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ABSTRACT

This research activity is concerned with the applications of Bayesian

Monte Carlo methods for the detection and parameter estimation of the

gravitational wave signals generated by a special type of gravitational

wave sources called extreme mass ratio inspirals (EMRIs). EMRIs are con-

sidered to be one of the most important potential sources of gravitational

waves in space-time, to be observed with the planned Laser Interferome-

ter Space Antenna (LISA). The data analysis of such sources is a challeng-

ing statistical and computational problem because of the large parameter

space, weak amplitudes of the signals, complicated nature of the underly-

ing waveform model and that of the LISA data. The posterior density sur-

face of EMRI signals is full of local modes and ordinary Monte Carlo sam-

plers usually fail to explore such multi-modal densities. This thesis tackles

the problem of the detection and parameter estimation of such sources by

establishing a Bayesian framework in which the posterior distribution is

explored with the help of advanced Monte Carlo sampling methods such

as parallel tempering Markov chain Monte Carlo. The LISA response to

the incoming gravitational wave signals is not simple and requires some

further manipulations to adjust the measured signals for different dynam-

ics to which LISA will be exposed during its operation. This response is

derived in two different ways, i.e. full LISA response and the low fre-

quency approximation. This framework was applied with a great success

in different scenarios ranging from the detection and estimation of param-

eters of a single EMRI source buried in LISA instrument noise to the detec-

tion and estimation of parameters of a particular EMRI source from data in

which there are multiple EMRI sources contaminated with the instrument

v
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noise as well as other gravitational sources of noise. The results show that

our Bayesian methodology is indeed capable of facing the challenge of the

detection and parameter estimation of the signals from EMRI sources in

realistic LISA data.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

The application of Bayesian methods to make inferences about the charac-

teristics of astrophysical phenomena has received a tremendous attention

in recent decades, particularly after the invention of sophisticated Monte

Carlo methods to overcome the mathematical challenges that generally

arise in the applications of these methods. However, the interaction of

the Bayesian approach and astrophysics is not new, rather it is a renewal

of their forgotten relationship. After being introduced by Thomas Bayes

(1702–1761), who provided the fundamental mathematical formalism

in the form of the Bayes’ rule, the Bayesian methods were originally

applied and further developed by an astrophysicist, Pierre-Simon Laplace

(1749–1827). Laplace used Bayesian probability theory to address many

astrophysical problems, such as the estimation of masses of the planets

from astronomical data, and to quantify the uncertainty in the measure-

ment of the masses due to observational errors [2]. Logically, the Bayesian

methods can be thought of as the only reliable tools for making inferences

about the parameters associated with an astrophysical phenomenon as

there is no way to directly access and observe the underlying objects and

conduct experiments repeatedly in a laboratory like the other sciences.

In such circumstances the inferences are exposed to uncertainties in the

estimated quantities, which need to be quantified by a suitable probability

1



2 1. INTRODUCTION

distribution.

In the past, the majority of scientists were reluctant to use Bayesian meth-

ods, partly because of the lack of a proper rationale for the assignment

of prior probabilities, the famous debate of subjectivity versus objectivity

in the definition of prior probability distribution, and partly because of

the mathematically complicated structure of the resulting posterior; i.e.

difficulties in evaluating the integrals to find the marginal posteriors

or the expected values of the parameters and their functions. The first

problem was addressed by Edwin Thompson Jaynes (1922–1998) with

great clarity in [3]. One of his simple statements is, “the only thing

objectivity requires of a scientific approach is that experimenters with

the same state of knowledge reach the same conclusion” [4]. Thus the

role of the experimenter, whose state of knowledge is to be quantified,

has become a decisive factor in the Bayesian approach. Furthermore, he

provided a logical way to establish a prior probability using the principle

of maximum entropy, for example see [3–5] for more details. For applica-

tions of the Bayesian approach to the analysis of signals, the underlying

theory has also been established very nicely in the above stated references.

A similar Bayesian approach for the analysis of gravitational radiation

data was proposed in [6], which was later clarified and extended in [7]. It

is this later approach which is now widely used for the data analysis of

gravitational waves.

The difficulties arising in the analytical evaluation of posterior distri-

bution were overcome to a great extent by the availability of different

numerical integration methods, particularly the Markov chain Monte

Carlo (MCMC) methods and fast computing resources.

Earlier studies, e.g. [8–11] and many others, show that Bayesian meth-

ods equipped with suitable MCMC sampling algorithms have been suc-

cessfully applied to estimate the parameters of gravitational wave signals
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radiated by different sources. The focus of this thesis is the Bayesian in-

ference on the gravitational wave signals generated by a special kind of

sources called extreme mass ratio inspirals (EMRIs).

1.2 About this Work

This work was started in March 2007. The first one and half years were

spent in gaining knowledge about the theory of the Bayesian statistics,

Monte Carlo sampling methods, gravitational wave physics, signal pro-

cessing techniques and Bayesian spectrum analysis. Along with these,

knowledge about different programming languages and parallel program-

ming techniques was also gained. Some time was spent to gain under-

standing of the EMRI waveform model and its parameters, and the mech-

anism of the laser interferometer space antenna (LISA) data simulator for

generating the simulated data. At first there were a few problems in com-

puting due to the large memory and high speed required for the efficient

computations of the waveform signals as well as the corresponding de-

tector response. In the beginning, because of memory problems a single

chain MCMC sampler was used to simulate the posterior density and af-

ter memory issues were resolved the sampler was upgraded to a multi-

ple chains sampler. Initially, most of the computations were carried out

on a local server having eight processor cores. In September 2009, ac-

cess to BeSTGRID (Auckland cluster) [12] was gained, which eased up

the computational difficulties to a great extent. For the first time some

real insight into the waveform model and the nature of its parameters was

gained. Some initial results were informally discussed at 14th Gravita-

tional Wave Data Analysis Workshop (GWDAW 14) (January 26-29, 2010,

Rome, Italy) with some of the leading people in this field. With the BeST-

GRID, in the beginning good results were obtained, however later on it

became too inconsistent with regard to its performance. Firstly, there were

storage problems. For the whole cluster the total available storage was

only 250 GB, which, because of the large input/outputs of several users,
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often got quickly filled up and thus the output of the long running simu-

lations would be just destroyed. Secondly, since there were several other

users from around the university; sometimes one had to wait for weeks

to get enough cores to load his job. Recently, a few fast servers were in-

stalled at our own department that solved the computational problems to

a great extent. Some of the recent results were presented at Gravitational

wave Physics and Astronomy Workshop (GWPAW) (January 26-29, 2011,

Milwaukee, Wisconsin, USA).

1.3 Organization of this Thesis

The organization of this thesis is as follows. Chapter 2 presents a brief

overview of the general concepts of gravitational waves and their effects

on the space-time, different gravitational wave detectors that are used to

measure the effect of passing by gravitational waves, different sources that

LISA is expected to be able to detect and different data analysis techniques

that were used in earlier studies. Chapter 3 introduces the EMRI sources,

and two different models that are used to characterize the signals from

these sources. In addition, this chapter also discusses the detector re-

sponse to the incoming gravitational waves and two different methods

to approximate this response. Chapter 4 introduces the concepts of the

Bayesian approach, different Monte Carlo sampling algorithms and sig-

nal processing methods, that are collectively used to conduct Bayesian in-

ference on signals. Chapter 5 presents applications of the methods, that

were discussed in Chapter 4, to carry out the Bayesian inference on EMRI

signals and the relevant results that were obtained in different scenarios.

Finally, some conclusions are presented in Chapter 6. The appendix con-

tains a part of one of the source models given in Chapter 3, which was

extremely long and was shifted to appendix for the ease of exposition.



CHAPTER 2

GRAVITATIONAL WAVES, SOURCES AND DETECTORS

2.1 Gravitational Waves

Einstein’s theory of general relativity postulates that rapidly moving

objects will emit energy. This energy produces periodic ripples or

deformations in the fabric of space-time. These ripples are known as

gravitational waves (GWs). GWs can be described by oscillations in the

so-called fabric of space-time, causing space and everything in it to stretch

and squeeze as the waves pass by. Propagating at the speed of light, GWs

do not travel through the space-time, rather the fabric of space-time itself

is oscillating, i.e. GWs can be thought as “messengers”. An important

feature of GWs is that all astronomical bodies are transparent to GWs

as they pass relatively unaffected through the matter. The GWs carry

information about the sources at which they were produced such as

information about the movements of stellar bodies, the structures and

sizes of merging neutron stars or black-hole binaries and the map of

space-time around super massive black holes.

However, the events producing GWs are at great distances from us. Even

if caused by the most violent events in a nearby galaxy the GWs become

very weak when they reach our planet. This makes the detection of GWs

an extremely difficult task.

5
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Until now any attempts to directly detect GWs have not been successful,

however, astrophysicists are confident that GWs exist since there is a very

strong evidence for their existence based on the indirect measurements

of the orbital decay of binary neutron star system PSR1913+16, that are

very consistent with the theoretical predictions of energy loss because of

gravitational radiation [13, 14].

2.2 The Effect of GWs

The effect of a GW is to stretch and squeeze the space-time fabric in di-

rections perpendicular to the direction of wave propagation. This can be

observed by comparing the distance between two (or more) independent

freely falling/floating test masses. The GWs are quadrupole, that is they

occur in two fundamental states of polarization namely plus- (‘+’) and

cross- (‘×’) polarization. The effect of GWs on a ring of free particles is

shown in Figure 2.1. Here the GW is traveling perpendicular to the plane

of the ring. The top panel shows the plus polarization while the bottom

panel shows the cross polarization. The ring is distorted by the passing

GWs and the effect is shown at different phases. Plus polarization changes

the distance of free particles by first squeezing the ring along a horizontal

direction and then along a vertical direction. Cross polarization has ba-

sically the same effect but at 45◦ inclination. The total area of the plane

remains the same and if the GWs are traveling along the plane then there

will be no distortion at all.

2.3 GWs’ Detectors

As shown above the effect of GWs on free falling particles is that the

distance between these particles changes as the wave passes. The change

in the distance, called strain amplitude and traditionally denoted by h,

is used for measuring the effect of a passing GW directly. However, this
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Figure 2.1: Illustration of the effect of “+” and “×” polarizations on a
ring of test particles.

change in the distance is extremely small and requires highly sensitive

detectors. There are two types of detectors used for the detection of

GWs. One is a resonant mass detector in which large masses are used

and the deformation caused by GWs in them is measured [15, 16]. The

other type is a laser interferometric detector which actually works in a

network of more than one detectors located at sufficiently long distance

from each other [17, 18]. As the name indicates, laser interferometric

detectors use laser interferometry to measure the changes in the strain

amplitudes. When a GW passes through the plane of the detector, the

distance between the masses changes by an amount ∆L, where L is the

distance between the two masses, known as arm-length, resulting in

a strain amplitude h = ∆L/L. There are several detectors around the

world that use laser interferometry to detect GWs. The ground based

detectors are GEO600 (Germany) [19], LIGO (Hanford, USA) and LIGO

(Livingston, USA) [20], VIRGO (Italy) [21], and TAMA300 (Japan) [22].

These ground based detectors are large L-shaped instruments with up to

4km long arms at 90◦ to each other. From the central station laser beams
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are sent to the ends of the arms where they are reflected by mirrors that

are suspended by wires to work as approximately free-falling masses.

When a GW passes through the plane of a detector the distance between

the mirrors changes by a small amount, which is monitored by photo

detectors that measure the phase change of the light. These detectors are

at most sensitive to gravitational radiation in the range 1− 104Hz.

A space-borne detector called Laser Interferometer Space Antenna (LISA)

is currently being designed under a joint mission of NASA and ESA. The

design of LISA allows to have very long arms and therefore is expected

to be sensitive to low frequency gravitational radiation in the range 5×
10−5− 10−1Hz. The basic detector consists of three freely flying spacecraft

located at the vertices of an imaginary equilateral triangle configuration

with L = 5× 109m long sides. Each spacecraft will carry two free-falling

test masses and laser instruments that exchange laser beams with other

two spacecraft to track the distances between the test masses within them

to indicate the passage of a GW. The LISA triangle will move around the

sun 20◦ (∼ 5.2× 107km) behind the Earth with its guiding centre (a point

which is equidistant from the three vertices) at the Earth’s orbit about the

Sun. The LISA constellation is depicted in Figure 2.2.

LISA is not a pointed instrument, and can never be, rather it is an all-sky

monitor and at any one time, LISA maps the whole sky. At different po-

sitions it will have different sensitivities to GWs from a particular source

depending on the location of the source and the polarisation of the waves.

LISA will measure simultaneously both polarization components of the

incoming GWs. The data will initially consist of at least three time series,

recorded along three arms of the detector, from which all physical param-

eters of the source, including its position, can be extracted. Mapping the

whole sky means that there will be GWs from tens of thousands of resolv-

able as well as unresolvable sources all overlapping in frequencies and

phases [23, 24].
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Figure 2.2: LISA constellation orbiting the Sun. The sides of the triangle
are 5× 109m long, and the guiding centre follows the Earth in
its orbit, about 20◦ behind. The triangle is inclined 60◦ to the
ecliptic plane as viewed from the Sun and rotates clockwise.

2.4 LISA Sources

LISAwill be observing signals from several different GW sources. Some of

the sources which fall in the LISA sensitivity band are briefly mentioned

as following.

2.4.1 Galactic Binaries

These types of binaries develop when two objects with very dense masses

such as neutron stars (NSs) or white dwarfs (WDs), with roughly equal

masses, orbit about each other. The compact objects move initially at

an elliptical orbit about the common centre of mass. Over the course of

time their individual orbits become increasingly circular as the two objects

come closer and closer and at some point in time the two bodies appear

to move around the centre of mass at the same circular orbit. This orbit

decays with time like a spiral, as the two bodies come closer and closer

to each other, which proceeds towards the common centre of the masses.

Such spirals are called inspirals (in-spirals). As the two masses gradually
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Figure 2.3: Illustration of the effect of “+” and “×” polarizations on LISA
constellation. The squeeze and stretch caused by passing GW
is changing the distances between the adjacent spacecraft.

inspiral, they emit gravitational radiation with a frequency falling well

inside the LISA sensitivity band. These signals encode the luminosity dis-

tance to a binary, its sky location, and information about other physical

parameters. During its operation the LISA is expected to observe several

thousands individual galactic binary systems [25, 26].

2.4.2 Mergers of Massive Black Hole Binaries

Similar to galactic binary systems are massive black hole binary systems

in which both members are massive black holes with a total mass in range

105M⊙ − 109M⊙. These sources will be detectable by LISA at extremely

large distances due to large masses involved. The GWs from these sources

encode information about the masses and the spins of the two members.

Once such sources are detected and the physical parameters are estimated,

this information can be used to find out how these massive black holes are

formed and what is the rate of their mergers, that is how often massive
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black holes encounter each other, which will put light on the evolution

and structure of the large scale galactic dynamics [27, 28].

2.4.3 Extreme Mass Ratio Inspirals

It is predicted that most galaxies, in their centres, host super massive black

holes (∼ 105M⊙ − 107M⊙) surrounded by a dense population of stellar

objects such as NSs, WDs or small black holes and other normal stars. Due

to multi-body interactions these stellar objects are often pushed into an or-

bit which passes too close to the central mass. The captured object then

spirals in by orbital decay through the emission of gravitational radiation

and eventually plunges into the central mass. Due to large differences

between the two masses, such inspirals are called extreme mass ratio in-

spirals (EMRIs), and are one of the most exciting sources to be observed

by LISA. The EMRI studies will help to understand the structure of the

space-time around the SMBH using the physical parameters such as spin

and mass, and the interactions between SMBH and the cluster of stellar

masses around it [29]. The detection of these signals and the estimation of

their physical parameters is the focus of this work and will be discussed

in details in Chapter 3.

2.4.4 Cosmological Background, Stochastic Sources and

Bursts

Stochastic GWs are random signals generated by large number of inde-

pendent, incoherent and unresolved or diffuse sources. These signals can

originate either from the early cosmological events or the astrophysical

events happening throughout the history of the universe. The cosmologi-

cal background could consist of the left over GWs that were produced as

the result of the processes that took place very shortly after the big bang.

The astrophysical background on the other hand is produced by very

recent processes, such as supernova bursts and signals from millions of
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unresolved compact or massive black hole inspirals [30, 31]. These GWs

might encode information about the early structure of the universe and

other high energy astrophysical events. The superposition of GWs from

these random and unresolved sources will form a very strong background

noise which will be there in LISA data stream and therefore will be of

great importance for the precise detection of the other sources.

The relative strengths of individual signals from all sources, mentioned

above, along with the LISA instrument noise is shown in Figure 2.4.

Figure 2.4: (Colour online) The large box shows the one-sided power
spectrum (see also Chapter 4) of two years of instrument
noise (in black), 60 million Galactic binaries (in green), 4
SMBH binaries (in red), cosmological stochastic background
(in yellow) and everything (in blue). The three small boxes in
the bottom show the relative strengths of the 3 different EM-
RIs (in grey) (further details in Chapter 3) to LISA instrument
noise and everything. Credit: MLDC 4 website [1].
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2.5 Data Analysis

Since the incoming GWs are being measured over time, the data sets con-

sist of multiple time series of strains measured along each arm of the LISA

triangle. Because of the LISA motion around the sun the actual incoming

signal is Doppler shifted, before being used for actual data analysis, this

effect of Doppler shift must be deconvolved in the data. Each spacecraft

sends and receives laser beams to and from the other two spacecraft to

measure the strain caused by the passage of GWs. In an equal arm detector

the lasers beams experience the same delay in each arm and when mea-

surements from all the arms are combined the laser phase errors in all laser

beams are common and cancel exactly. There would have been no prob-

lem with the received data if LISA was an equal arm detector. However,

in reality each spacecraft is moving in its own orbit, therefore LISA’s arm-

lengths will not be equal, which gives rise to an overwhelming laser phase

noise. To cancel this noise, the phase measurements at each spacecraft are

carefully recombined into time delayed observables called time-delay in-

terferometry [32] (more details in Chapter 3). Unlike the ground-based

detector data, which is dominated by local noises, the LISA data is ex-

pected to be dominated by GW signals from millions of sources. Because

of the large number of GW sources there will be huge confusion noise, in

which different sources can not be easily isolated because of similarity of

their signals [33].

2.5.1 Global Analysis Techniques: Overview

To date, several approaches have been developed for the detection and

estimation of parameters of GW signals from different sources. These ap-

proaches are very general. To avoid excessive details we present a brief

overview of only those methods that were employed and found useful for

the search and estimation of parameters of EMRI signals.
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2.5.1.1 Matched Filtering Approach

In the matched filtering approach, a bank of templates for the theoretical

waveforms is generated over the allowable ranges of parameters. These

templates are individually subtracted from the data and the likelihood is

computed over the resulting residuals. For stationary noise, the Gaussian

likelihood is closely related to the signal-to-noise ratio (SNR) (see also Sec-

tion 4.5.1 and 4.6). When a chosen template has a sufficient overlap with

the signal buried in the data it will maximize the SNR and a detection can

be claimed. However, this method is suitable for signals with a small num-

ber of parameters because the number of templates increases exponen-

tially with the number of parameters, which can be time consuming if the

model signals are computationally expensive and the required waveforms

are long. Due to a large number of source parameters (a typical EMRI sig-

nal depends on 17 parameters) and longer waveforms (large number of

cycles) required for characterizing the EMRI signals, a full scale template

based search would require roughly 1040 templates which is impossible

to do with the capabilities of current computational resources. Instead of

searching the whole data at once, which typically is ∼ 11
2 − 2 years long

to cover the entire EMRI event, a semi-coherent search was conducted in

[34]; in which shorter data segments of few weeks were used along with

a maximization of several source parameters to reduce the dimensionality

of parameter space in order to lessen the computational costs.

2.5.1.2 Time-Frequency Approach

A computationally cheaper approach that was used for EMRI detection is

based on time-frequency searches in which the LISA data is searched for

tracks left by EMRI signals in the spectrograms of LISA data. These meth-

ods consist of constructing a spectrogram of the signal. The time domain

data is first divided up into shorter segments of a few weeks length, each

segment is then Fourier transformed and thus a time-frequency spectro-

gram is constructed for each segment. These spectrograms are examined
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for the identification of possible tracks of an EMRI signal. These tracks

correspond to different harmonics and the source parameters can be ex-

tracted from the identified tracks [35, 36]. Although this approach has

much lower computational costs, it has a lower detection sensitivity. So

far, this approach has some success in detecting isolated EMRI sources

buried in MLDC LISA noise, it is not yet known how this algorithm will

perform when applied to more realistic data containing multiple intersect-

ing tracks of signals from millions of galactic binaries, multiple massive

black hole binaries and hundreds of overlapping-in-time EMRIs.

2.5.1.3 Monte Carlo Approach

With the above methods only limited information about the EMRI sources

can be extracted from LISA data. Because of the large number of EMRI pa-

rameters a suitable alternative is to conduct Monte Carlo searches based

on a Bayesian approach in which the posterior distribution is either (if

possible) analytically evaluated or is numerically integrated using some

Markov chain Monte Carlo (MCMC) algorithm to yield the marginal dis-

tributions of the parameters. The theoretical structure of EMRI waveforms

yields a very complicated posterior distribution which has multiple local

maxima along the global maximum, therefore more advanced MCMC al-

gorithms are required for efficient searches. The first ever MCMC applica-

tions for EMRI search and estimation were employed in [37], in which the

use of reversible jump MCMC (RJMCMC) was demonstrated to charac-

terize a simplified EMRI signal. A variant of MCMC called Metropolis-

Hastings Monte Carlo (MHMC) was used in [38–40], which yields a

non-Markovian chain because of the use of several independent and pur-

posely directed proposal distributions that allow a range of steps of dif-

ferent sizes in the parameter space [41]. To enhance the performance of

their algorithms, several additional tricks such as conducting several small

MCMC runs using multiple chains to identify stronger signals prior to fi-

nal MCMC search, constrained MCMC jumps scaled by Fisher informa-

tion matrix (FIM) of parameters, simulated annealing, and island hopping
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techniques were also used to ensure the chains move toward the global

mode without getting stuck at local modes.



CHAPTER 3

EMRIS, SOURCE MODEL AND LISA RESPONSE

3.1 Introduction

It is predicted that most of the galaxies, including our own milky

way, host a super massive black hole (SMBH) with a typical mass of

105M⊙ . M . 107M⊙ (M⊙ = solar mass) in their centres. These SMBHs

are surrounded by a large population of stellar mass compact objects

(COs) such as NSs , WDs and small black holes (BHs) and other normal

stars with a typical mass ∼ 10M⊙. Due to multi-body interactions most

of these COs occasionally wrestle with each other which can result in

some of them being pushed into and hence captured in, an orbit which

passes too close to the central mass [42]. Once captured in the strong

gravitational field of SMBH, the CO then starts orbiting about the central

mass in an eccentric orbit which decays over time and the CO gradually

spirals in into central mass, followed by a final plunge. Inspirals of

such COs into an SMBH are called extreme mass ratio inspirals (EMRIs)

because of the large difference in the masses of the two bodies. EMRIs

are considered to be one of the most important potential sources of

GWs in space-time, to be observed by LISA [39]. Such sources are very

important in the sense that they encode information about the formation

and structure of SMBHs, the characteristics of space-time around them

such as Lense-Thirring effects, and spin-orbit coupling [40].

17
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EMRI signals are expected to be very weak as the instantaneous am-

plitude of a typical EMRI signal is an order of magnitude below even

the noise fluctuations in LISA alone and, further, it will be lying behind

the strong foreground of confusion noise created by other GWs sources

such as massive black hole binaries and NSs, WDs binaries. This makes

the detection of such sources in the LISA data stream and parameter

estimation for them a challenging technical problem. Due to extreme

mass ratio (typically µ/M ∼ 10−5) these inspirals proceed very slowly

as the captured objects remain in the strong field of the central mass for

a significant amount of time before being eventually pulled into it. This

means that the EMRI signals will require to be followed for a very long

time and hence a large number of waveform cycles (typically 105) will be

required to accumulate enough signal power for their precise detection

[38, 39]. The large parameter space of this type of source (17 dimensional

parameter space of signals, see next section) and the complicated likeli-

hood surface makes it a statistical challenge too.

The Mock LISA Data Challenges (MLDC) are a programme to demon-

strate and facilitate the development of LISA data analysis capabilities

by providing information on common data formats, standard models for

LISA response, noises and waveforms and other necessary tools and soft-

ware [43]. The EMRI waveform model given in the MLDC releases is

based on the Analytic Kludge waveform (AKW) approximation given in

[29, 44]. These waveforms use Pater-Mathews as basis waveforms and

Post-Newtonian (PN) approximations for orbital dynamics. While this

model is not a very good approximation to the realistic EMRIs, it still cap-

tures the main features of EMRI signals and as compared to others (see

[45–47] for more details) it is theoretically simplest and computationally

cheapest waveform model, though it is still expensive to handle with the

currently available computing equipments. Furthermore, although AKW

is the simplest among others, this is still very complicated in the sense

that the generated waveforms have emission at multiple frequencies cor-
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responding to different harmonics of the fundamental orbital frequencies

such as the harmonics of the orbital frequency, harmonics of the perihelion

precession rate, and harmonics of the orbital-plane precession rate. These

frequencies evolve over time during the waveform progression thereby

making these signal rather more complicated from a data analysis point

of view. The EMRI sources can be divided into three groups depending

on the size of the central mass, i.e. M ∼ [0.95, 1.05]× M⊙107 (high mass

EMRI sources), M ∼ [4.75, 5.25]× M⊙106 (medium mass EMRI sources)

and M ∼ [0.95, 1.05]× M⊙106 (low mass EMRI sources). These system

can also be grouped on the basis of the type of GW they generate. For

example, the high and medium mass EMRI systems are also called low

frequency GW sources and analogously the low mass systems are called

high frequency EMRI systems. The one-sided power spectrum (see also

Section 4.4.3) of these sources is shown in Figure 3.1 (see also Figure 2.4

in Chapter 2). For all the three sources, the same waveform model, with

different parameter values corresponding to different sources, is used; this

is described in the following section.

3.2 The AKWModel

A full two-body EMRI system is described by 17 parameters but since the

spin of the CO is negligible with respect to the spin of SMBH, the three

parameters describing the spin of the CO can be ignored. Thus the sys-

tem now depends on 14 parameters that are listed in Table 3.1 with their

standard symbols and units of measurement as adopted by MLDC [44].

The waveform parameters can be categorized into three groups namely

intrinsic parameters: which affect the frequency and phase evolution of

the different harmonics, extrinsic parameters: which affect the waveform

projection into a detector response, and phase parameters: which define

the relative phase of different harmonics at one fiducial time [38].

To describe the model, let us consider an EMRI system in which a CO

of mass µ is rotating around an SMBH of M (µ/M ≪ 1) on an elliptical



20 3. EMRIS, SOURCE MODEL AND LISA RESPONSE

Figure 3.1: The three plots (a), (b) and (c) show the one-sided power spec-
trum of different EMRI systems with central masses M ∼
[0.95, 1.05] × M⊙107, M ∼ [4.75, 5.25] × M⊙106 and M ∼
[0.95, 1.05] × M⊙106 respectively. For all these sources the
CO’s mass is µ ∼ [9.5, 10.5] × M⊙ and luminosity distance
is DL ∼ [0.10, 1.0] gigaparsec (GPC).

orbit (see Figure 3.2) with semi-major axis a, eccentricity e, and orbital

frequency ν = (2πM)−1(M/a). Let also G = c = 1, where G is the
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Table 3.1: Summary of EMRI parameters and their meaning.
Category Parameter Symbol Standard Units

Intrinsic

CO’s mass µ M⊙
SMBH’s mass M M⊙
Initial azimuthal orbital... ν0 Hertz
...frequency
Initial eccentricity e0 1
SMBH’s spin χ M2

Angle between spin and... λ Radian
...angular momentum

Extrinsic

Ecliptic latitude θS Radian
Ecliptic longitude φS Radian
Polar angle of spin θK Radian
Azimuthal angle of spin φK Radian
Distance to the source DL Parsec

Phase
Initial azimuthal orbital... Φ0 Radian
...phase
Initial azimuthal angle of... α0 Radian
...orbital angular momentum
Initial direction of pericenter γ̃0 Radian

gravitational constant and c the speed of light. Let n denote the number of

all possible harmonics associated with the orbital frequency ν of a given

EMRI source. For an n-harmonic waveform the amplitude coefficients of

the two polarizations are defined as:

h+ ≡∑
n

A+
n , h× ≡∑

n

A×n (3.2.1)

where A+
n and A×n are given by,

A+
n = −[1 + (L̂ · n̂)2][an cos(2γ)− bn sin(2γ)] + cn[1− (L̂ · n̂)2]

A×n = 2(L̂ · n̂)[bn cos(2γ) + an sin(2γ)] (3.2.2)

For e < 0.136 the sums in Equation (3.2.1) are truncated at n = 4 otherwise

at n = 30e. The coefficients an, bn and cn are given by Peter and Mathews
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Figure 3.2: An EMRI system, in which a CO µ orbits the central mass M

on an elliptical path. ~S is the rotation axis (spin axis) of the
SMBHwhich is parametrized by its magnitude χ, polar angle
θK and azimuth φK. Similarly~L(t) is the instantaneous orbital
angular momentum; its direction is parametrized by angle λ,
between ~S and ~L, and its time varying azimuth α(t). Finally
γ̃(t) is the time varying direction of pericentermeasured from
~L(t)× ~S and Φ(t) is the average orbital phase with respect to
pericenter.

expressions,

an = −nA
{

[Jn−2(ne)− 2eJn−1(ne) +
2
n
Jn(ne) + 2eJn+1(ne)

−Jn+2(ne)] cos[nΦ(t)]
}
,

bn = −nA
{

(1− e2)1/2[Jn−2(ne)− 2Jn(ne) + Jn+2(ne)] sin[nΦ(t)]
}
,

cn = 2AJn(ne) cos[nΦ(t)] (3.2.3)



3.2 THE AKW MODEL 23

where A is the overall amplitude defined as,

A ≡ (2πνM)2/3
µ

DL
, (3.2.4)

Jn(·) the Bessel functions of the first kind and γ is an azimuthal angle mea-

suring the direction of pericenter with respect to x̂ ≡ [−n̂ + L̂(L̂ · n̂)]/[1−
(L̂ · n̂)2]1/2 and is related to γ̃ by

γ = γ̃ + β (3.2.5)

where β is the angle from x̂ ∝ [−n̂ + L̂(L̂ · n̂)] to L̂× Ŝ, defined as,

β = tan−1
[
(cos λ)L̂ · n̂− S · n̂

n̂ · (Ŝ× L̂)

]
. (3.2.6)

The vector products appearing in the above expressions can be repre-

sented in terms of equivalent trigonometric expressions given as follow-

ing.

Ŝ · n̂ = cos θS cos θK + sin θS sin θK cos(φS − φK),

n̂ · (Ŝ× L̂) = sin θS sin(φK − φS) sinλ cos α(t)

+
(Ŝ · n̂) cos θK − cos θS

sin θK
sinλ sin α(t)

L̂ · n̂ = cos θS cos θL − sin θS sin θL cos(φS − φL). (3.2.7)

The angles θL(t) and φL(t) specify the instantaneous direction of L̂ and are

given in terms of θK, φK, λ, α(t) as

θL(t) = arccos (cos θK cosλ + sin θK sinλ cos α(t)) (3.2.8)

φL(t) = arctan (A/B) (3.2.9)
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where A and B are given as,

A = sin θK cos φK cos λ + sin φK sinλ sin α(t)

− cos θK cos φK sinλ cos α(t)

B = sin θK sin φK cosλ− cos φK sinλ sin α(t)

− cos θK sin φK sinλ cos α(t). (3.2.10)

The evolution of Φ(t), ν(t), γ̃(t), e(t), and α(t) is given by the following

PN formulas.

Let us define Y = 1− e2, Z = 2πMν, and χ = S/M2,

dΦ

dt
= 2πν, (3.2.11)

dν

dt
=

96
10π

(µ/M3)Z11/3Y−9/2
{[

1 +
73
24

e2 +
37
96

e4
]
Y

+Z2/3
[
1273336− 2561

224
e2 − 3885

128
e4 − 13147

5376
e6
]

−Z χ cosλY−1/2
[
73
12

+
1211
24

e2 +
3143
96

e4 +
65
64

e6
]}

, (3.2.12)

dγ̃

dt
= 6πνZ2/3Y−1

[
1+

1
4
2πνM2/3(1− e2)−1(26− 15e2)

]

−12πν χ cosλZ Y−3/2, (3.2.13)

de

dt
= − e

15
(µ/M2) Y−7/2Z8/3

{

(304 + 121e2)(1− e2(1 + 12 Z2/3))

− 1
56

Z2/3(133640+ 108984e2− 25211e4)

}

+e(µ/M2) χ cosλZ11/3 Y−4
[
1364
5

+
5032
15

e2 +
263
10

e4
]
,(3.2.14)

dα

dt
= 4πν χZY−3/2. (3.2.15)

The parameters Φ(t), ν(t), γ̃(t), e(t), α(t) are evolved forward in time, up

to the point when the CO finally plunges into central mass. The plunge
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occurs at amin = M(6 + 2e)/(1− e2) so the maximum of ν is set at

νmax = (2πM)−1[(1− e2)(6 + 2e)]3/2. (3.2.16)

The waveform is shut-off when ν reaches νmax. To generate detector re-

sponse we need to compute the polarization angle ψ(t) which is given by

ψ(t) = tan−1
(
cos θS sin θL(t) cos(φS − θL(t))− cos θL(t) sin θS

sin θL(t) sin(φS − θL(t))

)
.

(3.2.17)

Finally, the polarization signals denoted by h+(t) and h×(t) are given by

h+(t) = A+(t) cos 2ψ(t) + A×(t) sin 2ψ(t), (3.2.18)

h×(t) = −A+(t) sin 2ψ(t) + A×(t) cos 2ψ(t). (3.2.19)

The polarization signals h+(t) and h×(t) are then adjusted for time delay

as will be discussed in later sections. The numerous Bessel functions that

appear in Pater-Mathews expressions above are the most time consuming

terms of thismodel. To generate awaveform of a given length, almost two-

third of the total time is spent on the calculation of these Bessel functions.

Instead of calculating them individually the familiar recursive relationship

of Bessel functions can be used to reduce the total time by half.

3.2.1 Truncated EMRI WaveformModel

The truncated EMRI waveformmodel is a special version of the true AKW

model introduced in [38]. In this model several simplifications are used in

order to speed up the generation of waveforms. In these waveforms the

number of harmonics of the orbital frequency, ν, is kept at n ≤ 5 and

that of the perihelion precession are kept at l = 2. For a further speed

up the Bessel functions are expanded in the power of eccentricity using

Taylor series up to order three only. The amplitude coefficients of the two
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polarizations are computed using the following expressions.

A+
n = −1

2
n gn(n, e)[A+1 cos(nΦ + 2γ) + A+2 sin(nΦ + 2γ)]

A×n = −n gn(n, e)[A×1 cos(nΦ + 2γ) + A×2 sin(nΦ + 2γ)] (3.2.20)

where gn(n, e) is defined as

gn(n, e) = Jn−2(ne)− 2eJn−1(ne) +
2
n
Jn(ne) + 2eJn+1(ne)− Jn+2(ne)

+
√

(1− e2)[Jn−2(ne)− 2Jn(ne) + Jn+2(ne)]. (3.2.21)

The Bessel functions appearing in the above equation are expanded by

Taylor series up to the first three terms. For harmonics n = 1, 2, 3, 4, 5 the

functions gn(n, e) are derived as

g1(1, e) = −3e +
13
8
e3 +

5
192

e5

g2(2, e) = 2− 5e2 − 23
8
e4

g3(3, e) = 3e− 57
8
e3 − 321

64
e5

g4(4, e) = 4e2− 10e4 − 101
12

e6

g5(5, e) =
125
24

e3 − 5375
384

e5 − 42125
3072

e7. (3.2.22)

Note that the functions gn(n, e) do not represent the individual Bessel

functions themselves. Rather these are actually the solutions for n =

1, 2, 3, 4, 5 harmonics of the combined expression for Bessel functions as

given in Equation (3.2.21). The amplitudes A+1, A+2, A×1, and A×2 are

given in appendix (A.1). The PN-evolution equations for truncated EMRI

model are the same as the full AKW model.
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3.3 Parameter Ranges

The allowable ranges for different waveform parameters over which their

prior distributions can be defined are those specified by MLDC. The

ranges that are common to all types of EMRI sources are µ ∈ [9.5, 10.5],

e ∈ [0.15, 0.25], χ ∈ [0.5, 0.7], (φS, γ̃,Φ, α, φK) ∈ [0, 2π], (θS, λ, θK) ∈ [0, 2π],

whereas the range of central mass parameter M is source dependent as

given in Section 3.1. From the MLDC data it appears that the range of

orbital frequency parameter ν is also source dependent but there is no

specific range given. However, a range of [10−5, 10−2], which is a little

narrower than LISA’s actual sensitivity band [10−5, 10−1], seems reason-

able as it covers the range of this parameter in all types of EMRI sources.

The domain of luminosity distance is R+.

3.4 LISA Response

LISA does not observe the individual polarizations h+(t) and h×(t) of the

incoming signal directly, rather the observed signal is adjusted for the ef-

fects of different dynamics to which LISA will be exposed during its op-

eration. Firstly, since the whole LISA constellation orbits about the Sun,

its position with respect to a particular source will keep changing, which

introduces a periodic Doppler shift, the magnitude and phase of which de-

pends on the location of the source in the sky. Secondly, since each space-

craft has a different independent orbital plane, the LISA triangle will not

be an equilateral one. Its arms will be continuously changing over time:

the so-called “breathing” effect. Imagine that the LISA triangle is strictly

equilateral like a classic Michelson interferometer in which one spacecraft

plays the role of the central station where the laser is split and then sent

to the other two spacecraft down the two arms. The two lasers are recom-

bined after being transponded by the other two spacecraft. Suppose that

before being split the initial laser develops a random fluctuation which

travels through both arms and then returns back to the central spacecraft.
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Since the arms are equal in length, the fluctuations (which in reality are

the copies of the same fluctuation) along the two arms will arrive at the

same time and hence effectively cancel out. However, if the arms are un-

equal then these fluctuations will not arrive at the same time and hence

will not cancel out, resulting in laser phase noise which is expected to be

several orders of magnitude larger than any instrumental noise and most

of GW sources. The lasers used by LISA, like any other laser, are suscep-

tible to frequency noise; specifically, there is a fluctuation in the operating

frequency. This will be a significant noise source for LISA, especially since

the interferometer arm lengths will not be exactly the same. To subtract

the laser phase noise, time-delay-interferometry (TDI) scheme is used, in

which the output time-series of the three spacecraft are carefully recom-

bined to adjust the time-shifted phase measurements. The complete rep-

resentation for TDI scheme given in [48] is rather complex and involves a

lot of geometry and physics, therefore only a basic overview is presented

here.

Figure 3.3: Schematic LISA configuration. The three spacecraft are la-
beled as {1,2,3} each at distance ℓ from point o in the plane
of the spacecraft. The opposing arm-lengths are denoted by
{L1, L2, L3}. The point o is called the guiding centre.

The overall geometry of LISA constellation is shown in Figure 3.3. The

vertices of the triangle denote the three spacecraft, labeled as {1,2,3} and

the sides opposite to each spacecraft are labeled as {L1, L2, L3} respectively.
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The point o is the guiding centre which is equidistant (ℓ) from each space-

craft. The distance ℓ is given by

ℓ =
L1L2L3√

2L21L
2
2 + 2L22L

2
3 + 2L23L

2
1 − L41 − L42 − L43

. (3.4.1)

In basic Michelson interferometry, the data stream is constructed by mea-

suring the phase differences between the laser beams in the two arms of

the detector over the same time t, resulting in a trio of TDI observables

associated with the three spacecraft. The time taken by a laser beam to

travel along the arm Li is given by τi = Li/c, where c is the speed of light.

For an unequal-arm Michelson detector the TDI response associated with

spacecraft 1 is traditionally denoted by X(t) and is defined as

X(t) = s1(t)− s1(t− 2τ2)− s2(t) + s2(t− 2τ1) (3.4.2)

where si(t) is the actual incoming signal arriving at spacecraft i. The other

two responses denoted as Y(t) and Z(t) can be derived using the simple

permutation of the indices 1→ 2→ 3→ 1 given as following

Y(t) = s2(t)− s2(t− 2τ3)− s3(t) + s3(t− 2τ2) (3.4.3)

Z(t) = s3(t)− s3(t− 2τ1)− s1(t) + s1(t− 2τ3). (3.4.4)

Several other combinations of TDI observables can be found in literature,

for example see [32, 48, 49] for more details. The above TDI observables

tend to be highly correlated; therefore another linear transformation is ap-

plied to get another set of TDI observables traditionally denoted by A, E

and T and defined as:

A =
1
3
(2X −Y − Z), (3.4.5)

E = − 1√
3
(Z− Y), (3.4.6)

T = −
√
2
3

(X − Y− Z). (3.4.7)
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[49]. The correlation matrix of the above three combinations is a diagonal

matrix which means that A, E and T are uncorrelated. The variable T is

insensitive to GWs in low-frequency cases and therefore is ignored and

only A and E are used to perform the searches and analyses.

3.4.1 Low Frequency Approximation

In practice, to compute LISA response in the form of three TDI variables

as described in [50] requires huge memory and computing power particu-

larly for longer waveforms. A fine and fast approximation called the low

frequency approximation was proposed in [24, 29] in which the response

from actual three arms LISA detector is approximated by envisioning it

as two 2-arms detectors outputting two orthogonal signals. In this ap-

proximation the changes in the arm-length of LISA triangle due to LISA

motions are ignored, i.e. the LISA constellation is assumed a static equal

arm Michelson interferometer. This is still a good approximation to full

LISA response for GWs with frequency f ≪ f∗ ∼ 10−2Hz (i.e. GWs with

much larger wavelength than the LISA arms’ length). The first two types

of EMRIs, i.e. high mass and medium mass fall in this category. To de-

scribe this scheme, let us denote the two detectors as I and I I with and

the strain amplitudes that are measured by them by hI(t) and hI I(t) re-

spectively. Assuming that detector I is formed by arms 1 and 2 the strain

amplitude is given by

hI(t) = [δL1(t)− δL2(t)]/L̄ (3.4.8)

where δL1(t) = L1(t) − L̄ with L̄ denoting the average arm length. The

second orthogonal strain amplitude is given by

hI I(t) =
1√
3
[δL1(t) + δL2(t)− 2δL3(t)]/L̄. (3.4.9)
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The two strain amplitudes can be expressed as following,

hI(t) =

√
3
2

[F+
I (t)A+(t)F×I (t)A×(t)] (3.4.10)

hI I(t) =

√
3
2

[F+
I I (t)A

+(t)F×I I (t)A
×(t)] (3.4.11)

where A+(t), A×(t) are the same as given in Equations (3.2.2) and (3.2.20)

and F+
I , F×I , F+

I I , F
×
I I are detector beam patterns coefficients given by

F+
I =

1
2
(1 + cos2 θS) cos 2φS cos 2ψ− cos θS sin 2φS sin 2ψ

F×I =
1
2
(1 + cos2 θS) cos 2φS sin 2ψ− cos θS sin 2φS cos 2ψ

F+
I I =

1
2
(1 + cos2 θS) sin 2φS cos 2ψ− cos θS cos 2φS sin 2ψ

F×I I =
1
2
(1 + cos2 θS) sin 2φS sin 2ψ− cos θS cos 2φS cos 2ψ(3.4.12)

where (θS, φS) is the source sky location in the rotating detector-based co-

ordinate system and ψ is the polarization angle defined by Equation (3.4.1)

below. To express the above response in fixed ecliptic-based coordinate

system the angles θS and φS are replaced by

cos θ(t) =
1
2
cos θS −

√
3
2

sin θS[φ̄0 + 2π(t/T) − φS] (3.4.13)

and

φ(t) = ᾱ0 + 2π(t/T) +
3π

4
− λ (3.4.14)

+ tan−1
[√

3 cos θS + sin θS cos[φ̄0 + 2π(t/T)− φS]

2 sin θS sin[φ̄0 + 2π(t/T) − φS]

]

where λ = 0, π/4 are the orientations of the two detectors, T = 1 year

and φ0, α0 are the initial orbital and rotational phase of the detector at

t = 0. Note that this λ should not be confused with the one that appears in

waveform model. The ecliptic-based polarization angle is given in terms

of (θS, φS) and (θL, φL) as following:
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ψ = tan−1
[
A

B

]
(3.4.15)

where

A =

[
1
2
cos θL −

√
3
2

sin θL cos[φ̄0 + 2π(t/T) − φL]

− cos θ(t)[cos θL cos θS + sin θL sin θS cos(φL − φS)]

]
(3.4.16)

and

B =

[
1
2
sin θL sin θS sin(φL − φS)−

√
3
2

cos[φ̄0 + 2π(t/T) − φL]

×[cos θL sin θS sin φS − cos θS sin θL sinφL]

−
√
3
2

sin[φ̄0 + 2π(t/T)](cos θS sin θL cos θL

− cos θL sin θS cos φS)

]
. (3.4.17)

In the low frequency approximation, the two polarizations (+ and ×) are
weighted by detector beam patterns instead of being measured individu-

ally. In both types of derivation of the LISA response the complement of

ecliptic latitude angle θS is used i.e. θS = π/2− θS, which is then called

ecliptic colatitude. The responses hI(t) and hI I(t) are comparable to A and

E respectively from full LISA response, however this equivalence is by

no means obvious. In [29] it is claimed that “For GW wavelengths much

larger than the LISA arm length, hI(t) and hI I(t) coincide with the two

’Michelson variables’ in [48], describing the responses of a pair of two-

arm 90-degree detectors”. However, it is ambiguous as Armstrong et al

[48] do not discuss 90-degree equivalent interferometers. Probably Barack

and Cutler meant to refer to Cutler’s paper [24], or to Prince et al [49]

(where A, E, and T are defined). Putting all these confusions aside we

found this approximation computationally much cheaper than full LISA

response and gives good results in detecting the low frequency EMRI sig-

nals and parameter estimation problems.
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3.4.2 LISA Noise Modulation

The noise associated with the LISA data has three main components: LISA

instrument noise, confusion noise from galactic binaries and confusion

noise from extra-galactic binaries. The instrumental noise arises from the

internal fluctuations of the detector equipment such as acceleration of test

masses, photon shot noise, laser phase noise etc. This noise is unavoid-

able, i.e. it will be present in the data even if there were no signals at

all. The noise from galactic binaries are actually “un-aimed at” signals

from numerous NS and WD binaries in our milky way galaxy while ex-

tragalactic binaries (binary systems from other galaxies) are also expected

to contribute, almost up to the same extent as galactic binaries but at di-

minished amplitude, to the total LISA noise. Different analytic fits have

been proposed from time to time to model these noise sources. The LISA

instrument noise is assumed to be stationary and Gaussian, whereas the

noise produced by galactic and extragalactic binaries is assumed to be de-

terministic but coloured because of the evolution of these signals over time

[24, 29, 51]. It is predicted that signals from galactic binaries will be dom-

inating the LISA data, making it difficult to estimate an ideal noise spec-

trum to estimate the parameters of the weaker signals of EMRI sources.

One could use “identify and subtract” type algorithm called “gCLEAN”

in which first the signals from stronger sources are identified and then

subtracted from the data individually [52]. However, the performance of

this algorithm depends on the extent of matching between the true and

the estimated signals. Subtraction of poorly matched signals may destroy

the actual data which can result in changes to the characteristics of the

other “sought for” signals. On the other hand, instead of subtraction,

the Bayesian approach can be used to characterize the overall noise level

[53, 54] by introducing a simple noise model based on the assumption

of Gaussianity of the overall noise. Instead of specifying separate mod-

els to characterize the “un-accounted” for signals that are present in the

data, one can use the estimated residuals based on the current estimates

of parameters of the sought for signal to update the noise spectrum in a
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Bayesian way. This is the approach which has been utilized here in this

work and will be discussed in details in Section 4.5.



CHAPTER 4

METHODS

4.1 The Bayesian Approach

The Bayesian approach usually starts with the specification of a probabil-

ity model p(y|θ) which is assumed to represent the process according to

which the data y = {y1, ..., yn} are generated as a function of some un-

known parameters θ = {θ1, ..., θk}, sometimes referred to as the state of

nature. Often some information about these unknown parameters is avail-

able in advance. One central characteristic of the Bayesian approach is its

capability to incorporate this prior information into data analysis in a logi-

cal way to enhance the power of the inference. This is achieved by consid-

ering the unknown parameters θ as random quantities and thus defining

probability densities p(θ) to describe the prior information about these un-

known parameters θ, referred to as prior probability distributions or sim-

ply prior distributions. These prior distributions do not describe the pos-

sible variability of the underlying parameters, since θ will typically have

definite values, rather they describe the degree of belief or the state of the

available information associated with their actual values before the data

were being observed [55]. Unlike a frequentist, who defines probability as

a long run relative frequency of an event in a process which is repeatable

under identical conditions, for a Bayesian the probability theory is simply

a numerical quantification of one’s state of knowledge or beliefs about the

characteristics of the underlying phenomenon [2].

35
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After observing the data y the information contained in it can be used to

update the state of our beliefs about θ through the posterior distribution

of θ given y using the Bayes’ rule:

p(θ|y) =
p(y|θ)p(θ)

p(y)
(4.1.1)

where p(y|θ) is the conditional density of the data y given the parame-

ters θ or the likelihood function, which describes the probability that y

would be the result if θ was the true value of the parameter. Here p(y)

represents the total probability of y for all possible values of θ, given by

p(y) =
∫

θ
p(y|θ)p(θ)dθ. Since p(y) does not depend on θ, it is referred to

as a normalizing constant and in practice is often ignored in which case

Equation (4.1.1) reduces to

p(θ|y) ∝ p(y|θ)p(θ). (4.1.2)

The posterior density p(θ|y) can be summarized by finding different sta-

tistical quantities such as means, standard deviations and confidence re-

gions using the posterior expectations of the functions of θ. The posterior

expectation of a function h(θ) can be expressed as

E[h(θ)|y] =

∫
h(θ)p(y|θ)p(θ)dθ

p(y)
. (4.1.3)

In practice, apart from some most simple cases, the integrals involved in

Equation (4.1.3) are impossible to evaluate analytically. Different analyti-

cal approximation methods such as Normal Approximation and Laplace’s

Method [56] or numerical approximation methods such as different iter-

ative rules, e.g. Newton-Raphson method and Simpson’s rule, or Monte

Carlo integration methods, e.g. importance sampling and Markov chain

Monte Carlo (MCMC) can be used to approximate these integrals. Com-

prehensive details about many of these methods can be found in any good

text on Bayesian statistics or Monte Carlo methods e.g. see [57, 58].
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4.2 Monte Carlo Integration

The methods described in the following three subsections, i.e. 4.2.1, 4.2.2

and 4.2.3, are very general. To avoid the unnecessarily Bayesian flavour

we use general notations in these subsections, rather than the traditional

Bayesian notations.

4.2.1 The Basics

The Monte Carlo approach uses random number generation to compute

integrals. The basic idea behind this method is that anything can be

learned about a distribution by drawing random samples from it and

empirically summarizing those samples. A very basic description is given

as follows.

Suppose the random variable X follows a distribution Φ(x) having prob-

ability density function π(x) on some general space X (usually X ⊆ Rd)

and we want to compute

Eπ[h(X)] =
∫

X
h(x)π(x)dx (4.2.1)

where h(X) is some function of X. For simplicity let us assume that Φ(x) is

in some standard form so that we can directly draw independent random

samples from it: x1, ..., xN ∼Φ(x), then we have

h̄m =
1
N

N

∑
i=1

h(xi). (4.2.2)

The strong law of large numbers states that h̄m converges to Eπ[h(X)] al-

most surely as N → ∞, provided Eπ[h(X)] is finite [59].
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4.2.2 Importance Sampling

Importance sampling (see also e.g. [60]) is a general non-iterative Monte

Carlo method in which indirect sampling is used for approximating in-

tegrals. In Section 4.2.1 we assume that Φ(x) is an easy-to-sample dis-

tribution. Suppose that direct sampling from the Φ(x) is not possible but

another easy-to-sample distribution with density q(x) ≈ π(x) is available.

By introducing q(x)
q(x)

into the right hand side part of Equation (4.2.1) we get

the following expression,

∫

X
h(x)π(x)dx =

∫

X
h(x)

π(x)

q(x)
q(x)dx. (4.2.3)

By drawing independent random samples x1, x2, ..., xN ∼ q(x) we can ap-

proximate the above integral by using the following expressions,

h̄m =
∑

N
i=1w(xi)h(xi)

∑
N
i=1 w(xi)

, (4.2.4)

where the factors

w(xi) =
π(xi)

q(xi)

are the importance weights and q(x) is the importance sampling density

or proposal density . The motivation behind introducing the weight func-

tion is to correct the bias introduced by using a different but approximate

density q(x). The variance of the estimator h̄m depends on the choice of

q(x). In order to get accurate results, π(x) and q(x) need to be reasonably

similar, particularly q(x) needs to have longer tails than π(x). If q(x) is

close to π(x) then the weights will be roughly equal and the variance of

the estimator will be minimal. On the other hand a poor choice of q(x),

particularly with smaller tails than π(x), will result in most of the weights

being close to zero and giving too much weight to a few values, leading to

wrong results.



4.2 MONTE CARLO INTEGRATION 39

4.2.3 Markov Chain Monte Carlo Methods

If Φ(x) does not have a standard closed form or cannot be completely

specified or if X is a high dimensional vector, then drawing independent

samples from Φ(x) is not always an easy task. However, for approximat-

ing Φ(x), the fundamental thing is not that we have independent samples

from Φ(x) but that we are able to construct a large collection of depen-

dent samples, x1, ..., xN, whose empirical distribution approximates Φ(x).

That is, it is possible to relax the independence assumption and think of

x1, ..., xN as a time series in which the successive samples are dependent

in a Markov chain fashion. Markov chains are a special kind of stochas-

tic process that make use of the Markov property which states “given the

current state (sample) the next state (sample) does not depend on earlier

states (samples)”. This implies that is there is at most one step depen-

dency between successive samples. Monte Carlo sampling combined with

Markov chains constitutes another class of Monte Carlo methods, for han-

dling the high-dimensional integration problems, known as Markov chain

Monte Carlo (MCMC). A Markov chain defined over a general state space

X , having a transition kernel density P(x; y) that satisfies
∫
P(x; y)dy = 1,

is said to have π as its stationary distribution if for all x, y ∈ X ,

∫

x∈X
π(x)P(x; y)dx = π(y). (4.2.5)

In order to converge to a stationary distribution the Markov chain must

have some properties. Firstly, it must be irreducible, that is regardless of

its starting states it must reach any other state in a finite number of steps

with a positive probability. Secondly, it must be aperiodic, that is the chain

must not favour some particular states or sets of states. This prevents

the chain from oscillating between different sets of states in some cycle

of fixed length between these sets of states. Thirdly, it must be positive

recurrent, that is if the chain has started from a state i, the probability of

visiting this state again is 1 with the expected waiting time untill the first

return being finite. That is once started from, the state i must certainly
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be visited again and one does not have to wait forever. A key notion is

the reversibility of the Markov chains. To construct an MCMC sampler,

the underlying Markov chain must be reversible. A Markov chain with

stationary distribution π, defined over X , is reversible if for all x, y ∈ X ,

π(x)P(x; y) = π(y)P(y; x). (4.2.6)

Any irreducible Markov chain with its stationary distribution π satisfying

the above equation is positive recurrent and hence ergodic [61, 62]. For a

Markov chain constructed in this manner Equation (4.2.2) still holds but

now it is referred to as ergodic theorem rather than strong law of large

numbers [60]. Equation (4.2.6) is called the detailed balance equation and

it is the essential result that most MCMC samplers exploit. MCMC meth-

ods have contributed a lot to the vast development of Bayesian data anal-

ysis methods. One of the pioneer works in MCMC methods dates back

to the paper by Metropolis et al [63], known as the Metropolis algorithm

today and is the cornerstone of all MCMCmethods. Since then many vari-

ants of the basic Metropolis algorithm have been developed in the statis-

tical community [57, 58, 64]. The basic Metropolis algorithm and some

of the other most widely used MCMC algorithms are explained in some

details in the following sections. As stated before, these algorithms are

very general but now we will study them in a Bayesian framework so the

notations will be those that suit this framework.

4.2.4 The Metropolis Algorithm

The Metropolis algorithm uses an acceptance-rejection rule to simulate a

target distribution by constructing a Markov chain from an auxiliary den-

sity which is referred to as proposal density or transition probability func-

tion. Let us denote the density of the target distribution by p(θ|y) and

let q(·|θ(t)) be the proposal density which depends on the current state

θ(t). For the basic Metropolis algorithm, q(·|·) must be symmetric, i.e.

q(θ|θ′) = q(θ′|θ). Being at current state θ(t) the acceptance probability
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for moving to a new state θ′ is defined as:

α = min
{
1,

p(θ′|y)
p(θ(t)|y)

}
. (4.2.7)

The Markov chain can then be constructed using the following steps:

Initialize θ0; t← 0

Repeat {

Sample θ′ ∼ q(·|θ(t))

Compute α using Equation (4.2.7)

Sample u ∼ Uniform(0, 1)

If u ≤ α then θ(t+1) ← θ′

else θ(t+1) ← θ(t)

t← (t + 1)

}

This will result in a Markov chain because the transition probabilities

q(·|·) of moving from θ(t) to θ(t+1) depend only on θ(t) and not beyond it.

Furthermore, the transition probabilities satisfy the so-called detailed bal-

ance equation with respect to the target distribution, which guarantees the

convergence of an irreducible Markov chain to its stationary distribution.

Having jogged for a sufficient number of iterations, the burn-in period, the

chain will eventually forget its history and will converge to its stationary

distribution which, theoretically, is the specified target distribution. The

above algorithm can be used to generate virtual random samples from

any target distribution known up to a normalizing constant, regardless of

its dimensionality and its analytical complexity [64]. The steps’ sizes are

controlled by the scale of q(·|θ(t)) and will be discussed in a later section.

4.2.5 The Metropolis-Hastings Algorithm

The Metropolis algorithm is useful when nothing is known about the tar-

get distribution since it uses a symmetric proposal distribution to gen-
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erate the Markov chain [64]. However, if some information is available

about the shape and orientation of the target distribution then one can

set up the proposal distribution taking into account that information.

The Metropolis-Hastings algorithm [65] is a generalization of the original

Metropolis algorithm in which the proposal distribution does not need to

be symmetric. The acceptance probability is then given by:

α = min

{
1,

p(θ′|y)q(θ(t) |θ′)
p(θ(t) |y)q(θ′ |θ(t))

}
(4.2.8)

The detailed balance equation can be easily established for Metropolis-

Hastings chain for almost any proposal density, thus the Markov chain

generated this way has the specified target distribution as its stationary

distribution. If the chain is irreducible and aperiodic, after a sufficient

number of steps it will start delivering samples from the target distribution

[60].

4.2.6 A Special Case: Random Walk Metropolis

For ease of implementation of the Metropolis algorithm, particularly in

multi-parameter target density problems, it is useful to think of it as a

special case of a random walk scheme whose evolution is controlled by

the Metropolis acceptance-rejection rule. Being at the current state θ(t) an

increment ǫ(t) is proposed so that the next state becomes θ′ = θ(t) + ǫ(t),

where ǫ(t) iid∼ q(0, ·) for different t. That is a random quantity ǫ(t), drawn

from q(0, ·), is added to the current state θ(t) to displace it to a new state

θ′. The newly proposed state is then accepted or rejected according to

the usual Metropolis rule. When nothing is known about the shape of

the target distribution a natural choice for q(0, ·) would be to use some

symmetric distribution around zero such as Gaussian distribution N(0,Σ)

or a symmetric around zero uniform distribution U(−c, c) [64, 66]. The

algorithm can be outlined as follows:
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Initialize θ0; t← 0

Repeat {

Sample ǫ′ ∼ q(0, ·)
Set θ′ = θ(t) + ǫ′

Compute α using Equation (4.2.7)

Sample u ∼ Uniform(0, 1)

If u ≤ α then θ(t+1) ← θ′

else θ(t+1) ← θ(t)

t← (t + 1)

}

The same modifications apply to the Metropolis-Hastings algorithm too

where the proposal density q(0, ·) is asymmetric.

4.2.7 The Gibbs Sampling

Another widely used MCMC algorithm is the Gibbs sampler [67], where

the proposal distribution is defined in terms of the conditional distribu-

tions of the target distribution. The algorithm is defined for distributions

depending on at least two parameters. Suppose the parameter vector θ

can be decomposed into d (d ≥ 2) components or sub-vectors and the

target density p(θ|y) can be factorized into full-conditional distributions

p(θi |θ−i), i = 1, ..., d for each component in θ. For simplicity let us assume

that all these full-conditional distributions are in some standard form that

can be easily sampled from. Setting p(θi |θ−i) as proposal distribution for

θi, the general Gibbs sampling scheme can be constructed as follows.
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Initialize θ(0) = (θ
(0)
1 , ..., θ(0)

d ); t← 0

Repeat {

Draw θ
(t+1)
1 ∼ p(θ1|θ(t)

2 , θ(t)
3 , ..., θ(t)

d , y)

Draw θ
(t+1)
2 ∼ p(θ2|θ(t+1)

1 , θ(t)
3 , ..., θ(t)

d , y)
...

Draw θ
(t+1)
d ∼ p(θd|θ(t+1)

1 , θ(t+1)
2 , ..., θ(t+1)

d−1 , y)

t← (t + 1)

}

Within each iteration there is a cycle of d steps and at each step a draw θi

is proposed from its conditional distribution, given all other components

of θ and thus each component of θ is updated using the latest values of

the other components of θ drawn from their respective conditional dis-

tributions already updated in the previous steps. In cases where direct

sampling from some of the conditional posterior distributions is not pos-

sible, Metropolis steps can be introduced to draw samples from those dis-

tributions. Thus some parameters are updated using the Gibbs sampler

while the others are updated using Metropolis steps, leading to another

algorithm namelyMetropolis-within-Gibbs algorithm [66].

4.2.8 Implementation of Metropolis(-Hastings) Algorithm

In practice, there arise several issues when implementing the Metropolis(-

Hastings) algorithm or any otherMCMCmethod. The performance of any

MCMC method is judged by the speed of its convergence to the underly-

ing stationary distribution and the mixing of the resulting Markov chain.

Some of the key issues and related remedies are discussed as follows.

4.2.8.1 The Choice of Proposal Distribution

The efficiency of a Metropolis(-Hastings) algorithm strongly depends

on the choice of the proposal distribution q(·|·). The first and the most
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essential property of a good proposal distribution is that it should be easy

to sample from. Although, theoretically any proposal distribution will

eventually start sampling from the target distribution p(θ|y); however,

in practice the functional complexity of p(θ|y) may have a potential

impact on the convergence of the chain in a reasonable time [58]. An ideal

proposal distribution would be the target distribution itself since then

nearly-independent samples can be drawn with almost sure acceptance.

Thus, the rate of convergence crucially depends on the similarity of

the q(·|·) and p(θ|y). Another issue related to the choice of proposal

distribution is the mixing of the MCMC chain, which reflects the degree

of inter-dependence or correlation between subsequent samples. Mixing,

in general, depends on the scale (variance) of the proposal distribu-

tion. A good proposal distribution would lead to a small correlation of

subsequent samples θ(t) and θ(t+1) with a reasonable acceptance rate.

This correlation can occur in two ways. If the variance of the proposal

distribution is set too small, the acceptance rate will be high; however,

the subsequent samples of the resulting Markov chain will be highly

correlated, as θ(t) ≈ θ(t+1). On the other hand, a large variance would

lead to a very low acceptance rate and again a high correlation because

then for most of the iterations, the chain will be stuck at θ(t) = θ(t+1). The

optimal choice of a proposal distribution is the one which establishes a

compromise between these two competitive concepts: a good mixing to

ensure low correlation between subsequent samples with a reasonable

acceptance probability.

In the literature, there are different suggestions for the choice of proposal

distributions. However, these should be regarded as rules of thumb only

and may not be used as hardcore strategies in general. For example, when

sampling from a uni-variate standard Normal target density N(0, 1), a

normal proposal distribution with mean as the current state and variance

≈ 2.4, which is somewhat over-dispersed version of the target distribu-

tion, was found to give best results. These results were further general-
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ized to d-dimensional Normal densities with known covariance matrix Σ,

for which the proposal distribution with ≈ 2.4√
d
Σ was found to be an opti-

mal choice [68]. In the same reference the optimal acceptance rates were

also found to be ≈ 44% for d = 1 which declines to ≈ 23% as d → ∞.

Several other suggestions regarding the optimal scaling of the proposal

distributions to ensure optimal acceptance rates can be found in literature;

for example see [64, 66, 69]. However, all these choices are somehow case

specific, based on some available information and thus cannot be argued

for general applications when little is known about the target distribution.

4.2.8.2 Initialization of MCMC

For the efficient implementation of Metropolis(-Hastings) or any other

MCMC sampler, another important issue is the choice of starting val-

ues. Though in principle, within the legitimate range (e.g. satisfying

p(θ0|y) ≥ 0), whatever the starting values are, the chain will eventually

approach its stationarity. However, a poor choice of starting value can re-

sult in an extremely long burn-in period, typically impossible to finish in

a finite time. For simpler models a good starting value can be a point near

the distribution centre, such as the mode of the distribution which can be

approximated by using maximum likelihood or multiple over-dispersed

starting values can used to see as to which starting value results in faster

convergence. In general, there is no hard rule available but several sug-

gestions for choosing good starting values can be found in literature, for

example see [70].

4.2.8.3 Re-parametrization

In multi-dimensional problems the structure of the target distribution of-

ten leads to highly dependent components of the parameter vector that

can result in very poor mixing and slow convergence. Adequate re-

construction of the posterior by clever re-parametrization may produce

near independence between components of parameter vector which may
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improve convergence to a great extent. The re-parametrization is usu-

ally done by transformation of random variable techniques. If the inverse-

transformation is unique, then the original variables can be recovered by

back transforming the values of the MCMC output [58].

4.2.9 Convergence Assessment

The convergence of the MCMC chain can be assessed by different theoret-

ical methods and approximations using the MCMC output. The simplest

one is to just look at the history plot or trace plot of the MCMC samples. To

see whether the chain is really converging to its true stationary distribu-

tion, in other words to determine an approximately true burn-in period,

multiple chains with different starting distributions can be run either in

parallel or individually, and see if all the chains converge to the same sta-

tionary distribution and which chain converges faster. More sophisticated

methods such as Gelman and Rubin diagnostic which computes potential

scale reduction factor (PSRF) for each chain to assess the individual conver-

gence of different chains to the same stationary distribution. PRSF is an

analysis of variance technique which uses the within chain variances and

between chains variance to assess the convergence of a particular chain.

For mMCMC chains each of length n and labeling the MCMC draws as θij

(i = 1, ..., n; j = 1, ...,m), the PRSF denoted by R̂ is calculated as

R̂ =

√
σ̂2
+

σ2
W

(4.2.9)

where

σ̂2
+ =

n− 1
n

σ2
W +

1
n

σ2
B (4.2.10)

where σ2
W is within chain variance and σ2

B between chains variance. R̂ val-

ues larger than 1 indicate non-convergence. For multivariate problems an

extended version of R̂, multivariate potential scale reduction factor (MPSRF);

R̂p can be used [71]. There are several other diagnostic tools such as auto-
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correlation plots, Geweke diagnostics [72] and Heidel diagnostics [73–75].

All these methods can be implemented using an R package called CODA

(Convergence Diagnostics and Output Analysis) [76], which is available

from the project website of R [77].

4.3 Convergence Acceleration

4.3.1 Tempering Methods

In most multi-dimensional cases, the density surface of complicated target

distributions turns out to have multiple secondaries or local modes that

are well separated by deep valleys of low probability regions. The simple

Metropolis(-Hastings) algorithm tends to get stuck at some of these local

modes for a prohibitively longer time before reaching the global mode.

This not only results in poor mixing but also there are chances that the

sampler does not even reach the global mode in an affordable sampling

time or number of iterations. Some kind of bridging is needed to link

parts of the target density that are separated by low probability regions

[64]. One may think of proposing larger steps to help the MCMC chain to

jump from one mode to the other easily, but it is not feasible since then the

acceptance rate of the proposed steps can be too small. One way to deal

with such situations is to use tempering methods, that actually use the

principle of annealing: a physical process which is used to obtain perfect

crystallization by heating and then cooling at a slow enough rate to give

atoms sufficient time to attain the lowest energy state or the global opti-

mum. Sufficiently high temperature causes atoms to move more freely

with increased randomness and slow enough cooling causes improved

equilibrium, that is the atoms get enough time to line themselves up in po-

sitions that corresponds to the global energy minimum of a perfect crys-

tal. Analogous to this physical process, temperature is used to scale the

target density in order to flatten local modes so that the MCMC sampler

moves freely towards the global maximum without being attracted by lo-
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cal modes. At a given temperature T ≥ 1, samples are generated from a

tempered version of the target density p(θ|y) defined as:

pT(θ|y) ∝ p(θ|y) 1
T (4.3.1)

where T = 1 yields the actual target density. This heating is equivalent

to increasing the standard deviation of the target density by a factor
√
T;

therefore as T increases, the heated density becomes more flattened and

gets closer to the uniform distribution, which makes the Markov chain to

move more freely and hence converge faster.

In the case of the Metropolis algorithm, the acceptance probability for the

above tempered target distribution is defined as

αT = min

{
1,

p(θ′|y) 1
T

p(θ(t)|y) 1
T

}

= min

{
1,
(

p(θ′|y)
p(θ(t) |y)

) 1
T

}
(4.3.2)

where θ(t) and θ′ are the current and proposed states respectively. Fur-

thermore, one can also apply tempering only to the likelihood part of the

posterior and leave the prior part unchanged, in which case the above

equation changes to

αT = min

{
1,

p(θ′)
p(θ(t))

(
p(y|θ′)
p(y|θ(t))

) 1
T

}
. (4.3.3)

This convention is motivated by the fact that larger temperatures may de-

stroy the properness property of the posterior distribution [78], because in

its actual shape a posterior is proper as long as the prior is proper [57]. In

this case, for higher temperatures the posterior becomes increasingly sim-

ilar to the prior distribution and eventually for T → ∞, the posterior and

prior distributions become equal [54]. Some of the most popular temper-
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ing methods are simulated annealing (SA) [79], simulated tempering (ST)

[80, 81] and parallel tempering MCMC [82]. All these methods work in

the same spirit, i.e. using modified target distributions (tempered version)

but are different in their applications. SA and ST work by defining a series

of distributions characterized by different temperatures varying between

the cold one (the actual target distribution) and the hottest one. A single

MCMC chain is run, which starts simulating the hottest distribution and

gradually progresses towards the cold distribution moving through the

tempered distributions in between either systematically (SA) or stochasti-

cally (ST). Parallel tempering MCMC is similar to ST but it simulates all

the distributions (i.e. the cold one and tempered ones) simultaneously by

running multiple inter-communicative MCMC chains in parallel. In the

following sections we explain parallel tempering MCMC and its proper-

ties in details.

4.3.2 Metropolis-Coupled MCMC

The Metropolis coupled-MCMC (MCMCMC) [82], also known as parallel

tempering MCMC (PTMCMC), is a powerful optimization of the simple

Metropolis-(Hastings) algorithm which is very effective in improving

the mixing of MCMC and in particular in escaping the local modes. The

algorithm works by running multiple MCMC chains, each simulating

a separate target density characterized by a different temperature, in

parallel and occasionally attempting swaps of its current states with other

chains. In principle, a high temperature chain sees the target density

as more flattened relative to a low temperature chain, which means that

high temperature chain can move more freely across the valleys of low

probability regions in between of modes [64]. In order to make the low

temperature chain get benefit from a high temperature chain that may

be sampling near another mode, an exchange of information about the

current states of the two chains is attempted by proposing a swap of the

current states using an additional MCMCMetropolis acceptance-rejection
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step. The algorithm is described as below:

Let there be I chains corresponding to I distant temperature levels 1 =

T1 < T2 < ... < TI , where T1 = 1 is the temperature level corresponding

to the true or cold chain. For ith chain, given the current state θ(t) in the

parameter space the Metropolis probability of acceptance of moving to a

proposed state θ′ is given by

αi = min

{
1,
(

pi(θ′|y)
pi(θ(t)|y)

) 1
Ti

}
. (4.3.4)

Further suppose that at a particular iteration t a swap between states of

chains i and j, with j = i + 1 ≤ I, is proposed then the Metropolis accep-

tance probability of this swap is

αij = min





1,

(
pj(θ(t)|y)
pi(θ(t)|y)

)
(

1
Ti
− 1

Tj

)



. (4.3.5)

The general form of the algorithm with a pre-defined temperature ladder

with steps 1 = T1 < T2 < ... < TI , and the acceptance probabilities defined

by Equations (4.3.4) and (4.3.5), is outlined as follows:

• Step 1: To generate the ith chain, i ∈ (1, ..., I) the usual

Metropolis sampler is appliedwith acceptance probability

of a proposed move defined by (4.3.4).

Initialize θ0i ; t← 0

Repeat {

Sample ǫ′i ∼ q(0, ·)
Set θ′i = θ

(t)
i + ǫ′i

Compute α using Equation (4.3.2)

Sample ui ∼ Uniform(0, 1)

If ui ≤ αi then θ
(t+1)
i ← θ′i
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else θ
(t+1)
i ← θ

(t)
i

t← (t + 1)

• Step 2: After each chain is run for a given number of it-

erations, any two chains i and j are randomly selected to

exchange states. The swap of states is accepted with prob-

ability αij (see Equation (4.3.5)). (Note that swapping can

also be proposed at each iteration.)

• Step 3: Similar to a regular Metropolis step, a random

number u ∼ Uniform(0, 1) is generated and if u ≤ αij,

then the proposed swap is accepted and chains i and j ex-

change states.

• Step 4: Go to “Repeat” in step 1.

It is easy to imagine that if a colder chain is stuck on some local mode, a

hotter chain can pull it out by swapping its states. Thus the colder chain

can now easily move through the low probability regions between modes

with improved mixing [64]. Note that the same comments about apply-

ing temperature only to the likelihood part, as discussed at the end of the

previous section, apply here as well. Moreover, since the temperature is

applied to the Metropolis probability only, the actual proposals and pos-

terior copies are unaffected; however, normally only the samples from the

chain with T = 1 for the Metropolis probability are considered for the

subsequent analysis and the samples from the other chains are discarded

[58]. The local detailed balance equation holds for all chains (actual and

tempered), thus if the chains are irreducible and aperiodic then each chain

has the respective target distribution (actual and tempered) as its station-

ary distribution [83, 84]. In [85] it is shown that all the swapped states at a

given iteration (regular Metropolis state) constitutes a Markov chain with

its stationary distribution as the actual target distribution.
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4.3.2.1 Computing Requirements

PTMCMC is computationally expensive and cannot be implemented

efficiently using single processor/core machines since the amount of

execution time increases linearly with the number of chains because

all chains are independent Metropolis(-Hastings) samplers and each

will require the same amount of computing power as all the others.

However, the availability of high performance computers with multiple

multi-core processors, sharing the same memory, has now solved this

problem to a large extent. To parallelise a task on a multi-core machine

or high-performance cluster, parallel computing techniques are required.

There are several kinds of parallelization, one of which is to run multiple

copies of the same code, though with slightly different parameters,

simultaneously on independent but communicating processors. This

is what a PTMCMC needs for its efficient implementation. For such a

communicative parallelization a widely used protocol is Message Passing

interface (MPI) [86, 87]. MPI can be implemented using a public domain

software called OpenMPI [88], which specifies a library of functions

and macros that implement the message passing model of the parallel

computing.

4.3.2.2 Optimal Temperature Ladder

When constructing a temperature ladder some considerations need to be

taken into account. For good mixing, one needs to make sure that ladder

steps are such that there is sufficient overlap between any two neighbour-

ing densities so that their respective chains can swap states at a reasonable

rate. It depends on the difference or ratio between the temperatures of

the two neighbouring densities. If this difference or ratio is too large then

the two neighbouring densities will be quite different from each other

and their respective chains will rarely swap states and vice versa. In both

extreme cases, this defeats the purpose of heating. Also in general, the tar-
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get density behaves differently at the two ends of the temperature ladder.

At the start (low temperatures) even very small differences in the ladder

steps can result in significant changes in the surface of the target density.

These changes decrease as the temperature increases and at the end very

large differences in the ladder steps can result in relatively lesser changes

in the target density. For a linear temperature ladder the swap acceptance

rates at the end of the ladder are generally too high as compared to the

starting steps. Thus a good temperature ladder would be something like a

geometric or power sequence to get approximately even swap acceptance

rates throughout for all pairs of neighbouring chains. There are several

suggestions for the construction of temperature ladders for PTMCMC

algorithm. For example in his introductory paper Geyer [82] used an

incremental rule defined as Ti = 1+ ∆T(i − 1) to specify the temperature

for ith chain, where ∆T parameter is the incremental parameter. In some

cases a ladder with geometric increments, i.e. Ti+1 = Ti
c can also be

used, where T1 = 1 and c > 1 is the tuning parameter. Another version

of geometric ladder defined as Ti = λ(i−1), where λ > 1 is a tuning

parameter, was suggested in [54, 89]. Regarding the optimal scaling of

temperature steps it has been found that the optimal temperature steps

would be those for which the swap acceptance rates for all individual

pairs of neighbouring chains are ≈ 23%. The rules given in [54, 82, 89] do

not in general guarantee a ≈ 23% swap acceptance rates for all individual

pairs of neighbouring chains, rather these rules can be used in way so

that the average acceptance rate is ≈ 23% for all pairs. This is because

this swap probability not only depends on the temperature differences

but also on the current states of parameters θ in different chains, at

regular Metropolis steps, that may result in a large difference between

the target densities of two neighbouring chains and hence affecting the

swap acceptance probability. Recently a Monte Carlo based swapping

rule was proposed which maintains ≈ 23% swap acceptance rates for

individual pairs; however, this rule is complicated and its applications to

general problems are not yet explored [90]. The length of the ladder or the

number of steps in the ladder depends on the size of available computing
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resources.

4.3.2.3 Updating the Proposal Covariance Matrix in PTMCMC

When doing MCMC analysis, to improve efficiency it is a good practice

to update the covariance matrix of the proposal distribution either by

using the first few thousands MCMC samples of the parameters or by

updating it after a specified number of iterations throughout the MCMC

run. Some adaptive techniques for the optimal scaling of the proposal

covariance matrix are explored in [69, 91–93]. However, one should be

careful when employing these techniques in PTMCMC. In PTMCMC

different chains explore different regions of the parameter space. The

swaps of states between the neighbouring chains are accepted on the basis

of their likelihood values no matter what the current parameters’ values

are. When a global maximum is not found yet, the likelihood values of

two neighbouring chains can still be similar even if they are sampling

from quite different regions of the parameter space. Thus it is possible

that some of the corresponding parameters’ values of the two chains are

too far from each other but their respective chains would still exchange

states because of their close likelihood values. This will improve mixing

but on the other hand will result in a large variability in the MCMC sam-

ples of those parameters. If these highly dispersed MCMC samples are

used to estimate the empirical proposal covariance matrix, the resulting

covariance matrix will bring down the overall acceptance rate of the basic

MCMC sampler to a very low level. The best way to do this is to halt the

swaping mechanism for a specified of number of iterations, store those

initial MCMC samples either internally (in memory) or externally (in a

file), and then compute the empirical covariance matrix for each chain in-

dividually or just compute one from the first chain and use it for all chains.
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4.4 Digital Signal Processing Methods

4.4.1 Fourier Transform

The Fourier transform (FT) defines a relationship between time and fre-

quency domains. A physical process can be represented either in the time

domain, as a function of time t, or else in the frequency domain, as a func-

tion of frequency f , and the bridge between the two domains is the FT. Let

y(t) be a real valued function of a real line y : R → R then the Fourier

transform is a mapping ỹ : R→ C defined as:

ỹ( f ) =
∫ ∞

−∞
y(t) exp (−2πi f t)dt (4.4.1)

where i =
√
−1. The integral transforms a function of time y(t) to a func-

tion of frequency ỹ( f ). If the FT ỹ( f ) exists, the inverse Fourier transform

takes us back to the time domain,

y(t) =
∫ ∞

−∞
ỹ( f ) exp (2πi f t)d f . (4.4.2)

The FT ỹ( f ) exists if y(t) is absolutely integrable that is
∫ ∞

−∞
y(t)dt < ∞.

If both y(t) and ỹ( f ) are continuous and absolutely integrable then the

inverse FT of ỹ( f ) is equal to y(t). Equations (4.4.1) and (4.4.2) are called

FT pair, denoted by y(t)
FT−⇀↽− ỹ( f ). Two important properties of FT, that

are relevant in later sections, are as follows:

Let [x(t)
FT−⇀↽− x̃( f )] and [y(t)

FT−⇀↽− ỹ( f )] be the FT pairs and assume that the

convolution of x(t) and y(t) (in time domain) exists:

(x ∗ y)(t) =
∫ +∞

−∞
x(τ)y(τ − t)dτ < ∞ (4.4.3)

then the following properties hold:

• Linearity : ax(t) + by(t)
FT−⇀↽− ax̃( f ) + bỹ( f )
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• Convolution Theorem : (x ∗ y)(t) FT−⇀↽− x̃( f )ỹ( f )

Another important property is if y(t) is real then ỹ( f ) = ỹ(− f ) [94]. There

are several other properties that can be found in any good textbook.

4.4.2 Discrete Fourier Transform

In practical applications, the FT is approximated by its discrete analogue

called Discrete Fourier Transform (DFT). The DFT computes a discrete fre-

quency function from a discrete time signal of finite length, i.e. here both

the time and frequency domains are discretized.

Suppose {y(tk)}k=0,...,(N−1) are the sampled values of y(t) at equally

spaced time points tk = k∆t over a finite duration N∆t. The DFT of y(tk)

at discretized frequencies fn = n
N∆t

, n = 0, ...,N− 1, is defined by approx-

imating the integral in Equation (4.4.2) by a discrete sum:

ỹ( fn) =
∫ ∞

−∞
y(t) exp (−2πit fn)dt

≈ ∆t

N−1
∑
k=0

y(tk) exp(−2πitk fn)

= ∆t

N−1
∑
k=0

y(tk) exp(−2πikn/N). (4.4.4)

The summation term in the last equation is the DFT of y(tk). For simplicity

in notations, let us denote it by ỹn thus we get

ỹn =
N−1
∑
k=0

y(tk) exp(−2πikn/N) (4.4.5)

this implies

ỹ( fn) = ∆tỹn (4.4.6)

[4, 94]. When y(t) is real then ỹn = ỹ∗N−n, i.e. the complex conjugation

symmetry holds. Furthermore, the element ỹ0 is always purely real and

for even N the element ỹN/2 is also real. When using the DFT for spectral
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density estimation these extreme terms are often omitted for simplicity

purposes and if included then they should be treated differently as will

become clear in later sections. To back transform to time domain the for-

mula is given as

y(tk) =
1
N

N−1
∑
n=0

ỹn exp(2πikn/N). (4.4.7)

In practice, the DFT transforms are calculated using a Fast Fourier Trans-

form (FFT) algorithm [94]. This is implemented through a freely available

software package Fast Fourier Transform in the West (FFTW) [95].

4.4.3 Power Spectral Density

According to a result based on Parseval’s theorem the total power in a

square integrable signal is the same regardless of its domain of measure-

ment. That is

Total Power =
∫ ∞

−∞
|y(t)|2 dt =

∫ ∞

−∞
|ỹ( f )|2 d f . (4.4.8)

The above result leads to the following definition

S( f ) = |ỹ( f )|2 + |ỹ(− f )|2 −∞ < f < ∞. (4.4.9)

Which is known as the power spectral density (PSD). Since for real y(t) we

have ỹ( f ) = ỹ(− f ) (symmetry property), therefore Equation (4.4.9) can be

rewritten as

S( f ) = 2|ỹ( f )|2 0 < f < ∞ (4.4.10)

which is called the one sided PSD. It is easier to understand that PSD is just

the absolute square of the FT of the signal [94].

The discrete PSD can be defined using the discrete form of Parseval’s the-
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orem. The discrete form of Parseval’s theorem is

Total Power =
N−1
∑
k=0
|y(tk)|2 =

1
N

N−1
∑
n=0
|ỹn|2 (4.4.11)

Hence the one sided PSD is

Sn( f0) =
1
N
|ỹ0|2

Sn( fn) =
1
N

[
|ỹn|2 + |ỹN−n|2

]
for n = 1, ...,

N

2
− 1

=
2
N
|ỹn|2 ∵ for real y(t), ỹn = ỹN−n (4.4.12)

Sn( fN/2) =
1
N
|ỹN/2|2.

As can be seen in the above equations, the elements of Sn( fn) correspond-

ing to end frequencies are different with respect to the multiplier because

of the zero imaginary components.

4.4.3.1 The Welch’s Method

In practice, to estimate the PSD of a very long signal, Welch’s method [96]

is used. Instead of using all data at once, Welch’s method divides the data

into shorter, possibly overlapping segments, applies a suitable window

(see next section) to each segment before being Fourier transformed, aver-

ages the transforms, and takes the squared magnitude to produce a power

spectrum. Welch’s method has three advantages; it is faster, the averaging

reduces the variance of the power spectrum and at the same time win-

dowing avoids spectral leakage and smooths (see also Section 4.4.4) the

estimate. Suppose the sampled data {y(t)}t=0,...,N−1 can be divided into K

segments each of length L (L even), such that (K − 1)D + L = N where

D is number of data points by which two consecutive segments overlap,

i.e. their starting points are D units apart. If this overlap is set to be 50%

then D = L
2 in which case (K + 1) L2 = N. Let us denote these segments

by {yj(t)}j=1,...,K; t=0,...,L−1. This overlapping segmentation is illustrated in
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Figure 4.1.

y(t)

y1(t)

y2(t)

. . .

yK−1(t)

yK(t)

Figure 4.1: Illustration of overlapping segmentation.

With an appropriate data window w(t) of length L, each segment yj(t)

is windowed, i.e. zj(t) = yj(t) · w(t), before being Fourier transformed.

For jth windowed segment zj(t), the power spectral density is obtained as

following.

Sj( f0) =
1
wss
|z̃j0)|2

Sj( fn) =
1
wss

[
|z̃jn|2 + |z̃j(N−n)|2

]
for n = 1, ...,

N

2
− 1

=
2
wss
|z̃jn|2 ∵ for real zj(t), z̃jn = z̃j(N−n) (4.4.13)

Sj( fN/2) =
1
wss
|z̃j(N/2)|2

where wss = 1
L ∑

L−1
t=0 w2(t). The additional subscript j is now running for

jth segment. The final estimate is then just the average of these K spectral

densities given as:

Ŝn( f ) =
1
K

K

∑
j=1

Sj( f ). (4.4.14)

Note that the term N appearing in the denominator of Equation (4.4.12) is

now replaced by wss, otherwise the formulas are the same [4, 94, 96].
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4.4.4 Issues with DFT

Several issues arise when using the DFT to estimate the power spectral

density. Two key issues are discussed as follows.

4.4.4.1 Nyquist Criteria and Aliasing

In order to correctly approximate the FT of a continuous function y(t),

which is sampled at a discrete time interval ∆t one must sample at a fre-

quency well below the Nyquist critical frequency, fc = 1
2∆t

, which is the

highest frequency that can be resolved using ∆t. If the continuous func-

tion y(t) is band-limited to frequencies smaller than fc, i.e. ỹ( f ) = 0 for

all | f | > fc, then the function y(t) can be uniquely determined from its

sampled values. If, on the other hand, the function is not band limited to

less than Nyquist critical frequency then it will give rise to aliasing error,

in which case its spectrum will have overlapping tails because the power

outside − fc < f < fc will move inside the range [94]. Thus to avoid

aliasing one must sample at least two points per cycle.

4.4.4.2 Spectral Leakage and Windowing

In practice, a theoretically infinite signal can be measured for a finite

time only. That is the actual signal is truncated to a finite stretch of data

points. The DFT computation implicitly assumes that the observed signal

is periodic, i.e. it repeats over and over for all time. If the number of

periods in the measured signal is not an integer value then it will cause

discontinuities at the end-points of the signal. When the DFT is applied to

such a signal then the resulting frequency spectrum suffers from spectral

leakage. Spectral leakage results in the signal energy spreading out over a

wide frequency range in the DFT when it should be concentrated at only

one frequency [97].

Theoretically the measured signal, y(n), is equivalent to multiplying the
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actual signal, x(n), by a function called a rectangular data window, wR(n).

That is,

y(n) = x(n) · wR(n) (4.4.15)

where

wR(n) =

{
1 for 0 ≤ n ≤ N − 1

0 otherwise
(4.4.16)

According to convolution theorem a product in time-domain is equal to

convolution in frequency domain that is when we apply DFT to Equation

(4.4.15) then we get

ỹ( f ) = x̃( f ) ∗ w̃R( f ) (4.4.17)

where w̃R( f ) is the DFT of rectangular window now called rectangular

pulse and is well defined by the following expression.

w̃R( f ) = T
sin(π f NT)

sin(π f T)
exp(−2πi f kn/N). (4.4.18)

Thus in general, due to the convolution in Equation (4.4.17), the DFT

of y(n) is not equal to that of x(n), which results in spectral leakage as

explained above. In real applications spectral leakage is unavoidable;

however, its effects can be reduced by using a different window function,

whose value is 1 for middle point of the data and tappers to 0 at the

end points n = 0 and n = N − 1, hence avoiding discontinuities at the

end points. However, there is a drawback of tapered windows too: the

reduction in leakage comes at the costs of reduced resolution thus making

it difficult to resolve spectral components that are close in frequency [98].

Thus in general a compromise between these two conflicting requirements

is needed. Several different tapered windows can be found in literature,

each one with its ownmerits and demerits relative to others. The choice of

a particular window depends on the nature of the signal and the purpose

of the analysis. Some windows are more effective in making the detection

of the exact frequency of a peak in the spectrum easier. Some improve the

amplitude accuracy to accurately indicate the level of the peak.
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When estimating the spectral density of random signals, a widely used

window is the Hann window, which is defined as:

wH(n) =

{
1
2(1− cos( n

N2π)) for 0 ≤ n ≤ N − 1

0 otherwise
(4.4.19)

Another window, which is an amalgam of the rectangular and the Hann

window, is the Tukey window, often called cosine-tapered window. This

window sets the weights for a certain fraction of central data points to

unity like a rectangular window while the data points at the tails are

tapered to zero. The fraction is controlled by an additional parameter

α ∈ [0, 1]. The window is defined as:

wT(n) =






1
2

(
1− cos(π n

α
2N

)
)

for 0 ≤ n ≤ α
2N

1 for α
2N ≤ n ≤ (1− α

2 )N
1
2

(
1− cos(π N−n

α
2N

)
)

for (1− α
2 )N ≤ n ≤ N − 1

0 otherwise.
(4.4.20)

The window evolves from the rectangle to the Hann window as the pa-

rameter α varies from zero to unity and vice versa. This window has the

advantage that the amount of tapering can be optimized according to the

specific purpose of the spectral analysis [99].

4.5 Bayesian Spectrum Analysis

The data, which is sampled at discrete time steps, can be represented by

the following signal plus noise model,

y(t) = s(t, θ) + ǫ(t) t = 1, ...,N (4.5.1)

where the deterministic component s(t, θ), is the true signal model and

ǫ(t) are the random errors which are assumed to be i.i.d. N(0, σ2
ǫ ). The
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Fourier series representation of the above model is given as:

y(t) =
N/2

∑
n=0

[an cos(2πnt/N) + bn sin(2πnt/N)] + ǫ(t) t = 1, ...,N

(4.5.2)

where an = Rn cos φn and bn = −Rn sin φn are Fourier coefficients, more-

over Rn =
√

a2n + b2n is the amplitude and φn = tan−1(−bn/an) is the

phase of the nth harmonic. There is a common misconception about the

Fourier coefficients an and bn that they are random quantities. However,

without the error term the above model is purely deterministic and thus

all an and bn will remain unchanged for each realization. The randomness

of these coefficients is actually due to the noise variable which introduces

uncertainty into this whole model which will become clear later in this

section. Analogous to a multiple linear regression problem, using least

square estimation method, an and bn can be estimated by minimizing the

residual sum of squares as shown below,

N

∑
t=1

ǫ2(t) =
N

∑
t=1

[

y(t)−
N/2

∑
n=0

[an cos(2πnt/N) + bn sin(2πnt/N)]

]2
.

(4.5.3)

Differentiating with respect to an and bn and equating to zero gives,

â0 = ȳ (4.5.4)

âN/2 =
N

∑
t=1

(−1)t
N

(4.5.5)

and for n = 1, ..., N2 − 1

ân =
2
N

N

∑
t=1

y(t) cos(2πnt/N) (4.5.6)

b̂n =
2
N

N

∑
t=1

y(t) sin(2πnt/N) (4.5.7)
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and b̂0 = b̂N/2 = 0. Hence the estimators for amplitude and phase are

R̂n =
√

â2n + b̂2n and φ̂n = tan−1(−b̂n/ân) respectively. Another important

result that follows the estimation of an and bn and hence R2
n is that for

n 6= 0,N/2:

R̂2
n = â2n + b̂2n

=

(
2
N

N

∑
t=1

y(t) cos(2πnt/N)

)2

+

(
2
N

N

∑
t=1

y(t) sin(2πnt/N)

)2

=
4
N2

∣∣∣∣
N

∑
t=1

y(t) exp(−2πint/N)

∣∣∣∣
2

=
2
N
S( fn) from Equation (4.4.12). (4.5.8)

Rewriting the last line, we get,

S( fn) ≡ NR̂2
n/2 n = 1, ...,

N

2
− 1 (4.5.9)

where S( fn) is the one sided power spectral density as defined by Equa-

tion (4.4.12), thus R̂2
n/2 can be regarded as the contribution of nth har-

monic to the power. Note that since for n = 0,N/2 the imaginary compo-

nents in the Fourier representation are zero, they are required to be treated

differently, same as in Equation (4.4.12). As stated above the noise variable

ǫ(t) is assumed to be normally distributed with mean zero and variance

σ2
ǫ . In fact this a priori assumption of noise normality is based on the prin-

ciple of maximum entropy which states that if the only available informa-

tion about certain distribution is about its first and second order moments

(mean and variance) and no additional information, which validates the

use of some other sampling distribution, is available, the Normal sam-

pling distribution is the best choice [4, 5]. Being the linear combinations

of a normal random variable y(t) (see Equation (4.5.2), (4.5.6) and (4.5.7)),

each ân and b̂n are also i.i.d N(0, 2σ2
ǫ/N) for n 6= 0, N/2 and thus each â2n

and b̂2n has a
2σ2

ǫ
N χ2

(1 d f )
distribution respectively; thus a more general result
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follows as:

R̂2
n = â2n + b̂2n ∼

4σ2
ǫ

N
χ2

(2 df). (4.5.10)

When the noise variance σ2
ǫ is known then the squared amplitudes R2

n can

be completely specified in terms of an and bn, because their variances will

also be known. On the other hand if σ2
ǫ is unknown then in frequentist

framework it can be estimated using the estimated residuals that depend

on the signal parameters θ and hence the variances of ân and b̂n will also

become available which can then be used to find the distribution of R2
n.

In the Fourier domain, the estimation of these coefficients is rather simple

because one just needs to take the DFT of the estimated residuals to get a

sufficient statistic for R2
n. Thus in the Bayesian paradigm, when sufficient

information is available about the noise properties the conjugate prior for

R2
n has a scaled inverse χ2 distribution defined as:

p(R2
n) = Inv-χ2(νn0, σ2

n0) (4.5.11)

where νn0 is prior degrees of freedom and σ2
n0 is the scale parameter. From

Equation (4.5.9) it is clear that R̂2 = â2n + b̂2n is a sufficient statistic for R2
n.

Therefore, with the above conjugate prior the posterior distribution for R2
n,

conditional upon other signal parameters θ through estimated residuals,

is again a scaled inverse χ2 distribution given as below.

p(R2
n|ǫ(·), θ) = Inv-χ2

(

vn0 + 2,
vn0σ2

n0 + ân + b̂n
vn0 + 2

)

. (4.5.12)

If there are several independent (say K) time series, and hence indepen-

dent noises, and if one assumes that the noise characteristics of different

times series are different, one can use independent posteriors for each

R2
nj, j = 1, ...,K, or if one assumes that the noise is the same in all time

series then a common posterior for all R2
nj can be used. For the later case
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the common posterior is defined as following,

p(R2
n|ǫ(·), θ) = Inv-χ2

(
vn0 + 2K,

vn0σ2
n0 + ∑

K
j=1(â

2
nj + b̂2nj)

vn0 + 2K

)
(4.5.13)

where the additional subscript j now runs for jth time series, hence

∑
K
j=1(â

2
nj + b̂2nj) is the sufficient statistics [54]. When using MCMC, the

current residuals are used to update the above posterior distribution and

the squared amplitudes are sampled from it using an additional Gibbs step

[57]. It is also possible to maximize the noise variance (see next section) us-

ing a special type of likelihood function, so that to save the computational

costs incured by this additional Gibbs step.

4.5.1 The Likelihood Function

After Fourier transform of the data the widely used likelihood function in

the gravitational data analysis community is,

L(θ) = K× exp
[
−2

∫ ∞

0

|z̃( f )− s̃( f , θ)|2
S( f )

d f

]
(4.5.14)

Which for discretized data takes the form:

L(θ) = K× exp

[
−1

ν

ν

∑
j=1

|z̃( f j)− s̃( f j, θ)|2
S( f j)

]
(4.5.15)

where ν = ⌊(N − 1)/2⌋ is the greatest integer less than or equal to

(N − 1)/2, f j are Fourier frequencies, z̃( f j) and s̃( f j, θ) are Fourier trans-

formed observables and model signal respectively; Sn( f j) is the one sided

power spectral density and is assumed known here. Finally, K is the nor-

malizing constant. When S( f j) is not known in advance or is assumed

unknown then assuming that it is finite, one has to resort to another like-
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lihood function which is of the form

Lw(θ) = K× exp

[
−1

ν

ν

∑
j=1

(
ν log(S( f j; θ)) +

|z̃( f j)− s̃( f j, θ)|2
S( f j; θ)

)]
.

(4.5.16)

In the literature Equation (4.5.17) is known as Whittle’s approximation to

the Gaussian likelihood or simply the Whittle’s likelihood [54, 100]. In

some references (see e.g. [101, 102]) Equation (4.5.16) is defined as follows:

Lw(θ) = K× exp

[
−1

ν

ν

∑
j=1

(
ν log(σ2

ǫS( f j; θ)) +
|z̃( f j)− s̃( f j, θ)|2

σ2
ǫS( f j; θ)

)]
.

(4.5.17)

The likelihood function defined by Equation (4.5.17) can be further simpli-

fied by maximizing over σ2
ǫ using the rule:

σ̂2
ǫ =

1
ν

ν

∑
j=1

|z̃( f j)− s̃( f j, θ)|2
S( f j; θ)

[102] which results in the following concentrated or profile likelihood.

Lwc(θ, σ̂2) ≡ K× exp

[
− 1

ν

{
ν log

(
1
ν

ν

∑
j=1

|z̃( f j)− s̃( f j, θ)|2
S( f j; θ)

)

+
ν

∑
j=1

log(S( f j; θ))

}]

. (4.5.18)

The Whittle’s likelihood, using the approximate properties of DFT,

assumes that the discrete Fourier transform residuals are approximately

complex normally distributed with mean zero and power spectrum

σ2
ǫS( f j; θ). In Equation (4.5.18) we see that σ2

ǫ is maximized and since

âj ∼ N(0, 2
Nσ2

ǫ ) and b̂j ∼ N(0, 2
Nσ2

ǫ ) therefore their variances are also max-

imized. Furthermore, since R̂2
j = â2j + b̂2j ∼ 4

Nσ2
ǫ χ2

2 d f where again the the

variance is maximized therefore the advantage of Equation (4.5.18) is that

it does not need any additional specification of conditional posterior for

the squared amplitudes, since the noise variance is effectively maximized
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everywhere during the computation of the likelihood.

To limit the likelihood computation to a particular frequency range

[ f j
L
, f j

U
] within which the desired signal is believed to be more power-

ful, a rather more flexible and computationally efficient form is:

Lwc(θ, σ̂2) ≡ K× exp

[
− 1

νc

{
νc log



 1
νc

j
U

∑
j=j

L

|z̃( f j)− s̃( f j, θ)|2
S( f j; θ)





−
j
U

∑
j=j

L

log(S( f j; θ))

}]
(4.5.19)

where f j
L
and f j

U
are the lower and upper bounds of the examined fre-

quency range [54, 103] and νc is the number of frequencies within this

range. The same modifications about limited frequency ranges apply to

the other forms of the likelihood functions too.

4.5.2 Joint Likelihood

The joint likelihood function for multiple independent time series is just

the product of their individual likelihood functions. Let L
I be the likeli-

hood function for Ith (I = 1, ...,K) time series then we can write,

L(θ) =
K

∏
I

L
(I) ⇔ logL(θ) =

K

∑
I

logL
(I). (4.5.20)

4.6 Signal-to-Noise Ratio

Signal-to-noise ratio (SNR) is an important measure in signal processing

which measures the strength of the detected signal to the background
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noise. It is defined as:

SNR =

√

4
∫ ∞

0

|s̃(t, θ)|2
S( f )

d f (4.6.1)

[9] which for discretized frequencies becomes:

SNR =

√√√√ 4
N

ν

∑
j=1

|s̃( f j, θ)|2
S( f j)

(4.6.2)

and for a particular frequency range [ f j
L
, f j

U
] the definition becomes:

SNR =

√√√√√ 4
N

j
U

∑
j=j

L

|s̃( f j, θ)|2
S( f j)

. (4.6.3)

When searching a signal in several (say K) independent time series the

combined SNR is just the square root of the sum of their individual

squared SNRs defined as following:

SNRK =

√√√√
K

∑
i=1

SNR2
i (4.6.4)

[7]. SNR is a very useful measure as it tells us about the quality of the

detected signal and hence the parameters’ estimates either on the fly or at

the end of MCMC estimation.



CHAPTER 5

APPLICATIONS AND RESULTS

5.1 Introduction

We used the Bayesian MCMC approach to address both the signal detec-

tion problem, and the estimation problem of estimating the parameters of

a detected signal. The methods, discussed in Chapter 4, were collectively

applied in different scenarios ranging from recovering an EMRI signal

from the data containing a single EMRI source to recovering a particularly

targeted EMRI signal from the data containing overlapping signals from

multiple EMRI sources, with the noise level ranging from only instru-

mental noise to more complicated confusion noise created by millions of

other GWs sources. Furthermore, two different approaches were used to

derive the LISA response to GWs, i.e. the full LISA response and the low

frequency approximation to full LISA response as discussed in Chapter 3.

Before proceeding to our applications and results a brief overview of the

earlier MCMC applications for the detection and parameter estimation of

EMRI signal is presented as follows:

The authors of [37] used a highly simplified version of Barack and Cutler

waveformmodel in which the three phase parameters (Φ, γ̃, α) were fixed,

i.e. only 11 parameters were used, and the PN-evolution equations of the

orbital parameters such as ν and e were truncated to the first few leading

71
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order terms, and a low eccentricity expansion of the source orbit. To derive

the LISA response they employed Cutler’s one detector’s response (hI) in

the LFA regime [24]. The resulting posterior density was explored by an

automatic RJMCMC sampler which was effective in recovering a single

EMRI signal buried in stationary Gaussian white noise. They did not ex-

plore the applications of their search algorithm to full LISA response data

(i.e. MLDC data). The authors of [38] and [39] used simplified and some-

what similar waveform models, and MCMC algorithms but their LISA

response approximations were different. That is, both used truncated ver-

sions of the full AKW model but to derive the LISA response, [38] used

the LFA and [39] employed the full LISA response with a rotating but

static LISA triangle, rather than the one with “breathing” effects (see also

Section 3.4). Both employed the so-called MHMC algorithm [41], which

generates a non-Markovian chain since it employs a variety of purposely

directed proposal distributions that allow a range of jumps of different size

and type in the parameter space, with simulated annealing and multiple

parallel chains for harmonic identification as an initial step of the search.

These initial searches were followed by MCMC searches using the high

SNR parameters states found in the previous step as the starting distribu-

tions. In both cases the variance-covariance matrix of the main proposal

distribution was updated by the eigendirections of the Fisher information

matrix (FIM) with [38] imposing some predefined constraints on the FIM.

The author of [40] also explored the same MHMC algorithm for EMRI de-

tection, with several additional sophisticated techniques. His search algo-

rithm uses a multi-stage hierarchical procedure that starts from searching

shorter segments of the data and choose the best fit solutions to be utilized

in the next stage of the search. The length of the segments increases at each

stage of the search. It should be noted that all of the above searches were

conducted to detect and characterize a single, bright EMRI signal buried

in purely instrumental Gaussian noise. The approaches introduced in this

thesis are strictly based on Markovian theory. Also, although we also use

the truncated version of AKW model, namely TAKW of [38], but we use

the full parameter models (both AKW and TAKW), i.e. we do not em-
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ploy fixed values or maximize over any of the signal parameters, and use

both (but in respective applications) the full LISA response and the LFA

without any modifications to their proposed theoretical functions.

5.2 Data

The realistic data are expected to be available after 2022; thus all the

results obtained and presented here are based on simulated data. The

simulated data which we have been searching for EMRI signals are issued

by the MLDC Task Force [104] in different rounds, called challenge data.

To date, four rounds namely MLDC 1, MLDC 2, MLDC 1B (a repeat

of MLDC 2) and MLDC 3 have been conducted at different times. We

could not participate in any of these rounds as the last round (MLDC 3)

was completed in April 2008, when our algorithm and the source codes

were still under development. The current round named MLDC 4 is in

progress with an expected deadline for submission of results in mid June

2011. It is planned to participate in this round and some preliminary

results have already been presented at GWPAW (January 26-29, 2011,

Milwaukee, Wisconsin, USA). In each of the previous rounds, there were

different data sets for different sources. The complexity and purpose of

these challenge data rises with each round. Some data sets contained only

a single source buried in LISA’s instrumental noise while some contained

multiple superposed signals from the same type of sources but with

different parameter values. EMRI signals were included in all rounds but

MLDC 1B was the first round to see some success regarding the detection

and estimation of parameters for some bright isolated EMRI signals. In

this challenge there were five data sets each containing a single EMRI

source buried in instrumental noise only. In MLDC 3, five overlapping

EMRI signals were buried in instrumental noise in a single data set. The

MLDC 4 is more complicated as it consists of a single data set called

the “whole enchilada” which, besides the instrumental noise, contains

millions of signals from all the other possible sources along with a few
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EMRI signals.

All these data sets comprise four variables; i.e. a time variable and the

three TDI observables X, Y and Z each recorded at a constant interval of 15

seconds. These data sets are encoded in XML (the eXtensible Markup Lan-

guage) format and their contents can be retrieved using a routine known

as lisaXMLwhich is available in MLDC’s community resources [43].

5.3 The Experimental Setup

The basic algorithm mainly consists of a waveforms model, a LISA re-

sponse function and an MCMC sampler. The structure of the algorithm

is illustrated by the diagram given in Figure 5.1. From this diagram it is

clear that LISA response is required for the computation of the likelihood

at each MCMC iteration. To compute the full LISA response, i.e. the X,

Y, Z and then A, E TDI variables for the polarization signals (h+, h×), the

actual LISA simulator software [105] was dissected and adapted to make

it an active part of the MCMC algorithm. This adaptation was done by a

research group called Global LISA Inference Group (GLIG) in 2006 [54]. In

this current work some debugging was done to this adapted LISA sim-

ulator to correct some phase differences between it and the actual LISA

simulator to make them deliver exactly similar LISA response, which im-

proved the performance of the algorithm remarkably. The LISA simulator

is not an MCMC friendly software; however, it is computationally quite

expensive not only with respect to the processing speed but also with re-

spect to memory. To compute the TDI response for a full length wave-

form, typically 2 years long, the LISA simulator takes several minutes.

Furthermore, to avoid memory problems, the actual LISA simulator soft-

ware divides the full length waveform into small segments, typically 11
2

months long, derives the TDI responses for all segments one by one, saves

them externally in separate files and finally, recombines them into one file.

The adapted LISA simulator included in our algorithm, however, does
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Figure 5.1: Illustration of the structure of algorithm.

not have this feature because it is not possible to repeat the same process

within the MCMC sampler. This makes it quite ineffective for processing

longer waveforms because it then needs huge memory to hold the entire

operation at the same time. Moreover, the LISA simulator internally mul-

tiplies the length of the injected model signal by 4 which makes it consid-

erably slower even for a shorter data segment. For example, if one is using

a week long data segment then in the LISA simulator the injected model

signal will be four weeks long. Since at eachMCMC iteration, one needs to

generate the model signals too, which is also computationally expensive

and puts further burden on the speed and memory. Therefore at the end

one has to use shorter segments, typically a fewweeks long, to perform an

efficient MCMC analysis within a reasonable time.
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Due to the slow speed and memory hungry nature of the LISA simulator,

it was decided to use the low frequency approximation for computing

the LISA response [24, 29]. This improved the speed of our algorithm to

a great extent which in turn enabled us to use more dispersed values as

starting points for different parameters in our MCMC searches. The LISA

simulator is too inflexible in the sense of prior specifications for signal

parameters, i.e. one has to specify very narrow parameter prior to choose

starting values from, i.e. values which are somewhere near the true modes

of the parameters, otherwise the sampler, despite being a sophisticated

one, would take prohibitively long time to converge to a true maximum.

In most of the initial MCMC searches the AKW model [29] was used to

generate the model signals; however, here again because of the compu-

tationally complex nature of these waveforms it was decided to use the

TAKW model [38] to save time, because TAKW is ∼ 3 times faster than

AKW and has a very good agreement with AKW.

EMRI signals in the LISA data are expected to be very weak; the instan-

taneous amplitude is an order of magnitude below even the instrument

noise level as can be seen in the bottom three boxes of Figure 2.4 of

Chapter 2. These signals have a very complicated spectrum. The posterior

surface contains several local maxima that are well separated from each

other and some of them are as high as 85% of the global maximum. These

local maxima arise due to several harmonics corresponding to different

frequencies, particularly the orbital frequency which is characterized

by a large number of harmonics that have a very strong influence on

the overall spectrum of the EMRI signals. In both Figure 2.4 and Figure

3.1 several isolated peaks can be seen on the surface of the spectral

densities of EMRI signals from different types of sources. These peaks

correspond to different harmonics and the largest peak corresponds to

the fundamental (true) frequencies. The sizes and spreads of some of

these local peaks are almost equal to that of the true peak (the largest
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one). This makes the posterior of these signals very complicated. The

ordinary MCMC samplers fail to explore such a complicated multi-modal

surface. The sampler quickly gets stuck at a local mode corresponding

to a low strength harmonic. For these reasons a PTMCMC sampler was

used, which is very effective in dealing with multi-modal target densities.

The entire algorithm was programmed in C programming language [106].

Several public domain software packages were used for doing different

tasks. For example, the discrete Fourier transform operations were

performed using a C subroutine library FFTW [95] and parallelization of

the PTMCMC sampler and MPI was accomplished by using OpenMPI

library [88]. All the distribution specific random numbers were generated

using the C version of subroutine library called RANDLIB [107]. The

MCMC output was processed using the R language [77].

Different tactics, as described in Section 4.4.4, were employed to enhance

the precision of discrete Fourier transform estimation such as both the

data and model signals were windowed in time domain using a Tukey

window with a light intensity (α = 0.02) to reduce the Fourier frequency

noise arising from the incomplete cycles left at the endpoints of a segment.

The spectral density was estimated using Welch’s method for which a

rather more rigorous window, the “Hann window” was used. When

using LISA simulator, the conditional posterior spectral density was

estimated directly from Fourier transformed residuals using Equation

(4.5.8).

Within the MCMC sampler the proposals were generated from a multi-

variate Student t-distribution since it has longer tails than the Gaussian

distribution which insures good coverage of target density and is also very

useful for good mixing. The degrees of freedom was set as 3 as this is the

smallest possible (integer) value for which the variance of the distribution

is still finite.
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Regarding the prior densities for waveform parameters, all the parameters

were assumed to be independent. This enables us to specify independent

prior distributions for all parameters. Thus all the waveform parameters

were assumed to be uniform over their respective domains as defined

by MLDC, except for some of the angles that are ‘by definition’ polar

angles. For the polar angles which are θS (ecliptic latitude), θK (polar

angle of spin) and λ (angle between spin and angular momentum), the

prior density was defined as f (·) = 1
2 sin(·). The logic behind this prior

density is that a given value of these angles corresponds to a “circle of

latitude”, whose circumference is proportional to sin(·) [54]. Although

for parameters ν (orbital frequency), µ (CO’s mass), M (SMBH’s mass)

and DL (luminosity distance) the use of uniform prior is straight forward,

in the waveform model their logarithmic values are used [29]; therefore

their prior distributions were transformed using the simple technique

of transformation of random variables to yield a truncated exponential

distribution. For the conditional posterior spectral density, the prior

spectral density was estimated from a different segment of the data.

In general, when enough memory was available, the full covariance

matrix of the proposal distribution was updated only once on the fly

using iterations between 10,000 and 30,000. During these iterations the

swapping mechanism of the sampler was kept at halt to avoid over

estimation of the elements of the covariance matrix, as explained in

Section 4.3.2.3. However, because of negligible correlations between

different parameters (< .50), later on a fixed covariance matrix was used.

It also depends on the theoretical expectations about the relationships

of the model parameters to have some idea whether or how important

the off-diagonal elements of the covariance matrix are. Updating the full

covariance matrix manually or from an external file was never successful

because of the numerical errors causing its inversion failure within the

multivariate normal random number generator subroutine. It would not

make sense to update the covariance matrix repeatedly while the chains
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are swapping states as it would lead to very large variances for some of

the parameters, particularly the angles that then frequently cross their

boundaries during MCMC (see also Section 5.3).

Initially, due to lack of computing facilities and memory problems most

of the MCMC computations were done on a very small scale using a local

computing server, which has only 8 cores and at a time one could occupy

up to 4 cores only. It was not until September 2009 when we started using

the cluster of high performance computing servers, the BeSTGRID [12].

Running codes on BeSTGRID was not without challenges with the grow-

ing number of users from throughout the university. Later, the cluster was

upgraded to include a few new fast servers thus it now consists of both

fast and slow servers. To search a week long data the MCMC code, which

uses LISA simulator to compute LISA response, would sometime run at

a speed of ∼ 58 iterations per minute and sometimes at ∼ 16 iterations

per minute. When running a large MCMC (usually more than 8 MCMC

chains), it is now almost impossible to achieve a fast speed because if a

single chain went to a slow speed core (and it almost always happens),

then it will bring down the speed of the entire code because of the speed

synchronization. There are storage problems too. The whole cluster had

only 250 GB storage which is now upgraded to 500 GB, but it is still not

enough considering the large number of users and the amount of their

input/output data. Recently our department purchased five new com-

pute servers each of which has eight cores. There are in total 40 fast cores

but these servers are not linked like those in the BeSTGRID cluster, where

different compute servers can communicate with each other, therefore

one MPI program could only use up to eight cores (i.e. eight MCMC

chains) at a time. Most of the MCMC searches on MLDC 4 blind data set

were carried out on a supercomputer; ATLAS (Hannover, Germany) [108].



80 5. APPLICATIONS AND RESULTS

Out of Domain Angular Adjustment

As we have seen in Chapter 3, out of the 14 waveform parameters, 8 are

angles. These angles are very tricky and need to be handled carefully.

These angles are independent of each other as long as they remain within

their defined range. InMCMC sampling it is possible that any one of them

get out of their specified range. Some useful alternative equivalent rela-

tionships, which are used in case an angle cross its bounds, are presented

in Table 5.1. At first glance these relationships may look complicated and,

Table 5.1: Adjustment of out of domain angles. The additional subscripts
‘c’ and ‘n’ indicates the current and new values respectively.
In case Do this
θSc > π φSn = φSc + π and θSn = 2π − θSc
θSc < 0 φSn = φSc + π and θSn = −θSc
φSc > 2π φSn = φSc − 2π
φSc < 0 φSn = φSc + 2π
θKc > π φKn = φKc + π and θKn = 2π − θKc
θKc < 0 φKn = φKc + π and θKn = −θKc
φKc > 2π φKn = φKc− 2π
φKc < 0 φKn = φKc + 2π
λc > π αn = αc + π and λn = 2π− λc

λc < 0 αn = αc + π and λn = −λc

αc > 2π αn = αc − 2π
αc < 0 αn = αc + 2π
γ̃c > 2π γ̃n = γ̃c − 2π
γ̃c < 0 γ̃n = γ̃c + 2π
Φc > 2π Φn = Φc − 2π
Φc < 0 Φn = Φc + 2π

instead of using these relationships, one could think of just rejecting those

proposals which push any one of these angles out of their domain but that

would decrease the overall acceptance rate of the regular Metropolis pro-

posals. These are actually equivalent cases as at these alternative positions

the model signal remains the same. In fact these are very simple relation-

ships. Let us arrange these angles in four pairs, e.g. {θS, φS}, {θK, φK}, {λ, α}
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and {γ̃,Φ}. The first three pairs share the same feature, i.e. they represent

the two angles of the position of a point in a spherical coordinate system,

the first angle is the zenith or the polar angle whereas the second angle

is the azimuth angle. The radius component of this point is ignored as

we are not interested in how far the point is, rather we are interested in

where the point is. Let us depict {θK, φK} in a spherical coordinate system

in which x-axis is playing the role of the North pole as shown in Figure 5.2.

The plane (in light grey colour) passes through the mid point of y-axis, i.e.

Figure 5.2: Spherical coordinates system to illustrate the effect of changes
in θS on φS, due to out of domain angle magnitudes.

it divides the imaginary sphere into two equal hemispheres. Suppose the

values of θK are valid only in the right hemisphere because it has a range

[0,π] which covers only the half part of the sphere. Now if it goes beyond

this range (i.e. to the other hemisphere, in either direction) it will take

along with it the φK angle too. For example, suppose its newly proposed

value is negative, then it will be in the left hemisphere and if one makes

it positive to bring it back to its actual right hemisphere then one would

need to bring the second angle too by adding π into it. Similarly, if the

newly proposed value of θK is greater than π then subtracting it from 2π
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will place it at the same magnitude in its actual right hemisphere and at

the same time one would again need to add π to φK so that it moves along

with the new θK to keep the things correct. Furthermore, if the newly pro-

posed values of φK turns out to be out of its domain then it can be brought

back to its domain by simply subtracting or adding a 2π as shown in Table

5.1. The same comments apply to the other two pairs of angles too. The

adjustment of angles α, γ̃ and Φ is performed in the same way as that of

angle φK.

5.4 Results

The overall results obtained during this work can be mainly categorized

into two parts: the results in which the LISA response to the waveform

signals was computed using the adapted LISA simulator subroutines and

the results in which we used the low frequency approximation to derive

the LISA response. In both cases the other components of the algorithm

were the same.

5.4.1 Full LISA Response Results

As stated before, in this setup the TDI response to the model signals was

computed using the adapted LISA simulator. The code was first tested by

applying it to some simulated data sets that were generated using LISA

simulator software. The EMRI signals were generated according to the

parameter keys corresponding to different EMRI sources that were issued

by MLDC in previous rounds. Under this set up the code was applied to

recover EMRI signals from two types of data sets: in one type there were

single EMRI signals in different data sets and in the other type there were

multiple overlapping EMRI signals in a single data set. In both types the

noise source was only the instrumental noise while the confusion noise

arising from galactic and extra-galactic binaries was ignored. In fact for

the EMRI sources the confusion noise was introduced only in the current
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round MLDC 4, which is still in progress. Because of the slow speed and

memory problems of the overall code shorter segments of one to three

weeks were used.

5.4.1.1 Single EMRI

The purpose of this example was two fold. Firstly to check whether our

algorithm can recover an EMRI signal from LISA noise and secondly

to evaluate the differences in the performance, with respect to signal

detection and parameter estimation, of the two waveform models that

were used in our algorithm, i.e. AKW and TAKW models. In this setup

the simulated LISA data contained an EMRI signal from a medium mass

(M ∈ [4.75, 5.25] × 106M⊙), which was generated using AKW model

with the parameters’ values taken from MLDC 1B.3.2 training source. To

recover this signal both the AKW and TAKW models were alternatively

used. The AKW model is still very time consuming and despite using a

week long data one MCMC iteration took ∼ 3 seconds on a 2.8 GHz AMD

Opteron(tm) Processor, whereas by using TAKW, one MCMC iteration

takes roughly 1.3 seconds. In both cases a thirty chain PTMCMC was

run with starting values for some parameters in the vicinity of their true

values. For the AKW model the estimated kernel densities and trace

plots for the posterior samples for all the 14 parameters are shown in

Figures 5.3 and 5.4 respectively. Similarly Figures 5.5 and 5.6 display the

same results obtained with TAKW model. These results demonstrate that

there is almost no difference between performance of the two models

in recovering a signal, except the speed. On BeSTGRID the code using

AKW model took ∼ 17 days to get half a million MCMC samples at an

average speed of ∼ 20 iterations per minute while code using TAKW

was running at ∼ 45 iterations per minute. Regarding the recovery of

the signal, one can see that the modes of the estimated kernel densities of

the marginal posterior samples for all parameters are very near their true

values. The kernel density estimate of parameter φK exhibits an obvious

bi-modality but in reality it is not. It is just because its true value is on
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the very edge of the upper bound, 2π, of its domain and it is frequently

crossing this bound during MCMC jumps. As explained in Section 5.3,

when its proposed value is greater than π then subtracting this proposed

valued from 2π brings it back to its domain. Both modes are equivalent

and one can also see that the rest of all the parameters are unaffected by

this bi-modality, particularly its companion angle; i.e. the parameter θK is

still on its true mode as can be seen in the trace plots.

Although these were semi-blind searches for most of the key parameters,

like ν, µ, e and χ and some of the angles, the starting values were set close

to the true values. Otherwise because of the slow speed of LISA response

computation it would take an extremely long time to complete conver-

gence. Though different chains have different acceptance rates for the

regular Metropolis jumps, the overall acceptance rate was ∼ 25%. Sim-

ilarly the overall rate of swap acceptance between neighbouring chains

was ∼ 30%. Using CODA package, the multivariate potential scale re-

duction factor, R̂p, was found equal to 1.00, indicating that all the chains

converged. The algorithm was tested on many other simulated as well as

MLDC data sets and all cases it was observed that the two models (AKW

and TAKW) gave almost similar results. Therefore in all of the subsequent

MCMC searches the TAKW model was used. Table 5.2 shows some sum-

mary of the posterior estimates for all 14 parameters of EMRI source in

actual MLDC 1B.3.2 training data set and Figure 5.7 shows their kernel

density estimates. Different angles may be incorrectly estimated such a

the phase angles γ̃ and Φ; however, these parameters are very difficult to

estimate and are unimportant astrophysically at this initial stage of ongo-

ing EMRI research [109]. Much emphasis is placed on the correct estima-

tion of ν, M, e as these parameters affect the waveform length or time to

plunge, which is a possible measure for the comparison of results.

The nature of EMRI signals is not yet well understood by researchers and

there is no literature available which could put some light on the interac-
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Figure 5.3: AKW model: Kernel density estimates of the marginal pos-
terior densities for all 14 parameters for the EMRI training
source 1B.3.2. The dashed lines indicate the true values.
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samples for all 14 parameters for the EMRI training source
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Figure 5.5: TAKW model: Kernel density estimates of the marginal pos-
terior densities for all 14 parameters for the EMRI training
source 1B.3.2. The dashed lines indicate the true values.
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Figure 5.6: TAKW model: Trace plots of the marginal posterior MCMC
samples for all 14 parameters for the EMRI training source
1B.3.2. The grey dashed lines indicate the true values.
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Table 5.2: Posterior results and true parameter values for the recovered
EMRI signal given in actual MLDC 1B.3.2 training data set.

Parameters Mean StdDev Mode 95% BCI∗ True Values

log(ν0) -7.9620378 0.0002130 -7.9620689 (-7.9623455, -7.9616517) -7.9622049
log(µ) 2.2767335 0.0538632 2.2994283 (2.1787098, 2.3438539) 2.2902575
log(M) 15.4347056 0.0043300 15.4315218 (15.429961, 15.4415627) 15.4319518
e0 0.2206228 0.0092475 0.2113745 (0.2082393, 0.2363312) 0.2154005
γ̃0 4.3606406 1.3283087 4.9727206 (1.3662998, 5.630289) 2.0332973
Φ0 3.1230357 0.6555886 3.3730609 (1.9679207, 3.9275144) 5.9999000
θS 1.0140620 0.4358311 1.3024822 (0.3363044, 1.6545353) 0.3484659
φS 2.9175502 0.3106825 3.0264032 (2.1062912, 3.1686211) 2.9346250
λ 2.2562624 0.0159953 2.2528088 (2.2321323, 2.2861428) 2.2899505
α0 2.7297661 1.7821384 1.6786134 (0.2875322, 5.9887385) 1.6092149
χ 0.5674923 0.0117862 0.5710465 (0.5319192, 0.5750127) 0.5748184
θK 2.0894894 0.3952991 2.0155767 (1.4146781, 2.7271543) 1.4034163
φK 3.7507945 2.5656960 5.7233197 (0.1093728, 6.1672813) 6.2231290
log(DL) -0.8373054 0.2576184 -0.6801450 (-1.3078644, -0.5413055) -0.5847797
∗BIC: Bayesian Credible Intervals
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Figure 5.7: Kernel density estimates of the marginal posterior densities
for all 14 parameters for the EMRI source in actual MLDC
1B.3.2 training data set. The dashed lines indicate the true
values.

tive behaviour and co-relationships of the EMRI parameters in general, as

well as in MCMC applications. In these initial attempts no significant cor-

relations among different pairs of posterior MCMC samples of different
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parameters were found. However, it was realized that some of these 14

parameters are extremely sensitive to the specification of the proposal dis-

tributions for them. Onemust be careful about the step sizes of some of the

key parameters such as ν, e, M and λ. Bold proposals for all these param-

eters significantly reduce the acceptance rates of the regular Metropolis

jumps. Moreover, from Equation (3.2.16) it is clear that the time to plunge

or in other words the waveform length is specified by the values of ν, e

and M. Very large jumps in these parameters will not only reduce the ac-

ceptance rates of the regular Metropolis jumps but will also result in a very

short or even zero plunge time (i.e. no signal at all) if the proposed values

of these parameters do not correspond to an orbit which is inside the inner

most stable orbit. Also since M appears in four of the five PN-evolution

Equations (3.2.11–3.2.15), as a result of bold jumps in this parameter all

the orbital parameters becomes highly correlated with M as well as with

each other, leading to wrong results. In another MCMC analysis of EMRI

signals [38] there were reports of sky location angles (θS, φS) getting locked

at wrong positions; however, they were using low frequency approxima-

tion to derive LISA response instead of the full LISA simulator as well as

a different MCMC sampler, MHMC, and sampling schemes.

5.4.1.2 Multiple EMRIs

For the recovery of an EMRI signal from a data set containing multiple

EMRI sources the same strategy was used, i.e. first testing the algorithm

on simulated data and then applying it to MLDC data, which were issued

in MLDC 3. Since it was planned to participate in the MLDC 4 where

there are multiple EMRI sources, to generate the simulated data, instead

of using the parameter values given for MLDC 3 sources, the five EMRI

sources (one highmass, twomediummass and two lowmass) were gener-

ated with the parameter values corresponding to those given for the train-

ing sources in the first version of MLDC 4 (the data in this round were

later revised by MLDC in October 2010). The confusion noises from other

sources were ignored since the purpose of this attempt was to see how our
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algorithm performs in recovering a signal from a data containing multi-

ple overlapping EMRI sources. Different codes were run to recover these

sources individually. Because of the long MCMC simulations, low speed

and unavailability of enough slots on BeSTGRID for longer durations only

two codes, one on 30 cores (on BeSTGRID) and the other on 4 cores (on lo-

cal server), could be run in an attempt to recover only two of these five

sources, named as source 4.2 and source 4.3. For the source 4.2, for which

a 30 chains PTMCMC was run on BeSTGRID, the kernel density estimates

are given in Figure 5.8. Figure 5.9 displays the traces plots of the marginal

posterior samples and Table 5.3 shows summary statistics of the marginal

posterior quantities. Figure 5.10 displays the log-likelihood values of the

first 8 chains, which demonstrates the improvement of different chains to-

wards the maximum by swapping states with each other. From Table 5.3

it is clear that almost all the parameters are estimated with great accuracy.

Similarly Figure 5.11 and Table 5.4 shows the results for the source 4.3, for

which a 4 chains PTMCMC was run on our local server. Since there were

many signals in the same data therefore the likelihood surface was rather

more complicated and hence we can see some differences in results for the

second signal where some of the estimated angles are somewhat different

from the true ones because of fewer chains and hence low temperature in

PTMCMC run. The code was then applied to the actual MLDC 3 blind

data set where there were five EMRI signals buried in LISA instrument

noise. The target signal was that from a medium mass EMRI source; i.e.

source 3.2 in MLDC 3 data. The true parameters for these signals were

known as this round was completed in April 2008 when our algorithm

and codes were still in development process. However, we used a com-

pletely blind search by first running several MCMC chains with random

starting values in parallel and then set the modes of the posterior samples

of the parameters, in those chains for which the SNR and likelihoods were

higher than others, as the starting values for a new MCMC run. These

results are given in Figures 5.12 and 5.13 and Table 5.5.

We attempted to search MLDC 4 data with low frequency approximation
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Figure 5.8: Kernel density estimates of the marginal posterior densities
for all 14 parameters for the EMRI source 4.2. The dashed
lines indicate the true values.
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Figure 5.10: The log-likelihood values, obtained for the EMRI source 4.2,
of the different chains are exchanging states to move to-
wards the global maximum. The shades of the colours in-
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Table 5.3: Posterior results and true parameter values for Source 4.2 in
multiple EMRI data set.

Parameters Mean StdDev Mode 95% BCI True Values

log(ν0) -7.9328188 0.0004434 -7.9323975 (-7.9327444, -7.9318485) -7.9322820
log(µ) 2.2395396 0.0751304 2.2911850 (2.0606785, 2.34511) 2.2664567
log(M) 15.4662469 0.0009966 15.4656986 (15.4640869, 15.4683055) 15.4660340
e0 0.1358246 0.0059642 0.1336781 (0.1174296, 0.1475948) 0.1325064
γ̃0 3.8447445 1.5515635 5.5369158 (0.2527217, 6.1285982) 5.4586812
Φ0 2.8943139 0.1097466 3.286550 (1.9055349, 3.5590655) 3.2720448
θS 0.9507359 0.2539969 0.5841125 (0.1832194, 1.6954516) 0.3091959
φS 2.8264892 0.1904191 2.7220846 (1.0136832, 4.5198308) 2.6004854
λ 2.4467195 0.0087116 2.4442997 (2.4232488, 2.484018) 2.4427887
α0 2.8256644 0.4742363 0.8437258 (0.2502399, 5.3935017) 0.3919867
χ 0.5471154 0.0014681 0.5466646 (0.5429923, 0.5511443) 0.5504105
θK 1.3120252 0.1068620 1.1761698 (0.3572251, 2.4022434) 1.1583793
φK 3.9613204 1.2991888 3.9093443 (0.4007337, 6.1953864) 4.2795129
log(DL) -1.2820195 0.1965055 -1.5567342 (-1.7667382, -0.9134321) -1.0651850

(see next section). Overall the PTMCMC algorithm performed well in re-

covering EMRI signals in different situations. However, using LISA simu-

lator to derive the LISA response along with MCMC sampler was too time

consuming. In order to implement it efficiently, one would either need to

use faster computational resources, or on the other hand would need, to

find some analytical approximations to the full LISA response.
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Figure 5.11: Kernel density estimates of the marginal posterior densities
for all 14 parameters for the EMRI source 4.3. The dashed
lines indicate the true values.

Table 5.4: Posterior results and true parameter values for Source 4.3 in
multiple EMRI data set.

Parameters Mean StdDev Mode 95% BCI True Values
log(ν0) -7.9504974 0.0002142 -7.9504998 (-7.9507933, -7.9501326) -7.9504400
log(µ) 2.1904121 0.1383296 2.2681769 (1.8653783, 2.3426868) 2.2650997
log(M) 15.4225400 0.0009074 15.4224313 (15.4212395, 15.4238013) 15.4216260
e0 0.2162612 0.0044909 0.2182163 (0.2059087, 0.2267588) 0.2171434
γ̃0 0.5690891 0.4191032 0.5371497 (0.2103864, 0.9056424) 0.0085699
Φ0 2.4671885 0.1498988 2.4528525 (2.1165191, 2.6567066) 2.7240871
θS 0.7285653 0.1930421 0.6745416 (0.5072134, 1.2172905) 0.3796188
φS 4.0510350 0.1159312 4.0487354 (3.8301058, 4.165885) 4.3193568
λ 0.7198182 0.0126385 0.7142496 (0.6812118, 0.7435473) 0.7194546
α0 2.7571544 0.2438051 2.6808929 (0.6812118, 0.7435473) 2.0452143
χ 0.6654901 0.0022146 0.6647366 (1.1124029, 2.5159715) 0.6651021
θK 0.7753960 0.3010134 0.8130486 (1.047814, 2.4606923) 1.4217963
φK 2.1553197 2.7038609 0.2541904 (2.305431, 4.5079389) 3.4671808
log(DL) -0.7864942 0.1662228 -0.7286971 (-1.111278, -0.5682134) -0.7514424

5.4.2 Low Frequency Approximations Results

In this setup the low frequency approximation was used, which is very

useful to approximate the full LISA response if the source’s GW has a

longer wavelength than the LISA arms. The high andmediummass EMRI
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Figure 5.12: Kernel density estimates of the marginal posterior densities
for all 14 parameters for the EMRI source 3.2 in MLDC 3
data. The dashed lines indicates true values.
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Figure 5.13: Trace plots of the marginal posterior MCMC samples for all
14 parameters for the EMRI source 3.2 in MLDC 3 data. The
grey dashed lines indicates true values.
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Table 5.5: Posterior summary and true parameter values for Source 3.2
in MLDC 3 blind data set.

Parameters Mean StdDev Mode 95% BCI True Values

log(ν0) -7.9632318 0.0074434 -7.9634255 (-7.9679815, -7.9565608) -7.9639512
log(µ) 2.1400183 0.1637770 2.2610508 (1.8406894, 2.3410743) 2.3295377
log(M) 15.4468872 0.0021757 15.4462224 (15.444836, 15.4504355) 15.4447901
e0 0.2111625 0.0237776 0.2148893 (15.444836, 15.4504355) 0.2135734
γ̃0 1.9696688 1.3582354 1.7592963 (0.1682269, 0.2462958) 2.4529800
Φ0 1.9884147 1.4133054 1.0416850 (0.3080034, 5.1105686) 0.5211871
θS 1.8360713 0.7443911 2.2706380 (0.6016912, 2.8048535) 0.3093090
φS 3.4645194 1.9132735 4.3326998 (0.2865014, 5.9520283) 0.1149443
λ 0.7318439 0.0211169 0.7444001 (0.7006846, 0.763016) 0.7547361
α0 2.6800513 1.4889402 2.1506454 (0.5643185, 5.771482) 3.7418401
χ 0.6727191 0.0279577 0.6896207 (0.6239665, 0.6991228) 0.6921341
θK 1.7524283 0.6284395 1.8150416 (0.6113763, 2.75775) 2.2481815
φK 3.2098031 1.9041195 1.9990239 (0.3246372, 5.9921598) 1.6346445
log(DL) -0.2007830 0.3904250 0.1281864 (-0.8988743, 0.4504317) 0.4192122

systems fall in this category. While this approximation is not totally accu-

rate to represent the full LISA response, it is quick and easy to compute. In

our case this approximation is ∼ 13 times faster than the LISA simulator

and has been found very good in estimating the signal parameters of dif-

ferent EMRI sources given in MLDC data. Thus in the new source codes

the LISA simulator routines were replaced by the low frequency approxi-

mation routines. This new algorithm is fast enough to generate thousands

of MCMC samples in a few hours, thus we were able to run our MCMC

chains with highly dispersed starting values and with quick follow ups. A

bold step that was taken under this setup was smoothing the conditional

posterior spectrum of the noise on the fly. Under the previous setup the

squared amplitudes or the noise parameters, R2
n, were randomly drawn

from the (conditional) posterior distribution given by Equation (4.5.13),

for which the term a2nj + b2nj was estimated directly from the Fourier trans-

formed residuals conditional on the current values of signal parameters,

θ, using Equation (4.5.8). The conditional posterior spectrum estimated in

this manner has a large variance. To reduce this variance the term a2nj + b2nj
can be estimated by Welch’s method instead of Equation (4.5.8). As an

example let us consider the two conditional posterior spectra estimated

for a week long segment (40320 data points) from EMRI 1B.3.2 data set,
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which contains an EMRI signal buried in LISA’s instrumental noise only,

as are given in Figures 5.14 and 5.15. For the conditional posterior spec-

trum in Figure 5.14 the term a2nj + b2nj was estimated using Equation (4.5.8)

and at iteration 500,000 (second box) it has the same large variance as it

had at iteration 1 (first box). For the new conditional spectrum the term
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Figure 5.14: The plots of the conditional posterior spectra of noise at iter-
ation 1 (left) and 500,000 (right).

a2nj + b2nj is estimated byWelch’s method in which at each MCMC iteration

the time domain residual vector is divided into a number of sub-segments

of a suitable size, e.g. in this example there were 38 sub-segments each

of size 2048 (see Section 4.4.3.1 for full details). The a2nj + b2nj are then

used to update the conditional posterior distribution of R2
n as given by

Equation (4.5.13). Figure 5.15 shows the smoothed conditional posterior

spectrum at different iterations. One can see that as the MCMC progresses

the spectrum becomes smoother and smoother. Looking at the first box

(conditional spectrum at iteration 1) in Figure 5.15, at first glance one may

think that the spectrum is still quite rough, but as we know this is the first

iteration. Since both the signal parameters, θ, and the noise parameters,

R2
n, are not yet converged, the conditional posterior spectrum is still very

rough. As the MCMC chains of different parameters progress towards the

global maximum, at the same time the R2
n alsomove towards their best fits,

thus the conditional spectrum gets improved. For example in this MCMC

run most of the signal parameters as well as the noise parameters found

their true stationary distributions within 50,000 iterations and thus condi-

tional mean spectrum has become very smooth and stable. One may also

think that this conditional posterior spectrum is now almost constant but
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Figure 5.15: These plots reveal how nicely the conditional posterior spec-
trum is smoothed as MCMC progresses.

it is not the case. It is still being updated in the usual way but it remains

stable. This randomness accounts for the unknown characteristics of the

noise and it is observed that it also improves mixing. This method could

not be utilized in our previous setup; i.e. the algorithm which used LISA

simulator because it has slowed down the algorithm further. Using a week

long data segment in this new setup, if the spectrum is not updated (i.e.

assumed known), the MCMC sampler runs at a speed of ∼ 650 iterations

per minute, and when the spectrum is updated using Welch’s method as

explained above, the sampler runs at ∼ 500− 550 iterations per minute.

This means that this spectrum smoothing comes at the cost of somewhat

reduced speed.

In our previous setup, we first tested our algorithm on simulated data and
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then applied it to actual MLDC data. But in this setup the algorithm was

applied directly to actual MLDC data.
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5.4.2.1 Single EMRI

The new algorithm was again applied to recover two different EMRI sig-

nals from their respective data sets. One was a high mass source and the

other was a mediummass source. In these attempts there was no problem

in recovering the signal parameters using the true values as the starting

points for the MCMC search, thus we used completely blind searches to

test the performance of our algorithm. In both cases the blind searches

were conducted in the traditional way, i.e. first several shorter MCMC

chains were run in parallel, without swapping step, from random starting

points and those chains were chosen that showed stability and for which

the SNR and likelihood values were larger than that of the others. The

modes of these chains were then set as the starting points in a newMCMC

run. This step was repeated for a few times to narrow the search range. In

the following the posterior results of the parameters of the EMRI sources

given in MLDC 1C.3.1 (high mass) and MLDC 1B.3.2 (medium mass) are

given. Table 5.6 and Figures 5.16 and 5.16 show the results for source

1C.3.1, and Table 5.7 and Figures 5.18 and 5.19 show the results for source

1B.3.2. From these results it is clear that both signals were recovered to a

Table 5.6: Posterior results and true parameter values for the recovered
EMRI signal given in actual MLDC 1C.3.1 training data set.

Parameters Mean StdDev Mode 95% BCI True Values

log(ν0) -8.5923072 0.0054073 -8.5910440 (-8.6043316, -8.58498) -8.5914722
log(µ) 2.0268312 0.1857668 2.2094832 (1.7415931, 2.3226299) 2.3208773
log(M) 16.1109182 0.0013308 16.1143473 (16.0907413, 16.1321731) 16.1193041
e0 0.2054050 0.0146009 0.2048257 (0.1815489, 0.2266929) 0.1953372
γ̃0 3.4258544 2.0117767 2.1168073 (0.189037, 6.1439493) 4.3815257
Φ0 3.9488274 1.2730869 3.3662734 (0.9662915, 5.7219864) 3.4411844
θS 0.6163426 0.5378233 0.4068807 (0.0635606, 1.8238759) 1.2356774
φS 2.9447686 1.5804455 2.9152004 (0.8174902, 6.2240241) 4.0547847
λ 1.6522163 0.6050616 2.2917616 (0.7197503, 2.3529236) 2.3589634
α0 2.6106968 1.8498715 1.2615516 (0.361536, 5.7977946) 2.1583558
χ 0.6126756 0.0518266 0.6509912 (0.5026822, 0.6625549) 0.6366439
θK 1.8875384 0.8714571 2.4647494 (0.4725882, 2.9745323) 2.0363598
φK 2.8270861 2.0937196 1.1248902 (0.1526174, 6.0819968) 1.2601279
log(DL) -1.9435258 0.7637236 -1.7958534 (-3.8432567, -0.9393268) -1.5180422

great accuracy. At first glance these results might look inferior to those ob-

tained with LISA simulator, but in that setup we used very narrow ranges
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Table 5.7: Posterior results and true parameter values for the recovered
EMRI signal given in actual MLDC 1B.3.2 training data set.

Parameters Mean StdDev Mode 95% BCI True Values

log(ν0) -7.9618827 0.0015563 -7.9622387 (-7.9626445, -7.9594061) -7.9622049
log(µ) 2.1081418 0.1379126 2.1226268 (1.8533068, 2.3236795) 2.2902575
log(M) 15.4293237 0.0145646 15.4327324 (15.4013705, 15.4603173) 15.4319518
e0 0.2083974 0.0158042 0.2104241 (0.1833913, 0.2294036) 0.2154005
γ̃0 4.3846147 1.2294466 4.8456580 (1.2324418, 5.5431047) 2.0332973
Φ0 4.6823412 0.6958241 5.0119812 (3.201359, 5.3400583) 5.9999000
θS 0.8621684 0.5310470 0.6496126 (0.4922331, 2.1144932) 1.2223304
φS 2.7107130 1.9050704 1.5804608 (1.0929966, 6.2370637) 2.9346250
λ 2.3318624 0.0680917 2.3028745 (2.2519453, 2.4630376 ) 2.2899505
α0 2.8849141 2.4935911 0.6499724 (0.0878025, 6.2103565) 1.6092149
χ 0.5896674 0.0392056 0.5781922 (0.5157521, 0.659082) 0.5748184
θK 2.4782385 0.7730288 2.8709623 (0.5979172, 3.0963351) 1.4034163
φK 3.3736221 2.1551523 5.0501235 (0.2232368, 6.0421006) 6.2231290
log(DL) -0.5383502 1.1281699 -0.1358916 (-2.7217512, 0.8325329) -0.5847797

to choose starting values from, while in this attempt we used quite broad

ranges. The width of different marginal posterior densities show that al-

most the whole prior range was searched before an eventual convergence.
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Figure 5.16: Kernel density estimates of the marginal posterior densities
for all 14 parameters for the EMRI sourceMLDC 1C.3.1 (high
mass source). The dashed lines indicate the true values.
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Figure 5.17: Trace plots of the marginal posterior MCMC samples for all
14 parameters for the EMRI source MLDC 1C.3.1 (high mass
source). The grey dashed lines indicate the true values.
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Figure 5.18: Kernel density estimates of the marginal posterior densi-
ties for all 14 parameters for the EMRI source MLDC 1B.3.2
(medium mass source). The dashed lines indicate the true
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Figure 5.19: Trace plots of the marginal posterior MCMC samples for all
14 parameters for the EMRI source MLDC 1B.3.2 (medium
mass source). The grey dashed lines indicate the true values.
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5.4.2.2 Multiple EMRIs

MLDC 4 Preliminary Results

The low frequency approach was applied to detect signals generated by

EMRI sources given in both training and blind datasets issued in the re-

vised MLDC round 4. Looking at the amount of noise in these data, for

now signals from only high mass EMRI systems were attempted to re-

cover. Moreover, from the key files of training EMRI sources listed on

MLDC 4web page [110] it appears that there are nomediummass sources.

These searches are still in progress as the deadline for submission of results

for this round is June 2011. Some preliminary results were presented at

GWPAW (January 26-29, 2011, Milwaukee, Wisconsin, USA). The first few

searches on both training and blind data were carried out on local servers

while most of the subsequent searches on blind data were conducted on

ATLAS.

Training Data

The training data contains three highmass EMRIs sources which are some-

what similar to each other, therefore a joint MCMC search was conducted

to recover them. In an 8 chain MCMC, three chains were started from

the true parameters’ values of the three signals while the rest of the chains

were started from the values in the vicinity of the true parameters’. Figures

5.20 and 5.21 display the results of this joint search. In the plots of kernel

density estimates, different types of vertical lines denote the true values

of the parameters of different signals. The solid lines refer to the true

parameters’ values of the first signal; similarly the dashed and dashed-

dot-dashed lines refer to the true parameters’ values of the second and

third signal respectively. After running for a sufficiently large number

of iterations (∼ 4000,000) it was observed that the third signal (dashed-

dot-dashed vertical lines) was dominating the other two as can be seen in

Figure 5.20, even though the overall mean swap acceptance rate between
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chains was ∼ 35%. Thus the code was restarted with the starting values

of different chains somewhat similar to the true parameter values of the

third signal. These results are given in Table 5.8 and Figures 5.22 and 5.23.

We can see that all the parameters, except the luminosity distance, DL, and

some of the angles, are estimated with great accuracy and most of the pa-

rameters’ chains show stability. The distance parameter seems to be over

estimated and the sky location (θS, φS) seems to have been locked at a dif-

ferent position. The wrong sky location can be attributed to the fact that

now we are using low frequency approximation and are experiencing the

same problem as was observed in [38], which also used the low frequency

approximation. It is also evident that after some 800,000 iterations one of

Table 5.8: Posterior results for the third EMRI signal given in MLDC 4
training data set.

Parameters Mean StdDev Mode 95% BCI True Values
log(ν0) -8.6150574 0.0084353 -8.6180363 (-8.6249635, -8.5937387) -8.6160956
log(µ) 2.2477959 0.5192954 2.1855669 (1.4335412, 3.218008) 2.3502807
log(M) 16.1524864 0.0022851 16.1523191 (16.1487557, 16.1563142) 16.1533070
e0 0.1846341 0.0194643 0.1950904 (0.1453335, 0.2032633) 0.1867124
γ̃0 3.8304271 1.4072686 4.7348145 (1.0893358, 5.40843) 5.1388726
Φ0 3.7702390 1.0793853 3.2443508 (2.1282663, 5.5913499) 2.0847788
θS 2.4558709 0.4340432 2.6112671 (1.3119373, 2.7558067) 2.3050326
φS 3.9017750 0.4852600 3.7807656 (3.5835136, 4.9489593) 4.7079276
λ 1.1157812 0.2241588 1.1800353 (0.5728021, 1.3951766) 1.1556773
α0 1.9659821 1.3510073 1.3721568 (0.5215196, 5.0080447) 1.7088611
χ 0.5735728 0.0244604 0.5769022 (0.5402039, 0.6168362) 0.5797234
θK 1.2352639 0.6854020 1.1279509 (0.0967481, 2.7112745) 1.4297484
φK 1.7192452 2.2802323 0.3807332 (0.0880124, 5.8993531) 0.7452684
log(DL) -1.2627411 0.5966728 -1.2166987 (-2.1874794, -0.1964734) -2.2992912

the neighbouring chains, of the true (T = 1) chain, has found some other

mode; however, overall the true chain is unaffected. This secondmode can

either correspond to, most probably, a low strength harmonic of this same

EMRI signal as such a close harmonic usually corresponds to higher fre-

quencies than the true one, or to a harmonic of another EMRI signal. This

can not be easily concluded; however, as to which case is true. This sort of

overlapping and sharing of characteristics between different signals will

be quite common in such complicated cases and will result in confusions

among different EMRI signals.
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Figure 5.20: Kernel density estimates of the marginal posterior densi-
ties for all 14 parameters of the first three EMRI sources in
MLDC 4 training set. Different vertical lines indicate the true
parameter values of different signals.
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Figure 5.22: Kernel density estimates of the marginal posterior densities
for all 14 parameters of the third EMRI signal in MLDC 4
Training data. The dashed lines indicate the true parameter
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Figure 5.23: Trace plots of posterior samples for all 14 parameters of the
first chain obtained for the third signal in MLDC 4 training
data. The dashed lines indicate the true parameter values.
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Blind Data

An 8 chain MCMC search was conducted on the first two weeks of the

MLDC 4 blind set in which all the 8 chains were started from different

values, chosen at random. Table 5.9 shows summary of the posterior es-

timates and Figures 5.24 and 5.25 show the kernel density estimates and

trace plots respectively. In these plots the dashed lines indicate the max-

imum a posteriori (MAP) estimates. The trace plots show that the chains

for all parameters show great stability except the chains for CO’s mass µ

and distance logDL parameters that have somewhat oscillatory behaviour.

The empirical correlation between these two parameters is ∼ 0.92, which

is quite high. This could not be figured out as to why this (high corre-

lation) happened as such phenomenon was found neither in earlier nor

in subsequent searches. On the other hand the SNR and log-likelihood

plots as shown in Figure 5.26, show good stability and indicates that there

is some signal being picked up. All the angles are also stable except α0,

which is vibrating between two different modes.

Table 5.9: Posterior results for the detected EMRI signal given in MLDC
4 blind data set.

Parameters Mean StdDev Mode 95% BCI

log(ν0) -8.5734565 0.0030150 -8.5732594 (-8.5740346, -8.5723416)
log(µ) 1.4095992 0.6232590 1.1792795 (0.5891286, 2.2630964)
log(M) 16.1330806 0.0081412 16.1349396 (16.1321258, 16.1368964)
e0 0.1548801 0.0146666 0.1521146 (0.1391631, 0.1662986)
γ̃0 1.5843590 0.7084836 1.4864924 (0.8599176, 2.2690120)
Φ0 4.1974981 0.3362512 4.1475526 (3.8341652, 4.5926333)
θS 2.5343447 0.0981767 2.5401976 (2.5078450, 2.5794594)
φS 3.8224231 0.0978049 3.8098774 (3.7449672, 3.8869760)
λ 0.2981064 0.3654142 0.2499777 (0.1507341, 0.3472208)
α0 3.0728843 2.4917998 5.7613603 (0.1502230, 6.1890025)
χ 0.4999016 0.0092534 0.5016475 (0.4881855, 0.5085584)
θK 2.2189922 0.0751287 2.2079507 (2.1613676, 2.2740995)
φK 1.0463941 0.3700402 0.9866329 (0.8704754, 1.1215218)
log(DL) -0.9288239 0.8035098 -0.9860866 (-1.9740756, -0.0185142)
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Figure 5.24: Kernel density estimates of the marginal posterior densities
for all 14 parameters for the detected EMRI source in MLDC
4 blind data. The dashed lines indicates MAP values.
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Figure 5.25: Trace plots of the 14 parameters of the first chain for the de-
tected EMRI source in MLDC 4 blind data. The dashed lines
indicates MAP values.
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Figure 5.26: (Left) The SNR plot for the detected EMRI signal given in
MLDC 4 blind data set. (Right) The Log-Likelihood plot for
all 8 chains obtained for the MLDC 4 blind search. The in-
tensity of the grey colour increases with decreasing tempera-
tures. The darkest (black) shade denotes the Log-Likelihood
values of the true (cold) chain.

In order to search the entire two years of the blind data several more

MCMC searches were conducted on different time regions (data seg-

ments). Most of these MCMC searches were carried out on ATLAS. Un-

fortunately, running our codes on ATLAS was partly successful because

of some unknown issues with the configuration of Condor (either locally

on user’s part or globally) to run MPI jobs. Condor is a software which is

used to submit and manage jobs on a cluster of dedicated compute nodes

[111, 112]. In most cases the code either crashes after some time or restarts

automatically, particularly when the number of chains is large (usually

>10). However, we were able to run some of our codes for a number of

iterations ranging from half a million to 2 millions. Overall eight time

regions were searched, these are the 1st, 2nd, 3rd, 16th, 17th, 53rd, 71st

and 81st weeks of the two years data. The time region of the 3rd week

was searched by running an 8 chains MCMC on a local server whereas the

rest of the seven time regions were each searched by running a 10 chains

MCMC on ATLAS. Like the BeSTGRID, different nodes of ATLAS have

different processing speeds thus different MCMCs would run at different

speeds, despite having similar source codes. The highest speed was ∼
390 iterations per minute whereas the lowest speed was ∼ 180 iterations
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per minute. Table 5.11 presents the posterior modes of all the 14 param-

eters obtained for different time regions. The kernel density estimates of

the marginal posterior densities for each of the 14 parameters, obtained in

these searches, are given in Figures 5.27, 5.28, 5.29, 5.30, 5.31, 5.32, 5.33 and

5.34 with the caption of each figure stating the respective time regions. The

kernel density estimates of most of the parameters show multi-modality;

however, in most cases the strongest modes can be clearly recognized. In

all these searches the average regular Metropolis acceptance rates were in

20 − 40% while the average swap acceptance rates were in 16% − 30%.

An interesting result which was observed in these searches is that for all

these time regions the joint plots of the sky location angles indicate a sim-

ilar behaviour, though in the plots of the kernel density estimates of these

two angles obtained for different time regions the (strongest) modes are

different. For different time regions the joint plots of the two sky location

angles are given in Figure 5.35. These plots indicate that there are four

strong sky locations. The sky location of the third week search reveals that

this MCMC has completely missed the other two sky locations although

the code was the same except the searched time region and starting values,

which can be attributed either to small number (8) of MCMC chains or that

one of the signals is dominating the others. This search also has a low SNR

as compared to others, see Figure 5.36 for SNRs obtained for different time

regions, this is somewhat natural as we know when the angle θS increases,

the direction of the incoming signal becomes more horizontal to the plane

of LISA, which leads to lower the SNR. However, it can still be considered

as a detection, because the estimated signal parameters show similarity

with those obtained for the neighbouring time region: the second week.

In all of these searches (except the one conducted on the third time region)

the strongest sky positions, for which the SNR is also high, are the two

that are located near the lower end of θS. The estimated strongest sky po-

sitions (see kernel density plots) for the 16th and 17th weeks are different

from each other despite the two time regions are consecutive. However, in

these two time regions most of the other estimated signal parameters are

the same, except the orbital frequency parameter ν0 and two of the angles,
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i.e. α0 and θK, that have different modes in the two searches. The multiple

modes on the surface of the kernel density estimates for different param-

eters indicate that there are different EMRI signals of approximately the

same strength, which would lead to confusion between any two different

signals. Since the orbital parameters of the source evolve over time, for the

same signal their values are slightly different in different time regions. The

estimated values of these parameters obtained for different time regions,

other than the first few weeks, can be projected backward using the true

time to plunge once the MLDC task force reveals the true initial values

of these parameters. At the moment it is difficult to say something exact

about the estimated parameters of these detected signals as these strong

modes may not necessarily belong to a single signal. However, for almost

all time regions the SNR is large enough to claim a detection. The best esti-

mates of the key parameters, i.e. ν, µ, M, e, (θS, φS), χ and DL, for the four

possible signals, that can be inferred from these results are given in Ta-

ble 5.10. These estimates do not belong to a particular signal, rather these

are the best estimates of these parameters for all the four possible signals

given in MLDC blind data. The results of these searches can be used to do

more refined searches by narrowing the search ranges around the MAP

estimates and other stronger local modes. However, as stated before some

degree of confusion between different EMRI signals will still be inevitable.

Table 5.10: Best fit parameter values for the four possible signals in
MLDC blind data.

Parameters Best fit values
log(ν0) -8.57 -8.56 -8.54
log(µ) 2.30 2.34
log(M) 16.07 16.10 16.13
e0 0.10 0.13 0.17 0.20
(θS, φS) (0.58, 0.65) (1.28, 4.98) (1.88, 1.80) (2.54, 3.72)
χ 0.53 0.57 0.65
log(DL) -2.11 -1.75 -1.44 -1.20
Plunge Time (in seconds) 46000000 54000000 59000000
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Table 5.11: Posterior modes obtained for the detected EMRI signals in different time regions of MLDC 4 blind data
set.

Parameters 1st Week 2nd Week 3rd Week 16th Week 17th Week 53rd Week 71st Week 81st Week
log(ν0) -8.5624469 -8.5420324 -8.5469249 -8.5420113 -8.5341293 -8.5778874 -8.5695926 -8.6022630
log(µ) 2.3015909 2.3069223 2.3493141 2.3177382 2.2917084 2.3142853 2.3070914 2.3042908
log(M) 16.1009479 16.1036831 16.1385529 16.0707744 16.0720299 16.1063878 16.1058961 16.0858657
e0 0.1936360 0.1083228 0.1270810 0.1871121 0.1853625 0.2042374 0.1795685 0.1693156
γ̃0 5.8030712 5.6343736 3.1625650 0.8702468 1.0640134 3.9272032 0.3987563 1.5926921
Φ0 5.0889025 3.6028709 2.4193053 1.7215991 1.2743627 3.9369086 2.8742619 0.5113755
θS 1.8442185 1.8178380 2.5426859 1.8852653 0.5875816 1.8201771 1.8739365 1.2827079
φS 1.7715848 1.8022330 3.7290092 1.8271925 0.6564673 1.8014962 1.8344336 4.9810740
λ 1.9593972 2.0217854 0.5695286 1.9574667 1.6515278 2.2494780 2.0257953 0.9366183
α0 0.9655049 0.8874571 1.3664558 1.6248148 4.7498712 4.3170717 1.0580947 2.0978468
χ 0.5716506 0.5779466 0.5753168 0.5578527 0.5645401 0.5500480 0.5632734 0.5717796
θK 1.5610164 2.8287502 1.3144399 2.1920370 0.6573303 2.5737013 0.9627854 1.2582156
φK 0.4157578 5.3910818 3.3135419 5.6287214 5.9317023 1.2340913 5.8382786 2.2728935
log(DL) -1.2572572 -1.4181853 -1.1923971 -1.7557384 -2.1022674 -1.4752333 -2.1172415 -2.1300065
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Figure 5.27: 1st Week: Kernel density estimates of the marginal posterior
densities for all 14 parameters for an EMRI source in MLDC
4 blind data. The dashed lines indicates MAP values.
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Figure 5.28: 2nd Week: Kernel density estimates of the marginal poste-
rior densities for all 14 parameters for an EMRI source in
MLDC 4 blind data. The dashed lines indicates MAP values.
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Figure 5.29: 3rdWeek: Kernel density estimates of themarginal posterior
densities for all 14 parameters for an EMRI source in MLDC
4 blind data. The dashed lines indicates MAP values.
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Figure 5.30: 16th week: Kernel density estimates of the marginal poste-
rior densities for all 14 parameters for an EMRI source in
MLDC 4 blind data. The dashed lines indicates MAP values.
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Figure 5.31: 17th week Week: Kernel density estimates of the marginal
posterior densities for all 14 parameters for an EMRI source
in MLDC 4 blind data. The dashed lines indicates MAP val-
ues.
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Figure 5.32: 53rd week: Kernel density estimates of the marginal poste-
rior densities for all 14 parameters for an EMRI source in
MLDC 4 blind data. The dashed lines indicates MAP values.
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Figure 5.33: 71st Week: Kernel density estimates of the marginal poste-
rior densities for all 14 parameters for an EMRI source in
MLDC 4 blind data. The dashed lines indicates MAP values.
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Figure 5.34: 81st Week: Kernel density estimates of the marginal poste-
rior densities for all 14 parameters for an EMRI source in
MLDC 4 blind data. The dashed lines indicates MAP values.
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Figure 5.35: The joint plots of sky location angles for different time re-
gions demonstrate that there are four most probable sky po-
sitions either of the same source or there are two or more
EMRI sources located in different sky regions. The dashed
lines indicate the MAP values.
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Figure 5.36: The SNR plots of the detected signals in different time re-
gions of the blind data. The SNR obtained for the third week
is low as compared to other searches most probably because
of the corresponding sky location.
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CHAPTER 6

CONCLUSIONS

We have explored the application of Bayesian methods to address both the

signal detection problem and the estimation problem of the characteristics

of the detected signals in the context of EMRI sources in LISA data.

The methodology developed here was applied in different situations

depending on the complexity of the underlying data.

The large parameter space and complicated multi-modal posterior surface

of EMRI parameters make them an ideal testing ground for advanced

MCMC methods such as PTMCMC. In our searches PTMCMC algorithm

proved to be very effective in exploring the posterior distribution of EMRI

parameters with great efficiency.

The waveform models that are currently being used for the realization

of EMRI signals i.e. AKW and TAKW are theoretically the simplest and

computationally fastest among others, however these are still time con-

suming considering the capabilities of the current computing resources

and in order to search large data segments computationally faster models

will be needed for the efficient analysis of these signals.

In principal, using the LISA simulator is a “near to realistic” option for

the derivation of the full LISA response, however it is computationally

119
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quite expensive and will need fast hardware with large memory in order

to be effectively used in MCMC searches. On the other hand, the low

frequency approximation, which is quicker and easier to implement, is

a good alternative to approximate the full LISA response if the target

signals belong to the family of long wavelength gravitational waves, i.e.

the high and medium mass EMRI sources.

The Bayesian spectrum analysis methods, researched in this work, can

be effectively used to characterize the unknown noise spectrum in a very

logical way and along with this the use of the Whittle’s likelihood is very

sensible as it explicitly accommodates the noise spectrum as an unknown

quantity to be simultaneously inferred along with the signal parameters.

Overall the algorithm performed very well in all situations and the results

show that this algorithm is a very promising one for conducting Bayesian

inference on EMRI signals and, in future research, signals from other

GWs sources such as white dwarfs and black hole binaries by using their

relevant waveform models, in realistic LISA data.

In general, the low frequency approach proved to be very effective in

all situations and good results were obtained for the ongoing MLDC 4

searches. One of the three high mass EMRI signals given in the training

data was recovered with a great accuracy. One probable signal was de-

tected in the blind data set as well. These searches are still in progress and

it is hoped that before the deadline of MLDC 4 results submission more

signals will be detected, provided enough computing sources are avail-

able. In the presence of multiple overlapping EMRI signals some degree

of confusion between different EMRI sources will be inevitable. This re-

mains an area of future research.



APPENDIX A

APPENDIX

A.1 Amplitude Coefficients of Truncated EMRI

Model

The amplitudes A+1, A+2, A×1, and A×2 that appear in TAKW model are

derived as following. The notations are rather very non-standard because

this model is not available in published form.

cX = cos θS cos θK + sin θS sin θK(cos φS cos φK + sin φS sin φK)

sX = sX1 − sX2 − sX3 − sX4 (A.1.1)

where

sX1 = [sin θS cos θK + cos θS sin θK + sin θS cos φS sin θK sin φK

+ sin θS sin φS sin θK cos φK]1/2

sX2 = 2 sin θS sin φS cos θS cos θK sin θK sin φK

sX3 = 2 cos θS sin θK cos φK sin θS cos φS cos θK

sX4 = 2 sin2 θS cos φS sin2 θK sinφK sin φS cos φK
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Apc1 = (− cos θK cos φK sin θS cos φS − cos θK sin φK sin θS sin φS

+ sin θK cos θS)/sX

Aps1 = (sin φK sin θS cos φS − cos φK sin θS sin φS)/sX (A.1.2)

Apcn1 =
cos λ

sinλ
(cos θK cos θS + sin θK cos φK sin θS cos φS

+ sin θK sin φK sin θS sin φS − cX)/sX

Apc2 = (sin θS cos φS sin φK − sin θS sin φS cos φK) cos λ/(sX)

Aps2 = cos λ(cos θK cos φK sin θS cos φS

+ cos θK sin φK sin θS sin φS − cos θS sin θK)/(sX)

Apcn2 = 0. (A.1.3)

Aqc1 = (sin θS cos φS sin φK − sin θS sinφS cos φK)
cX
sX

Aqs1 = (cosθK cos φK sin θS cos φS +

cos θK sin φK sin θS sin φS − cos θS sin θK)
cX
sX

Aqcn1 = 0. (A.1.4)

Aqc2 = cos λ(cos θK cos φK sin θS cos φS

+ cos θK sin φK sin θS sin φS − sin θK cos θS)
cX
sX

Aqs2 = − cos λ sin θS(sin φK cos φS − cos φK sin φS)
cX
sX

Aqcn2 = −(cX cos2 λ(cos θK cos θS +

sin θK cos φK sin θS cos φS + sin θK sin φK sin θS sin φS)

+1− c2X − cos2 λ)/(sX sinλ) (A.1.5)
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Bp1c1 = 2(Apc1Apcn1 − Aqc1Aqcn1 + Aqc2Aqcn2 − Apc2Apcn2)

Bp1c2 =
1
2
(A2

ps2
− A2

qc1
+ A2

pcn1
− A2

ps1
+ A2

qc2
+ A2

qs1
− A2

pc2
− A2

qs2
)

Bp1s1 = 2(Aqs2Aqcn2 − Aps2Apcn2 − Aqs1Aqcn1 + Aps1Apcn1)

Bp1s2 = (Apc1Aps1 + Aqc2Aqs2 − Apc2Aps2 − Aqc1Aqs1)

Bp1cn =
1
2
(A2

pc1
+ A2

ps1
− A2

qc1
− A2

qs1
− A2

pc2
+ A2

qc2
+ A2

qs2
− A2

ps2
)

+A2
qcn2
− A2

qcn1
+ A2

pcn1
− A2

pcn2
(A.1.6)

Bp2c1 = (Apcn1Apc2 + Apc1Apcn2 − Aqcn1Aqc2 − Aqc1Aqcn2)

Bp2c2 =
1
2
(Aqs1Aqs2 − Aps1Aps2 + Apc1Apc2 − Aqc1Aqc2)

Bp2s1 = (Aps1Apcn2 + Apcn1Aps2 − Aqcn1Aqs2 − Aqs1Aqcn2)

Bp2s2 =
1
2
(Apc1Aps2 − Aqc1Aqs2 + Aps1Apc2 − Aqs1Aqc2)

Bp2cn =
1
2
(Aps1Aps2 − Aqs1Aqs2 − Aqc1Aqc2 + Apc1Apc2)

−Aqcn1Aqcn2 + Apcn1Apcn2 (A.1.7)

Bc1c1 = (−Apc2Aqcn2 − Apcn2Aqc2 + Apc1Aqcn1 + Apcn1Aqc1)

Bc1c2 =
1
2
(Apc1Aqc1 − Aps1Aqs1 − Apc2Aqc2 + Aps2Aqs2)

Bc1s1 = (Apcn1Aqs1 − Aps2Aqcn2 + Aps1Aqcn1 − Apcn2Aqs2)

Bc1s2 =
1
2
(−Apc2Aqs2 + Apc1Aqs1 − Aps2Aqc2 + Aps1Aqc1)

Bc1cn = −Apcn2Aqcn2 + Apcn1Aqcn1 +
1
2
(Apc1Aqc1

−Aps2Aqs2 + Aps1Aqs1 − Apc2Aqc2) (A.1.8)
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Bc2c1 = (Aqc1Apcn2 + Aqcn1Apc2 + Apc1Aqcn2 + Apcn1Aqc2)

Bc2c2 =
1
2
(Apc1Aqc2 − Aps1Aqs2 + Aqc1Apc2 − Aqs1Aps2)

Bc2s1 = (Apcn1Aqs2 + Aqs1Apcn2 + Aps1Aqcn2 + Aqcn1Aps2)

Bc2s2 =
1
2
(Aqc1Aps2 + Apc1Aqs2 + Aqs1Apc2 + Aps1Aqc2)

Bc2cn = Aqcn1Apcn2 + Apcn1Aqcn2 +
1
2
(Apc1Aqc2 +

Aqs1Aps2 + Aps1Aqs2 + Aqc1Apc2) (A.1.9)

Finally

A+1 = Bp1c1 cos α + Bp1c2 cos 2α + Bp1s1 sin α + Bp1s2 sin 2α + Bp1cn

A+2 = Bp2c1 cos α + Bp2c2 cos 2α + Bp2s1 sin α + Bp2s2 sin 2α + Bp2cn

A×1 = Bc1c1 cos α + Bc1c2 cos 2α + Bc1s1 sin α + Bc1s2 sin 2α + Bc1cn

A×2 = Bc2c1 cos α + Bc2c2 cos 2α + Bc2s1 sin α + Bc2s2 sin 2α + Bc2cn (A.1.10)
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