︂ 1

0
du1 · · · dun ĠB(12 . . . n) , (3.23)

such that the N -photon amplitude in a constant background field for scalar QED under the assump-
tion of low-energy photons (Fig. 3.3a) becomes

Γ(LE)
N,scal(F ) = eN

(4π) d
2

∫︂ ∞

0

dT

T
TN− d

2 e−m2T det1/2
[︃

Z
sin Z

]︃
exp

{︄ ∞∑︂
n=1

1
2n I

cyc
scal(ftot, . . . , ftot;F )

}︄ ⃓⃓⃓⃓
⃓
f1...fN

,

(3.24)
2Here, the subindex ‘F ’ indicates that the Wick contraction includes the interaction with the external constant field

and V
γ(LE)

scal [fi] has been defined in (2.40).
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since this amplitude is completely in terms of Lorentz traces, we can apply the generalized Bern-
Kosower replacement rule, as stated in [123], transforming the scalar cyclic integral into a spinor
cyclic integral

Icyc
spin(f1, f2, . . . , fn;F ) =

∫︂ 1

0
du1 · · · dun

[︂
ĠB(12 . . . n) − GF (12 . . . n)

]︂
, (3.25)

where now the fermionic Lorentz trace is

GF (i1i2 . . . in) =
(︃

1
2

)︃δn1+δn2

tr(fi1 · GFi1i2 · fi2 · GFi2i3 · · · fin · GFini1) . (3.26)

Therefore, the N -photon amplitude in a constant field at low energies for spinor QED (Fig. 3.3b) is

Γ(LE)
N,spin(F ) = −2 eN

(4π) d
2

∫︂ ∞

0

dT

T
TN− d

2 e−m2T det1/2
[︃

Z
tan Z

]︃
exp

{︄ ∞∑︂
n=1

1
2n I

cyc
spin(ftot, . . . , ftot;F )

}︄ ⃓⃓⃓⃓
⃓
f1...fN

.

(3.27)

In the following sections, we calculate Icyc
scal and Icyc

spin for various field configurations, in four
dimensions (d = 4).

3.4 Case 1: Pure magnetic or electric field
In this section, we focus in the case of a pure magnetic background field of constant strength for which
the calligraphic Green’s functions exhibit simplifications. Following [123], we choose the magnetic
field pointing along the z axis, in Euclidean space,

F =

⎛⎜⎜⎝
0 Bz 0 0

−Bz 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ . (3.28)

We define z = eTBz, the matrices g± whose sum is the metric tensor

g+ =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ , g− =

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ , (3.29)

and the matrices r±

r+ =

⎛⎜⎜⎝
0 1 0 0

−1 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ , r− =

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

⎞⎟⎟⎠ , (3.30)

which satisfy the following relations

Z = eTF = z r+ , r2n
± = (−1)n g± , r2n+1

± = (−1)n r± . (3.31)

Then, we see that

Z2n = (−1)nz2n g+ and Z2n+1 = (−1)nz2n+1 r+ . (3.32)

This allows us to write the scalar and spinor determinants as3

det1/2
[︃

Z
sin Z

]︃
= z

sinh z , det1/2
[︃

Z
tan Z

]︃
= z

tanh z (3.33)

3The calculation of the determinants is straightforward however we present an example of such calculation in
Appendix B.1.3.
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and the calligraphic Green’s functions (3.3) and (3.14) as4

GBij = T

[︃
GBij g− − 1

2zABij(z)g+ + 1
2z
(︁
SBij(z) − ĠBij

)︁
ir+

]︃
,

ĠBij = Ġij g− + SBij(z)g+ −ABij(z)ir+ ,

G̈Bij = 1
T

(︁
G̈ij 1 − 2zABij(z)g+ + 2zSBij(z)ir+

)︁
,

GFij = GFijg− + SFij(z)g+ −AFij(z)ir+ ,

(3.34)

where

ABij(z) = cosh(zĠij)
sinh z − 1

z
, AFij(z) = GFij

sinh(zĠij)
cosh z ,

SBij(z) = sinh(zĠij)
sinh z , SFij(z) = GFij

cosh(zĠij)
cosh z .

(3.35)

In order to efficiently perform integration over the ui variables, we find convenient to introduce
the following functions (here, we include their coincidence limits)

HB
ij (z) = ezĠij

sinh z − 1
z
, HB

ij (0) = Ġij , HB
ii (z) = coth z − 1

z
,

HF
ij (z) = GFij

ezĠij

cosh z , HF
ij (0) = GFij , HF

ii (z) = tanh z .
(3.36)

Using these functions, Aij and Sij can now be written as

ABij(z) = 1
2

[︂
HB
ij (z) −HB

ij (−z)
]︂
, AFij(z) = 1

2

[︂
HF
ij (z) −HF

ij (−z)
]︂
,

SBij(z) = 1
2

[︂
HB
ij (z) +HB

ij (−z)
]︂
, SFij(z) = 1

2

[︂
HF
ij (z) +HF

ij (−z)
]︂
,

(3.37)

consequently ĠBij , GFij and their coincidence limits can be expressed as well in terms of Hij

ĠBij = HB
ij (0)g− + 1

2H
B
ij (z)(g+ − ir+) + 1

2H
B
ij (−z)(g+ + ir+) ,

GFij = HF
ij (0)g− + 1

2H
F
ij (z)(g+ − ir+) + 1

2H
F
ij (−z)(g+ + ir+) ,

ĠBii = −HB
ii (z) ir+ ,

GFii = −HF
ii (z) ir+ .

(3.38)

The pure electric case is obtained after replacing

g+ ↔ g− , r+ ↔ r− , z → ieTEz , (3.39)

in (3.38).
The functions HB

ij (z) and HF
ij (z) have the property of reproducing themselves under integration.

For both functions the following relations are satisfied5

H
(2)
13 (z1, z2) =

∫︂ 1

0
du2 H12(z1)H23(z2) = H13(z1)

z2 − z1
+ H13(z2)
z1 − z2

, (3.40)

H
(3)
14 (z1, z2, z3) =

∫︂ 1

0
du2 du3 H12(z1)H23(z2)H34(z3)

= H14(z1)
(z2 − z1)(z3 − z1) + H14(z2)

(z1 − z2)(z3 − z2) + H14(z3)
(z1 − z3)(z2 − z3) ,

(3.41)

4See Appendix B.1.2 for the step by step calculation of ĠBij in a pure magnetic field.
5In Appendix B.1.4, we show how to compute H

(2)
13 (z1, z2) for scalar and spinor QED.
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H
(4)
15 (z1, z2, z3, z4) =

∫︂ 1

0
du2 du3 du4 H12(z1)H23(z2)H34(z3)H45(z4)

= H15(z1)
(z2 − z1)(z3 − z1)(z4 − z1) + H15(z2)

(z1 − z2)(z3 − z2)(z4 − z2)

+ H15(z3)
(z1 − z3)(z2 − z3)(z4 − z3) + H15(z4)

(z1 − z4)(z2 − z4)(z3 − z4) .

(3.42)

The above identities can be generalized to

H
(n)
1(n+1)(z1, z2, ..., zn) =

∫︂ 1

0
du2 du3 · · · dunH12(z1)H23(z2) · · ·Hn(n+1)(zn)

=
n∑︂
ℓ=1

H1(n+1)(zℓ)
Cℓ

, Cℓ =
n∏︂

j=1,j ̸=ℓ
(zj − zℓ) .

(3.43)

The coincidence limit of the H(n)
ij function is

H
(n)
11 (z1, z2, ..., zn) =

∫︂ 1

0
du2 du3 · · · dunH12(z1)H23(z2) · · ·Hn1(zn) =

n∑︂
ℓ=1

H11(zℓ)
Cℓ

. (3.44)

This expression can be used for the calculation of the cyclic integrals (3.23) and (3.25). The outcome
of these cyclic integrals will be outlined in the next section. When considering a magnetic and electric
field aligned along the same axis, it is possible to derive a closed expression for the arbitrary n-point
integral in a more symmetric form. This allows us to derive the scenarios of pure magnetic or electric
fields as particular cases.

3.5 Case 2: Magnetic and electric fields parallel to each other
In this section, we focus on the case of a constant background field where both the magnetic and
electric fields point along the z axis (here we follow [123] and the previous section)

F =

⎛⎜⎜⎝
0 Bz 0 0

−Bz 0 0 0
0 0 0 iEz
0 0 −iEz 0

⎞⎟⎟⎠ . (3.45)

We define z+ = eTBz and z− = ieTEz. Similar to the previous section, now the following relations
are satisfied

Z2n = (−1)n
(︂
z2n

+ g+ + z2n
− g−

)︂
and Z2n+1 = (−1)n

(︂
z2n+1

+ r+ + z2n+1
− r−

)︂
, (3.46)

with g± and r± as defined in (3.29) and (3.30), respectively. In this case, the determinants become

det1/2
[︃

Z
tan Z

]︃
= z+z−

tanh z+ tanh z−
, det1/2

[︃
Z

sin Z

]︃
= z+z−

sinh z+ sinh z−
(3.47)

and the calligraphic Green’s functions (3.3) and (3.14) in terms of Aij and Sij (3.35) are

ĠBij = SBij(z+)g+ −ABij(z+)ir+ + SBij(z−)g− −ABij(z−)ir− , (3.48)

GFij = SFij(z+)g+ −AFij(z+)ir+ + SFij(z−)g− −AFij(z−)ir− , (3.49)

which can also be expressed in terms of Hij as

ĠBij = 1
2
∑︂
α,β=±

HB
ij (α zβ)(gβ − α irβ) ,

GFij = 1
2
∑︂
α,β=±

HF
ij (α zβ)(gβ − α irβ) ,

(3.50)
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see equations (3.36) and (3.37).
The scalar cyclic-integral (3.23) is

Icyc
scal(f1, f2, . . . , fn;F ) =

(︃
1
2

)︃δn1+δn2 ∫︂ 1

0
du1 · · · dun tr(fi1 · ĠBi1i2 ·fi2 · ĠBi2i3 · · · fin · ĠBini1) . (3.51)

By expressing the calligraphic Green’s functions as in (3.50) and employing (3.44) to integrate, we
obtain

Icyc
scal(f1, f2, . . . , fn;F ) =

(︃
1
2

)︃n+δn1+δn2 ∑︂
α1,β1=±

· · ·
∑︂

αn,βn=±

H
B(n)
11 (α1zβ1 , α2zβ2 , ..., αnzβn

)

× tr {f1(gβ1 − α1 irβ1)f2(gβ2 − α2 irβ2) · · · fn(gβn
− αn irβn

)} .
(3.52)

Similarly for the spinor cyclic-integral (3.25), we obtain

Icyc
spin(f1, f2, . . . , fn;F ) =

(︃
1
2

)︃n+δn1+δn2 ∑︂
α1,β1=±

· · ·
∑︂

αn,βn=±

tr {f1(gβ1 − α1 irβ1) · · · fn(gβn − αn irβn)}

×
[︂
H
B(n)
11 (α1zβ1 , ..., αnzβn

) −H
F (n)
11 (α1zβ1 , ..., αnzβn

)
]︂
.

(3.53)

After substituting the determinants and considering the results (3.52) and (3.53), the N -photon
amplitudes (3.24) and (3.27), within the field configuration of the present section, become

Γ(LE)
N,scal(F ) = eN

(4π)2

∫︂ ∞

0

dT

T
TN−2e−m2T z+z−

sinh z+ sinh z−
exp

{︄ ∞∑︂
n=1

1
2n I

cyc
scal(ftot, . . . , ftot;F )

}︄ ⃓⃓⃓⃓
⃓
f1...fN

,

(3.54)

for scalar QED, and

Γ(LE)
N,spin(F ) = −2 eN

(4π)2

∫︂ ∞

0

dT

T
TN−2e−m2T z+z−

tanh z+ tanh z−
exp

{︄ ∞∑︂
n=1

1
2n I

cyc
spin(ftot, . . . , ftot;F )

}︄ ⃓⃓⃓⃓
⃓
f1...fN

,

(3.55)

for spinor QED.
It is important to note some properties of these N -photon amplitudes: they are valid off-shell,

they are expressed in a compact form that requires simple algebra to obtain the explicit amplitude
expression and they have only one proper-time integral left. In Section 3.8, we specialize these results
to the four-photon amplitudes in a pure constant magnetic field.

3.6 Case 3: Constant crossed field
In this section, we consider a constant crossed field defined by E ⊥ B, E = B where E = |E|
and B = |B|. Since the electric and magnetic fields are perpendicular and equal in magnitude both
invariants E · B and B2 − E2 vanish. This implies, for the field strength tensor, F 3 = 0 so that the
power series in the calligraphic Green’s functions (3.3) and (3.14) terminates at the quadratic order

GBij = T

2

[︃
1
6

(︂
1 − 3Ġ2

ij

)︂
− i

6 Ġij
(︂

1 − Ġ
2
ij

)︂
Z + 2

3

(︃
G2
ij − 1

30

)︃
Z2
]︃
,

ĠBij = Ġij + i

6

(︂
1 − 3Ġ2

ij

)︂
Z + 1

6 Ġij
(︂

1 − Ġ
2
ij

)︂
Z2 ,

G̈Bij = 1
T

[︃
G̈ij + 2iĠijZ − 2

6

(︂
1 − 3Ġ2

ij

)︂
Z2
]︃
,

GFij = GFij

[︃
1 − iĠijZ + 1

2

(︂
1 − Ġ

2
ij

)︂
Z2
]︃
.

(3.56)
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The coincidence limits, in this case, are

GBii = −T
(︃

1
6 + 1

90Z2
)︃
, ĠBii = − i

3Z , GFii = −iZ . (3.57)

And, the determinants now become

det1/2
[︃

Z
tan Z

]︃
= det1/2

[︃
Z

sin Z

]︃
= 1 . (3.58)

For instance, in four-dimensions, we could choose the field strength tensor as

F =

⎛⎜⎜⎜⎝
0 0 0 0
0 0 Bx 0
0 −Bx 0 iEz
0 0 −iEz 0

⎞⎟⎟⎟⎠ , F 2 =

⎛⎜⎜⎜⎝
0 0 0 0
0 −B2

x 0 iBxEz
0 0 0 0
0 iBxEz 0 E2

z

⎞⎟⎟⎟⎠ , (3.59)

from which, it is clear that F 3 = Z3 = 0.
Notice that, the calligraphic Green’s functions Ġij and GFij , as the Neumann series expansion

[123, 162] of the Green’s function operator, have the following representation6

ĠBij = 2
2∑︂
ℓ=0

⟨i|∂−(ℓ+1)
P |j⟩ (2iZ)ℓ ,

GFij = 2
2∑︂
ℓ=0

⟨i|∂−(ℓ+1)
A |j⟩ (2iZ)ℓ .

(3.60)

Now, for the integral of ‘n’ bosonic calligraphic Green’s functions ĠBij , we can define a generic bosonic
cycle integral (as in the vacuum case [18]) by

bℓ1+...+ℓn = 2ℓ1+...+ℓn

∫︂ 1

0
du1 du2 · · · dun ⟨u1|∂−ℓ1

P |u2⟩⟨u2|∂−ℓ2
P |u3⟩ · · · ⟨un|∂−ℓn

P |u1⟩ . (3.61)

The calculation of the previous integral follows from the completeness relation
∫︁ 1

0 du |u⟩⟨u| = 1 and
it can be expressed in terms of the Bernoulli numbers [163, 149]

bℓ =

⎧⎨⎩ −2ℓ Bℓ

ℓ! ℓ even ,

0 ℓ odd .
(3.62)

Similarly, for the integral of ‘n’ fermionic calligraphic Green’s functions GFij , we have

2ℓ1+...+ℓn

∫︂ 1

0
du1 · · ·

∫︂ 1

0
dun ⟨1|∂−ℓ1

A |2⟩⟨2|∂−ℓ2
A |3⟩ · · · ⟨n|∂−ℓn

A |1⟩ =
(︁
1 − 2ℓ1+...+ℓn

)︁
bℓ1+...+ℓn

. (3.63)

Therefore, we can use (3.61) and (3.63) to compute the cyclic integrals (3.23) and (3.25), and express
the result in terms of Bernoulli numbers, for the present case. For the scalar cyclic-integral, we obtain

Icyc
scal(f1, f2, . . . , fn;F ) =

(︃
1
2

)︃δn1+δn2 2∑︂
ℓ1=0

· · ·
2∑︂

ℓn=0
iℓ1+...+ℓn bn+ℓ1+...+ℓn

× tr
(︁
f1 · Zℓ1 · f2 · Zℓ2 · · · fn · Zℓn

)︁
.

(3.64)

Similarly, by defining hℓ =
(︁
2 − 2ℓ

)︁
bℓ , the spinor cyclic-integral can be expressed as

Icyc
spin(f1, f2, . . . , fn;F ) =

(︃
1
2

)︃δn1+δn2 2∑︂
ℓ1=0

· · ·
2∑︂

ℓn=0
iℓ1+...+ℓn hn+ℓ1+...+ℓn

× tr
(︁
f1 · Zℓ1 · f2 · Zℓ2 · · · fn · Zℓn

)︁
.

(3.65)

6The subscript ‘P ’ stands for periodic boundary conditions and ‘A’ for anti-periodic.
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Note that, the Lorentz traces can be further simplified due to the symmetry F 2 ·fi ·F 2 = 0, which
has as consequence that the order of interactions in a cycle with the field cannot be greater than the
number of photon in such cycle. Then, the cyclic integrals can be represented as

Icyc
scal(f1, f2, . . . , fn;F ) =

(︃
1
2

)︃δn1+δn2 n∑︂
ℓ=0

(ieT )ℓ bn+ℓ trdist (f1 · F · f2 · F · · · fℓ · F · fℓ+1 · fℓ+2 · · · fn) ,

Icyc
spin(f1, f2, . . . , fn;F ) =

(︃
1
2

)︃δn1+δn2 n∑︂
ℓ=0

(ieT )ℓ hn+ℓ trdist (f1 · F · f2 · F · · · fℓ · F · fℓ+1 · fℓ+2 · · · fn) ,

(3.66)

where ‘trdist’ denotes the sum of all different permutations of F for a fix set of fi’s. For instance, the
non-null contributions, for n = 1

trdist(f1 · F ) = tr(f1 · F ) . (3.67)

For n = 2

trdist (f1 · F · f2 · F ) = tr(F · f1 · F · f2) + tr(F 2 · f1 · f2) + tr(f1 · F 2 · f2) . (3.68)

For n = 3

trdist (f1 · F · f2 · f3) = tr(f1 · F · f2 · f3) + tr(f1 · f2 · F · f3) + tr(f1 · f2 · f3 · F ) ,
trdist (f1 · F · f2 · F · f3 · F ) = (f1Ff2Ff3F ) + tr

(︁
f1f2Ff3F

2 + 5 perm of F, F 2)︁ . (3.69)

After substituting the determinants and considering the results in (3.66), the N -photon amplitudes
(3.24) and (3.27), within the field configuration of the present section, become

Γ(LE)
N,scal(F ) = eN

(4π)2

∫︂ ∞

0

dT

T
TN−2e−m2T exp

{︄ ∞∑︂
n=1

1
2n I

cyc
scal(ftot, . . . , ftot;F )

}︄ ⃓⃓⃓⃓
⃓
f1...fN

, (3.70)

for scalar QED, and

Γ(LE)
N,spin(F ) = −2 eN

(4π)2

∫︂ ∞

0

dT

T
TN−2e−m2T exp

{︄ ∞∑︂
n=1

1
2n I

cyc
spin(ftot, . . . , ftot;F )

}︄ ⃓⃓⃓⃓
⃓
f1...fN

, (3.71)

for spinor QED.
It is important to note that these N -photon amplitudes in a constant crossed field are valid off-

shell and the proper-time integral left is straightforward to perform for a fixed number of photons.
Moreover, the PT symmetry becomes manifest in this representation, facilitated by the Bernoulli
numbers (3.62).

In the low-energy limit of the N -photon amplitudes within the worldline, it is well known that the
leading contributions arise from the bicycles (2.10) or (2.14) in the vacuum case and from the Lorentz
traces (3.9) or (3.15) in the constant field case, see [50, 51, 52, 111]. However, in the high-field and
high energy limit of the N -photon amplitudes in a constant crossed field, the leading contributions
may arise from the tails (3.10). In such case, the leading term of the amplitude would be the one
containing the smallest Lorentz trace and the biggest tail. Since the external photons are off-shell, this
presents the opportunity to systematically study the scaling with respect to the quantum nonlinearity
parameter (1.6) for these N -photon amplitudes and even for multi-loop amplitudes, which is related
to the Ritus-Narozhny conjecture [104, 164, 105, 106, 107]. This is a subject that is currently under
development.

3.6.1 The plane-wave field limit
It is interesting to recall that a plane-wave field in the low-frequency approximation corresponds
exactly to a constant crossed field. Then, in the light-cone coordinate system of a plane wave prop-
agating along the n direction, the vector potential for a constant crossed field can be chosen as
[165, 44]

A(ϕ) = E0(ε+
0 + ε−

0 )ϕ , (3.72)
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where ϕ = nµx
µ with Minkowski space metric (ηµν) = diag(+1,−1,−1,−1), E0 a constant equal in

magnitude to the electric and magnetic field strengths and ε±
0 unitary four vectors orthogonal to n

that can be regarded as the ‘+’ and ‘−’ helicity components of the plane wave field.
Notice that the field strength tensor of a constant crossed field can be seen as the sum of two

‘polarized photon field strength tensors’

F = f+
0 + f−

0 , f±,µν
0 = kµ0 ε

±,ν
0 − ε±,µ

0 kν0 , kµ0 = E0 n
µ . (3.73)

For instance, a good choice for the polarization four-vectors ε±
0 = (0, ε±

0 ) in the light-cone basis
[44] is

ε±
0 = 1√

2
(a1 ± ia2) (3.74)

and assuming that, for the external photons, the scattering plane is formed by (n,a2), the polarization
for each external photon will be

ε±
i = 1√

2

[︃
a1 ± ia1 ×

(︃
ki
ωi

)︃]︃
. (3.75)

This imply that for the case of external polarized photons the effective interaction with the constant
crossed field is through identical polarized photons which do not transfer energy.

3.6.2 Helicity amplitudes
The possibility of expressing the constant crossed field as (3.73) motivates the use of spinor helicity
to compute the polarized amplitudes. Here, in order to use the spinor helicity formalism in Section
2.2, we change from the Euclidean (gµν) = diag(+1,+1,+1,+1) to the Minkowski space convention
(ηµν) = diag(+1,−1,−1,−1) as indicated in Appendix A.

For the present discussion we focus in the scalar N -photon amplitude since the spinor one follows
analogously. It is convenient to use the representation in (3.20) to express the four dimensional
amplitude (3.24) as

Γ(LE)
N,scal(F ) = eN

(4π)2

∫︂ ∞

0

dT

T
TN−2e−m2T exp

{︄ ∞∑︂
n=1

∑︂
i1...in

Icyc,dist
scal ({fi1 , fi2 , . . . , fin};F )

}︄ ⃓⃓⃓⃓
⃓
f1...fN

.

(3.76)

From this expression, we can see that the interaction with the external field in the cyclic integrals
will be determined by the helicity of the external photons. For fixed helicity, the field strength tensor
F is effectively replaced by one of the polarized field strength tensor f±

0 as

Icyc
scal({fi1 , fi2 , . . . , fin};F ) →

(︃
1
2

)︃δn1+δn2 n∑︂
ℓ=1

(ieT )ℓ bn+ℓ trdist (︁fi1 · f±
0 · · · fiℓ · f±

0 · fiℓ+1 · · · fin
)︁

(3.77)

and we have to take into account all the possible combinations in which f±
0 can appear in the cyclic

integral. Furthermore, the expansion of (3.76) to linear order in f1...fN can be seen as the sum of 0
to N interactions with the field f0, consequence of (3.66). Then, for fixed helicities, we can think of
(3.76) as the sum of N vacuum N -photon amplitudes

Γ(LE)
scal (f+

1 ; ...; f+
L ; ·f−

L+1; ...; f−
N ;F ) = (−i)N

(4π)2 (2π)4δ4

(︄
N∑︂
i=1

ki

)︄ ∫︂ ∞

0

dT

T 3 e−m2T
N∑︂
n=0

n∑︂
ℓ=0

× exp
{︄ ∞∑︂
r=1

∑︂
i1...ir

(︃
1
2

)︃δr2

(ieT )r br trdist (fi1 · fi2 · · · · · · fir )
}︄ ⃓⃓⃓⃓
⃓
f+

1 ...f
+
L
f−

L+1...f
−
N
f+

N+1...f
+
N+ℓ

f−
N+ℓ+1...f

−
N+n

,

(3.78)

for L external photons having helicity ‘+’ and N − L ‘−’, and with fN+1 = fN+2 = ... = fN+n =
f0. Here, we have written the momentum conservation explicitly to emphasize the fact that it is
independent of the “effective photon” momentum k0.
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Now, we compare the results in [51] and [50] to obtain the following relation (see Section 2.3,
specifically Eq. (2.46) and (2.61))

exp
{︄ ∞∑︂
n=1

∑︂
i1...in

(︃
1
2

)︃δn2

(ieT )n bn trdist (fi1 · fi2 · · · fin)
}︄ ⃓⃓⃓⃓
⃓
f+

1 ...f
+
L

·f−
L+1...f

−
N

=
(2ieT )N CN,Lscal χ

+
L χ

−
N−L

(N − 3)! ,

(3.79)

where CN,Lscal are scalar coefficients given in terms of Bernoulli numbers Bn by

CN,Lscal = (−1)N/2 (N − 3)!
L∑︂
r=0

N−L∑︂
s=0

(−1)N−L−s

(︂
1 − 21−r−s

)︂(︂
1 − 21−N+r+s

)︂
Br+s BN−r−s

r! s! (L− r)! (N − L− s)!
(3.80)

and χ±
L are twistor products that vanish for L odd. And, for L even we have

χ+
L = (χ+) L

2 |all different = (L/2)!
2L/2

{︂
[12]2[34]2 · · · [(L− 1)L]2 + all permutations

}︂
, (3.81)

χ−
N−L = (χ−)

N−L
2 |all different

=
(︁
N−L

2
)︁
!

2 N−L
2

{︂
⟨(L+ 1)(L+ 2)⟩2⟨(L+ 3)(L+ 4)⟩2 · · · ⟨(N − 1)N⟩2 + all permutations

}︂
.

(3.82)

Here, we have provided the explicit expressions for CN,Lscal , χ+
L and χ−

N−L, as introduced in Section
2.3, following the conventions outlined in Section 2.2. For further details, see [51].

In order to obtain a closed result for the N -photon amplitude in a constant crossed field with L
external photons having helicity ‘+’ and N − L ‘−’ for scalar QED we use equation (3.79) in (3.78).
After integration over T , we obtain

Γ(LE)
scal (f+

1 ; ...; f+
L f

−
L+1; ...; f−

N ;F ) = m4

(4π)2

(︃
2e
m2

)︃N N∑︂
n=0

n∑︂
ℓ=0

(︃
2ie
m2

)︃n
CN+n,L+ℓ

scal χ+
L+ℓ χ

−
N−L+n−ℓ .

(3.83)

Analogously, we obtain theN -photon amplitude in a constant crossed field with L external photons
having helicity ‘+’ and N − L ‘−’ for spinor QED

Γ(LE)
spin (f+

1 ; ...; f+
L f

−
L+1; ...; f−

N ;F ) = −2 m4

(4π)2

(︃
2e
m2

)︃N N∑︂
n=0

n∑︂
ℓ=0

(︃
2ie
m2

)︃n
CN+n,L+ℓ

spin χ+
L+ℓ χ

−
N−L+n−ℓ ,

(3.84)

where CN,Lspin are spinor coefficients given by

CN,Lspin = (−1)N/2 (N − 3)!
L∑︂
r=0

N−L∑︂
s=0

(−1)N−L−s Br+s BN−r−s

r! s! (L− r)! (N − L− s)! .
(3.85)

In [51], it is shown that the N -photon amplitudes in vacuum obey a double Furry theorem for low-
energy photons, i.e., the number of helicity components in an N -photon amplitudes should be even
otherwise the latter vanishes. In the present case, the N -photon amplitudes in a constant crossed field
do not obey the double Furry theorem, although each contribution to the amplitude does because
χ±
L are non-zero only for L even. Note that the polarized N -photon amplitudes in a constant crossed

field (3.83) and (3.84) are valid for on-shell external photons, and keep in mind that fN+n = f0 for
n > 0 and [ii]± = 0.

3.7 Case 4: Arbitrary constant field
In this section, we notice that for the general case of an arbitrary constant background field the
calligraphic Green’s functions Ġij and GFij , as well as in (3.60), can be expressed as the Neumann
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series expansion [123, 162] of the Green’s function operator7

ĠBij = 2
∞∑︂
ℓ=0

⟨i|∂−(ℓ+1)
P |j⟩(2iZ)ℓ ,

GFij = 2
∞∑︂
ℓ=0

⟨i|∂−(ℓ+1)
A |j⟩(2iZ)ℓ .

(3.86)

Then, using (3.61) to compute scalar cyclic-integral (3.23), we obtain

Icyc
scal(f1, f2, . . . , fn;F ) =

(︃
1
2

)︃δn1+δn2 ∞∑︂
ℓ1=0

· · ·
∞∑︂
ℓn=0

iℓ1+...+ℓn tr
(︁
f1 · Zℓ1 · f2 · Zℓ2 · · · fn · Zℓn

)︁
bn+ℓ1+...+ℓn ,

(3.87)

here, bℓ is given by (3.62). Similarly, we can use (3.61) and (3.63) to compute spinor cyclic-integral
(3.25), obtaining

Icyc
spin(f1, f2, . . . , fn;F ) =

(︃
1
2

)︃δn1+δn2 ∞∑︂
ℓ1=0

· · ·
∞∑︂
ℓn=0

iℓ1+...+ℓn tr
(︁
f1 · Zℓ1 · f2 · Zℓ2 · · · fn · Zℓn

)︁
hn+ℓ1+...+ℓn

,

(3.88)

with hℓ =
(︁
2 − 2ℓ

)︁
bℓ .

Therefore, assuming that external photons have low-energy, the N -photon amplitudes in the
presence of an arbitrary constant background field can expressed as series expansions respect to the
field strength tensor, as indicated by (3.87), (3.88),

Γ(LE)
N,scal(F ) = (−ie)N

(4π) d
2

∫︂ ∞

0

dT

T
TN− d

2 e−m2T det1/2
[︃

Z
sin Z

]︃
exp

{︄ ∞∑︂
n=1

1
2n I

cyc
scal(ftot, . . . , ftot;F )

}︄ ⃓⃓⃓⃓
⃓
f1...fN

(3.89)

for scalar QED, and

Γ(LE)
N,spin(F ) = −2(−ie)N

(4π) d
2

∫︂ ∞

0

dT

T
TN− d

2 e−m2T det1/2
[︃

Z
tan Z

]︃
exp

{︄ ∞∑︂
n=1

1
2n I

cyc
spin(ftot, . . . , ftot;F )

}︄ ⃓⃓⃓⃓
⃓
f1...fN

(3.90)

for spinor QED.
In this case, it is also evident that the PT symmetry becomes manifest in the above equations

due to the properties of the Bernoulli numbers (3.62). Specifically, b2ℓ+1 = 0 corresponds to an odd
power of the electric charge.

3.8 Low-energy limit of the four-photon amplitudes in a mag-
netic field

In this section, as an application of the formulas obtained above, we compute the four-photon am-
plitude at low energies in a pure magnetic field for both scalar and spinor QED. We point out that
this amplitude for the spinor case have been studied in [45] from the Euler-Heisenberg Lagrangian
[5]. The first step towards the study (within the worldline formalism) of light-by-light scattering in
presence of a magnetic background field, in the following, we present analytical expressions for the
corresponding scalar and spinor amplitudes as well as for the polarized amplitudes (see Appendix C
for the results of the integrals).

7The subscript ‘P ’ stands for periodic boundary conditions and ‘A’ for anti-periodic.
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3.8.1 Four-photon amplitude in a magnetic field for scalar QED
In this section, we study the four-photon amplitude in a constant field for scalar QED (see Fig. 3.4)
obtained from the N -photon amplitude (3.8). In four dimensions, this amplitude is

Γ4,scal(F ) = (−ie)4
∫︂ ∞

0

dT

T
T 4(4πT )−2 e−m2T det−1/2

[︃
sin(Z)

Z

]︃

×
∫︂ 1

0
du1 du2 du3 du4 Qscal(Ġij) exp

⎧⎨⎩1
2

4∑︂
i,j=1

ki · Gij · kj

⎫⎬⎭ .

(3.91)

In the case of N = 4, the polynomial Qscal(Ġij) has the following representation

Qscal(Ġij) = Qscal
4 + Qscal

3 + Qscal
2 + Qscal

22 ,

Qscal
4 = Ġ(1234) + Ġ(2314) + Ġ(3124) ,

Qscal
3 = Ġ(123)T (4) + Ġ(234)T (1) + Ġ(341)T (2) + Ġ(412)T (3) ,

Qscal
2 = Ġ(12)T (34) + Ġ(13)T (24) + Ġ(14)T (23) + Ġ(23)T (14) + Ġ(24)T (13) + Ġ(34)T (12) ,

Qscal
22 = Ġ(12)Ġ(34) + Ġ(13)Ġ(24) + Ġ(14)Ġ(23) ,

(3.92)

where the Lorentz cycles and tails are given by (3.9) and (3.10) respectively.
Remarkably, the latter representation of the leading light-by-light amplitude in a constant field

follows the structure of the same amplitude in vacuum [18]. This is, in fact, an advantage since the
Q-representation in vacuum has been studied in detail in [122, 123], even more, such representation
is known for up to six external photons from which it is straightforward to obtain its extension to
the case of a constant background field. Another advantage of this representation is its compactness
which is due to the removal of the one-cycles Ġ(i).

Figure 3.4: Feynman diagram representing the four-photon amplitude with every incoming photon having low-energy,
indicated by empty bullets at their ends. The double dashed line indicate a particle of spin zero in a magnetic field.

In the following, we consider the fully low-energy case, i.e., we consider every photon to have
much less energy than the mass in the loop. For such case, the leading non-vanishing contributions
to the amplitude are those composed fully by Lorentz cycles. Then, the four-photon amplitude at
low energies in a purely magnetic background field for scalar QED is

Γ(LE)
4,scal(F ) = α2

∫︂ ∞

0

dT

T
T 2 e−m2T z

sinh z

∫︂ 1

0
du1 du2 du3 du4

(︁
Qscal

4 + Qscal
22)︁ , (3.93)

where α = e2

4π is the fine structure constant and z = eTBz, as in Section 3.4. Here, we have already
used the determinant result (3.33). Notice that this amplitude involves only the following Lorentz
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cycles

Ġ(12) = 1
2tr
(︁
f1Ġ12f2Ġ21

)︁
,

Ġ(1234) = tr
(︁
f1Ġ12f2Ġ23f3Ġ34f4Ġ41

)︁
,

(3.94)

of course, they appear with different permutations. Notice that the ui variables are removed after
integration such that we can define

Isc
2f (12) = 1

2

∫︂ 1

0
du1 du2 tr

(︁
f1Ġ12f2Ġ21

)︁
,

Isc
4f (1234) =

∫︂ 1

0
du1 du2 du3 du4 tr

(︁
f1Ġ12f2Ġ23f3Ġ34f4Ġ41

)︁
,

(3.95)

allowing us to write the amplitude as

Γ(LE)
4,scal(F ) = α2

∫︂ ∞

0

dT

T
T 2e−m2T z

sinh z

[︂
Isc

4f (1234) + Isc
2f (12) Isc

2f (34) + 2 perm
]︂
. (3.96)

Notice that the integrals (3.95) can be expressed in terms of the cyclic integrals (3.52) as

Isc
2f (12) = Icyc

scal(f1, f2;F ) + 1
2 tr

(︁
f1ĠBiif2ĠBii

)︁
,

Isc
4f (1234) = Icyc

scal(f1, f2, f3, f4;F ) + tr
(︁
f1ĠBiif2ĠBiif3ĠBiif4ĠBii

)︁
.

(3.97)

Now, to obtain the pure magnetic case we simply set z+ = z = eTBz and z− = 0 in (3.52). We must
also recall the coincidence limit ĠBii in a pure magnetic field (see ‘Case 1’ in Section 3.4). Then, in
this way, we obtain

Isc
2f (12) = Isc

20 tr(f1g−f2g−) + Isc
21 tr(f1g+f2g+) + Isc

22 tr(f1r+f2r+) + Isc
23

[︂
tr(f1g−f2g+) + tr(f1g+f2g−)

]︂
,

(3.98)

for the two-cycle integral. And

Isc
4f (1234) =

{︂
Isc

0 tr(f1g−f2g−f3g−f4g−) + Isc
1 tr(f1g+f2g+f3g+f4g+) + Isc

2 tr(f1r+f2r+f3r+f4r+)

+ Isc
3

[︂
tr(f1g−f2g+f3g+f4g+) + 3perm

]︂
+ Isc

4

[︂
tr(f1g−f2g−f3g−f4g+) + 3perm

]︂
+ Isc

5

[︂
tr(f1g−f2g−f3g+f4g+) + 5perm

]︂
+ Isc

6

[︂
tr(f1r+f2r+f3g−f4g−) + 5perm

]︂
+ Isc

7

[︂
tr(f1r+f2r+f3g+f4g+) + 5perm

]︂
+ Isc

8

[︂
tr(f1r+f2r+f3g−f4g+) + 11perm

]︂}︂
,

(3.99)

for the four-cycle integral. Here, the functions Isc
i ’s are trigonometric expressions and are explicitly

written in terms of HB(n)
11 (see Eq. (3.44) and Appendix C.1).

Finally, for the integration over T , we make the change of variables z = eBzT and set the following
conventions

J sc
n =

∫︂ ∞

0
dz e−βcz

z2

sinh z I
sc
n ,

{J sc
20, J

sc
21, J

sc
22, J

sc
23, J

sc
24} =

∫︂ ∞

0
dz e−βcz

z2

sinh z {(Isc
20)2, Isc

20I
sc
21, I

sc
20I

sc
22, I

sc
20I

sc
23, I

sc
21I

sc
22} ,

{J sc
25, J

sc
26, J

sc
27, J

sc
28, J

sc
29} =

∫︂ ∞

0
dz e−βcz

z2

sinh z {Isc
21I

sc
23, I

sc
22I

sc
23, (Isc

21)2, (Isc
22)2, (Isc

23)2} ,

(3.100)

where βc = m2

eBz
= Bcr

Bz
. Furthermore we use the following notation

Γ4,B
scal(1234) = α2β2

c

m4

∫︂ ∞

0
dz e−βcz

z2

sinh z Isc
4f (1234) ,

Γ22,B
scal (12, 34) = α2β2

c

m4

∫︂ ∞

0
dz e−βcz

z2

sinh z Isc
2f (12) Isc

2f (34) .
(3.101)
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This allow us to express the four-photon amplitude in a pure magnetic field as

Γ(LE)
4,scal(F ) = Γ4,B

scal(1234) + Γ4,B
scal(2314) + Γ4,B

scal(3124) + Γ22,B
scal (12, 34) + Γ22,B

scal (23, 14) + Γ22,B
scal (31, 24) ,

(3.102)

for scalar QED. The contribution of a Lorentz four-cycle to this amplitude is

Γ4,B
scal(1234) = α2β2

c

m4

{︂
J sc

0 tr(f1g−f2g−f3g−f4g−) + J sc
1 tr(f1g+f2g+f3g+f4g+) + J sc

2 tr(f1r+f2r+f3r+f4r+)

+ J sc
3

[︂
tr(f1g−f2g+f3g+f4g+) + 3perm

]︂
+ J sc

4

[︂
tr(f1g−f2g−f3g−f4g+) + 3perm

]︂
+ J sc

5

[︂
tr(f1g−f2g−f3g+f4g+) + 5perm

]︂
+ J sc

6

[︂
tr(f1r+f2r+f3g−f4g−) + 5perm

]︂
+ J sc

7

[︂
tr(f1r+f2r+f3g+f4g+) + 5perm

]︂
+ J sc

8

[︂
tr(f1r+f2r+f3g−f4g+) + 11perm

]︂}︂
(3.103)

and of a Lorentz two two-cycle is

Γ22,B
scal (12, 34) = α2β2

c

m4

{︂
J sc

20 tr(f1g−f2g−) tr(f3g−f4g−) + J sc
27 tr(f1g+f2g+) tr(f3g+f4g+)

+ J sc
21

[︂
tr(f1g−f2g−) tr(f3g+f4g+) + tr(f1g+f2g+) tr(f3g−f4g−)

]︂
+ J sc

22

[︂
tr(f1g−f2g−) tr(f3r+f4r+) + tr(f1r+f2r+) tr(f3g−f4g−)

]︂
+ J sc

23

[︂
tr(f1g−f2g−) tr(f3g−f4g+ + f3g+f4g−) + tr(f1g−f2g+ + f1g+f2g−) tr(f3g−f4g−)

]︂
+ J sc

24

[︂
tr(f1g+f2g+) tr(f3r+f4r+) + tr(f1r+f2r+) tr(f3g+f4g+)

]︂
+ J sc

25

[︂
tr(f1g+f2g+) tr(f3g−f4g+ + f3g+f4g−) + tr(f1g−f2g+ + f1g+f2g−) tr(f3g+f4g+)

]︂
+ J sc

26

[︂
tr(f1r+f2r+) tr(f3g−f4g+ + f3g+f4g−) + tr(f1g−f2g+ + f1g+f2g−) tr(f3r+f4r+)

]︂
+ J sc

28 tr(f1r+f2r+) tr(f3r+f4r+) + J sc
29 tr(f1g−f2g+ + f1g+f2g−) tr(f3g−f4g+ + f3g+f4g−)

}︂
.

(3.104)

The explicit expressions of J sc
i ’s can be found in Appendix C.5 as the integral of trigonometric

functions and as combination of more general functions such as the Hurwitz-zeta and the polygamma
functions (see [153, 166, 167, 168]).

3.8.2 Four-photon amplitude in a magnetic field for spinor QED
In this section, we study the four-photon amplitude in a constant field for spinor QED (see Fig. 3.5)
obtained from the N -photon amplitude (3.18). In four dimensions, this amplitude is

Γ4,spin(F ) = −2(−ie)4
∫︂ ∞

0

dT

T
T 4(4πT )−2 e−m2T det−1/2

[︃
tan(Z)

Z

]︃

×
∫︂ 1

0
du1 du2 du3 du4 Qspin( ˆ̇Gij ,GFij) exp

⎧⎨⎩1
2

4∑︂
i,j=1

ki · Gij · kj

⎫⎬⎭
(3.105)

where, in the case of N = 4, the polynomial Qspin( ˆ̇Gij ,GFij) has the following representation

Qspin( ˆ̇Gij ,GFij) = Qspin
4 + Qspin

3 + Qspin
2 + Qspin

22 ,

Qspin
4 = Ġs(1234) + Ġs(2314) + Ġs(3124) ,

Qspin
3 = Ġs(123)T (4) + Ġs(234)T (1) + Ġs(341)T (2) + Ġs(412)T (3) ,

Qspin
2 = Ġs(12)T (34) + Ġs(13)T (24) + Ġs(14)T (23) + Ġs(23)T (14) + Ġs(24)T (13) + Ġs(34)T (12) ,

Qspin
22 = Ġs(12)Ġs(34) + Ġs(13)Ġs(24) + Ġs(14)Ġs(23) ,

(3.106)
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Figure 3.5: Feynman diagram representing the four-photon amplitude with every incoming photon having low-energy,
indicated by empty bullets at their ends. The double solid line indicate a particle of spin one-half in a magnetic field.

obtained after the scalar one through the replacement rule described in Section 3.2. Here, the tails
are given by (3.10) and the Lorentz super-cycles are given by

Ġs(1234) = tr
(︂
f1

ˆ̇G12f2
ˆ̇G23f3

ˆ̇G34f4
ˆ̇G41

)︂
− tr

(︂
f1GF12f2GF23f3GF34f4GF41

)︂
,

Ġs(123) = tr
(︂
f1

ˆ̇G12f2
ˆ̇G23f3

ˆ̇G31

)︂
− tr

(︂
f1GF12f2GF23f3GF31

)︂
,

Ġs(12) = 1
2

[︂
tr
(︂
f1

ˆ̇G12f2
ˆ̇G21

)︂
− tr

(︂
f1GF12f2GF21

)︂]︂
.

(3.107)

It is convenient to recall that

ˆ̇Gij = ĠBij − ĠBii + GFii . (3.108)

In the following, we consider the fully low-energy case. The next steps are completely analogous
to the scalar case. The leading non-vanishing contributions to the amplitude are those composed
fully by Lorentz super-cycles. Then, the four-photon amplitude at low energies in a purely magnetic
background field for spinor QED is

Γ(LE)
4,spin(F ) = −2α4

∫︂ ∞

0

dT

T
T 2 e−m2T z

tanh z

∫︂ 1

0
du1 du2 du3 du4

(︁
Qspin

4 + Qspin
22)︁ . (3.109)

Here, we have already used the determinant result (3.33). We define

Isp
2f (12) = 1

2

∫︂ 1

0
du1 du2

[︂
tr
(︂
f1

ˆ̇G12f2
ˆ̇G21

)︂
− tr (f1GF12f2GF21)

]︂
,

Isp
4f (1234) =

∫︂ 1

0
du1 du2 du3 du4

[︂
tr
(︂
f1

ˆ̇G12f2
ˆ̇G23f3

ˆ̇G34f4
ˆ̇G41

)︂
− tr (f1GF12f2GF23f3GF34f4GF41)

]︂
,

(3.110)

which in terms of the cyclic integrals (3.53) can be expressed as

Isp
2f (12) = Icyc

spin(f1, f2;F ) + 1
2 tr

[︁
f1(ĠBii − GFii)f2(ĠBii − GFii)

]︁
,

Isp
4f (1234) = Icyc

spin(f1, f2, f3, f4;F ) + tr
[︁
f1(ĠBii − GFii)f2(ĠBii − GFii)f3(ĠBii − GFii)f4(ĠBii − GFii)

]︁
.

(3.111)

We set z+ = z = eTBz and z− = 0 in (3.53) and recall the coincidence limit of the calligraphic
Green’s functions in a pure magnetic field, Section 3.4. Then, in this way, we obtain

Isp
2f (12) = Isp

20 tr(f1g−f2g−) + Isp
21 tr(f1g+f2g+) + Isp

22 tr(f1r+f2r+) + Isp
23

[︂
tr(f1g−f2g+) + tr(f1g+f2g−)

]︂
,

(3.112)
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for the two-cycle integral. And

Isp
4f (1234) =

{︂
Isp

0 tr(f1g−f2g−f3g−f4g−) + Isp
1 tr(f1g+f2g+f3g+f4g+) + Isp

2 tr(f1r+f2r+f3r+f4r+)

+ Isp
3

[︂
tr(f1g−f2g+f3g+f4g+) + 3perm

]︂
+ Isp

4

[︂
tr(f1g−f2g−f3g−f4g+) + 3perm

]︂
+ Isp

5

[︂
tr(f1g−f2g−f3g+f4g+) + 5perm

]︂
+ Isp

6

[︂
tr(f1r+f2r+f3g−f4g−) + 5perm

]︂
+ Isp

7

[︂
tr(f1r+f2r+f3g+f4g+) + 5perm

]︂
+ Isp

8

[︂
tr(f1r+f2r+f3g−f4g+) + 11perm

]︂}︂
,

(3.113)

for the four-cycle integral. Here, the functions Isp
i ’s are trigonometric expressions and are explicitly

written in terms of HB(n)
11 and H

F (n)
11 (see Eq. (3.44) and Appendix C.1).

Finally, for the integration over T , we make the change of variables z = eBzT and set the following
definitions

J sp
n =

∫︂ ∞

0
dz e−βcz

z2

tanh z I
sp
n ,

{J sp
20 , J

sp
21 , J

sp
22 , J

sp
23 , J

sp
24} =

∫︂ ∞

0
dz e−βcz

z2

tanh z {(Isp
20)2, Isp

20I
sp
21 , I

sp
20I

sp
22 , I

sp
20I

sp
22 , I

sp
21I

sp
22} ,

{J sp
25 , J

sp
26 , J

sp
27 , J

sp
28 , J

sp
29} =

∫︂ ∞

0
dz e−βcz

z2

tanh z {Isp
21I

sp
23 , I

sp
22I

sp
23 , (I

sp
21)2, (Isp

22)2, (Isp
23)2}

(3.114)

and

Γ4,B
scal(1234) = −2 α

2β2
c

m4

∫︂ ∞

0
dz e−βcz

z2

tanh z Isp
4f (1234) ,

Γ22,B
scal (12, 34) = −2 α

2β2
c

m4

∫︂ ∞

0
dz e−βcz

z2

tanh z Isp
2f (12) Isp

2f (34) .
(3.115)

This allows us to express the four-photon amplitude in a pure magnetic field as

Γ(LE)
4,spin(F ) = Γ4,B

spin(1234) + Γ4,B
spin(2314) + Γ4,B

spin(3124) + Γ22,B
spin (12, 34) + Γ22,B

spin (23, 14) + Γ22,B
spin (31, 24) ,

(3.116)

for spinor QED. The contribution of a Lorentz four-cycle to this amplitude is

Γ4,B
spin(1234) = −2 α

2β2
c

m4 tr
[︂
J sp

0 f1g−f2g−f3g−f4g− + J sp
1 f1g+f2g+f3g+f4g+ + J sp

2 f1r+f2r+f3r+f4r+

+ J sp
3

(︂
f1g−f2g+f3g+f4g+ + 3perm

)︂
+ J sp

4

(︂
f1g−f2g−f3g−f4g+ + 3perm

)︂
+ J sp

5

(︂
f1g−f2g−f3g+f4g+ + 5perm

)︂
+ J sp

6

(︂
f1r+f2r+f3g−f4g− + 5perm

)︂
+ J sp

7

(︂
f1r+f2r+f3g+f4g+ + 5perm

)︂
+ J sp

8

(︂
f1r+f2r+f3g−f4g+ + 11perm

)︂]︂
(3.117)
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and of a Lorentz two two-cycle is

Γ22,B
spin (12, 34) = −2 α

2β2
c

m4

{︂
J sp

20 tr(f1g−f2g−) tr(f3g−f4g−) + J sp
27 tr(f1g+f2g+) tr(f3g+f4g+)

+ J sp
21

[︂
tr(f1g−f2g−) tr(f3g+f4g+) + tr(f1g+f2g+) tr(f3g−f4g−)

]︂
+ J sp

22

[︂
tr(f1g−f2g−) tr(f3r+f4r+) + tr(f1r+f2r+) tr(f3g−f4g−)

]︂
+ J sp

23

[︂
tr(f1g−f2g−) tr(f3g−f4g+ + f3g+f4g−) + tr(f1g−f2g+ + f1g+f2g−) tr(f3g−f4g−)

]︂
+ J sp

24

[︂
tr(f1g+f2g+) tr(f3r+f4r+) + tr(f1r+f2r+) tr(f3g+f4g+)

]︂
+ J sp

25

[︂
tr(f1g+f2g+) tr(f3g−f4g+ + f3g+f4g−) + tr(f1g−f2g+ + f1g+f2g−) tr(f3g+f4g+)

]︂
+ J sp

26

[︂
tr(f1r+f2r+) tr(f3g−f4g+ + f3g+f4g−) + tr(f1g−f2g+ + f1g+f2g−) tr(f3r+f4r+)

]︂
+ J sp

28 tr(f1r+f2r+) tr(f3r+f4r+) + J sp
29 tr(f1g−f2g+ + f1g+f2g−) tr(f3g−f4g+ + f3g+f4g−)

}︂
.

(3.118)

The explicit expression of J sp
i can be found in the Appendix C.6 as the integral of a trigonometric

function and as combination of more general functions such as the Hurwitz-zeta and the polygamma
functions (see [153, 166, 167, 168]).

3.9 Low-energy limit of the polarized four-photon amplitudes
in a magnetic field

In this section, we present explicit expressions for the polarized four-photon amplitudes following the
conventions set in [14, 16].

3.9.1 Magnetic field parallel to the scattering plane: B || ki

In this section, we present the four-photon polarized amplitudes in the presence of a pure magnetic
background field pointing in the z axis. The scattering plane for the external photons is chosen as
the xz-plane. For convenience, we define

Γ(LE)
scal (k1, ε

∗(λ1)
1 ; k2, ε

∗(λ2)
2 ; k3, ε

(λ3)
3 ; k4, ε

(λ4)
4 ;F ) = α2 (2π)4δ4 (k1 + k2 + k3 + k4) Γ̂B,λ1λ2λ3λ4

scal

Γ(LE)
spin (k1, ε

∗(λ1)
1 ; k2, ε

∗(λ2)
2 ; k3, ε

(λ3)
3 ; k4, ε

(λ4)
4 ;F ) = −2α2 (2π)4δ4 (k1 + k2 + k3 + k4) Γ̂B,λ1λ2λ3λ4

spin
(3.119)

since this allows us to compute simultaneously both polarized amplitudes. Then, we express the
general amplitude Γ̂B in terms of the Ji’s functions which must be identified with J sc

i ’s (listed in
Appendix C.5) for the scalar amplitudes or J sp

i ’s (listed in Appendix C.6) for the spinor amplitudes.

Here, the momenta and polarizations are chosen as in Section 2.5.1 (we follow the conventions of
[14, 16]) with k1, k2 as incoming and k3, k4 as outgoing

k1 = (0, 0,−ω,−iω)
k2 = (0, 0, ω,−iω)
k3 = (ω sin θ, 0, ω cos θ, iω)
k4 = (−ω sin θ, 0,−ω cos θ, iω)

(3.120)

The linear polarizations ε(λi)
i are given by

ε
(1)
1 = ε

(1)
2 = ε

(1)
3 = ε

(1)
4 = (0, 1, 0, 0)

−ε(2)
1 = ε

(2)
2 = (1, 0, 0, 0)

−ε(2)
3 = ε

(2)
4 = (cos θ, 0,− sin θ, 0)

(3.121)
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and for circularly polarized, we have

ε
(±)
j = 1√

2

[︂
ε

(1)
j ± iε

(2)
j

]︂
(3.122)

where ε(+)
j and ε

(−)
j are for right and left handed circular polarizations respectively.

For linear polarizations, we find that the polarized amplitudes satisfy the following relations

Γ̂B,1111, Γ̂B,2222, Γ̂B,1122, Γ̂B,2211, Γ̂B,1212 = Γ̂B,2121, Γ̂B,1221 = Γ̂B,2112

Γ̂B,1112 = Γ̂B,1121 = Γ̂B,1211 = Γ̂B,2111 = Γ̂B,2221 = Γ̂B,2212 = Γ̂B,2122 = Γ̂B,1222 = 0
(3.123)

and the result of these linearly polarized amplitudes are

Γ̂B,1111 = 2 ω4

(eBz)2

[︂
(1 − cos2 θ)(J25 − J26 + 2J3 − 6J8) + 2(1 + cos2 θ)(J29 + 2J5)

]︂
Γ̂B,2222 = 2 ω4

(eBz)2

[︂
(1 − cos2 θ)(J23 + 2J4) + 2(1 + cos2 θ)(J29 + 2J5)

]︂
Γ̂B,1122 = 2 ω4

(eBz)2

[︂
(1 − cos2 θ)(J23 + 2J4) + (1 + cos2 θ)(J29 + J5 − J6)

]︂
Γ̂B,2211 = 2 ω4

(eBz)2

[︂
(1 − cos2 θ)(J25 − J26 + 2J3 − 6J8) + (1 + cos2 θ)(J29 + J5 − J6)

]︂
Γ̂B,1212 = ω4

(eBz)2

[︂
(1 − cos θ)2J29 + [−3 + (−6 + cos θ) cos θ]J5 − [1 + (2 + 5 cos θ) cos θ]J6

]︂
Γ̂B,1221 = ω4

(eBz)2

[︂
(1 + cos θ)2J29 + [−3 + (6 + cos θ) cos θ]J5 − [1 + (−2 + 5 cos θ) cos θ]J6

]︂

(3.124)

For circular polarizations, we find that the polarized amplitudes satisfy the following relations

Γ̂B,++++ = Γ̂B,−−−− , Γ̂B,++−− = Γ̂B,−−++ ,

Γ̂B,+−+− = Γ̂B,−+−+ , Γ̂B,+−−+ = Γ̂B,−++− ,

Γ̂B,+++− = Γ̂B,++−+ = Γ̂B,−−−+ = Γ̂B,−−+−,

Γ̂B,+−++ = Γ̂B,−+++ = Γ̂B,−+−− = Γ̂B,+−−− = 0,

(3.125)

where the non-vanishing circularly polarized amplitudes are

Γ̂B,++++ = ω4

(eBz)2

[︂
(1 − cos2 θ)(J23 + J25 − J26 + 2J3 + 2J4 − 6J8)

+ 4(1 + cos2 θ)J29 + 2(1 + 3 cos2 θ)(J5 − J6)
]︂

Γ̂B,++−− = ω4

(eBz)2

[︂
(1 − cos2 θ)(J23 + J25 − J26 + 2J3 + 2J4 − 6J8)

+ 2(1 + cos2 θ)(J29 + 4J5) − 4(J5 − J6) cos2 θ
]︂

Γ̂B,+−+− = ω4

(eBz)2 (1 − cos θ)2(J29 + 3J5 + J6)

Γ̂B,+−−+ = ω4

(eBz)2 (1 + cos θ)2(J29 + 3J5 + J6)

Γ̂B,+++− = ω4

(eBz)2 (1 − cos2 θ)(−J23 + J25 − J26 + 2J3 − 2J4 − 6J8)

(3.126)

In the next section we look at the case in which the magnetic field is perpendicular to the scattering
plane.
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3.9.2 Magnetic field orthogonal to the scattering plane: B ⊥ ki

In this section, we present the four-photon polarized amplitudes in the presence of a pure magnetic
background field pointing in the z axis. The scattering plane for the external photons is chosen as
the xy-plane and we use the same conventions as in the previous section (see Eq. (3.119)). Here we
choose the momenta k1, k2 as incoming and k3, k4 as outgoing

k1 = (0,−ω, 0,−iω)
k2 = (0, ω, 0,−iω)
k3 = (ω sin θ, ω cos θ, 0, iω)
k4 = (−ω sin θ,−ω cos θ, 0, iω)

(3.127)

The polarizations ε(λi)
i are given by, for linear polarizations,

ε
(1)
1 = ε

(1)
2 = ε

(1)
3 = ε

(1)
4 = (0, 0, 1, 0)

−ε(2)
1 = ε

(2)
2 = (1, 0, 0, 0)

−ε(2)
3 = ε

(2)
4 = (cos θ,− sin θ, 0, 0)

(3.128)

and, for circular polarizations,

ε
(±)
j = 1√

2

[︂
ε

(1)
j ± iε

(2)
j

]︂
(3.129)

For linear polarizations, the following relations are satisfied

Γ̂B,1111, Γ̂B,2222, Γ̂B,1122 = Γ̂B,2211, Γ̂B,1212 = Γ̂B,2121, Γ̂B,1221 = Γ̂B,2112

Γ̂B,1112 = Γ̂B,1121 = Γ̂B,1211 = Γ̂B,2111 = Γ̂B,2221 = Γ̂B,2212 = Γ̂B,2122 = Γ̂B,1222 = 0
(3.130)

and the result of these linearly polarized amplitudes are

Γ̂B,1111 = ω4

(eBz)2

[︂
(1 + 2 cos2 θ)(J29 + 2J5) + 3(J20 + 2J0) + 2(J23 + 2J4)

]︂
Γ̂B,2222 = ω4

(eBz)2

[︂
(1 + 2 cos2 θ)(J29 + 2J5) + 6(J1 + J2 − 6J7 − 2J8 − J24)

+ 2(J25 − J26 + 2J3) + 3(J27 + J28)
]︂

Γ̂B,1122 = ω4

(eBz)2

[︂
(1 − cos2 θ)J5 − J6 cos2 θ + 2(J3 + J4 − 3J8)

+ J21 − J22 + J23 + J25 − J26 + J29

]︂
Γ̂B,1212 = ω4

(eBz)2

[︂
(J29 + J5 − J6) cos2 θ − 2(J3 + J4 + J5 − J6 − 3J8) cos θ

− (J23 + J25 − J26) cos θ + J21 − J22 − 3J5 + J6

]︂
Γ̂B,1221 = ω4

(eBz)2

[︂
(J29 + J5 − J6) cos2 θ + 2(J3 + J4 + J5 − J6 − 3J8) cos θ

+ (J23 + J25 − J26) cos θ + J21 − J22 − 3J5 + J6

]︂

(3.131)

For circular polarizations, the following relations are satisfied

Γ̂B,++++ = Γ̂B,−−−− , Γ̂B,++−− = Γ̂B,−−++ , Γ̂B,+−+− = Γ̂B,−+−+ , Γ̂B,+−−+ = Γ̂B,−++− ,

Γ̂B,+++− = Γ̂B,++−+ = Γ̂B,−−−+ = Γ̂B,−−+− = Γ̂B,+−++ = Γ̂B,−+++ = Γ̂B,−+−− = Γ̂B,+−−− ,

(3.132)
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where these circularly polarized amplitudes are given by

Γ̂B,++++ = ω4

4(eBz)2

[︂
− 4(1 − 2 cos2 θ)(J5 − J6) + 4(1 + 2 cos2 θ)J29 + 6(J0 + J1 + J2)

+ 8(J3 + J4) − 12(3J7 + 2J8) + 3(J20 + J27 + J28)

+ 6(J21 − J22 − J24) + 4(J23 + J25 − J26)
]︂

Γ̂B,++−− = ω4

4(eBz)2

[︂
6(J0 + J1 + J2) + 8(J3 + J4) + 4(5J5 − J6) − 12(3J7 + 2J8)

+ 3(J20 + J27 + J28) − 2(J21 − J22 + 3J24) + 4(J23 + J25 − J26 + J29)
]︂

Γ̂B,+−+− = ω4

4(eBz)2

[︂
4(J29 + 3J5 − J6) cos2 θ − 4(J23 + J25 − J26) cos θ

− 8(J3 + J4 + J5 − J6 − 3J8) cos θ + 6(J0 + J1 + J2 − 6J7)

+ 3(J20 + J27 + J28) − 2(J21 − J22 + 3J24) + 4(J23 + J25 − J26)
]︂

Γ̂B,+−−+ = ω4

4(eBz)2

[︂
4(J29 + 3J5 − J6) cos2 θ + 4(J23 + J25 − J26) cos θ

+ 8(J3 + J4 + J5 − J6 − 3J8) cos θ + 6(J0 + J1 + J2 − 6J7)

+ 3(J20 + J27 + J28) − 2(J21 − J22 + 3J24) + 4(J23 + J25 − J26)
]︂

Γ̂B,+++− = ω4

4(eBz)2

[︂
6(J0 − J1 − J2 + 6J7 + 2J8) − 4(J3 − J4)

+ 3(J20 − J27 − J28) + 2(J23 + 3J24 − J25 + J26)
]︂

(3.133)

In this Sections 3.8 and 3.9 (together with Appendix C), we presented analytic results for the
unpolarized and polarized amplitudes for scalar and spinor QED of the leading contribution to light-
by-light scattering in the presence of a magnetic background field. Notice that these results need
to be studied further in order to compare with observations made in heavy ion collisions such as
[31, 32, 33] (see also [45]) or in astrophysical observations [38, 169] in which it is possible to have very
strong magnetic fields. Further details of the presented results in this chapter can be found in [113].
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Chapter 4

Dressed propagators in a constant
background field

In this chapter, we provide a concise overview of the derivation of the dressed scalar and fermion
propagators in the presence of a constant background field, adapted from [67, 68, 69, 70, 170, 124].
This is done with the aim of investigating the polarization effects resulting from Compton scattering
[66], which could be relevant in the observation of Coulomb-assisted birefringence [65].

Theoretical advancements regarding the propagation of both spin-zero (scalar) and spin one-half
(fermion) particles within the worldline formalism have led to the development of master formulas
for various configurations. The master formula for the propagator of a scalar particle moving from
x to x′ and interacting with N photons is derived in [126, 127] and later generalized to the spinor
case in [68, 69] (see also [124]). Additionally, the propagator of a scalar particle moving in a constant
background field while interacting with N photons is derived in [67]. The extension to the spinor case
of the latter is presented in [70, 170], formulated in terms of a Grassman path integral (as discussed
in this chapter). Furthermore, the scenario involving a particle moving from x to x′ dressed with
N photons and in the presence of a plane-wave field is obtained in [128], for both scalar and spinor
QED.

4.1 Dressed propagators in a external field
The propagators of an off-shell scalar and spinor particles propagating from x to x′ in a background
field in d dimensions are [67, 68, 170]

Dxx′

sc (A) = ⟨x′| 1
m2 + Π2 |x⟩ ,

Dxx′

sp (A) = ⟨x′| 1
m− /Π

|x⟩ =
(︁
m+ /Πx′

)︁
⟨x′| 1

m2 + Π2 + ie
4 Fµν [γµ, γν ]

|x⟩ ,
(4.1)

respectively. Here, we use the subscripts ‘sc’ and ‘sp’ for scalar and spinor respectively. The spinor
propagator is valid only for even dimensions (see [68]). The four-momentum of the particle in the
presence of a background field is

Πµ = −pµ − eAµ = i∂µ − eAµ (4.2)

and /Π = γµΠµ with γµ the Dirac-gamma matrices in Euclidean space, see Appendix A.
The use of Schwinger parameters allow us to express the previous propagators as

Dxx′

sc (A) =
∞∫︂

0

dT e−Tm2
Kxx′

sc (A, T ) ,

Dxx′

sp (A) =
(︁
m+ /Πx′

)︁ ∞∫︂
0

dT e−Tm2
Kxx′

sp (A, T ) .

(4.3)

49
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The kernels Kxx′

sc and Kxx′

sp are defined as

Kxx′

sc (A, T ) = ⟨x′|e−TΠ2
|x⟩ =

x(T )=x′∫︂
x(0)=x

Dx(τ) e−S[x(τ)] ,

Kxx′

sp (A, T ) = ⟨x′|e−TΠ2− ie
4 TFµν [γµ,γν ]|x⟩ =

x(T )=x′∫︂
x(0)=x

Dx(τ) e−S[x(τ)] Pe− ie
4

∫︁ T

0
dτFµν [γµ,γν ]

,

(4.4)

where P is the “path-ordering” operator and S[x(τ)] is the “worldline action”

S[x(τ)] =
T∫︂

0

dτ

[︃
ẋµẋ

µ

4 + ieẋµAµ
(︁
x(τ)

)︁]︃
. (4.5)

Here, the spin term can be expressed as a path-integral over Grassman variables

Pe− ie
4

∫︁ T

0
dτFµν [γµ,γν ] = 2−d/2symb−1

[︃∫︂
C

Dψ(τ) e−
∫︁ T

0
dτ[ 1

2ψ
µψ̇µ−ie(ψ+ 1

2η)µ
Fµν(ψ+ 1

2η)ν ]
]︃
, (4.6)

with the boundary condition C = {ψµ(0) + ψµ(T ) = 0}. The ‘symb’ function is(︂
i
√

2
)︂n

symb (γα1α2...αn) = ηα1ηα2 · · · ηαn , (4.7)

where γα1α2...αn is the totally antisymmetric product of gamma matrices

γα1α2...αn = 1
n! ε

a1a2...an γαa1γαa2 · · · γαan , ai = 1, 2, ..., n (4.8)

and εa1a2...an the Levi-Civita symbol satisfying the convention ε12 = ε1234 = +1. For instance,

γ[αβ] = 1
2! (γαγβ − γβγα) , (4.9)

which correspond to the case n = 2.
It is important to point out that these expressions for the propagators are valid for any vector po-

tential Aµ(x) and that for their representation in momentum space the Fourier transform is employed.
The position space propagators are expressed as

Dpp′

sc/sp(A) =
∫︂
ddx

∫︂
ddx′ ei(px+p′x′) Dxx′

sc/sp(A) , (4.10)

for initial momentum p and final −p′, as shown in Fig. 4.1.

4.2 Dressed propagators in a constant field
Now we consider the propagators interacting with N external photons (propagator dressed with N
photons) in the presence of a constant background field. In order to produce the external photons we
choose one background field AµN as a sum of plane waves. And for the constant field Aµct we consider
the Fock-Schwinger gauge in which the gauge condition is (x− xc)µAµ(x) = 0, centered in xc. Then
the total vector potential Aµ is

Aµ
(︁
x(τ)

)︁
= AµN

(︁
x(τ)

)︁
+Aµct

(︁
x(τ)

)︁
=

N∑︂
i=1

ε µi eiki·x(τ) − 1
2F

µν
ct
(︁
x(τ) − x

)︁
ν
, (4.11)

with this choice, the field strength tensor is

Fµν
(︁
x(τ)

)︁
= i

N∑︂
i=1

fµνi eiki·x(τ) + Fµνct , (4.12)
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Figure 4.1: Feynman for the scalar or spinor propagator dressed with N-photons. Double lines indicate that the
particles is in the presence of a constant background field.

where
fµνi = kµi ε

ν
i − εµi k

µ
i (4.13)

is the field strength tensor of each photon.
The use of the vector potential (4.11), and since the terms contributing to the propagators are

those that are multilinear in all polarizations [67, 70, 124], the QED propagators in this case become

Dxx′

sc,N (Act) =
∞∫︂

0

dT e−Tm2
Kxx′

sc,N (Act, T ) (4.14)

and

Dxx′

sp,N (Act) =
∞∫︂

0

dT e−Tm2

[︄(︁
m+ /Πct,x′

)︁
Kxx′

sp,N (Act, T ) − e

N∑︂
i=1

/εi eiki·x′
Kxx′

sp,N−1(Act, T )
]︄
, (4.15)

for an off-shell scalar and spinor particle dressed with N photons, respectively. Here, the external
photons can be taken as off-shell or on-shell right away. Here we have used the following convention
Πµ

ct,x′ = i∂µx′ + e
2F

µν
ct (x′ − x)ν and the short hand notation

Dxx′

sc,N (Act) = Dsc(Act|x, x′; k1, ε1; k2, ε2; ...; kN , εN ) . (4.16)

The kernel for scalar particles can be written as [67]

Kxx′

sc,N (Act, T ) = (−ie)N (4πT )−d/2
[︃
det
(︃

Z
sin Z

)︃]︃1/2
e− 1

4T (x′−x)Z cot Z(x′−x)+ i
∑︁N

i=1
kix

×
N∏︂
i=1

∫︂ T

0
dτi e

i(x′−x)µ

T

∑︁N

i=1

[︁
(τi+iZG0i)µνk

ν
i −i(1−iZĠB0i)

µν
εν

i

]︁
× e
∑︁N

i,j=1(ki∆ijkj−2i εi
•∆ijkj−εi

•∆•
ijεj)

⃓⃓⃓⃓
lin ε1···εN

.

(4.17)

The kernel for spinor particles is [70]

Kxx′

sp,N (Act, T ) = (−ie)N (4πT )−d/2
[︃
det
(︃

Z
sin Z

)︃]︃1/2
e− 1

4T (x′−x)Z cot Z(x′−x)+ i
∑︁N

i=1
kix

×
N∏︂
i=1

∫︂ T

0
dτi e

i(x′−x)µ

T

∑︁N

i=1

[︁
(τi+iZG0i)µνk

ν
i −i(1−iZĠB0i)

µν
εν

i

]︁
× e
∑︁N

i,j=1(ki∆ijkj−2i εi
•∆ijkj−εi

•∆•
ijεj)SγN (Fct, T )

⃓⃓⃓⃓
lin ε1···εN

.

(4.18)

where the “spin-term” is1

SγN (Fct, T ) = 2−d/2symb−1
[︃∫︂

C

Dψ(τ)e−
∫︁ T

0
dτ
[︁

1
2ψψ̇−i(ψ+ 1

2η)
(︁
eFct−

∑︁N

i=1
δ(τ−τi)fi

)︁
(ψ+ 1

2η)
]︁]︃

. (4.19)

1Here, ’γ’ is not a Lorentz index. It indicates that the structure of the Dirac-gamma matrices originates from this
spin-term.
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For the moment, we do not perform the Grassman path integral, we do it later using Wick contractions
for specific cases, see [124] for path integrals and Wick contractions.

Here, ∆ij = ∆(τi, τj) is the Green’s function in a constant background with Dirichlet boundary
conditions which can be expressed in terms of the calligraphic Green’s functions as

∆(τ, τ ′) = 1
2 [GB(τ, τ ′) − GB(τ, 0) − GB(0, τ ′) + GB(0, 0)] ,

•∆(τ, τ ′) = 1
2

(︂
ĠB(τ, τ ′) − ĠB(τ, 0)

)︂
,

•∆•(τ, τ ′) = −1
2 G̈B(τ, τ ′) ,

(4.20)

with •∆ij = ∂
∂τi

∆(τi, τj), ∆•
ij = ∂

∂τj
∆(τi, τj) as the first derivative with respect to the first and

second parameter, respectively. Recall that Z = eFctT and G0i = G(0, τi), Gij = GBij − GBii,
Ġij = ∂

∂τi
G(τi, τj) are the calligraphic Green’s functions that follow the conventions of Chapter 3 (see

also Appendix A.3).

4.2.1 Off-shell amplitudes in momentum space
In this section, we present the propagators in momentum space for which the Fourier transform have
been taken according to (4.10). In the following expressions the momenta of the external photons
can be considered as off-shell or on-shell while momentum of the mass particle can only be off-shell.
In order to take the on-shell limit, it is necessary to first remove all spurious poles at p2 = p′2 = m2.
Note that the on-shell calculation is not covered in this thesis, for such case, it is advise to follow the
procedure presented in [128] and references therein.

For the momentum space, we use the short hand notation

Dsc/sp(Act|p, p′; k1, ε1; k2, ε2; ...; kN , εN ) = (2π)dδd
(︄
p+ p′ +

N∑︂
i=1

ki

)︄
Dpp′

sc/sp,N , (4.21)

for the propagator. And similarly,

Ksc/sp(Act, T |p, p′; k1, ε1; k2, ε2; ...; kN , εN ) = (2π)dδd
(︄
p+ p′ +

N∑︂
i=1

ki

)︄
Kpp′

sc/sp,N , (4.22)

for the kernel.
The dressed scalar propagator, in momentum space, with N external photons in a constant back-

ground field is given by [67]

Dpp′

sc,N =
∞∫︂

0

dT e−Tm2
Kpp′

sc,N , (4.23)

with the kernel

Kpp′

sc,N = (−ie)N
[︃
det
(︃

1
cos Z

)︃]︃1/2 N∏︂
i=1

∫︂ T

0
dτi e−T bT(Z cot Z)−1b

× e
∑︁N

i,j=1(ki∆
ij
kj−2i εi

•∆
ij
kj−εi

•∆•
ij
εj)
⃓⃓⃓⃓
⃓
lin ε1···εN

,

(4.24)

where

bµ = p′µ + 1
T

N∑︂
i=1

[︂
(τi + iZG0i)µν kiν − i

(︁
1 − iZĠB0i

)︁µν
εiν

]︂
. (4.25)

The dressed fermion propagator, in momentum space, with N external photons in a constant
background field is given by [70]

Dpp′

sp,N =
∞∫︂

0

dT e−Tm2

[︄(︁
m+ /p

′)︁Kpp′

sp,N +Kpp′

ct,N − e

N∑︂
i=1

/εiK
p(p′+ki)
sp,N−1 (without photon < i >)

]︄
.

(4.26)
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Here, we have used

(2π)dδd
(︄
p+ p′ +

N∑︂
i=1

ki

)︄
Kpp′

ct,N = e

2 γµF
µν
ct

∫︂
ddx

∫︂
ddx′ ei(px+p′x′) (x′ − x)νKxx′

sp,N (Act, T ) . (4.27)

After performing x and x′ integrals, Kpp′

ct,N becomes

Kpp′

ct,N = iγµ(tan Z)µν (−ie)N
[︃
det
(︃

1
cos Z

)︃]︃1/2 N∏︂
i=1

∫︂ T

0
dτi bν e

∑︁N

i,j=1(ki∆ijkj−2i εi
•∆ijkj−εi

•∆•
ijεj)

× e−T bT(Z cot Z)−1b SγN (Fct, T )
⃓⃓⃓⃓
⃓
lin ε1···εN

.

(4.28)
Finally, the spinor kernel in momentum space is

Kpp′

sp,N = (−ie)N
[︃
det
(︃

1
cos Z

)︃]︃1/2 N∏︂
i=1

∫︂ T

0
dτi e

∑︁N

i,j=1(ki∆ijkj−2i εi
•∆ijkj−εi

•∆•
ijεj)

× e−T bT(Z cot Z)−1b SγN (Fct, T )
⃓⃓⃓⃓
⃓
lin ε1···εN

.

(4.29)

In the following sections, we specialize the propagator expressions (4.23) and (4.26) to the case
of N = 2 i. e., the off-shell amplitude of Compton scattering in a constant background field. Subse-
quently, in order to simplify the obtained expression, we consider a pure magnetic background field
of constant strength and special kinematics.

4.3 Off-shell Compton scattering in a constant field for scalar
QED

In this section, we consider the scalar propagator (4.23) for N = 2 and expand it to linear order in
the photon polarizations ε1 and ε2. The amplitude of the scalar Compton scattering in a constant
background field (see Section 4.2.1 and Fig. 4.2) is

Dsc(Act|p, p′; k1, ε1; k2, ε2) = (2π)dδd (p+ p′ + k1 + k2)
∞∫︂

0

dT e−Tm2
Kpp′

sc,2 . (4.30)

For this case, the kernel of an off-shell scalar particle in a constant background interacting with two
photons is

Kpp′

sc,2 = (−ie)2
[︃
det
(︃

1
cos Z

)︃]︃1/2 ∫︂ T

0
dτ1

∫︂ T

0
dτ2 e−TbT(Z cot Z)−1b

× e
∑︁2

i,j=1(ki ∆ijkj−2iεi
•∆ijkj−εi

•∆•
ijεj)

⃓⃓⃓⃓
lin ε1ε2

,

(4.31)

where

bµ = p′µ + 1
T

2∑︂
i=1

[︂
(τi + iZG0i)µν kiν − i

(︁
1 − iZĠB0i

)︁µν
εiν

]︂
. (4.32)

For the explicit expressions of the Green’s functions, see the previous chapter or Appendix A.3.
Expanding bµ in (4.31) such that the dependence on the polarizations is explicit, we can rewrite

the kernel as

Kpp′

sc,2 = (−ie)2
[︃
det
(︃

1
cos Z

)︃]︃1/2 ∫︂ T

0
dτ1dτ2 e−TbT

0 (Z cot Z)−1b0 e2k1∆12k2+k1∆11k1+k2∆22k2

× e−2iε1[•∆11k1+•∆12k2−(1−iĠB10Z)(Z cot Z)−1b0] e−2iε2[•∆22k2+•∆21k1−(1−iĠB20Z)(Z cot Z)−1b0]

× e−2ε1[•∆•
12− 1

T (1−iĠB10Z)(Z cot Z)−1(1−iZĠB02)]ε2
⃓⃓⃓
lin ε1ε2

,

(4.33)
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Figure 4.2: Compton scattering diagram for a scalar particle. The double dashed line indicates that a scalar particle
propagates in a constant field.

where bµ0 is the polarization independent part of bµ. Notice that this kernel can be written as

Kpp′

sc,2 = (−ie)2
[︃
det
(︃

1
cos Z

)︃]︃1/2 ∫︂ T

0
dτ1dτ2 e−T h12 e−2iε1b1 e−2iε2b2 e− 2

T ε1b12ε2
⃓⃓⃓
lin ε1ε2

, (4.34)

by defining the vectors bµi , the matrix bµν12 and the function h12 as

b0 = p′ + 1
T

[︂
(τ1 + iZG01) k1 + (τ2 + iZGB02) k2

]︂
,

b1 = •∆11k1 + •∆12k2 −
(︁
1 − iĠB10Z

)︁
(Z cot Z)−1b0 ,

b2 = •∆22k2 + •∆21k1 −
(︁
1 − iĠB20Z

)︁
(Z cot Z)−1b0 ,

1
T
b12 = •∆•

12 − 1
T

(︁
1 − iĠB10Z

)︁
(Z cot Z)−1 (︁1 − iZĠB02

)︁
,

−Th12 = 2k1∆12k2 + k1∆11k1 + k2∆22k2 − TbT0 (Z cot Z)−1b0 .

(4.35)

Expanding the exponential in (4.34) at linear order in each polarization ε1 and ε2, we get

Kpp′

sc,2 = −e2
[︃
det
(︃

1
cos Z

)︃]︃1/2 ∫︂ T

0
dτ1dτ2 e−T h12

[︃
− 2
T
ε1b12ε2 + (−2i)2ε1b1 ε2b2

]︃
. (4.36)

Finally we re-scale to the unit circle τi = Tui

Kpp′

sc,2 = 2e2T 2
[︃
det
(︃

1
cos Z

)︃]︃1/2 ∫︂ 1

0
du1du2 e−T h12

(︃
1
T
ε1b12ε2 + 2 ε1b1 ε2b2

)︃
. (4.37)

The Green’s function ∆ij and its derivatives can be written in terms of GBij , ĠBij and G̈Bij

2k1∆12k2 = k1 [GB12 − GB10 − GB02 + GB00] k2 ,

k1∆11k1 = k1 [GB00 − GB10] k1 ,

k2∆22k2 = k2 [GB00 − GB20] k2 ,

•∆12 = 1
2

(︂
ĠB12 − ĠB10

)︂
,

•∆21 = 1
2

(︂
ĠB21 − ĠB20

)︂
,

•∆11 = 1
2

(︂
ĠB00 − ĠB10

)︂
,

•∆22 = 1
2

(︂
ĠB00 − ĠB20

)︂
,

•∆•
12 = −1

2 G̈B12 .

(4.38)

Here, the calligraphic Green’s functions are thought to be written in terms of ui variables, see Ap-
pendix A.3.
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4.4 Off-shell Compton scattering in a constant field for spinor
QED

In this section, we consider the fermion propagator (4.26) for N = 2 and expand it to linear order in
the photon polarizations ε1 and ε2. The amplitude of Compton scattering in a constant background
field (see Section 4.2.1 and Fig. 4.3) is

Dpp′

sp,2 =
∞∫︂

0

dT e−Tm2
[︂(︁
m+ /p

′)︁Kpp′

sp,2 +Kpp′

ct,2 − e/ε1 K
p(p′+k1)
sp,1 (k2, ε2) − e/ε2 K

p(p′+k2)
sp,1 (k1, ε1)

]︂
.

(4.39)
Following the scalar calculation, the different kernels of an off-shell spinor particle in constant back-
ground interacting with two photons are

Kpp′

sp,2 = (−ie)2
[︃
det
(︃

1
cos Z

)︃]︃1/2 ∫︂ T

0
dτ1dτ2 e−Th12 e−2iε1b1e−2iε2b2 e− 2

T ε1b12ε2 Sγ2 (T, Fct)
⃓⃓⃓
lin ε1ε2

,

Kpp′

ct,2 = iγµ(tan Z)µν(−ie)2
[︃
det
(︃

1
cos Z

)︃]︃1/2 ∫︂ T

0
dτ1dτ2 bν e−Th12 e−2iε1b1e−2iε2b2 e− 2

T ε1b12ε2 Sγ2 (T, Fct)
⃓⃓⃓
lin ε1ε2

,

Sγ2 (T, Fct) = 2−2 symb−1
[︃∫︂

C

Dψ(τ)e−
∫︁ T

0
dτ{ 1

2ψψ̇−i(ψ+ 1
2η)[eF−δ(τ−τ1)f1−δ(τ−τ2)f2](ψ+ 1

2η)}
]︃
,

(4.40)

where the vectors bµi , bµν12 and the function h12 were computed in the scalar case, Eq. (4.35).

Figure 4.3: Compton scattering diagram for a spinor particle. The double solid line indicates that a spinor particle
propagates in a constant field.

For the one-photon kernel,

Ksp(Act|p, p′; ki, εi) = (2π)4δ4(p+ p′ + ki)Kpp′

sp,1(ki, εi) , (4.41)

we have

Kpp′

sp,1(ki, εi) = (−ie)
[︃
det
(︃

1
cos Z

)︃]︃1/2 ∫︂ T

0
dτi e−Thii(p′) e−2iεihi(p′) Sγ1 (T, Fct, fi)

⃓⃓⃓
lin εi

,

Sγ1 (T, Fct, fi) = 2−2 symb−1
[︃∫︂

C

Dψ(τ) e−
∫︁ T

0
dτ{ 1

2ψψ̇−i(ψ+ 1
2η)[eF−δ(τ−τi)fi](ψ+ 1

2η)}
]︃
,

(4.42)

where

hi(p′) = •∆iiki −
(︁
1 − iĠBi0Z

)︁
(Z cot Z)−1

[︃
p′ + 1

T
(τi + iZG0i)ki

]︃
,

−Thii(p′) = ki∆iiki − T

[︃
p′ + 1

T
ki(τi − iGi0Z)

]︃
(Z cot Z)−1

[︃
p′ + 1

T
(τi + iZG0i)ki

]︃
.

(4.43)

At this point, it is necessary to perform the fermionic path integral.
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4.4.1 Fermionic path integral and Wick contractions
For the path integral over Grassman variables in equation (4.42), we define

Iψ,1 =
∫︂
C

Dψ(τ)e−
∫︁ T

0
dτ{ 1

2ψψ̇−i(ψ+ 1
2η)[eF−δ(τ−τ1)f1](ψ+ 1

2η)}
⃓⃓⃓⃓
O(ε1)

(4.44)

and expand up to linear order with respect to ε1

Iψ,1 =
∫︂
C

Dψ(τ)e−
∫︁ T

0
dτ[ 1

2ψψ̇−i(ψ+ 1
2η)eF(ψ+ 1

2η)]
[︃
1 − i

(︃
ψ(τ1) + 1

2η
)︃
f1

(︃
ψ(τ1) + 1

2η
)︃]︃

. (4.45)

The previous path integral will be non-zero only for an even number of ψ(τi) in the integrand. Here
the Gaussian path integral is well known [124] to be

Iψ,0 =
∫︂
C

Dψ(τ) e−
∫︁ T

0
dτ[ 1

2ψψ̇−i(ψ+ 1
2η)eF(ψ+ 1

2η)] = 2 d
2 det

1
2 (cos Z) e i

4η(tan Z)η . (4.46)

In this case, we have only the following Wick contraction∫︁
C

Dψ(τ)ψ(τi)ψ(τj) e−
∫︁ T

0
dτ[ 1

2ψψ̇−i(ψ+ 1
2η)eF(ψ+ 1

2η)]∫︁
C

Dψ(τ) e−
∫︁ T

0
dτ[ 1

2ψψ̇−i(ψ+ 1
2η)eF(ψ+ 1

2η)]
= ⟨ψ(τi)ψ(τj)⟩ . (4.47)

This Wick contraction is proportional to the fermion Green’s function in a constant field [123]

⟨ψ(τi)ψ(τj)⟩ = ⟨τi|
(︃
d

dτ
− 2ieF

)︃−1
|τj⟩ = 1

2GµνFij . (4.48)

Writing Iψ,1 in terms of Wick contractions, we get

Iψ,1 = Iψ0

[︃
1 − i

(︃
⟨ψµ1ψν1 ⟩ + 1

4η
µην
)︃
fµν1

]︃
. (4.49)

Then, in terms of calligraphic Green’s functions

Sγ1 (T, Fct) = det
1
2 (cos Z) symb−1

{︃
e i

4η(tan Z)η
[︃
1 − i

2

(︃
GµνF11 + 1

2η
µην
)︃
fµν1

]︃}︃
, (4.50)

valid for arbitrary even dimension.
Notice that, in d = 4, the exponential in (4.50) has the following Taylor expansion

e i
4η(tan Z)η = 1 + i

4η(tan Z)η + 1
2

(︃
i

4

)︃2
η(tan Z)ηη(tan Z)η , (4.51)

due to the fact that ηi is a Grassman variable and the square of it is equal to zero. Let’s define

S0(Z) = symb−1
[︂
e i

4η(tan Z)η
]︂
,

S1(Z, f1) = 1
2symb−1

[︃
e i

4η(tan Z)ηGµνF11 + 1
2

(︃
1 + i

4η(tan Z)η
)︃
ηµην

]︃
fµν1 .

(4.52)

For the present case, we require the following symbol functions, from (4.7),

symb−1(ηµην) = −[γµ, γν ] = 2σµν , σµν = −1
2 [γµ, γν ] ,

symb−1(ηµηνησηρ) = εµνσρ symb−1(η1η2η3η4) = εµνσρ(i
√

2)4 γ1γ2γ3γ4 = 4 εµνσρ γ5 ,
(4.53)

where εµνσρ is the fully antisymmetric Levi-Civita tensor with ε1234 = 1. This allows us to express
S0 and S1 in terms of gamma matrices, we have

S0(Z) = 1 + i

2σ
µν(tan Z)µν + 2

(︃
i

4

)︃2
εµνσρ γ5(tan Z)µν(tan Z)σρ ,

S1(Z, f1) = 1
2

[︃
S0(Z) GµνF11 + σµν + i

2ε
σρµν γ5(tan Z)σρ

]︃
fµν1 .

(4.54)
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Therefore, the spin contribution in equation (4.42) is

Sγ1 (T, Fct, fi) = det
1
2 (cos Z)

[︂
S0(Z) − iS1(Z, fi)

]︂
. (4.55)

Similarly, the spin contribution in equation (4.40) is

Sγ2 (T, Fct) = det
1
2 (cos Z)

[︂
S0(Z) − iS1(Z, f1) − iS1(Z, f2) − S2(Z, f1f2)

]︂
, (4.56)

for the step-by-step calculation, see Appendix B.2.1.

4.4.2 One- and two-photon kernels
In this section, we summarize the kernel results at linear order in each polarization ε1 and ε2 (here
we have made the re-scaling τi = Tui). For the two-photon kernel, we have

Kpp′

sp,2 = 2e2T 2
∫︂ 1

0
du1du2 e−Th12

[︃(︃
1
T
ε1b12ε2 + 2 ε1b1 ε2b2

)︃
S0 + ε2b2 S1(f1) + ε1b1 S1(f2) + 1

2S2(f1f2)
]︃
.

(4.57)

The two-photon kernel mixed with the external field is

Kpp′

ct,2 = 2ie2T 2 γµ(tan Z)µν
∫︂ 1

0
du1du2 e−Th12

{︄[︃
(a1ε1)νε2b2 + (a2ε2)νε1b1 + bν0

(︃
1
T
ε1b12ε2 + 2 ε1b1 ε2b2

)︃]︃
S0

+ bν0

[︃
ε2b2 S1(f1) + ε1b1 S1(f2) + 1

2S2(f1f2)
]︃

+ 1
2 [(a1ε1)νS1(f2) + (a2ε2)νS1(f1)]

}︄
,

(4.58)

with ai = 1
T (1 − iZĠB0i). And finally, the one-photon kernels are

Kp,p′+k1
sp,1 (k2, ε2) = −eT

∫︂ 1

0
du2 e−T h22(p′+k1)

[︂
2 ε2 h2(p′ + k1)S0 + S1(f2)

]︂
,

Kp,p′+k2
sp,1 (k1, ε1) = −eT

∫︂ 1

0
du1 e−T h11(p′+k2)

[︂
2 ε1 h1(p′ + k2)S0 + S1(f1)

]︂
.

(4.59)

Here, we collect the expression of every term in the one- and two-photon kernels. First, the spin
terms are

S0 = 1 + i

2σ
µν(tan Z)µν + 2

(︃
i

4

)︃2
εµνσρ γ5(tan Z)µν(tan Z)σρ ,

S1(fi) = 1
2

[︃
S0 GµνFii + σµν + i

2ε
σρµν γ5(tan Z)σρ

]︃
fi,µν ,

S2(f1f2) = 1
4

[︄
S0

(︂
GµνF11GσρF22 + 2 GµρF12GνσF12

)︂
+
(︂

GµνF11σ
σρ + σµνGσρF22 + 4 GµρF12σ

νσ
)︂

+ εµνσρ γ5 + i

2(tan Z)αβ
(︂

GµνF11ε
αβσρ + εαβµνGσρF22 + 4 GµρF12ε

αβνσ
)︂
γ5

]︄
f1,µνf2,σρ .

(4.60)

Second, the bosonic terms (which do not contain gamma matrices)

b0 = p′ + 1
T

[︂
(τ1 + iZG01) k1 + (τ2 + iZGB02) k2

]︂
,

b1 = •∆11k1 + •∆12k2 −
(︁
1 − iĠB10Z

)︁
(Z cot Z)−1b0 ,

b2 = •∆22k2 + •∆21k1 −
(︁
1 − iĠB20Z

)︁
(Z cot Z)−1b0 ,

1
T
b12 = •∆•

12 − 1
T

(︁
1 − iĠB10Z

)︁
(Z cot Z)−1 (︁1 − iZĠB02

)︁
,

−Th12 = 2k1∆12k2 + k1∆11k1 + k2∆22k2 − TbT0 (Z cot Z)−1b0 .

(4.61)
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And third, the bosonic terms for the one-photon kernel

hi(p′) = •∆iiki −
(︁
1 − iĠBi0Z

)︁
(Z cot Z)−1

[︃
p′ + 1

T
(τi + iZG0i)ki

]︃
,

−Thii(p′) = ki∆iiki − T

[︃
p′ + 1

T
ki(τi − iGi0Z)

]︃
(Z cot Z)−1

[︃
p′ + 1

T
(τi + iZG0i)ki

]︃
.

(4.62)

In the next sections, the above expressions are simplified by specializing to a pure magnetic field and
forward scattering.

4.5 Pure magnetic field
In this section, we present the calligraphic Green’s functions in the case of a pure magnetic background
field of constant strength. Following [123], we choose the magnetic field pointing along the x axis, in
Euclidean space,

F =

⎛⎜⎜⎝
0 0 0 0
0 0 Bx 0
0 −Bx 0 0
0 0 0 0

⎞⎟⎟⎠ , (4.63)

For convenience, we define the following projectors

F̂ =

⎛⎜⎜⎝
0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

⎞⎟⎟⎠ , g⊥ =

⎛⎜⎜⎝
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎞⎟⎟⎠ , g|| =

⎛⎜⎜⎝
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞⎟⎟⎠ , (4.64)

such that for z = eTBx, we have that

Z2n = (−1)ng⊥ z
2n, Z2n+1 = (−1)nF̂ z2n+1 and gµν|| + gµν⊥ = 1 . (4.65)

Then the calligraphic Green’s function Gij = G(ui, uj) can be expressed as

GBij = T

[︃(︃
Gij − 1

6

)︃
g|| − 1

2z

(︃
Cij − 1

z

)︃
g⊥ + 1

2z
[︁
Sij − Ġij

]︁
iF̂

]︃
,

ĠBij = Ġij g|| + Sij g⊥ −
(︃
Cij − 1

z

)︃
iF̂ ,

G̈Bij = 2
T

[︂
δ(ui − uj) 1 − g|| − zCij g⊥ + zSij iF̂

]︂
,

GFij = GFij

(︂
g|| + CFij g⊥ − SFij iF̂

)︂
,

(4.66)

where, we have defined2

Sij(z) = sinh(z Ġij)
sinh(z) , SFij(z) = sinh(z Ġij)

cosh(z) ,

Cij(z) = cosh(z Ġij)
sinh(z) , CFij(z) = cosh(z Ġij)

cosh(z) .

(4.67)

The coincidence limits of the calligraphic functions for this case are

GBii = −T
[︃

1
6 g|| + 1

2z

(︃
coth z − 1

z

)︃
g⊥

]︃
,

ĠBii = −
(︃

coth z − 1
z

)︃
iF̂ ,

GFii = −iF̂ tanh z .

(4.68)

2These definitions are independent from those used in Chapter 3.
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The calligraphic Green’s function with no coincidence limit (Gij = GBij − GBii) can be written as

Gij = T

[︃
Gij g|| − 1

2z (Cij − coth z) g⊥ + 1
2z
(︁
Sij − Ġij

)︁
iF̂

]︃
,

Ġij = Ġij g|| + Sij g⊥ − (Cij − coth z) iF̂ .
(4.69)

In a pure magnetic field, the determinant appearing in the propagators (4.23) and (4.26) becomes

det−1/2 (cos Z) = 1
cosh z . (4.70)

The pure electric case is obtained after replacing

F̂ →

⎛⎜⎜⎝
0 0 0 1
0 0 0 0
0 0 0 0

−1 0 0 0

⎞⎟⎟⎠ , g⊥ ↔ g|| , z → ieTEz , (4.71)

in (4.66).
In the following sections, we apply the field configuration described earlier to compute the scalar

and spinor QED amplitudes for Compton scattering. Our focus is on the forward direction, aligned
with the magnetic background field. In this calculation, we consider the external photons as on-
shell, with linear polarizations assumed to be orthogonal to each other. Our objective is to explore
the polarization effects arising from Compton scattering [66], which could have implications for the
observation of Coulomb-assisted birefringence [65].

4.6 Compton scattering in a magnetic field for scalar QED
In this section, we present the off-shell amplitude of Compton scattering in a pure magnetic back-
ground field of constant strength for scalar QED and specialize it to the forward scattering, aligned
with the direction of the magnetic field. The Green’s function ∆ij and its derivatives appearing in
(4.30) for a magnetic field in d = 4, after replacing GBij , ĠBij and G̈Bij by the expressions in Section
4.5, become

2k1∆12k2 = T k1 ·
[︂

(G12 −G10 −G02) g|| − 1
2z (C12 − C10 − C02 − coth z) g⊥

+ 1
2z
(︁
S12 − S10 − S02 − Ġ12 + Ġ10 + Ġ02

)︁
iF̂
]︂

· k2 ,

k1∆11k1 = −T k1 ·
[︃
G10g|| + 1

2z (coth z − C10) g⊥

]︃
· k1 ,

k2∆22k2 = −T k2 ·
[︃
G20g|| + 1

2z (coth z − C20) g⊥

]︃
· k2 ,

•∆12 = 1
2

[︂(︁
Ġ12 − Ġ10

)︁
g|| + (S12 − S10) g⊥ − (C12 − C10) iF̂

]︂
,

•∆21 = 1
2

[︂(︁
Ġ21 − Ġ20

)︁
g|| + (S21 − S20) g⊥ − (C21 − C20) iF̂

]︂
,

•∆11 = −1
2

[︂
G10g|| + S10g⊥ + (coth z − C10) iF̂

]︂
,

•∆22 = −1
2

[︂
G20g|| + S20g⊥ + (coth z − C20) iF̂

]︂
,

•∆•
12 = − 1

T

[︂
δ(ui − uj) 1 − g|| − zCij g⊥ + zSij iF̂

]︂
.

(4.72)

4.6.1 Forward scattering aligned with the magnetic field
In order to simplify the exponent h12 and therefore be able to perform the integral analytically, we
make the following assumptions:
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1. We consider the forward direction such that all momenta are parallel to the B-field, implying
that

ki · g⊥ = 0, ki · F̂ = 0, p′ · g⊥ = 0, p′ · F̂ = 0 . (4.73)
2. Both photons are on-shell and their polarizations are perpendicular to each other. Which

implies
ki · εj = 0, εi · g|| = 0, ε1 · ε2 = 0 . (4.74)

These assumptions allow the exponent in (4.37) to become

h12 = (p′ + u1k1 + u2k2)2 = p′2 + 2u1 p
′ · k1 + 2u2 p

′ · k2 (4.75)

and the terms linear in the polarizations simplify to (remember z = eBxT )

ε1 · b1 = 0, ε2 · b2 = 0 ,
ε1 · b12 · ε2 = z [−S12 + tanh z (S10C02 + S02C10)] i ε1 · F̂ · ε2 .

(4.76)

Then, the kernel in (4.37) becomes

Kpp′

sc,2 = 2ie2T
(︂ z

cosh z

)︂∫︂ 1

0
du1du2 e−T h12 [−S12 + tanh z (S10C02 + S02C10)] ε1 · F̂ · ε2 . (4.77)

This means that for the propagator we must perform the following integral

Isc =
∞∫︂

0

e−Tm2
T
(︂ z

cosh z

)︂∫︂ 1

0
du1du2 e−Th12 [−S12 + tanh z (S10C20 − S20C10)] . (4.78)

All integrals are performed with Mathematica [152], such that the propagator becomes

Dpp′

sc,2 = 2ie2 ε1 · F̂ · ε2
(p′ · k2 − p′ · k1)eBx

4[(eBx)2 − (p′ · k1)2][(eBx)2 − (p′ · k2)2] (Isc,1 + Isc,2 + Isc,3 + Isc,4) . (4.79)

Here, we have set

Isc = (p′ · k2 − p′ · k1)eBx
4[(eBx)2 − (p′ · k1)2][(eBx)2 − (p′ · k2)2] (Isc,1 + Isc,2 + Isc,3 + Isc,4) , (4.80)

where Isc,i can be written in terms of di-gamma functions ψ(x)

Isc,1 = 1 −
[︃
m2 + p2 − (eBx)2 + p′ · k2 p

′ · k1

p′ · k2 + p′ · k1

]︃
1
eBx

β

(︃
m2 + p2 + eBx

2eBx

)︃
,

Isc,2 = 1 −
[︃
m2 + p′2 + (eBx)2 + p′ · k2 p

′ · k1

p′ · k2 + p′ · k1

]︃
1
eBx

β

(︄
m2 + p′2 + eBx

2eBx

)︄
,

Isc,3 = 1 −
[︃
m2 + (p′ + k2)2 − (eBx)2 − p′ · k2 p

′ · k1

p′ · k2 − p′ · k1

]︃
1
eBx

β

(︃
m2 + (p′ + k2)2 + eBx

2eBx

)︃
,

Isc,4 = 1 −
[︃
m2 + (p′ + k1)2 + (eBx)2 − p′ · k2 p

′ · k1

p′ · k2 − p′ · k1

]︃
1
eBx

β

(︃
m2 + (p′ + k1)2 + eBx

2eBx

)︃
,

(4.81)

with β(x) defined as (see [166, 167, 168])

β(x) = 1
2

[︃
ψ

(︃
x+ 1

2

)︃
− ψ

(︂x
2

)︂]︃
, ψ(x) = d

dx
ln Γ(x) , (4.82)

which also have the following integral representation

β

(︃
x+ 1

2

)︃
=
∫︂ ∞

0
dt

e−xt

cosh t (4.83)

and series expansion

1
b
β

(︃
x+ b

2 b

)︃
=
∫︂ ∞

0
dt

e−xt

cosh(bt) =
∞∑︂
n=0

E2n

(2n)!

∫︂ ∞

0
dt e−xt(bt)2n =

∞∑︂
n=0

E2n

(2n)!
b2n

x2n+1 Γ(2n+ 1) , (4.84)

E2n are the Euler numbers.
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4.6.2 Minkowski space representation
In the previous sections, we have considered all particles to be ingoing. Now we consider a realistic set
up in which k1 is the momentum of the incoming photon while k2 is the outgoing photon. Furthermore,
we change to Minkowski space by applying the following replacements3

gµν −→ −(ηµν) = −diag(1,−1,−1,−1) ,
k4 −→ −ik0 ,

T −→ −is ,
γ4 −→ γ0 .

(4.85)

In particular, for the external photons in the forward direction, we have
kin = ωin(1, 1, 0, 0) ,
kout = ωout(1, 1, 0, 0) ,
εin = (0, 0, 1, 0) ,
εout = (0, 0, 0, 1) ,

(4.86)

with pin, pout parallel to kin, kout and the magnetic field B = (B, 0, 0). We use the following definition

Dscal(pin, pout; kin, εin; kout, εout;B) = (2π)4 δ4(pin − pout + kin − kout)Dscal . (4.87)

Then, the scalar Compton scattering in the forward direction can be expressed as

Dscal = 2e2 εin · eF · εout

∞∫︂
0

ds s2
∫︂ 1

0
du1du2 e+ism2

e−is(pout−u1kin+u2kout)2 K(u1, u2, eBs)
cos(eBs) , (4.88)

where

K(u1, u2, z) = − sin(z Ġ12)
sin z + sin(z Ġ10)

sin z
cos(z Ġ20)

cos z − sin(z Ġ20)
sin z

cos(z Ġ10)
cos z . (4.89)

Notice that the field strength tensor Fµν and Minkowski metric ηµν = ηµν⊥ +ηµν|| now are expressed
as

F =

⎛⎜⎜⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 B

0 0 −B 0

⎞⎟⎟⎟⎟⎠ , η⊥ =

⎛⎜⎜⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎟⎟⎠ , η|| =

⎛⎜⎜⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎟⎠ . (4.90)

The scalar propagator (4.88), after integration, can be written as

Dscal = −ie2 εin · (eF ) · εout (pout · kout + pout · kin)
2[(eB)2 − (pout · kin)2][(eB)2 − (pout · kout)2] (Isc,1 + Isc,2 + Isc,3 + Isc,4) , (4.91)

where4

Isc,1 = 1 −
[︁
p2

in −m2 − λ−
]︁ 1
eB

β

(︃
p2

in −m2 + eB

2eB

)︃
,

Isc,2 = 1 −
[︁
p2

out −m2 + λ−
]︁ 1
eB

β

(︃
p2

out −m2 + eB

2eB

)︃
,

Isc,3 = 1 −
[︁
(pout + kout)2 −m2 − λ+

]︁ 1
eB

β

(︃
(pout + kout)2 −m2 + eB

2eB

)︃
,

Isc,4 = 1 −
[︁
(pout − kin)2 −m2 + λ+

]︁ 1
eB

β

(︃
(pout − kin)2 −m2 + eB

2eB

)︃
.

(4.92)

For simplicity, we have defined λ± as

λ± = (eB)2 ± pout · kinpout · kout

pout · kout ± pout · kin
. (4.93)

3Notice that in Appendix A and in this section the Wick rotations are different. This is due the fact the here we
consider that m2 < p2 for the square of the external off-shell momenta.

4In deriving these expression, we have considered that p2 > m2 and used that β(1 − x) = −β(x) for the function
β(x).
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4.7 Compton scattering in a magnetic field for spinor QED

In this section, we present the off-shell amplitude of Compton scattering in a pure magnetic back-
ground field of constant strength for spinor QED and specialize it to the forward scattering, aligned
with the direction of the magnetic field. The fermionic contributions Si of (4.39) for the pure mag-
netic field in d = 4, after replacing the calligraphic Green’s functions by the expressions in Section
4.5, are

S0 = 1 + i

2σ
µν F̂µν tanh z ,

S1(fi) = 1
2

[︃
σµν − i

(︃
S0 F̂µν − 1

2εσρµν γ
5F̂σρ

)︃
tanh z

]︃
fµνi ,

(4.94)

S2(f1f2) = 1
4

{︄
S0

[︃
2
(︂
g|| + CF12g⊥ − SF12iF̂

)︂
µρ

(︂
g|| + CF12g⊥ − SF12iF̂

)︂
νσ

− F̂µν F̂σρ tanh2 z

]︃
+ 1

2 F̂
αβ

[︃(︂
F̂µνεαβσρ + F̂σρεαβµν

)︂
tanh z + 4iGF12

(︂
g|| + CF12g⊥ − SF12iF̂

)︂
µρ
εαβνσ

]︃
γ5 tanh z

+ εµνσρ γ
5 − i

(︂
F̂µνσσρ + σµν F̂σρ

)︂
tanh z + 4GF12

(︂
g|| + CF12g⊥ − SF12iF̂

)︂
µρ
σνσ

}︄
fµν1 fσρ2

(4.95)

and the bosonic contributions are given by (4.72).

4.7.1 Forward scattering aligned with the magnetic field

In order to simplify the exponents in the kernels and therefore be able to perform the integral
analytically, we make the following assumptions:

1. We consider the forward direction such that all momenta are parallel to the B-field, implying
that

ki · g⊥ = 0, ki · F̂ = 0, p′ · g⊥ = 0, p′ · F̂ = 0 . (4.96)

2. Both photons are on-shell and their polarizations are perpendicular to each other. Which
implies

ki · εj = 0, εi · g|| = 0, ε1 · ε2 = 0 . (4.97)

With such assumptions, the exponents become

h12 = (p′ + u1k1 + u2k2)2 = p′2 + 2u1 p
′ · k1 + 2u2 p

′ · k2 ,

h11(p′ + k2) = (p′ + k2 + u1k1)2 = p′2 + 2 p′ · k2 + 2u1 p
′ · k1 ,

h22(p′ + k1) = (p′ + k1 + u2k2)2 = p′2 + 2 p′ · k1 + 2u2 p
′ · k2 ,

(4.98)

and the terms linear in the polarizations simplify to (remember z = eBxT )

ε1.b1 = ε1.h1 = ε2.b2 = ε2.h2 = γµ(tan Z)µνbν0 = 0 ,
ε1.b12.ε2 = z [−S12 + (S10C02 + S02C10) tanh z] i ε1.F̂.ε2 ,

γµ(tan Z)µν (aiεi)ν = − i

T
z tanh z

(︂
Si0 /εi + i Ci0 γ.F̂.εi

)︂
,

S0 = 1 + i

2σ
µν F̂µν tanh z ,

S1(fi) = 1
2σµνf

µν
i = −/ki/εi ,

S2(f1f2) = εµνσρ f
µν
1 fσρ2 γ5 .

(4.99)
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Then, the kernels become

Kpp′

sp,2 = e2T

∫︂ 1

0
du1du2 e−Th12

{︂
2S0 z

[︂
− S12 + (S10C20 − S20C10) tanh z

]︂
i ε1 · F̂ · ε2 + T S2(f1f2)

}︂
,

Kpp′

ct,2 = −e2T z tanh z
∫︂ 1

0
du1du2 e−Th12

[︂(︂
S10 /ε1 + iC10 γ.F̂.ε1

)︂
/k2/ε2 +

(︂
S20 /ε2 + iC20 γ.F̂.ε2

)︂
/k1/ε1

]︂
,

Kp,p′+k1
sp,1 (k2, ε2) = eT

∫︂ 1

0
du2 e−T (p′+k1+u2k2)2

/k2/ε2 ,

Kp,p′+k2
sp,1 (k1, ε1) = eT

∫︂ 1

0
du1 e−T (p′+k2+u1k1)2

/k1/ε1 ,

(4.100)

We recall that the spinor propagator interacting with two photons in a background field is

Dpp′

sp,2 =
∞∫︂

0

dT e−Tm2
[︂(︁
m+ /p

′)︁Kpp′

sp,2 +Kpp′

ct,2 − e/ε1 K
p(p′+k1)
sp,1 (k2, ε2) − e/ε2 K

p(p′+k2)
sp,1 (k1, ε1)

]︂
.

(4.101)
Notice that for the pure magnetic case in the forward direction, we need to compute the following
integrals

Isp,1 =
∞∫︂

0

e−Tm2
T

∫︂ 1

0
du1du2 e−Th12 z [−S12 + tanh z (S10C20 − S20C10)] ,

Isp,2 =
∞∫︂

0

e−Tm2
T

∫︂ 1

0
du1du2 e−Th12 z tanh z [−S12 + tanh z (S10C20 − S20C10)] ,

Iµνsp,3 =
∞∫︂

0

e−Tm2
T

∫︂ 1

0
du1du2 e−Th12 z tanh z

(︂
S10 g

µν
⊥ + iC10 F̂

µν
)︂
,

Iµνsp,4 =
∞∫︂

0

e−Tm2
T

∫︂ 1

0
du1du2 e−Th12 z tanh z

(︂
S20 g

µν
⊥ + iC20 F̂

µν
)︂
,

Isp,5 =
∞∫︂

0

e−Tm2
T 2
∫︂ 1

0
du1du2 e−Th12 = 2(m2 + p′2 + p′ · k1 + p′ · k2)

(m2 + p2)(m2 + p′2)[m2 + (p′ + k2)2][m2 + (p′ + k1)2] ,

Isp,6 =
∞∫︂

0

e−Tm2
T

∫︂ 1

0
du2 e−T (p′+k1+u2k2)2

= 1
(m2 + p2)[m2 + (p′ + k1)2] ,

Isp,7 =
∞∫︂

0

e−Tm2
T

∫︂ 1

0
du1 e−T (p′+k2+u1k1)2

= 1
(m2 + p2)[m2 + (p′ + k2)2] .

(4.102)

These integrals can be performed with Mathematica [152] or using the integral identities in [123].
Similar as the scalar calculation, we see that the propagator (4.101) can be written as

Dpp′

sp,2 = e2 (︁m+ /p
′)︁ (︂2i ε1.F̂.ε2 Isp,1 − ε1.F̂.ε2 σ

µν F̂µν Isp,2 + εµνσρ f
µν
1 fσρ2 γ5 Isp,5

)︂
− e2

(︂
γµI

µν
sp,3 ε1ν /k2/ε2 + γµI

µν
sp,4 ε2ν /k1/ε1 + Isp,6 /ε1/k2/ε2 + Isp,7 /ε2/k1/ε1

)︂
.

(4.103)

Here Isp,1 to Isp,4 contain information about the magnetic field. And Isp,5 to Isp,7 have no interaction
with the magnetic field therefore such terms can not contribute to the on-shell amplitude.

In order to have compact expressions for the integrals (4.102), we define

Dp′ = m2 + p′2, Dp′1 = m2 + (p′ + k1)2 ,

Dp = m2 + p2, Dp′2 = m2 + (p′ + k2)2 ,
(4.104)



64 Dressed propagators in a constant background field

and decompose the integrals into four parts as
Isp,1 = I0 (Isp,11 + Isp,12 + Isp,13 + Isp,14) ,
Isp,2 = I0 (Isp,21 + Isp,22 + Isp,23 + Isp,24) ,
Iµνsp,3 = I30 (Isp,31 + Isp,32 + Isp,33 + Isp,34)µν ,
Iµνsp,4 = I40 (Isp,41 + Isp,42 + Isp,43 + Isp,44)µν .

(4.105)

Now, we simply present the results for each integral. For Isp,1

I0 = (p′ · k2 − p′ · k1)eBx
4[(eBx)2 − (p′ · k1)2][(eBx)2 − (p′ · k2)2] ,

Isp,11 = (eBx − p′ · k1)(eBx − p′ · k2)
(p′ · k2 + p′ · k1)Dp

+ β

(︃
Dp

2eBx

)︃
,

Isp,12 = − (eBx + p′ · k1)(eBx + p′ · k2)
(p′ · k2 + p′ · k1)Dp′

+ β

(︃
Dp′

2eBx

)︃
,

Isp,13 = (eBx + p′ · k1)(eBx − p′ · k2)
(p′ · k2 − p′ · k1)Dp′2

+ β

(︃
Dp′2

2eBx

)︃
,

Isp,14 = − (eBx − p′ · k1)(eBx + p′ · k2)
(p′ · k2 − p′ · k1)Dp′1

+ β

(︃
Dp′1

2eBx

)︃
.

(4.106)

For Isp,2

Isp,21 =
[︃
1 − (eBx − p′ · k1)(eBx − p′ · k2)

(p′ · k2 + p′ · k1)Dp

]︃
−
[︃
Dp − (eBx)2 + p′ · k1p

′ · k2

p′ · k2 + p′ · k1

]︃
1
eBx

β

(︃
Dp

2eBx

)︃
,

Isp,22 =
[︃
1 + (eBx + p′ · k1)(eBx + p′ · k2)

(p′ · k2 + p′ · k1)Dp′

]︃
−
[︃
Dp′ + (eBx)2 + p′ · k1p

′ · k2

p′ · k2 + p′ · k1

]︃
1
eBx

β

(︃
Dp′

2eBx

)︃
,

Isp,23 =
[︃
1 − (eBx + p′ · k1)(eBx − p′ · k2)

(p′ · k2 − p′ · k1)Dp′2

]︃
−
[︃
Dp′2 − (eBx)2 − p′ · k1p

′ · k2

p′ · k2 − p′ · k1

]︃
1
eBx

β

(︃
Dp′2

2eBx

)︃
,

Isp,24 =
[︃
1 + (eBx − p′ · k1)(eBx + p′ · k2)

(p′ · k2 − p′ · k1)Dp′1

]︃
−
[︃
Dp′1 + (eBx)2 − p′ · k1p

′ · k2

p′ · k2 − p′ · k1

]︃
1
eBx

β

(︃
Dp′1

2eBx

)︃
.

(4.107)
For Isp,3

Isp,30 = 1
4[(eBx)2 − (p′ · k1)2]p′.k2

,

Isp,31 = eBx
Dp

(i F̂ + g⊥)(eBx − p′.k1) − (ieBx F̂ − p′.k1 g⊥)β
(︃

Dp

2eBx

)︃
,

Isp,32 = −eBx
Dp′

(i F̂ − g⊥)(eBx + p′.k1) + (ieBx F̂ − p′.k1 g⊥)β
(︃
Dp′

2eBx

)︃
,

Isp,33 = eBx
Dp′2

(i F̂ − g⊥)(eBx + p′.k1) − (ieBx F̂ − p′.k1 g⊥)β
(︃
Dp′2

2eBx

)︃
,

Isp,34 = − eBx
Dp′1

(i F̂ + g⊥)(eBx − p′.k1) + (ieBx F̂ − p′.k1 g⊥)β
(︃
Dp′1

2eBx

)︃
.

(4.108)

And for Isp,4

Isp,40 = 1
4[(eBx)2 − (p′ · k2)2]p′.k1

,

Isp,41 = eBx
Dp

(i F̂ + g⊥)(eBx − p′.k2) − (ieBx F̂ − p′.k2 g⊥)β
(︃

Dp

2eBx

)︃
,

Isp,42 = −eBx
Dp′

(i F̂ − g⊥)(eBx + p′.k2) + (ieBx F̂ − p′.k2 g⊥)β
(︃
Dp′

2eBx

)︃
,

Isp,43 = − eBx
Dp′2

(i F̂ + g⊥)(eBx − p′.k2) + (ieBx F̂ − p′.k2 g⊥)β
(︃
Dp′2

2eBx

)︃
,

Isp,44 = eBx
Dp′1

(i F̂ − g⊥)(eBx + p′.k2) − (ieBx F̂ − p′.k2 g⊥)β
(︃
Dp′1

2eBx

)︃
.

(4.109)
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4.7.2 Minkowski space representation
Here, we change to Minkowski space, as we did for the scalar amplitude, by performing the replace-
ments in (4.85), we assume scattering in the forward direction parallel to the magnetic field and
photon kinematics given by (4.86), and we use the following convention

Dspin(pin, pout; kin, εin; kout, εout;B) = (2π)4 δ4(pin − pout + kin − kout)Dspin . (4.110)

Then, the spinor Compton scattering in the forward direction can be expressed as

Dspin = −e2
∞∫︂

0

ds s

∫︂ 1

0
du1du2 e+ism2

{︂
γµJµν(u1, eBs)ενin /kout/εout − γµJµν(u2, eBs)ενout /kin/εin

+ 2
(︂
m+ /pout

)︂
εin · (eFs) · εout

[︂
1 + i

B
ΣµνFµν tan(eBs)

]︂
K(u1, u2, eBs)

}︂
e−is(pout−u1kin+u2kout)2

,

(4.111)

where Σµν = i
4 [γµ, γν ], K(u1, u2, z) is given by (4.89) and

J(ui, z) = z

(︃
sin(z Ġi0)

cos z η⊥ + 1
B

cos(z Ġi0)
cos z F

)︃
. (4.112)

The spinor propagator (4.111), after integration, can be expressed as

Dspin = ie2
[︂
2
(︂
m+ /pout

)︂
εin · (eF ) · εout

(︂
Isp,1 − 1

B
ΣµνFµν Isp,2

)︂
− iγµI

µν
sp,3εin,ν /kout/εout − iγµI

µν
sp,4εout,ν /kin/εin

]︂
.

(4.113)

For simplicity we define

λ′
±± = (eB ± pout · kin)(eB ± pout · kout)

pout · kout + (±)(±)pout · kin
. (4.114)

Now, let us compute (4.105). For Isp,1

I0 = − pout · kout + pout · kin

4[(eB)2 − (pout · kin)2][(eB)2 − (pout · kout)2] ,

Isp,11 =
λ′

−+
p2

in −m2 − β

(︃
p2

in −m2

2eB + 1
)︃
,

Isp,12 = −
λ′

+−
p2

out −m2 − β

(︃
p2

out −m2

2eB + 1
)︃
,

Isp,13 =
λ′

++
(pout + kout)2 −m2 − β

(︃
(pout + kout)2 −m2

2eB + 1
)︃
,

Isp,14 = −
λ′

−−
(pout − kin)2 −m2 − β

(︃
(pout − kin)2 −m2

2eB + 1
)︃
.

(4.115)

For Isp,2 (see (4.93) for λ± definition)

Isp,21 =
[︃
1 −

λ′
−+

p2
in −m2

]︃
−
[︁
p2

in −m2 − λ−
]︁ 1
eB

β

(︃
p2

in −m2

2eB + 1
)︃
,

Isp,22 =
[︃
1 +

λ′
+−

p2
out −m2

]︃
−
[︁
p2

out −m2 + λ−
]︁ 1
eB

β

(︃
p2

out −m2

2eB + 1
)︃
,

Isp,23 =
[︃
1 −

λ′
++

(pout + kout)2 −m2

]︃
−
[︁
(pout + kout)2 −m2 − λ+

]︁ 1
eB

β

(︃
(pout + kout)2 −m2

2eB + 1
)︃
,

Isp,24 =
[︃
1 +

λ′
−−

(pout − kin)2 −m2

]︃
−
[︁
(pout − kin)2 −m2 + λ+

]︁ 1
eB

β

(︃
(pout − kin)2 −m2

2eB + 1
)︃
.

(4.116)
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For Isp,3

Isp,30 = 1
4[(eB)2 − (pout · kin)2]pout · kout

,

Iµsp,31 = eB(eB − pout · kin)
p2

in −m2

(︃
i

B
F − η⊥

)︃
− (ieF + pout · kin η⊥)β

(︃
p2

in −m2

2eB + 1
)︃
,

Iµsp,32 = −eB(eB + pout · kin)
p2

out −m2

(︃
i

B
F + η⊥

)︃
+ (ieF + pout · kin η⊥)β

(︃
p2

out −m2

2eB + 1
)︃
,

Iµsp,33 = eB(eB + pout · kin)
(pout + kout)2 −m2

(︃
i

B
F + η⊥

)︃
− (ieF + pout · kin η⊥)β

(︃
(pout + kout)2 −m2

2eB + 1
)︃
,

Iµsp,34 = −eB(eB − pout · kin)
(pout − kin)2 −m2

(︃
i

B
F − η⊥

)︃
+ (ieF + pout · kin η⊥)β

(︃
(pout − kin)2 −m2

2eB + 1
)︃
.
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And for Isp,4

Isp,40 = 1
4[(eB)2 − (pout · kout)2]pout · kin

,

Iµsp,41 = eB(eB + pout · kout)
p2

in −m2

(︃
i

B
F − η⊥

)︃
− (ieF − pout · kout η⊥)β

(︃
p2

in −m2

2eB + 1
)︃
,

Iµsp,42 = −eB(eB − pout · kout)
p2

out −m2

(︃
i

B
F + η⊥

)︃
+ (ieF − pout · kout η⊥)β

(︃
p2

out −m2

2eB + 1
)︃
,

Iµsp,43 = −eB(eB + pout · kout)
(pout + kout)2 −m2

(︃
i

B
F − η⊥

)︃
+ (ieF − pout · kout η⊥)β

(︃
(pout + kout)2 −m2

2eB + 1
)︃
,

Iµsp,44 = eB(eB − pout · kout)
(pout − kin)2 −m2

(︃
i

B
F + η⊥

)︃
− (ieF − pout · kout η⊥)β

(︃
(pout − kin)2 −m2

2eB + 1
)︃
.
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In this chapter, we have presented the scalar and spinor amplitude of Compton scattering in
a pure magnetic field for off-shell massive particles and on-shell photons. The integration of such
amplitudes is carried out analytically for the forward scattering in which all particles are parallel
to the direction of the magnetic field. We have checked that the final results (4.91) and (4.113) in
the weak-field expansion (at first order with respect to the B-filed) and on-shell limit reproduce the
expected results [66]. This shows that Compton scattering in a magnetic background field could
lead to the observation of polarization changes that do not correspond to the vacuum birefringence
assisted with Coulomb fields [65].

It is important to mention that our main results (4.91) and (4.113) do not correspond to the
experimental Compton scattering in a magnetic field since we are considering the incoming and
outgoing (scalar or spinor) particles to be off-shell and taking the on-shell limit is not straightforward
when we consider the external field exactly. This is because we use the worldline formalism to
derive such results in which the methods to obtain on-shell amplitudes for external massive particles
are still under development [171, 128]. However, these results give us an idea of the important
parameters involved in this scattering process, for instance, our formulas depend mainly on the
parameter eB. We can also notice that the denominators of (4.91) and (4.113): (eB)2 − (pout · kout)2

and (eB)2 − (pout · kin)2 have poles related to the Landau levels of the corresponding particles, for
which, the cyclotron frequency is ωc = eB/m, see [66] for a more detailed review of the birefringent
Compton scattering.



Chapter 5

Electron propagator in a
plane-wave field: One-loop vertex
correction

In this chapter, we provide a brief introduction to the operator technique, the Furry picture, and the
Volkov states and propagators. We discuss the one-loop vertex correction in vacuum, emphasizing its
renormalization and gauge invariance. This correction is significant in QED due to its connection with
the anomalous magnetic moment of the electron, which has enabled high-precision measurements of
fundamental constants such as the fine structure constant and the anomalous magnetic moment of
the electron [172, 173, 174].

We then present the calculation of the renormalized one-loop vertex correction in an arbitrary
plane-wave field, discussing its relevance to gauge invariance, infrared divergences, application as a
building block, and behavior in strong fields. This is a non-perturbative calculation, given that the
plane-wave field is taken into account exactly.

It is important to note that, unlike in vacuum, extracting a correction to the anomalous mag-
netic moment of the electron from the one-loop vertex correction in a plane-wave field is not well
defined. However, this amplitude completes the study of QED in a plane-wave field at one-loop order.
This completion is significant for future experimental comparisons, as the closer the laser intensities
approach the critical field, the more significant loop corrections become [73].

It is important to point out some conventions used in this chapter that differ from the rest of
the thesis. Here, we use the metric tensor in Minkowski space (ηµν) = diag(+1,−1,−1,−1), the
product of two four-vectors is denoted by (xy) = xµy

µ, the energy component of an on-shell electron
is ε =

√︁
p2 +m2 (where p is its kinetic momentum and m its mass) and the polarization of a photon

with momentum q is written as eµl (q).

5.1 Plane waves as a laser approximation
The match between theory and experiment is crucial in the understanding of physical laws. Therefore
to compare experimental data from laser-particle collisions with theory, it is desirable to have a
mathematical description of laser fields. Due to the complexity of lasers, the exact mathematical
description of lasers is not possible. However, a plane wave field is a reasonably good approximation
of a laser, if the radius of the minimal focusing area is much larger than the central wavelength of
the laser pulse [72].

A general plane wave is characterized mainly by the direction of propagation which is represented
by the unit vector n. Then, the plane-wave field is described by the four-vector potential Aµ(ϕ),
which only depends on the “light-cone time” ϕ = t − n · x, with xµ = (t,x) being the space-
time Cartesian coordinates. Assuming that the vector potential fulfills the Lorenz gauge condition
∂µA

µ = 0, Aµ(ϕ) → 0 in the limit ϕ → ±∞ i.e., it is a localized field, and imposing the restriction
A0(ϕ) = 0 which implies Aµ(ϕ) = (0,A(ϕ)) we have as a consequence that

n · A′(ϕ) = 0 and n · A(ϕ) = 0 , (5.1)

67
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where A′(ϕ) = d
dϕA(ϕ). This motivates the use of light-cone coordinates

nµ = (1,n), ñµ = (1,−n)/2, aµ1 = (0,a1), aµ2 = (0,a2). (5.2)

The previous coordinates satisfy the following properties

n2 = ñ2 = (naj) = (ñaj) = 0 , (nñ) = 1 , (aiaj) = −ai · aj = −δij , (5.3)

and fulfill the completeness relation

ηµν = nµñν + ñµnν − aµ1a
ν
1 − aµ2a

ν
2 , (5.4)

which indicates that the light-cone coordinates form a complete basis for Minkowski space. Then,
the “light-cone components” of an arbitrary four-vector vµ = (v0,v) can be expressed as

v− = (nv) = v0 − vn , v+ = (ñv) = (v0 + vn)/2 , with vn = n · v ,
v⊥ = (v⊥1, v⊥2) = −((va1), (va2)) = (v · a1,v · a2) .

(5.5)

Notice that the most general form of the vector potential A(ϕ) is expressed as

A(ϕ) = ψ1(ϕ)a1 + ψ2(ϕ)a2 , (5.6)

where ψ1(ϕ) and ψ2(ϕ) are arbitrary functions that vanish for ϕ → ±∞ and they satisfy the same
differential properties of the four-vector potential Aµ(ϕ), i.e. ∂µψi(ϕ)ai = 0 .

5.2 Dirac equation within the light-cone coordinates
In this section, we review the simpler case of the equation of motion for a spin-one-half particle
propagating in a vacuum, i.e., the Dirac equation. We will first examine this in the usual Cartesian
coordinate system and then in the light-cone system. We will focus on some important aspects that
will be useful for our main calculation later (for more details, see [150, 98]). The Dirac equation is(︂

/P −m
)︂
ψ = 0 , (5.7)

in which Pµ = i∂µ is the four-momentum operator. We use the convention /v = γµvµ for a generic
four-vector vµ, with γµ being the Dirac-gamma matrices, which satisfy the anti-commutation relations
{γµ, γν} = 2ηµν . Assuming that the four vectors xµ and pµ = (ε,p) are the eigenvalues of the position
and momentum operators Xµ and Pµ with their respective eigenstates |x⟩ and |p⟩ that are normalized
as

⟨x|y⟩ = δ(4)(x− y) , ⟨p|q⟩ = (2π)4δ(4)(p− q) , (5.8)
and satisfying the completeness relations∫︂

d4x |x⟩⟨x| = 1 ,
∫︂

d4p

(2π)4 |p⟩⟨p| = 1. (5.9)

The positive solution of Dirac equation is given by

ψs(p) = us(p) e−i(px) , (5.10)

where us(p) are the free, positive-energy spinors normalized as u†
s(p)us′(p) = 2ε δss′ . This solution

satisfies the on-shell condition p2 = m2. Here, we can go to the light-cone basis by using (5.4) so that

⟨x|p⟩ = exp(−i(px)) = exp[−i(p+ϕ+ p−T − p⊥ · x⊥)] . (5.11)

Notice that, the eigenvalue equation for the position operator Xµ|x⟩ = xµ|x⟩, in the light-cone
coordinate system, can be re-expressed as

Φ|x⟩ = (nX)|x⟩ = ϕ|x⟩, T |x⟩ = (ñX)|x⟩ = T |x⟩ , X⊥|x⟩ = x⊥|x⟩ . (5.12)

Here, we have defined

ϕ = (nx), T = (ñx), x⊥ = (x⊥1, x⊥2) = −((xa1), (xa2)). (5.13)
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On the other hand, for the eigenvalue equation of the momentum operator Pµ|p⟩ = pµ|p⟩, it is
convenient to write the momenta operators in the light-cone basis

Pϕ = −i∂ϕ = −(ñP ) = −(i∂t − i∂xn
)/2 , (5.14)

PT = −i∂T = −(nP ) = −(i∂t + i∂xn
) , (5.15)

P⊥ = (P⊥,1, P⊥,2) = −i(a1 · ∇,a2 · ∇) , (5.16)

for which, the non-null commutators are

[Φ, Pϕ] = [T, PT ] = i , [X⊥,j , P⊥,k] = iδjk , (5.17)

and with the eigenvalues

Pϕ|p⟩ = −p+|p⟩, PT |p⟩ = −p−|p⟩, and P⊥|p⟩ = p⊥|p⟩ . (5.18)

We can obtain useful shifting identities by recalling the commutation relations [Xµ, P ν ] = −iηµν ,
which imply

[Pµ, f(X)] = i∂µXf(X) , (5.19)

where f(X) is an arbitrary function of the four-position operator that can be expanded in Taylor
series and ∂µX = ∂/∂Xµ. Analogously, it can easily be shown that

eif(X) Pµ e−if(X) = Pµ + ∂µf(X) (5.20)

and then formally that
eif(X) g(P ) e−if(X) = g(P + ∂f(X)) , (5.21)

where g(P ) is a function of the four-momentum that can be expanded in Taylor series. The same
commutation relations imply that

eig(P ) Xµ e−ig(P ) = Xµ − ∂µP g(P ) and eig(P ) f(X) e−ig(P ) = f(X − ∂P g(P )) , (5.22)

where ∂µP = ∂/∂Pµ, and f(X) can be represented by a Taylor series expansion. In particular, we will
consider the case where the functions in the exponents are linear either in Xµ or in Pµ

ei(Xq) g(P ) e−i(Xq) = g(P + q) , (5.23)
ei(Py) f(X) e−i(Py) = f(X − y) , (5.24)

where qµ and yµ are constant four-vectors.
Then, in the light-cone basis, the commutation relations [ϕ, Pϕ] = [T, PT ] = i will imply, in

particular, the identities

eiaϕ g̃(Pϕ) e−iaϕ = g̃(Pϕ − a), (5.25)
eibPT f̃(T ) e−ibPT = f̃(T + b), (5.26)

with a and b being two constants and f̃(T ) and g̃(Pϕ) being two arbitrary functions.

5.3 Vertex function in vacuum
In this section, since the main goal of this chapter is to compute the one-loop vertex correction in a
plane wave field, it is convenient to review the known result in vacuum (adapted from [150]), with a
particular focus on renormalization and gauge invariance. The complete irreducible1 vertex function
is

−ieΛs,s′,l(p, p′, q) = −ieδ(p− p′ − q) ūs′(p′) Λµ(p, p′) e∗
l,µ(q)us(p) , (5.27)

where, at one-loop order,

Λµ(p, p′) = Z1 γ
µ + Λ(1)µ(p, p′) + δΛ(ξ)µ(p, p′) , (5.28)

1We recall that an irreducible diagram is such that it cannot be split into two pieces by removing a single line [175].
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p
p′

q

Figure 5.1: Feynman diagram for the electron one-loop vertex correction.

where Z1 is a renormalization constant [148]. For the sake of convenience, we have defined Λ(1)µ(p, p′)
as the one-loop vertex correction in Feynman-gauge and δΛ(ξ)µ(p, p′) the additional contribution to
the one-loop vertex function when considering the internal photon propagator in an arbitrary gauge
as in (5.38) and with the inclusion of a positive photon mass ‘κ’ to avoid the infrared divergence.
From Feynman rules, we see that the complete one-loop correction (see Fig. 5.1) in an arbitrary
gauge Λ(1)µ(p, p′) + δΛ(ξ)µ(p, p′) is given by

Λ(1)µ(p, p′) = −ie2
∫︂

d4k

(2π)4
1

k2 − κ2 + i0γ
λ 1
/p

′ + /k −m+ i0γ
µ 1
/p+ /k −m+ i0γλ , (5.29)

δΛ(ξ)µ(p, p′) = −ie2
(︃

1 − 1
ξ

)︃∫︂
d4k

(2π)4
1

(k2 − κ2 + i0)2 k̂
1

/p
′ + /k −m+ i0γ

µ 1
/p+ /k −m+ i0 k̂ .

(5.30)
The four-momentum integral in (5.29) can be performed by using Schwinger parameters such that,
we obtain2

Λ(1)µ(p, p′) = −i α2π

∫︂ ∞

0

ds du dt

S3

{︄
[2S(pp′) + i] γµ − /p(/p′s+ /pu)γµ − γµ(/p′s+ /pu)/p′

− 1
S

(/p′s+ /pu)γµ(/p′s+ /pu)
}︄
e−iκ2t−i (p′s+pu)2

S ,

(5.31)

where S = s+ t+ u. In the case of (5.30), we can simplify it by noticing that the external spinors in
the expression ūs′(p′) δΛ(ξ)µ(p, p′)us(p) satisfy the Dirac equation and after straightforward manipu-
lations, we obtain

δΛ(ξ)µ(p, p′) = −ie2
(︃

1 − 1
ξ

)︃∫︂
d4k

(2π)4
1

(k2 − κ2 + i0)2 γ
µ = Z(ξ) γµ . (5.32)

Then, the irreducible vertex function can be decomposed as

Λµ(p, p′) = (Z1 + Z(ξ)) γµ + Λ(1)µ(p, p′) , (5.33)

note that Z(ξ) is a logarithmically divergent constant that depends on the gauge parameter ξ.
In order to regularize the vertex function, we define the electric charge via

ūs′(p′) eΛµR(p, p′)us(p)
⃓⃓
/p=/p′=m = ūs′(p′) eγµ us(p) . (5.34)

This condition will fix the renormalization constant as Z1 = 1 − Z(ξ) and the renormalization of the
one loop vertex correction as

Λ(1)µ
R (p, p′) = Λ(1)µ(p, p′) − Λ(1)µ(p, p)

⃓⃓
/p=m , (5.35)

2Here, for the present discussion, it is more useful to have a symmetric expression for the one loop vertex function.
However, we can further simplify it by taking into account the on-shell condition, Dirac equation and the Gordon
identity, see [150, 148, 175].
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where, from (5.31), is obvious that

Λ(1)µ(p, p)|/p=m = −i α2πγ
µ

∫︂ ∞

0

dsdudt

S3 e−iκ2t−i (s+u)2
S m2

{︃
m2
[︃
2t− (s+ u)2

S

]︃
+ i

}︃
. (5.36)

It is well known that the renormalized one-loop vertex correction can be expressed as [150, 175]

Λ(1)µ
R (p, p′) = γµ F1(q2) + i

2m σµνqνF2(q2) , (5.37)

where F1(q2) and F2(q2) are the well-known QED form factors, derived in detail in [150], and whose
explicit expressions are not presented in this thesis but only discussed.

In this context, F2(q2) is usually called the magnetic form factor since it provides the leading
quantum correction to the magnetic moment of the electron. Notably, F2(q2) has been computed at
higher loop orders and subsequently compared with experimental results. These comparisons have
enabled precise measurements of fundamental constants such as the fine structure constant and the
anomalous magnetic moment of the electron [172, 173, 174], marking one of the significant triumphs
of QED. Additionally, it is noteworthy that this form factor exhibits no infrared divergence in the
limit of a massless photon: κ → 0.

On the other hand, the form factor F1(q2) has an infrared divergence in the limit κ → 0 which, in
order to be removed, it is necessary to apply the Bloch-Nordsieck method [176, 175]. In this section
we saw that the gauge-dependent constant Z(ξ) can be absorbed in the renormalization constant Z1
nevertheless the complete gauge dependent one loop vertex correction Λ(1)µ(p, p′)+ δΛ(ξ)µ(p, p′) have
been considered in [177], where it is discussed the relation between the infrared diverge and the gauge
choice, in particular, with relation to the Yennie-Fried gauge choice 1 − 1

ξ = 2(1 − 2ϵ) where ϵ is a
small positive constant.

In the following sections, we generalize the result of the one-loop vertex correction in vacuum to
the one in the presence of a plane-wave field.

5.4 Operator technique
Schwinger first proposed the operator technique [7] as a method to compute transition amplitudes
in the presence of external fields. This method does not require the explicit solution of the Dirac
equation in the external field, as it is sufficient to know the spectrum of certain operators.

We work within the Furry picture [97], an interaction picture used to analyze the interactions
between fermions and bosons in the presence of an external field. This picture assumes that the
external field is strong enough such that it remains unchanged by the interaction with and between
fermions and bosons, the external field satisfy the Lorenz gauge condition ∂µA

µ = 0, and the action
vanishes on the boundaries [84].

These assumptions imply, in particular for the spinor QED Lagrangian in the presence of a
background field, that the electron equation of motion will be the Dirac equation in the presence of
the external field and for the photon field the external field will have no effect in the equation of
motion, i.e. the photon propagator remains as in vacuum, which in a general gauge is

Dµν(x) =
∫︂

d4k

(2π)4
e−i(kx)

k2 + i0

[︃
ηµν +

(︃
1 − 1

ξ

)︃
kµkν

k2 + i0

]︃
, (5.38)

with ξ as the gauge parameter. To compute transition amplitudes within the Furry picture, we use
the same Feynman rules as in vacuum except that now we use the Dirac operator in the presence
of the external field (see [87] for a short review of the Feynman rules for the case of a plane-wave
background field).

The Furry picture and the operator technique have been widely applied to study quantum cor-
rections in various background fields. For a constant background field, these applications include the
mass operator [178], N -photon amplitude and polarization operator [179]. For a constant crossed
background field, studies include the polarization operator [41], photon splitting [180, 164], the one-
loop vertex correction [108, 109] and nonlinear double Compton scattering [181]. For a plane-wave
background field, they include the mass operator [182], the polarization operator [183, 179, 184],
nonlinear Compton scattering [84, 85, 86, 87, 88], nonlinear double Compton scattering [185, 186],
Breit-Wheeler pair production [90, 91, 92], radiation reaction [77, 78], trident pair production [95, 96],
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nonlinear Bethe-Heitler pair production [94], photon splitting [44] and photon merging [161, 187, 26].
This list provides some examples of applications; see also [101, 72, 73] and references therein.

In the following, within the Furry picture, we consider the exact solution of the Dirac equation in a
plane-wave field (Volkov states) and the Dirac propagator in a plane-wave field (Volkov propagator)
to obtain the spectrum of the necessary set of operators required to compute the one-loop vertex
correction in a plane-wave field.

5.4.1 Dirac equation in a plane-wave background field
On the theoretical side, a laser field is often approximated as a plane wave. Therefore, to describe
the propagation of an electron immersed in a laser field, it is important to have the solution of the
Dirac equation in a plane wave field. This solution was first obtained by Volkov, even before the
invention of lasers [100] and it can also be found in text-books such as [150, 98]. The Dirac equation
in a plane-wave background field is [︂

/Π(Φ) −m
]︂
U = 0 , (5.39)

where Πµ = Pµ − eAµ(Φ) is the four-momentum operator in the presence of a plane-wave field. The
positive solution is given by the Volkov state Us(p, x) = E(p, x)us(p) [100], where

E(p, x) =
[︃
1 + e/n /A(ϕ)

2p−

]︃
eiSp(x), (5.40)

with
Sp(x) ≡ −(px) −

∫︂ ϕ

−∞
dφ

[︃
e(pA(φ))

p−
− e2A2(φ)

2p−

]︃
(5.41)

and us(p) are the free spinors introduced in Section 5.2 (see Appendix B.3.1 for a short derivation of
this result). It is convenient to explicitly write the conjugate Volkov solution Ūs(p, x) = ūs(p)Ē(p, x),
where

Ē(p, x) =
[︃
1 + e /A(ϕ)/n

2p−

]︃
e−iSp(x) . (5.42)

Here, Ē(p, x) and E(p, x) are known as the Ritus matrices [101] and satisfy the following orthogonality
and completeness relations∫︂

d4xĒ(p, x)E(p′, x) = (2π)4δ4(p− p′) ,
∫︂

d4p

(2π)4 Ē(p, x)E(p, x′) = δ4(x− x′) . (5.43)

The negative Volkov states are Vs(p, x) = E(−p, x)vs(p), where vs(p) are the free, negative-energy
spinors normalized as v†

s(p)vs′(p) = 2ε δss′ .
It is important to know the electron propagator in a plane-wave background field which is known

as the Volkov propagator and, it is the Green’s function of the Dirac operator in a plane-wave
background field, defined by [︂

/Π(Φ) −m
]︂
G(x, x′) = δ(4)(x− x′). (5.44)

Notice that the operator G is such that G(x, x′) = ⟨x|G|x′⟩ or in other words

G = 1
/Π −m+ i0

. (5.45)

Here, we have assumed the Feynman prescription corresponding to the shift m → m−i0 [98]. In [103]
is shown that the operator G can be written in the form (see Appendix B.3.2 for a short derivation
of this result)

G = (/Π +m) 1
/Π2 −m2 + i0

= (/Π +m)(−i)
∫︂ ∞

0
ds e−im2se2isPTPϕ

× e
−i
∫︁ s

0
ds′[P⊥−eA⊥(Φ−2s′PT )]2{︂

1 − e

2PT
/n[ /A(Φ − 2sPT ) − /A(Φ)]

}︂
.

(5.46)
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Equivalently, G can be written in the form

G = 1
/Π2 −m2 + i0

(/Π +m) = (−i)
∫︂ ∞

0
ds e−im2s

{︂
1 + e

2PT
/n[ /A(Φ + 2sPT ) − /A(Φ)]

}︂
× e

−i
∫︁ s

0
ds′[P⊥−eA⊥(Φ+2s′PT )]2

e2isPTPϕ(/Π +m) .
(5.47)

Alternatively, we can write the Volkov propagator in the Ritus representation [101] as

G(x, x′) =
∫︂

d4p

(2π)4 E(p, x) /p+m

p2 −m2 + i0 Ē(p, x′) . (5.48)

For the present case of a plane-wave background field, we require only the eigenvalues of the
position and momenta operators, which can be used to show that the momentum operator in presence
of the external field satisfies (see Eq. (5.40))

Πλ(ϕ)Us(p, x) =
[︄
πλp (ϕ) + i

e/n /A
′(ϕ)

2p−
nλ

]︄
Us(p, x), (5.49)

where
πλp (ϕ) = pλ − eAλ(ϕ) + e(pA(ϕ))

p−
nλ − e2A2(ϕ)

2p−
nλ (5.50)

is the classical kinetic four-momentum of an electron in the plane-wave Aµ(ϕ), and due to the bound-
ary conditions it satisfy limϕ→±∞ πλp (ϕ) = pλ. The shifting relation (5.25) imply that

eiαPϕ f(ϕ)Us(p, x) = e−iαp+ f(ϕ+ α)
[︃
1 + e/n[ /A(ϕ+ α) − /A(ϕ)]

2p−

]︃
e

−
∫︁ ϕ+α

ϕ
dφ

[︂
e(pA(φ))

p−
− e2A2(φ)

2p−

]︂
Us(p, x) .

(5.51)
In addition, it is possible to obtain the Gordon identity for the Volkov states (see Appendix B.3.3)

Ūs′(p′, x)γµUs(p, x) = Ūs′(p′, x)
[︄
πµp′(ϕ) + πµp (ϕ)

2m + i
σµν [πp′(ϕ) − πp(ϕ)]ν

2m

]︄
Us(p, x) . (5.52)

Note that, some quantities can be expressed as manifestly gauge-invariant by writing them in
terms of the field strength tensor of the plane-wave

Fµν(ϕ) = ∂µAν(ϕ) − ∂νAµ(ϕ) = nµA′ ν(ϕ) − nνA′µ(ϕ) (5.53)

and its integral

Fµν(ϕ) =
∫︂ ϕ

−∞
dϕ′Fµν(ϕ′) = nµAν(ϕ) −Aµ(ϕ)nν , (5.54)

which is gauge invariant as well. For instance, the kinetic four-momentum πλp (ϕ) can be written in
the manifestly gauge-invariant form as

πλp (ϕ) = pλ − epµFµλ(ϕ)
p−

+ e2pµFµρ(ϕ)Fρν(ϕ)pν
2p3

−
nλ. (5.55)

5.4.2 Feynman rules for Volkov states
In this section, we present the Feynman rules used to compute transition amplitudes in the presence of
a plane-wave field within the Furry picture [87]. These rules, in the coordinate space, follow the same
structure as in vacuum and they include the interaction with the plane-wave field exactly through
the Volkov propagator and states.

The value of a diagram consist of the following factors:

• For each internal fermion propagator, iG(x, x′).

• For each internal photon propagator, −iDµν(x− x′).

• For each fermion-fermion-photon vertex, −ieγµ.
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• For each incoming photon, eµl (q) e−i(qx).

• For each outgoing photon, e∗µ
l (q) ei(qx).

• For each incoming fermion, Us(p, x).

• For each outgoing fermion, Ūs(p, x).

• For each incoming anti-fermion, V̄s(p, x).

• For each outgoing anti-fermion, Vs(p, x).

Additionally, for each vertex, an integral over the space-time coordinates
∫︁
d4x must be included.

These rules reduce to the vacuum Feynman rules for Aµ = 0.

5.5 One-loop vertex correction in a plane-wave field
In this section, we present the calculation of the one-loop vertex correction corresponding to the
Feynman diagram in Fig. 5.2. For this amplitude, we assume that the external photon with four-
momentum qµ is outgoing and off-shell (q2 ̸= 0), the electron at the initial and final position is
real, i.e., the four-momenta p and p′ are on-shell (p2 = p′ 2 = m2). We denote by s (s′) the spin
quantum number of the incoming (outgoing) electron and by l the polarization quantum number of
the outgoing photon. Then, using Feynman rules (see Section 5.4.2), the amplitude for the one-loop
vertex correction in a plane-wave field can be expressed as

−ieΓs,s′,l(p, p′, q) =
∫︂
d4x d4y d4z Ūs′(p′, y) (−ieγλ) iG(y, z) (−ie)/e∗

l (q)e
i(qz) iG(z, x)

× (−ieγν) Us(p, x) (−i)Dλν(x− y),
(5.56)

where, eµl (q) is the polarization four-vector of the outgoing photon and, for the photon propagator
(5.38), we choose the Feynman gauge (ξ = 1) such that

Dλν(x) =
∫︂

d4k

(2π)4
ηλν

k2 − κ2 + i0e
−i(kx), (5.57)

with κ2 the square of a fictitious photon mass, which has been introduced to avoid infrared divergences.

Figure 5.2: Feynman diagram for the one-loop vertex correction in a plane-wave field. The double lines indicates
that the electron/positron states and propagators include the exact interaction with plane-wave field.

Now, we can choose to write the internal propagators as operators (see equations (5.46) and
(5.47)) or as Green’s functions (see equation (5.48)). We choose to use operators since with the use
of the completeness relation in (5.9), we can immediately remove two of the integrals such that

−ieΓs,s′,l(p, p′, q) = −e3
∫︂
d4x

∫︂
d4k

(2π)4
1

k2 − κ2 + i0 Ūs
′(p′, x)ei(kx)γλGei(qx)/e

∗
l (q)Ge−i(kx)γλUs(p, x) .

(5.58)
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Now the internal propagator can be expressed as in (5.46) and (5.47) to obtain a semi-operator
representation of the amplitude

−ieΓs,s′,l(p, p′, q) = −e3
∫︂
d4x

∫︂
d4k

(2π)4
1

k2 − κ2 + i0 Ūs
′(p′, x)γλ[/Π(ϕ) + /k +m]

× 1
[/Π(ϕ) + /k]2 −m2 + i0

ei(qx)/e
∗
l (q)

1
[/Π(ϕ) + /k]2 −m2 + i0

[/Π(ϕ) + /k +m]γλUs(p, x) .

(5.59)

Here, we have used the translation properties in (5.23). Using the fact that the operator Πµ(ϕ) satisfy
Dirac equation [/Π(ϕ) −m]Us(p, x) = [/Π(ϕ) −m]Us′(p′, x) = 0, we obtain3

−ieΓs,s′,l(p, p′, q) = −e3
∫︂
d4x

∫︂
d4k

(2π)4
1

k2 − κ2 + i0 Ūs
′(p′, x)[2Πλ(ϕ) + γλ/k] 1

[/Π(ϕ) + /k]2 −m2 + i0

× ei(qx)/e
∗
l (q)

1
[/Π(ϕ) + /k]2 −m2 + i0

[2Πλ(ϕ) + /kγλ]Us(p, x).

(5.60)

We use the eigenvalue relation (5.49) for Πµ(ϕ) to obtain

−ieΓs,s′,l(p, p′, q) = −e3
∫︂
d4x

∫︂
d4k

(2π)4
1

k2 − κ2 + i0 Ūs
′(p′, x)

[︄
2πλp′(ϕ) + i

e/n /A
′(ϕ)

p′
−

nλ + γλ/k

]︄

× 1
[/Π(ϕ) + /k]2 −m2 + i0

ei(qx)/e
∗
l (q)

1
[/Π(ϕ) + /k]2 −m2 + i0

×

[︄
2πp,λ(ϕ) + i

e/n /A
′(ϕ)

p−
nλ + /kγλ

]︄
Us(p, x).

(5.61)

At this point, it is convenient to use the representation in (5.46) for the first square Volkov propagator
and (5.47) for the second. Then, we obtain

− ieΓs,s′,l(p, p′, q) = e3
∫︂
d4x

∫︂
d4k

(2π)4

∫︂ ∞

0
ds

∫︂ ∞

0
du

ei(qx)

k2 − κ2 + i0

× Ūs′(p′, x)
[︄

2πλp′(ϕ) + i
e/n /A

′(ϕ)
p′

−
nλ + γλ/k

]︄
e−im2se−2is(p−−q−+k−)(Pϕ−k++q+)

× e
−i
∫︁ s

0
ds′[p⊥−q⊥+k⊥−eA⊥(ϕ+2s′(p−−q−+k−))]2

{︃
1 + e/n[ /A(ϕ+ 2s(p− − q− + k−)) − /A(ϕ)]

2(p− − q− + k−)

}︃
× /e

∗
l (q)e

−im2u

{︃
1 − e/n[ /A(ϕ− 2u(p− + k−)) − /A(ϕ)]

2(p− + k−)

}︃
e

−i
∫︁ u

0
du′[p⊥+k⊥−eA⊥(ϕ−2u′(p−+k−))]2

× e−2iu(p−+k−)(Pϕ−k+)

[︄
2πp,λ(ϕ) + i

e/n /A
′(ϕ)

p−
nλ + /kγλ

]︄
Us(p, x),

(5.62)

where we have exploited the fact that Volkov states are eigenstates of the operators PT and P⊥ as
in (5.18). Indeed, the only operator remaining in this equation is Pϕ. Now, we use the translation
property in (5.25) which imply (5.51) and, analogously to the vacuum case, we write the amplitude
−ieΓs,s′,l(p, p′, q) in the form

−ieΓs,s′,l(p, p′, q) = −ie
∫︂
d4x ei(qx)Ūs′(p′, x)Γµ(p, p′, q;ϕ)Us(p, x)e∗

l,µ(q), (5.63)

3Here, we use the commutator {γµ, γν} = 2ηµν .
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where

−ieΓµ(p, p′, q;ϕ) = e3
∫︂

d4k

(2π)4

∫︂ ∞

0
ds

∫︂ ∞

0
du

e−im2(s+u)

k2 − κ2 + i0

× e2ik+[s(p′
−+k−)+u(p−+k−)]e

i

{︂
p′

+(ϕs−ϕ)+
∫︁ ϕs

ϕ
dϕ′
[︂

−
ep′

⊥·A⊥(ϕ′)

p′
−

+
e2A2

⊥(ϕ′)

2p′
−

]︂}︂
× e

−i
∫︁ s

0
ds′[p′

⊥+k⊥−eA⊥(ϕs′ )]2
e

−i
∫︁ u

0
du′[p⊥+k⊥−eA⊥(ϕu′ )]2

× e
i

{︂
−p+(ϕu−ϕ)−

∫︁ ϕu

ϕ
dϕ′
[︂

− ep⊥·A⊥(ϕ′)
p−

+
e2A2

⊥(ϕ′)
2p−

]︂}︂
Mµ(ϕ, k, s, u).

(5.64)

Here, we have introduced the quantities

ϕs = ϕ+ 2s(p′
− + k−), (5.65)

ϕu = ϕ− 2u(p− + k−), (5.66)

and the matrix

Mµ(k, s, u;ϕ) =
{︃

1 − e/n[ /A(ϕs) − /A(ϕ)]
2p′

−

}︃[︄
2πλp′(ϕs) + i

e/n /A
′(ϕs)
p′

−
nλ + γλ/k

]︄

×
{︃

1 + e/n[ /A(ϕs) − /A(ϕ)]
2(p′

− + k−)

}︃
γµ
{︃

1 − e/n[ /A(ϕu) − /A(ϕ)]
2(p− + k−)

}︃
×

[︄
2πp,λ(ϕu) + i

e/n /A
′(ϕu)
p−

nλ + /kγλ

]︄{︃
1 + e/n[ /A(ϕu) − /A(ϕ)]

2p−

}︃
.

(5.67)

The phase in (5.64) can be written in a compact form by turning the integral from ϕ to ϕs (from
ϕ to ϕu) into an integral in s′ (u′) like that in the third line of (5.64). Using Schwinger parameters,
we can exponentiate the denominator k2 − κ2 + i0 in the photon propagator and then the quantity
Γµ(p, p′, q;ϕ) can be written as

Γµ(p, p′, q;ϕ) = e2
∫︂

d4k

(2π)4

∫︂ ∞

0
ds

∫︂ ∞

0
du

∫︂ ∞

0
dt eiSk

2−iκ2t+2i(kF̃ )Mµ(k, s, u;ϕ), (5.68)

where S = u+ s+ t and
F̃µ =

∫︂ s

0
ds′πµp′(ϕs′) +

∫︂ u

0
du′πµp (ϕu′). (5.69)

As next step, we can perform the integrals in d4k analytically by shifting the four-momentum kµ by
setting k′µ = kµ + F̃µ/S, which, since all components of F̃µ except F̃− depend on k−, implies that
kµ = k′µ − G̃µ/S, where

G̃µ =
∫︂ s

0
ds′πµp′(ψ̃s′) +

∫︂ u

0
du′πµp (ψ̃u′), (5.70)

such that G̃− = F̃− = sp′
− + up−. Here, we have introduced the two shifted phases

ψ̃s = ϕ+ 2sτ ′
− + 2sk−, (5.71)

ψ̃u = ϕ− 2uτ− − 2uk−, (5.72)

where

τ ′
− = p′

− − G̃−

S
=
tp′

− − uq−

S
, (5.73)

τ− = p− − G̃−

S
= tp− + sq−

S
. (5.74)

After the shift of the four-momentum kµ, we can write Γµ(p, p′, q;ϕ) in the form

Γµ(p, p′, q;ϕ) = e2
∫︂ ∞

0
dsdudt

∫︂
d4k

(2π)4 e
−iκ2t−i G̃2

S +iSk2
L̃(Q̃′λ + γλ/k)C̃µ(Q̃λ + /kγλ)R̃, (5.75)
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where

L̃ = 1 − e/n[ /A(ψ̃s) − /A(ϕ)]
2p′

−
, (5.76)

Q̃λ = 2πλp (ψ̃u) + i
e/n /A

′(ψ̃u)
p−

nλ −
/̃G

S
γλ, (5.77)

C̃µ =
{︃

1 + e/n[ /A(ψ̃s) − /A(ϕ)]
2(τ ′

− + k−)

}︃
γµ
{︃

1 − e/n[ /A(ψ̃u) − /A(ϕ)]
2(τ− + k−)

}︃
, (5.78)

Q̃′λ = 2πλp′(ψ̃s) + i
e/n /A

′(ψ̃s)
p′

−
nλ − γλ

/̃G

S
, (5.79)

R̃ = 1 + e/n[ /A(ψ̃u) − /A(ϕ)]
2p−

. (5.80)

The integral in d4k in Γµ(p, p′, q;ϕ) is complicated by the fact that the variable k− is contained
in the argument of the four-vector potential of the plane-wave. Thus, we first compute the integral
in d2k⊥, which is Gaussian, so that we obtain

Γµ(p, p′, q;ϕ) = −iα
∫︂ ∞

0

dsdudt

S

∫︂
dk−dk+

(2π)2 e−iκ2t−i G̃2
S +2iSk−k+M̃µ(k−, k+, s, u, t;ϕ), (5.81)

where

M̃µ(k−, k+, s, u, t;ϕ) =L̃
[︃
(Q̃′λ + k−γ

λ /̃n)C̃µ(Q̃λ + k− /̃nγλ) − i

2S γ
λγ⊥,iC̃

µγ⊥,iγλ

]︃
R̃

+ k+L̃[γλ/nC̃µ(Q̃λ + k− /̃nγλ) + (Q̃′λ + k−γ
λ /̃n)C̃µ/nγλ]R̃+ k2

+L̃γ
λ/nγµ/nγλR̃ .

(5.82)

Finally, the integral in dk+ results in a delta function and its first and second derivatives all evaluated
at 2Sk−. This allows us to then compute the integral in dk− and, after straightforward manipulations,
the resulting expression of Γµ(p, p′, q;ϕ) can be written as

Γµ(p, p′, q;ϕ) = − iα

4π

∫︂ ∞

0

dsdudt

S3 e−iκ2t

{︃
e−i G̃2

S L̃(SQ̃′λC̃µQ̃λ + 2iC̃µ)R̃

+ i

2
d

dk−

[︂
e−i G̃2

S L̃(γλ/nC̃µQ̃λ + Q̃′λC̃µ/nγλ)R̃
]︂

+ /n

S
nµ

d2

dk2
−

(︂
e−i G̃2

S

)︂}︃⃓⃓⃓⃓
k−=0

,

(5.83)

and after taking the derivative of the exponential, we get

Γµ(p, p′, q;ϕ) = − iα

4π

∫︂ ∞

0

dsdudt

S3 e−iκ2t−i G̃2
S

×

{︄
L̃

[︃
SQ̃′λC̃µQ̃λ + 2iC̃µ + 1

2S
dG̃2

dk−
(γλ/nC̃µQ̃λ + Q̃′λC̃µ/nγλ)

]︃
R̃

+ i

2
d

dk−

[︁
L̃(γλ/nC̃µQ̃λ + Q̃′λC̃µ/nγλ)R̃

]︁
− /n

S2n
µ

[︄
1
S

(︃
dG̃2

dk−

)︃2

+ i
d2G̃2

dk2
−

]︄}︄⃓⃓⃓⃓
⃓
k−=0

.

(5.84)

This expression can be further manipulated especially to simplify its matrix structure. However, it
is first convenient to make the following considerations related to the Ward identity to be fulfilled by
Γµ(p, p′, q;ϕ) [150]. From now on we assume that q− > 0. Thus, by using the three four-vectors

Nµ = qµ − q2nµ

2q−
, (5.85)

Λµi = aµi + q⊥,in
µ

q−
, (5.86)
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with i = 1, 2 together with nµ, one can build a light-cone basis such that

ηµν = Nµnν + nµNν

q−
− Λµ1 Λν1 − Λµ2 Λν2 . (5.87)

Then, taking into account that we work in the Lorenz gauge where (qe∗
l (q)) = 0, the quantity

Γµ(p, p′, q;ϕ)e∗
l,µ(q) can be written as

Γµ(p, p′, q;ϕ)e∗
l,µ(q) =

e∗
l,−(q)
q−

Γq(p, p′, q;ϕ) −
q2e∗

l,−(q)
q2

−
Γ−(p, p′, q;ϕ)

− (Γ(p, p′, q;ϕ)Λ1)(Λ1e
∗
l (q)) − (Γ(p, p′, q;ϕ)Λ2)(Λ2e

∗
l (q)) ,

(5.88)

where Γq(p, p′, q;ϕ) = (Γµ(p, p′, q;ϕ)qµ) and Γ−(p, p′, q;ϕ) = (Γµ(p, p′, q;ϕ)nµ). Notice that due to
the gauge invariance of QED the term Γq(p, p′, q;ϕ) does not contribute to any transition amplitude
since, due to the Ward identity, this term cancels out exactly (see [110] for a detailed proof). Then,
from now on we can forget about the term Γq(p, p′, q;ϕ) and express the amplitude as

Γµ(p, p′, q;ϕ)e∗
l,µ(q) = −

[︄
q2e∗

l,−(q)
q2

−
+ q⊥,1

q−
(Λ1e

∗
l (q)) + q⊥,2

q−
(Λ2e

∗
l (q))

]︄
Γ−(p, p′, q;ϕ)

+ Γ⊥,1(p, p′, q;ϕ)(Λ1e
∗
l (q)) + Γ⊥,2(p, p′, q;ϕ)(Λ2e

∗
l (q)) ,

(5.89)

with Γ⊥,j(p, p′, q;ϕ) = −(Γµ(p, p′, q;ϕ)aj,µ). Now, we should notice that it is easier to work with the
terms Γ−(p, p′, q;ϕ) and Γ⊥,j(p, p′, q;ϕ) since in these components many terms will cancel due to the
quantities nµ and aµi .

First, we consider the component Γ−(p, p′, q;ϕ), whose structure is particularly easy. In fact,
starting from (5.83), we have that4

Γ−(p, p′, q;ϕ) = − iα

4π

∫︂ ∞

0

dsdudt

S3 e−iκ2t−iG2
S

(︁
SLQ′λ/nQλR+ 2i/n

)︁
= − iα

2π

∫︂ ∞

0

dsdudt

S3 e−iκ2t−iG2
S

[︃(︃
2S(πsπu) + G2

S
+ i

)︃
/n− 2G−(/πsR+ L/πu)

−/G/πs/n− /n/πu /G+ 2τ−L/G+ 2τ ′
− /GR+ 2G−

S
/G−

G2
−
S

/∆s/n /∆u

p−p′
−

]︃
,

(5.90)

where

πµs = πµp′(ψs), ∆µ
s = e[Aµ(ψs) −Aµ(ϕ)], L = 1 − /n /∆s

2p′
−
, ψs = ϕ+ 2sτ ′

−, (5.91)

πµu = πµp (ψu), ∆µ
u = e[Aµ(ψu) −Aµ(ϕ)], R = 1 + /n /∆u

2p−
, ψu = ϕ− 2uτ−, (5.92)

Cµ =
(︃

1 + /n /∆s

2τ ′
−

)︃
γµ
(︃

1 − /n /∆u

2τ−

)︃
, Gµ =

∫︂ s

0
ds′πµp′(ψs′) +

∫︂ u

0
du′πµp (ψu′), (5.93)

Qλ = 2πλu + i
e/n /A

′(ψu)
p−

nλ −
/G

S
γλ, Q′λ = 2πλs + i

e/n /A
′(ψs)
p′

−
nλ − γλ

/G

S
. (5.94)

Finally, for the calculation of the components Γ⊥,j(p, p′, q;ϕ) we can effectively assume that the
matrix /n anticommutes with γµ. In the following four equations, with an abuse of notation, we use
the equal symbol also for two matrices that are equal to each other up to terms proportional to nµ,
which can anyway be ignored in the computation of Γ⊥,j(p, p′, q;ϕ). Going through the terms in Eq.

4The quantities with and without ‘tilde’ are related after setting k− = 0, for instance, G̃|k−=0 = G
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(5.84) in order of complexity, one can easily show that

LCµR = γµ + G−

2p′
−τ

′
−S

/n /∆sγ
µ − G−

2p−τ−S
γµ/n /∆u , (5.95)

L(γλ/nCµQλ +Q′λCµ/nγλ)R = −2τ−

p′
−
/n /∆sγ

µ +
2τ ′

−
p−

γµ/n /∆u − 4G−

S
γµ + 4Gµ

S
/n

− 2/nγµ/πs − 2/πuγ
µ/n ,

(5.96)

d

dk−

[︁
L̃(γλ/nC̃µQ̃λ + Q̃′λC̃µ/nγλ)R̃

]︁
k−=0 = 8

(︃
Gµ1
S

− sτ−

p′
−

A′µ
s +

uτ ′
−
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A′µ
u
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/n

+ 4s
(︃

1 + τ−

p′
−

)︃
/nγµ /A′

s − 4u
(︃

1 +
τ ′

−
p−
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/A′
uγ

µ/n

(5.97)

and

LQ′λCµQλR = 4(πsπu)
(︃
γµ + G−

2p′
−τ

′
−S

/n /∆sγ
µ − G−

2p−τ−S
γµ/n /∆u

)︃
+ 2i τ−

p′
−
/n/A′

sγ
µ + 2i

τ ′
−
p−
γµ/n/A′

u − 2
S
LCµ /G/πsR− 2

S
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− 2
S2L/G

(︃
γµ + γµ /∆s/n

2τ ′
−

−
/∆u/nγ

µ

2τ−

)︃
/GR .

(5.98)

Here, we have used integration by parts to re-express dG̃
dk−

⃓⃓⃓
k−=0

as twice G1:

Gµ1 = d

dϕ

[︃∫︂ s

0
ds′ s′πµp′(ψs′) −

∫︂ u

0
du′ u′πµp (ψu′)

]︃
= 1
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−

[︃
sπµp′(ψs) −

∫︂ s

0
ds′πµp′(ψs′)

]︃
+ 1

2τ−

[︃
uπµp (ψu) −

∫︂ u

0
du′πµp (ψu′)

]︃
,

(5.99)

we have further introduced
Aµ
s/u = eAµ(ψs/u) , (5.100)

for which the prime on these quantities indicates the derivative with respect to ϕ.
Then, putting all together, we obtain the following expressions of the transverse components

Γ⊥,i(p, p′, q;ϕ):

Γ⊥,j(p, p′, q;ϕ) = iα

2π

∫︂ ∞

0

dsdudt

S3 e−iκ2t−iG2
S

×
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(2S(πsπu) + i)
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2p′
−τ

′
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S
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− 2(GG1)
S
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−
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τ ′
−
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S
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S
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)︃
+ 2i

(︃
(G1aj)
S

+ s(A′
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+i
[︃
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p′
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]︃
/A′
s/n/aj − i

[︃
u− (s+ t)

τ ′
−
p−

]︃
/aj/n/A

′
u

}︃
.

(5.101)

Finally, we observe that all the terms in equations (5.89), (5.90), and (5.101) have at most three
gamma matrices except the three terms on the third line of (5.101). These three terms can be easily
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reduced to expressions containing at most five gamma matrices. For the first, we have

L(Caj)/G/πsR =
(︃
/aj + G−

2Sp′
−τ

′
−
/n /∆s/aj − G−

2Sp−τ−
/aj/n /∆u
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2Sp′
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−∆2
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(5.102)

For the second, we have

L/πu /G(Caj)R = /πu /G
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′
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2p′

−τ
′
−
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(5.103)

And for the third, we have

L/G
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/aj /∆s/n
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(5.104)

In order to compute, for example, the probability of nonlinear Compton scattering at second order
in α with the above obtained amplitude, it is required to square the sum of the leading order correction
in Fig. 5.3 and all the radiative corrections at one-loop order (corresponding to the diagrams in Figs.
5.2 and 5.6). And, to compute the square of such quantities it is necessary to calculate the trace of
gamma matrices along with the remaining integrals. However, to simplify this task and avoid lengthy
calculations during the final stage, it is important to simplify the matrix structure of the amplitude
as much as possible.

Figure 5.3: Feynman diagram for the leading contribution to nonlinear Compton scattering. The double lines
represent the exact electron states in a plane-wave field (Volkov states).
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Note that, we can further reduce the number of gamma matrices, in the terms with three or more,
by using following the identity

/A/B /C = 1
4tr(γµ /A/B /C)γµ − 1

4tr(γ5γµ /A/B /C)γ5γµ

= /A(BC) − /B(AC) + /C(AB) + iεµνλργ
5γµAνBλCρ,

(5.105)

where γ5 = iγ0γ1γ2γ3 and εµνλρ is the completely antisymmetric tensor with ε0123 = +1, which is
valid for three arbitrary four-vectors Aµ, Bµ, and Cµ. However, this reduces the number of gamma
matrices but increases the number of terms.

In the next section, we will further investigate the structure of the vertex correction and discuss
its divergences.

5.6 Renormalization of the one-loop vertex correction

We can see that if we expand the vertex correction Γs,s′,l(p, p′, q) respect to the vector potential, the
only ultraviolet divergence will be the same present in vacuum. Then, the regularization of the vertex
correction can be carried out in exactly the same way as in vacuum. Since the Volkov states for the
limit of zero fields reduce to the vacuum states, we can perform the regularization in the quantity
Γµ(p, p′, q;ϕ) by subtracting the vacuum expression Λ(1)µ(p, p′) in (5.31) evaluated for qµ = 0 and
for /p = /p

′ = m (see [150] for the vacuum case and [108, 109] for the constant crossed field case).
Therefore the regularized amplitude for the vertex correction is obtained via

ΓµR(p, p′, q;ϕ) = Γµ(p, p′, q;ϕ) − Λ(1)µ(p, p)|/p=m , (5.106)

where Λ(1)µ(p, p)|/p=m is given by (5.36). From the expression (5.36) and since qµ = 0, it is clear that
Λ(1)µ(p, p)|/p=m has only components Λ(1)µ

− (p, p)|/p=m and Λ(1)µ
⊥,j (p, p)|/p=m, and then that ΓR,q(p, p′, q;ϕ) =

Γq(p, p′, q;ϕ), which can be shown to vanish for Aµ(ϕ) = 0.
Now, we would like to investigate the convergence properties of the proper time integrals in

ΓR,−(p, p′, q;ϕ) and ΓR,⊥,j(p, p′, q;ϕ). It is first convenient to use the following identity [123]

∫︂ ∞

0
ds

∫︂ ∞

0
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∫︂ ∞

0
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∫︂ ∞

0
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0
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0
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∫︂ ∞
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0
ds
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0
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0
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0
dS S2

∫︂ 1

0
dx

∫︂ 1

0
dy

∫︂ 1

0
dz δ(1 − x− y − z),

(5.107)

where in the last line we performed the changes of variables s = xS, u = yS, and t = zS. By setting

∫︂
δ

dxdydz =
∫︂ 1

0
dx

∫︂ 1

0
dy

∫︂ 1

0
dz δ(1 − x− y − z), (5.108)

it is instructive to report the expression of Λ(1)µ(p, p)|/p=m in terms of the new variables:

Λ(1)µ(p, p)|/p=m = −i α2πγ
µ

∫︂ ∞

0
dS

∫︂
δ

dxdydz e−iκ2zS−im2(x+y)2S

{︃
m2[2z − (x+ y)2] + i

S

}︃
, (5.109)

because it clearly shows that only the term whose integrand is proportional to i is (logarithmically)
divergent (in the limit S → 0). This divergence is related with the ultraviolet logarithmic divergence
of the vertex-correction function. Keeping in mind that z = 1−x−y, see (5.108), another divergence
for x+ y → 0 arises for a massless photon (κ2 = 0), which corresponds to the infrared divergence of
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the vertex-correction function. By means of the above change of variables, we obtain

ΓR,−(p, p′, q;ϕ) = α

2π /n
∫︂ ∞
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(5.110)

and

ΓR,⊥,j(p, p′, q;ϕ) = − α

2π /aj
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(5.111)

where
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(5.114)
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(a) (b) (c)

Figure 5.4: One-loop vertex corrections to (a) nonlinear Compton scattering, (b) nonlinear Breit-Wheeler pair
production, and (c) nonlinear Bethe-Heitler pair production. The double lines indicates that the electron/positron
states and propagators include the exact interaction with plane-wave field.

and where it is clear that also in the case of ΓR,⊥,j(p, p′, q;ϕ) the only term requiring regularization is
the one analogous to that in the first line of equation (5.110). Due to the above change of variables,
the various quantities appearing in ΓR,−(p, p′, q;ϕ), and ΓR,⊥,j(p, p′, q;ϕ) have to be interpreted as

τ ′
− = zp′

− − yq− = (1 − x− y)p′
− − yq−, πµs = πµp′(θ′

S), ∆µ
s = Aµ(θ′

S) − Aµ(ϕ), (5.115)
τ− = zp− + xq− = (1 − x− y)p− + xq−, πµu = πµp (θS), ∆µ

u = Aµ(θS) − Aµ(ϕ), (5.116)

where

θ′
S = ϕ+ 2xτ ′

−S = ϕ+ 2x[(1 − x− y)p′
− − yq−]S, (5.117)

θS = ϕ− 2yτ−S = ϕ− 2y[(1 − x− y)p− + xq−]S. (5.118)

The formal definitions of the other quantities like L, R, Cµ, Qλ, and Q′λ remain unchanged and
the additional quantities

gµ = Gµ

S
= x

∫︂ 1

0
dη πµp′(θ′

ηS) + y

∫︂ 1

0
dη πµp (θηS) (5.119)

and
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0
dη ηπµp′(θ′
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0
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ηS)
]︃

= x

2τ ′
−S

[︃
πµp′(θ′

S) −
∫︂ 1

0
dη πµp′(θ′

ηS)
]︃

+ y

2τ−S

[︃
πµp (θS) −

∫︂ 1

0
dη πµp (θηS)

]︃
,

(5.120)

which is regular in the limit S → 0 (and also in the limits τ− → 0 and τ ′
− → 0), have been also

introduced.

5.7 Properties of the one-loop vertex correction
Here, the main result for one-loop vertex correction in a plane-wave field −ieΓs,s′,l(p, p′, q) in (5.63)
is given by the equations (5.89), (5.110), and (5.111). These expression, when the background field
is turned off, reduce to the known result in vacuum, in particular, the one presented in Section 5.3
and in [150]. These results are free of ultraviolet divergences and the infrared divergences have been
avoided by assigning a positive mass κ to the photon. The infrared divergence in the case of a massless
photon must be removed to properly evaluate the components ΓR,−(p, p′, q;ϕ) and ΓR,⊥,j(p, p′, q;ϕ)
numerically. For this purpose, this divergence must be further studied along the lines of [176, 188].

Notice that the integrals with respect to d4x = dϕ dT d2x⊥ in −ieΓs,s′,l(p, p′, q) in (5.63) can
be performed only for T and x⊥ which lead to Dirac-delta functions for the conservations laws
p− = p′

− + q− and p⊥ = p′
⊥ + q⊥. The ϕ integral can not be performed at this point since we are

assuming that the vector potential Aµ(ϕ) is arbitrary and depends on the ϕ coordinate.
In Section 5.3, we mentioned that from the physical consequence of the vacuum vertex correction

Λ(1)µ
R (p, p′) in (5.37) is the possible extraction of the anomalous magnetic moment of the electron.



84 Electron propagator in a plane-wave field: One-loop vertex correction

(a) (b) (c)

Figure 5.5: Loop corrections the nonlinear trident pair production involving the one-loop vertex correction: (a) and
(b) one-loop, and (c) two-loop. The double lines indicates that the electron/positron states and propagators include
the exact interaction with plane-wave field.

This could suggest to compute the correction to the magnetic moment in the present case of the
vertex correction in a plane-wave field, nevertheless it is difficult because the electron interacts with
the total magnetic field which contains the magnetic field from the external photon and from the
plane-wave. And since it is assumed that the magnetic field from the plane wave is much stronger, we
find the calculation of the anomalous moment to be more suitable when considering only the presence
of the plane wave, as presented in [104].

The fact that the external photon, in our main result, is off-shell allows to use the amplitude
−ieΓs,s′,l(p, p′, q) as a building block to compute loop-corrections of nonlinear quantum processes in
the presence of an arbitrary plane-wave. For instance, in QED, we can use it to compute the nonlinear
one-loop corrections to Compton scattering, Breit-Wheeler and Bethe-Heitler pair production as
shown in Fig. 5.4. Furthermore, it can be used to obtain the one- and two-loop corrections to the
trident pair production, as in Fig. 5.5, although such calculation is already challenging at tree level
[95, 96].

The amplitude −ieΓs,s′,l(p, p′, q) is invariant under gauge transformations of the plane-wave field
and of the interaction field, in particular, referring to the internal photon propagator. From equation
(5.75) and due to the fact that the kinetic four-momentum of an electron in a plane-wave πµp (ϕ)
is gauge invariant (see (5.55)), it is easy to see that −ieΓs,s′,l(p, p′, q) is invariant under a gauge
transformation of the external plane-wave field, or in other words, by the replacement of the four-
vector potential Aµ(ϕ) with Aµ(ϕ) + ∂µf(ϕ) = Aµ(ϕ) + nµf ′(ϕ), for an arbitrary function f(ϕ) that
depends only on the parameter ϕ. Furthermore, it is straightforward to show that by choosing the
photon propagator in an arbitrary gauge, as in equation (5.38), the additional term coming from the
gauge-parameter dependence has the same structure as the tree-level vertex amplitude. At this point,
we can follow the same procedure as in vacuum (see Section 5.3 and Ref. [150]) to absorb such term
in the renormalization of the electric charge.

The amplitude −ieΓs,s′,l(p, p′, q) is not by itself gauge invariant respect to the external photon, in
other words, this amplitude alone does not satisfy the Ward identity. However, the gauge invariance of
QED ensures that the sum of all the one-loop corrections to the nonlinear Compton scattering with an
external off-shell photon (corresponding to the diagrams of Figs. 5.2 and 5.6) fulfill the Ward identity.

(a) (b) (c)

Figure 5.6: One-loop corrections to nonlinear Compton scattering in a plane-wave field. (a) and (b) having as
sub-diagram the mass operator. (c) the contribution with the polarization operator as sub-diagram. The double lines
indicates that the electron/positron states and propagators include the exact interaction with plane-wave field.
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In [183, 160], it is shown that the correction in Fig. 5.6c is by itself gauge invariant. Then, if we denote
by iM(1)

s,s′,µ(p, p′, q) e∗µ
l (q) the amplitude resulting from the sum of the corrections corresponding to

the diagrams in Figs. 5.2, 5.6a and 5.6b, we can easily show that M(1)
s,s′,µ(p, p′, q) qµ = 0. In such

a calculation, we can see the component Γq(p, p′, q;ϕ) is exactly canceled by the vertex corrections
corresponding to Figs. 5.6a and 5.6b, see [110].

In [108, 109], it is shown that the ratio between the one-loop vertex correction and the vertex
function (tree level) in a constant crossed field for strong fields (ξ0 ≫ 1, χ0 ≫ 1) scales as αχ2/3

0 in
agreement with the Ritus-Narozny conjecture [104, 105, 106, 107]. The same fact can be confirmed,
using the expressions in this chapter, for the case of the one-loop vertex correction in a plane-wave
field. However, the analysis carried out in [110] shows that the terms scaling as αχ2/3

0 do not contribute
to any transition amplitudes since those come from the quantity Γq(p, p′, q;ϕ) (the same argument
apply for the scaling in [108, 109]). Then, the dominant scaling for transition amplitude is provided
by the components ΓR,−(p, p′, q;ϕ) and ΓR,⊥,j(p, p′, q;ϕ) which scale as αχ1/3

0 .
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Chapter 6

Conclusions

In this thesis, we studied various nonlinear processes in the presence of background fields, at the
amplitude level. We have explicitly demonstrated the importance of off-shell amplitudes in the
computation of quantum corrections for phenomena involving the interaction with background fields.
Specifically, we have employed the fully off-shell four-photon amplitudes within the worldline formal-
ism to obtain the circularly polarized amplitudes and cross sections for the scattering of low-energy
photons by a Coulomb field (Delbrück scattering) [18, 19]. In this application of the four-photon am-
plitudes, the results obtained are in agreement with known results for spinor QED [17] and represent
novel results for the scalar QED case.

The low-energy limit of the off-shell one-loop N -photon amplitudes in the presence of a constant
background field was calculated for two different field configurations: parallel magnetic and electric
fields and a constant crossed field. In both cases compact expressions were obtained for scalar and
spinor QED, leaving only one proper-time integral left.

In the case of parallel magnetic and electric fields, we specialize our expressions to the case of the
four-photon amplitudes in a pure magnetic field at low energies, expressing the results in terms of
one proper-time integral, for which we provide a list of analytical results in Appendix C. However,
a more detailed analysis of the polarized and total cross sections is still in preparation. In future
work, the analysis of the helicity components for these N -photon amplitudes within the framework
of Section 2.2 is under consideration, given the advantages of the helicity formalism in calculating
photonic amplitudes.

For a constant crossed field, we also obtain the helicity components by applying the techniques
presented in [50, 51] (Sections 2.2 and 2.3). In this case, every integral can be carried out analyti-
cally, and it is clear that a double Furry theorem is no longer valid due to the interaction with the
background field.

We have observed that in the high-field and high-energy limit of the N -photon amplitudes in a
constant crossed field, the leading contributions may arise from the tails (3.10). Then, it is interesting
to study the scaling with respect to the quantum nonlinearity parameter χ0 (1.6) for such amplitudes
in future work. Given that the photons are off-shell, this approach can also be used to study the
scaling with respect to χ0 of multi-loop amplitudes, which is related to the Ritus-Narozhny conjecture
[104, 164, 105, 106, 107].

In addition, we obtained the N -photon amplitudes in an arbitrary constant field and expressed
them as the product of infinite sums of traces. These results seem to have no practical applications,
and the only obvious property that appears is the manifest charge parity indicated by the Bernoulli
numbers.

We made use of the worldline formalism to study the amplitude of Compton scattering in the
presence of a purely magnetic background field for off-shell scalar and fermion particles and on-shell
external photons. Here, due to the complex structure of the integrand in the amplitudes, we have
assumed that the scattering occurs in the forward direction pointing along the same axis as the
magnetic field and with the polarization of the external photons being perpendicular to each other.
This allowed us to perform every integral and obtain compact expressions for the amplitudes. The
outcome of our calculations shows marks of polarization changes in the forward scattering of photons
with scalar or spinor particles in the presence of a magnetic field. However, to properly study the
birefringent Compton scattering, further analysis of the on-shell limit should be performed.

We applied the operator technique within the Furry picture and the Volkov states to compute the
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regularized amplitude of the irreducible one-loop vertex correction to nonlinear Compton scattering
in the presence of a plane-wave field background assuming that the incoming and outgoing electrons
are on-shell, and the external photon is off-shell. The final result is decomposed into the light-cone
components, which allows to obtain compact expressions. We have shown that this vertex amplitude
is invariant under gauge transformations with respect to the plane-wave background field and the
photon propagator. Given that the external photon is off-shell, this result can be used as a building
block to compute loop-corrections of nonlinear quantum processes.

We studied the strong field (ξ0 ≫ 1, χ0 ≫ 1) behavior of this vertex amplitude and found that its
scaling is in agreement with the Ritus-Narozhny conjecture. We checked the Ward identity and found
that by fulfilling this identity, the component pointing along the external photon direction does not
contribute to transition amplitudes of on-shell states. In the high-field limit, this component exhibits
a dominant scaling behavior with respect to χ0, scaling as αχ2/3

0 , while the remaining amplitude
scaling is αχ1/3

0 .
The infrared divergences in this vertex amplitude are cured by including a positive photon mass in

the photon propagator. In future work, we plan to remove these divergences using the Bloch-Nordsieck
method [176, 188], to include this result in the cross-section of nonlinear Compton scattering at the
next to leading order.



Appendix A

Conventions

In this thesis, we have used natural units ϵ0 = c = ℏ = 1 and employed both Euclidean and Minkowski
space conventions. In this section, we present the main differences between these conventions and
point out the sections or chapters in which have been employed. In adition, we present a list of the
worldline Green’s functions used in this thesis.

A.1 Euclidean space
In Chapters 2 to 4, we work within the worldline formalism in Euclidean space with metric tensor
(gµν) = diag(+1,+1,+1,+1). However, in Sections 2.5.3, 3.6.2, 4.6.2 and 4.7.2 we use Minkowski
space conventions. In the case of Sections 2.5.3 and 3.6.2, in order to use the spinor helicity formalism
it is more convenient to work in Minkowski space. In Sections 4.6.2 and 4.7.2, we express our results
within the Minkowski space conventions in order to compare with known results as well as to discuss
the physical scenario.

We use the absolute value of the electron charge e = |e|, corresponding to a covariant derivative
Dµ = ∂µ+ ieAµ. Momenta of external photons in the master formulas are ingoing. The field strength
tensor for a constant field is

F =

⎛⎜⎜⎜⎜⎜⎜⎝
0 Bz −By iEx

−Bz 0 Bx iEy

By −Bx 0 iEz

−iEx −iEy −iEz 0

⎞⎟⎟⎟⎟⎟⎟⎠ . (A.1)

The Dirac-gamma matrices in the Chiral representation (conventions for Chapters 9 and 10)

γi =
(︄

0 σi

σi 0

)︄
, γ4 = i

(︄
0 1

−1 0

)︄
, γ5 =

(︄
1 0
0 −1

)︄
. (A.2)

Minkowski space amplitudes with metric (gµνM ) = diag(−1,+1,+1,+1) are obtained by analyti-
cally continuing

(gµν) = 1 −→ (gµνM ) = diag(−1,+1,+1,+1) ,
k4 −→ −ik0 ,

T −→ is .

(A.3)

However, to obtain the convention used in this thesis an extra step should be done. This is, we replace
the metric gµνM by ηµν through

(gµνM ) = diag(−1,+1,+1,+1) = −(ηµν) . (A.4)
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A.2 Minkowski space
In Chapters 5, we work within the operator technique in Minkowski space with metric tensor (ηµν) =
diag(+1,−1,−1,−1).

We use e < 0 as value of the electron charge, corresponding to a covariant derivative Dµ =
∂µ + ieAµ.

The field strength tensor for a constant field is

Fµν =

⎛⎜⎜⎜⎜⎜⎜⎝
0 Ex Ey Ez

−Ex 0 Bz −By
−Ey −Bz 0 Bx

−Ez By −Bx 0

⎞⎟⎟⎟⎟⎟⎟⎠ . (A.5)

The Dirac-gamma matrices in the Chiral representation

γ0 =
(︄

0 1
1 0

)︄
, γi =

(︄
0 σi

−σi 0

)︄
, γ5 =

(︄
−1 0
0 1

)︄
, (A.6)

where 1 is the 2 × 2 identity matrix and σi are Pauli sigma matrices

σ1 =
(︄

0 1
1 0

)︄
, σ2 =

(︄
0 −i
i 0

)︄
, σ3 =

(︄
1 0
0 −1

)︄
. (A.7)

The Dirac-gamma matrices in the Dirac representation

γ0 =
(︄

1 0
0 −1

)︄
, γi =

(︄
0 σi

−σi 0

)︄
, γ5 =

(︄
0 1
1 0

)︄
. (A.8)

A.3 Green’s functions in vacuum
In this thesis, we mainly use re-scaled parameters ‘u’ for the worldline Green’s functions. For this
reason, we clarify the relation between the vacuum Green’s functions with ‘τ ’ parameters and the
re-scaled ones, see table A.1. For more details see [124, 123].

In table A.1, the expressions for the Green’s function follow the convention of [18, 19]. Note that,
the constant factor of ‘T/6’ is irrelevant for flat space calculations [124], for this reason, it is omitted
in the calculation of the N -photon amplitudes.

τ representation u representation: τi = T ui Comparison of reps.

GBij = |τi − τj | − 1
T (τi − τj)2 − T

6 GBij = |ui − uj | − (ui − uj)2 − 1
6 GB(τi, τj) = TGB(ui, uj)

Gij = |τi − τj | − 1
T (τi − τj)2 Gij = |ui − uj | − (ui − uj)2 G(τi, τj) = TG(ui, uj)

Ġij = sign(τi − τj) − 2
T (τi − τj) Ġij = sign(ui − uj) − 2(ui − uj) Ġ(τi, τj) = Ġ(ui, uj)

G̈ij = 2δ(τi − τj) − 2
T G̈ij = 2δ(ui − uj) − 2 G̈(τi, τj) = 1

T G̈(ui, uj)

GFij = sign(τi − τj) GFij = sign(ui − uj) GF (τi, τj) = GF (ui, uj)

Table A.1: Vacuum Green’s functions with string inspired boundary conditions.

Some obvious but useful identities, that we often use, are

Ġ
2
ij = 1 − 4Gij , (A.9)

Ġ
2
F31 = 1 , (A.10)

−GF12GF23GF31 = Ġ12 + Ġ23 + Ġ31 . (A.11)
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A.4 Green’s functions in a constant field
It is convenient to remember that in the case of a constant field we use the following convention for
the field strength tensor

Z = eF T . (A.12)

The Green’s function in a constant background with string-inspired boundary conditions and its
derivatives are [123]

GB(τ, τ ′) = T

2Z2

(︃
Z

sin Z
e−iZĠB(τ,τ ′) + iZĠB(τ, τ ′) − 1

)︃
,

ĠB(τ, τ ′) = i

Z

(︃
Z

sin Z
e−iZĠB(τ,τ ′) − 1

)︃
,

G̈B(τ, τ ′) = 2δ(τ, τ ′) − 2
T

Z
sin Z

e−iZĠB(τ,τ ′) ,

GF (τ, τ ′) = GF (τ, τ ′) e−iZĠB(τ,τ ′)

cos Z
.

(A.13)

The coincidence limit of the previous functions are

GB(τ, τ) = T

2

(︃
cot Z

Z
− 1

Z2

)︃
,

ĠB(τ, τ) = i cot Z − i

Z
,

GF (τ, τ) = −i tan Z .

(A.14)

The Green’s function in a constant background with Dirichlet boundary conditions and its deriva-
tives are [67]

∆(τ, τ ′) = 1
2 [GB(τ, τ ′) − GB(τ, 0) − GB(0, τ ′) + GB(0, 0)] ,

•∆(τ, τ ′) = 1
2

(︂
ĠB(τ, τ ′) − ĠB(τ, 0)

)︂
,

•∆•(τ, τ ′) = −1
2 G̈B(τ, τ ′) .

(A.15)

Here, we have presented a list of the worldline Green’s functions used in this thesis for more details,
see Chapters 3, 4 and references [124, 123].
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Appendix B

Talacha: Complementary details

Talacha: Spanish word defined by the dictionary as ”long and tiring mechanical work”. Here is used
to refer to the intermediate steps in a calculation to obtain the desired results.

B.1 Light-by-light scattering
B.1.1 Coincidence limit
As an example, we present the step by step calculation (adapted from [123, 170]) of the coincidence
limit of (3.14)

GFij = GFij
cos(ZĠij) − i sin(ZĠij)

cos Z
, (B.1)

and by coincidence limit, we mean GF (ui, uj) → GF (ui, ui). Here, in order to compute this limit, we
need to keep in mind that GFij and Ġij contain one sign-function σij , which has the property that
σ2
ij = 1. Then, the first step is to expand1

GFij = GFij
cos Z

[︄ ∞∑︂
n=0

c2n(ZĠij)2n − i

∞∑︂
n=0

c2n+1(ZĠij)2n+1

]︄
, (B.2)

use the σij property mentioned before, or equivalently the identity Ġ2
ij = 1 − 4Gij , to obtain

GFij = GFij
cos Z

[︄ ∞∑︂
n=0

c2nZ2n(1 − 4Gij)n − i

∞∑︂
n=0

c2n+1Z2n+1(1 − 4Gij)nĠij

]︄
. (B.3)

Now, notice that GFijĠij = 1 − 2|ui − uj |, such that

GFij = 1
cos Z

[︄
GFij

∞∑︂
n=0

c2nZ2n(1 − 4Gij)n − i

∞∑︂
n=0

c2n+1Z2n+1(1 − 4Gij)n(1 − 2|ui − uj |)
]︄
, (B.4)

and finally, since we have removed all σ2
ij , we can take the limit uj → ui and consider GFii = Gii =

Ġii = 0. Therefore, we obtain

GFij = −i 1
cos Z

∞∑︂
n=0

c2n+1Z2n+1 = −i tan Z . (B.5)

B.1.2 Calligraphic Green’s functions in a pure magnetic field
Here, we present the step by step calculation (adapted from [123, 170]) of ĠBij for a magnetic field
in z direction, as in (3.34). First, we look at the series expansion2 of ĠBij respect to Z

ĠBij = sin(ZĠij)
sin Z

+ i

[︃
cos(ZĠij)

sin Z
− 1

Z

]︃
= Ġij1 +

∞∑︂
n=1

c2nZ2n + i

∞∑︂
n=1

c2n+1Z2n+1 . (B.6)

1Here cn are constant coefficients whose exact expression in not required but can be found in terms of Bernoulli
numbers [166, 167].

2Now, the coefficients cn depend of the scalar Green’s functions Ġij .
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Here, we should look at the odd and even functions in Z such that using equation (3.32), we obtain

ĠBij = Ġij(g− + g+) +
∞∑︂
n=1

c2n(−1)nz2ng+ + i

∞∑︂
n=0

c2n+1(−1)nz2n+1r+ (B.7)

or

ĠBij = Ġijg− +
(︄
Ġij +

∞∑︂
n=1

c2n(iz)2n

)︄
g+ +

∞∑︂
n=0

c2n+1(iz)2n+1r+ , (B.8)

now comparing the even and odd parts, we can see that

ĠBij = Ġijg− + sin(izĠij)
sin(iz) g+ +

[︃
cos(izĠij)

sin(iz) − 1
iz

]︃
r+ . (B.9)

At this point, it is obvious that

ĠBij = Ġijg− + sinh(zĠij)
sinh(z) g+ −

[︃
cosh(zĠij)

sinh(z) − 1
z

]︃
ir+ . (B.10)

All other calligraphic Green’s functions in a magnetic field and for the case of Section 3.5 are computed
analogously.

B.1.3 Determinants in a pure magnetic field
As an example, we present the step by step calculation (adapted from [123, 170]) of one of the
determinants in (3.33). First, it is important to notice the following series expansion

Z
sin Z

= 1 +
∞∑︂
n=1

cnZ2n , (B.11)

where cn are constant coefficients that are not important for this calculation. Since Z2n = (−1)nz2n g+,

Z
sin Z

= g− + g+ +
∞∑︂
n=1

cn(−1)nz2n g+ = g− + iz

sin(iz)g+ . (B.12)

Then,

det
[︃

Z
sin Z

]︃
= det

[︂
g− + z

sinh z g+

]︂
=

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓

z
sinh z 0 0 0

0 z
sinh z 0 0

0 0 1 0

0 0 0 1

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓ , (B.13)

making obvious that
det1/2

[︃
Z

sin Z

]︃
= z

sinh z . (B.14)

The calculation of the spinor determinant and the determinants in Section 3.5 are similar.

B.1.4 Integration in a pure magnetic field
As an example, we compute (3.40) step by step for both bosonic and fermionic cases.

Scalar QED: First, we write the bosonic functions HB
ij explicitly

H
B(2)
13 (z1, z2) =

∫︂ 1

0
du2 H

B
12(z1)HB

23(z2) =
∫︂ 1

0
du2

(︄
ez1Ġ12

sinh z1
− 1
z1

)︄(︄
ez2Ġ23

sinh z2
− 1
z2

)︄
, (B.15)

for which, we use the following identity [123]∫︂ 1

0
du e

∑︁n

i=1
ciĠ(u,ui) =

∑︁n
i=1 sinh(ci)e

∑︁n

j=1
cjĠij∑︁n

i=1 ci
, (B.16)



B.2 Compton scattering in magnetic field 95

obtaining

H
B(2)
13 (z1, z2) = 1

(z2 − z1) sinh z1 sinh z2

(︂
e−z1Ġ31 sinh z2 + ez2Ġ13 sinh(−z1)

)︂
− 1
z1z2

, (B.17)

that simplifies to

H
B(2)
13 (z1, z2) = 1

(z2 − z1)

(︄
ez1Ġ13

sinh z1
− 1
z1

)︄
+ 1

(z1 − z2)

(︄
ez2Ġ13

sinh z2
− 1
z2

)︄
= HB

13(z1)
z2 − z1

+ HB
13(z2)

z1 − z2
.

(B.18)

Spinor QED: First, we write the fermionic functions HF
ij explicitly

H
F (2)
13 (z1, z2) =

∫︂ 1

0
du2 H

F
12(z1)HF

23(z2) =
∫︂ 1

0
du2

(︄
GF12

ez1Ġ12

cosh z1

)︄(︄
GF23

ez2Ġ23

cosh z2

)︄
, (B.19)

for which, we use the following identities [123]

−GF12GF23GF31 = Ġ12 + Ġ23 + Ġ31 , Ġ
2
F31 = 1 , (B.20)

to get

H
F (2)
13 (z1, z2) = 1

cosh z1 cosh z2

∫︂ 1

0
du2

(︁
Ġ12 + Ġ23 + Ġ31

)︁
GF13 ez1Ġ12+z2Ġ23 . (B.21)

Here, we can replace Ġ12, Ġ23 by derivatives of their respective coefficients

H
F (2)
13 (z1, z2) = 1

cosh z1 cosh z2

(︃
∂

∂z1
+ ∂

∂z2
+ Ġ31

)︃
GF13

∫︂ 1

0
du2 ez1Ġ12+z2Ġ23 (B.22)

and using the identity (B.16), it becomes

H
F (2)
13 (z1, z2) = 1

cosh z1 cosh z2
GF13

(︃
∂

∂z1
+ ∂

∂z2
+ Ġ31

)︃(︄
ez1Ġ13 sinh z2

z1 − z2
+ ez2Ġ13 sinh z1

z2 − z1

)︄
.

(B.23)
Finally, we perform the derivatives and simplify, obtaining

H
F (2)
13 (z1, z2) = GF13

(︄
1

z2 − z1

ez1Ġ13

cosh z1
+ 1
z1 − z2

ez2Ġ13

cosh z2

)︄
= HF

13(z1)
z2 − z1

+ HF
13(z2)

z1 − z2
. (B.24)

B.2 Compton scattering in magnetic field
B.2.1 Spinor path integral for N = 2
In order to compute the path integral in the following expression

Sγ2 (T, Fct) = 2−2 symb−1
[︃∫︂

C

Dψ(τ)e−
∫︁ T

0
dτ{ 1

2ψψ̇−i(ψ+ 1
2η)[eF−δ(τ−τ1)f1−δ(τ−τ2)f2](ψ+ 1

2η)}
]︃

(B.25)

and re-expressed as (Eq. 4.56), we define

Iψ,2 ≡
∫︂
C

Dψ(τ)e−
∫︁ T

0
dτ{ 1

2ψψ̇−i(ψ+ 1
2η)[eF−δ(τ−τ1)f1−δ(τ−τ2)f2](ψ+ 1

2η)}
⃓⃓⃓⃓
O(ε1ε2)

. (B.26)

Expanding up to linear order in ε1ε2 we get

Iψ,2 =
∫︂
C

Dψ(τ)e−
∫︁ T

0
dτ[ 1

2ψψ̇−i(ψ+ 1
2η)eF(ψ+ 1

2η)]
{︄

1 − i

(︃
ψ(τ1) + 1

2η
)︃
f1

(︃
ψ(τ1) + 1

2η
)︃

− i

(︃
ψ(τ2) + 1

2η
)︃
f2

(︃
ψ(τ2) + 1

2η
)︃

−
(︃
ψ(τ1) + 1

2η
)︃
f1

(︃
ψ(τ1) + 1

2η
)︃(︃

ψ(τ2) + 1
2η
)︃
f2

(︃
ψ(τ2) + 1

2η
)︃}︄

.

(B.27)



96 Talacha: Complementary details

Here, as well as in the calculation of Sγ1 , the previous path integral will be non-zero only for an even
number of ψ(τi) in the pre-exponent. In this case, additionally to (4.47), we have the following Wick
contraction∫︁

C
Dψ(τ)ψ(τi)ψ(τj)ψ(τk)ψ(τl) e−

∫︁ T

0
dτ[ 1

2ψψ̇−i(ψ+ 1
2η)eF(ψ+ 1

2η)]∫︁
C

Dψ(τ) e−
∫︁ T

0
dτ[ 1

2ψψ̇−i(ψ+ 1
2η)eF(ψ+ 1

2η)]
= ⟨ψ(τi)ψ(τj)ψ(τk)ψ(τl)⟩ . (B.28)

It is well know that [124, 123]

⟨ψ(τi)ψ(τj)ψ(τk)ψ(τl)⟩ = ⟨ψ(τi)ψ(τj)⟩⟨ψ(τk)ψ(τl)⟩ − ⟨ψ(τi)ψ(τk)⟩⟨ψ(τj)ψ(τl)⟩
+ ⟨ψ(τi)ψ(τl)⟩⟨ψ(τj)ψ(τk)⟩ .

(B.29)

Writing the previous integral in terms of Wick contractions

Iψ,2 = Iψ,0

{︄
1 − i

(︃
⟨ψµ1ψν1 ⟩ + 1

4η
µην
)︃
fµν1 − i

(︃
⟨ψµ2ψν2 ⟩ + 1

4η
µην
)︃
fµν2 −

[︄
⟨ψµ1ψν1 ⟩⟨ψσ2ψ

ρ
2⟩

− ⟨ψµ1ψσ2 ⟩⟨ψν1ψ
ρ
2⟩ + ⟨ψµ1ψ

ρ
2⟩⟨ψν1ψσ2 ⟩ + 1

4 ⟨ψµ1ψν1 ⟩ησηρ + 1
4 ⟨ψσ2ψ

ρ
2⟩ηµην − 1

4 ⟨ψµ1ψσ2 ⟩ηνηρ

+ 1
4 ⟨ψµ1ψ

ρ
2⟩ηνησ + 1

4 ⟨ψν1ψσ2 ⟩ηµηρ − 1
4 ⟨ψν1ψ

ρ
2⟩ηµησ + 1

16η
µηνησηρ

]︄
fµν1 fσρ2

}︄
.

(B.30)

Then, in terms of calligraphic Green’s functions for d = 4 (see Eq. (4.48)), we have

Iψ,2 = 22det
1
2 (cos Z) e i

4η(tan Z)η

{︄
1 − i

2

(︃
GµνF11 + 1

2η
µην
)︃
fµν1 − i

2

(︃
GµνF22 + 1

2η
µην
)︃
fµν2

− 1
4

[︄
GµνF11GσρF22 + 2 GµρF12GνσF12 + 1

2GµνF11η
σηρ + 1

2η
µηνGσρF22 + 2 GµρF12η

νησ + 1
4η

µηνησηρ

]︄
fµν1 fσρ2

}︄
.

(B.31)

This implies that

Sγ2 (T, Fct) = det
1
2 (cos Z) symb−1

⟨︄
e i

4η(tan Z)η

{︄
1 − i

2

(︃
GµνF11 + 1

2η
µην
)︃
fµν1 − i

2

(︃
GµνF22 + 1

2η
µην
)︃
fµν2

− 1
4

[︄
GµνF11GσρF22 + 2 GµρF12GνσF12 + 1

2GµνF11η
σηρ + 1

2η
µηνGσρF22 + 2 GµρF12η

νησ + 1
4η

µηνησηρ

]︄
fµν1 fσρ2

}︄⟩︄
.

(B.32)

Notice that, we can re-write the previous expression as

Sγ2 (T, Fct) = det
1
2 (cos Z)

[︂
S0(Z) − iS1(Z, f1) − iS1(Z, f2) − S2(Z, f1f2)

]︂
. (B.33)

Due to the fact that ηi are Grassmann variables whose square are equal to zero, in d = 4, we have

S0(Z) = symb−1
[︂
e i

4η(tan Z)η
]︂

= symb−1

[︄
1 + i

4η(tan Z)η + 1
2

(︃
i

4

)︃2
η(tan Z)ηη(tan Z)η

]︄
. (B.34)

Similarly, we have

S1(Z, f1) = 1
2symb−1

[︃
e i

4η(tan Z)ηGµνF11 + 1
2

(︃
1 + i

4η(tan Z)η
)︃
ηµην

]︃
fµν1 ,

S1(Z, f2) = 1
2symb−1

[︃
e i

4η(tan Z)ηGµνF22 + 1
2

(︃
1 + i

4η(tan Z)η
)︃
ηµην

]︃
fµν2 ,

S2(Z, f1f2) = 1
8symb−1

[︄(︃
1 + i

4η(tan Z)η
)︃(︂

GµνF11η
σηρ + ηµηνGσρF22 + 4 GµρF12η

νησ
)︂

+ 2 e i
4η(tan Z)η

(︂
GµνF11GσρF22 + 2 GµρF12GνσF12

)︂
+ 1

2η
µηνησηρ

]︄
fµν1 fσρ2 .

(B.35)
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On the other hand, the symb functions (see (4.7)) that we require, in this section, are

symb−1(ηµην) = −[γµ, γν ] = 2σµν , σµν = −1
2 [γµ, γν ] ,

symb−1(ηµηνησηρ) = εµνσρ symb−1(η1η2η3η4) = 4 εµνσρ γ5 ,
(B.36)

where εµνσρ is the fully antisymmetric Levi-Civita tensor with ε1234 = 1. Then, in terms of gamma
matrices we have

S0(Z) = 1 + i

2σ
µν(tan Z)µν + 2

(︃
i

4

)︃2
εµνσρ γ5(tan Z)µν(tan Z)σρ ,

S1(Z, f1) = 1
2

[︃
S0 GµνF11 + σµν + i

2ε
σρµν γ5(tan Z)σρ

]︃
fµν1 ,

S1(Z, f2) = 1
2

[︃
S0 GµνF22 + σµν + i

2ε
σρµν γ5(tan Z)σρ

]︃
fµν2 ,

S2(Z, f1f2) = 1
4

[︄
S0

(︂
GµνF11GσρF22 + 2 GµρF12GνσF12

)︂
+
(︂

GµνF11σ
σρ + σµνGσρF22 + 4 GµρF12σ

νσ
)︂

+ εµνσρ γ5 + i

2(tan Z)αβ
(︂

GµνF11ε
αβσρ + εαβµνGσρF22 + 4 GµρF12ε

αβνσ
)︂
γ5

]︄
fµν1 fσρ2 .

(B.37)

B.3 Strong field QED
B.3.1 Dirac equation in a plane-wave field
In this section, we briefly review the steps to obtain the Volkov states solution (5.40) of the Dirac
equation in a plane-wave field background (adapted from [98]). Notice that the Dirac equation in a
plane-wave field can be written as(︃

Π2 −m2 − 1
2 ieFµνσ

µν

)︃
U =

[︃
(i∂ − eA)2 −m2 − 1

2 ieFµνσ
µν

]︃
U = 0 . (B.38)

In which, we have
(i∂ − eA)2

U =
(︁
−∂µ∂µ − 2ieAµ∂µ + e2AµA

µ
)︁
U , (B.39)

Fµνσ
µν = 2n̂Â′ , (B.40)

here we have used the Lorenz gauge condition ∂µA
µ = 0. Then, the second order Dirac equation

become (︂
−∂µ∂µ − 2ieAµ∂µ + e2AµA

µ −m2 − ien̂Â′
)︂
U = 0 . (B.41)

Since A = A(ϕ), we seek a solution as
U = e−i(px)H(ϕ) . (B.42)

Substituting into Dirac equation, we get

2i(np) d
dϕ
H +

[︂
(eA− p)2 −m2 − ien̂Â′

]︂
H = 0 . (B.43)

The solution of the previous equation is well known to be

H(ϕ) = ei
∫︁ ϕ

0
dϕ′ [eA(ϕ′)−p]2−m2−ien̂Â′(ϕ′)

2(np)
u√
2p0

. (B.44)

Then, the solution of the Dirac equation is3

U(p, x) =
[︄

1 + en̂Â

2(np)

]︄
e−i(px)e−i

∫︁ ϕ

0
dϕ′ 2e(pA(ϕ′))−e2A2(ϕ′)

2(np)
u√
2p0

. (B.45)

Similarly for the conjugate Volkov states, we have

Ū(p, x) = ū√
2p0

[︄
1 − en̂Â

2(np)

]︄
ei(px)ei

∫︁ ϕ

0
dϕ′ 2e(pA(ϕ′))−e2A2(ϕ′)

2(np) . (B.46)

3Here, we have used that en̂Â = 1 + n̂Â since n2 = 0.
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B.3.2 Green’s function for Dirac operator
In this section, we briefly review the steps to obtain the Green’s function (5.40) of the Dirac operator
in a plane-wave field background (adapted from [98]). The Green’s function of Dirac operator satisfy(︂

Π̂ −m
)︂
G(x, y) = δ(x, y) , (B.47)

i.e, G is the inverse Dirac operator that can be expressed as

G = 1
Π̂ −m+ i0

=
(︂

Π̂ +m
)︂ 1

Π̂2 −m2 + i0
= −i

(︂
Π̂ +m

)︂∫︂ ∞

0
ds eis(Π̂2−m2) . (B.48)

It is equivalent to have the operator Π̂+m acting from the left or right. In the last equality, Schwinger
parameter have been used. Notice that

Π̂2 −m2 = p2
0 − p2

1 − [p⊥ − eA⊥(ϕ)]2 −m2 − 1
2 ieFµνσ

µν

= 2pϕpT − [p⊥ − eA⊥(ϕ)]2 −m2 − ien̂Â′(ϕ) .
(B.49)

To disentangle the exponential operator, we write it as

eis
{︁

2pϕpT −[p⊥−eA⊥(ϕ)]2−m2−ien̂Â′(ϕ)
}︁

= L(s) e2ispϕpT . (B.50)

Taking the derivative respect to ‘s’, we obtain the following differential equation for L(s)

ieis(Π2−m2)
{︂

2pϕpT − [p⊥ − eA⊥(ϕ)]2 −m2 − ien̂Â′(ϕ)
}︂

= dL(s)
ds

e2ispϕpT + 2iL(s)pϕpT e2ispϕpT ,

(B.51)
which can be written as

−iL(s) e2ispϕpT

{︂
[p⊥ − eA⊥(ϕ)]2 +m2 + ien̂Â′(ϕ)

}︂
e−2ispϕpT = dL(s)

ds
, (B.52)

shifting operators, e2ispϕpT f(ϕ)e−2ispϕpT = f(ϕ+ 2spT ), we get

dL(s)
ds

= −iL(s)
{︂

[p⊥ − eA⊥(ϕ+ 2spT )]2 +m2 + ien̂Â′(ϕ+ 2spT )
}︂
, (B.53)

where the solution with initial condition L(0) = 1 is

L(s) = e−i
∫︁ s

0
ds′
{︁

[p⊥−eA⊥(ϕ+2s′pT )]2+m2+ien̂Â′(ϕ+2s′pT )
}︁
. (B.54)

Then, the Green’s function of Dirac operator in a plane-wave field is4

G = −i(Π̂+m)
∫︂ ∞

0
ds

{︃
1 + e

2pT
n̂
[︂
Â(ϕ+ 2spT ) − Â(ϕ)

]︂}︃
e−i
∫︁ s

0
ds′
{︁

[p⊥−eA⊥(ϕ+2s′pT )]2+m2
}︁

e2ispϕpT .

(B.55)
Similarly, if we consider Π̂ +m acting from the right, we obtain

G = −i
∫︂ ∞

0
ds e2ispϕpT

{︃
1 − e

2pT
n̂
[︂
Â(ϕ− 2spT ) − Â(ϕ)

]︂}︃
e−i
∫︁ s

0
ds′
{︁

[p⊥−eA⊥(ϕ−2s′pT )]2+m2
}︁

(Π̂+m) .

(B.56)

B.3.3 Gordon identity
In this section, we derive the Gordon identity in plane-wave field (5.52). First, remember that for
the Volkov states we have

Π̂(ϕ)Us(p, x) = π̂p(ϕ)Us(p, x) = mUs(p, x) . (B.57)

4Here, we have used that en̂Â = 1 + n̂Â since n2 = 0.
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We can make use of the previous identity to show that

Ūs′(p′, x)γµUs(p, x) = 1
2m

[︂
Ūs′(p′, x)π̂p′(ϕ)γµUs(p, x) + Ūs′(p′, x)γµπ̂p(ϕ)Us(p, x)

]︂
, (B.58)

which, using the anti-commutator relation {γµ, γν} = 2ηµν , we can express as

Ūs′(p′, x)γµUs(p, x) = 1
4mŪs′(p′, x)

[︂
2πµp′(ϕ) − γµπ̂p′(ϕ) + π̂p′(ϕ)γµ

]︂
Us(p, x)

+ 1
4mŪs′(p′, x)

[︂
2πµp (ϕ) − π̂p(ϕ)γµ + γµπ̂p(ϕ)

]︂
Us(p, x) .

(B.59)

Simplifying in terms of σµν = i
2 [γµ, γν ], we finally get

Ūs′(p′, x)γµUs(p, x) = Ūs′(p′, x)
{︄
πµp′(ϕ) + πµp (ϕ)

2m + i
σµν [πp′(ϕ) − πp(ϕ)]ν

2m

}︄
Us(p, x) . (B.60)
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Appendix C

Proper-time integrals for the
four-photon amplitude in a B-field

C.1 Relations for the two- and four-cycle integrals

For 2-cycle integral in (3.97), we have used the following identities (see Eq. (3.44))

H
B(2)
11 (0, 0) = −1

3 ,

H
B(2)
11 (z, 0) = H

B(2)
11 (z,−z) = 1 − z coth(z)

z2 ,

H
B(2)
11 (z, z) = H

B(2)
11 (−z,−z) = csch2(z) − 1

z2 ,

(C.1)

to simplify such integral result as much as possible. Then, the trigonometric functions Isc
i in (3.98)

are given by

Isc
20 = 1

2H
B(2)
11 (0, 0) , Isc

21 = 1
4

[︂
H
B(2)
11 (z, 0) +H

B(2)
11 (z, z)

]︂
,

Isc
23 = 1

2H
B(2)
11 (z, 0) , Isc

22 = 1
4

{︂
H
B(2)
11 (z, 0) −H

B(2)
11 (z, z) − 2[HB

11(z)]2
}︂
.

(C.2)

For the 4-cycle integral in (3.97), we have used the following identities

H
B(4)
11 (z, 0, 0, 0) = H

B(4)
11 (−z, 0, 0, 0) = H

B(4)
11 (−z, z, 0, 0) ,

H
B(4)
11 (z, z, 0, 0) = H

B(4)
11 (−z,−z, 0, 0) ,

H
B(4)
11 (z, z, z, 0) = H

B(4)
11 (−z,−z,−z, 0) ,

H
B(4)
11 (z, z, z, z) = H

B(4)
11 (−z,−z,−z,−z) ,

H
B(4)
11 (−z, z, z, 0) = H

B(4)
11 (−z,−z, z, 0) = H

B(4)
11 (−z,−z, z, z) ,

H
B(4)
11 (−z, z, z, z) = H

B(4)
11 (−z,−z,−z, z) ,

(C.3)

to simplify such integral result as much as possible. The explicit trigonometric expression for every
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H
B(4)
11 is

H
B(4)
11 (0, 0, 0, 0) = 1

45 ,

H
B(4)
11 (z, 0, 0, 0) = z2 − 3z coth(z) + 3

3z4 ,

H
B(4)
11 (z, z, 0, 0) = −4z2 + 3z coth(z)(z coth(z) + 2) − 9

3z4 ,

H
B(4)
11 (z, z, z, 0) =

3 − z
(︁
coth(z) + z(z coth(z) + 1)csch2(z)

)︁
z4 ,

H
B(4)
11 (z, z, z, z) = − 1

z4 + csch4(z) + 2csch2(z)
3 ,

H
B(4)
11 (−z, z, z, 0) =

z
(︁
coth(z) + zcsch2(z)

)︁
− 2

2z4 ,

H
B(4)
11 (−z, z, z, z) =

4 − z
(︁
coth(z) + z(2z coth(z) + 1)csch2(z)

)︁
4z4 .

(C.4)

Then, the functions Isc
i in (3.99) are given by

Isc
0 = H

B(4)
11 (0, 0, 0, 0) ,

Isc
1 = 1

8H
B(4)
11 (z, z, z, z) + 3

8H
B(4)
11 (−z, z, z, 0) + 1

2H
B(4)
11 (−z, z, z, z) ,

Isc
2 = 1

8H
B(4)
11 (z, z, z, z) + 3

8H
B(4)
11 (−z, z, z, 0) − 1

2H
B(4)
11 (−z, z, z, z) + [HB

11(z)]4 ,

Isc
3 = 1

4H
B(4)
11 (z, z, z, 0) + 3

4H
B(4)
11 (−z, z, z, 0),

Isc
4 = H

B(4)
11 (z, 0, 0, 0) ,

Isc
5 = 1

2H
B(4)
11 (z, 0, 0, 0) + 1

2H
B(4)
11 (z, z, 0, 0) ,

Isc
6 = 1

2H
B(4)
11 (z, 0, 0, 0) − 1

2H
B(4)
11 (z, z, 0, 0) ,

Isc
7 = −1

8H
B(4)
11 (z, z, z, z) + 1

8H
B(4)
11 (−z, z, z, 0) ,

Isc
8 = −1

4H
B(4)
11 (z, z, z, 0) + 1

4H
B(4)
11 (−z, z, z, 0) .

(C.5)

In the case of fermionic variables, we obtain similar expressions for the integrals (3.44). For 2-cycle
integral in (3.111), we have that

H
F (2)
11 (0, 0) = −1 ,

H
F (2)
11 (z, 0) = H

F (2)
11 (z,−z) = − tanh(z)

z
,

H
F (2)
11 (z, z) = H

F (2)
11 (−z,−z) = tanh2(z) − 1 ,

(C.6)

Then, the trigonometric functions Isp
i in (3.112) are given by

Isp
20 = 1

2

[︂
H
B(2)
11 (0, 0) −H

F (2)
11 (0, 0)

]︂
,

Isp
21 = 1

4

[︂
H
B(2)
11 (z, 0) +H

B(2)
11 (z, z)

]︂
− 1

4

[︂
H
F (2)
11 (z, 0) +H

F (2)
11 (z, z)

]︂
,

Isp
22 = 1

4

[︂
H
B(2)
11 (z, 0) −H

B(2)
11 (z, z)

]︂
− 1

4

[︂
H
F (2)
11 (z, 0) −H

F (2)
11 (z, z)

]︂
− 1

2 [HB
11(z) −HF

11(z)]2 ,

Isp
23 = 1

2

[︂
H
B(2)
11 (z, 0) −H

F (2)
11 (z, 0)

]︂
.

(C.7)
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For the 4-cycle integral in (3.111), we have used the following identities

H
F (4)
11 (z, 0, 0, 0) = H

F (4)
11 (−z, 0, 0, 0) = H

F (4)
11 (−z, z, 0, 0) ,

H
F (4)
11 (z, z, 0, 0) = H

F (4)
11 (−z,−z, 0, 0) ,

H
F (4)
11 (z, z, z, 0) = H

F (4)
11 (−z,−z,−z, 0) ,

H
F (4)
11 (z, z, z, z) = H

F (4)
11 (−z,−z,−z,−z) ,

H
F (4)
11 (−z, z, z, 0) = H

F (4)
11 (−z,−z, z, 0) = H

F (4)
11 (−z,−z, z, z) ,

H
F (4)
11 (−z, z, z, z) = H

F (4)
11 (−z,−z,−z, z) ,

(C.8)

to simplify such integral result as much as possible. The explicit trigonometric expression for every
H
F (4)
11 is

H
F (4)
11 (0, 0, 0, 0) = 1

3 ,

H
F (4)
11 (z, 0, 0, 0) = z − tanh(z)

z3 ,

H
F (4)
11 (z, z, 0, 0) = tanh(z)(z tanh(z) + 2) − 2z

z3 ,

H
F (4)
11 (z, z, z, 0) = z(z tanh(z) + 1)sech2(z) − tanh(z)

z3 ,

H
F (4)
11 (z, z, z, z) = sech4(z) − 2sech2(z)

3 ,

H
F (4)
11 (−z, z, z, 0) = tanh(z) − z sech2(z)

2z3 ,

H
F (4)
11 (−z, z, z, z) = z(2z tanh(z) + 1)sech2(z) − tanh(z)

4z3 .

(C.9)

Then, the functions Isp
i in (3.113) are given by

Isp
0 = H

B(4)
11 (0, 0, 0, 0) −H

F (4)
11 (0, 0, 0, 0) ,

Isp
1 = 1

8

[︂
H
B(4)
11 (z, z, z, z) −H

F (4)
11 (z, z, z, z)

]︂
+ 3

8

[︂
H
B(4)
11 (−z, z, z, 0) −H

F (4)
11 (−z, z, z, 0)

]︂
+ 1

2

[︂
H
B(4)
11 (−z, z, z, z) −H

F (4)
11 (−z, z, z, z)

]︂
,

Isp
2 = 1

8

[︂
H
B(4)
11 (z, z, z, z) −H

F (4)
11 (z, z, z, z)

]︂
+ 3

8

[︂
H
B(4)
11 (−z, z, z, 0) −H

F (4)
11 (−z, z, z, 0)

]︂
− 1

2

[︂
H
B(4)
11 (−z, z, z, z) −H

F (4)
11 (−z, z, z, z)

]︂
+ [HB

11(z) −HF
11(z)]4 ,

Isp
3 = 1

4

[︂
H
B(4)
11 (z, z, z, 0) −H

F (4)
11 (z, z, z, 0)

]︂
+ 3

4

[︂
H
B(4)
11 (−z, z, z, 0) −H

F (4)
11 (−z, z, z, 0)

]︂
,

Isp
4 = H

B(4)
11 (z, 0, 0, 0) −H

F (4)
11 (z, 0, 0, 0) ,

Isp
5 = 1

2

[︂
H
B(4)
11 (z, 0, 0, 0) −H

F (4)
11 (z, 0, 0, 0)

]︂
+ 1

2

[︂
H
B(4)
11 (z, z, 0, 0) −H

F (4)
11 (z, z, 0, 0)

]︂
,

Isp
6 = 1

2

[︂
H
B(4)
11 (z, 0, 0, 0) −H

F (4)
11 (z, 0, 0, 0)

]︂
− 1

2

[︂
H
B(4)
11 (z, z, 0, 0) −H

F (4)
11 (z, z, 0, 0)

]︂
,

Isp
7 = −1

8

[︂
H
B(4)
11 (z, z, z, z) −H

F (4)
11 (z, z, z, z)

]︂
+ 1

8

[︂
H
B(4)
11 (−z, z, z, 0) −H

F (4)
11 (−z, z, z, 0)

]︂
,

Isp
8 = −1

4

[︂
H
B(4)
11 (z, z, z, 0) −H

F (4)
11 (z, z, z, 0)

]︂
+ 1

4

[︂
H
B(4)
11 (−z, z, z, 0) −H

F (4)
11 (−z, z, z, 0)

]︂
.

(C.10)
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C.2 Proper time ‘T ’ integrals for the pure magnetic case
In this section, we briefly discuss the procedure to analytically compute the integrals in (3.100) and
(3.114). For such purpose, it is required the following three basic expressions1∫︂

dz e−βz zn

sinh(z) = 2−nΓ(n+ 1)ζ
(︃
n+ 1, β + 1

2

)︃
, (C.11)

∫︂
dz e−βz zn coth(z) = 2−n−1Γ(n+ 1)

[︃
ζ

(︃
n+ 1, β2

)︃
+ ζ

(︃
n+ 1, β + 2

2

)︃]︃
, (C.12)∫︂

dz e−βz zn tanh(z) = 2−2(n+1)Γ(n+ 1)
[︃
ζ

(︃
n+ 1, β4

)︃
− 2ζ

(︃
n+ 1, β + 2

4

)︃
+ ζ

(︃
n+ 1, β4 + 1

)︃]︃
,

(C.13)
where ζ(x, y) is the Hurwitz-zeta function defined by

ζ(x, y) =
∞∑︂
k=0

(k + y)−x (C.14)

and Γ(n) the usual gamma function (see [168]).
Now, we follow the steps presented in [153] for the calculation of integrals of the form∫︂ ∞

0
dz e−βz f(z) =

∫︂
dz e−βz f(z) , (C.15)

for β a positive constant and f(z) a trigonometric function.
In order to perform integrals of this kind, we first rewrite them as the derivative respect to an

‘artificial’ parameter ‘α’ of one of our basic integrals (C.11), (C.12) or (C.13). For instance,∫︂
dz e−βz z

n cosh(z)
sinh2(z)

= −
{︃
∂α

∫︂
dz e−βz zn−1

sinh(αz)

}︃ ⃓⃓⃓⃓
⃓
α=1

. (C.16)

Finally, we make the change of variables z′ = αz and perform the derivative{︃
∂α

∫︂
dz e−βz zn−1

sinh(αz)

}︃ ⃓⃓⃓⃓
⃓
α=1

=
{︃
∂α

∫︂
dz′ e− β

α z
′ α−n (z′)n−1

sinh(z′)

}︃ ⃓⃓⃓⃓
⃓
α=1

=
∫︂
dz e−βz z

n−1(βz − n)
sinh(z) ,

(C.17)
which returns an expression of the form of (C.11).

We list the different integrals that appear in the four-photon amplitudes in a magnetic field: For
scalar QED ∫︂

dz e−βz z
n cosh(z)
sinh2(z)

= −
{︃
∂α

∫︂
dz e−βz zn−1

sinh(αz)

}︃ ⃓⃓⃓⃓
⃓
α=1

, (C.18)

∫︂
dz e−βz zn

sinh3(z)
= 1

2

{︃
∂2
α

∫︂
dz e−βz zn−2

sinh(αz) −
∫︂
dz e−βz zn

sinh(αz)

}︃ ⃓⃓⃓⃓
⃓
α=1

, (C.19)

∫︂
dz e−βz z

n cosh2(z)
sinh3(z)

= 1
2

{︃
∂2
α

∫︂
dz e−βz zn−2

sinh(αz) +
∫︂
dz e−βz zn

sinh(αz)

}︃ ⃓⃓⃓⃓
⃓
α=1

, (C.20)

∫︂
dz e−βz z

n cosh(z)
sinh4(z)

= − 1
3!

{︃
∂3
α

∫︂
dz e−βz zn−3

sinh(αz) − ∂α

∫︂
dz e−βz zn−1

sinh(αz) ,
}︃ ⃓⃓⃓⃓
⃓
α=1

(C.21)

∫︂
dz e−βz zn

sinh5(z)
= 1

4!

{︃
∂4
α

∫︂
dz e−βz zn−4

sinh(αz) − 10 ∂2
α

∫︂
dz e−βz zn−2

sinh(αz) + 9
∫︂
dz e−βz zn

sinh(αz)

}︃ ⃓⃓⃓⃓
⃓
α=1

.

(C.22)
1In this appendix, the integral symbol without limits is understood to be form 0 to ∞.
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And for spinor QED

∫︂
dz e−βz zn

sinh2(z)
= −

{︃
∂α

∫︂
dz e−βz zn−1 coth(αz)

}︃ ⃓⃓⃓⃓
⃓
α=1

, (C.23)

∫︂
dz e−βz z

n cosh(z)
sinh3(z)

= 1
2

{︃
∂2
α

∫︂
dz e−βz zn−2 coth(αz)

}︃ ⃓⃓⃓⃓
⃓
α=1

, (C.24)

∫︂
dz e−βz zn

sinh4(z)
= − 1

3!

{︃
∂3
α

∫︂
dz e−βz zn−3 coth(αz) − 4 ∂α

∫︂
dz e−βz zn−1 coth(αz)

}︃ ⃓⃓⃓⃓
⃓
α=1

,

(C.25)∫︂
dz e−βz z

n cosh(z)
sinh5(z)

= 1
4!

{︃
∂4
α

∫︂
dz e−βz zn−4 coth(αz) − 4 ∂2

α

∫︂
dz e−βz zn−2 coth(αz)

}︃ ⃓⃓⃓⃓
⃓
α=1

,

(C.26)∫︂
dz e−βz zn

cosh2(z)
=
{︃
∂α

∫︂
dz e−βz zn−1 tanh(αz)

}︃ ⃓⃓⃓⃓
⃓
α=1

, (C.27)

∫︂
dz e−βz z

n sinh(z)
cosh3(z)

= −1
2

{︃
∂2
α

∫︂
dz e−βz zn−2 tanh(αz)

}︃ ⃓⃓⃓⃓
⃓
α=1

. (C.28)

C.3 Basic integral results for the scalar amplitude
Here, we use (C.11) to write the analytic result of all the integrals appearing in the scalar amplitudes
in terms of the Hurwitz-zeta function ζ(x, y). So we have∫︂

dz e−βz z
n cosh(z)
sinh2(z)

= 2−nΓ(n+ 1)
[︂
2 ζ
(︂
n,
β + 1

2

)︂
− β ζ

(︂
n+ 1, β + 1

2

)︂]︂
, (C.29)

∫︂
dz e−βz zn

sinh3(z)
= 2−n−1Γ(n+ 1)

[︂(︁
β2 − 1

)︁
ζ
(︂
n+ 1, β + 1

2

)︂
+ 4 ζ

(︂
n− 1, β + 1

2

)︂
− 4β ζ

(︂
n,
β + 1

2

)︂]︂
,

(C.30)∫︂
dz e−βz z

n cosh2(z)
sinh3(z)

= 2−n−1Γ(n+ 1)
[︂(︁
β2 + 1

)︁
ζ
(︂
n+ 1, β + 1

2

)︂
+ 4 ζ

(︂
n− 1, β + 1

2

)︂
− 4β ζ

(︂
n,
β + 1

2

)︂]︂
,

(C.31)∫︂
dz e−βz z

n cosh(z)
sinh4(z)

= 2−n−1

3 Γ(n+ 1)

[︄
− β3 ζ

(︂
n+ 1, β + 1

2

)︂
+ 6β2 ζ

(︂
n,
β + 1

2

)︂
− 12β ζ

(︂
n− 1, β + 1

2

)︂
+ β ζ

(︂
n+ 1, β + 1

2

)︂
+ 8 ζ

(︂
n− 2, β + 1

2

)︂
− 2 ζ

(︂
n,
β + 1

2

)︂]︄
,

(C.32)

∫︂
dz e−βz zn

sinh5(z)
= 2−n−3

3 Γ(n+ 1)

[︄
β4 ζ

(︂
n+ 1, β + 1

2

)︂
− 8β3 ζ

(︂
n,
β + 1

2

)︂
+ 24β2 ζ

(︂
n− 1, β + 1

2

)︂
− 10β2 ζ

(︂
n+ 1, β + 1

2

)︂
− 32β ζ

(︂
n− 2, β + 1

2

)︂
+ 40β ζ

(︂
n,
β + 1

2

)︂
+ 16 ζ

(︂
n− 3, β + 1

2

)︂
− 40 ζ

(︂
n− 1, β + 1

2

)︂
+ 9 ζ

(︂
n+ 1, β + 1

2

)︂]︄
.

(C.33)

It is important to mention that J sc
i contain spurious poles that we remove with the aid of dimensional

regularization. For such we replace zn → zn+ϵ and take the limit of ϵ → 0. Notice that n is different
in every J sc

i .
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C.4 Basic integral results for the spinor amplitude

Here we use (C.12) and (C.13) to write the analytic result of all the integrals appearing in the scalar
amplitudes in terms of the Hurwitz-zeta function ζ(x, y). So we have

∫︂
dz e−βz zn

sinh2(z)
= 2−n−1Γ(n+1)

{︂
2
[︂
ζ
(︂
n,
β

2

)︂
+ ζ
(︂
n,
β + 2

2

)︂]︂
− β

[︂
ζ
(︂
n+ 1, β2

)︂
+ ζ
(︂
n+ 1, β + 2

2

)︂]︂}︂
,

(C.34)

∫︂
dz e−βz z

n cosh(z)
sinh3(z)

= 2−n−2Γ(n+ 1)

{︄
4
[︂
ζ
(︂
n− 1, β2

)︂
+ ζ
(︂
n− 1, β + 2

2

)︂]︂
− 4β

[︂
ζ
(︂
n,
β

2

)︂
+ ζ
(︂
n,
β + 2

2

)︂]︂
+ β2

[︂
ζ
(︂
n+ 1, β2

)︂
+ ζ
(︂
n+ 1, β + 2

2

)︂]︂}︄
,

(C.35)

∫︂
dz e−βz zn

sinh4(z)
= 1

32−n−2Γ(n+ 1)

{︄
− β3

[︂
ζ
(︂
n+ 1, β2

)︂
+ ζ
(︂
n+ 1, β + 2

2

)︂]︂
+ 6β2

[︂
ζ
(︂
n,
β

2

)︂
+ ζ
(︂
n,
β + 2

2

)︂]︂
− 12β

[︂
ζ
(︂
n− 1, β2

)︂
+ ζ
(︂
n− 1, β + 2

2

)︂]︂
+ 4β

[︂
ζ
(︂
n+ 1, β2

)︂
+ ζ
(︂
n+ 1, β + 2

2

)︂]︂
− 8
[︂
ζ
(︂
n,
β

2

)︂
+ ζ
(︂
n,
β + 2

2

)︂]︂
+ 8
[︂
ζ
(︂
n− 2, β2

)︂
+ ζ
(︂
n− 2, β + 2

2

)︂]︂}︄
,

(C.36)

∫︂
dz e−βz z

n cosh(z)
sinh5(z)

= 1
32−n−4Γ(n+ 1)

{︄(︁
β2 − 4

)︁
β2
[︂
ζ
(︂
n+ 1, β2

)︂
+ ζ
(︂
n+ 1, β + 2

2

)︂]︂
− 8
(︁
β2 − 2

)︁
β
[︂
ζ
(︂
n,
β

2

)︂
+ ζ
(︂
n,
β + 2

2

)︂]︂
+ 8
(︁
3β2 − 2

)︁ [︂
ζ
(︂
n− 1, β2

)︂
+ ζ
(︂
n− 1, β + 2

2

)︂]︂
− 32β

[︂
ζ
(︂
n− 2, β2

)︂
+ ζ
(︂
n− 2, β + 2

2

)︂]︂
+ 16

[︂
ζ
(︂
n− 3, β2

)︂
+ ζ
(︂
n− 3, β + 2

2

)︂]︂}︄
,

(C.37)

∫︂
dz e−βz zn

cosh2(z)
= 2−2n−1Γ(n+ 1)

{︂
−4
[︂
ζ
(︂
n,
β

4

)︂
− ζ
(︂
n,
β + 2

4

)︂]︂
+ β

[︂
ζ
(︂
n+ 1, β4

)︂
− ζ
(︂
n+ 1, β + 2

4

)︂]︂}︂
,

(C.38)

∫︂
dz e−βz z

n sinh(z)
cosh3(z)

= 4−n−1Γ(n+ 1)

{︄
− 16

[︂
ζ
(︂
n− 1, β4

)︂
− ζ
(︂
n− 1, β + 2

4

)︂]︂
+ 8β

[︂
ζ
(︂
n,
β

4

)︂
− ζ
(︂
n,
β + 2

4

)︂]︂
− β2

[︂
ζ
(︂
n+ 1, β4

)︂
− ζ
(︂
n+ 1, β + 2

4

)︂]︂}︄
.

(C.39)

It is important to mention that J sp
i contain spurious poles that we remove with the aid of dimensional

regularization. For such we replace zn → zn+ϵ and take the limit of ϵ → 0. Notice that n is different
in every J sp

i .
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C.5 Integral results for the scalar QED: J sc
i

Here, we present the explicit expression for each integral in (3.100) as the proper time integral of a
trigonometric function

Jsc
0
b4

= Jsc
20
b2

2
=
∫︂ ∞

0
dz e−βz z2

sinh z ,

Jsc
21 = b2

2

∫︂ ∞

0
dz e−βz

(︃
z2

sinh3 z
− z cosh z

sinh2 z

)︃
,

Jsc
22 = −b2

∫︂ ∞

0
dz e−βz

[︃
3
2

(︃
z2

sinh3 z
− z cosh z

sinh2 z

)︃
+ z2

sinh z

]︃
,

Jsc
23 = b2

∫︂ ∞

0
dz e−βz

(︂ 1
sinh z − z cosh z

sinh2 z

)︂
,

(C.40)

Jsc
24 = −1

2

∫︂ ∞

0
dz e−βz

[︃
3
2

(︃
z2

sinh5 z
+ cosh2 z

sinh3 z
− 2 z cosh z

sinh4 z

)︃
− z cosh z

sinh2 z
+ z2

sinh3 z

]︃
,

Jsc
25 = 1

2

∫︂ ∞

0
dz e−βz

(︃
1

sinh3 z
+ cosh2 z

sinh3 z
− cosh z
z sinh2 z

− z cosh z
sinh4 z

)︃
,

Jsc
26 = −

∫︂ ∞

0
dz e−βz

[︃
3
2

(︃
1

sinh3 z
+ cosh2 z

sinh3 z
− cosh z
z sinh2 z

− z cosh z
sinh4 z

)︃
+ 1

sinh z − z cosh z
sinh2 z

]︃
,

(C.41)

Jsc
27 = 1

4

∫︂ ∞

0
dz e−βz

(︃
z2

sinh5 z
+ cosh2 z

sinh3 z
− 2 z cosh z

sinh4 z

)︃
,

Jsc
28 =

∫︂ ∞

0
dz e−βz

[︃
9
4

(︃
z2

sinh5 z
+ cosh2 z

sinh3 z
− 2 z cosh z

sinh4 z

)︃
+ 3
(︃

z2

sinh3 z
+ z cosh z

sinh2 z

)︃
+ z2

sinh z

]︃
,

Jsc
29 =

∫︂ ∞

0
dz e−βz

(︃
1

z2 sinh z + cosh2 z

sinh3 z
− 2 cosh z
z sinh2 z

)︃
,

(C.42)

Jsc
1 = 1

16

∫︂ ∞

0
dz e−βz

(︃
cosh z
z sinh2 z

+ 1
sinh3 z

+ 2z2

sinh5 z
+ 4z2

3 sinh3 z
− 2 z cosh z

sinh4 z

)︃
,

Jsc
2 =

∫︂ ∞

0
dz e−βz

(︃
101

16 sinh3 z
− 59 cosh z

16 z sinh2 z
− 15 z cosh z

4 sinh4 z
− 4 z cosh z

sinh2 z
+ 9 z2

8 sinh5 z
+ 25 z2

12 sinh3 z
+ 6 + z2

sinh z

)︃
,

(C.43)

Jsc
3 = 1

8

∫︂ ∞

0
dz e−βz

(︂ cosh z
z sinh2 z

+ 1
sinh3 z

− 2 z cosh z
sinh4 z

)︂
,

Jsc
4 =

∫︂ ∞

0
dz e−βz

(︂ 1
3 sinh z + 1

z2 sinh z − cosh z
z sinh2 z

)︂
,

Jsc
5 = 1

2

∫︂ ∞

0
dz e−βz

(︂ cosh z
z sinh2 z

+ 1
sinh3 z

− 2
z2 sinh z

)︂
,

(C.44)

Jsc
6 = −

∫︂ ∞

0
dz e−βz

(︂ 1
2 sinh3 z

− 1
3 sinh z − 2

z2 sinh z + 3 cosh z
2 z sinh2 z

)︂
,

Jsc
7 = 1

16

∫︂ ∞

0
dz e−βz

(︃
cosh z
z sinh2 z

+ 1
sinh3 z

− 2z2

sinh5 z
− 4z2

3 sinh3 z

)︃
,

Jsc
8 = −

∫︂ ∞

0
dz e−βz

[︂
−3

8

(︂ cosh z
z sinh2 z

+ 1
sinh3 z

)︂
+ 1
z2 sinh z − z cosh z

4 sinh4 z

]︂
.

(C.45)

After using the expressions in Section C.3 and implementing the dimensional regularization, we
obtain the following expressions for each J sc

i in terms of the Hurwitz-zeta function, its first derivative
(respect to the first parameter),the digamma function ψ(z) = ψ(0)(z) = Γ′(z)

Γ(z) and the polygamma
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function ψ(n)(z) = dn

dznψ(z)2

Jsc
20 = 1

18ζ
(︂

3, β + 1
2

)︂
,

Jsc
21 = 1

48

[︂(︁
β2 − 1

)︁
ψ(2)

(︂
β + 1

2

)︂
+ 4βψ(1)

(︂
β + 1

2

)︂
− 4
]︂
,

Jsc
22 = − 1

24

[︂
6βψ(1)

(︂
β + 1

2

)︂
−
(︁
3β2 + 1

)︁
ζ
(︂

3, β + 1
2

)︂
− 6
]︂
,

Jsc
23 = 1

6

[︂
2 − βψ(1)

(︂
β + 1

2

)︂]︂
,

(C.46)

Jsc
24 = − 1

128

[︂
−4
(︁
β2 + 13

)︁
−
(︁
β2 − 1

)︁2
ψ(2)

(︂
β + 1

2

)︂
+ 32βψ(1)

(︂
β + 1

2

)︂]︂
, (C.47)

Jsc
25 = 1

72

[︄
− 144ζ(1,0)

(︂
−1, β + 1

2

)︂
+ 21β2 + 3

(︁
β2 − 1

)︁
βψ(1)

(︂
β + 1

2

)︂
− 6
(︁
3β2 + 1

)︁
ψ(0)

(︂
β + 1

2

)︂
− 36β log(8π) + 72β log(β − 1) + 72βlogΓ

(︂
β − 1

2

)︂
+ 11

]︄
,

(C.48)

Jsc
26 = − 1

24

[︄
21β2 + 3

(︁
β2 + 3

)︁
βψ(1)

(︂
β + 1

2

)︂
− 6
(︁
3β2 + 1

)︁
ψ(0)

(︂
β + 1

2

)︂
− 36β log(8π)

+ 72β log(β − 1) + 72βlogΓ
(︂
β − 1

2

)︂
− 13

]︄
+ 6 ζ(1,0)

(︂
−1, β + 1

2

)︂
,
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Jsc
27 = 1

384

[︂
−4
(︁
β2 + 21

)︁
−
(︁
β4 − 10β2 + 9

)︁
ψ(2)

(︂
β + 1

2

)︂
+ 64βψ(1)

(︂
β + 1

2

)︂]︂
,

Jsc
28 = 1

128

[︂
−12

(︁
β2 + 5

)︁
−
(︁
3
(︁
β2 + 6

)︁
β2 + 11

)︁
ψ(2)

(︂
β + 1

2

)︂]︂
,

Jsc
29 = − 1

12 − 12ζ(1,0)
(︂

−1, β + 1
2

)︂
+ 5β2

4 − 1
2
(︁
β2 + 1

)︁
ψ(0)

(︂
β + 1

2

)︂
− 2β log(8π) + 4β log(β − 1) + 4βlogΓ

(︂
β − 1

2

)︂
,
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Jsc
0 = 1

90ζ
(︂

3, β + 1
2

)︂
,

Jsc
1 = 1

768

[︄
192ζ(1,0)

(︂
−1, β + 1

2

)︂
−
(︁
β2 − 1

)︁2
ψ(2)

(︂
β + 1

2

)︂
+ 8
(︁
3β2 + 1

)︁
ψ(0)

(︂
β + 1

2

)︂
+ 8β

(︂
6 log(8π) − 5β

)︂
− 96β log(β − 1) − 96βlogΓ

(︂
β − 1

2

)︂
+ 8

]︄
,
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Jsc
2 = 1

768

[︄
− 11328ζ(1,0)

(︂
−1, β + 1

2

)︂
+ 1896β2 + 32

(︁
3β2 + 13

)︁
βψ(1)

(︂
β + 1

2

)︂
− 472

(︁
3β2 + 1

)︁
ψ(0)

(︂
β + 1

2

)︂
−
(︁
9β4 + 110β2 + 73

)︁
ψ(2)

(︂
β + 1

2

)︂
− 8496β log(2) − 2832β log(π) + 5664β log(β − 1) + 5664βlogΓ

(︂
β − 1

2

)︂
− 936

]︄
,

Jsc
3 = 1

288

[︄
144ζ(1,0)

(︂
−1, β + 1

2

)︂
− 39β2 + 6

(︁
β2 − 1

)︁
βψ(1)

(︂
β + 1

2

)︂
+ 6
(︁
3β2 + 1

)︁
ψ(0)

(︂
β + 1

2

)︂
+ 36β log(8π) − 72β log(β − 1) − 72βlogΓ

(︂
β − 1

2

)︂
+ 13

]︄
,
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2We clarify that log(x) is the natural logarithm and Γ(x) is the gamma-function.
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Jsc
4 = −1

6 − 8ζ(1,0)
(︂

−1, β + 1
2

)︂
+ 1

2β(β − 2 log(8π)) + 2β log(β − 1)

− 1
3ψ

(0)
(︂
β + 1

2

)︂
+ 2βlogΓ

(︂
β − 1

2

)︂
,

Jsc
5 = 5

24 + 6ζ(1,0)
(︂

−1, β + 1
2

)︂
− 1

4
(︁
β2 − 1

)︁
ψ(0)

(︂
β + 1

2

)︂
− 1

8β(β − 4 log(8π)) − β log(β − 1) − βlogΓ
(︂
β − 1

2

)︂
,

Jsc
6 = − 1

24

[︂
−15β2 + 2

(︁
7 − 3β2)︁ψ(0)

(︂
β + 1

2

)︂
+ 36β log(8π) − 72β log(β − 1) + 9

]︂
− 14ζ(1,0)

(︂
−1, β + 1

2

)︂
+ 3βlogΓ

(︂
β − 1

2

)︂
,
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Jsc
7 = − 1

2304

[︄
− 80 − 576ζ(1,0)

(︂
−1, β + 1

2

)︂
+ 192β2 − 48

(︁
β2 − 1

)︁
βψ(1)

(︂
β + 1

2

)︂
− 24

(︁
3β2 + 1

)︁
ψ(0)

(︂
β + 1

2

)︂
− 3
(︁
β2 − 1

)︁2
ψ(2)

(︂
β + 1

2

)︂
− 432β log(2)

− 144β log(π) + 288β log(β − 1) + 288βlogΓ
(︂
β − 1

2

)︂]︄
,
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Jsc
8 = − 1

288

[︄
− 47 − 1584ζ(1,0)

(︂
−1, β + 1

2

)︂
+
(︁
90β2 − 66

)︁
ψ(0)

(︂
β + 1

2

)︂
+ 6β

(︁
β2 − 1

)︁
ψ(1)

(︂
β + 1

2

)︂
− 3β(β + 36 log(8π)) + 216β log(β − 1) + 216βlogΓ

(︂
β − 1

2

)︂]︄
.
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i

Here, we present the explicit expression for each integral in (3.114) as the proper time integral of a
trigonometric function

Jsp
0
h4

= Jsp
20
h2

2
=
∫︂ ∞

0
dz e−βz z2 coth z ,

Jsp
21 = h2

2

∫︂ ∞

0
dz e−βz

[︃
z2 cosh z
sinh3 z

− z

sinh2 z
+ z2 (coth z − tanh z)

]︃
,

Jsp
22 = −h2

2

∫︂ ∞

0
dz e−βz

[︃
3
(︃
z2 cosh z
sinh3 z

− z

sinh2 z

)︃
− z2 (coth z − tanh z)

]︃
,

Jsp
23 = h2

∫︂ ∞

0
dz e−βz

(︂
coth z − z

sinh2 z

)︂
,

(C.56)

Jsp
24 = −1

4

∫︂ ∞

0
dz e−βz

[︄
3
(︃

cosh z
sinh3 z

− 2 z
sinh4 z

+ z2 cosh z
sinh5 z

− coth z + tanh z
)︃

− 3z2 (coth z − tanh z)

+ 2
(︃
z2 cosh z
sinh3 z

− z

sinh2 z
+ z

cosh2 z

)︃
+ z2 sinh z

cosh3 z

]︄
,

Jsp
25 = 1

2

∫︂ ∞

0
dz e−βz

(︂2 cosh z
sinh3 z

− 1
z sinh2 z

+ z

cosh2 z
− z

sinh2 z
− z

sinh4 z

)︂
,

Jsp
26 = −

∫︂ ∞

0
dz e−βz

[︄
3
2

(︂2 cosh z
sinh3 z

− 1
z sinh2 z

− z

sinh4 z

)︂
− 1

2

(︂
z

cosh2 z
− z

sinh2 z

)︂
− 2 (coth z − tanh z)

]︄
,

(C.57)
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Jsp
27 = 1

4

∫︂ ∞

0
dz e−βz

[︄
cosh z
sinh3 z

− 2 z
sinh4 z

+ z2 cosh z
sinh5 z

− coth z + tanh z − z2 (coth z − tanh z)

+ 2
(︃
z2 cosh z
sinh3 z

− z

sinh2 z
+ z

cosh2 z

)︃
− z2 sinh z

cosh3 z

]︄
,

Jsp
28 = 1

4

∫︂ ∞

0
dz e−βz

[︄
9
(︃

cosh z
sinh3 z

− 2z
sinh4 z

+ z2 cosh z
sinh5 z

− coth z + tanh z
)︃

+ 7z2 (coth z − tanh z)

− 6
(︃
z2 cosh z
sinh3 z

− z

sinh2 z
+ z

cosh2 z

)︃
− z2 sinh z

cosh3 z

]︄
,

Jsp
29 =

∫︂ ∞

0
dz e−βz

(︂ cosh z
sinh3 z

− 2
z sinh2 z

− coth z + tanh z + coth z
z2

)︂
,

(C.58)

Jsp
1 =

∫︂ ∞

0
dz e−βz

[︄
1
16

(︂ cosh z
sinh3 z

+ 1
z sinh2 z

+ coth z − tanh z
)︂

+ 1
24

(︃
2z2 cosh z

sinh3 z
− z2 coth z + z2 tanh z

)︃

− 1
4

(︂
z

cosh2 z
+ z

sinh4 z
+ z

sinh2 z

)︂
+ 1

8

(︃
z2 cosh z
sinh5 z

+ z2 sinh z
cosh3 z

)︃]︄
,

(C.59)

Jsp
2 =

∫︂ ∞

0
dz e−βz

[︄
1
16

(︂101 cosh z
sinh3 z

− 59
z sinh2 z

− 91 coth z + 91 tanh z
)︂

+ 1
8

(︃
9 z2 cosh z

sinh5 z
− 7 z2 sinh z

cosh3 z

)︃

− 1
24

(︃
46 z2 cosh z

sinh3 z
− 71 z2 coth z + 71 z2 tanh z

)︃
− 1

4

(︂ 15 z
cosh2 z

+ 15 z
sinh4 z

− 17 z
sinh2 z

)︂]︄
,
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Jsp
3 = 1

8

∫︂ ∞

0
dz e−βz

[︂ cosh z
sinh3 z

+ 1
z sinh2 z

+ coth z − tanh z − 2
(︂

z

cosh2 z
+ z

sinh4 z
+ z

sinh2 z

)︂]︂
,

Jsp
4 =

∫︂ ∞

0
dz e−βz

(︂coth z
z2 − 2

3 coth z − 1
z sinh2 z

)︂
,

(C.61)

Jsp
5 = 1

2

∫︂ ∞

0
dz e−βz

(︂ cosh z
sinh3 z

+ 1
z sinh2 z

+ coth z − tanh z − 2 coth z
z2

)︂
,

Jsp
6 = −1

2

∫︂ ∞

0
dz e−βz

(︂ cosh z
sinh3 z

+ 3
z sinh2 z

+ 7
3 coth z − tanh z − 4 coth z

z2

)︂
,

(C.62)

Jsp
7 = −

∫︂ ∞

0
dz e−βz

[︄
−1
16

(︂ cosh z
sinh3 z

+ 1
z sinh2 z

+ coth z − tanh z
)︂

+ 1
8

(︃
z2 cosh z
sinh5 z

+ z2 sinh z
cosh3 z

)︃

+ 1
24

(︃
2 z2 cosh z

sinh3 z
− z2 coth z + z2 tanh z

)︃]︄
,

Jsp
8 = −

∫︂ ∞

0
dz e−βz

[︄
−3
8

(︂ cosh z
sinh3 z

+ 1
z sinh2 z

+ coth z − tanh z
)︂

− 1
4

(︂
z

cosh2 z
+ z

sinh4 z
+ z

sinh2 z

)︂
+ coth z

z2

]︄
.

(C.63)

After using the expressions in Section C.4 and implementing the dimensional regularization, we
obtain the following expressions for each J sp

i in terms of the Hurwitz-zeta function, its first derivative
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(with respect to the first parameter), the digamma function and the polygamma function

Jsp
20 = 4

9

[︃
− 2
β3 − 1

4ψ
(2)
(︂
β

2

)︂]︃
,

Jsp
21 = 1

96

[︂
−4
(︁
β2 + 2

)︁
ψ(2)

(︂
β

2

)︂
− 16βψ(1)

(︂
β

2

)︂
+ ψ(2)

(︂
β

4

)︂
− ψ(2)

(︂
β + 2

4

)︂
+ 16

]︂
,

Jsp
22 = −1

96

[︂(︁
8 − 12β2)︁ψ(2)

(︂
β

2

)︂
− 48βψ(1)

(︂
β

2

)︂
− ψ(2)

(︂
β

4

)︂
+ ψ(2)

(︂
β + 2

4

)︂
+ 48

]︂
,

Jsp
23 = 1

3

[︃
− 2
β

+ βψ(1)
(︂
β

2

)︂
− 2
]︃
,
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Jsp
24 = −1

256

[︄
− 8β2 − 2

(︁
β4 + 4β2 − 24

)︁
ψ(2)

(︂
β

2

)︂
+
(︁
β2 − 6

)︁
ψ(2)

(︂
β

4

)︂
−
(︁
β2 − 6

)︁
ψ(2)

(︂
β + 2

4

)︂
− 16β − 128βψ(1)

(︂
β

2

)︂
+ 32βψ(1)

(︂
β

4

)︂
− 32βψ(1)

(︂
β + 2

4

)︂
+ 208

]︄
,

Jsp
25 = 1

144

[︄
− 144ζ(1,0)

(︂
−1, β2

)︂
− 144ζ(1,0)

(︂
−1, β + 2

2

)︂
+
(︁
24 − 36β2)︁ψ(0)

(︂
β

2

)︂
+ 6β

(︁
β2 + 2

)︁
ψ(1)

(︂
β

2

)︂
+ 6β{7β − 4[2 + log(64) + 3 log(π)]} + 72β log(β) + 36ψ(0)

(︂
β

4

)︂
− 36ψ(0)

(︂
β + 2

4

)︂
+ 9βψ(1)

(︂
β

4

)︂
− 9βψ(1)

(︂
β + 2

4

)︂
+ 144βlogΓ

(︂
β

2

)︂
− 44

]︄
,
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Jsp
26 = −1

48

{︄
− 144ζ(1,0)

(︂
−1, β2

)︂
− 144ζ(1,0)

(︂
−1, β + 2

2

)︂
+
(︁
24 − 36β2)︁ψ(0)

(︂
β

2

)︂
+ 3β

[︂
2
(︁
β2 − 6

)︁
ψ(1)

(︂
β

2

)︂
− ψ(1)

(︂
β

4

)︂
+ ψ(1)

(︂
β + 2

4

)︂]︂
+ 6β{7β − 4[2 + log(64) + 3 log(π)]}

+ 72β log(β) − 60ψ(0)
(︂
β

4

)︂
+ 60ψ(0)

(︂
β + 2

4

)︂
+ 144βlogΓ

(︂
β

2

)︂
+ 52

}︄
,

Jsp
27 = 1

768

[︄
− 8β2 − 2

(︁
β4 + 20β2 − 24

)︁
ψ(2)

(︂
β

2

)︂
− 3
(︁
β2 + 2

)︁
ψ(2)

(︂
β

4

)︂
+ 3
(︁
β2 + 2

)︁
ψ(2)

(︂
β + 2

4

)︂
− 16β − 256βψ(1)

(︂
β

2

)︂
+ 336

]︄
,
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Jsp
28 = 1

256

{︄
24(10 − 2β − β2) − 2

(︁
3β4 − 36β2 + 56

)︁
ψ(2)

(︂
β

2

)︂
−
(︁
β2 − 14

)︁ [︂
ψ(2)

(︂
β

4

)︂
− ψ(2)

(︂
β + 2

4

)︂]︂
− 64β

[︂
ψ(1)

(︂
β

4

)︂
− ψ(1)

(︂
β + 2

4

)︂]︂
− 512

[︂
ψ(0)

(︂
β

4

)︂
− ψ(0)

(︂
β + 2

4

)︂]︂}︄
,

Jsp
29 = −6ζ(1,0)

(︂
−1, β2

)︂
− 6ζ(1,0)

(︂
−1, β + 2

2

)︂
+ 1

12

[︄
− 6
(︁
β2 − 2

)︁
ψ(0)

(︂
β

2

)︂
+ 3β(5β − 2 − 12 log(4) − 8 log(π))

+ 24β(log(β − 2) + log(β)) − 6ψ(0)
(︂
β

4

)︂
+ 6ψ(0)

(︂
β + 2

4

)︂
+ 24βlogΓ

(︂
β

2

)︂
+ 2

]︄
+ 2βlogΓ

(︂
β

2 − 1
)︂
,
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Jsp
0 =

7
(︁
β3ψ(2) (︁β

2

)︁
+ 8
)︁

90β3 ,

Jsp
1 = 1

1536

[︄
192ζ(1,0)

(︂
−1, β2

)︂
+ 192ζ(1,0)

(︂
−1, β + 2

2

)︂
− 80β2 + 16

(︁
3β2 − 2

)︁
ψ(0)

(︂
β

2

)︂
− 2
(︁
β4 + 4β2 − 8

)︁
ψ(2)

(︂
β

2

)︂
+
(︁
3β2 − 2

)︁
ψ(2)

(︂
β

4

)︂
+
(︁
2 − 3β2)︁ψ(2)

(︂
β + 2

4

)︂
+ 32β + 192β log(2)

+ 96β log(π) − 96β log(β) − 48ψ(0)
(︂
β

4

)︂
+ 48ψ(0)

(︂
β + 2

4

)︂
− 192βlogΓ

(︂
β

2

)︂
− 32

]︄
,

(C.68)

Jsp
2 = 1

768

[︄
− 5664ζ(1,0)

(︂
−1, β2

)︂
− 5664ζ(1,0)

(︂
−1, β + 2

2

)︂
+ 1896β2 + 32

(︁
3β2 − 26

)︁
βψ(1)

(︂
β

2

)︂
+ 472

(︁
2 − 3β2)︁ψ(0)

(︂
β

2

)︂
+
(︁
−9β4 + 220β2 − 568

)︁
ψ(2)

(︂
β

2

)︂
+
(︃

71 − 21β2

2

)︃
ψ(2)

(︂
β

4

)︂
+
(︃

21β2

2 − 71
)︃
ψ(2)

(︂
β + 2

4

)︂
− 1680β − 5664β log(2) − 2832β log(π) + 2832β log(β) − 528βψ(1)

(︂
β

4

)︂
+ 528βψ(1)

(︂
β + 2

4

)︂
− 3960ψ(0)

(︂
β

4

)︂
+ 3960ψ(0)

(︂
β + 2

4

)︂
+ 5664βlogΓ

(︂
β

2

)︂
+ 1872

]︄
,
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Jsp
3 = 1

288

[︄
72ζ(1,0)

(︂
−1, β2

)︂
+ 72ζ(1,0)

(︂
−1, β + 2

2

)︂
+ 6
(︁
3β2 − 2

)︁
ψ(0)

(︂
β

2

)︂
+ 6β

(︁
β2 + 2

)︁
ψ(1)

(︂
β

2

)︂
+ 3β(−13β + 2 + 24 log(2) + 12 log(π)) − 36β log(β) − 18ψ(0)

(︂
β

4

)︂
+ 18ψ(0)

(︂
β + 2

4

)︂
− 9βψ(1)

(︂
β

4

)︂
+ 9βψ(1)

(︂
β + 2

4

)︂
− 72βlogΓ

(︂
β

2

)︂
− 26

]︄
,
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Jsp
4 = 1

6

[︄
− 24ζ(1,0)

(︂
−1, β2

)︂
− 24ζ(1,0)

(︂
−1, β + 2

2

)︂
+ 3β2 + 4

β
− β log

(︁
4096π6)︁

+ 6β log(β) + 4ψ(0)
(︂
β

2

)︂
+ 12βlogΓ

(︂
β

2

)︂
+ 2

]︄
,
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Jsp
5 = 1

24

[︄
72ζ(1,0)

(︂
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[158] A. Meurer, C. P. Smith, M. Paprocki, O. Čert́ık, S. B. Kirpichev, M. Rocklin et al., Sympy:
symbolic computing in python, PeerJ Comp. Sci. 3 (2017) e103.

[159] Y. Liang and A. Czarnecki, Photon-photon scattering: A Tutorial, Can. J. Phys. 90 (2012) 11
[1111.6126].

[160] S. Meuren, C. H. Keitel and A. Di Piazza, Polarization operator for plane-wave background
fields, Phys. Rev. D 88 (2013) 013007.

[161] A. Di Piazza, K. Z. Hatsagortsyan and C. H. Keitel, Laser-photon merging in proton-laser
collisions, Phys. Rev. A 78 (2008) 062109.

[162] S. Hassani, Mathematical physics: a modern introduction to its foundations. Springer Science
& Business Media, New York, 2013.

[163] J. P. Edwards, C. M. Mata, U. Müller and C. Schubert, New Techniques for Worldline
Integration, SIGMA 17 (2021) 065 [2106.12071].

[164] V. O. Papanyan and V. I. Ritus, Three-photon interaction in an intense field and scaling
invariance, Zh. Eksp. Teor. Fiz. 65 (1973) 1756.

[165] A. Barducci, F. Bordi and R. Casalbuoni, Path integral quantization of spinning particles
interacting with crossed external electromagnetic fields, Nuov. Cim. B 64 (1981) 287.

[166] H. Bateman and B. M. Project, Higher Transcendental Functions [Volumes I-III].
McGraw-Hill Book Company, 1953.

https://doi.org/10.1103/PhysRevD.73.065028
https://arxiv.org/abs/hep-th/0602176
https://arxiv.org/abs/hep-ph/9601359
https://doi.org/10.1017/CBO9780511813917
https://doi.org/https://doi.org/10.1016/0370-2693(93)91537-W
https://doi.org/10.1007/978-3-642-80951-4
https://doi.org/10.1007/3-540-45585-X
https://doi.org/10.1142/S0217751X14501747
https://doi.org/10.1142/S0217751X14501747
https://arxiv.org/abs/1310.8410
https://doi.org/10.1142/S0217751X17500531
https://arxiv.org/abs/1701.07375
https://arxiv.org/abs/1711.05194
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1139/p11-144
https://arxiv.org/abs/1111.6126
https://doi.org/10.1103/PhysRevD.88.013007
https://doi.org/10.1103/PhysRevA.78.062109
https://doi.org/10.3842/SIGMA.2021.065
https://arxiv.org/abs/2106.12071
https://doi.org/10.1007/BF02903290


Bibliography xv

[167] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products. Elsevier/Academic
Press, Amsterdam, seventh ed., 2007.

[168] G. B. Arfken, H. J. Weber and F. E. Harris, Mathematical Methods for Physicists. Academic
Press, Boston, seventh ed., 2013.

[169] C. M. Kim and S. P. Kim, Schwinger Pair Production and Vacuum Birefringence around
Highly Magnetized Neutron Stars, Astron. Rep. 67 (2023) S122 [2308.15830].

[170] C. Schubert, Lecture notes on the worldline approach to QED, Unpublished (2020) .

[171] G. Mogull, J. Plefka and J. Steinhoff, Classical black hole scattering from a worldline quantum
field theory, JHEP 02 (2021) 048 [2010.02865].

[172] D. Hanneke, S. Fogwell and G. Gabrielse, New measurement of the electron magnetic moment
and the fine structure constant, Phys. Rev. Lett. 100 (2008) 120801 [0801.1134].
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gen, weder unmittelbar noch mittelbar, im Zusammenhang mit dem Inhalt der vorliegenden
Dissertation an Dritte erfolgt. Insbesondere habe ich nicht die Hilfe einer kommerziellen Pro-
motionsberatung in Anspruch genommen.

(b) die aus fremden Quellen direkt oder indirekt übernommenen Gedanken als solche kenntlich
gemacht sind.

(c) ich die vorliegende Arbeit bisher weder im Inland noch im Ausland in gleicher oder ähn-
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6. Mir ist bekannt, dass die Nichteinhaltung dieser Erklärung oder unrichtige Angaben zum Ver-
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