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Abstract: This study examines the equilibrium structure and stability of white dwarfs, incor-

porating both isotropic and anisotropic pressure distributions. The Tolman–Oppenheimer–

Volkoff (TOV) equation is numerically solved using the Chandrasekhar equation of state

(EoS) to analyze the effects of pressure anisotropy. A general anisotropy function is in-

troduced to close and solve the system of differential equations. The results indicate

that anisotropy remains negligible at the center and increases toward the stellar surface.

Stability is assessed using the speed of sound criterion, v2
s = dp/dρ, and the Buchdahl

bound, 2M/R < 8/9, confirming that white dwarfs remain within stability limits. We

performed a sensitivity analysis to examine how variations in the anisotropy parameter α0

and central density affect the mass, radius, and compactness of white dwarfs. Additionally,

we calculated the gravitational redshift at the stellar surface and found that it varies with

anisotropy, ranging from zs ∼ 3.15 × 10−3 in isotropic cases to zs ∼ 0.2 × 10−3 in highly

anisotropic models. These results link anisotropy to potentially observable features. The

findings suggest that while anisotropy does not significantly affect the overall equilibrium

structure, it may play a role in astrophysical scenarios involving strong magnetic fields,

rotational deformations, or accretion processes in binary systems.

Keywords: compact object; white dwarfs; equation of state; stability

1. Introduction

Compact astrophysical objects, such as neutron stars, white dwarfs, and black holes,

serve as natural laboratories for testing General Relativity (GR) in strong-field regimes.

These objects are described by solutions to Einstein’s field equations, which relate spacetime

curvature to the energy-momentum distribution of matter. Modeling their internal structure

requires solving nonlinear differential equations while incorporating appropriate EoS to

describe the matter content [1,2].

White dwarfs are supported against gravitational collapse by electron degeneracy

pressure, a quantum mechanical effect dictated by the Pauli exclusion principle [3,4].

The Chandrasekhar mass limit, approximately 1.4M⊙, defines the maximum mass a white

dwarf can sustain before electron degeneracy pressure becomes insufficient to counteract

gravity, leading to a collapse into a neutron star or black hole [5–7].
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Traditional models of compact stars assume isotropic pressure distributions; however,

various physical conditions, including strong magnetic fields, rapid rotation, phase tran-

sitions, and exotic matter compositions, can induce pressure anisotropy [8–11]. In such

cases, the radial and tangential pressure components differ, necessitating modifications to

the TOV equations to maintain hydrostatic equilibrium. Pressure anisotropy influences

the stability, maximum mass, and gravitational redshift of compact objects, affecting their

internal structure and observational properties [12,13].

Spherically symmetric mass distributions play a fundamental role in astrophysical

modeling, describing a range of celestial bodies, including slowly rotating stars, planets,

and globular clusters. Even with relativistic effects, the gravitational fields of these ob-

jects can often be approximated as spherically symmetric [14–19], provided their rotation

remains sufficiently slow. The study of spherical gravitational fields is relevant to stellar

astrophysics and provides a framework for testing fundamental aspects of GR and deriving

analytical solutions [20–22]. GR extends beyond Newtonian approximations to describe

compact objects in strong gravitational fields, with its classical formulation extensively

developed in foundational texts [20,23–25].

The presence of anisotropic pressure in compact objects arises from astrophysical

conditions such as strong magnetic fields, differential rotation, and microphysical interac-

tions, requiring modifications to the standard TOV equations. To account for these effects,

an anisotropy factor ∆ is introduced, representing the difference between tangential and

radial pressures. The role of ∆ extends beyond a simple perturbation. It influences the

equilibrium structure, stability conditions, and gravitational redshift of compact stars. To

systematically model pressure anisotropy, different functional dependencies of ∆ have been

considered, each corresponding to distinct physical conditions [10–13,26,27]:

Linear dependence: ∆ = αr. Suitable for weakly anisotropic configurations where

deviations from isotropy arise gradually with increasing radius;

Quadratic dependence: ∆ = αr2. Accounts for gravitational compression effects,

where anisotropy becomes significant in denser regions of the star;

Power-law dependence: ∆ ∝ rn. Ensures that anisotropy remains minimal at the

center and increases systematically outward, mimicking effects seen in high-density com-

pact objects.

This study examines the role of anisotropic pressure in white dwarfs by introducing

a general anisotropic factor that modifies the TOV equations. By numerically solving the

equilibrium equations for different parameter values, stability is assessed using the speed

of sound criterion and Buchdahl’s compactness bound.

The development of physically consistent and computationally accessible models

enables rigorous analysis of relativistic stellar structures, contributing to a deeper under-

standing of compact objects.

2. Field Equations with Isotropic Fluid Source

The equilibrium structure of compact stars in GR is governed by Einstein’s field

equations, which relate the curvature of spacetime to the energy-momentum distribution.

For a static, spherically symmetric, and non-rotating configuration, the metric takes the

form [20,23]

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdφ2), (1)

The corresponding Einstein field equations for a perfect fluid with energy density ρ, pres-

sure p, and four-velocity are given by

Rαβ −
1

2
Rgαβ = 8π

[
(ρ + p)UαUβ − pgαβ

]
. (2)
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where Rαβ is the Ricci tensor, Uα is the four-momentum, gαβ is the metric tensor, and

T
β
α = (−ρ, p, p, p) represents the energy-momentum tensor for an isotropic perfect fluid.

Interaction between the matter distribution and the geometry of spacetime can be summed

up in the words of Misner, Thorne, and Wheeler: Space acts on matter, telling it how to

move. In turn, matter reacts back on space, telling it how to curve [20].

Field equations for the metric tensor (1) derived from Einstein’s equations (2) reduce

to ordinary differential equations involving the metric functions ν(r) and m(r):

dν(r)

dr
=

m(r) + 4πr3 p(r)

r
[
r − 2m(r)

] , (3)

dm(r)

dr
= 4πr2ρ(r), (4)

where ρ = ρ(r) represents the density, and p = p(r) is the pressure of the stellar matter.

The conservation law T
αβ

;β = 0 reduces in this spherically symmetric case to

dp(r)

dr
= −

[
ρ(r) + p(r)

]dν(r)

dr
, (5)

which is widely known in the literature as the Tolman–Oppenheimer–Volkoff (TOV) equa-

tion. Equation (4) describes the mass distribution within the star, while Equation (5) ensures

hydrostatic equilibrium by balancing gravitational attraction with the pressure gradient.

This condition prevents gravitational collapse and determines the star’s structural stability.

3. EoS and Integration of Field Equations

The equations outlined above provide a fundamental framework for modeling the

interior structure of spherically symmetric compact objects. However, they remain in-

complete without an additional relation between pressure and density. This relationship,

known as the equation of state (EoS), determines the functional dependence of p on ρ and

is essential for solving the system.

3.1. EoS for White Dwarfs

The Chandrasekhar EoS for white dwarfs:

The equation of state (EoS) establishes a functional relationship between pressure

and density, governing the internal structure and stability of compact stars. It serves as

an essential closure condition for solving the field equations and varies depending on the

physical composition of the star.

Relativistic effects play a crucial role in the structure of compact objects, includ-

ing white dwarfs and neutron stars [28–36]. The Chandrasekhar EoS provides a well-

established model for white dwarfs, where pressure support arises from electron degener-

acy, balancing gravitational collapse.

For example, a white dwarf’s interior structure is well described by the Chandrasekhar

EoS in parametric form [5,7,14,37]:

ρCh(y) =
m4

nc3

3π2h̄3

(
me

mn

)3
(

A

Z

)
y3 , (6)

pCh(y) =
m4

nc5

24π2h̄3

(
me

mn

)4[
y
(

2y2 − 3
)√

1 + y2 + 3 ln

(
y +

√
1 + y2

)]
, (7)
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where h̄ is the reduced Planck constant, A and Z are the average atomic weight and atomic

number of the corresponding nuclei; y = pe/(mec), with pe, me, and mn are the Fermi

momentum, the mass of the electron, and the mass of the nucleon, respectively. Here, we

consider the particular case for the average molecular weight A/Z = 2.

The Chandrasekhar EoS represents the most fundamental and widely used equation

of state for describing white dwarf matter. While it provides a simplified yet effective

model, more sophisticated EoS formulations exist to account for additional physical effects

in white dwarfs and the outer crusts of neutron stars [38–46].

These advanced models incorporate electron–electron, electron–ion, and ion–ion

Coulomb interactions, nuclear composition effects, Thomas–Fermi corrections, finite-

temperature contributions, phase transitions, and magnetic field influences [6,44,47–52].

Despite these complexities, we adopt the Chandrasekhar EoS in this study for its clarity

and computational simplicity, allowing for a focused analysis of white dwarf structure.

The Chandrasekhar EoS for neutron stars:

In the case of neutron stars, the internal structure can be described by the EoS of a

pure degenerate neutron gas, which, in parametric form, can be written as [7,14,46]

ρNS =
ϵ0

8

[(
2y3 + y

)√
1 + y2 − ln

(
y +

√
1 + y2

)]
, (8)

pNS =
ϵ0

24

[(
2y3 − 3y

)√
1 + y2 + 3 ln

(
y +

√
1 + y2

)]
, (9)

where ϵ0 = m4
nc5/π2h̄3 is the energy density.

The pure degenerate neutron gas provides the simplest EoS for neutron stars. However,

more sophisticated models incorporate nucleon–nucleon interactions and the contributions

of various interaction-mediating particles [46,53]. The latest and most realistic EoSs are

constrained through observational data, including X-ray emissions, tidal deformation

measurements, and gravitational wave events [48,54–60].

The EoS for a pure degenerate neutron gas is shown here for pedagogical comparison

only. Since this model does not account for strong nuclear interactions, it cannot explain

observed neutron stars with masses above 2 M⊙, as required by recent observational

constraints [61,62]. It is not used in any of the numerical models presented in this paper,

which focus entirely on white dwarf stars.

The Salpeter EOS:

The Salpeter model extends the Chandrasekhar EoS by incorporating electrostatic

corrections, accounting for electron–electron and electron–ion interactions [38,43]. This

modification is particularly relevant for studying white dwarf cooling and stability. The

energy density ϵSal and pressure pSal in this framework are expressed as

ϵSal = ϵCh; pSal = pCh + pC + pTF (10)

where ϵCh and pCh correspond to the energy density and pressure in the Chandrasekhar

model, while pC represents electrostatic corrections, and pTF accounts for thermal and

Fermi gas corrections under extreme conditions. The inclusion of these effects provides a

more accurate description of dense stellar matter, particularly in scenarios where relativistic

and quantum corrections become significant.

To illustrate the effect of these corrections, we present a log–log comparison of the

pressure–density relation for the Chandrasekhar and Salpeter EoS in Figure 1. The Salpeter

model includes electrostatic and Thomas–Fermi corrections, following the analytical ex-

pressions derived in [38]. As shown in the Figure 1, at lower and intermediate densities
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(ρ ∼ 103–106 g/cm3), the pressure predicted by the Salpeter EoS is noticeably lower due to

additional microphysical effects. At higher densities, the two curves converge as relativistic

degeneracy dominates. This comparison shows that Salpeter corrections become relevant

in the lower-density regime of white dwarfs and confirms the applicability of our numerical

approach to both models.

Chandrasekhar EoS

Salpeter EoS

10 104 107 1010

1016

1021

1026

1031

ρ [g/cm3]

P
[d
y
n
/c
m
2
]

Figure 1. Pressure p as a function of density ρ for a relativistic degenerate electron gas.

We note that while the Salpeter and neutron star EoSs are introduced for physical

context, only the Chandrasekhar EoS is used in the numerical calculations throughout

this study.

3.2. Dimensionless Form of Equations

The coupled differential Equations (3)–(5) describing the equilibrium structure of

compact objects are highly nonlinear and generally lack closed-form solutions. To facilitate

numerical integration and ensure general applicability across different scales, we reformu-

late the equations in a dimensionless form. This transformation enhances computational

stability and simplifies parameter dependencies. The dimensionless variables are defined

as follows:

r = bx, dr = b dx, (11)

m(r) =
c2b

G
m̃(x),

dm

dr
=

dm̃

dx

1
dr
dx

, (12)

ρ(r) =
c2

Gb2
ρ̃(x), (13)

p(r) =
c4

Gb2
p̃(x),

dp

dr
=

dp̃

dx

1
dr
dx

, (14)

ν(r) = c2ν̃(x),
dν

dr
= c2 dν̃

dx

1
dr
dx

(15)

where b is a parameter corresponding to a length scale, x is the dimensionless radial

coordinate, m̃(x) is the dimensionless mass, ρ̃(x) is the dimensionless density, p̃(x) is the

dimensionless pressure, c is the speed of light, and G is the gravitational constant. To obtain

the final results in physical units, we perform reverse transformations. As mentioned



Galaxies 2025, 13, 69 6 of 28

above, we use a system of geometric units, i.e., c = G = 1. Similarly, the corresponding

field Equations (3)–(5) become

dν̃(x)

dx
=

m̃(x) + 4πx3 p̃(x)

x

(
x − 2m̃(x)

) , (16)

dm̃(x)

dx
= 4πx2ρ̃(x), (17)

dp̃

dx
= −

(
ρ̃(x) + p̃(x)

)(
m̃(x) + 4πx3 p̃(x)

)

x

(
x − 2m̃(x)

) . (18)

3.3. Initial and Boundary Conditions

The integration of the TOV equation and the mass balance equation begins by specify-

ing initial conditions at the center of the star, where

r = 0, m(0) = 0, ρ(0) = ρc, p(0) = pc, ν(0) = νc, (19)

with ρc and pc denoting the central density and pressure, respectively, and νc representing

the central value of the metric potential.

The numerical integration of the TOV equation and mass balance equation requires

specifying appropriate initial and boundary conditions. Direct integration from x = 0

is not feasible due to singularities in the differential equations, which lead to undefined

expressions such as division by zero. To avoid numerical instabilities, the integration is

initiated at a small offset xi = 10−10, ensuring a smooth and well-defined computational

procedure. The boundary conditions are imposed at the stellar surface, where the pressure

and density vanish, ensuring consistency with the external Schwarzschild solution.

Numerical integration begins at xi and progresses through the entire domain up to

an upper limit x f , with xi < x < x f . At the upper limit x f , the integration is terminated

once the solution meets predefined physical criteria, such as vanishing pressure or density

or asymptotically approaching values consistent with the system’s physical boundaries.

These boundary conditions ensure the numerical solutions remain robust and well-defined

throughout the domain. For the numerical integration of field equations, we redefine the

initial conditions as

xc ≈ xi = 10−10, m(xc) = mc, ρ(xc) = ρc, p(xc) = pc, ν(xc) = νc. (20)

and the boundary conditions are

m(R) = M, ρ(R) = 0, p(R) = 0, ν(R) = νR, R = bx f . (21)

The integration proceeds outward until the pressure p(r) and density ρ(r) decrease to

zero at a finite radius R, defining the stellar surface. At this boundary, the total mass of the

star is given by M = m(R), while the surface density and pressure vanish, i.e., ρ(R) = 0

and p(R) = 0.

To ensure consistency with the exterior vacuum solution, the metric function at the

surface satisfies

ν(R) = νext(R) = ln

(
1 − 2M

R

)
, (22)

which guarantees a smooth matching between the interior and exterior Schwarzschild solutions.
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This approach ensures the physical validity of the model, as the stellar matter re-

mains confined within a finite radius, beyond which only the vacuum solution applies.

By carefully imposing appropriate initial and boundary conditions, numerical artifacts are

minimized, leading to an accurate and self-consistent description of both the interior and

exterior structure of compact stars.

3.4. Determining the Initial Value of Parameters for Numerical Calculations

Accurate numerical modeling of compact objects requires the determination of key

parameters that establish a consistent link between the physical and dimensionless quanti-

ties. This section outlines a systematic procedure for defining these parameters, ensuring

reproducibility and numerical stability. These parameters form the foundation for solv-

ing the governing equations, such as the TOV equation and the mass balance equation,

in a consistent and reliable manner. This section presents a step-by-step methodology for

parameter determination, ensuring clarity and reproducibility in numerical calculations.

The procedure for determining the parameters is structured as follows, and we give an

example with Chandrasekhar EoS for the white dwarfs; this method is suitable for solving

other EoS equations and field equations.

3.4.1. Normalization and Calculation of the Scale Parameter b

The normalization condition establishes a direct connection between physical quanti-

ties, such as central density ρc and pressure pc, and their dimensionless counterparts. Since

the governing equations are expressed in parametric form, they can be readily rewritten in

dimensionless terms by appropriately rescaling variables. By substituting Equation (6) into

Equation (13) and Equation (7) into Equation (14), the density and pressure expressions

take the following form [63]:

c2

Gb2
ρ̃Ch(x) =

m4
nc3

3π2h̄3

(
me

mn

)3
(

A

Z

)
y(x)3 , (23)

c4

Gb2
p̃(x) =

m4
nc5

24π2h̄3

(
me

mn

)4[
y(x)

(
2y(x)2 − 3

)√
1 + y(x)2

+ 3 ln

(
y(x) +

√
1 + y(x)2

)]
. (24)

Alternatively, these equations can be rewritten as

ρ̃Ch(x) =
m4

nc Gb2

3π2h̄3

(
me

mn

)3
(

A

Z

)
y(x)3 , (25)

p̃Ch(x) =
1

8

m4
nc Gb2

3π2h̄3

(
me

mn

)4[
y(x)

(
2y(x)2 − 3

)√
1 + y(x)2

+ 3 ln

(
y(x) +

√
1 + y(x)2

)]
. (26)

By comparing Equations (25) and (26), the parameter b is defined as

m4
nc Gb2

h̄3
= 1, (27)
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where me is the electron mass, c is the speed of light, G is the gravitational constant, and h̄

is the Planck constant. By solving for b, we obtain

b =

(
h̄3

c Gm4
e

)1/2

, (28)

which allows us to express the Chandrasekhar EoS for white dwarfs in a fully dimension-

less form:

ρ̃Ch(y) =
1

3π

(
mn

me

)(
A

Z

)
y(x)3 , (29)

p̃Ch(y) =
1

8π

[
y(x)

(
2y(x)2 − 3

)√
1 + y(x)2 + 3 ln

(
y(x) +

√
1 + y(x)2

)]
. (30)

3.4.2. Setting the Central Density ρc

The central density ρc serves as a fundamental input parameter for modeling the white

dwarf’s structure and is defined as

ρc = 10n g/cm3, (31)

where n is a real number in the range 3 < n < 12, covering the typical density range of

white dwarfs. For reference, we adopt n = 6 in our calculations.

3.4.3. Computing the Dimensionless Central Density ρ̃c

The dimensionless central density ρ̃c is related to the physical density by

ρc =
c2

Gb2
ρ̃c. (32)

Solving for ρ̃c, we obtain

ρ̃c = b2 G

10nc2
, (33)

where b is computed using Equation (28). This dimensionless formulation simplifies

numerical integration while preserving physical consistency.

3.4.4. Determining the Initial Value of y(xc)

From the Chandrasekhar EoS, the dimensionless density ρ̃c is related to yc as

ρ̃c =
mn

me

(
A

Z

)
yc

3, (34)

By solving for yc, we obtain

yc =


 ρ̃c

mn
me

A
Z




1/3

, (35)

where ρ̃c is given in Equation (33).

3.4.5. Computing the Dimensionless Central Mass m̃c

The initial dimensionless central mass is given by

m̃c =
4π

3
ρ̃cx3

c . (36)
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3.4.6. Estimating the Central Metric Function ν̃c

Near the center, the metric function ν̃(x) is approximated as

ν̃(xc) ≈
m̃c + 4πx3

c p̃(xc)

xc

(
xc − 2m̃c

) , (37)

where p̃(xc) is computed from Equation (30).

By following this systematic procedure, all essential parameters required for numerical

integration are determined, ensuring accurate modeling of white dwarf properties.

3.5. Numerical Calculations and Results

The system of differential equations governing white dwarf structure is solved using

numerical integration techniques. We employ the fourth-order Runge–Kutta method

implemented in Mathematica, ensuring numerical stability and accuracy. The integration

begins at a small but finite initial radius xc = 10−10 to avoid singularities and continues

outward until the pressure vanishes at x f , defining the stellar surface.

The numerical integration was carried out using the NDSolve routine in Mathematica,

which employs an adaptive Runge–Kutta method by default. To ensure the reliability

of the results, we performed convergence tests by varying solver parameters, including

step-size tolerances and MaxSteps. The computed mass, radius, and pressure profiles

remained consistent across these tests, with relative deviations below 10−6. This confirms

the numerical stability and convergence of the integration scheme for all models considered.

The EoS provides the fundamental relationship between pressure and density required

for modeling the internal structure of compact stars. Figure 2 shows the pressure–density

relation p(ρ) for the Chandrasekhar EoS used in our calculations. The nearly power-law

dependence confirms the expected stiff equation of state, where electron degeneracy pres-

sure supports the star against gravitational collapse. While a comparative plot including

Salpeter corrections was discussed earlier in Figure 1, we adopt the Chandrasekhar EoS as

the baseline model for the numerical integrations in this work.

0.01 10 104 107 1010
1012

1017

1022

1027

1032

ρ [g/cm3]

P
[g
/(
cm
s
2
)]

Figure 2. Pressure p as a function of density ρ for a relativistic degenerate electron gas.

Figure 3 shows the radial profiles of density and pressure within the white dwarf.

The central pressure reaches a maximum and decreases smoothly toward the surface, where

it vanishes, defining the stellar radius. We now state that for the central density 106 g/cm3,
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the numerical solution yields a total stellar radius of approximately 10,884.5 km. Using

Equations (17) and (12), the corresponding total mass is found to be M = 1.36622M⊙,

which is consistent with the Chandrasekhar mass limit of approximately M = 1.4M⊙ [5] .

This confirms the reliability of our numerical integration scheme.

0 2000 4000 6000 8000 10,000
0

2×10✁

4×10✁

6×10✁

8×10✁

1×10✂

r [km]

[g
/c
m
³]

0 2000 4000 6000 8000 10,000
0

5.0×1021

1.0×1022

1.5×1022

2.0×1022

2.5×1022

r [km]

P
[g
/(
cm
s
2
)]

Figure 3. Density ρ(r) and pressure p(r) profiles inside a white dwarf, showing the gradual decrease

in pressure from the center outward (ρc = 106 g/cm3).

Furthermore, the numerical solution for the metric function, shown in Figure 4, exhibits

a smooth and continuous behavior throughout the interior of the object. The absence of

singularities ensures the physical consistency of the solution, confirming the regularity of

spacetime within the white dwarf.

Figure 5 presents two complementary perspectives on the mass distribution and

structural properties of the white dwarf. The left panel shows the enclosed mass M(r) as a

function of the radial coordinate r (in km). The curve increases monotonically, reflecting

the accumulation of mass from the center to the surface of the white dwarf. The mass

asymptotically approaches its final value near the stellar radius R ≈ 10,884.5 km, indicating

the expected compact structure, with most of the mass concentrated in the inner regions.

The right panel displays the mass–radius relation in normalized solar units, where both

mass and radius are expressed as fractions of the solar mass M⊙ and solar radius R⊙,

respectively. These plots confirm that the numerical solutions reproduce the expected
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behavior of white dwarfs: compact, stable configurations whose maximum mass does not

exceed the Chandrasekhar limit.
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Figure 4. Metric function ν(r) inside a white dwarf, demonstrating the smooth and continuous nature

of the gravitational potential.
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Figure 5. Enclosed mass M(r) within a white dwarf, reaching its final value at the stellar surface

(top), and the mass–radius relation expressed in solar units (bottom).
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Figure 6 presents the mass-central density and radius-central density relations for a

white dwarf, computed using the Chandrasekhar equation of state. Both plots employ

logarithmic scales to capture the variations over a broad range of central densities.
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1

5
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3]

M
/M

✂

1000 106 109 1012

0.001
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3]

R
/R

✂

Figure 6. Mass-central density (top) and radius-central density (bottom) relations for a white dwarf.

Here, M⊙ and R⊙ denote the solar mass and radius, respectively.

Figure 6 illustrates the equilibrium properties of white dwarfs. The mass-central

density relation follows the expected trend, demonstrating that mass increases with density

until reaching a stability limit. Beyond this limit, further compression leads to instability,

potentially triggering collapse into a neutron star. The radius-central density relation

confirms the inverse correlation between size and compactness, characteristic of degenerate

matter supported by electron degeneracy pressure. These results align with previous

theoretical models and observational constraints [5,64,65].

4. Solutions with Anisotropic Fluid

4.1. Field Equations and the Modified TOV Equation

In compact objects such as white dwarfs, high densities and strong gravitational fields

can induce pressure anisotropy, where the radial pressure p∥ differs from the transverse

pressure p⊥. This deviation arises due to various physical mechanisms, including strong

magnetic fields, rapid rotation, and interactions within a relativistic degenerate electron gas.
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Accounting for anisotropy is crucial in constructing realistic stellar models, as it influences

stability, mass limits, and observational characteristics [26,66–69].

The energy–momentum tensor for an anisotropic fluid in a spherically symmetric

configuration is given by

Tµν = ρuµuν + p∥eµeν + p⊥
(

gµν + uµuν − eµeν

)
, (38)

where ρ is the energy density, p∥ represents the radial pressure, and p⊥ denotes the trans-

verse (or tangential) pressure. The four-velocity of the fluid is given by uµ = (
√

gtt, 0, 0, 0),

while the unit radial spacelike vector is defined as eµ = (0,
√

grr, 0, 0). The metric tensor

is denoted by gµν. This formulation explicitly accounts for anisotropy in the pressure

distribution, distinguishing between radial and transverse pressure components.

The field equations governing the structure of the white dwarf are

dν

dr
=

m + 4πr3 p∥
r
[
r − 2m

] , (39)

dm

dr
= 4πr2ρ, (40)

while the energy density ρ remains isotropic, the pressure components exhibit a clear

directional dependence due to anisotropy.

To incorporate anisotropic effects, the TOV equation is modified to include an addi-

tional force term arising from the anisotropy of the fluid:

dp∥
dr

= −
(

ρ + p∥
)dν

dr
+

2

r

(
p⊥ − p∥

)
, (41)

where the anisotropic factor is defined as

∆ = p⊥ − p∥. (42)

This system of equations is completed by specifying an appropriate EoS and initial

conditions. The specific form of ∆ depends on the nature of the fluid, the equation of state,

and the underlying symmetry of the system [66,70].

4.2. Initial and Boundary Conditions

Numerical solutions to this system require careful treatment of the initial conditions

near the stellar center, where p∥(0) = p⊥(0) and m(0) = 0. The boundary conditions

are specified in Equations (21) and (22). Comparing anisotropic and isotropic models

provides insights into the influence of pressure anisotropy on stability, the mass–radius

relationship, and the observable characteristics of compact objects. The numerical inte-

gration was carried out using the ‘NDSolve‘ routine in Mathematica, employing a default

adaptive Runge–Kutta scheme. To ensure the reliability of the results, we performed conver-

gence tests by adjusting solver parameters, including step-size tolerances and ‘MaxSteps‘.

The computed mass, radius, and pressure profiles remained consistent across these tests,

with relative deviations below 10−6. This confirms the numerical stability and convergence

of the integration scheme for all models considered.
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4.3. Generalized Anisotropic Factor

To systematically model pressure anisotropy in compact objects, we introduce a

generalized form of the anisotropy function:

∆ = αrl

[
1 −

( r

R

)k
]

, (43)

where l and k are real numbers, and R is the stellar radius. This formulation ensures that

∆ = 0 at the center and reaches a maximum at intermediate layers before decreasing toward

the surface. The choice of parameters l and k allows for a range of physically plausible

anisotropic distributions, accommodating both relativistic and microphysical effects.

This choice is motivated by earlier studies, such as Bowers and Liang [12], who

introduced anisotropic effects in relativistic stars using similar radial dependence, as well as

Dev and Gleiser [11] and Ivanov [13], who investigated functional forms where anisotropy

increases outward. These works support the use of power-law profiles for modeling

physically consistent anisotropic distributions in compact stars.

For numerical analysis, it is convenient to transform the system of equations into a di-

mensionless form. Using the transformations defined in Equations (11)–(14), the anisotropy

function in its dimensionless form is given by

∆̃

(
α0, l, k, x f

)
= p̃⊥(x)− p̃∥(x) = α0xl

[
1 −

(
x

x f

)k]
, (44)

where α0 is the dimensionless anisotropy parameter, defined in Appendix A:

α = α0
c4

Gb2+l
, (45)

and b is the scale parameter, determined from Equation (28). The quantities p̃⊥(x) and

p̃∥(x) represent the dimensionless tangential and radial pressures, respectively.

In addition, the constant α in Equation (43) can be chosen to reflect physically relevant

conditions, typically on the order of central pressure or a fraction thereof. The corre-

sponding dimensionless parameter α0 is defined from Equation (45). For a stable and

physically meaningful solution, we impose the constraint −1 ≤ α0 ≤ 1. This ensures that

anisotropic contributions remain subdominant compared to isotropic pressure, preserving

hydrostatic equilibrium. However, under certain physical conditions, these constants may

have larger values.

A more detailed derivation of the dimensionless form and a systematic analysis of the

radial behavior of the anisotropic factor—including the role of parameters α0, l, and k—are

presented in Appendix A.

For physically consistent equilibrium structures, pressure anisotropy should be negli-

gible at the stellar center and increase outward. This behavior is expected since pressure

gradients are steeper in the outer layers, where density and temperature decrease. The de-

pendence on parameters l and k dictates how rapidly anisotropic effects grow with radius.

Figure 7 illustrates the variation of ∆̃ for different parameter values.

From the bottom row of Figure 7, it is evident that negative values of l and k lead to

unphysical behavior, with strong divergence of the anisotropy function near x → 0. This

suggests an unrealistic scenario where anisotropic pressure dominates the core, contra-

dicting the expectation that a white dwarf’s interior should be approximately isotropic.

Therefore, for a physically consistent equilibrium structure, the conditions l > 0 and k > 0

are preferable, ensuring that anisotropy increases outward rather than inward.
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Figure 7. The behavior of the dimensionless anisotropy function for various parameters α0, l, k.

4.4. Particular Solutions

The dimensionless anisotropy function ∆̃ was analyzed to assess the impact of free

parameters on the pressure distribution within the white dwarf. To determine the ex-

act influence of anisotropy on the equilibrium structure, we numerically solve the TOV

equations for different values of α0, l, k and examine the resulting pressure profiles and

stability conditions.

The numerical integration follows the same methodology as in the isotropic case,

ensuring computational consistency while incorporating anisotropic effects.

A. Mass–radius relations and anisotropic pressure

Figure 8 presents the mass–radius relations of white dwarfs computed at a fixed central

density of 106 g/cm3 for different values of the anisotropy parameter α0. The isotropic

configuration is represented by the black solid curve, while the colored dashed curves

correspond to various degrees of anisotropy. The plot demonstrates that both the total mass

at the stellar surface and the corresponding radius vary with the magnitude and sign of

pressure anisotropy despite the fixed central density. The mass–radius relations for a white

dwarf for the α0 = −1 case are summarized in Table 1.
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Table 1. Structural properties of white dwarfs for various central densities ρc at a fixed anisotropy

parameter α0 = −1.

ρc, g/cm3 (R/R⊙)× 10−2
M/M⊙ Compactness 2M/R × 10−3

zs × 10−4

103 1.68987 0.66886 0.16762 0.83821

104 1.68983 0.66887 0.16763 0.83825

105 1.68780 0.66938 0.16796 0.83989
106 1.64033 0.69283 0.17887 0.89448
107 1.57242 0.90815 0.24459 1.22316
108 1.56068 1.21976 0.33098 1.65533
109 1.55824 1.38966 0.37767 1.88891

1010 1.55772 1.44456 0.39273 1.96421

1011 1.55770 1.44734 0.39349 1.96802

1012 1.55793 1.42172 0.38647 1.9329

Isotropic
α0= -0.5
α0= -0.4
α0= -0.2
α0= 0.2
α0= 0.4
α0= 0.5

0 2000 4000 6000 8000 10,000

0

2×1032

4×1032

6×1032

8×1032

1×1033

r [km]

M
[g
]

Figure 8. Enclosed mass M(r) as a function of radius for white dwarfs with different values of the

anisotropy parameter α0, compared to the isotropic case. (where ρc = 106 g/cm3).

Figure 9 illustrates the impact of anisotropic pressure on the internal structure, modi-

fying the pressure gradients within the white dwarf.

Isotropic
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Figure 9. Radial variation of the pressure p∥ as a function of r for different values of α0. The isotropic

case is shown as a reference (black solid line). Positive values of α0 increase radial pressure, whereas

negative values lead to a reduction (l = 1, k = 1, for the considered model).
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Figure 10 presents the radial variation of the anisotropy parameter ∆ = p⊥ − p∥
for different values of the anisotropy coefficient α0. The results reveal the following

key properties:

- A positive α0 results in a negative ∆, indicating that radial pressure dominates over

tangential pressure. Conversely, a negative α0 leads to ∆ > 0, where tangential

pressure becomes dominant.

- The radial dependence of ∆ follows a characteristic pattern: it initially grows from

zero at the center, reaches a maximum at an intermediate radius, and then diminishes

towards the surface. This behavior aligns with expectations for compact stars, where

pressure anisotropy is strongest in regions with significant density gradients. The ex-

tent of and peak magnitude of anisotropy depend on the choice of α0, l, and k, as

shown in Figure 7.

- Larger absolute values of α0 correspond to stronger deviations between p⊥ and p∥,

amplifying the anisotropic effects within the star.
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Figure 10. Radial variation of the anisotropy parameter ∆ = p⊥ − p∥ for different values of α0.

Positive values of α0 result in predominant radial pressure, whereas negative values favor tangential

pressure. (l = 1, k = 1).

B. Gravitational Redshift

The metric function ν(r) is associated with the time–time component of the spacetime

metric and determines the gravitational redshift of light emitted from the stellar surface.

The surface redshift zs is given by

zs =

(
1 − 2GM

c2R

)−1/2

− 1 =
(

e−ν(R)
)1/2

− 1. (46)

This expression links the value of ν(R) obtained from the numerical solution to a directly

observable quantity: the shift in frequency of photons escaping from the surface of the star.

For typical white dwarfs, the redshift is small, usually in the range of 10−4 to 10−3 [71–73].

However, in high-density or strongly anisotropic stars, the redshift can become signifi-

cantly larger and potentially detectable using high-resolution spectroscopy. In this way,

the function ν(r) provides a meaningful connection between the star’s interior structure

and observational data.

To investigate this further, we calculated the surface redshift zs for each configura-

tion in Table 1. For isotropic models with α0 = 0, the redshift reaches values around

zs ∼ 3.16 × 10−3. This value is consistent with typical surface redshifts of massive white



Galaxies 2025, 13, 69 18 of 28

dwarfs reported in the literature [72,74]. In anisotropic models with negative α0, the redshift

decreases noticeably. For example, for α0 = −1, we find zs ∼ 0.2 × 10−3, which reflects the

lower compactness and larger radius of these stars. These results highlight the sensitivity

of the redshift to internal pressure anisotropy and suggest that future observations could

use this quantity to probe the physical conditions inside white dwarfs.

4.5. Stability Analysis

To examine the compactness and structural stability of the white dwarf, we evaluated

the ratio 2M/R as a function of the central density ρc (where ρc = 10n g/cm3 and n varies

from 3 to 12).

The Chandrasekhar limit defines the maximum mass a white dwarf can support before

degeneracy pressure becomes insufficient to counteract gravity, leading to a collapse into a

neutron star or black hole. The compactness ratio, given by 2M/R, serves as a key diagnos-

tic for stability. If this ratio approaches the Buchdahl bound (8/9) [75], the star becomes

unstable against gravitational collapse, indicating a breakdown in hydrostatic equilibrium.

Figure 11 presents the variation of the compactness ratio 2M/R as a function of central

density ρc. The computed values remain well below the Buchdahl bound, indicating that

white dwarfs in this regime maintain hydrostatic equilibrium and do not undergo collapse.

Each point in the figure represents a different central density, where the total mass M and

radius R are numerically determined. The results confirm that anisotropy does not lead to

instability within the considered parameter range.
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Figure 11. Numerical evaluation of the mass–radius ratio 2M/R for different central densities

ρc = 10n g/cm3, illustrating the approach to the Buchdahl bound (k = 1, l = 1).

The structural stability of the anisotropic white dwarf configurations was further

examined through the speed of sound condition, which ensures that pressure perturbations

propagate at subluminal speeds. The sound speed squared is given by

v2
s =

dp∥
dρ

. (47)
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A physically viable model must satisfy 0 ≤ v2
s < 1 to ensure causality and stability,

preventing superluminal signal propagation and unphysical behavior.

dp∥
dρ

=
dp∥
dr

(
dρ

dr

)−1

= c2
dp̃∥
dx

(
dρ̃

dx

)−1

, (48)

where the derivatives are obtained from Equation (41) and the differentiation of the dimen-

sionless Equation (29).

Figure 12 presents the variation in v2
s with radial coordinate r for different values of

the anisotropy parameter α0. The results demonstrate the following key trends:

- The speed of sound v2
s remains within the physical bounds across the stellar interior.

The sound speed decreases monotonically with increasing radius, which is consistent

with expectations for a stable white dwarf. This trend reflects the decreasing pressure

gradient toward the surface, where the density is lower.

- For positive values of α0 (e.g., 0.1, 0.3, 0.5), v2
s declines more rapidly, indicating a

softer equation of state in the outer layers. Conversely, negative values of α0 (e.g.,

−0.1,−0.3,−0.5) correspond to a slower decrease, implying a stiffer equation of state.

Despite these variations, the causality condition v2
s < 1 is maintained in all cases,

confirming the physical viability of the models.
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Figure 12. Variation of the speed of sound squared v2
s = dp∥/dρ as a function of radial coordinate r

for different values of the anisotropy parameter α0 (l = 1, k = 1). The isotropic case is shown as a

black curve for reference. The causality condition v2
s < 1 is satisfied in all cases (in geometric units).

4.6. Sensitivity Analysis

To assess the impact of pressure anisotropy on the equilibrium structure of white

dwarfs, we performed a sensitivity analysis by varying the dimensionless anisotropy

parameter α0 within the physically motivated range −1 ≤ α0 ≤ 1. For each selected value

of α0, equilibrium configurations were computed over a broad range of central densities

ρc = 10n g/cm3, where 3 ≤ n ≤ 12.

Two types of sensitivity tests were carried out:

(a) For a fixed α0, the central density ρc was varied to study how structural properties

evolve across different density regimes;

(b) For a fixed central density ρc, the anisotropy parameter α0 was varied to examine its

influence on stellar mass, radius, and compactness.
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For each combination, the modified TOV equations were numerically integrated using

the anisotropic pressure term. The results are summarized in Tables 1 and 2.

Table 2. Mass, radius, and compactness for various values of α0 at a fixed central density

ρc = 1011 g/cm3.

α0 (R/R⊙)× 10−2
M/M⊙ Compactness 2M/R × 10−3

zs × 10−3

−1 1.5577 1.44734 0.39349 0.19680
−0.5 1.55577 1.41999 0.38653 0.19332
−0.1 1.55496 1.39829 0.38082 0.19047

0 0.09385 1.39293 6.28533 3.15756
0.1 0.09384 1.39293 6.28600 3.15789
0.5 0.09382 1.39293 6.28724 3.15852
1 0.09381 1.39293 6.28832 3.15907

Negative values of α0 result in larger stellar radii and higher masses. Positive values

of α0 lead to more compact configurations with significantly reduced radii, while the total

mass remains nearly constant. This behavior causes compactness to increase for positive

α0, demonstrating the role of anisotropy in shaping the outer layers of the star.

Table 1 shows that increasing ρc leads to a monotonic increase in mass and compact-

ness, with the radius slightly decreasing and then stabilizing. For sufficiently high central

densities, the mass exceeds the classical Chandrasekhar limit.

For example, at α0 = −1, the maximum mass reaches 1.447M⊙. For more negative

values such as α0 = −3, the mass increases to 1.5565M⊙, significantly above the Chan-

drasekhar limit. This enhancement results from the dominance of tangential pressure over

radial pressure, which provides additional support against gravity.

We do not exclude the possibility that large negative values of the anisotropy parame-

ter (α0 < −1) could substantially affect the global properties of white dwarfs. In particular,

the maximum mass may exceed the Chandrasekhar limit by a significant margin. This

result aligns with previous investigations suggesting that pronounced anisotropic stresses,

originating from mechanisms such as strong magnetic fields, rapid rotation, or uncon-

ventional matter interactions, can enhance the mass limits of compact stars beyond those

predicted under isotropic assumptions [10–12].

Although such configurations are not typical of standard white dwarfs, they may

arise in extreme astrophysical environments. In this context, sensitivity analysis provides a

valuable framework for probing the extended parameter space of anisotropic stellar models.

Furthermore, the redshift values reported in both tables offer additional insight into

the observational implications of anisotropy. As compactness increases with positive

values of α0, the corresponding surface redshift zs rises significantly, reaching values up

to zs ∼ 3.16 × 10−3 in the most compact configurations. Conversely, for negative α0,

the redshift remains below 0.2 × 10−3, reflecting reduced compactness. These findings

suggest that surface redshift measurements may serve as a useful observational tool for

identifying or constraining the degree of anisotropy in compact stars.

5. Discussion

The role of anisotropic pressure in white dwarfs was investigated by numerically solv-

ing the equilibrium equations using the TOV equation and the Chandrasekhar EoS. The re-

sults indicate that anisotropy modifies the internal pressure distribution, leading to sys-

tematic deviations in the mass–radius relation compared to isotropic models. Anisotropic

effects are most pronounced at intermediate radii but diminish toward the surface, ensuring
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that the overall equilibrium structure remains consistent with relativistic stellar models.

The stability of white dwarfs is preserved, with no indications of large-scale instability.

The structural stability of white dwarf models was assessed using the compactness

ratio 2M/R, which remained well below the Buchdahl bound in all cases. This confirms

that moderate anisotropy does not lead to gravitational collapse. The speed of sound

criterion further verified that all solutions satisfy causality conditions, ensuring the physical

consistency of the models.

The computed mass–radius relation aligns with established results for isotropic mod-

els [5,38,64,65]. Previous studies have explored anisotropic pressure effects in various

astrophysical contexts, including self-bound stars and relativistic fluids [10–13]. This

study extends these analyses by incorporating a generalized anisotropy framework and

evaluating its role in white dwarf stability.

The potential interplay between anisotropic pressure and rotational effects warrants

further investigation. Previous studies have demonstrated that, at first order in the

quadrupole moment, the gravitational field of a rotating compact object exhibits simi-

lar refractive properties to that of a statically deformed source. This suggests that under

certain conditions, anisotropic effects may mimic the impact of slow rotation on white

dwarf structure and observational signatures such as gravitational lensing and light de-

flection [16,17,19]. Examining this relationship could provide insights into distinguishing

between purely anisotropic and rotationally induced deformations.

Refining the equation of state by incorporating additional microphysical effects, such

as Coulomb interactions, magnetic fields, and finite-temperature corrections, could enhance

agreement with observational data. Extending this analysis to rotating white dwarfs would

provide a more comprehensive understanding of the interplay between anisotropic pressure

and rotational deformations. Observational constraints from white dwarf cooling curves

and mass–radius measurements could further validate the role of anisotropy in compact

star evolution [38,46,76,77]. Analyzing the combined effects of anisotropy, strong magnetic

fields, and rapid rotation may provide deeper insights into white dwarf stability and

structural properties [78].

In addition to structural modifications, anisotropy may also influence observable

quantities such as the surface redshift and thermal evolution of white dwarfs. As discussed

in Section 4.4, the metric function ν(R) determines the gravitational redshift, which is

sensitive to the star’s compactness and, thus, to the degree of anisotropy. Our numerical

results in Table 1 show that for isotropic models (α0 = 0), the redshift reaches values

around zs ∼ 3.15 × 10−3, while for highly anisotropic models with negative α0, the redshift

drops to zs ∼ 0.2 × 10−3. This trend reflects the decrease in compactness in anisotropic

configurations. Since anisotropy modifies the internal pressure and density structure, it may

also affect cooling behavior [46]. Future observational data, such as redshift measurements

from high-resolution spectroscopy [72,79,80] or observed deviations in white dwarf cooling

curves, could help identify and evaluate the presence and strength of pressure anisotropy

in real white dwarf populations.

6. Conclusions

This study presented a numerical framework for modeling white dwarfs by solving

the field equations coupled with the TOV equations, incorporating anisotropic pressure

effects. The introduction of a generalized anisotropic factor provided a systematic approach

to analyzing deviations from isotropy and their influence on equilibrium configurations,

mass–radius relations, and stability.

Numerical solutions demonstrated that anisotropic pressure alters the internal pres-

sure gradients while preserving hydrostatic equilibrium. The compactness ratio 2M/R
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remained well below the Buchdahl bound, and the speed of sound criterion verified that

all models satisfy causality. Sensitivity analysis confirmed the robustness of the results

under variations of both the anisotropy parameter α0 and central density, reinforcing the

reliability of the numerical scheme.

In addition, we computed the gravitational redshift for each configuration and showed

that it is sensitive to both compactness and anisotropy. For isotropic models, the redshift

reaches values of zs ∼ 3.15 × 10−3, while for anisotropic cases with α0 = −1, it decreases

to zs ∼ 0.2 × 10−3. This variation highlights the potential of redshift measurements as an

observational tool to probe pressure anisotropy in compact stars.

We also provided a comparative equation of state (EoS) plot for the Chandrasekhar

and Salpeter models, demonstrating that the Salpeter corrections become significant at

lower densities. This addition confirms that our numerical framework can accommodate

more realistic microphysical inputs, such as electrostatic and Thomas–Fermi effects.

Anisotropic models provide a relevant framework for describing white dwarfs, partic-

ularly in astrophysical settings where magnetic fields, strong matter interactions, or rotation

may induce deviations from isotropy. Extending this framework to rotating white dwarfs

could enhance our understanding of equilibrium structures and stability limits. Future

work may also apply this approach to neutron stars and strange stars, contributing to a

broader investigation of anisotropic pressure and its role in the structural and dynamical

properties of compact astrophysical objects.
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Appendix A. Behavior of the Generalized Anisotropic Factor

Appendix A.1. Dimensionless Transformation and Parameter Scaling

In this appendix, we present the mathematical formulation underlying the dimension-

less expression of the generalized anisotropic factor introduced in Equation (43). The origi-

nal form of the anisotropic pressure is

∆(r) = α rl

[
1 −

( r

R

)k
]

, (A1)

where α is a dimensional parameter with units of pressure, R is the stellar radius, and l and

k are dimensionless constants controlling the radial variation of anisotropy. This structure

ensures that the anisotropy is zero at the center (r = 0), reaches a maximum in the interior,

and vanishes again at the surface (r = R).
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To simplify numerical integration, we introduce dimensionless variables:

x =
r

b
, x f =

R

b
, (A2)

where b is a characteristic length scale that depends on the central density and the equation

of state. Using these substitutions, the anisotropy function becomes

∆̃(x) = α0 xl


1 −

(
x

x f

)k

, (A3)

with α0 representing the dimensionless anisotropy parameter.

By equating the dimensional and dimensionless expressions, we obtain

∆(r) = α rl

[
1 −

( r

R

)k
]
= α0

c4

Gb2+l
xl


1 −

(
x

x f

)k

, (A4)

which leads to the scaling relation

α = α0
c4

Gb2+l
. (A5)

Here, b plays an essential role in connecting the model’s dimensionless formulation to

physical quantities. Its value is computed numerically and reflects the influence of both

central density and microphysical assumptions.

The characteristic pressure in relativistic stellar models is typically of the order

pc ∼
c4

Gb2
.

To ensure that the anisotropic pressure remains smaller than the dominant isotropic term,

we typically constrain α0 within the interval −1 ≤ α0 ≤ 1. This condition helps maintain

hydrostatic equilibrium and avoids instabilities that could arise if anisotropic contributions

were too large near the core.

Appendix A.2. Analytical Constraints on the Anisotropic Factor

Now, we analyze the mathematical structure of the generalized anisotropic factor

given in dimensionless form by

∆̃(x) = α0 xl
(

1 − xk
)

, (A6)

where x = r/R is the normalized radial coordinate, and l and k are shape-controlling

parameters. This function is designed to satisfy three physical conditions:

1. Vanishing at the center of the star: ∆̃(0) = 0;

2. Vanishing at the surface of the star: ∆̃(1) = 0;

3. Attaining an extremum (maximum or minimum) in the interior: x ∈ (0, 1).

Appendix A.3. Conditions for Regularity and Surface Vanishing

To ensure ∆̃(0) = 0, the prefactor xl must approach zero as x → 0. This is satis-

fied when

l > 0. (A7)
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At the surface x = 1, the term (1 − xk) vanishes for any nonzero k, so we have

∆̃(1) = α0 · 1l(1 − 1k) = 0, (A8)

which holds generally for all real k ̸= 0.

Appendix A.4. Interior Extremum Condition

To locate the radial position x∗ of the extremum, we differentiate

d∆̃

dx
= α0

[
lxl−1(1 − xk)− kxl+k−1

]
. (A9)

By setting this derivative to zero, we find

lxl−1(1 − xk) = kxl+k−1, (A10)

l(1 − xk) = kxk, (A11)

l = (l + k)xk, (A12)

xk =
l

l + k
, (A13)

so the extremum occurs at

x∗ =
(

l

l + k

)1/k

. (A14)

For x∗ ∈ (0, 1), the quantity inside the brackets must be positive and less than one,

which holds under the condition

l > 0 and l + k > 0. (A15)

The first condition ensures regularity at the center, and the second ensures that x∗ lies

within the domain (0, 1).

As an example, consider l = 3, k = −1. Then

x∗ =
(

3

2

)−1

=
2

3
, (A16)

which satisfies x∗ ∈ (0, 1). This result aligns with the numerical profile shown in Figure A1

(left), where ∆̃(x) smoothly rises from the center, reaches a maximum around x ≈ 0.67,

and falls to zero at the surface.
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Figure A1. The behavior of the dimensionless anisotropy function for various parameters α0, l, k.

where (l > −k > 0).

To ensure the physical validity of the anisotropy profile, we require the following:

• l > 0: Ensures regularity at the center;

• k ̸= 0: Ensures the function vanishes at the surface;
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• l + k > 0: Ensures a smooth extremum in the interior.

These constraints guide the selection of parameters when modeling anisotropic pres-

sure in compact stars.

Table A1. Structural properties of white dwarfs for various central densities ρc, with fixed anisotropy

parameter α0 = −0.5.

ρc, g/cm3 (R/R⊙) ×10−2 (M/M⊙) Compactness 2M/R × 10−3
zs × 10−4

103 1.64611 1.03771 0.26697 1.33512

104 1.64610 1.03770 0.26697 1.33512

105 1.64568 1.03751 0.26699 1.33520
106 1.63317 1.03462 0.26829 1.34169
107 1.59291 1.11478 0.29638 1.48221
108 1.57482 1.35324 0.36391 1.82003
109 1.56869 1.50387 0.40599 2.03059

1010 1.56715 1.55395 0.41993 2.10029

1011 1.56707 1.55650 0.42063 2.10383

1012 1.56776 1.53302 0.41411 2.07118

Additionally, we investigated extreme values of α0, including α0 = −3, to explore

configurations that significantly depart from isotropy. The results in Table A1 demonstrate

that such strongly anisotropic models can lead to larger stellar radii and masses, exceeding

the classical Chandrasekhar limit. In particular, for α0 = −3 and high central densities,

the maximum mass reaches 1.5565 M⊙, supported by enhanced tangential pressure that

opposes gravitational collapse (see Table A1).

These trends are in agreement with previous studies suggesting that anisotropic effects,

such as those arising from magnetic fields, rotation, or non-standard matter interactions,

can increase the mass limit of compact stars beyond isotropic expectations [10–12].

Although such large values of α0 are not typical of ordinary white dwarfs, they may

become relevant under extreme astrophysical conditions. For this reason, while the interval

−1 ≤ α0 ≤ 1 provides a conservative reference for stability, the formulation is flexible

enough to explore a broader range of scenarios relevant to compact stellar configurations.
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