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1 Introduction

Recent years have provided a wealth of observational data about the cosmos. We have
high resolution maps of the anisotropies in the temperature of the cosmic microwave back-
ground (CMB) [1], surveys of the large-scale structure (LSS) - the distribution of galaxies
in three-dimensional space - are increasing in size and in accuracy (see e.g. [2] and [3]),
and new techniques which will allow us to measure the distribution of the dark matter are
being pioneered. All of this data involves small deviations of the cosmos from homogene-
ity and isotropy. The cosmological observations reveal that the Universe has non-random
fluctuations on all scales smaller than the present Hubble radius.

Parallel to this spectacular progress in observational cosmology, new cosmological sce-
narios have emerged within which it is possible to explain the origin of non-random inho-
mogeneities by means of causal physics. The scenario which has attracted most attention is
inflationary cosmology [4, 5], according to which there was a period in the early Universe in
which space was expanding at an accelerated rate. One of its basic ideas is that there was
an epoch early in the history of the universe when potential, or vacuum, energy dominated
other forms of energy density such as matter or radiation. During the vacuum-dominated
era the scale factor grew exponentially (or nearly exponentially) in time. In this phase,
known as inflation, a small, smooth spatial region of size less than the Hubble radius at that
time can grow so large as to easily encompass the comoving volume of the entire presently
observable universe. If the early universe underwent this period of rapid expansion, then one
can understand why the observed universe is so homogeneous and isotropic to high accuracy.
All these virtues of inflation were noted when it was first proposed by Guth in 1981 [35]. A
more dramatic consequence of the inflationary paradigm was noticed soon after [38, 72, 36].
Starting with a universe which is absolutely homogeneous and isotropic at the classical level,
the inflationary expansion of the universe will ‘freeze in’ the vacuum fluctuation of the in-
flaton field so that it becomes an essentially classical quantity. On each comoving scale, this
happens soon after horizon exit. Associated with this vacuum fluctuation is a primordial
energy density perturbation, which survives after inflation and may be the origin of all struc-
ture in the universe. In particular, it may be responsible for the observed cosmic microwave
background (CMB) anisotropy and for the large-scale distribution of galaxies and dark mat-
ter. Inflation also generates primordial gravitational waves as a vacuum fluctuation, which
may contribute to the low multipoles of the CMB anisotropy. Therefore, a prediction of
inflation is that all of the structure we see in the universe is a result of quantum-mechanical
fluctuations during the inflationary epoch.

However, there are also alternative proposals [7, 8] in which our current stage of cosmo-
logical expansion is preceded by a phase of contraction. These scenarios have in common
the fact that for scales of cosmological interest today, although their physical wavelength is
larger than the Hubble length during most of the history of the universe, it is smaller than
the Hubble radius at very early times, thus in principle allowing for a causal origin of the
cosmological fluctuations.

In order to connect theories of fundamental physics providing an origin of perturbations
with the data on the late time universe, one must be able to evolve cosmological fluctuations
from earliest times to today. Since on large scales (scales larger than about 10 Mpc - 1 Mpc
being roughly three million light years) the relative density fluctuations are smaller than one
today, and since these relative fluctuations grow in time as a consequence of gravitational



instability, they were smaller than one throughout their history - at least in a universe
which is always expanding. Thus, it is reasonable to expect that a linearized analysis of
the fluctuations will give reliable results. Inflationary cosmology is at the present time the
most successful framework of connecting physics of the very early universe with the present
structure (although alternatives such as the Pre-Big-Bang [7] and Ekpyrotic [8] scenarios
have been proposed and may turn out to be successful as well).

Within this framework one is face with the so called trans-planckian problem, whose
name is due to the fact that inflation magnifies all quantum fluctuations and, therefore, red-
shifts originally trans-Planckian frequencies down to the range of low energy physics. This
causes two main concerns: first of all, there is currently no universally accepted (if at all)
theory of quantum gravity which allows us to describe the original quantum fluctuations in
such an high energy regime; further, it is not clear whether the red-shifted trans-Planckian
frequencies can indeed be observed with the precision of present and future experiments.

Regarding the first problem, one can take the pragmatic approach of modern renormal-
ization theory and assume that quantum fluctuations are effectively described by quantum
field theory after they have been red-shifted below the scale of quantum gravity, henceforth
called A, and forget about their previous dynamics. The second problem is instead more
of a phenomenological interest and needs actual investigation to find the size of corrections
to the CMBR. It then seems that the answer depends on the details of the model that one
considers and no general consensus has been reached so far. In Ref. [157], a principle of
least uncertainty on the quantum fluctuations at the time of emergence from the Planckian
domain (when the physical momentum p ~ A) was imposed. Without a good understanding
of physics at the Planck scale, this can be regarded as an empirical way of accounting for
new physics. In the present thesis, we apply the same approach to power-law inflation, where
some new interesting feature emerge. This will allow us to check the final result against an
inflationary model with time-dependent Hubble parameter.

In the cosmological context theories with extra dimensions have become of increasing
importance. The main role of such theories, originally introduced in the 20’s by Kaluza
and Klein [186, 187], is to provide a connection between particle physics and gravity at
some level. At a deeper level, string theory unifies all the interactions by means of some
n-dimensional manifold (with n > 4) where the fundamental objects are supposedly living;
at a more phenomenological level, models which assume the existence of extra dimensions,
no matter their origin, are considered in order to solve some puzzles of particle physics,
cosmology and astrophysics, giving rise to many possible observable consequences.

Originally proposed in order to solve the problem of the large hierarchy between Gravity
and Standard Model scales, the Randall-Sundrum model of Ref. [188] (RS I) has acquired
considerable relevance due to its stringy inspiration. It represents the prototype of the so-
called brane-world and differs from previous models in that it constrains standard matter on
a four-dimensional manifold (the brane) just letting gravity (and exotic matter) propagate
everywhere. The RS I solution to the hierarchy problem needs one additional compactified
(orbifolded) spatial dimension with two branes located at its fixed points, plus a negative cos-
mological constant filling the space between such branes (the bulk). The bulk cosmological
constant A warps the extra dimension and generates the effective four-dimensional physi-
cal constants we measure. It was soon realized that the modifications to four-dimensional
gravity induced by the fifth dimension may be reduced to such a short distance effect to be
unobservable even in the presence of just one brane and infinite compactification radius.



The cosmological features of the RS models are nowadays being investigated even more
than its particle physics consequences, due to the refined results lately obtained and to the
major problems recent astrophysical data have revealed: the possible late time acceleration
from supernovae, CMBR spectrum, dark matter and dark energy quests suggest either a
full revision of the modern theoretical physics approach or the possibility of the existence
of further, up to now ignored, ingredients such as the extra dimensions. We will examine
these models with the intent to give a possible solution to the observed current cosmological
acceleration and to the problem of dynamically generating the baryonic asymmetry.

One of the most peculiar features of our Universe is, in fact, the observed baryonic
asymmetry. This can be conveniently characterized by the dimensionless number ng/s =
n ~ 1071 where ng = ny — n; is the difference between the baryon and anti-baryon densities
and s is the density of entropy. The consistency of primordial nucleosynthesis, which yields
some of the most precise results in the standard model of cosmology, requires that n took
the above value at the time when the light elements (i.e., *He, *He, and “Li) were produced,
and it is believed to have then remained the same up to the present epoch. The necessary
conditions for generating the baryonic asymmetry in quantum field theory were formulated
by Sacharov in 1967 [162] (see also Ref. [163]). The so called mechanism of spontaneous
baryogenesis [166, 167] uses the natural (strong) CPT non-invariance of the Universe during
its early history to bypass this third condition. We know that an expanding Universe at
finite temperature violates both Lorentz invariance and time reversal, and this can lead to
effective CPT violating interactions [164, 165]. Thus the cosmological expansion of the early
Universe leads us naturally to examine the possibility of generating the baryon asymmetry
in thermal equilibrium. The main ingredient for implementing this mechanism is a scalar
field ¢ with a derivative coupling to the baryonic current. The brane-world model with
two branes proposed by Randall and Sundrum (RS) in Ref. [168] contains a metric degree
of freedom called the radion which determines the distance between the two branes and
appears as a scalar field ¢ on the branes. Cosmological solutions have also been examined
rather extensively in this context. In particular, it has been shown that, when matter is
added on one (or both) of the two branes, the standard Friedmann equation for the scale
factor of the Universe is recovered (with possible corrections) provided the radion is suitably
stabilized. In this brane-world model, we therefore have both a scalar field (the radion)
and the cosmological evolution as required by spontaneous baryogenesis, and we shall show
that the radion field does in fact couple differently with baryons and anti-baryons. This
scenario might therefore naturally reproduce the observed baryonic asymmetry In section 2
we give a brief review of the Big-Bang theory. In section 3 we describe the idea of inflation as
solution to the shortcomings of the Big-Bang theory and in section 4 we present the modern
theory of the Cosmological perturbations as seeds of the large scale structures and of CMB
fluctuations. In section 5 we introduce the basic concepts of high energy cosmology which
are applied in to the cosmological transplanckian problem (section 6), to a model possibily
generating the observed baryonic asymmetry (section 7) and to the problem of the observed
present cosmological acceleration (section 8 and 9).



2 The Big-Bang Model

The standard cosmology is based upon the maximally spatially symmetric Friedmann-
Robertson-Walker (FRW) line element

2

2 _ g2 2
ds* = —dt* + a(t) 52

+72(d6* + sin? 0 d¢?) | ; (1)

where a(t) is the cosmic-scale factor, Reyv = a(t)|k|~'/? is the curvature radius, and k =
—1,0,1 is the curvature signature. All three models are without boundary: the positively
curved model is finite and “curves” back on itself; the negatively curved and flat models
are infinite in extent. The Robertson-Walker metric embodies the observed isotropy and
homogeneity of the universe. It is interesting to note that this form of the line element
was originally introduced for sake of mathematical simplicity; we now know that it is well
justified at early times or today on large scales (> 10 Mpc), at least within our visible patch.

The coordinates, 7, 0, and ¢, are referred to as comoving coordinates: A particle at rest
in these coordinates remains at rest, i.e., constant r, 6, and ¢. A freely moving particle
eventually comes to rest these coordinates, as its momentum is red shifted by the expansion,
p o< a~t. Motion with respect to the comoving coordinates (or cosmic rest frame) is referred
to as peculiar velocity; unless “supported” by the inhomogeneous distribution of matter
peculiar velocities decay away as a~!. Thus the measurement of peculiar velocities, which is
not easy as it requires independent measures of both the distance and velocity of an object,
can be used to probe the distribution of mass in the universe.

Physical separations between freely moving particles scale as a(t); or said another way
the physical separation between two points is simply a(t) times the coordinate separation.
The momenta of freely propagating particles decrease, or “red shift,” as a(t)~!, and thus the
wavelength of a photon stretches as a(t), which is the origin of the cosmological red shift.
The red shift suffered by a photon emitted from a distant galaxy 1+ z = ag/a(t); that is, a
galaxy whose light is red shifted by 14z, emitted that light when the universe was a factor of
(1+ z)~! smaller. Thus, when the light from the most distant quasar yet seen (z = 4.9) was
emitted the universe was a factor of almost six smaller; when CMB photons last scattered
the universe was about 1100 times smaller.

2.1 The Friedmann equations

The evolution of the scale factor a(t) is governed by Einstein equations

1
R, — 3 Rg, =G, =8rGT, (2)

where R, (p,v =0,---3) is the Riemann tensor and R is the Ricci scalar constructed via
the metric (525) [45] and 7}, is the energy-momentum tensor. Under the hypothesis of
homogeneity and isotropy, we can always write the energy-momentum tensor under the form
T,, = diag (p, p, p, p) where p is the energy density of the system and p its pressure. They
are functions of time.



The evolution of the cosmic-scale factor is governed by the Friedmann equation

. (gf _87Gp  k

a 3 a? (3)
where p is the total energy density of the universe, matter, radiation, vacuum energy, and
SO on.

Differentiating wrt to time both members of Eq. (177) and using the the mass conserva-
tion equation

p+3H(p+p) =0, (4)
we find the equation for the acceleration of the scale-factor

a 4G

—=—— 3p). 5

© = T+ ) 9

Combining Eqgs. (3) and (5) we find
H=—47G (p+p). (6)
The evolution of the energy density of the universe is governed by

d(pa®) = —pd (a®) ; (7)

which is the First Law of Thermodynamics for a fluid in the expanding universe. (In the case
that the stress energy of the universe is comprised of several, noninteracting components,
this relation applies to each separately; e.g., to the matter and radiation separately today.)
4 and a ~ t7; for p = 0, very nonrelativistic
matter, p oc a2 and a ~ t%; and for p = —p, vacuum energy, p = const. If the rhs of the
Friedmann equation is dominated by a fluid with equation of state p = ~yp, it follows that
p o< a 304 and a oc ¢2/3047)

We can use the Friedmann equation to relate the curvature of the universe to the energy
density and expansion rate:

For p = p/3, ultra-relativistic matter, p o a~

k 0 p

Q—1=———: = . 8
a2H27 pcrit7 ( )

and the critical density today pei = 3H?/87G = 1.88h2gcem™ ~ 1.05 x 10*eVcm™3.
There is a one to one correspondence between ) and the spatial curvature of the universe:
positively curved, g > 1; negatively curved, Qy < 1; and flat (29 = 1). Further, the “fate
of the universe” is determined by the curvature: model universes with k& < 0 expand forever,
while those with k > 0 necessarily recollapse. The curvature radius of the universe is related
to the Hubble radius and €2 by X

H-

Rcurv - m (9)

In physical terms, the curvature radius sets the scale for the size of spatial separations where
the effects of curved space become “pronounced.” And in the case of the positively curved
model it is just the radius of the 3-sphere.



The energy content of the universe consists of matter and radiation (today, photons
and neutrinos). Since the photon temperature is accurately known, Ty = 2.73 + 0.01 K,
the fraction of critical density contributed by radiation is also accurately known: Qzh? =
4.2 x107°, where h = 0.724+0.07 is the present Hubble rate in units of 100 km sec™' Mpc™!
[34]. The remaining content of the universe is another matter. Rapid progress has been
made recently toward the measurement of cosmological parameters [15]. Over the past three
years the basic features of our universe have been determined. The universe is spatially flat;
accelerating; comprised of one third of dark matter and two third a new form of dark energy.
The measurements of the cosmic microwave background anisotropies at different angular
scales performed by Boomerang, Maxima, DASI, CBI and VSA have recently significantly
increase the case for accelerated expansion in the early universe (the inflationary paradigm)
and at the current epoch (dark energy dominance), especially when combined with data on
high redshift supernovae (SN1) and large scale structure (LSS) [15]. A recent analysis [23]
shows that the CMB+LSS+SN1 data give

Qo = 1.00700%,

meaning tha the present universe is spatially flat (or at least very close to being flat).
Restricting to Q2 = 1, the dark matter density is given by [23]

Qpph? = 0.127591,

and a baryon density

Qph? = 0.0221000,
while the Big Bang nucleosynthesis estimate is Qph? = 0.019 £ 0.002. Substantial dark

(unclustered) energy is inferred,
Qg ~ 0.68 = 0.05,

compatible with the independent SN1 estimates! What is most relevant for us, this universe
is apparently born from a burst of rapid expansion, inflation, during which quantum noise
was stretched to astrophysical size seeding cosmic structure. This is exactly the phenomena
we want to address.

Before launching ourselves into the description of the early universe, we would like to
introduce the concept of conformal time which will be useful in the next sections. The
conformal time 7 is defined through the following relation

dt
dr = —. 10
=t (10)
The metric (525) then becomes
ds* = —a?(7) |dr* — dr — r2(df* + sin” 0 d¢?) (11)
1—kr? '

The reason why 7 is called conformal is manisfest from Eq. (11): the corresponding FRW
line element is conformal to the Minkowski line element describing a static four dimensional
hypersurface.



Any function f(t) satisfies the rule

W L S o
0 = am ~ Maey

where a prime now indicates differentation wrt to the conformal time 7 and

/

H="
a
In particular we can set the following rules
H = g = i; e ﬂ’
a a a
B a// H2
@ = ET
. H  H?
=
H?2 — 8WGP_£:>H2:M_;€
3 a? 3
. ArG
H = —4nG(p+p) = H = —%(p—l—3p)a2,
p + 3H(p+p) =0=p +3H(p+p)=0

Finally, if the scale factor a(t) scales like a ~ ¢", solving the relation (10) we find

n

a~t" = a(r) ~ 7T,

2.2 The Early Universe

In any case, at present, matter outweighs radiation by a wide margin. However, since the
energy density in matter decreases as a3, and that in radiation as a=* (the extra factor
due to the red shifting of the energy of relativistic particles), at early times the universe was
radiation dominated—indeed the calculations of primordial nucleosynthesis provide excellent
evidence for this. Denoting the epoch of matter-radiation equality by subscript ‘EQ,” and

using Ty = 2.73 K, it follows that
apq = 4.18 x 107° (Qh*)™Y  Trq = 5.62(Qph?) eV;

trq = 4.17 x 10™°(Qoh*) % sec

(16)

(17)



At early times the expansion rate and age of the universe were determined by the temperature
of the universe and the number of relativistic degrees of freedom:

Tt
30
= a ot/ t~ 242 x 1079 Y3(T/ GeV) 2 sec; (19)

where g.(7) counts the number of ultra-relativistic degrees of freedom (& the sum of the
internal degrees of freedom of particle species much less massive than the temperature)
and mp; = G2 = 1.22 x 10" GeV is the Planck mass. For example, at the epoch of
nucleosynthesis, g. = 10.75 assuming three, light (<« MeV) neutrino species; taking into
account all the species in the standard model, g, = 106.75 at temperatures much greater

than 300 GeV.
A quantity of importance related to g, is the entropy density in relativistic particles,

prad = g:(T) H ~ 1.67¢2°T? /mp; (18)

p+p 27 4
s=—==—gq,T1",
T 457
and the entropy per comoving volume,

3 3

S x a°s g*agT.

By a wide margin most of the entropy in the universe exists in the radiation bath. The
entropy density is proportional to the number density of relativistic particles. At present,
the relativistic particle species are the photons and neutrinos, and the entropy density is a
factor of 7.04 times the photon-number density: n, = 413 cm™ and s = 2905 cm ™.

In thermal equilibrium—which provides a good description of most of the history of the
universe—the entropy per comoving volume S remains constant. This fact is very useful.
First, it implies that the temperature and scale factor are related by

T o g fPat, (20)

which for ¢, = const leads to the familiar 7" o< a~!.

Second, it provides a way of quantifying the net baryon number (or any other particle
number) per comoving volume:

Np=RPng=-2 o~ (4—7) x 107 (21)
S

The baryon number of the universe tells us two things: (1) the entropy per particle in the
universe is extremely high, about 10!° or so compared to about 1072 in the sun and a few in
the core of a newly formed neutron star. (2) The asymmetry between matter and antimatter
is very small, about 10710, since at early times quarks and antiquarks were roughly as
abundant as photons. One of the great successes of particle cosmology is baryogenesis, the
idea that B, C', and C'P violating interactions occurring out-of-equilibrium early on allow
the universe to develop a net baryon number of this magnitude [68, 69].

Finally, the constancy of the entropy per comoving volume allows us to characterize the
size of comoving volume corresponding to our present Hubble volume in a very physical way:

by the entropy it contains,

4
Sy = g =35~ 0%, (22)



The standard cosmology is tested back to times as early as about 0.01 sec; it is only
natural to ask how far back one can sensibly extrapolate. Since the fundamental particles
of Nature are point-like quarks and leptons whose interactions are perturbatively weak at
energies much greater than 1 GeV, one can imagine extrapolating as far back as the epoch
where general relativity becomes suspect, i.e., where quantum gravitational effects are likely
to be important: the Planck epoch, t ~ 1073 sec and T ~ 10! GeV. Of course, at present,
our firm understanding of the elementary particles and their interactions only extends to
energies of the order of 100 GeV, which corresponds to a time of the order of 107! sec or so.
We can be relatively certain that at a temperature of 100 MeV —200 MeV (¢ ~ 107° sec) there
was a transition (likely a second-order phase transition) from quark/gluon plasma to very
hot hadronic matter, and that some kind of phase transition associated with the symmetry
breakdown of the electroweak theory took place at a temperature of the order of 300 GeV
(t ~ 107" sec).

In spite of the fact that the universe was vanishingly small at early times, the rapid
expansion precluded causal contact from being established throughout. Photons travel on
null paths characterized by dr = dt/a(t); the physical distance that a photon could have
traveled since the bang until time ¢, the distance to the particle horizon, is

Ru(t) = a(t) /0 a‘f;

~ T 1 1’: .
( n) n( n) or a [0 ¢ 5 n

Ry (t) = a(r) /T dr, (24)

0

where 7y indicates the conformal time corresponding to t = 0. Note, in the standard cos-
mology the distance to the horizon is finite, and up to numerical factors, equal to the age
of the universe or the Hubble radius, H~!. For this reason, we will use horizon and Hubble
radius interchangeably.!

Note also that a physical length scale A is within the horizon if A < Ry ~ H~!. Since we
can identify the length scale A with its wavenumber k, A = 2wa/k, we will have the following
rule

— <« 1= SCALE X OUTSIDE THE HORIZON

i > 1= SCALE X\ WITHIN THE HORIZON

!As we shall see, in inflationary models the horizon and Hubble radius are not roughly equal as the
horizon distance grows exponentially relative to the Hubble radius; in fact, at the end of inflation they differ
by eV, where N is the number of e-folds of inflation. However, we will slip and use “horizon” and “Hubble

radius” interchangeably, though we will always mean Hubble radius.
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An important quantity is the entropy within a horizon volume: Syor ~ H *T?; during the
radiation-dominated epoch H ~ T?/mpy, so that

mpr\ 3
SHOR ~ ( T ) ; (25)
from this we will shortly conclude that at early times the comoving volume that encompasses
all that we can see today (characterized by an entropy of about 10%) was comprised of a
very large number of causally disconnected regions.

By now the shortcomings of the standard cosmology are well appreciated: the horizon
or large-scale smoothness problem; the small-scale inhomogeneity problem (origin of density
perturbations); and the flatness or oldness problem. We will only briefly review them here.
They do not indicate any logical inconsistencies of the standard cosmology; rather, that
very special initial data seem to be required for evolution to a universe that is qualitatively
similar to ours today. Nor is inflation the first attempt to address these shortcomings: over
the past two decades cosmologists have pondered this question and proposed alternative
solutions. Inflation is a solution based upon well-defined, albeit speculative, early universe
microphysics describing the post-Planck epoch.

2.3 The Standard Big Bang Problems

Let us make a tremendous extrapolation and assume that Einstein equations are valid until

the Plank era, when the temperature of the universe is Tp; ~ mp; ~ 10'? GeV. From Eq. (8),

we read that if the universe is perfectly flat, then (2 = 1) at all times. On the other hand,

if there is even a small curvature term, the time dependence of (€2 — 1) is quite different.
During a radiation-dominated period, we have that H? o< pr o< a=* and

1
During Matter Domination, py; o< a=3 and
1
Q-1x —— xa. (27)

a2aq=3

In both cases (2 — 1) decreases going backwards with time. Since we know that today
(Qp — 1) is of order unity at present, we can deduce its value at tp; (the time at which the
temperature of the universe is Tp; ~ 1012 GeV)

LQ;HE@%<§Qz<m)zOOW%- (28)

| Q-1 |T=To CL% T—Igl

where 0 stands for the present epoch, and Ty ~ 107'3 GeV is the present-day temperature of
the CMB radiation. If we are not so brave and go back simply to the epoch of nucleosynthesis
when light elements abundances were formed, at Ty ~ 1 MeV, we get

L&;QE&%(@)z(%)zouWW~ (29)

| Q=1 |7, ag T%
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In order to get the correct value of (20— 1) ~ 1 at present, the value of (2 —1) at early times
have to be fine-tuned to values amazingly close to zero, but without being exactly zero. This
is the reason why the flatness problem is also dubbed the ‘fine-tuning problem’.

Let us now see how the hypothesis of adiabatic expansion of the universe is connected with
the flatness problem. From the Friedman equation (177) we know that during a radiation-
dominated period

T4
from which we deduce o o
01— e Fme (31)

a‘T* — gir2’

Under the hypothesis of adiabaticity, S is constant over the evolution of the universe and

therefore

| 0 1‘ . mp12 1 . 1
=i T3 512/ 3 5[2/ 3

~ 107%. (32)

We have discovered that (£2—1) is so close to zero at early epochs because the total entropy
of our universe is so incredibly large. The flatness problem is therefore a problem of under-
standing why the (classical) initial conditions corresponded to a universe that was so close
to spatial flatness. In a sense, the problem is one of fine-tuning and although such a balance
is possible in principle, one nevertheless feels that it is unlikely. On the other hand, the flat-
ness problem arises because the entropy in a comoving volume is conserved. It is possible,
therefore, that the problem could be resolved if the cosmic expansion was non—adiabatic for
some finite time interval during the early history of the universe.

According to the standard cosmology, photons decoupled from the rest of the compo-
nents (electrons and baryons) at a temperature of the order of 0.3 eV. This corresponds to
the so-called surface of ‘last-scattering’ at a red shift of about 1100 and an age of about
180, 000 (29h?)~ /2 yrs. From the epoch of last-scattering onwards, photons free-stream and
reach us basically untouched. Detecting primordial photons is therefore equivalent to take
a picture of the universe when the latter was about 300,000 yrs old. The spectrum of the
cosmic background radiation (CBR) is consistent that of a black body at temperature 2.73
K over more than three decades in wavelength; see Fig. 1.

The most accurate measurement of the temperature and spectrum is that by the FIRAS
instrument on the COBE satellite which determined its temperature to be 2.726 + 0.01 K
[58]. The length corresponding to our present Hubble radius (which is approximately the
radius of our observable universe) at the time of last-scattering was

i) = Ruto) () = Rutto) (7).

aop Tis

On the other hand, during the matter-dominated period, the Hubble length has decreased
with a different law
H? « pyp o< a2 o< T3,



12

At last-scattering
Trs

~3/2

The length corresponding to our present Hubble radius was much larger that the horizon at
that time. This can be shown comparing the volumes corresponding to these two scales

A3 (T T, \ "2
nilis) =< 0) ~ 10°. (33)
HLS TLs

There were ~ 10° casually disconnected regions within the volume that now corresponds
to our horizon! It is difficult to come up with a process other than an early hot and dense
phase in the history of the universe that would lead to a precise black body [64] for a bath of
photons which were causally disconnected the last time they interacted with the surrounding
plasma.

The horizon problem is well represented by Fig. 2 where the green line indicates the
horizon scale and the red line any generic physical length scale A\. Suppose, indeed that A
indicates the distance between two photons we detect today. From Eq. (33) we discover that
at the time of emission (last-scattering) the two photons could not talk to each other, the red
line is above the green line. There is another aspect of the horizon problem which is related to
the problem of initial conditions for the cosmological perturbations. We have every indication
that the universe at early times, say ¢ < 300, 000 yrs, was very homogeneous; however, today
inhomogeneity (or structure) is ubiquitous: stars (dp/p ~ 10%°), galaxies (6p/p ~ 10°),
clusters of galaxies (dp/p ~ 10 — 10%), superclusters, or “clusters of clusters” (dp/p ~ 1),
voids (6p/p ~ —1), great walls, and so on. For some twenty-five years the standard cosmology
has provided a general framework for understanding this picture. Once the universe becomes
matter dominated (around 1000 yrs after the bang) primeval density inhomogeneities (§p/p ~
1079) are amplified by gravity and grow into the structure we see today [63]. The existence of
density inhomogeneities has another important consequence: fluctuations in the temperature
of the CMB radiation of a similar amplitude. The temperature difference measured between
two points separated by a large angle (2 1°) arises due to a very simple physical effect: the
difference in the gravitational potential between the two points on the last-scattering surface,
which in turn is related to the density perturbation, determines the temperature anisotropy
on the angular scale subtended by that length scale,

(%), (%), o
T/ P/

where the scale A ~ 100h~! Mpc(6/deg) subtends an angle  on the last-scattering surface.
This is known as the Sachs-Wolfe effect [70]. The CMB experiments looking for the tiny
anisotropies are of three kinds: satellite experiments, balloon experiments, and ground based
experiments. The technical and economical advantages of ground based experiments are
evident, but their main problem is atmospheric fluctuations. The problem can be limited
choosing a very high and cold site, or working on small scales (as the Dasi experiment [27]).
Balloon based experiments limit the atmospheric problems, but have to face the following

problems: they must be limited in weight, they can not be manipulated during the flight,
they have a rather short duration (and they have to be recovered intact). Maxima [60], and
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Boomerang [24] are experiments of this kind.
At present, there is a satellite experiment — MAP (Microwave Anisotropy Probe) sponsored
by NASA mission, which is taking data [59]. Finally, a satellite mission PLANCK is planned
by ESA to be launched in 2007 [65]. The temperature anisotropy is commonly expanded in
spherical harmonics

AT

T x077—07 Zafm xO nm ) (35)

where zy and 7y are our position and the preset time, respectively, n is the direction of
observation, ¢'s are the different multipoles and?

(Wom@prr) = 00,00 C, (36)

where the deltas are due to the fact that the process that created the anisotropy is statistically
isotropic. The Cy are the so-called CMB power spectrum. For homogeneity and isotropy,
the C}’s are neither a function of xg, nor of m. The two-point-correlation function is related
to the C)’s in the following way

<5Tj€n) 5T;n ) >

= D (am) Yom(m) Y, ()

20" mm/’

_ ZCZZYM )V, (0) = = S0 DGR =n ) (37)

l

where we have used the addition theorem for the spherical harmonics, and P, is the Legendre
polynom of order ¢. In expression (37) the expectation value is an ensamble average. It can
be regarded as an average over the possible observer positions, but not in general as an
average over the single sky we observe, because of the cosmic variance?.

Let us now consider the last-scattering surface. In comoving coordinates the latter is ‘far’

from us a distance equal to

to dt T0
/ — = / dr = (10 — TLs) - (38)
tLs a TLS

A given comoving scale A is therefore projected on the last-scattering surface sky on an
angular scale

A
i) )

2An alternative definition is Cy = (|agm|*) = T}H anz% agm|”.
3The usual hypothesis is that we observe a typical realization of the ensamble. This means that we expect

the difference between the observed values |agm|2 and the ensamble averages Cy to be of the order of the
mean-square deviation of |CLgm|2 from Cy. The latter is called cosmic variance and, because we are dealing
with a gaussian distribution, it is equal to 2C; for each multipole ¢. For a single ¢, averaging over the (2¢+1)
values of m reduces the cosmic variance by a factor (2¢ + 1), but it remains a serious limitation for low

multipoles.
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where we have neglected tiny curvature effects. Consider now that the scale X is of the order
of the comoving sound horizon at the time of last-scattering, A ~ cyms, where ¢y ~ 1/ V3
is the sound velocity at which photons propagate in the plasma at the last-scattering. This
corresponds to an angle

s s

™~ cg—, (40)

0 ~co—""—r
S(TO_TLS) To

where the last passage has been performed knowing that 7 > 7g. Since the universe is
matter-dominated from the time of last-scattering onwards, the scale factor has the following
behaviour: a ~ T~ ~ t¥/3 ~ 72 where we have made use of the relation (15). The angle
fuor subtended by the sound horizon on the last-scattering surface then becomes

7o\ /2
Oror =~ ¢ <—0) ~1° (41)
Tis

where we have used Tis ~ 0.3 eV and T, ~ 1073 GeV. This corresponds to a multipole
lror

™

Onor

From these estimates we conclude that two photons which on the last-scattering surface
were separated by an angle larger than fyogr, corresponding to multipoles smaller than
luor ~ 200 were not in causal contact. On the other hand, from Fig. (3) it is clear that
small anisotropies, of the same order of magnitude 67 /T ~ 107> are present at ¢ < 200. We
conclude that one of the striking features of the CMB fluctuations is that they appear to
be noncausal. Photons at the last-scattering surface which were causally disconnected have
the same small anisotropies! The existence of particle horizons in the standard cosmology
precludes explaining the smoothness as a result of microphysical events: the horizon at
decoupling, the last time one could imagine temperature fluctuations being smoothed by
particle interactions, corresponds to an angular scale on the sky of about 1°, which precludes
temperature variations on larger scales from being erased.

To account for the small-scale lumpiness of the universe today, density perturbations with
horizon-crossing amplitudes of 1075 on scales of 1 Mpc to 10* Mpc or so are required. As
can be seen in Fig. 2, in the standard cosmology the physical size of a perturbation, which
grows as the scale factor, begins larger than the horizon and relatively late in the history of
the universe crosses inside the horizon. This precludes a causal microphysical explanation
for the origin of the required density perturbations.

From the considerations made so far, it appears that solving the shortcomings of the
standard Big Bang theory requires two basic modifications of the assumptions made so far:

e The universe has to go through a non-adiabatic period. This is necessary to solve the
entropy and the flatness problem. A non-adiabatic phase may give rise to the large
entropy Sy we observe today.

e The universe has to go through a primordial period during which the physical scales A
evolve faster than the horizon scale H~*.



15

The second condition is obvious from Fig. 4. If there is period during which physical
length scales grow faster than H ™!, length scales A which are within the horizon today,
A < H™! (such as the distance between two detected photons) and were outside the horizon
for some period, A > H~! (for istance at the time of last-scattering when the two photons
were emitted), had a chance to be within the horizon at some primordial epoch, A < H~!
again. If this happens, the homogeneity and the isotropy of the CMB can be easily explained:
photons that we receive today and were emitted from the last-scattering surface from causally
disconnected regions have the same temperature because they had a chance to ‘talk’ to each
other at some primordial stage of the evolution of the universe.

The second condition can be easily expressed as a condition on the scale factor a. Since
a given scale \ scales like A\ ~ a and H~! = a/a, we need to impose that there is a period

during which
A\ L

We can therefore introduced the following rigorous definition: an inflationary stage [35] is a
period of the universe during which the latter accelerates

INFLATION <« a>0.

Comment:Let us stress that during such a accelerating phase the universe expands adi-
abatically. This means that during inflation one can exploit the usual FRW equations (3)
and (5). It must be clear therefore that the non-adiabaticity condition is satisfied not during
inflation, but during the phase transition between the end of inflation and the beginning of
the radiation-dominated phase. At this transition phase a large entropy is generated under
the form of relativistic degrees of freedom: the Big Bange has taken place.
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3 The Inflationary Universe

From the previous section we have learned that an accelerating stage during the primordial
phases of the evolution of the universe might be able to solve the horizon problem. From
Eq. (5) we learn that

i>0<= (p+3p) <0.

An accelerating period is obtainable only if the overall pressure p of the universe is negative:
p < —p/3. Neither a radiation-dominated phase nor a matter-dominated phase (for which
p = p/3 and p = 0, respectively) satisfy such a condition. Let us postpone for the time
being the problem of finding a ‘candidate’ able to provide the condition p < —p/3. For sure,
inflation is a phase of the history of the universe occurring before the era of nucleosynthesis
(t =~ 1 sec, T~ 1 MeV) during which the light elements abundances were formed. This is
because nucleosynthesis is the earliest epoch we have experimental data from and they are
in agreement with the predictions of the standard Big-Bang theory. However, the thermal
history of the universe before the epoch of nucleosynthesis is unknown.

In order to study the properties of the period of inflation, we assume the extreme condition
p = —p which considerably simplifies the analysis. A period of the universe during which
p = —p is called de Sitter stage. By inspecting Eqgs. (3) and (4), we learn that during the
de Sitter phase

p = constant,
H; = constant,

where we have indicated by H; the value of the Hubble rate during inflation. Correspond-
ingly, solving Eq. (3) gives

a = q; eHI(t_t"), (43)

where t; denotes the time at which inflation starts. Let us now see how such a period of
exponential expansion takes care of the shortcomings of the standard Big Bang Theory.*

3.1 Inflationary Solution to the Standard Big Bang Problems

During the inflationary (de Sitter) epoch the horizon scale H™! is constant. If inflation lasts
long enough, all the physical scales that have left the horizon during the radiation-dominated
or matter-dominated phase can re-enter the horizon in the past: this is because such scales
are exponentially reduced. As we have seen in the previous section, this explains both the
problem of the homogeneity of CMB and the initial condition problem of small cosmological
perturbations. Once the physical length is within the horizon, microphysics can act, the
universe can be made approximately homogeneous and the primaeval inhomogeneities can
be created.

4Despite the fact that the growth of the scale factor is exponential and the expansion is superluminal, this
is not in contradiction with what dictated by relativity. Indeed, it is the spacetime itself which is progating

so fast and not a light signal in it.
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Let us see how long inflation must be sustained in order to solve the horizon problem.
Let t; and ty be, respectively, the time of beginning and end of inflation. We can define the
corresponding number of e-foldings N

N = In[H(t. — t,)]. (44)

A necessary condition to solve the horizon problem is that the largest scale we observe today,
the present horizon H; ', was reduced during inflation to a value A, (t;) smaller than the
value of horizon length H; ' during inflation. This gives

[ Qe Qg 2 (To\ _ _
Y tz —H 1 (7t i —H 1( =20 N <« H 1
Ho (1) 0 (Clt()) (atf> 0 (Tf> e A,

where we have neglected for simplicity the short period of matter-domination and we have
called T the temperature at the end of inflation (to be indentified with the reheating tem-
perature Tgry at the beginning of the radiation-dominated phase after inflation, see later).

We get
To Ty Ty
NZIn|— | —-In{ =+ |~ In{—=]).
Nn<H0) n(HI) 67+n<HI>

Apart from the logarithmic dependence, we obtain N 2 70.
Inflation solves elegantly the flatness problem. Since during inflation the Hubble rate is
constant

k 1
2H? < @
On the other end the condition (32) tells us that to reproduce a value of (£ — 1) of order
of unity today the initial value of (2 — 1) at the beginning of the radiation-dominated phase
must be [ — 1| ~ 107%°. Since we identify the beginning of the radiation-dominated phase
with the beginning of inflation, we require

2 —1],_,, ~107%.

|Q — ].|t:tf _ & ? — 6_2N (45)
Q2 — 1‘t:ti ar '

Taking |2 — 1],_, of order unity, it is enough to require that N ~ 70 to solve the flatness
problem.

1. Comment: In the previous section we have written that the flateness problem can be
also seen as a fine-tuning problem of one part over 10%. Inflation ameliorates this fine-tuning
problem, by explaining a tiny number ~ 107% with a number N of the order 70.

2. Comment: The number N ~ 70 has been obtained requiring that the present-day
value of (9 — 1) is of order unity. For the expression (45), it is clear that —if the period of
inflation lasts longer than 70 e-foldings the present-day value of €2y will be equal to unity
with a great precision. One can say that a generic prediction of inflation is that

0-1=

During inflation

INFLATION = Q=1




18

This statement, however, must be taken cum grano salis and properly specified. Inflation
does not change the global geometric properties of the spacetime. If the universe is open or
closed, it will always remain flat or closed, independently from inflation. What inflation does
is to magnify the radius of curvature R, defined in Eq. (9) so that locally the universe
is flat with a great precision. As we have seen in section 2, the current data on the CMB
anisotropies confirm this prediction!

In the previous section, we have seen that the flatness problem arises because the entropy
in a comoving volume is conserved. It is possible, therefore, that the problem could be
resolved if the cosmic expansion was non-adiabatic for some finite time interval during the
early history of the universe. We need to produce a large amount of entropy Sy ~ 10%. Let
us postulate that the entropy changed by an amount

Sy =235, (46)

from the beginning to the end of the inflationary period, where Z is a numerical factor. It
is very natural to assume that the total entropy of the universe at the beginning of inflation
was of order unity, one particle per horizon. Since, from the end of inflation onwards, the
universe expands adiabatically, we have S; = Sy. This gives Z ~ 10*°. On the other hand,
since Sy ~ (a;Ty)* and S; ~ (a;T})®, where Ty and T} are the temperatures of the universe
at the end and at the beginning of inflation, we get

ar N s0 (1L
— | = ~ 1 — 4
()= =1"(z), )

which gives again N ~ 70 up to the logarithmic factor In (%) We stress again that such a

large amount of entopy is not produced during inflation, but during the non-adiabatic phase
transition which gives rise to the usual radiation-dominated phase.

3.2 The Inflaton

In the previous subsections we have described the various adavantages of having a period
of accelerating phase. The latter required p < —p/3. Now, we would like to show that
this condition can be attained by means of a simple scalar field. We shall call this field the
inflaton ¢.

The action of the inflaton field reads

S:/d4x\/—_g£:/d49:\/—_g Bamaw+v<¢>) , (48)

where \/—g = a® for the FRW metric (525). From the Eulero-Lagrange equations

LO(/=9L)  o(y=gL) _
e e i (49)

we obtain
V3¢

O+3H) -~ +V'(9) =0, (50)
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where V'(¢) = (dV(¢)/de). Note, in particular, the appearance of the friction term 3H¢: a
scalar field rolling down its potential suffers a friction due to the expansion of the universe.
We can write the energy-momentum tensor of the scalar field

T;w = u¢au¢ - Guw L.

The corresponding energy density p, and pressure density p, are

¢ (Vo)?
Tn=p:=-——+V 51
00 = Pg 2 + V(o) + 22 (51)
¢* (Vo)
X Py 9 V(¢) Ga2 (5 )
Notice that, if the gradient term were dominant, we would obtain ps = —£2 5, ot enough to

drive inflation. We can now split the inflaton field in

¢(t) = ¢o(t) + 09 (x, 1),

where ¢q is the ‘classical’ (infinite wavelength) field, that is the expectation value of the
inflaton field on the initial isotropic and homogeneous state, while d¢(x,t) represents the
quantum fluctuations around ¢q. In this section, we will be only concerned with the evolution
of the classical field ¢y. The next section will be devoted to the crucial issue of the evolution of
quantum perturbations during inflation. This separation is justified by the fact that quantum
fluctuations are much smaller than the classical value and therefore negligible when looking
at the classical evolution. To not be overwhelmed by the notation, we will keep indicating
from now on the classical value of the inflaton field by ¢. The energy-momentum tensor
becomes

Too = po = 2+ V(6) (53)
qu
Ty =po= % = V(o) 50
If
V(p) > ¢?

we obtain the following condition
Py = —Dg¢

From this simple calculation, we realize that a scalar field whose energy is dominant in the
universe and whose potential energy dominates over the kinetic term gives inflation! Inflation
is driven by the vacuum energy of the inflaton field.

3.3 The Slow-roll

Let us now quantify better under which circumstances a scalar field may give rise to a period
of inflation. The equation of motion of the field is

d+3Hp+V'(¢) =0 (55)
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If we require that ¢? < V(¢), the scalar field is slowly rolling down its potential. This is the
reason why such a period is called slow-roll. We may also expect that — being the potential
flat — ¢ is negligible as well. We will assume that this is true and we will quantify this
condition soon. The FRW equation (3) becomes

= " (), (56)

where we have assumed that the inflaton field dominates the energy density of the universe.
The new equation of motion becomes

3Ho = —V'(¢) (57)
which gives ¢ as a function of V'(¢). Using Eq. (57) slow-roll conditions then require

N2
¢2<V(¢):>@<<H2

and ) '
< 3Hp = V" <« H>.

It is now useful to define the slow-roll parameters, € and 7 in the following way

H e 1 (V\?
= " V"E T G (V) !
_ L vty _ v
"= e \v ) T 3u
0 = n—e:—i.
Ho

It might be useful to have the same parameters expressed in terms of conformal time

H' ¢/2
¢//
5 = poe=1--"_,

The parameter € quantifies how much the Hubble rate H changes with time during inflation.
Notice that, since )

R Y
a

inflation can be attained only if € < 1:
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INFLATION <= e<1.

As soon as this condition fails, inflation ends. In general, slow-roll inflation is attained if
e < 1 and |n| < 1. During inflation the slow-roll parameters € and 1 can be considered to
be approximately constant since the potential V' (¢) is very flat.

Comment: In the following, we will work at first-order perturbation in the slow-roll
parameters, that is we will take only the first power of them. Since, using their definition,
it is easy to see that é,7 = O (e?,1?), this amounts to saying that we will trat the slow-roll
parameters as constant in time.

Within these approximations, it is easy to compute the number of e-foldings between the
beginning and the end of inflation. If we indicate by ¢; and ¢ the values of the inflaton field
at the beginning and at the end of inflation, respectively, we have that the total number of

e-foldings is
ty
/ Hdt
t;

¢r do
¢ ¢

_3H2/¢f @
o V'

oy v
~ 811G 5 v do. (58)
We may also compute the number of e-foldings AN which are left to go to the end of
inflation

N

12

H

12

baN |/
AN ~ 871G v do, (59)
b5
where ¢an is the value of the inflaton field when there are AN e-foldings to the end of
inflation.
1. Comment: According to the criterion given in subsection 2.4, a given scale length
A = a/k leaves the horizon when k = aH) where Hj, is the the value of the Hubble rate at
that time. One can compute easily the rate of change of H? as a function of k

2 2 '
din Hy (dlnHk) ( dt ) <d1na> :25 oL X1:2£:—26. (60)

dln k dt dlna dln k H H H?

2. Comment: Take a given physical scale A today which crossed the horizon scale during
inflation. This happened when

A <ﬂ> e AN = ) <E> e AN = HI_1
Qo Tf
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where AN, indicates the number of e-foldings from the time the scale crossed the horizon
during inflation and the end of inflation. This relation gives a way to determine the number
of e-foldings to the end of inflation corresponding to a given scale

A Vi T
ANy ~65+In|—" V4ol )t ).
=00 (3000 Mpc) e (1014 GeV) " <1010 GeV)

Scales relevant for the CMB anisotropies correspond to AN ~60.

3.4 Inflation and Reheating

Inflation ended when the potential energy associated with the inflaton field became smaller
than the kinetic energy of the field. By that time, any pre-inflation entropy in the universe
had been inflated away, and the energy of the universe was entirely in the form of coherent
oscillations of the inflaton condensate around the minimum of its potential. The universe
may be said to be frozen after the end of inflation. We know that somehow the low-entropy
cold universe dominated by the energy of coherent motion of the ¢ field must be transformed
into a high-entropy hot universe dominated by radiation. The process by which the energy of
the inflaton field is transferred from the inflaton field to radiation has been dubbed reheating.
In the old theory of reheating [30, 10|, the simplest way to envision this process is if the
comoving energy density in the zero mode of the inflaton decays into normal particles, which
then scatter and thermalize to form a thermal background. It is usually assumed that the
decay width of this process is the same as the decay width of a free inflaton field.

Of particular interest is a quantity known usually as the reheat temperature, denoted
as Try°. The reheat temperature is calculated by assuming an instantaneous conversion of
the energy density in the inflaton field into radiation when the decay width of the inflaton
energy, I'y, is equal to H, the expansion rate of the universe.

The reheat temperature is calculated quite easily. After inflation the inflaton field ex-
ecutes coherent oscillations about the minimum of the potential. Averaged over several
oscillations, the coherent oscillation energy density redshifts as matter: p, oc a™®, where a is
the Robertson—Walker scale factor. If we denote as p; and a; the total inflaton energy den-
sity and the scale factor at the initiation of coherent oscillations, then the Hubble expansion

rate as a function of a is . ,
™ Pr ar
H2(a) = & (-) . 61
(a) 3 mp12 a ( )

Equating H(a) and I'y leads to an expression for a;/a. Now if we assume that all available
coherent energy density is instantaneously converted into radiation at this value of a;/a,
we can find the reheat temperature by setting the coherent energy density, ps = ps(ar/a)?,
equal to the radiation energy density, pr = (72/30)g.Tag, where g, is the effective number
of relativistic degrees of freedom at temperature Try. The result is

90 1/4 200 1/4
Try = ( ) \/Fd,mpl =0.2 ( g ) \ F(j)mPl . (62)

813 g, «

®So far, we have indicated it with T.
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In some models of inflation reheating can be anticipated by a period of preheating [44] when
the the classical inflaton field very rapidly (explosively) decays into ¢-particles or into other
bosons due to broad parametric resonance. This stage cannot be described by the standard
elementary approach to reheating based on perturbation theory. The bosons produced at
this stage further decay into other particles, which eventually become thermalized.

3.5 The Inflationary models

Even restricting ourselves to a simple single-field inflation scenario, the number of models
available to choose from is large [57]. It is convenient to define a general classification scheme,
or “zoology” for models of inflation. We divide models into three general types [29]: large-
field, small-field, and hybrid, with a fourth classification. A generic single-field potential
can be characterized by two independent mass scales: a “height” A*, corresponding to the
vacuum energy density during inflation, and a “width” pu, corresponding to the change in
the field value A¢ during inflation:

V() = A (2) | (63)

Different models have different forms for the function f. Let us now briefly describe the
different class of models.

Large-field models are potentials typical of the “chaotic” inflation scenario[52], in which
the scalar field is displaced from the minimum of the potential by an amount usually of
order the Planck mass. Such models are characterized by V" (¢) > 0, and —e < 0 < e.
The generic large-field potentials we consider are polynomial potentials V (¢) = A* (¢/u)”,
and exponential potentials, V (¢) = A'exp(¢/p). In the chaotic inflation scenario, it is
assumed that the universe emerged from a quantum gravitational state with an energy
density comparable to that of the Planck density. This implies that V(¢) ~ mp* and results
in a large friction term in the Friedmann equation (180). Consequently, the inflaton will
slowly roll down its potential. The condition for inflation is therefore satisfied and the scale
factor grows as

a(t) = aie(ﬁz‘ dt/H(t/)). (64)

The simplest chaotic inflation model is that of a free field with a quadratic potential, V' (¢) =
m?2¢?/2, where m represents the mass of the inflaton. During inflation the scale factor grows
as

a(t) = a;e*™ @i ®) (65)

and inflation ends when ¢ = O(1) mp,. If inflation begins when V(¢;) &~ mp?, the scale
factor grows by a factor exp(4mmpi?/m?) before the inflaton reaches the minimum of its
potential. We will later show that the mass of the field should be m ~ 10 %mp; if the
microwave background constraints are to be satisfied. This implies that the volume of the
universe will increase by a factor of Z3 ~ 103%19"” and this is more than enough inflation to
solve the problems of the hot big bang model.

In the chaotic inflationary scenarios, the present-day universe is only a small portion of
the universe which suffered inflation! Notice also that the typical values of the inflaton field
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during inflation are of the order of mp;, giving rise to the possibility of testing planckian
physics [26].

Small-field models are the type of potentials that arise naturally from spontaneous sym-
metry breaking (such as the original models of “new” inflation [51, 12]) and from pseudo
Nambu-Goldstone modes (natural inflation[33]). The field starts from near an unstable
equilibrium (taken to be at the origin) and rolls down the potential to a stable minimum.
Small-field models are characterized by V" (¢) < 0 and n < —e. Typically € is close to zero.
The generic small-field potentials we consider are of the form V (¢) = A*[1 — (¢/u)*], which
can be viewed as a lowest-order Taylor expansion of an arbitrary potential about the origin.
See, for instance, Ref. [28].

The hybrid scenario[53, 54, 25] frequently appears in models which incorporate inflation
into supersymmetry [66] and supergravity [55]. In a typical hybrid inflation model, the
scalar field responsible for inflation evolves toward a minimum with nonzero vacuum energy.
The end of inflation arises as a result of instability in a second field. Such models are
characterized by V" (¢) > 0 and 0 < € < . We consider generic potentials for hybrid
inflation of the form V (¢) = A*[1+ (¢/p)’]. The field value at the end of inflation is
determined by some other physics, so there is a second free parameter characterizing the
models. This enumeration of models is certainly not exhaustive. There are a number of
single-field models that do not fit well into this scheme, for example logarithmic potentials
V (¢) o In(¢) typical of supersymmetry [57, 37, 22, 31, 56, 67, 32, 43]. Another example
is potentials with negative powers of the scalar field V (¢) o« ¢ 7 used in intermediate
inflation [17] and dynamical supersymmetric inflation [40, 41]. Both of these cases require
and auxilliary field to end inflation and are more properly categorized as hybrid models,
but fall into the small-field class. However, the three classes categorized by the relationship
between the slow-roll parameters as —e < 0 < e (large-field), § < —e (small-field) and
0 < e < § (hybrid) seems to be good enough for comparing theoretical expectations with
experimental data.



25

4 The Cosmological Perturbations

As we have seen in the previous section, the early universe was made very nearly uniform
by a primordial inflationary stage. However, the important caveat in that statement is the
word ‘nearly’. Our current understanding of the origin of structure in the universe is that
it originated from small ‘seed’ perturbations, which over time grew to become all of the
structure we observe. Once the universe becomes matter dominated (around 1000 yrs after
the bang) primeval density inhomogeneities (6p/p ~ 107°) are amplified by gravity and
grow into the structure we see today [63]. The fact that a fluid of self-gravitating particles is
unstable to the growth of small inhomogeneities was first pointed out by Jeans and is known
as the Jeans instability. Furthermore, the existence of these inhomogeneities was confirmed
by the COBE discovery of CMB anisotropies; the temperature anisotropies detected almost
certainly owe their existence to primeval density inhomogeneities, since, as we have seen,
causality precludes microphysical processes from producing anisotropies on angular scales
larger than about 1°; the angular size of the horizon at last-scattering.

The growth of small matter inhomogeneities of wavelength smaller than the Hubble scale
(A < H™') is governed by a Newtonian equation:

. . k2
Ok +2H O + vf;ék = 47 Gpprox, (66)

where v2 = Op/dpy; is the square of the sound speed and we have expanded the perturbation
to the matter density in plane waves

opm (X, 1) 1 3 o~ ikex
P o / Bl S(t)e . (67)

Competition between the pressure term and the gravity term on the rhs of Eq. (66) de-
termines whether or not pressure can counteract gravity: perturbations with wavenumber
larger than the Jeans wavenumber, k% = 47Ga?pyr/v?, are Jeans stable and just oscillate;
perturbations with smaller wavenumber are Jeans unstable and can grow.

Let us discuss solutions to this equation under different circumstances. First, consider the
Jeans problem, evolution of perturbations in a static fluid, 7z.e., H = 0. In this case Jeans
unstable perturbations grow exponentially, dx o exp(t/7) where 7 = 1/v/4Gmpy;. Next,
consider the growth of Jeans unstable perturbations in a matter-dominated universe, i.e.,
H? = 871G py/3 and a o< t2/3. Because the expansion tends to “pull particles away from one
another,” the growth is only power law, & o< t2/3; i.e., at the same rate as the scale factor.
Finally, consider a radiation-dominated universe. In this case, the expansion is so rapid that
matter perturbations grow very slowly, as Ina in radiation-dominated epoch. Therefore,
perturbations may grow only in a matter-dominated period. Once a perturbation reaches an
overdensity of order unity or larger it “separates” from the expansion —i.e., becomes its own
self-gravitating system and ceases to expand any further. In the process of virial relaxation,
its size decreases by a factor of two—density increases by a factor of 8; thereafter, its density
contrast grows as a® since the average matter density is decreasing as a2, though smaller
scales could become Jeans unstable and collapse further to form smaller objects of higher
density.

In order for structure formation to occur via gravitational instability, there must have
been small preexisting fluctuations on physical length scales when they crossed the Hubble
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radius in the radiation-dominated and matter-dominated eras. In the standard Big-Bang
model these small perturbations have to be put in by hand, because it is impossible to
produce fluctuations on any length scale while it is larger than the horizon. Since the goal of
cosmology is to understand the universe on the basis of physical laws, this appeal to initial
conditions is unsatisfactory. The challenge is therefore to give an explanation to the small
seed perturbations which allow the gravitational growth of the matter perturbations.

Our best guess for the origin of these perturbations is quantum fluctuations during an
inflationary era in the early universe. Although originally introduced as a possible solution
to the cosmological conundrums such as the horizon, flatness and entopy problems, by far the
most useful property of inflation is that it generates spectra of both density perturbations
and gravitational waves. These perturbations extend from extremely short scales to scales
considerably in excess of the size of the observable universe.

During inflation the scale factor grows quasi-exponentially, while the Hubble radius re-
mains almost constant. Consequently the wavelength of a quantum fluctuation — either in
the scalar field whose potential energy drives inflation or in the graviton field — soon exceeds
the Hubble radius. The amplitude of the fluctuation therefore becomes ‘frozen in’. This is
quantum mechanics in action at macroscopic scales!

According to quantum field theory, empty space is not entirely empty. It is filled with
quantum fluctuations of all types of physical fields. The fluctuations can be regarded as
waves of physical fields with all possible wavelenghts, moving in all possible directions. If
the values of these fields, averaged over some macroscopically large time, vanish then the
space filled with these fields seems to us empty and can be called the vacuum.

In the exponentially expanding universe the vacuum structure is much more complicated.
The wavelenghts of all vacuum fluctuations of the inflaton field ¢ grow exponentially in the
expnading universe. When the wavelength of any particular fluctuation becomes greater
than H~!, this fluctuation stops propagating, and its amplitude freezes at some nonzero
value d¢ because of the large friction term 3H ¢ i the equation of motion of the field ¢. The
amplitude of this fluctuation then remains almost unchanged for a very long time, whereas
its wavelength grows exponentially. Therefore, the appearance of such frozen fluctuation
is equivalent to the appearance of a classical field d¢ that does not vanish after having
averaged over some macroscopic interval of time. Because the vacuum contains fluctuations
of all possible wavelength, inflation leads to the creation of more and more new perturbations
of the classical field with wavelength larger than the horizon scale.

Once inflation has ended, however, the Hubble radius increases faster than the scale
factor, so the fluctuations eventually reenter the Hubble radius during the radiation- or
matter-dominated eras. The fluctuations that exit around 60 e-foldings or so before reheating
reenter with physical wavelengths in the range accessible to cosmological observations. These
spectra provide a distinctive signature of inflation. They can be measured in a variety of
different ways including the analysis of microwave background anisotropies.

The physical processes which give rise to the structures we observe today are well-
explained in Fig. 8. Quantum fluctuations of the inflaton field are generated during inflation.
Since gravity talks to any component of the universe, small fluctuations of the inflaton field
are intimately related to fluctuations of the spacetime metric, giving rise to perturbations of
the curvature R (which will be defined in the following; the reader may loosely think of it
as a gravitational potential). The wavelenghts A of these perturbations grow exponentially
and leave soon the horizon when A > Rpg. On superhorizon scales, curvature fluctuations
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are frozen in and may be considered as classical. Finally, when the wavelength of these fluc-
tuations reenters the horizon, at some radiation- or matter-dominated epoch, the curvature
(gravitational potential) perturbations of the spacetime give rise to matter (and tempera-
ture) perturbations dp via the Poisson equation. These fluctuations will then start growing
giving rise to the structures we observe today.

In summary, two are the key ingredients for understanding the observed structures in the
universe within the inflationary scenario:

e Quantum fluctuations of the inflaton field are excited during inflation and stretched
to cosmological scales. At the same time, being the inflaton fluctuations connected to
the metric perturbations through Einstein’s equations, ripples on the metric are also
excited and stretched to cosmological scales.

e Gravity acts a messanger since it communicates to baryons and photons the small seed
perturbations once a given wavelength becomes smaller than the horizon scale after
inflation.

Let us know see how quantum fluctuations are generated during inflation. We will proceed
by steps. First, we will consider the simplest problem of studying the quantum fluctuations
of a generic scalar field during inflation: we will learn how perturbations evolve as a function
of time and compute their spectrum. Then — since a satisfactory description of the generation
of quantum fluctuations have to take both the inflaton and the metric perturbations into
account — we will study the system composed by quantum fluctuations of the inflaton field
and quantum fluctuations of the metric.

4.1 Quantum fluctuations of a scalar field during inflation

Let us first see how the fluctuations of a generic scalar field y, which is not the inflaton field,
behave during inflation. To warm up we first consider a de Sitter epoch during which the
Hubble rate is constant.

We assume this field to be massless. The massive case will be analyzed in the next
subsection.

Expanding the scalar field y in Fourier modes

Pe
6X(X7 t) :/ (271_)3/2 6Zk 5Xk(t)a

we can write the equation for the fluctuations as

k’2
O + 3H 0 + — X1 = 0. (68)

Let us study the qualitative behaviour of the solution to Eq. (68).

e For wavelengths within the horizon, A < H~!, the corresponding wavenumber satisfies
the relation k£ > a H. In this regime, we can neglect the friction term 3H dxyx and Eq.
(68) reduces to

/{?2
0k + 5 0xk =0, (69)
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which is — basically — the equation of motion of an harmonic oscillator. Of course, the
frequency term k?/a® depends upon time because the scale factor a grows exponen-
tially. On the qualitative level, however, one expects that when the wavelength of the
fluctuation is within the horizon, the fluctuation oscillates.

e For wavelengths above the horizon, A > H~!, the corresponding wavenumber satisfies
the relation & < aH and the term k?/a® can be safely neglected. Eq. (68) reduces to

OXx +3H dxx =0, (70)
which tells us that on superhorizon scales dxyx remains constant.

We have therefore the following picture: take a given fluctuation whose initial wavelength
A ~ a/k is within the horizon. The fluctuations oscillates till the wavelength becomes of the
order of the horizon scale. When the wavelength crosses the horizon, the fluctuation ceases
to oscillate and gets frozen in.

Let us know study the evolution of the fluctuation is a more quantitative way. To do so,
we perform the following redefinition

)
Sy = 27k
a

and we work in conformal time dr = dt/a. For the time being, we solve the problem for a
pure de Sitter expansion and we take the scale factor exponentially growing as a ~ e’*; the
corresponding conformal factor reads (after choosing properly the integration constants)

In the following we will also solve the problem in the case of quasi de Sitter expansion. The
beginning of inflation coincides with some initial time 7; < 0. Using the set of rules (15),
we find that Eq. (68) becomes

Soll + <k2 - %) Sow = 0. (71)

We obtain an equation which is very ‘close’ to the equation for a Klein-Gordon scalar field
in flat spacetime, the only difference being a negative time-dependent mass term —a”/a =
—2/72. Eq. (71) can be obtained from an action of the type

1 1 a”

which is the canonical action for a simple harmonic oscillator with canonical commutation
relations dojdoy, — doxdoy = —i.
Let us study the behaviour of this equation on subhorizon and superhorizon scales. Since

k

o
aH ™
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on subhorizon scales k? > a”/a Eq. (71) reduces to
Sop + k* b0y = 0,

whose solution is a plane wave

S = (k> aH). (73)

We find again that fluctuations with wavelength within the horizon oscillate exactly like
in flat spacetime. This does not come as a surprise. In the ultraviolet regime, that is
for wavelengths much smaller than the horizon scale, one expects that approximating the
spacetime as flat is a good approximation.

On superhorizon scales, k* < a”/a Eq. (71) reduces to

"
(SO'IZ — ;60’1( = 0,

which is satisfied by
dox = B(k)a (k< aH). (74)

where B(k) is a constant of integration. Roughly matching the (absolute values of the)
solutions (73) and (74) at k = aH (—k7 = 1), we can determine the (absolute value of the)

constant B(k)
1 1 H

Bla= o = B = =

Going back to the original variable dyy, we obtain that the quantum fluctuation of the y
field on superhorizon scales is constant and approximately equal to

H
2k3

10| = (ON SUPERHORIZON SCALES)

ﬁ

In fact we can do much better, since Eq. (71) has an ezact solution:

fon = E <1+i) (75)
NGy kr )

This solution reproduces all what we have found by qualitative arguments in the two extreme
regimes k < aH and k > aH. The reason why we have performed the matching procedure
is to show that the latter can be very useful to determine the behaviour of the solution on
superhorizon scales when the exact solution is not known.

So far, we have solved the equation for the quantum perturbations of a generic massless
field, that is neglecting the mass squared term mi. Let us know discuss the solution when
such a mass term is present. Eq. (71) becomes

Sop + [k* + M?(1)] do = 0, 76
k
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where
M?(7) = (m2 — 2H?) a*(1) = 1 (m—2 — 2) :

Eq. (76) can be recast in the form

1 1
s o L (- D] -

72

where

The generic solution to Eq. (76) for v, real is
dox = —T [cl(k) H,Ei)(—kn‘) + o (k) H,Ei)(—kn')] :
where H,Si) and H,Si) are the Hankel’s functions of the first and second kind, respectively.

If we impose that in the ultraviolet regime k > aH (—k7 > 1) the solution matches the
plane-wave solution e~7 /v/2k that we expect in flat spacetime and knowing that

2 ) us us 2 ; us us
HY(z > 1) ~ \/ — eile=5n—%) CHP (2> 1) ~ g — e_l(f”_ﬁ”x—z),
X T X T
we set co(k) =0 and ¢ (k) = @ ¢/("T2)5 . The exact solution becomes
™ 1\=m
0ok = % ¢l(nta)s /=7 H,Si)(—kr). (79)

On superhorizon scales, since ngi)(a: < 1) ~ /2/me 2 X3 (I'(vy)/T'(3/2)) x7¥x, the
fluctuation (79) becomes

sy P(y) 1 (=),
I'(3/2) v2k

Going back to the old variable dxyi, we find that on superhorizon scales, the fluctuation with
nonvanishing mass is not exactly constant, but it acquires a tiny dependence upon the time

NIE]

(1

00K = ¢i(n—3)

H (k)™

If we now define, in analogy with the definition of the slow roll parameters 1 and € for the
inflaton field, the parameter 7, = (m?}/3H?) < 1, one finds

3

5 = Ny (80)
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It is instructive to analyze the case in which v, is imaginary, that is m,/H > 3/2. In such
a case, we define v = iv. In superhorizon scales, performing the same steps we have done
for the case of v, real, we find

Ol = %e;jé [(1 : COt(W:Z;)Sinh(Wﬁ) WSiﬂE(?Tﬁ) * (81)
2 Re(i <COS 2 ﬁln(%)) +isin (2 mn(%))) 1F_(1CT(Z.7;)/) F(;w))] (aﬁH)n_l.

In the limit of long wavelengths, the highly oscillating term which appears in the real part
can be neglected because its average on k is 0. The resulting power spectrum is the following

_ 2 - . —~ .
P(Sx(k) _ %6_7”/(]{> ((1+Cot(7r1/)f)smh(7w) + M ) (82)

o T wsinh(7D)

n—1 3
<(an) = 6" () ()
Therefore, for very massive scalar fields, m, > 3H/2, the power spectrum has an ampli-
tude which is suppressed by the ratio (H/m,) and the spectrum falls down rapidly al large
wavelengths k=1 as k3.

We have previously said that the quantum flactuations can be regarded as classical when
their corresponding wavelengths cross the horizon. To better motivate this statement, we
should compute the number of particles ny per wavenumber k on superhorizon scales and
check that it is indeed much larger than unity, n, > 1 (in this limit one can neglect the
“quantum” factor 1/2 in the Hamiltonian Hy = wy (nk + %) where wy is the energy eigen-
value). If so, the fluctuation can be regarded as classical. The number of particles ny can be
estimated to be of the order of Hy/wy, where Hy is the Hamiltonian corresponding to the

action

55K = / dr Béaf + % (k* — M?(7)) 5012{} : (83)

One obtains on superhorizon scales

M2(7) |6xic|? E\ 7P
e (7) loxal” (_) > 1,
Wk aH

which confirms that fluctuations on superhorizon scales may be indeed considered as classical.

4.2 The Power Spectrum

Let us define now the power spectrum, a useful quantity to characterize the properties of
the perturbations. For a generic quantity g(x,t), which can expanded in Fourier space as

xct) = [ G )
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the power spectrum can be defined as

272

(0]gx, 9x.|0) = 63 (k; — ky) = Py(k), (84)

where |0) is the vacuum quantum state of the system. This definition leads to the usual
relation

0. 000) = [ TR0 (55)

So far, we have computed the time evolution and the spectrum of the quantum flutuations
of a generic scalar field x supposing that the scale factor evolves like in a pure de Sitter
expansion, a(7) = —1/(H7). However, during inflation the Hubble rate is not exactly
constant, but changes with time as H = —e H? (quasi de Sitter expansion), In this subsection,
we will solve for the perturbations in a quasi de Sitter expansion. Using the definition of the
conformal time, one can show that the scale factor for small values of € becomes

alr) =~ =
- H7T(l—¢)
Eq. (76) has now a squared mass term
"
2y _ .22 @
M=(T) = mia” — —
where
"
L ( +H2):a (H+2H2>
a
9 _
- P gmr= 27
72 (1 —€)
1
~ (2436 (86)

Taking m? /H? = 31, and expanding for small values of € and 7 we get Eq. (77) with

3
=g te—iy (87)

Armed with these results, we may compute the variance of the perturbations of the generic
x field

OlGxef 0 = [ 31

dk k;3
= | Xk|

=/k%m> (58)
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which defines the power spectrum of the fluctuations of the scalar field x

/{33

o2 0% - (89)

Psy (k) =

Since we have seen that fluctuations are (nearly) frozen in on superhorizon scales, a way
of characterizing the perturbations is to compute the spectrum on scales larger than the
horizon. For a massive scalar field, we obtain

Poy(k) = (;) (iH) . (90)

We may also define the spectral index ns, of the fluctuations as

dlnP5¢
ng, — 1= Tk =3 —2v, =21, — 2e.

The power spectrum of fluctuations of the scalar field x is therefore nearly flat, that is
is nearly independent from the wavelength A\ = 7/k: the amplitude of the fluctuation on
superhorizon scales does not (almost) depend upon the time at which the fluctuations crosses
the horizon and becomes frozen in. The small tilt of the power spectrum arises from the fact
that the scalar field y is massive and because during inflation the Hubble rate is not exactly
constant, but nearly constant, where ‘nearly’ is quantified by the slow-roll parameters e.
Adopting the traditional terminology, we may say that the spectrum of perturbations is blue
if ng, > 1 (more power in the ultraviolet) and red if ns, < 1 (more power in the infrared).
The power spectrum of the perturbations of a generic scalar field y generated during a period

of slow roll inflation may be either blue or red. This depends upon the relative magnitude
m2 ¢2
(%)
2 Y

between 7, and €. For instance, in chaotic inflation with a quadric potential V (¢) =
one can easily compute

2
n5x—1=2nx—2€=ﬁ(mi—mi)v

which tells us that the spectrum is blue (red) if m? >m? (m? > mj).

Comment: We might have computed the spectral index of the spectrum Ps, (k) by first
solving the equation for the perturbations of the field y in a di Sitter stage, with H = con-
stant and therefore ¢ = 0, and then taking into account the time-evolution of the Hubble
rate introducing the subscript in Hj, whose time variation is determined by Eq. (60). Cor-
respondingly, H}, is the value of the Hubble rate when a given wavelength ~ k=! crosses the
horizon (from that point on the fluctuations remains frozen in). The power spectrum in such

an approach would read
HA\2 [ k22
Pt = (55) (o) (o1)
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with 3 — 2, ~n,. Using Eq. (60), one finds

_ dinPsy  dinH?

T L= T T ik
which reproduces our previous findings.

+3—2v, =2n, — 2¢

Comment: Since on superhorizon scales

e~ (N g (2
WS \ar) T [T O )]

we discover that

|0Xx| 2 [H (ny — €) dOxu| < [H dxxl, (92)
that is on superhorizon scales the time variation of the perturbations can be safely neglected.
As we have mentioned in the previous section, the linear theory of the cosmological per-
turbations represent a cornerstone of modern cosmology and is used to describe the formation
and evolution of structures in the universe as well as the anisotrpies of the CMB. The seeds
for these inhomegeneities were generated during inflation and stretched over astronomical
scales because of the rapid superluminal expansion of the universe during the (quasi) de
Sitter epoch.
In the previous section we have already seen that pertubations of a generic scalar field
X are generated during a (quasi) de Sitter expansion. The inflaton field is a scalar field
and, as such, we conclude that inflaton fluctuations will be generated as well. However, the
inflaton is special from the point of view of perturbations. The reason is very simple. By
assumption, the inflaton field dominates the energy density of the universe during inflation.
Any perturbation in the inflaton field means a perturbation of the stress energy-momentum
tensor

0 = 01,

A perturbation in the stress energy-momentum tensor implies, through Einstein’s equations
of motion, a perturbation of the metric

1
5T/J,l/ — [5Rpu - 55 (QWR)} = 87TG5TH,, - (Sgwj.

On the other hand, a pertubation of the metric induces a backreaction on the evolution of
the inflaton perturbation through the perturbed Klein-Gordon equation of the inflaton field

09w =0 <8u8”¢ + g—‘;) = 0= 0¢.

This logic chain makes us conclude that the perturbations of the inflaton field and of the
metric are tightly coupled to each other and have to be studied together

00 <= 09
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As we will see shortly, this relation is stronger than one might thought because of the issue
of gauge invariance.

Before launching ourselves into the problem of finding the evolution of the quantum
perturbations of the inflaton field when they are coupled to gravity, let us give a heuristic
explanation of why we expect that during inflation such fluctuations are indeed present.

If we take Eq. (50) and split the inflaton field as its classical value ¢q plus the quantum
flucutation d¢, ¢(x,t) = ¢o(t) +dp(x,t), the quantum perturbation d¢ satisfies the equation
of motion
V25¢

a?

8¢+ 3H 6¢ — +V"5¢p = 0. (93)

Differentiating Eq. (55) wrt time and taking H constant (de Sitter expansion) we find
(o) +3Hdo+ V" dg = 0. (94)

Let us consider for simplicity the limit k*/a* < 1 and let us disregard the gradient term.
Under this condition we see that QSQ and d¢ solve the same equation. The solutions have
therefore to be related to each other by a constant of proportionality which depends upon
time , that is

8¢ = —gho 0t (x). (95)

This tells us that ¢(x,t) will have the form

d(x,t) = o (x,t — 5t(x)) .

This equation indicates that the inflaton field does not acquire the same value at a
given time ¢ in all the space. On the contrary, when the inflaton field is rolling down its
potential, it acquires different values from one spatial point x to the other. The inflaton field
is not homogeneous and fluctuations are present. These fluctuations, in turn, will induce
fluctuations in the metric.

4.3 The Metric Fluctuations

The mathematical tool do describe the linear evolution of the cosmological perturbations is
obtained by perturbing at the first-order the FRW metric g,g,),), see Eq. (525)

G = 99 + gu(xt);  gu < g (96)

The metric perturbations can be decomposed according to their spin with respect to a local
rotation of the spatial coordinates on hypersurfaces of constant time. This leads to

e scalar perturbations
e vector perturbations

e tensor perturbations
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Tensor perturbations or gravitational waves have spin 2 and are the “true” degrees of
freedom of the gravitational fields in the sense that they can exist even in the vacuum.
Vector perturbations are spin 1 modes arising from rotational velocity fields and are also
called vorticity modes. Finally, scalar perturbations have spin 0.

Let us make a simple exercise to count how many scalar degrees of freedom are present.
Take a spacetime of dimensions D = n + 1, of which n coordinates are spatial coordinates.
The symmetric metric tensor g, has 3(n + 2)(n 4 1) degrees of freedom. We can perform
(n+1) coordinate transformations in order to eliminate (n+1) degrees of freedom, this leaves
us with $n(n + 1) degrees of freedom. These $n(n + 1) degrees of freedom contain scalar,
vector and tensor modes. According to Helmholtz’s theorem we can always decompose a
vector u; (1 = 1,--+.,n) as u; = Ov + v;, where v is a scalar (usually called potential
flow) which is curl-free, vj; j; = 0, and v; is a real vector (usually called vorticity) which is
divergence-free, V - v = 0. This means that the real vector (vorticity) modes are (n — 1).
Furthermore, a generic traceless tensor II;; can always be decomposed as I1;; = Hfj—l—H};—l—Hg},

where IT5, = (—’“i’“ﬂ‘ géij) I, I} = (—i/2k) (k;IL; + k;IL) (k1L = 0) and k1% = 0. This

k2
means that the true symmetric, traceless and transverse tensor degreees of freedom are
%(n —2)(n+1).
The number of scalar degrees of freedom are therefore

%n(nﬂ)—(n—1>—%(n—2)(n+1>:2,

while the degrees of freedom of true vector modes are (n — 1) and the number of degrees of
freedom of true tensor modes (gravitational waves) are 5(n — 2)(n + 1). In four dimensions
n = 3, meaning that one expects 2 scalar degrees of freedom, 2 vector degrees of freedom
and 2 tensor degrees of freedom. As we shall see, to the 2 scalar degrees of freedom from the
metric, one has to add an another one, the inflaton field perturbation d¢. However, since
Einstein’s equations will tell us that the two scalar degrees of freedom from the metric are
equal during inflation, we expect a total number of scalar degrees of freedom equal to 2.

At the linear order, the scalar, vector and tensor perturbations evolve independently
(they decouple) and it is therefore possible to analyze them separately. Vector perturbations
are not excited during inflation because there are no rotational velocity fields during the
inflationary stage. We will analyze the generation of tensor modes (gravitational waves) in
the following. For the time being we want to focus on the scalar degrees of freedom of the
metric.

Considering only the scalar degrees of freedom of the perturbed metric, the most generic
perturbed metric reads

L[ —1-24 0B )
G = Q@ )
g OB (1 —24)6; + DyE

while the line-element can be written as
ds* = a®((=1 =2 A)dr* + 20;Bdrds’ + ((1—-2¢)6;; + DyE) dz'da?).  (98)

Here Dij = (0,0] - %5” V2)



We now want to determine the inverse g"” of the metric at the linear order
gua o = 55
We have therefore to solve the equations
(géﬁ;‘ + g‘“) (95 + gaw) = 0L,

where gégo)l is simply the unperturbed FRW metric (525). Since

1 -1 0

poo_
o=@ o g

we can write in general

1
9" = — (-1 + X);
a
. 1
9" = —28ZY;
a
3 1 g g
97 = < (1 +22)" + D'K).
a

Plugging these expressions into Eq. (100) we find for p = v =0
(-1 + X)(=1 —24) + Y 9B = 1.
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(101)

(102)

(103)

Neglecting the terms —2 A- X e 0'Y -0; B because they are second-order in the perturbations,

we find
1—-X+2A=1 = X =2A.

Analogously, the components p = 0, v = i of Eq. (100) give
(=1 + 2A)(0;B) + #Y [(1 — 2¢)8;; + D;;E] = 0.
At the first-order, we obtain
—0;B + 9Y =0 = Y =08.
Finally, the components y =i, v = j give
BB + ((1 +22)5"% + D*K) (1 —2¢)8; + DiyE) = 6.

Neglecting the second-order terms, we obtain

(1-2¢+22)8 + DIE+ DK =6i=2Z=14; K=-E.

The metric g finally reads

1 { -1+24 OB
a’ OB (1 +2¢)6 — DVE

(104)

(105)

(106)

(107)

(108)

(109)
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In this subsection we provide the reader with the perturbed affine connections and Ein-

stein’s tensor.

First, let us list the unperturbed affine connections

/

/

o _ 4 i d g o _ @
Foo—ga FOj_g(Sju Fij—gé
Féo - ng - F;k = 0.
The expression for the affine connections in terms of the metric is
1 99 993, _ 09p
e —= Zgw [ p 2l
UL <8xﬁ T P T ow
which implies
1 99 9930 99p
o _ Z5ag®” Y P 2l
By 2 %Y (8x5 * oz Oz
4 lgap 90gpy | 00gs,  0dgpy
2 0xP ox oxP
or in components
ory, = A’

/
a

/
oTi, = Z0'B + 0'B' + 0'A;
a

STO. —

v

—W(S,-j - %DijE + %l)wEv7

oL, = — 0y +

OTh = 00 — O dt + Oy — %8iB<5jk

1
-D
2

/ .
ijE )

ij )

)

2% Ay — 0,0;B — 2% 05,
a a

1 . 1 : 1.

We may now compite the Ricci scalar defines as

R,ul/ = 80! qu - a,u Fg{a + F?a FZV - ng FZ(X :

Its variation at the first-order reads

5R,ul/ = 80! 5F;O;V - aﬂ 5F30¢ + 5Fga FZV + Fga 5FZV

org, I'he — 15,017, -

(110)

(111)

(112)

(113)

(114)

(115)

(116)

(117)

(118)

(119)

(120)

(121)



The background values are given by

" 2
RQOZ—Ba’——Fg(g) X R()Z':O;
a a

- (£ ()

!/ / /
6Rop = 0.0 B+ 0,0'B'+ 0,0' A+ 30 + 3=/ +-3Z A
a

which give

"

a '\’ / a 1 kv
a a a 2
a a a a 2
SRy, = (— S/ D iy (—) A
a a a a
/ !/

/ 2 /
— 2%y (1) ) — 0" + 00k — %8k8k3)5ij

a a

a a’ a 2
- 0,0;B'"+ —Dy;E' + —D;;E + <—> D;;E

a a a

1 ” a
+ §DijE + 0,0;¢ — 0,0;A — QEaiajB
1 1 1
+ §8k81DfE + §8k8JDfE - §8kakaE ;
The perturbation of the scalar curvature
R = ¢"" Roy,

for which the first-order perturbation is

OR = 69" Ry + g"*OR,, .

The background value is

6 "
R — ? —
while from Eq. (128) one finds
1 a i @ ! 7 "
SR = —2< —6L9,0'B — 20,0'B' — 20,0' A — 6¢)
a a

/)

a a’ a” , ,
o6l 18y —12% A+ 49,00y + 8k8’DfE>.
a a a
Finally, we may compute the perturbations of the Einstein tensor

1
G,uu = R,uu - §guuR7
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(122)

(123)

(124)

(125)

(126)

(127)

(128)

(129)

(130)

(131)
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whose background components are

a'\ 2 a’ a2
G00=3<;) ; Goi = 0; Gij:(—Qz“_(E))éij- (132)

At first-order, one finds

1 1
5G/u/ = 5R;w - 5 5g/u/ R — 5 Guv 5R, (133)
or in components
a o a i 1 i Mk
a”’ a\’ 1 a

0Gy; = —2; 0;B + <5) 0;B + 20;¢' + §ak DfE’ + 2 " 0;A; (135)

a

/ / " I\ 2
3Gy = (25A’+41¢’+4a—A—2<3) A
a a a
"

/N 2
+ 4‘%—2(%) W+ 20" — 90"

a
+ 2% 0u0F B + 0,0" B + 0,0 A + %akam Dk E) 5

"

/
— 0,0;B'+ 0,0, — 0,0;A + % Di;E' —2 % Di,E

a \? 1 L1 .
1, 1, a
+ 58 8; Dy E — §aka Di,E —2 gaiajB. (136)

For convenience, we also give the expressions for the pertubations with one index up and
one index down

0GE = §(grCer)
5gua Gau + QW 5Gau ) (137>
or in components
D) / / . . 1 ;
5G9 =6 <ﬁ> A+ 62y +228,0B — 28,00 — = 0,0 DFE. (138)
a a a 2

/
1
5GY = —2%82-14 - 200 - SODIE . (139)



a’ a’

. a/ ! 2 ) a/
0Gh = <2—A’+4—A—2<—>A+(9i(9’A+4—w’+2¢”
a a a a

— 8,0 + 2%&- OB + 8,08 + %akamp’,;E) 5i

1

/ /
— D0A+ 00 — 22008 — 9B + —D,E' + 5 D,E"
a a

2
1, 1 ; 1 ;
+ 500 DIE + 5 0,0; DYE — - 0:0" DiE.
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(140)

As we have seen previously, the perturbations of the metric are induced by the pertur-

bations of the stress energy-momentum tensor of the inflaton field

1
TMV = u¢au¢ - Guw (5 gaﬁ aa¢aﬁ¢ - V(¢)) ’

whose background values are

1

Too = §¢/2 + V(¢) a?
To, = 0;
T, = (% ¢” - V<¢>a2) 3ij -

The perturbed stress energy-momentum tensor reads

1
T = 0,060,6 + 0,00,56 — b (39 0000 + V(6))

1 oV oV
9w <§5g°‘5 Ot O + g*° 000 Dpp + —— 66 + —5¢) .

¢ ¢

In components we have
oV

T = 6¢' ¢ + 2AV(¢)a® + a20—¢5¢;

0Ty, = 0,00 ¢ + %@B ¢ — OBV (¢)a?;

0Ty = ((W ¢ — Ag” — a2%6<1>¢ — ¢ + 20V (9) az) 8ij
-+ lDijE¢/2 - DZjEV(¢) CL2 :

2

For covenience, we list the mixed components

0Tt = 6(g" Tw)
= 5guoz Toa/ + gua 6T05V

(141)

(142)

(143)

(144)

(145)

(146)

(147)
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or
STO = A¢” — 6¢/ ¢ — 5¢g—‘;a2-
0Ty = O'B¢* + 9'6¢ ¢’
8Ty = =86 ¢';
0Tt = (—A¢’2 + 8¢ ¢ — 5¢a—va2> 5t (148)
J a¢ J

The inflaton equation of motion is the Klein-Gordon equation of a scalar field under the
action of its potential V(¢). The equation to perturb is therefore

ov
" — .
0"0, ¢ 35
1
Wo'e = —— 0, (V—99"0.9) ; 149
., = (v ) (149)
which at the zero-th order gives the inflaton equation of motion
! ov
U 22 — 2 ) 1
¢ +2—¢ 36 ° (150)

The variation of Eq. (381) is the sum of four different contributions corresponding to the
variations of \/%Tz’ v—g, g and ¢. For the variation of g we have

59 = ggwjégl/u = dg = g“l/dguu (151)

which give at the linear order

/=g = —2\5/g_—g;
L g
o= = (152)

Plugging these results into the expression for the variation of Eq. (150)

m s g, / i " &/ / v,
60,0" ¢ = 3¢ 2a'5¢ + 0,000 + 2A¢ +4aA¢> + A'¢p
+ 3¢'¢ + 0,0B¢
o*V
= 602 a2, 1
S 8(]52& (153)
Using Eq. (150) to write
a’ ov
2A¢" +4—¢ = 2A—— 154
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Eq. (153) becomes

/
56" + Q%M — 8,066 — A¢ — 39 — 8,0B¢
92V oV

After having computed the perturbations at the linear order of the Einstein’s tensor and of
the stress energy-momentum tensor, we are ready to solve the perturbed Einstein’s equations
in order to quantify the inflaton and the metric fluctuations. We pause, however, for a
moment in order to deal with the problem of gauge invariance.

When studying the cosmological density perturbations, what we are interested in is
following the evolution of a spacetime which is neither homogeneous nor isotropic. This
is done by following the evolution of the differences between the actual spacetime and a
well understood reference spacetime. So we will consider small perturbations away from
the homogeneous, isotropic spacetime (see Fig. 9). The reference system in our case is
the spatially flat Friedmann—Robertson-Walker (FRW) spacetime, with line element ds? =
a?(7) {dr* — 6;;dx'dx?}. Now, the key issue is that general relativity is a gauge theory where
the gauge transformations are the generic coordinate transformations from a local reference
frame to another.

When we compute the perturbation of a given quantity, this is defined to be the difference
between the value that this quantity assumes on the real physical spacetime and the value
it assumes on the unperturbed background. Nonetheless, to perform a comparison between
these two values, it is necessary to compute the at the same spacetime point. Since the two
values “live” on two different geometries, it is necessary to specify a map which allows to link
univocally the same point on the two different spacetimes. This correspondance is called a
gauge choice and changing the map means performing a gauge transformation.

Fixing a gauge in general relativity implies choosing a coordinate system. A choice
of coordinates defines a threading of spacetime into lines (corresponding to fixed spatial
coordinates x) and a slicing into hypersurfaces (corresponding to fixed time 7). A choice of
coordinates is is called a gauge and there is no unique preferred gauge

GAUGE CHOICE <= SLICING AND THREADING

From a more formal point of view, operating an infinitesimal gauge tranformation on the
coordinates N
zh = gt 4 Szt (156)

implies on a generic quantity () a tranformation on its perturbation
0Q = 6Q + L5, Qo (157)

where () is the value assumed by the quantity ) on the background and £5, is the Lie-
derivative of () along the vector dz*.
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Decomposing in the usual manner the vector dx*

oz’ = €(aM);

or' = O'B(a") + v'(x"); o' =0, (158)
we can easily deduce the transformation law of a scalar quantity f (like the inflaton scalar
field ¢ and energy density p). Instead of applying the formal definition (157), we find the

transformation law in an alternative (and more pedagogical) way. We first write 0 f(x) =
f(z) — fo(x), where fy(z) is the background value. Under a gauge transformation we have

5?(5‘7) — f(x") — fo(z¥). Since f is a scalar we can write f(z#) = f(z*) (the value of the
scalar function in a given physical point is the same in all the coordinate system). On the

other side, on the unperturbed background hypersurface ﬁ] = fo. We have therefore

5T@m) = @) - fol@)
f(fi) - fo({“v)
f (x“) — fo(z")

= p) o I

(7) = folzh),
(159)

from which we finally deduce, being fo = fo(z2),

of =of—f¢°

For the spin zero perturbations of the metric, we can proceed analogously. We use the
following trick. Upon a coordinate transformation z# — x# = x* 4 dz*, the line ele-

— - ~ N2
ment is left invariant, ds? = ds2. This implies, for instance, that a?(z9) (1 + A) <d:c0) =
a?(x0) (1 + A) (dz?)2. SinceNaz(:;]) ~ a?(2°) + 200’ € and dz® = (1+ &%) da® + 0% o,
we obtain 1 + 24 = 1+ 2A + 27HE + 26Y. A similar procedure leads to the following
transformation laws

~ a/

A = A-¢— =
a
B = B+ +p
1 /
b o= ¥ - VI 4 =g
3 a
E = E+28.
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The gauge problem stems from the fact that a change of the map (a change of the coordinate
system) implies the variation of the perturbation of a given quantity which may therefore
assume different values (all of them on a equal footing!) according to the gauge choice. To
eliminate this ambiguity, one has therefore a double choice:

e Indentify those combinations representing gauge invariant quantities;

e choose a given gauge and perform the calculations in that gauge.

Both options have advantages and drawbacks. Choosing a gauge may render the computa-
tion technically simpler with the danger, however, of including gauge artifacts, i.e. gauge
freedoms which are not physical. Performing a gauge-invariant computation may be techni-
cally more involved, but has the advantage of treating only physical quantities.

Let us first indicate some gauge-invariant quantities which have been introduced first in
Ref. [16]. They are the so-called gauge invariant potentials or Bardeen’s potentials

1 EN T
B 1 _, a E'
U= —1 6VE+G(B 2). (161)

Analogously, one can define a gauge invariant quantity for the perturbation of the inflaton
field. Since ¢ is a scalar field d¢ = (d¢ — ¢’ €°) and therefore

56 = 56 + ¢ (% - B)

is gauge-invariant.
Analogously, one can define a gauge-invariant energy-density perturbation

We now want to pause to introduce in details some gauge-invariant quantities which
play a major role in the computation of the density perturbations. In the following we will
be interested only in the coordinate transformations on constant time hypersurfaces and
therefore gauge invariance will be equivalent to independent of the slicing.
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4.4 'The comoving curvature perturbation

The intrinsic spatial curvature on hypersurfaces on constant conformal time 7 and for a flat
universe is given by

G R = izv%p.
a

The quantity ¢ is usually referred to as the curvature perturbation. We have seen, however,
that the the curvature potential i is not gauge invariant, but is defined only on a given
slicing. Under a transformation on constant time hypersurfaces t — t + 67 (change of the
slicing)

Y — Y+ HOT.

We now consider the comoving slicing which is defined to be the slicing orthogonal to the
worldlines of comoving observers. The latter are are free-falling and the expansion defined
by them is isotropic. In practice, what this means is that there is no flux of energy measured
by these observers, that is Tp; = 0. During inflation this means that these observers measure
ddeom = 0 since Ty; goes like 0;00(x, 7)d (7).

Since 6¢ — d¢ — ¢'67 for a transformation on constant time hypersurfaces, this means
that

09
ga
that is 07 = ‘;—d,’ is the time-displacement needed to go from a generic slicing with generic

d¢ to the comoving slicing where d¢com = 0. At the same time the curvature pertubation
transforms into

8¢ — 6Peom = 0 — ¢ 5T = 0 = 67 =

¢H¢com:¢+ HéT:w—F H%

The quantity

0p 0p
R=v+ HL =+ HL
v ¢’ v 0]

is the comoving curvature perturbation. This quantity is gauge invariant by construction and
is related to the gauge-dependent curvature perturbation v on a generic slicing to the inflaton
perturbation d¢ in that gauge. By construction, the meaning of R is that it represents the
gravitational potential on comoving hypersurfaces where d¢ = 0

R = ¢|5¢=0’

We now consider the slicing of uniform energy density which is defined to be the the
slicing where there is no perturbation in the energy density, dp = 0.
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Since d0p — 0p — p' 67 for a transformation on constant time hypersurfaces, this means
that

o
5,0—>5punif:5,0—,0'57':0:>57‘:—e,
that is o7 = % is the time-displacement needed to go from a generic slicing with generic dp

to the slicing of uniform energy density where dpu,ir = 0. At the same time the curvature
pertubation ¢ transforms into

)
¢H¢unif:¢+ H(ST:w‘i‘ Hp_e
The quantity

op

o
C=w+H—,=¢+H—.'0
P P

is the curvature perturbation on slices of uniform energy density. This quantity is gauge
invariant by construction and is related to the gauge-dependent curvature perturbation 1 on
a generic slicing and to the energy density perturbation dp in that gauge. By construction,
the meaning of ( is that it represents the gravitational potential on slices of uniform energy
density

C = 1“5,):0 .

Notice that, using the energy-conservation equation p’ + 3H(p + p) = 0, the curvature
perturbation on slices of uniform energy density can be also written as

op
(=9t
3(p+p)
During inflation p+p = ¢*. Furthermore, on superhorizon scales from what we have learned
in the previous section (and will be rigously shown in the following) the inflaton fluctuation
0¢ is frozen in and d¢ = (slow roll parameters) x H §¢. This implies that dp = ¢pdp+ V'd¢p ~
V'é¢p ~ —3H ¢, leading to

i
33(#55 =Y+ H%R (ON SUPERHORIZON SCALES)

The comoving curvature pertubation and the curvature perturbation on uniform energy
density slices are equal on superhorizon scales.

We now consider the spatially flat gauge which is defined to be the the slicing where there
is no curvature g, = 0.

Since ¥ — ¥ + H 71 for a transformation on constant time hypersurfaces, this means
that

¢+
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UV — Yo =V + H5T:0:>5T:—%,
that is 07 = —1/ H is the time-displacement needed to go from a generic slicing with generic

1 to the spatially flat gauge where 1q,; = 0. At the same time the fluctuation of the inflaton
field transforms a

/

66 — 69 — ¢/ b1 = 60+ .

The quantity

Coos S wmsor Ly
Q=d6+5 v=d6+ V=R

is the inflaton perturbation on spatially flat gauges. This quantity is gauge invariant by
construction and is related to the inflaton perturbation d¢ on a generic slicing and to to
the curvature perturbation v in that gauge. By construction, the meaning of () is that it
represents the inflaton potential on spatially flat slices

Q=00 |51p:0 )
This quantity is often referred to as the Sasaki or Mukhanov variable [71, 61].

Notice that d¢ = —¢’67 = —pdt on flat slices, where 6t is the time displacement going
from flat to comoving slices. This relation makes somehow rigorous the expression (95).
Analogously, going from flat to comoving slices one has R = H dt.

4.5 Adiabatic and isocurvature perturbations

Arbitrary cosmological perturbations can be decomposed into:

e adiabatic or curvature perturbations which perturb the solution along the same trajec-
tory in phase-space as the as the background solution. The perturbations in any scalar
quantity X can be described by a unique perturbation in expansion with respect to
the background

Hét=H % FOR EVERY X.

In particular, this holds for the energy density and the pressure

op _ dp

p D
which implies that p = p(p). This explains why they are called adiabatic. They
are called curvature perturbations because a given time displacement &t causes the
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same relative change 0.X /X for all quantities. In other words the perturbations is
democratically shared by all components of the universe.

1socurvature perturbations which perturb the solution off the background solution

5—.X7£5l FOR SOME X AND Y.
X Y

One way of specifying a generic isocurvature perturbation 0X is to give its value on
uniform-density slices, related to its value on a different slicing by the gauge-invariant
definition

W (i)
X6p:0 X P

For a set of fluids with energy density p;, the isocurvature perturbations are conven-
tionally defined by the gauge invariant quantities

Op; 50‘)
=t (-2 —5(6-¢)

One simple example of isocurvature perturbations is the baryon-to-photon ratio S =
6(np/ny) = (0np/np) — (61, /ny).

1. Comment:

From the definitions above, it follows that the cosmological perturbations generated
during inflation are of the adiabatic type if the inflaton field is the only fiels driving
inflation. However, if inflation is driven by more than one field, isocurvature pertur-
bations are expected to be generated (and they might even be cross-correlated to the
adiabatic ones [18, 19, 21]). In the following, however, we will keep focussing — as
done so far — on the one-single field case, that is we will be dealing only with adia-
batic/curvature perturbations.

2. Comment: The perturbations generated during inflation are gaussian, i.e. the two-
point correlation functions (like the power spectrum) suffice to define all the higher-
order even correlation fucntions, while the odd correlation functions (such as the three-
point correlation function) vanish. This conclusion is drawn by the very same fact that
cosmological perturbations are studied linearizing Einstein’s and Klein-Gordon equa-
tions. This turns out to be a good approximation because we know that the inflaton
potential needs to be very flat in order to drive inflation and the interaction terms in
the inflaton potential might be present, but they are small. Non-gaussian features are
therefore suppressed since the non-linearities of the inflaton potential are suppressed
too. The same argument applies to the metric perturbations; non-linearities appear
only at the second-order in deviations from the homogeneous background solution and
are therefore small. This expectation has been recently confirmed by the first compu-
tation of the cosmological perturbations generated during inflation up to second-order
in deviations from the homogeneous background solution which fully account for the
inflaton self-interactions as well as for the second-order fluctuations of the background
metric [11].
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After all these technicalities, it is useful to rest for a moment and to go back to physics.
Up to now we have learned that during inflation quantum fluctuations of the inflaton field
are generated and their wavelengths are stretched on large scales by the rapid expansion of
the universe. We have also seen that the quantum fluctuations of the inflaton field are in fact
impossible to disantagle from the metric perturbations. This happens not only because they
are tightly coupled to each other through Einstein’s equations, but also because of the issue
of gauge invariance. Take, for instance, the gauge invariant quantity ) = d¢ + % 1. We can
always go to a gauge where the fluctuation is entirely in the curvature potential ¢, Q) = % ,
or entirely in the inflaton field, () = d¢. However, as we have stressed at the end of the
previous section, once ripples in the curvature are frozen in on superhorizon scales during
inflation, it is in fact gravity that acts as a messanger communicating to baryons and photons
the small seeds of perturbations once a given scale reenters the horizon after inflation. This
happens thanks to Newtonian physics; a small perturbation in the gravitational potential
1 induces a small perturbation of the energy density p through Poisson’s equiation V) =
47Gép. Similarly, if perturbations are adiabatic/curvature perturbations and, as such, treat
democratically all the components, a ripple in the curvature is communicated to photons as
well, giving rise to a nonvanishing 07'/T.

These considerations make it clear that the next steps will be

e Compute the curvature perturbation generated during inflation on superhorizon scales.
As we have seen we can either compute the comoving curvature perturbation R or the
curvature on uniform energy density hypersurfaces (. They will tell us about the
fluctuations of the gravitational potential.

e See how the fluctuations of the gravitational potential are transmitted to baryons and
photons.

We now intend to address the first point. As stressed previously, we are free to follow
two alternative roads: either pick up a gauge and compute the gauge-invariant curvature in
that gauge or perform a gauge-invariant calculation. We take both options.

The longitudinal (or conformal newtonian) gauge is a convenient gauge to compute the
cosmological perturbations. It is defined by performing a coordinate transformation such
that B = E = 0. This leaves behind two degrees of freedom in the scalar perturbations,
A and 9. As we have previously seen in subsection 7.1, these two degrees of freedom fully
account for the scalar perturbations in the metric.

First of all, we take the non-diagonal part (i # j) of Eq. (140). Since the stress energy-
momentum tensor does not have any non-diagonal component (no stress), we have

and we can now work only with one variable, let it be .
Eq. (139) gives (in cosmic time)

¢+H¢:4w@q‘sa¢=eff%¢, (162)

while Eq. (138) and the diagonal part of (140) (i = j) give respectively
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—3H @ v Hw) v V;f — 4nG (q'sag‘s — B V’6¢> , (163)

. . 2
_ (gg () ) posm b = - (506 o v'60), (164)

If we now use the fact that H = 47G¢?, sum Eqs. (163) and 164) and use the background
Klein-Gordon equation to eliminate V', we arrive at the equation for the gravitational po-
tential

H—2= 2\ H—-H= — =0 165
?/)k+< ; U + 5 Yt 5tk (165)
We may rewrite it in conformal time
, ¢// ¢// 9
k’+2<H ¢)¢k+2<H’ ¢,)¢k+k Y =0 (166)
and in terms of the slow-roll parameters € and 7
VW 2H (n— €)Yy + 2H? (7 — 2€) Yy + KXy = 0. (167)

Using the same logic leading to Eq. (92), from Eq. (165) we can infer that on superhori-
zon scales the gravitational potential ¢ is nearly constant (up to a mild logarithmic time-
dependence proportional to slow-roll parameters), that is Uy ~ (slow-roll parameters) X y.
This is hardly surprising, we know that fluctuations are frozen in on superhorizon scales.

Using Eq. (162), we can therefore relate the fluctuation of the gravitational potential
to the fluctuation of the inflaton field d¢ on superhorizon scales

00

U ~ e H%  (ON SUPERHORIZON SCALES) (168)

This gives us the chance to compute the gauge-invariant comoving curvature perturbation
R

5¢k Op Ok

=(14e¢— ~—. (169)
¢ ¢

The power spectrum of the the comoving curvature perturbation Ry then reads on super-

horizon scales

Ry =+ H—

K H? k?

P’R 22¢2|¢k|_

.

2671'2

What is left to evaluate is the time evolution of d¢y. To do so, we consider the perturbed
Klein-Gordon equation (155) in the longitudinal gauge (in cosmic time)

. ) k2 .
S + 3HOgy + E(Wk + V"5 = =2 V' + 4ihy .
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Since on superhorizon scales ‘4wk¢‘ < |t V', using Eq. (168) and the relation V' ~ —3H¢,
we can rewrite the perturbed Klein-Gordon equation on superhorizon scales as

5w + 3Hodw + (V' + 6eH?) 5¢nc = 0.

We now introduce as usual the field dyx = d¢x/a and go to conformal time 7. The perturbed
Klein-Gordon equation on superhorizon scales becomes, using Eq. (86),

1 1
oXx — ) <V2 - Z) dxx =0,
9
Vo= 1 + 9¢ — 3n. (170)

Using what we have learned in the previous section, we conclude that

V2i3 \aH

which justifies our initial assumption that both the inflaton perturbation and the gravita-
tional potential are nearly constant on superhorizon scale.

We may now compute the power spectrum of the comoving curvature perturbation on
superhorizon scales

1 H 2 k nR—l_ ) k nr—1
Prlb) = 5ne (%) <—H) = 4z <—H)

where we have defined the spectral index ng of the comoving curvature perturbation as

Ry
O] ~ —2 ( k ) (ON SUPERHORIZON SCALES)

dlnPR
ng—1= Tk =3 —2v = 21 — Ge.

We conclude that inflation is responsible for the generation of adiabatic/curvature pertur-
bations with an almost scale-independent spectrum.

From the curvature perturbation we can easily deduce the behaviour of the gravitational
potential ¢ from Eq. (162). The latter is solved by

Yy = Alk) + AnG dt' a(t') o(t') S (t') ~ Alk) + € Ri.

a a a

We find that during inflation and on superhorizon scales the gravitational potential is the sum
of a decreasing function plus a nearly constant in time piece proportional to the curvature
perturbation. Notice in particular that in an exact de Sitter stage, that is ¢ = 0, the



93

gravitational potential is not sourced and any initial condition in the gravitational potential
is washed out as a~! during the inflationary stage.

Comment: We might have computed the spectral index of the spectrum Px(k) by first
solving the equation for the perturbation d¢y in a di Sitter stage, with H = constant (¢ =
n = 0), whose solution is Eq. (75) and then taking into account the time-evolution of the
Hubble rate and of ¢ introducing the subscript in H; and qbk The time variation of the
latter is determined by

dng, (dng,\ [ dt \ (dna\ ¢ 1
dink ( dt ) (dlna) (dlnk) =g CmEmtT e (171)

Correspondingly, ¢, is the value of the time derivative of the inflaton field when a given
wavelength ~ k=1 crosses the horizon (from that point on the fluctuations remains frozen
in). The curvature perturbation in such an approach would read

H 1 [ H?
Pk 21 \ oy,

12

Correspondigly

dnPr  dnH! dng?

ok~ dnk  dmk et (2n—20) =2n -G

nR—IZ

which reproduces our previous findings.

During inflation the curvature perturbation is generated on superhorizon scales with a
spectrum which is nearly scale invariant, that is is nearly independent from the wavelength
A = 7 /k: the amplitude of the fluctuation on superhorizon scales does not (almost) depend
upon the time at which the fluctuations crosses the horizon and becomes frozen in. The
small tilt of the power spectrum arises from the fact that the inflaton field is massive, giving
rise to a nonvanishing n and because during inflation the Hubble rate is not exactly constant,
but nearly constant, where ‘nearly’ is quantified by the slow-roll parameters e.

Comment: From what found so far, we may conclude that on superhorizon scales the
comoving curvature perturbation R and the uniform-density gauge curvature ( satisfy on
superhorizon scales the relation

An independent argument of the fact that they are nearly constant on superhorizon scales
is given in the Appendix A.

In this subsection we would like to show how the computation of the curvature pertur-
bation can be performed in a gauge-invariant way. We first rewrite Einstein’s equations in
terms of Bardeen’s potentials (160) and (161)
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2 £
5G9 = a—( BH(H® + V') + V20 + 3H (—H + H?) (7—B)>, (172)
0 2 / ! 2 £
0G) = = O |H® + V + (H — H?) 7—3 (173)
8G = ;( QH +2H*)® + HP + 0" + 2H TV + = V2D)5
" ! 3 E ) 1 i
+ (W' =HH - W) (5 - B)o - 500D, (174)

with D = ® — W. These quantities are not gauge-invariant, but using the gauge transforma-
tions described in subsection 7.6, we can easily generalize them to gauge-invariant quantities

El/
SGYY = 5G9 + (GYY <7 - B) , (175)
JG = 560 + (G? - %T;f) 0, (% - B) , (176)
SG\NT = s+ (G L B (177)

7 J J 2

and
ST = 6T + (TR <E7 - B) = —0pY, (178)
oM = o1 + (Tf - %T;f) 0, (% - B) = (p+p)aton,  (179)
7 7 7\/ E,

T = §T! + (T)) (3 - B) = op(@ (180)

where we have written the stress energy-momentum tensor as T = (p + p) u*u” + pnt
with u# = (1,0%).
Einstein’s equations can now be written in a gauge-invariant way
— 3H(H® + V) + VU
= 471G <—c1> ¢ + 66 ¢ +
O (H® + V') = 47G (9,69 Y ¢') |
1 ) 1 .
((2H’ + H)® + HY + 0" + 2HT + §V2D) 0 = 500D,

= —4nG <<I>¢’2 — 66D ¢ 4
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Taking i # j from the third equation, we find D = 0, that is ¥ = & and from now on we
can work with only the variable ®. Using the background relation

!/ "

2(3)2 I YT (183)

a a
we can rewrite the system of Eqs. (182) in the form

VPO — 3HP — (H +2H?) = 47TG<5¢GI ¢ + 66D g‘; ) :
O +HE = AnG (56N ) ;

v

" +3HP + (H +2H*)® = 4nG (5¢<GI>¢ 5¢(GD ‘?% 2) . (184)
Substracting the first equation from the third, using the second equation to express (D
as a function of ® and @' and using the Klein-Gordon equation one finally finds the

¢// 5 ¢//
<I>"—|—2<H—g>(l>'—v¢—l—2<7-l' ¢/)(I>—O (185)
for the gauge-invariant potential ®.

We now introduce the gauge-invariant quantity

u = adpCV + 2T, (186)
/ :
z = a% = a%. (187)

Notice that the variable u is equal to —a @), the gauge-invariant inflaton perturbation on
spatially flat gauges.
Eq. (185) becomes

Z”

~ V2u— Zu =0, (188)

z
while the two remaining equations of the system (184) can be written as

Vi = 4%G%(zu' — Z'u) , (189)
2 /
(%) — 4rG:zu, (190)

which allow to determine the variables ® and §¢(GV.
We have now to solve Eq. (188). First, we have to evaluate = in terms of the slow-roll
parameters

Zl a/ QS” Hl QS”

H: Ha  He  H T He
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We then deduce that
¢// Z/
— =1 — .
He T

Keeping the slow-roll parameters constat in time (as we have mentioned, this corresponds
to expand all quantities to first-order in the slow-roll parameters), we find

0=1

M N o H! N (Z/)2
Hz  2H?2 Hz?

from which we deduce

Expanding in slow-roll parameters we find

S (lte—0)1—€) M2+ (1+e—08)° M2~ H2(2+ 2 —30).
z

If we set

this corresponds to

1 (1+e—06)(2-0)1" 3 3
v g 1+4 e _2—|—(2€ 5)_2+36 n.

On subhorizon scales (k > aH), the solution of equation (188) is obviously uy ~ e~ /\/2k.
Rewriting Eq. (190) as

2 12 :
q)k:_élea o (H ) |

K2 H \ap

we infer that on subhorizon scales

Do ~ i er
NG

On superhorizon scales (k < aH), one obvious solution to Eq. (188) is uyx o z. To find the
other solution, we may set uy = z uy, which satisfies the equation

-k
e ta,

~n /
k __ 2Z

= = —4,

Uy z

which gives
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On superhorizon scales therefore we find

_ ad ap [t H? ag 1
Uk—Cl(k)ﬁ‘l‘CQ(k)ﬁ/ dt a3—¢2_61(k)ﬁ_62(k)%’
where the last passage has been performed supposing a de Sitter epoch, H = constant. The
first piece is the constant mode c¢;(k)z, while the second is the decreasing mode. To find
the constant c¢;(k), we apply what we have learned in subsection 6.5. We know that on
superhorizon scales the exact solution of equation (188) is

U = g ei(r+2)% V=1 HY(=k7). (191)

On superhorizon scales, since ngl)(at < 1)~ 2/Te 523 (I'(vy)/I'(3/2)) 7%, the fluc-
tuation (191) becomes
o Daae W Ly
ug =e T)z7".
‘ r@/2)var

Therefore

Ui

H 1 (kN H 1 [k\™ 102
- v lan) =5 v (an) (192)

The last steps consist in relating the variable u to the comoving curvature R and to the
gravitational potential ®. The comoving curvature takes the form

H
R=-0— —6p=_"1 (193)
o z
Since z = ag /H = a\/2emp, the power spectrum of the comoving curvature can be expressed
on superhorizon scales as

H 2 L nr—1 L nr—1
— — =A% | — 194
27r2 ‘ 2mp1 € (27r) (CLH) R (CLH) (164)

Cl(]{?) = hmk_>0 >

with

nr —1=3—2v =2n— 6e. (195)
These results reproduce those found in the previous subsection.

The last step is to find the behaviour of the gauge-invariant potential ® on superhorizon
scales. If we recast equation (190) in the form

e = %% ( @k) : (196)



o8

we can infer that on superhorizon scales the nearly constant mode of the gravitational po-
tential during inflation reads

Oy = 1 (k) [1 - g / dt'a(t’)} ~ —cl(k)% =eci(k) ~ e% ~ —eRy. (197)

Indeed, plugging this solution into Eq. (196), one reproduces uy = cl(k:)%z;.

4.6 Gravitational waves

Quantum fluctuations in the gravitational fields are generated in a similar fashion of that of
the scalar perturbations discussed so far. A gravitational wave may be viewed as a ripple of
spacetime in the FRW background metric (525) and in general the linear tensor perturbations
may be written as

G = a?(7) [—0[7‘2 + (65 + hij) d:vidxj} ,

where |h;;| < 1. The tensor h;; has six degrees of freedom, but, as we studied in subsection
7.1, the tensor perturbations are traceless, 6 h;; = 0, and transverse d'h;; = 0 (i = 1,2, 3).
With these 4 constraints, there remain 2 physical degrees of freedom, or polarizations, which
are usually indicated A = +, x. More precisely, we can write

— + X

where e™ and e* are the polarization tensors which have the following properties
€ij = €ji, kieij = 0, , € = 0,

(kA = ek N), Y ek e (k A) = 4.
A
Notice also that the tensors h;; are gauge-invariant and therefore represent physical degrees
of freedom.
If the stress-energy momentum tensor is diagonal, as the one provided by the inflaton
potential 7, = 0,¢0,¢ — g, L, the tensor modes do not have any source in their equation
and their action can be written as

2
mp
2

/ d'z/~g %aahij 9% hyj,

that is the action of four independent massless scalar fields. The gauge-invariant tensor
amplitude

vk = amp;—= hy,

V2

satisfies therefore the equation
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"
vy + (k‘2—%) v =0,

which is the equation of motion of a massless scalar field in a quasi-de Sitter epoch. We can
therefore make use of the results present in subsection 6.5 and Eq. (87) to conclude that on
superhorizon scales the tensor modes scale like

HY (k)"
|| = (g) (E) )

3
Vr X — — €.
2
Since fluctuations are (nearly) frozen in on superhorizon scales, a way of characterizing the

tensor pertubations is to compute the spectrum on scales larger than the horizon

where

k3 k3
PT(]{?) = ﬁz‘hkf =4 x 2%|Uk‘2. (198)
A

This gives the power spectrum on superhorizon scales

8 (HN*( k\"" [ k\"
Prlk) = oo (%) (a—H) =Ar <a—H)

where we have defined the spectral index ny of the tensor perturbations as

o dln PT
Y

=3 —2vpr = —2e.

The tensor perturbation is almost scale-invariant. Notice that the amplitude of the tensor
modes depends only on the value of the Hubble rate during inflation. This amounts to
saying that it depends only on the energy scale V/* associated to the inflaton potential. A
detection of gravitational waves from inflation will be therefore a direct measurement of the
energy scale associated to inflation.

The results obtained so far for the scalar and tensor perturbations allow to predict a
consistency relation which holds for the models of inflation addressed, i.e. the models of
inflation driven by one-single field ¢. We define tensor-to-scalar amplitude ratio to be

2
1 H

142 —8

_100AT: 100 (27rmp1)

2 A2 4 _ g\’
BOR A (2e) 1<2mel>

= €.

This means that
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One-single models of inflation predict that during inflation driven by a single scalar field,
the ratio between the amplitude of the tensor modes and that of the curvature perturbations
is equal to minus one-half of the tilt of the spectrum of tensor modes. If this relation
turns out to be falsified by the future measurements of the CMB anisotropies, this does not
mean that inflation is wrong, but only that inflation has not been driven by only one field.
Generalizations to two-field models of inflation can be found for instance in Refs. [19, 21].

4.7 The post-inflationary evolution of the cosmological perturba-

tions

So far, we have computed the evolution of the cosmological perturbations within the horizon
and outside the horizon during inflation. However, what we are really interested in is their
evolution after inflation and to compute the amplitude of perturbations when they re-enter
the horizon during radiation- or matter-domination.

To this purpouse, we use the following procedure. We use Eqgs. (177) and (180) to write

V20 — 3HO — (H +2H)) = 4nGad®6p'™; (199)
P+ HE = 4nGd®(p+p)ov©Y; (200)
"+ 3HPY + (H +2H)® = 47Ga’5p'). (201)

Combining these equations one finds

" +3H(1+2) P —V0+ 2H + (14 ¢2) H*] 2 =0, (202)

where ¢ = p/p. This equation can be rewritten as

R =0
where we have set
2H 1P+
Rp=-—-H—-——
) 3 (1+w)

Here w = p/p. Notice that during inflation, when p = %¢2 —V and p = %gbz + V', Ry takes
the form

Ric = — (¢ + HPw), (203)

Hy, —
T eH
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which using the equation

'+ HE = 471G (609 ¢)

reduces to the comoving curvature perturbation (193).
Eq. (202) is solved by

a2

Oy = c1 (k) (1 - a—ﬁf / dT/a2(7‘,)) + (k) (ON SUPERHORIZON SCALES)

This nearly constant solution can be rewritten in cosmic time as

Py = ¢ (k) <1 — g /t dt’a(t’)) :

which is the same form of solution we found during inflation, see Eq. (197). This explains
why we can choose the constant ¢;(k) to be the one given by Eq. (192), ¢i(k) = |uk/z| for
superhorizon scales.

Since during radiation-domination a ~ t" with n = 1/2 and during matter-domination
a ~ t" with n = 2/3, we can write

RD
MD

Oy = 1 (k) (1 4 /t dt’a(t’)) = e (k) (1 R ) _alk) _p

a n+1 n+1:

ol wiN

This relation tells us that, after a gravitational perturbation with a given wavelength is
generated during inflation, it evolves on superhorizon scales after inflation simply slightly
rescaling its amplitude. When the given wavelength re-enters the horizon, the amplitude
of the gravitational potential depends upon the time of re-enter. If the perturbation re-
enters the horizon when the universe is still dominated by radiation, then &), = %Rk; if
the perturbation re-enters the horizon when the universe is dominated by matter, then
b, = %Rk. For instance, the power spectrum of the gravitational perturbations during
matter-domination reads

3\ 2 3\? 1 H\? /[ k \™=!
%—(5) PR—(S) Dmme (%) (a—H)

As the curvature perturbations enter the causal horizon during radiation- or matter-
domination, they create density fluctuations dpy via gravitational attractions of the potential

wells. The density contrast dy, = 5"% can be deduced from Poisson equation

k2 ) 3 0

— = —4nGép, = —47TG@EZ = H? @
a? 2 2 2

where p is the background average energy density. This means that

2/ k\?
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From this expression we can compute the power spectrum of matter density perturbations
induced by inflation when they re-enter the horizon during matter-domination

E\" 2r® [2)° EN' (kT
o=t =4 () =% (3) 4 () (o)

from which we deduce that matter perturbations scale linearly with the wavenumber and
have a scalar tilt

n=ngr =14 27— Ge.

The primordial spectrum P;, is of course reprocessed by gravitational instabilities after
the universe becomes matter-dominated. Indeed, as we have seen in section 6, perturbations
evolve after entering the horizon and the power spectrum will not remain constant. To see
how the density contrast is reprocessed we have first to analyze how it evolves on superhorizon
scales before horizon-crossing. We use the following trick. Consider a flat universe with
average energy density p. The corresponding Hubble rate is

8rG _
HZZTP

A small positive fluctuation dp will cause the universe to be closed

8rG ,_ k
H2:T(P+5P)—?-

Substracting the two equations we find

5p 3k a> RD

p 81Galp | o MD

Notice that @y ~ dpa?/k? ~ (dp/p)pa®/k* = constant for both RD and MD which confirms
our previous findings.

When the matter densities enter the horizon, they do not increase appreciably before
matter-domination because before matter-domination pressure is too large and does not
allow the matter inhomogeneities to grow. On the other hand, the suppression of growth due
to radiation is restricted to scales smaller than the horizon, while large-scale perturbations
remain unaffected. This is the reason why the horizon size at equality sets an important
scale for structure growth

]{IEQ = I‘I_1 (CLEQ) ~ (.08 hMpC_l.
Therefore, perturbations with k > kgq are perturbations which have entered the hori-
zon before matter-domination and have remained nearly constant till equality. This means
that they are suppressed with respect to those perturbations having k¥ < kgq by a factor
(agnt/arq)? = (krq/k)?. If we define the transfer function T'(k) by the relation Ren. =
T'(k) Rinitias we find therefore that roughly speaking

1 k< k‘EQ,

T(k) =
(ks/k)? k> k.
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The corresponding power spectrum will be

() k<o,

Ps,(k) ~
5ol (E) k> kpq.

Of course, a more careful computation needs to include many other effects such as neutrino

free-streeming, photon diffusion and the diffusion of baryons along with photons. It is

encouraging however that this rough estimate turns out to be confirmed by present data on

large scale structures [39].

Temperature fluctuations in the CMB arise due to five distinct physical effects: our
peculiar velocity with respect to the cosmic rest frame; fluctuations in the gravitational
potential on the last scattering surface; fluctuations intrinsic to the radiation field itself on
the last-scattering surface; the peculiar velocity of the last-scattering surface and damping
of anisotropies if the universe should be re-ionized after decoupling. The first effect gives rise
to the dipole anisotropy. The second effect, known as the Sachs-Wolfe effect is the dominat
contribution to the anisotropy on large-angular scales, 6 > 0yor ~ 1°. The last three effects
provide the dominant contributions to the anisotropy on small angular scales, § < 1°.

We consider here the temperature fluctuations on large-angular scales that arise due to
the Sachs-Wolfe effect. These anisotropies probe length scales that were superhorizon sized
at photon decoupling and therefore insensitive to microphysical processes. On the contrary,
they provide a probe of the original spectrum of primeveal fluctuations produced during
inflation.

To proceed, we consider the CMB anisotropy measured at positions other than our own
and at earlier times. This is called the brightness function O(¢,x,n) = §7(¢t,x,n)/T(t). The
photons with momentum p in a given range d*p have intensity I proportional to T*(¢,x, n)
and therefore 01/1 = 40. The brightness function depends upon the direction n of the
photon momentum or, equivalently, on the direction of observation e = —n. Because the
CMB travels freely from the last-scattering, we can write

oT oT
? =0 (tLS>XLS>n) + (?)* )

where X1, = —xpgn is the point of the origin of the photon coming from the direction e. The
comoving distance of the last-scattering distance is 1.5 = 2/Hy. The first term corresponds
to the anisotropy already present at last scattering and the second term is the additional
anisotropy acquired during the travel towards us, equal to minus the fractional pertubation
in the redshift of the radiation. Notice that the separation between each term depends on
the slicing, but the sum is not.

Consider the redshift perturbation on comoving slicing. We imagine the universe pop-
ulated by comoving observers along the line of sight. The relative velocity of adjacent
comoving observers is equal to their distance times the velocity gradient measured along n
of the photon. In the unperturbed universe, we have u = Hr, leading to the velocity gradient
wij = Ou;/0r; = u;; = H(t)d;; with zero vorticity and shear. Including a peculiar velocity
field as perturbation, u = Hr+v and w;; = H(t)d;; + igzj The corresponding Doppler shift
is
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A _da o 0%
A a ’ ]8%-

The perturbed FRW equation is

dx.

0H ==V -v,
while

(6p) = —3pdH — 3Hdp.
3

Instead of dp, let us work with the density contrast § = dp/p. Remembering that p ~ a7,
we find that 6 = —30H, which give

V'V:—Sk.

From Euler equation 1 = —p~'Vp—V®, we deduce v+ Hv = —V®— p~'Vp. Therefore,
for a ~ t*/3 and negligible pressure gradient, since the gravitational potential is constant, we
find

v=—tVo
leading to

oT TSt 2P
— = ———dx. 204
(T)* /0 a dz? v (204)

The photon trajectory is adx/dt = n. Using a ~ t*/3 gives

to /
x(t):/ d—t=3<@-f).
. a to a

Integrating by parts Eq. (204), we finally find

(g) — ~[0(x1s) — D(0)] + e - [v(0. 1) — vixus.tus)

T 3
Te potential at our position contributes only to the unobservable monopole and can be
dropped. On scales outside the horizon, v = —tV® ~ 0. The remaining term is the Sachs-

Wolfe effect

5TT(e) _ %q)(m) = %R(st)-

Therefore, at large angular scales, the theory of cosmological perturbations predicts a remark-
able simple formula relating the CMB anisotropy to the curvature perturbation generated
during inflation.

In section 3, we have seen that the temperature anisotropy is commonly expanded in

. . AT . e
spherical harmonics 5+ (o, 70,1) = >, @rm(20)Yem(n), where xy and 7 are our position
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and the preset time, respectively, n is the direction of observation, ¢’s are the different
multipoles and (agnaj,,) = 6¢.00m m Ce, where the deltas are due to the fact that the process
that created the anisotropy is statistically isotropic. The C} are the so-called CMB power
spectrum. For homogeneity and isotropy, the C}’s are neither a function of zy, nor of m.
The two-point-correlation function is related to the Cj’s according to Eq. (37).

For adiabatic perturbations we have seen that on large scales, larger than the horizon on
the last-scattering surface (corresponding to angles larger than yog ~ 1°) 07/T = $P(xrs)
In Fourier transform

0T (k,7,n) 1 lem(m—

Y Y — _@ 7 n(T() TLS) 2
77_, 3 k€ ( 05)
Using the decomposition

exp(ik . II(TO — TLS)) = Z(2£ + 1)’%]2(]47(7’0 - TLs))Pg(k : Il) (206)
=0

where j, is the spherical Bessel function of order ¢ and substituting, we get

<5T(ZL’0,7’0,H) 5T(ZL’0,7’0,n,)> _
T T B

- 1 3 (ST(SL’O,T(],H) (5T(5L’0,T0,n,)
= V/d :c< T T >

_ #/d3k<5T(k&fo’n) <5T(k,TTo,n’))*> _

j@@xm-ﬁﬁnfuk-nﬂ%4w-nq) (208)

(207)

Inserting Py(k -n) = 5775 37 Vi (K)Yjn(n) and analogously for P(k" - n'), integrating over

the directions d€)), generates dp0pmm: >, Yoo (1) Y (n'). Using as well Y Yy (n)Yy,(n') =
ZH Py(n-n'), we get

<5T(1’0, T0,11) 6T (0, 7o, n’)>
T T

204 1 2 [dk /1 4
=¥, amqm%/%{éyﬁﬁmum—qw.

Comparing this expression with that for the Cy, we get the expression for the C*P, where
the suffix “AD” stays for adiabatic

2 [dk /1 .
e =2 [ (G 1 Yk k(n — ) (210)

which is valid for 2 < ¢ < (19 — 11.8) /78 ~ 100.
If we generically indicate by (|®y|*)k® = A% (k7y)" !, we can perform the integration and

get
A2 H n—1
= (—0) (211)

(209)

2 2

(e+ )0 [ﬁ o+ 1y LEBIE
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For n ~ 1 and ¢ > 1, we can approximate this expression to

(0 +1)CHP A2

2T 9

This result shows that inflation predicts a very flat spectrum for low ¢. This prediction has

been confirmed by the COBE satellite [58]. Furthermore, since inflation predicts ®x = Ry,
we find that

(212)

AL 11 H\?
4+ ="F =~ [~ . 213
T O = oy = 5 e \2r (213)
COBE data imply that % ~ 10710 or
v\ M4
<—) ~ 6.7 x 10'° GeV
€

Take for instance a model of chaotic inflation with quadratic potential V' (¢) = %migbz.

Using Eq. (59) one easily computes that when there are AN e-foldings to go, the value
of the inflaton field is ¢%y = (AN/27G) and the corresponding value of € is 1/(2AN).
Taking AN ~ 60 (corresponding to large-angle CMB anisotropies), one finds that COBE
normalization imposes my ~ 10" GeV.

We have learned that a stage of inflation during the early epochs of the evolution of the
universe solves many drawbacks of the standard Big-Bang cosmology, such as the flatness or
entropy problem and the horizon problem. Luckily, despite inflation occurs after a tiny bit
after the bang, it leaves behind some observable predictions:

e The universe should be flat, that is the total density of all components of matter
should sum to the critical energy density and €2y = 1. The current data on the CMB
anisotropies offer a spectacular confirmation of such a prediction. The universe appears
indeed to be spatially flat.

e Primordial perturbations are adiabatic. Inflation provides the seeds for the cosmological
perturbations. In one-single field models of inflation, the perturbations are adiabatic
or curvature pertrubations, i.e. they are fluctuations in the total energy density of the
universe or, equivalently, scalar perturbations to the spacetime metric. Adiabaticity
implies that the spatial distribution of each species in the universe is the same, that is
the ratio of number densities of any two of these species is everywhere the same. Adi-
abatic perturbations predict a contribution to the CMB anisotropy which is related to
the curvature perturbation R on large angles, §7/T = % R, and are in excellent agreee-
ment with the CMB data. Adiabatic perturbations can be contrasted to isocurvature
perturbations which are fluctuations in the ratios between the various species in the
universe. Isocurvature perturbations predict that on large angles §7 /T = —2® and are
presently ruled out, even though a certain amount of isocurvature perturbations, pos-
sibly correlated with the adiabatic fluctuations, cannot be excluded by present CMB
data [13].
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e Primordial perturbations are almost scale-independent. The primordial power spectrum
predicted by inflation has a characteristic feature, it is almost scale-independent, that
is the spectral index ng is very close to unity. Possible deviations from exact scale-
independence arise because during inflation the inflaton is not massless and the Hubble
rate is not exactly constant. A recent analysis [23] shows that ng = 0.971)0% again in

agreement with the theoretical prediction.

e Primordial perturbations are nearly gaussian. The fact that cosmological perturbations
are tiny allow their analysis in terms of linear perturbation theory. Non-gaussian
features are therefore suppressed since the non-linearities of the inflaton potential and of
the metric perturbations are suppressed. Non-gaussian features are indeed present, but
may appear only at the second-order in deviations from the homogeneous background
solution and are therefore small [11]. This is rigously true only for one-single field
models of inflation. Many-field models of inflation may give rise to some level of non-
gaussianity [20]. If the next generation of satellites will detect a non-negligible amount
of non-gaussianity in the CMB anisotropy, this will rule out one-single field models of
inflation.

e Production of gravitational waves. A stochastic background of gravitational waves is
produced during inflation in the very same way classical perturbations to the inflaton
field are generated. The spectrum of such gravitational waves is again flat, i.e. scale-
independent and the tensor-to-scalar amplitude ratio r is, at least in one-single models
of inflation, related to the spectral index ny by the consistency relation r = —np /2. A
confirmation of such a relation would be a spectacular proof of one-single field models of
inflation. The detection of the primordial stochastic background of gravitational waves
from inflation is challenging, but would not only set the energy scale of inflation, but
would also give the opportunity of discriminating among different models of inflation
(42, 14].



68

5 High Energy Cosmological Models

String theory has long been viewed as an enterprise of little interest for experiments and
observations. The energy scales usually considered to be relevant for strings are many orders
of magnitude higher than what in the foreseeable future will be experimentally accessible.
There are even some physicists who claim that the realm of string theory forever will be be-
yond the grasp of experimental science. Luckily, there are promising signs that the situation
is about to change. Recent developments show that string theory can become accessible to
observations much sooner than most people have ever hoped. The new player in the game
is cosmology. For a long time an inexact patchwork of educated guesses and order of mag-
nitude estimates, cosmology has developed into an exact science with a fruitful and rapid
interaction between observations and theory. Much of the progress is based on the ever more
precise observations of the CMBR, and measurements of how the expansion of the universe
has changed with time. Thanks to these new observations it is now generally believed that
the large scale structure of the universe can be traced back to microscopical physics near
the Big Bang. In this way the universe works like a gigantic accelerator allowing us to study
physics at the very highest energy scales, possibly even scales relevant for strings.

In the meantime, string theory has reached a maturity which allows for the formulation of
realistic cosmological models. For a long time string theory focused on the physics of the very
smallest scales. The problems, which were addressed, concerned the unification of forces,
including gravity, and the compatibility of relativity and quantum mechanics. The idea was
that once the fundamental microscopical laws were found the rest of physics would follow.
In particular, cosmology was thought of as just another application of these fundamental
laws. In later years the perspective has changed. Many now believe that the physics of
the large and the small can not be separated, and that an understanding of unification not
only is necessary for understanding the origin of the universe, but that an understanding
of the origin of the universe is necessary in order to understand unification. To summarize,
cosmology can be the key to the verification of string theory, and string theory can be what
we need to solve several of the present puzzles in cosmology.

In this section we will give a review of recent attempts to connect string theory with
cosmology. Any such attempt must, in one way or the other, be confronted with inflation,
[77][78][79].5 That is, the widely held view that the early universe underwent a period
of exponential expansion. A complete theory of the early universe must either explain
inflation or replace it with something else. This is also true for string theory, and I will
therefore start out with a basic review of inflation focusing on those aspects useful for a
string theorist wishing to enter the field. For a more complete introduction, and a complete
list of references, I recommend [83]. Apart from standard material, I will briefly discuss the
issue of transplanckian signatures. That is, the possibility of finding observational signatures
of stringy or planckian physics in the CMBR.

We will then proceed with a discussion of the relation between string theory and inflation.
Can strings give rise to inflation? W will review two sets of proposals: string cosmology and
brane cosmology. The latter can be divided into two subproposals: models that generate
inflation, and models that try to do with out inflation. We will also discuss some of the

6Other early ideas about inflation include [80][81][82].
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difficulties encountered in constructing string theories in de Sitter space and briefly mention
some important aspects of recent progress in this area. Finally, we will discuss the relevance
of holography to cosmology.

The standard Big Bang model suffers from a number of annoying problems. One of
them, the flatness problem, concerns the observation that the real density of the universe,
p, long has been known to be very close to the critical density p.. That is, Q = ﬁ has
been measured to be close to one. To understand the importance of this, we start with the

Friedmann equation
1 k

H>=—p—
32"
where My = 1/v/8rG ~ 2-10'®GeV is the four dimensional (reduced) Planck mass. Fur-
thermore, H = ¢ is the Hubble constant and a (t) the scale factor with the space time metric
on the form

(214)

a?’

ds* = dt* — a*dS*. (215)

dS? is the comoving volume element of space with k¥ = 0, +1 and —1 corresponding to flat,
positively curved and negatively curved spaces respectively. We then rewrite the Friedmann

equation as

k
and note that for any ordinary type of matter, ﬁ will increase with time. To see this, we
use the continuum equation given by

p+3H (p+p) = 0. (217)

Assuming an equation of state of the form

p = wp, (218)
where w is a constant, the continuum equation can be rewritten as
dp p
— +3(1 - =0, 219
L 314w’ (219)
giving rise to
p ~ a 30+, (220)

If we start with Q ~ 1 (k ~ 0) we have H ~ 1/t*, and the Friedmann equation gives

2
a ~ t30+w) . As a consequence we finally find

1 2
a’H? ~ 1

~ s (221)

which clearly grows rapidly with time for any w > —1/3 — examples include pressureless
dust with w = 0 and radiation with w = 1/3.
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From the above one concludes that, unless the universe is exactly flat (k = 0) and, as a
consequence, has exactly 2 = 1, Q will rapidly evolve away from €2 = 1. If one starts with a
value 2 < 1, the value will decrease towards zero, while if 2 > 1 the value of €2 will increase,
and even diverge, if the expansion stops. In order to have a value close to 1 today, one would
therefore expect to need a value of 2 even closer to 1 in the early universe. How close? Let
us assume a radiation dominated universe up to the time #,.,4 ~ 300000 years, and thereafter
matter domination. This is roughly the time when the universe became transparent and the
time of origin of the CMBR. We can then, using (221) in two steps, estimate the amount of
fine tuning at ¢ < t,,4 to be

Q) — 1]~ - (tmd)2/3. (222)

rad tnow

With t,0, ~ 1010 years we find a fine tuning of one part in 10'® one second after the Big
Bang, and one part in 10% at planckian times ~ 107%s, if the deviation from Q = 1 is to
remain small all the way up to present times. This is the flatness problem. That is, how can
Q) be so close to one?

Another problem is the horizon problem. Regions of the universe, in particular sources
of the CMBR at opposite points of the sky, look very similar even though, assuming normal
radiation dominated expansion in the early universe, they can not have been in casual contact
since the Big Bang. How is this possible? In the diagram it can be seen how points at the time
when the CMBR was generated, all visible to us today, have not had time to communicate
with each other. It is difficult to understand how the initial conditions at the Big Bang could
be so extremely fine tuned.

A possible way out of the unnatural fine tuning implied by the flatness problem, would
be some kind of mechanism at work in the early universe that dynamically drives €2 towards
1. This is where inflation comes in. Inflation corresponds to a period when ﬁ actually
decreases. This is the case for an expanding universe if the scale factor a, that is, the distance
between two test objects, increases faster than the horizon radius 1/H. In a sense, one can
say that the universe expands faster than the speed of light. In such a universe the redshift
of any given object will increase with time as the object catches up with the cosmological
horizon. Let us see how this works in more detail. A lightray in the metric

ds* = dt* — a*da?, (223)
travels according to
x = t di (224)
= —

to

between time of emission ¢y, and time of observation ¢, where x is the comoving distance. If
we follow a particular object we have ty = to (t), while z is independent of ¢. Differentiating
with respect to t, using dx = 0, we find

dt dto o % o a(t0>
o att) VT @ T aw (225)
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The redshift of a particular object, as a function of time, is defined by

a(t)

z(t) =1+ RO o (1))

(226)

Differentiation with respect to time t gives

dz _ a(t)  a(t)
At alto(t))  alty(t))

dty 1
dt  al(ty)

a(to (t)) (a(t) H (t) —a(to(t) H (to)),  (227)

which is positive if 4 - < 0, as we set out to prove. Note that in a universe, which expands
dt a®*H

in the usual fashion, the redshift of a given object actually decreases.

Faster than light expansion also solves the horizon problem. The reason is, as explained
above, that the expansion rate in a very definite sense is faster than the speed of light.
Objects in causal contact can, through the expansion, be separated to distances larger than
the Hubble radius. Eventually, when inflation stops, the Hubble radius will start growing
faster than the expansion and the objects will return within their respective horizons. An
observer not taking inflation into account will wrongly conclude that these objects have never
before been in causal contact.

The simplest example of an inflating cosmology is a universe with H = const. Such a
universe has a (t) ~ e/t and is called a de Sitter space time.

We have now seen how inflation solves the problems of the Big Bang model, but how do
we get inflation? The condition for inflation can be written

d 1 d1 2
d _ 41l _ 2 99
iy R A (228)

or d > 0 (if a > 0), that is, it corresponds to an accelerating expansion. Combining (214)
(with £ = 0) and (217), one can obtain another Friedmann equation

a 1
—=——=(p+3p), 229
"= i o 50) (229)
from which it immediately follows that an accelerated universe requires matter with negative
pressure. Luckily, this can be provided by a scalar field, the inflaton, which possesses a
potential energy. Let us investigate this in more detail.

The Lagrangian for a scalar field is given by

1 1. 1
5= [atay=g | se0,0 v 0)] = [dudt i - Sovo-vie]. e
and the canonical energy momentum tensor is given by

T, = 0,00,¢ — guL. (231)

In case of a homogenous inflaton field this reduces to an energy density given by

v =24V, (232)

P:T00:¢2— B
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and a pressure given by

1 @
p= T =0V (0). (233)

Note that x is the comoving coordinate — hence the rescaling of T}, to obtain the physical
pressure. We also have the equation of motion for the scalar field given by

; 1
¢+3H¢—¥V%+V%@:O. (234)
At this point it is useful to introduce the slow roll approximation. That is, we assume

P <<V (9), (235)

or, in other words, p ~ —p. We also need to impose b <<V (¢), and as a consequence we
therefore have

T (% + V<¢>>> ~5EY @) (236)
3Ho ~ V' (). (237)

The slow roll conditions are conveniently handled by introducing the slow roll parameters

M2 V/ 2
527%(7) (238)
V//
=M<+ (239)

It is a useful exercise to verify that the slow roll condition implies that the slow roll parameters
are small. It is also true that inflation implies that the slow roll parameters are small.

How much inflation do we need to solve the problems of the Big Bang? According to
(222) we need a fine tuning of 10% at planckian times. If this is supposed to be achieved
through exponential expansion, we must have

a2 ~ €2Ht — €2N ~ 1060 ~ 6140. (240)

That is, we find the required number of e-foldings, N, to be around 70. This gives a constraint
on the potential as follows,

te te d)e d d)e H2 ¢e
N:ma(ti/HW: Hﬁ:—/’3/m:—%e Vs =10, (241)
a (tl) t; i ¢ i 4 oi 4

Using the slow roll parameters we find

1 ¢i_¢e>
V2e My ™

and, as a consequence, one concludes that the inflationary potential needs to be rather flat.

70, (242)
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Let us now consider a couple of explicit examples. The original works on inflation assumed
potentials with local minima (old inflation), or very flat maxima (new inflation), in order
to keep the inflaton away from the final, global, minima long enough to get the required
number of e-foldings. Later it was realized that the potential can be of a very simple form.
In fact, even a simple monomial like

V = AM}%¢%, (243)

can do the job. The reason is easy to understand from a quick look at (234). The second term
in the equation, which is due to the expansion of the universe, works like a friction term that
prevents the inflaton from rolling down too quickly preventing inflation from taking place.
This is called chaotic inflation, [86].
For the particular potential above, we can calculate the slow roll parameters to be
o M

€= n=oa(a—1)

o Mj My
2 ¢

¢?
Inflation starts at a large value of ¢ and the inflaton then rolls slowly towards the minimum

with increasing € and |n|. Inflation ends when the slow roll conditions no longer hold, i.e.
when ¢ ~ aM,. The number of e-foldings we obtain before this happens is given by

(244)

1 ¢i¢ 1

N =—
M J,, o 2aM;

¢ = ¢ ~ V2aN M, > M. (245)

At the start of inflation the slow roll parameters are given by

« a—1
~— ~ . 24
“YaNv "7 TN (246)
Another type of potential is
_JjzZs
V = Voe Vori, (247)

leading to power inflation with a ~ tP. In this case the slow roll parameters are constant

and given by
1 2
€=, n=-. (248)
p p
As a result, inflation continues forever with ¢ rolling to larger and larger values. In this case

one needs an independent mechanism to end inflation.

How do we test inflation? The key is structure formation. An important reason to invoke
inflation is to make the universe smooth and flat. In the real universe, however, there is a
large amount of structure. This structure can be traced back to subtle variations in the
matter distribution during the time when the CMBR was released. A naive application of
inflation does, however, exclude such non-uniformity. So, from where does all the structure
come? Actually, inflation itself supplies the answer provided we take quantum mechanics
into account.

The main insight is that inflation magnifies microscopic quantum fluctuations into cosmic
size, and thereby provides seeds for structure formation. The details of physics at the highest
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energy scales is therefore reflected in the distribution of galaxies and other structures on large
scales. The fluctuations begin their life on the smallest scales and grow larger (in wavelength)
as the universe expands. Eventually they become larger than the horizon and freeze. That
is, different parts of a wave can no longer communicate with each other since light can not
keep up with the expansion of the universe. This is a consequence of the fact that the scale
factor grows faster than the horizon, which, as we have seen, is a defining property of an
accelerating and inflating universe. At a later time, when inflation stops, the scale factor will
start to grow slower than the horizon and the fluctuations will eventually come back within
the causal horizon. The fluctuations will then start off acoustic waves in the plasma which
will affect the CMBR. These imprints of the quantum fluctuations can be studied revealing
important clues about physics at extremely high energies in the early universe.

Let us now investigate in more detail the predictions from inflation. We assume that the
metric as well as the inflaton can be split into a classical background piece and a piece due
to fluctuations according to

v = gfgj) + h;w (7—7 X) (249)
¢ =0 460 (1,x). (250)

For convenience we have changed coordinates and introduced conformal time, T, such that

the metric is given by
ds? = a (1) (dt?* — dx?). (251)

In these coordinates the scalar equation (234), ignoring the potential piece, becomes

Sl + Q%Mi{ + k206 = 0, (252)

where we have Fourier transformed in space and introduced the comoving momentum k.
The conventions are such that

56 (x) = —

We have also introduced the notation / for derivatives with respect to conformal time. If we
then introduce the rescaled field y = ad¢, the equation becomes

" 2 CL”
pet (K= — ) me=0. (254)

/ Se™*d3k. (253)

Similarly, the metric fluctuations can be reduced to two polarizations obeying an equation
identical to the one for the scalar fluctuations.

To proceed, treating the scalar and gravitational perturbations simultaneously, we assume
that the scale factor depend on conformal time as

a~ T (255)

H

where v is a constant. An important example is a ~ et with H = const., where the change

of coordinates gives
dr 1 _Ht
—_ = — = — = —
it a(t) © a(r)

1

— 2
=, (256)
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and we find that v = % Note that the physical range of 7is —oo < 7 < 0. The equation for

the fluctuations, with a of the form above, becomes

1 1
1+ <k:2 -5 <,,2 - Z)) 1 = 0. (257)

Luckily, this is a well known equation which is solved by Hankel functions. The general
solution is given by
i) = YT (O () YD (—kr) + O () HE (—kr)) (258)
where C (k) and Cs (k) are to be determined by initial conditions.
When quantizing this system (a nice treatment can be found in [103]) one needs to
introduce oscillators ay, (7) and @', (7) such that

1

() = == (e (1) +aly (7)) (259)

i (7) = e (7) + o (7) = -z@ (@ (1) = ali (7).

obey standard commutation relations. The crux of the matter is that these oscillators are
time dependent, and can be expressed in terms of oscillators at a specific moment in time
using the Bogolubov transformations

ar (1) = wg (1) axc (10) + vg (1) aly (70) (260)
aly (1) = i (1) aly (70) + v (7) axc (7o)

where

Jur, (7)* = Jox (T)[* = 1. (261)

The latter equation makes sure that the canonical commutation relations are obeyed at all
times if they are obeyed at 75. We can now write down the quantum field

pc (1) = i (7) @ (10) + f (7) axc (70) (262)

where
1

fe (1) = Tor (ur () + v (7)) (263)

is given by (258).
But what are the initial conditions? The usual choice is to consider the infinite past and
choose a state annihilated by the annihilation operator, i.e.

ak (70) |0, 70) =0, (264)

for 79 — —o0. As we will see in the next section, there is much to say about this way to
proceed, but let us, for the moment, continue according to common practise. From (259) we
conclude that

i (To) = —ikpuc (10) , (265)
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for 79 — —o0. Since the Hankel functions asymptotically behave as

HWY (k1) ~ \/—]j e
—krm

H® (—kt) ~ HV* (—k7), (266)

we find that the vacuum choice correspond to the choice Cy (k) = 0 (and |Cy (k)| = 1).

We have now fully determined the quantum fluctuations, and it is time to deduce what
their effect will be on the CMBR. To do this, we compute the size of the fluctuations according
to

ko1 |- T7T|
272 g2

‘H k‘T)‘2.

(267)
This we should evaluate at late times, that is, when 7 — 0. In this limit the Hankel function
behaves as

P(k‘— 3<|¢k|>—222<|uk|>—p | fil* =

HY (=kr) ~ \/g (—k7)™", (268)

and we find

1 1
P~ (_,7_)1—21/ ]{?3_2V ~

472 g2

1

— H?E* . 269
Here we have used (255) to get rid off the 7 dependence. Furthermore, if v ~ 3/2 and we
have a slow roll, H is nearly constant and can be used to set the scale of the fluctuations.
In particular, we find the well known scale invariant spectrum if v = 3/2,

1
P=_—_—H>
472

(270)

This is more or less the whole story in case of the gravitational, or tensor, perturbations.
As previously explained, the scalar fluctuations obey a similar equation, but the translation
into the perturbation spectrum is a bit more involved. Basically, different values of ¢ lead to

different times for the end of inflation according to 6t ~ % ~ ;: 70 5ee; e.g., [84]. If inflation

ends later, the decay of vacuum energy, and hence the initiation of a more conventional
cosmology with H ~ 1/t and p ~ 3MZH? ~ 1/t will be delayed. Therefore, we will find

an enhanced density according to 6p ~ % ~ 2H—¢, and the relevant spectrum becomes, in this
case,
H\* 1
P~ (= | —H (271)
o) Am?

Comparing (270) and (271) we see that it is the scalar fluctuations that play the most
important role. It should be stressed that the spectra, which we have obtained, are the
primordial ones. To obtain the actual CMBR fluctuation spectra, including the acoustic
peaks, which the primordial spectra give rise to, requires a lot more work which is outside
the scope of this review.
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To express deviations from scale invariance one introduces spectral indices according to

ng—1= Tk =3 —2u; (272)
dlIlPT
nr dlnk —3—2VT, (273)

where v, refers to the scalar perturbations and v refers to the gravitational, or tensor,
perturbations. While not clear from our simplified analysis, the v’s need not be the same in
the two cases. Observations show that n, is very close to 1, consistent with the basic ideas of
inflation. Of extreme importance is to find any slight deviation from the scale invariant value
which could give important information about the inflationary potential. Equally interesting
would be to find a contribution from the gravitational background.

Inflation has turned out to be a wonderful opportunity to connect the physics of the large
with physics of the small. Perhaps effects of physics beyond the Planck scale might be visible
on cosmological scales in the spectrum of the CMBR fluctuations? This is the subject to
which we now turn.

5.1 Transplanckian physics

As described in the previous section, quantum fluctuations play an important role in the
theory of inflation. But how is the structure of these microscopic fluctuations determined?
Is the standard argument that we have gone through really valid? In a time dependent
background — where there are no global timelike Killing vectors — the definition of a vacuum
is highly non trivial. In the ideal situation the time dependence is only transitionary, starting
out with an initial, asymptotically Minkowsky like region, where it is possible to one define
a unique initial in-vacuum. This vacuum will time evolve through the intermediate time
dependent era, and then end up in a final Minkowsky like region. Typically, the initial
vacuum will not evolve into the final vacuum but instead appear as an excited state with
radiation. Technically, as I have explained, one says that the excited state is related to the
vacuum through a Bogolubov transformation. A well known example is a star that collapses
into a black hole and subsequently emits Hawking radiation.

Interestingly, a similar phenomena can be expected also during inflation. In this case,
however, the situation is more tricky since the universe (in Robertson-Walker coordinates) is
always expanding. How can we then choose an initial state in an unambiguous way? Luckily,
the key feature of inflation, the accelerated expansion of the universe, can help out as we have
already seen. If we follow a given fluctuation backwards in time far enough, its wavelength
will become arbitrarily smaller than the horizon radius. This means that deviations from
Minkowsky space will become less and less important, when it comes to defining the vacuum,
and the vacuum becomes, in this way, essentially unique. This is the unique vacuum we used
in the previous section, and it is sometimes called the Bunch-Davies vacuum. The fact that
a unique vacuum is picked out is an important property of inflation and is one of several
examples of how inflation does away with the need to choose initial conditions.

But, and this is the main point, the argument relies on an ability to follow a mode to
infinitely small scales which, clearly, is not how it works in the real world. After all, it
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is generally believed that there exists a fundamental scale — Planckian or stringy — where
physics could be completely different from what we are used to, and where we have very
little control of what is happening. How does this affect the argument that the inflationary
vacuum is unique? Could there be effects of new physics which will affect the predictions
of inflation? In particular one could worry about changes in the predictions of the CMBR
fluctuations. Several groups have investigated various ways of modifying high energy physics
in order to look for such modifications, see, e.g., [12-27].

I will not discuss the specifics of the proposals of how to modify physics beyond the
Planck scale. Instead I will take a different approach, following [91], and provide a typical
and rather generic example of the kind of corrections one might expect due to changes in
the low energy quantum state of the inflaton field due to the unknown high energy physics.
To proceed along this direction, we need to find out when to impose the initial conditions
for a mode with a given (constant) comoving momentum k. To do this, we use, as in the
previous section, conformal time, given by 7 = —ﬁ. We note that the physical momentum
p and the comoving momentum k are related through

P

k=ap= I (274)
and impose the initial conditions when p = A. A is the energy scale, maybe the Planck scale
or possibly the string scale, where fundamentally new physics becomes important. The basic
idea is that we do not know what happens at higher energies, or shorter wavelengths, and
therefore are forced to encode our ignorance in terms of initial conditions when the modes
enter into the regime that we understand. The unknown high energy physics is usually
referred to as transplanckian, and the hope is, obviously, that, e.g., string theory eventually
will give us the means to derive these initial conditions. Proceeding with the calculation, we
find the conformal time when the initial condition is imposed to be

A

- (275)

T0 —
As we see, different modes will be created at different times, with a smaller linear size of the
mode (larger k) implying a later time.

From the above it is clear that the choice of vacuum is a highly non trivial issue in a
time dependent background. Without knowledge of the transplanckian physics we can only
list various possibilities and investigate whether there is a typical size or signature of the
new effects. A useful example is to choose the vacuum as determined by equation (264), but
with an important difference. We do not take 19 — —oo, but instead stop at the value of
conformal time given by (275). This vacuum, which in general is different from the Bunch-
Davies (note that for 7y — —oo the Bunch-Davies vacuum is recovered), should be viewed
as a typical representative of natural initial conditions (in the sense explained above). It
can be characterized as a vacuum corresponding to a minimum uncertainty in the product
of the field and its conjugate momentum, [103], the vacuum with lowest energy (lower than
the Bunch-Davies) [88], or as the instantaneous Minkowsky vacuum’. Therefore, it can be
argued to be as special as the Bunch Davies vacuum, and there is no a priori reason for
transplanckian physics to prefer one over the other.

"As observed in [104] the exact caracterization of the vacuum depends on the canonical variables used.
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We have now a one parameter family of vacua with the single parameter given by the
fundamental scale. What is the expected fluctuation power spectrum? Following [91] one
finds

P%%=<5)<WMﬂF%:<§>;§qmow% (276)

(2) G2 (- ()

with the standard case recovered when A — oco. The result should be viewed as a typical
example of what to be expected from transplanckian physics if we allow for effects which
at low energies reduce to modifications of the Bunch-Davies case. We note that the size of
the correction is linear in H/A, and that a Hubble constant, which varies during inflation,
gives rise to a modulation of the spectrum. As argued in [91], the modulation is expected
to be a quite generic effect that is present regardless of the details of the transplanckian
physics. (See also [93] for a discussion about this). After being created at the fundamental
scale the modes oscillate a number of times before they freeze. The number of oscillations
depend on the size of the inflationary horizon and therefore changes when H changes. A
varying Hubble constant is crucial for a detectable signal, since a Hubble constant which
does not vary during inflation would just imply a small change in the overall amplitude of
the fluctuation spectrum and would not constitute a useful signal. Luckily, since the Hubble
constant is expected to vary, the situation is much more interesting.

Let me now turn to a more detailed discussion of possible observable consequences. I will
discuss what happens using the slow roll parameters. It is not difficult to show (using that
H is to be evaluated when a given mode crosses the horizon, k = aH) that

dH eH
T (278)
which gives
H~ k™=, (279)
The k dependence of H will translate into a modulation of P(k), with a periodicity given by
Ak mH
—_—~—. 280
k el (280)

To be more specific, let me consider a realistic example. In the Horava-Witten model
[105], unification occurs at a scale roughly comparable with the string scale, the higher
dimensional Planck scale, as well as the scale where the fifth dimension becomes visible.
For a discussion and references see, e.g., [106] or [90]. As a rough estimate we therefore put
A = 2-10% GeV — a rather reasonable possibility within the framework of the heterotic string.
Using that the Hubble constant during inflation can not be much larger than H = 7 - 10'3
GeV, corresponding to € = 0.01, we find

H
+ ~ 0.004 (281)
A Ak~ (282)

k
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This implies one oscillation per logarithmic interval in &k, which fits comfortable within the
parts of the spectrum covered by high-precision CMBR observation experiments.

As I have already emphasized, it is important to note that the transplanckian effects,
regardless of their precise nature, have a rather generic signature in form of their modulation
of the spectrum. If it had just been an overall shift or tilt of the amplitude, it would not have
been possible to measure the effect even if it had been considerably larger than the percentage
level. Instead, the only result would be a slight change in the inferred values of H and the
slow roll parameters. With a definite signature, on the other hand, we can use several
measurement points throughout the spectrum, as discussed in more detail in [96]. There
it was argued that the upcoming Planck satellite might be able to detect transplanckian
effects at the 1073 level, which would put the Hofava-Witten model within range, or at
least tantalizingly close. In this way one can also beat cosmic variance that otherwise
would have limited the sensitivity to about 1072 at best. Other discussions can be found in
[97][98][99][100].

There has been extensive discussions of these results in the literature and their relevance
for detectable transplanckian signatures. As pointed out in [92], the initial condition ap-
proach to the transplanckian problem allows for a discussion of many of the transplanckian
effects in terms the a-vacua. These vacua have been known since a long time, [107], and
corresponds to a family of vacua in de Sitter space which respects all the symmetries of the
space time.

In [90][108] concerns were raised that there could be inconsistencies in field theories based
on non trivial vacua of this sort. None of these problems are, however, necessarily relevant
to the issue of transplanckian physics in cosmology for a very simple reason, as explained in
[95]. The whole point with the transplanckian physics is to find out whether effects beyond
quantum field theory can be relevant for the detailed structure of the fluctuation spectrum
of the CMBR. In the real world we do expect quantum field theory to break down at high
enough energy to be replaced by something else, presumably string theory. The modest
proposal behind [91] is simply that we should allow for an uncertainty in our knowledge of
physics near planckian scales. Several later works, e.g., [101][102], have confirmed this point
of view and the CMBR remains a promising candidate for finding evidence of transplanckian
physics.

5.2 String Theory Inflation

Much of contemporary cosmology has dealt with the construction of phenomenologically
viable inflationary models with various potentials and number of inflaton fields. In the
early days of inflationary theory there were hopes of incorporating inflation in more or less
standard particle physics. Perhaps the inflaton was related to, say, the GUT-transition?
Unfortunately this never worked out in a convincing way and, as a result, inflation lived its
own life quite detached from the rest of theoretical particle physics.

Luckily, string theory is about to change all that. In string theory it is well known
that parameters describing background geometries and compactifications, the moduli, are
all promoted into scalar fields. There are, therefore, no lack of potential candidates for the
inflaton, even though there are several difficult conditions to be met. For one thing, the
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potential of the inflaton must be extremely flat in order to allow for enough e-foldings. On
the other hand, it can not be completely flat for the idea to work. In supersymmetric string
theory there are many flat directions in the moduli space of solutions which could, it seems,
serve as useful starting points. The hope would then be that these flat directions are lifted by
non perturbative, supersymmetry breaking terms. Unfortunately, it is difficult to find these
non perturbative corrections explicitly, and their expected form is anyway, in many cases,
not of the right kind. In addition, there are also other problems to be solved. Apart from the
flat, inflationary potential, one needs potentials that manage to fix dangerous moduli like
those controlling the size of the extra dimensions. It is hard to see how realistic inflationary
theories can be obtained without addressing this problem at the same time.

A little later I will explain some recent progress in the subject which suggests that realistic
inflationary models can indeed be constructed using string moduli if one introduces branes.
The idea is to use two stacks of branes separated by a certain distance, corresponding to the
inflaton, in a higher dimensional space. As the branes move, the inflaton rolls, and when the
branes collide inflation stops. This is a rapidly developing subject — for an early review see
[76], and for more recent discussions, see [85], involving many aspects of string theory. But
before discussing these promising ideas I will discuss a couple of other interesting approaches
to cosmology.

First I will treat the attempts which go under the, somewhat unspecific, name of string
cosmology, [109][110][111][112] (for a review see [113]). The idea is to make use of the dilaton,
i.e. the field corresponding to the way the string coupling varies over space and time, and
a variant of the string theoretical T-duality. The resulting theory fulfills the condition for
inflation, albeit in an unorthodox way.

After this I will turn to models based on branes. Even if branes might very well be the
key to realize inflation in string theory, they have, ironically, also been used to argue that
string theory can provide an alternative to inflation. I will treat a couple of such proposals,
the ekpyrotic and the cyclic universe where colliding branes again play an important role.

5.3 String Cosmology

String cosmology makes use of one of the most basic features of string theory, the dilaton.
According to string theory the Hilbert action of general relativity is augmented by a new,
dimensionless scalar field, the dilaton ¢, and given by

S— - [ % ge? (R + 0°60,0), (283)

T 5,2
2K70

where k19 = % (27r)7 o ~ [, and where the string coupling is related to the dilaton through
g% = €?. The action as given is written in the string frame. That is, the string length, [,, is our
fundamental unit and what we use as our measuring rod. This means that the Planck mass,
the effective coefficient of the scalar curvature R, varies with the dilaton. An alternative
way to describe things is to use the Finstein frame which in many ways is physically more
transparent than the string frame. In the Einstein frame it is the Planck length — which is
more directly related to macroscopic physics through the strength of gravity — which is used
as a fundamental unit. Let me explain how the frames are related to each other in a little



82

more detail. To go from one frame to another, we note that the frames are, by definition,
related through

/ dPr\/—ge *R = / dPr/—gg (Re + ...), (284)

where
Guv = 62w¢gE7/u/> (285)
with the subscript E indicating Einstein frame, and furthermore
V=5 = P/ =5, (236)
It follows from the definition of curvature that the scalar curvatures are related through
R=e¢*(Rp—2w(D—-1)V¢—w?(D—2)(D—1)0"da9) . (287)

Hence we have that

V=ge *R = P72 /g (Rp — 2w (D — 1) V2 — w? (D — 2) (D — 1) 9°$0.9)

(288)
and as a consequence we find
1
Dv—1-2w=0—mw=——. 289
w w w=55 (289)
The action in the Einstein frame finally becomes
Mp~? 1
S =— g /le'\/ —JE <RE — ﬁaagb@agb) s (290)

where Mp is the D-dimensional Planck mass. We note that the sign of the kinetic term of
the scalar field now is the familiar one.
If we consider a metric of FRW-form (223) generalized to D dimensions, we find

Psp = e 20 ds = 29 (A — a2dx”) = dily — a%dx, (291)
where
ap = e “%a (292)
dtp = e “9dt.

It is important to realize that the two frames are physically equivalent, even if things can, at
a first glance, look rather different in the two frames. To fully appreciate string cosmology
it is important to keep this in mind.

Let us now investigate the above action in more detail. I will perform the analysis in
the string frame, and, for simplicity, assume a spatially homogenous RW-metric. One can
readily check that the scalar curvature in these coordinates is given by

R:—(D—l)(D—2)Z—z—2(D—1)g. (293)
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The action looks rather innocent, but possesses a remarkable symmetry thanks to the pres-
ence of the stringy dilaton. The symmetry acts on the scale factor and the dilaton through
the transformations

a(t) —1/a(?)
G(t) — ¢ (t) —2(D—1)Ina(t). (294)

It leaves the action invariant and assures that the solutions of the equations of motion
have some very interesting properties that will be important for cosmology. To verify the
symmetry, we note that

V—ge™® (R+¢) D1_¢>< (D—-1)(D — Q)E_Q(D_l)%:+¢2>

+ total derivative (295)
a a\’
= aPle™? (— (D—1) i (gb —(D—1) 5) ) (296)
+ total derivative (297)
Since we have
aP-1p=¢ _y 4—(D=1)—¢+2(D-Dlna _ ,D-1,-¢
a d (1 a
e (3) - (2%8)

we find

aPte? (— (D—1) Z—z + <¢'> —(D-1) g)2>
— qPle? (- (D—l)a—2 (é—z(p—l)gﬂp—ng)z), (299)

and hence an invariance of the action! In other words, if a (t) and ¢ () solves the equations
of motion, so does the transformed functions 1/a (t) and ¢ (t) — 2 (D — 1)Ina (t).

To fully appreciate what is going on, and to understand the structure of the solutions,
we need to note that there is yet another simple symmetry,

t— —t, (300)

i.e. time reversal invariance, which together with (294) tells an interesting story about
possible cosmologies. Combining the two symmetries we can map out how various solutions
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are related to each other. If we first focus on the scale factor, we see how we from a given
solution a (t) can construct two new solutions according to

a(t)—1/a(t)  H(t) — —H () (301)
a(t) —a(—t)  H(t)— —H(—t). (302)

The time t = 0 is referred to as the Big Bang and it is natural to allow for two eras, a
pre and a post Big Bang. The basic idea of string cosmology is that physics can be traced
back in time through the Big Bang into an earlier era, the pre Big Bang, where many of the
initial conditions for the post Big Bang are determined in a natural and dynamical way.

It should be stressed that the whole set up is in line with the general picture of T-duality
in string theory. According to T-duality, it is equivalent to compactify string theory on a
small circle (compared with the string scale) and a large circle. In some sense large and
small scales are, therefore, equivalent. Loosely applying this idea to the Big Bang, would
suggest that if we trace the expansion far enough back in time, we are better off describing
the universe as becoming bigger again, rather than smaller. As we will see, however, string
cosmology suggests that we should take an expanding pre Big Bang theory and match it to
an expanding post Big Bang. But, and this is an important but, this is the picture obtained
in the string frame. The picture in the FEinstein frame, as I will explain, is quite different
with a contracting rather than an expanding pre Big Bang phase. This is precisely in line
with the hand waving argument above.

Let us now work out a detailed example to get a better feeling for how the various
cosmologies are related. In our example we add matter with a definite equation of state,

p=wp, (303)

assuming an action of the form

S = —% /d4x\/—_g (e7? (R + 9°¢0.¢) + matter) (304)
2Ky

with, for simplicity, no explicit ¢ dependence in the matter piece. We will be using the
Friedmann equations in the string frame, but, as an exercise, we start out in the more
familiar Einstein frame where the Friedmann equations take the familiar form

1 (M21 [ do\*
H? = T
where we have taken the prefactor of (290) into account (with D = 4), when we write down

the energy density for the scalar field. It is now easy, using the relations (292), to translate
this into the string frame. In particular we have

Hp = /2 (H — %qf)) (306)
4P _ sz
il b (307)

V=98pE = € **\/=gpE = v/=gp. (308)
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We finally obtain the Friedmann equation in the string frame as

1. .
fﬂ:=—6¢?+ﬂ¢+- ?p. (309)

1
—e
3M?
To proceed, we also need the continuum equation for matter which gives

p = poa 0T, (310)

and the equation of motion for the dilaton obtained from the Euler-Lagrange equation

%%_%:, (311)
where
L=—ad%"" (—62—2 + 6%&5 — ¢2) = 6aa’e™? — 6aa’pe ? — a®gre 9. (312)
Using an ansatz of the form
a~t* (313)
¢ = fInt + const.,
it is straightforward to derive, from (311), that
—12a% — 3% + 6af — 26 + 6o = 0. (314)

To fully determine o and 3 we need one more equation. Since both H? ~ ¢ ~ 1/t? the
same must be true for e?p according to the Friedmann equation. The continuum equation
(219) then provides the missing relation

B-=31+w)a=-2. (315)
Finally, we can write down the solution to the latter two equations as

2w

e (316)
ow — 2
=T 30 (317)

So far we have not said what kind of matter we are considering. But let me now, in order
to be completely specific, assume that matter is in the form of radiation with w = 1/3. This
gives

a=1/2 B=0 (318)

that is,
a~ th? ¢ = const. (319)
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In other words, we have a standard radiation dominated, and non-inflationary, cosmology.
In particular we have a decreasing Hubble constant given by

a 1
— =50 (320)
with 1 .
a
§ = —— — . 21
a 2 < 0 o < 0 (321)

Not much new, but at least we see that it is consistent to have a constant dilaton. It is now
time to apply the symmetry transformations introduced above. We immediately find a new
solution given by

an~ (=) ¢ = —61n (—t)"* + const., (322)
valid for ¢t < 0.8 We now have
a 1 a 3
H=-=—>0 -—=—>0 323
a 2t a 2t2 ( )
with )
H=— 24
5z > 0 (324)

i.e., a growing curvature. To summarize, we find an inflating universe with growing curvature
and coupling as t — 0_, followed by a standard radiation dominated cosmology. In other
words, a rather appealing cosmology. At least if we somehow can find a way of matching
the two solutions at the Big Bang.

There is, however, another interesting twist to the story. As seen in the previous section,
the description of the physics is quite different if we change to the Einstein frame. In our
example, there is no real difference in the post Big Bang era between the two frames, since
the dilaton is constant. In the pre-big bang phase, on the other hand, we find, using (292),

dip ~ (=) dt = tp~—(=t)"? (325)

ap ~ (=) x (=t) 2 = —t ~ (—=tp)??, (326)
and as a consequence

iy~ —(—tg) 7 <0 (327)

al, ~ —(—tg) % <. (328)

The physical picture in the Einstein frame is therefore of a contracting rather than an
expanding universe. Nevertheless we can rest assured that the physics will be equivalent.

In order to understand better what is going on, it is useful, following [113], to classify
the various possibilities according to the following table:

80ne should note that we have assumed that the matter piece also respects the symmetries. In the par-
ticular example that we study, this implies that the equation of state becomes w = —1/3 in the transformed

theory.
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Class I
a>0 i>0| H <0 | standard inflation
Class II
a>0 >0 | H >0 | superinflation

a<0 i<0|H<0]| collapse!

As in our example, superinflation and a collapsing universe can be different descriptions
of the same physics in string and Einstein frames respectively.® It is interesting to see that
the advantages of inflation can be obtained also in a contracting universe. The important
thing is that the ratio of the radius of curvature and the scale factor becomes smaller with
time.

As T have already hinted, a basic problem of string cosmology is how to match the pre
and post Big Bang solutions. This is known as the graceful exit problem. As is clear from
the examples above, the matching has to take place at strong coupling and little is known
about how to achieve this. I will come back to the same problem in the next section, when
I discuss some alternative models.

Another important issue is the CMBR-fluctuations. Let me continue to discuss the
particular example introduced above. To apply the formulae of section 3.1.1. we need to go
to conformal time. We find

T~ — (—tp)*? (329)
and
ag ~ (=17)% ~ (=1)/Fr — vr = —1/6, (330)
and from this 10
= (331)

That is, a blue spectrum for the gravitational perturbations not at all like the more or
less scale invariant result of standard inflation. This is certainly an interesting prediction
and could be a characteristic signal to look for if, and when, these perturbations become
observationally accessible. Unfortunately, however, a similar spectrum can be derived also
for the scalar fluctuations which dominate the CMBR. This is not at all in line with what
observations show, and is one of the big problems with the simplest approaches to string
cosmology. Some possible ways out of this dilemma is discussed in [113].

5.4 Brane cosmology

Basic setup In the middle 90’s, it was realized that not only strings but also higher di-
mensional structures like membranes etc. play an important role in string theory. Moreover,

90ne should note that superinflation driven by a standard scalar field is not possible in the Einstein

frame. This will be discussed in a different context a bit later.
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branes provide new possibilities to construct realistic cosmologies. Of particular interest is
the idea to associate the Big Bang with a collision of brane worlds which I will discuss in
some detail. This has been considered from two quite different points of view — either as an
alternative to inflation or as a way of implementing inflation.

The first of the alternatives to inflation is the ekpyrotic scenario, [114][115][116]. It makes
use of the Horava-Witten interpretation of the heterotic Fg x FEg string where there is an
eleventh dimension separating two 9+1 dimensional brane worlds. The separation between
the branes gives the string coupling in such a way that a small separation corresponds to weak
coupling. We are assumed to be living on one of the branes, the visible brane, while the other
brane is called the hidden brane. In the ekpyrotic scenario there is an additional brane in the
bulk which is free to move. The configuration is assumed to be nearly supersymmetric, i.e.
BPS, and therefore nearly stable — apart from a small potential which provides an attraction
between the bulk brane and the visible brane.

The main idea behind the ekpyrotic scenario is to let the Big Bang correspond to a
collision between the bulk brane and the visible brane. The homogeneity of the early universe,
usually explained by inflation, is explained by the nearly BPS initial state. The bulk brane
is almost parallel with the visible brane and the collision happens almost at the same time
everywhere. From the point of view of physics on the visible brane, the era before the collision
is a contracting universe, while the era after the collision (or Big Bang) is our expanding
universe. Slight differences in collision time give rise to the crucial primordial spectrum of
fluctuations. This represents a new mechanism, fundamentally different from the one of
inflation.

An improved proposal is the cyclic scenario, [117], where one does away with the bulk
brane and lets, instead, the visible and hidden branes collide. Actually, the branes are
supposed to be able to pass through each other and, eventually, turn back for yet another
collision. And so on, forever. The homogeneity is, in this model, explained not through
initial conditions, but by a late time cosmological constant in each cycle. The cosmological
constant provides an accelerated expansion that sweeps the universe clean of disturbances
preparing it for a new cycle. The idea is that we presently are entering into such an era
and, in this way, the model suggests an interesting role for the cosmological constant recently
observed. In a way the cyclic universe make use of inflation of a kind, even though the energy
scales involved are totally different. Note, however, that the quantum fluctuations during
the inflationary stage in the cyclic universe will be irrelevant for the CMBR fluctuations due
to the low energy scale.

Whatever description all of this has from the point of view of higher dimensions, there
should also be an effective four dimensional picture. To study this, we start with the same
action as in string cosmology, (283), but think of ¢ as a scalar field such that e? is proportional
to the distance between the branes. The Big Crunch occurs when the distance between the
branes vanish, that is when ¢ — —oo, corresponding to a Big Crunch at weak coupling
since, from the four dimensional point of view, e? is like a coupling. Note that this is just
the opposite to what we have in string cosmology. We use the same ansatz as before, (313),
in the Friedmann equation for an empty universe

H? = —é& + Ho, (332)
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to get
1
o = —652 + af. (333)
The two equations are solved by
1
a=+— = +v3 -1, 334
7 8 (334)
that is,
a~tV3 = (e\/ﬁ . 1) Int, (335)

where ¢ = +1. If we had been doing string cosmology we would have applied the duality
transformations of (294) (and (300)). This leads to

an~ (—t)"/V3 (336)
o= (V3 1)In(=t) = 6 ()7 = (=ev3— 1) In(~t). (337)
Clearly, this is essentially an exchange of the two solutions in (335). In string cosmology we

would have made the choice
t<0 e=-1

t>0 =41,

(338)

with t - 0_ = ¢g; — 400 and t — 0, = g; — 0. In the ekpyrotic universe, however,
where the collision of branes corresponds to weak coupling, we have € = +1 for all !
To proceed, we note that for all ¢ and ¢, we have that

g ~ % (339)
Using this we find for string cosmology
t<0 e=—-1 ¢£>0
t>0 e=+1 2>0, (340)
while the ekpyrotic universe has
t<0 e=+1 £<0
t>0 e=+1 2>0. (341)

This was all in the string frame. In the Einstein frame we simply find

ag ~ (—tE)l/g for tp <0 (342)

ap ~ 1> for  tp>0 (343)
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if we follow the recipe provided earlier.!’ That is, regardless of whether we are considering
string cosmology or the cyclic universe, we find a universe that first collapses and then
expands. The difference is the behavior of the scalar field. One notes that the condition
Z—g > (0 is fulfilled in the tg < 0 era both for string cosmology and for the cyclic universe. In
fact, the process with fluctuations crossing the horizon, and entering in a much later era, is
common to standard inflation and the ekpyrotic/cyclic universe.

Can it work? The ekpyrotic/cyclic scenarios have been heavily criticized in the literature,
see, e.g., [84][115]. T will briefly review some of this criticism. But let me begin by considering
the generation of fluctuations in the ekpyrotic/cyclic universe. To do this, we make use of
(234), which we expand to quadratic order to get

66 +3Hop — V2p+ V" (0)6¢ = 0. (344)

In conformal time, assuming spatial homogeneity, we find
a”
Hi+ (’fQ - E) i+ @V (0) iy = 0. (345)

Usually, the last term is ignored due to the flatness of the potential — a necessary condition
for inflation. In the cyclic scenario, however, this is no longer the case. Instead, it is the term
due to the expansion/contraction of the universe that should be ignored. The generation of
fluctuations takes place when the universe is contracting very slowly, and the scale factor is
more or less constant. A useful potential, with the correct properties, is

V (¢) = —Voe /M, (346)
and we will look for a solutions with a = const. We then need to solve
O+ V() =0

1 1 M
H? = = 2+L = 47

It is easy to verify that this works for

¢ = — (348)
and we find v
1, + <k2 — —026—¢/M4) fic = 0, (349)
M4
or
" k2 2 =0 350
e + — ) M =0, (350)

10This corresponds to a universe filled by matter with equation of state given by p = p. This is precisely

what one gets from a massless scalar field without potential.
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which is precisely the same equation as derived in the context of inflation! However, there
are some important differences. In the inflationary case, we need to rescale p with the scale
factor to get the original scalar field ¢ = p/a. As we have already seen, the amplitude
of the fluctuations in ¢ are always finite. In the ekpyrotic/cyclic case, however, the scale
factor is essentially constant and we are stuck with the field u whose amplitude diverges as
t — 0. We therefore need a cutoff near the moment of collision. This is a reflection of the
tachyonic nature of the potential with V" (0) < 0. In inflation the classical perturbations
are smeared thanks to the exponential expansion. In the ekpyrotic universe, however, thsi
does not happen and the classical perturbations are amplified in just the same way as the
quantum mechanical ones, [84][115]. Hence the need for fine tuning of initial conditions.

In case of the cyclic universe we must also investigate the claim that the cycles continue
forever. A well known argument against an eternal, cyclic universe, comes from the second
law of thermodynamics. With every cycle the entropy should increase and one would not
expect an infinite number of cycles. In case of the brane based cyclic universe, it is argued
that the exponential expansion due to the late time cosmological constant does the job
through a rapid clean up which effectively provides an empty universe ready for the next
cycle.

However, it is hard to see how this statement can be exactly true. From the point of view
of a local observer it is true that any matter (carrying entropy) is heavily redshifted and
pushed towards the cosmological horizon. But, as I will discuss in the chapter on holography,
there is a limit on how much entropy can be stored by the horizon. When this limit is reached,
there will be unavoidable consequences for the physics of the cyclic universe. As a result,
the second law will eventually prevail after all. It is true, though, that the time scale for this
to happen will be enormous.

Another crucial problem of the ekpyrotic/cyclic proposal is the bounce. Will the branes
bounce off each other or will there be a devastating singularity? Unfortunately, it is well
known that the necessary reversal from contraction to expansion is very difficult, if not
impossible, to achieve. What is needed, is a Hubble constant which starts out negative and
then becomes positive. In other words, we need a period with H > 0. The problem is that
we have the Friedmann equation

H:—2—MZ(P+P)7 (351)
with a right hand side which for all reasonable types of matter is negative. An example is
the scalar field in section 2.3., where the equations (232) and (233) yield

1

H=—
N2

$* < 0. (352)

The same problem is also present in case of string cosmology, but in that case we at least can
blame strong coupling and hope that, somehow, there is a way out. In the ekpyrotic scenario,
everything happens at weak coupling suggesting that there is little chance of evading the
contradiction.

There are also other arguments indicating that a singularity is the end and not a new
beginning. The idea is that the creation of a new universe beyond the singularity inside of a
black hole, would imply that black holes are information sinks as first suggested by Hawking.
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However, it is now generally believed that string theory predicts that all information us
getting back out from a black hole through the Hawking radiation. From this it is argued
in [119] that no information can pass through a singularity into a new baby universe. The
kind of bounce needed for the ekpyrotic or cyclic universe would therefore not take place.
Very recently, [118], new arguments have been put forward where it is suggested that a
cosmological singularity can be resolved in M-theory. It is fair to say, therefore, that there
is no consensus in the field at the moment.

What, then, is the conclusion? The ekpyrotic universe represents a different paradigm
without inflation where, instead, it is argued that high energy physics can naturally provide
very special initial conditions all on its own. The cyclic universe does not do away with
inflation completely but, in a very economical way, identifies inflation with the presence
of a cosmological constant late in each cycle. Unfortunately, both scenarios face severe
technical problems due to the difficulties in understanding the bounce. Whether or not
string theory allows for a world beyond a time like singularity is of crucial importance, not
only to cosmology.

Can inflation be realized using branes? As we have seen above the distance between two
branes can be identified with a scalar field on the branes yielding interesting cosmologies.
But instead of using this to construct an alternative to inflation, we will now try to identify
the scalar field as the inflaton.

The first attempts to construct brane inflation used two sets of branes. If the configuration
preserves supersymmetry there is no force between the branes and no potential for the scalar
field. What happens is that there is a balance between the gravitational attraction between
the branes and a repulsion due to the RR-charges of the branes. If supersymmetry is broken,
however, the dilaton and the RR-fields obtain masses while the graviton remain massless.
Hence the attraction wins and there is a force between the branes. In principle this could
yield inflation if the resulting potential is of just the right form, [120]. Unfortunately, our
understanding of string theory is not deep enough to enable us to perform trustworthy
calculations with nonperturbative supersymmetry breaking. Actually, the situation is not
unlike what we have in the ekpyrotic/cyclic scenario where the actual potential also is not
very well known.

Another possibility, in the sense that we can perform reliable calculations to check the
scenario, is to consider brane and anti-branes where supersymmetry is broken and there
is a force already at tree level. In this case the branes have opposite charges and there
is an attractive RR-force that adds to the gravitational force. Let us see how this works,
[121][123][124].

We start out with the action of a Dp-brane in 10 dimensional space time. It is given by

Sp=— / dxd? 3y —h [T, + ..], (353)

where
]_ — pt+1 _¢ 1

Tp = (27r)p04 2 e ~ —gsléﬂ_l’

is the tension of the brane, h,, is the metric on the branes induced by the full metric g,,,
and x corresponds to our four space time coordinates while y are compact extra dimensions
around which the D-branes are wrapped (if p > 3). The action for the Dp-brane is identical.

(354)
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The position of the D-brane and the D-brane in the transverse dimensions are denoted by
2" and 2" respectively, where m = 1...d; with d;, = 10 — (p+ 1) = 9 — p as the number
of transverse dimensions. We now define the relative position of the D and D-branes as

2™ = 2" — 24", and their average position as 2" = m The two actions added together,
can then be expanded as
_ 1
Sp+Sp=-— / d*xd**y\/ —hT, |2 + Egmnh“’ja“zm&,z" + .., (355)

where fLW is evaluated on z". We now have the kinetic terms for our inflaton field z, but
what about the potential?

The potential energy is of the same form as the gravitational potential between two
branes, that is, the energy per area is given by

E 1 T2
_ T 356
A, M2 zdi=2" (356)

where 8 = $r~4/2T (422) and M7, = e *k;;. Compactifying according to

9 2
_]‘élo /d‘lxdﬁy\/—g R+ ..] ~ %/dﬁ‘xv—g B+ ..], (357)
we find

M2 = MEVLV). (358)

The six extra dimensions should be compact, and we assume that they have volumes given
by

V= V= rﬂ’_?’. (359)

The potential (including the mass density of the branes) can, after compactification, be
written

T2V B

Vi(z) =21,V — C A =A

M2 Ldi—2 o d -2

(360)

To complete the calculation, we also need to make sure that our inflaton has the correct
normalization. Looking at (355) we see that we need to identify the canonically normalized
scalar field as

Tpvll »

V=43

(361)

Can the resulting potential yield inflation? To answer this question, we need to evaluate the
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slow roll parameters. These are given by

M} (V'\® M} (B 1\’
= — | — ~ — _—
T (V) v \a -2 oS

P T, 1 (ri\h AT
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where we have made use of (358). The derivatives of V' are taken with respect to ¢. From the
requirement that n should be small, we immediately see that z > r, which, unfortunately,
does not make sense. The branes can not be separated by a distance larger than the size of
the compact dimension!

One possible way out, is to fine tune the positions of the D and D to opposite sides of
the compact dimension. From symmetry this must correspond to a meta-stable, forceless
configuration. It can be shown that the potential close to the equilibrium position is such
that slow roll and inflation is allowed. In the next section we will come back to other
possibilities of obtaining realistic models.

It is also interesting to think about what will happen when the branes collide. From string
theory we would expect the annihilation of the branes to be driven, from the perspective of
the brane, by an open string tachyon. The field T" corresponding to the tachyon becomes
tachyonic when the distance between the branes is decreased to a string length, [125]. We
therefore expect a potential of the form

22

V(z,T):A<l—2—B) T>+CT' +V (2), (364)
where A, B and C are positive constants. Interestingly, this is just the kind of potential
known from hybrid inflation, [126] . The original motivation for hybrid inflation was to
generate enough e-foldings without the inflaton having to start out with values of the order
of many Planck masses, recall (242). Contrary to a single field chaotic inflation, where all of
the vacuum energy decays through the rolling inflaton, the decay in hybrid inflation takes
place in two steps.

First, when z is large, the tachyon 7T is locked in a minimum at 7' = 0. The effective
potential for the inflaton can, in the simplest case, be of the usual monomial type, but the
minimum has a non-zero vacuum energy that can drive inflation. However, when z becomes
small enough, 7" = 0 becomes unstable and rolls down to a new minimum. As a result, the
vacuum energy decays away. In brane inflation, this corresponds to the annihilation of the
branes.

Unfortunately we do not have a good understanding of what happens when the branes
annihilate and how rehetaing takes place. That is, how all the matter now present in the
universe is created out of the decaying vacuum energy. We must also make sure that all
branes do not annihilate after the collision. There must be a net number of, say D-branes,
remaining after all pairs of D and D have annihilated.
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5.5 Strings in de Sitter space

Recent observations give very strong indications that we are living in a universe with a
positive cosmological constant, i.e. a de Sitter space. From the point of view of string theory
this is quite surprising. In fact, it has been a long standing problem to formulate string theory
in de Sitter space. Part of the difficulty has to do with supersymmetry. Contrary to the case
of flat space time and a space time with a negative cosmological constant, i.e. anti de Sitter
space, a positive cosmological constant goes together with super symmetry breaking. It has,
therefore, not been possible to take advantage of the simplifications due to supersymmetry
in constructing de Sitter space times. Another, more serious problem, is that string theory
is naturally formulated using S-matrices. That is, we need an asymptotic lightlike infinity,
like in Minkowsky space, to make sense of the scattering amplitudes produced by string
theory. An exception is anti de Sitter space, where we have the option to describe physics
holographically on the time like boundary. Unfortunately, neither of these possibilities are
available in de Sitter space. Based on this, it was argued in [127] that an accelerated
expansion, like the one due to a cosmological constant, necessarily is temporary.

A seemingly different problem in string theory is the stabilization of moduli. For instance,
why is the size of the compact dimensions stable? Why do they not change in a substantial
way during the evolution of the universe? As we will see in the following these two problems
are not unrelated to each other.

Let us start out, following [128], with the action

S = / dPry=g {— Mé) RAL (w)} , (365)

with D = d + 4, and metric
ds? = dsj + R* () gamn (y) dy™dy". (366)
We dimensionally reduce to four dimensions and find

D—2
_Mp

S = 5

Vy / d*z/=ge® PR, 4V / diz/—g,ed@ / d*y\/gal (), (367)

where we have put

R (z) = Rye?™® (368)
Vi = R{. (369)
Now let us rescale
Ga,uv — 6_d¢(x)g4,pz/- (370>
This leads to
—gs — €29 =g, (371)

Ry — e®@OR, + .. (372)
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and the action becomes

_Mi

S = 5

/ Ao/ =g Ry + Vy / dia/—gse @) / dy\/gaL (1) . (373)

It is important to note that the second term includes a factor e~%®) that decreases if the
volume of the compact dimensions increases. This can only be compensated if [ ddy\/%L (¥)
goes like the volume, i.e. like R?. The metric g; does not include any R-dependence which
leave us with the density L (). There is no type of matter which has an energy density that
grows with the volume of space. In fact, recalling (220) we see that such matter would have
w = —2. The best we can do is to consider cases where there is effectively a cosmological
constant. This can be obtained by wrapping a brane around the compact dimensions.

In general, we find that the energy approaches zero as the dimensions decompactify, and
we end up, eventually in ten dimensional flat space time. There are several possibilities for
how this can happen. In this case there is nothing that can prevent the compact dimensions
from opening up, and the system rapidly rolls towards the decompactified case. Another
possibility is that there is a minimum of the potential at negative energy, i.e., an anti de Sitter
universe where the compact dimensions are stabilized. The much studied AdS® x S® is an
example of this. Finally, there could be a (local) minimum with positive energy corresponding
to a de Sitter universe. The size of the extra dimensions are now meta stable — eventually
there will be a tunneling to the decompactified case.

Interestingly, the cases of figure 8 can be realized in string theory. In [129][130] type IIB
with six dimensions compactified on Calabi-Yau spaces were studied. By turning on fluxes,
the complex moduli of the internal spaces were stabilized, and in [131] it was noted that non
perturbative string corrections can also fix the volume of the internal space. Hence we end
up in a situation described by figure 8. Then, the authors of [131] added a number of D3
branes, which increased the energy and corrected the potential to the one in figure 8.

Interestingly, the model also provides a way of realizing brane inflation. The trick is to
make use of the fact that the D3 branes are sitting at fixed positions on the internal manifold
at the bottom of deep throats. If we add some D3 branes these will move down the throats
attracted by the D3 branes. Thanks to the redshift at the bottom of the throats, the problem
of achieving slow roll in a compact dimension that I discussed previously is circumvented,
[132].

It remains to construct realistic models within string theory that provide the right amount
of inflation, the correct cosmological constant of today, as well as realistic particle physics.
But the indications are certainly there that it should be possible. Are there any generic
predictions? Most of the D-brane based string models discussed in the recent literature
has an inflationary scale that is rather low. This means that € is essentially zero and any
deviation from scale invariance comes from 7. From an observational point of view this is
slightly disappointing for two reasons. First, a too small ¢ implies that contributions to the
CMBR fluctuations from gravitational waves will be non-observable. Second, the magnitude
of transplanckian effects in the CMBR, in the simplest and most generic scenarios, will be
beyond detection. It is therefore of great interest to find out whether an almost vanishing e
is a robust prediction of string theory.
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5.6 Holography

Holography is an intriguing possibility for finding connections between the smallest scales
and cosmology. I will not give a review of all the various attempts to apply holography to
cosmology. Some of the more original and interesting are discussed in [137]. Instead, I will
describe a number of important and general features of holography that I find important to
keep in mind. The subject is, unfortunately, full of contrary claims and confusions, and my
aim is to put the subject on as solid ground as possible.

I will start out with a discussion of entropy bounds and the question of whether such
bounds can provide useful restrictions on cosmology, not available by other means. My con-
clusion will be negative. Then I will proceed with a discussion of more intricate questions like
complementarity. Here, the answer is not as clear cut, but my conclusion will, nevertheless,
be that there is no known mechanism for how such effects could be made visible.

Holography has its origin in black hole physics and the discovery in the 70’s by Bekenstein
that black holes carry an entropy proportional to the area of the horizon, [133]. Bekenstein
further argued that there are general bounds on the amount of entropy that can be contained
in matter. The entropy bound, due to Bekenstein, that will serve as a starting point for my
discussion states that in asymptotically flat space, [134], is

S < Sp =21ER, (374)

where E is the energy contained in a volume with radius R. This is the Bekenstein bound.
There are several arguments in support of the bound when gravity is weak [135], and it is
widely believed to hold true for all reasonable physical systems. Furthermore, in the case of
a black hole where R = 2FI?,, we have an entropy given by

plb>
A TR?
Spy = —5 = ——, (375)
Al 12
which exactly saturates the Bekenstein bound. We will consequently put » = ¢ = 1, but
explicitly write the Planck length, [, = %i, to keep track of effects due to gravity.

Beginning with [136], there have been many attempts to apply similar entropy bounds to
cosmology and in particular to inflation, [137]. The idea has been to choose an appropriate
volume and argue that the entropy contained within the volume must be limited by the area.
An obvious problem in a cosmological setting is, however, that for a constant energy density
a bound of this type will always be violated if the radius R of the volume is chosen to be big
enough. In fact, this observation has been used to argue, choosing appropriate volumes, that
holography puts meaningful limits on, e.g., inflation. However, as was explained in [138], it
is not reasonable to discuss radii which are larger than the Hubble radius in the expanding
universe. See also [139]. This, then, suggests that the maximum entropy in a volume of
radius R > r, where r is the Hubble radius, is obtained by filling the volume with as many
Hubble volumes as one can fit — all with a maximum entropy of %2 This gives rise to the

Hubble bound, which states that
RS 7”2 RS
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The introduction of the Hubble bound removes many of the initial confusions in the subject
of holographic cosmology.

The Hubble bound is a bound on the entropy that can be contained in a volume much
larger than the Hubble radius. It is, therefore, a bound that gives measurable consequences
only if inflation stops allowing scales larger than the inflationary Hubble radius to become
visible. Clearly, the notion of a cosmological horizon, and its corresponding area, does not
play an important role from this point of view.

If we, on the other hand, want to discuss things from the point of view of what a local
observer, who do not have time to wait for inflation to end, can measure, we must be more
careful. In this case one has a cosmological horizon with an area that it is natural to give an
entropic interpretation [140]. Since the area of the horizon grows when matter is passing out
towards the horizon, from the point of view of the local observer, it is natural to expect the
horizon to encode information about matter that, in its own reference frame, has passed to
the outside of the cosmological horizon of the local observer. From the point of view of the
observer, the matter will never be seen to leave but rather become more and more redshifted.
The outside of the cosmological horizon should, therefore, be compared with the inside of a
black hole. It follows that the horizon only indirectly provides bounds on entropy within the
horizon as is nicely exemplified through the D-bound introduced in [141]. The cosmological
horizon area in a de Sitter space with some extra matter is smaller than the horizon area in
empty space. If the matter passes out through the horizon, the increase in area can be used
to limit the entropy content in matter. This is the content of the D-bound which turns out
to coincide with the Bekenstein bound. The D-bound, therefore has not, necessarily, that
much to with de Sitter space or cosmology. It is more a way to use de Sitter space to derive
a constraint on matter itself.

Let me now explain the nature and relations between the various entropy bounds a little
bit better. In particular on what scales the entropy is stored. If we assume that all entropy
is stored on short scales smaller than the horizon scale r, we can consider each of the horizon
bubbles separately and use the Bekenstein bound (or D-bound) on each and everyone of these
volumes. We conclude from this that the entropy, under the condition that it is present only
on small scales, is limited by

S < SLB = 27TE’I“, (377)

which I will refer to as the local Bekenstein bound. It is interesting to compare this result with
the entropy of a gas in thermal equilibrium. One then finds S, S Er for high temperatures
where T' 2 1/r, and S, 2 Er for low temperatures where 7' < 1/r. This is quite natural and
a consequence of the fact that most of the entropy in the gas is stored in wavelengths of the
order of 1/T. This means that the entropy for low temperatures is stored mostly in modes
larger than the Hubble scale and can therefore violate the local Bekenstein bound Sy 5.

The size of the horizon therefore limits the amount of information on scales larger than
the Hubble scale, or, more precisely, the large scale information that once was accessible to
the observer on small scales. If the horizon is smaller than its maximal value this is a sign
that there is matter on small scales, and the difference limits the entropy (or information)
stored in the matter. This is the role of the D-bound. We conclude, then, that a system
with an entropy in excess of Sy (but necessarily below Sy ) must include entropy on scales
larger than the horizon scale.
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While the entropy bounds above are rather easy to understand, the way entropy can flow
and change involve some more subtle issues. In the case of a diluting gas the expansion of
the universe implies a flow of entropy out through the horizon, but as the gas eventually
is completely diluted the flow of entropy taps off. Whether or not the horizon radius is
changing, one will never be able to violate the Hubble bound or get an entropy flow through
an apparent horizon violating the bound set by the area. A potentially more disturbing
situation is obtained if we consider an empty universe (apart from a possibly changing cos-
mological constant), which can be traced arbitrarily far back in time, with entropy generated
through the quantum fluctuations that are of importance for the CMBR. As discussed in
several works, [103]|[142], there is an entropy production that can be associated with these
fluctuations and one can worry that this will imply an entropy flow out through the horizon
that eventually will exceed the bound set by the horizon. This is the essence of the argument
put forward in [143].

To understand this better, one must have a more detailed understanding of the cause
of the entropy. Entropy is always due to some kind of coarse graining where information is
neglected. In the case of the inflationary quantum fluctuations we typically imagine, as I have
explained, that the field starts out in a pure state — defined by some possibly transplackian
physics — with a subsequent unitary evolution that keeps the state pure for all times. This is
true whether we take the point of view of a local observer or use the global FRW-coordinates.
To find an entropy we must introduce a notion of coarse graining. Various ways of coarse
graining have been proposed, but they all imply an entropy that grows as the state gets
more and more squeezed, [103][142]. It can be shown that most of this entropy is produced
at large scales (when the modes are larger than the horizon), and well below the Hubble
bound.

This is all in terms of the FRW-coordinates, but let us now take the point of view of
the local observer. In this case the freedom to coarse grain is more limited. In order to
generate entropy we must divide the system into two subsystems and trace out over one of
the subsystems in order to generate entropy in the other. As an example consider a system
with N degrees of freedom divided into two subsystems with N; and N, degrees of freedom,
respectively, with N = N; + Ny and Ny > Np. If the total system is in a pure state it is
easy to show that the entropy in the larger subsystem is limited by the number of degrees
of freedom in the smaller one, i.e. Sy < In N;.!' Applied to our case, this means that the
entropy flow towards the horizon must be balanced by other matter with a corresponding
ability to carry entropy within the horizon. Since the amount of such matter is limited by
the D-bound, the corresponding entropy flow is also limited. As a consequence, there can
not be an accumulated flow of entropy out towards the horizon that is larger than the area
of the horizon. For a similar conclusion see [144]. This does not mean that inflation can not
go on for ever, nor that there can not be a steady production of entropy on large scales, but
it does imply that the local observer will not be able to do an arbitrary amount of coarse
graining.

To summarize: from a local point of view the production of entropy in quantum fluctua-
tions is limited by the ability to coarse grain; from a global point of view entropy is created
on scales larger than the Hubble scale.

A simple proof can be found in [145] in the context of the black hole information paradox.
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I have argued that holography, in the sense of putting limits on the entropy, does not
constrain cosmology in any new way. It might still be a useful principle, but it does not
contain anything beyond what is contained in the Bekenstein bound and the generalized
second law which, in turn, seem to be automatically obeyed by the ordinary laws of physics.
If we want to find truly new effects, we must go one step further and turn to the principle of
complementarity. 1 will therefore investigate the possibilities of an information parador and
compare with the corresponding situation in the case of black holes.

In black hole physics, the emerging view is that a kind of complementarity principle is at
work implying that two observers, one travelling into a black hole and the other remaining
on the outside, have very different views of what is going on. According to the observer
staying behind, the black hole explorer will experience temperatures approaching the Planck
scale close to the horizon, and as a consequence, the black hole explorer will be completely
evaporated and all information transferred into Hawking radiation. According to the explorer
herself, however, nothing peculiar happens as she crosses the horizon. As explained in [146],
the apparent paradox is resolved when one realizes that the two observers can never meet
again to compare notes. Any attempts of the observers to communicate again, after the
outside observer have extracted the information from the Hawking radiation, will necessarily
make use of planckian energies and presumably fail.

An interesting question to pose is whether a similar mechanism could be at work also in
de Sitter space. In order to investigate such a possibility, we will consider a scenario where
at some moment in time the de Sitter phase is turned off and replaced by a non-accelerated
A = 0 phase with ordinary matter. That is, an inflationary toy model. A possible information
paradox, comes about if one assumes that an object receding towards the de Sitter horizon of
an inertial de Sitter observer, will return its information content to the observer in the form
of de Sitter radiation. If the cosmological constant turns off, the object itself will eventually
return to the observers causal patch, and one has the threat of a duplication of information
and therefore a paradox.

To come to terms with the paradox, let us focus on what an observer actually would see
as an object recedes towards the horizon, [147]. Since the rate of the photons (emerging
from the horizon) received by our observer is of order 1/R, the time it would take for her
to see the object burn will be extremely long. To find out how long, we will investigate
what actually happens to the object (according to the observer). To do that we think of the
horizon as an area consisting of R?/ lf,l Planck cells, and remember that the photon has a
wavelength of order Planck scale when emitted and can indeed resolve specific Planck cells.

Now, let us assume the object in question to be something really simple, with an infor-
mation content much smaller than the R? number of degrees of freedom of the horizon. This
would mean that only a few of the Planck cells are involved in encoding the object. In the
extreme case of an object with entropy of O(1), one would need to wait until of the order R?
photons have been emitted to be reasonably sure to see a photon coming from the burning
of the object. In the other extreme, one can think of an object consisting of the order R?
degrees of freedom. In this case it is clear that one has to wait until of the order R? photons
have been emitted, in order for all parts of the object to have been burnt. Regardless of the
size of the object, one has, therefore, to wait a time,

R? R? 1

=~ (378)
[ A
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in order to actually see the destruction.

If we now abruptly turn off the de Sitter phase, and let it be followed by a more standard
cosmological evolution, we expect the object to eventually return to the observers causal
patch at some time in the future [148]. If the time we wait before turning of inflation is
shorter then the estimate above, this causes no problem. The object simply becomes visible
again with a negligible amount of de Sitter radiation emitted. If we wait longer the situation
is more confusing. The time we have estimated is the time it takes for an object to be
irreversibly lost to the horizon, and it would be inconsistent for an unharmed, information
loaded object to come back. After all, we have, with our own eyes, seen the object burn.
This is, in fact, just the information paradox.

Luckily, the time scale we have estimated above is long enough for several interesting
effects to take place which have the potential of removing the paradox. One argument goes
as follows. Since the situation relation between the object and the observer is symmetric, it
is clear that the object will be in as good, or bad, shape as the observer. Indeed, considering
the symmetric situation we have between the observer and the object (being for example
another observer) and the fact that they can meet again some time after the de Sitter phase
has turned off, seems to imply that the estimated time should be the same for local objects
as for those who approach the horizon, even from the perspective of one single observer.

So, let us now try to estimate the time it takes to break down a local object, bound to
the observer. To do this, we reconsider the possibility that local interactions do give rise
to a breakdown, but only if we take physics near the Planck scale into account. With an
interaction rate given by I' = onv, where the cross section is given by o ~ lgl, the number
density of the radiation n ~ T3 ~ 1/R?® and the relative velocity v = ¢ = 1, one finds the
typical time 7 it takes for this process to occur to be

R3
1N0nUTNZ§l~1/R3~1'T:>TNﬁ. (379)
P
This coincides, up to orders of one, with the previous result. Therefore, regardless of whether
local objects or objects falling towards the horizon are concerned, the survival time will be
the same. We argued above that this must be the case based on the symmetry between the
observer and the object and by noting that, if the de Sitter phase is only temporary, they
will eventually meet again. We find it encouraging that the above results are in agreement
with this assessment.

The above analysis provides a possible escape route from the information paradox, since,
as I have argued, it is very difficult for an observer to exist long enough to actually see
any object being fully burnt by Hawking radiation. But this is not all, as observed in [148]
there is a further obstacle to experiencing an information paradox. It can be shown that the
return time for an object that has been falling towards the horizon a time 7 ~ %, is of the

P

order of the Poincare recurrence time, ~ e’/ of the de Sitter space. That is, it exceeds
the Poincare recurrence time of the detector.

What are the implications for inflation? In inflation the Hubble constant is constrained
from observations to be no larger than H ~ 10~* M,. With this input the thermalization
time for non-thermal excitations (a-vacua included) is found to be of order 7 ~ R3 = 1/H3 ~
10" t,,. Comparing this with the time needed for the required number of e-foldings, which
for 70 e-foldings is ti,p ~ 70/H ~ 7 - 10° tpi, one concludes that the thermalization time
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allows for visible effects of non-thermal behavior in the CMBR, with room to spare. This is
good news for the transplanckian signatures. On the other hand, with fluctuations leaving
the horizon so close to the end of inflation, effects from holography and complementarity are
expected to be subtle.

A fair conclusion is to say that so far holography has not yielded any useful restrictions
on cosmology.
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6 Trans-Planckian Effects on CMB

Inflation has nowadays become a standard ingredient for the description of the early Universe
(see, e.g., Refs. [151]). In fact, it solves some of the problems of the standard big-bang
scenario and also makes predictions about cosmic microwave background radiation (CMBR)
anisotropies which are being measured with higher and higher precision. Further, it has been
recently suggested that inflation might provide a window towards trans-Planckian physics
[152] (for a partial list of subsequent works on this subject, see Refs. [158, 153, 154, 155, 156,
157]). The reason for this is that inflation magnifies all quantum fluctuations and, therefore,
red-shifts originally trans-Planckian frequencies down to the range of low energy physics.
This causes two main concerns: first of all, there is currently no universally accepted (if at
all) theory of quantum gravity which allows us to describe the original quantum fluctuations
in such an high energy regime; further, it is not clear whether the red-shifted trans-Planckian
frequencies can indeed be observed with the precision of present and future experiments.

Regarding the first problem, one can take the pragmatic approach of modern renormal-
ization theory and assume that quantum fluctuations are effectively described by quantum
field theory after they have been red-shifted below the scale of quantum gravity, henceforth
called A, and forget about their previous dynamics. Further, one can also take A as a con-
stant throughout the evolution of the (homogeneous and isotropic) Universe, thus implicitly
assuming the existence of some preferred reference frame (class of “cosmological” observers).
The second problem is instead more of a phenomenological interest and needs actual investi-
gation to find the size of corrections to the CMBR. It then seems that the answer depends on
the details of the model that one considers and no general consensus has been reached so far.
In fact, in Refs. [153, 154] it is claimed that such corrections can be at most of order (H/A)?,
where H is the Hubble parameter, hence too small to be detected. However, corrections are
estimated of order H/A in Refs. [155, 156, 157]. Let us note that the first problem also plays
an important role in this phenomenological respect, since it is the unknown trans-Planckian
physics which fixes the “initial conditions” for the effective field theory description.

In Ref. [157], a principle of least uncertainty on the quantum fluctuations at the time of
emergence from the Planckian domain (when the physical momentum p ~ A) was imposed.
Without a good understanding of physics at the Planck scale, this can be regarded as an
empirical way of accounting for new physics. Such a prescription fixes the initial vacuum
(independently) for all frequency modes, and subsequent evolution is then obtained in the
sub-Planckian domain by means of standard Bogolubov transformations (of course, neglect-
ing the back-reaction) in de-Sitter space-time. In the present paper, we apply the same
approach as in Ref. [157] to power-law inflation. This will allow us to check the final result
against an inflationary model with time-dependent Hubble parameter.

6.1 The sub-Planckian effective theory

On the homogeneous and isotropic background

ds* = a*(n) [—dn® + da* + dy* + d2°] (380)
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the spatial Fourier components of the (rescaled) scalar field p = a¢ (as well as tensor
perturbations ur) satisfy

" 2 CL//
it K= — ) e =0 (381)

where primes denote derivative with respect to the conformal time —oo <7 < 0.

The index k is related to the physical momentum p by k& = ap. Thus, a given mode with
energy above the Planck scale in the far past would cross the fundamental scale A at the
time 7, when

k= a(n) A (382)

Strictly speaking, it is incorrect to regard such a mode as existing for n < 7, since we do not
have a theory for that case. What we will in fact consider is just the evolution for n > 7.

6.2 Minimum uncertainty principle

Following Ref. [157], we shall impose that the mode k is put into being with minimum
uncertainty at n = 7y, that is the vacuum satisfies in the Heisenberg picture (for the details
see, e.g., Ref. [159])

Te(me)| 0) = ik fug(ne)] O) (383)
where
/ a'/
T = My = Hk (384)

is the Fourier component of the momentum 7 conjugate to u. We can write the scalar
field and momentum at all times in terms of annihilation and creation operators for time
dependent oscillators

ue(n) = 7 [&k(n) + dik(n)}
(385)

wln) = =i/} [ann) —al ()]

The oscillators can be expressed in terms of their values at the time 7, through a Bogoliubov
transformation

ar(n) = u(n) ar(m) +vi(n) at, (m)
(386)

dT—k(ﬁ) = uz(n) dT—k(Tﬁc) + v (n) ar ()
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Substituting this expression in (385) we obtain

f(n) = fuln) ar(n) + fi(n)al,(m)

(387)
i7.(n) = gi(n) ar(ne) — gi(n) al . (m)
where
fe(n) = 5 lur(n) + vi(n)]
(388)

gu(m) = /5 [en) — vi ()

and fr(n) is a solution of the mode equation (381). The condition (383) then reads

) =& 520~ i) =0 (389

This requirement, together with the normalization condition
lug|* — o> = 1 (390)

is sufficient to determine uniquely the initial state at n = 7. The subsequent time evolution
is then straightforward and one can estimate the power spectrum of fluctuations at a later
time 1 > n; after the end of inflation,

P,k

Py="t= ? 391
y= = 1) (301)
The above general formalism was applied to de-Sitter space-time in Ref. [157]. For that
case, one has a = —1/H n and the nice feature follows that
A
kn, = 7 (392)

is a constant independent of k. This, in turn, allows to obtain an analytic expression for the
initial state which satisfies Eq. (389) by suitably expanding for H/A small (i.e., n, — —o0
for all k). We shall instead consider power-law inflation, where such a simplification does
not occur.

6.3 Power-law inflation

In the proper time dt = a dn, power-law inflation is given by a scale factor a ~ t*, in which
tp <t <t,, with ¢, of the order of the Planck time, ¢, > ¢, is the time of the end of inflation,
and p > 1 [155]. Upon changing to the conformal time, one obtains for the scale factor

= (1) (393)
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where ¢ =p/(p— 1), n, <1 < 1o <0 (1, is the end of inflation) and the Hubble parameter
is given by

(394)

The condition (382) now becomes
R T (395)
Since the right hand side depends on & (unless ¢ = 1), it can be large or small depending on

k, and an expansion for —k 7 large is not generally valid.
For the scale factor (393) one has

"
1
@ n
and Eq. (381) can be solved exactly. One can write the general solution as

fe= A/ =ndgp1(=kn) + B vV=nY, 1(=kn) (397)

where J, and Y, are Bessel functions of the first and second kind '2, and A and B are
complex constants. The Bogolubov coefficients are then given by

we = = [ Ay (k) B,y (k)
}

—z’(AkJ s(=kn) + By J,_1(—kn)

. 2
v =\ = Ay (k) + BiYy (<R )
i (AT (=) + B,y (k)|

The constants Ay and By can now be fixed by imposing the normalization condition (390)
and Eq. (389). From Eq. (390) one obtains
T

Ay B — AL B, = —i 5 (398)
and from Eq. (389),
Y,141iY, 1
Ap=—2 i (399)
Jq+% +2Jq_%

where J, = J,(—kn;) and Y, = Y, (—kn). From the combined equations one then obtains

2
2 T Y,
| A =—g km [Yq

_|_
=~

2 — —
| By|* = —% k1 [ﬂ + J? } (400)
2

T _
Re (4, By) = ke (Y+1J+1+Yq_ T )

q

12We remark that such functions are real in the chosen domain of 7.
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We are finally in the position to compute the exact power spectrum at the time n < n,,
which is given by

2q+1 g4
_ Nk N
Py = 16 724 X (401)

D=

1
2

_ _ 2 _ _ 2
{[Yﬁ% Turs(=Rn) = T Yops (<km)| [V Ty (km) = Ty s (<kn)| }

The above expression can then be estimated for n = 7, (end of inflation) and 7, — 0~. Since
for —kn, < 1, the Bessel Y, 1 dominates, one obtains, to leading order,

i j?+% + T
R D)

[NIES

Py (402)
If one further takes the limit k7, — —oo and expands to leading order for k£ small, the power
spectrum becomes
22 q—2 k2—2q Hk Lot
P ~ 1——sin(2nAsk " a + 7
’ 7|72 cos?(m q) % (5 — q) [ A e 9

= Ppy, {1 _ e sin (q 24 + QW)] (403)
Hj,

where Hy = H(n;,) and we have factored out the expression Ppy, ~ k727 of the spectrum for
power-law inflation [160] in the small k7, regime (super-horizon scales) [161]. This result is
thus in agreement with what was obtained for de-Sitter space-time in Ref. [157], as one can
easily see by taking the limit ¢ — 1 (p — o0).

However, as we mentioned previously, k7 is not independent of k [see Eq. (395)]. The
above expression therefore does not hold for all k, but just for those such that —k ny, is large.
Since it is very difficult to obtain general analytic estimates of the exact power spectrum for
general values of k, in Fig. 10 we plot, for the exact expression of P, in Eq. (402), the ratio

:P¢_PPL

Rq PPL

(404)
for ¢ = 2, 3/2 and 4/3 (similar results are obtained for all values of ¢ # 1). It is clear
that for small k the oscillations in P, are relatively large around Ppr,, and this is precisely
due to the dependence of kn; on k. The oscillations are then progressively damped for
large k according to the approximate expression in Eq. (403) (and analogously to what is
found in de-Sitter [157]). Note also that for increasing p (i.e. ¢ — 17), the wavelength of
oscillations increases, as is shown in the approximation (403). Of course, one must keep
in mind that only sub-horizon scales matter at the time 7, for which k£ > a H, that is
|kmi| > q (say of order ). Hence, the relevant regions for different values of ¢ are those
with & > A@=Y_In Fig. 10 we have set A = 10 in order to obtain reasonably overlapping
ranges, and the amplitude of the oscillations turns out to be of the order of a few percents
inside the physical ranges (larger values of A\ imply smaller oscillations). We considered a
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minimum uncertainty principle to fix, at an energy scale A, the vacuum of an effective (low
energy) field theory. Such prescription involves the cut-off scale A for dealing with trans-
Planckian energies, which therefore enters into the power spectrum of perturbations at later
times. We have shown in some details that a A of the order of the Planck scale can affect
appreciably the spectrum [see Eq. (403) and Fig. 10], in agreement with Refs. [155, 156, 157]
by introducing a modulation of the spectrum, as may be clearly seen from the figure. This
is a clear indication that trans-Planckian physics can lead to observable predictions in the
cosmological models. We feel this is further evidence for the fact that trans-Planckian physics
cannot be safely ignored in determining observable quantities such as features of the CMBR.
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7 Baryogenesis

One of the most peculiar features of our Universe is the observed baryonic asymmetry. This
can be conveniently characterized by the dimensionless number

"?B =n~ 10710 (405)

where ng = n, — n; is the difference between the baryon and anti-baryon densities and s is
the density of entropy. The consistency of primordial nucleosynthesis, which yields some of
the most precise results in the standard model of cosmology, requires that n took the above
value at the time when the light elements (i.e., 3He, *He, and "Li) were produced, and it is
believed to have then remained the same up to the present epoch.

The necessary conditions for generating the baryonic asymmetry in quantum field theory
were formulated by Sacharov in 1967 [162] (see also Ref. [163]) and can be summarized as
follows:

1. Different interactions for particles and antiparticles, or, in other words, a violation of
the C and CP symmetries;

2. Non-conservation of the baryonic charge;
3. Departure from thermal equilibrium.

The last condition results from an application of the CPT theorem [164, 165]. In fact,
CPT invariance of quantum field theory in a static Minkowski space-time ensures that the
energy spectra for baryons and anti-baryons are identical, leading consequently to identical
distributions at thermal equilibrium. This explains why the baryon number asymmetry was
required to be generated out of thermal equilibrium.

The so called mechanism of spontaneous baryogenesis [166, 167] uses the natural (strong)
CPT non-invariance of the Universe during its early history to bypass this third condition.
We know that an expanding Universe at finite temperature violates both Lorentz invariance
and time reversal, and this can lead to effective CPT violating interactions [164, 165]. Thus
the cosmological expansion of the early Universe leads us naturally to examine the possi-
bility of generating the baryon asymmetry in thermal equilibrium. The main ingredient for
implementing this mechanism is a scalar field ¢ with a derivative coupling to the baryonic
current. If the current is not conserved and the time derivative of the scalar field has a non-
vanishing expectation value, an effective chemical potential with opposite signs for baryons
and anti-baryons is generated leading to an asymmetry even in thermal equilibrium.

The brane-world model with two branes proposed by Randall and Sundrum (RS) in
Ref. [168] contains a metric degree of freedom called the radion which determines the dis-
tance between the two branes and appears as a scalar field ¢ on the branes. Cosmological
solutions have also been examined rather extensively in this context. In particular, it has
been shown that, when matter is added on one (or both) of the two branes, the standard
Friedmann equation for the scale factor of the Universe is recovered (with possible cor-
rections) provided the radion is suitably stabilized (see for example Refs. [169]-[172] and
References therein). In this brane-world model, we therefore have both a scalar field (the ra-
dion) and the cosmological evolution as required by spontaneous baryogenesis, and we shall
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show that the radion field does in fact couple differently with baryons and anti-baryons. This
scenario might therefore naturally reproduce the observed baryonic asymmetry 2.

In Section 7.1, we review in some details the mechanism of spontaneous baryogenesis. The
cosmological solutions in the RS framework are discussed in Section 7.2 where the process of
spontaneous baryogenesis driven by the radion is presented in general. Some more specific
examples are also reported in Section 7.3. We then conclude and comment on our results.

We shall use units with ¢ = A = kg = 1, where kg is the Boltzmann constant.

7.1 The Spontaneous Baryogenesis Mechanism

To illustrate the mechanism of spontaneous baryogenesis (see, e.g., Refs. [166, 167] and [180]-
[182]) let us consider a theory in which a neutral scalar field ¢ is coupled to the baryonic
current Jh according to the Lagrangian density

)\/

Liw = <= T4 0,6 (406)
where )\ is a coupling constant and M, is a cut-off mass scale in the theory (presumably
smaller than the Planck mass Mp). Let us assume that ¢ is homogeneous, so that only the
time derivative term contributes,

N
Ling = Mﬁb ng = u(t) np (407)
where ng = J9% is the baryon number density and p(t) is to be regarded as an effective time-
dependent chemical potential. This interpretation (see Ref. [183]) is valid if the current J% is
not conserved (otherwise one could integrate the interaction term away) and if ¢ behaves as
an external field which develops a slowly varying time derivative (dot¢ ) # 0 as the Universe
expands. Since the chemical potential p enters with opposite signs for baryons and anti-

baryons, we have a net baryonic charge density in thermal equilibrium at the temperature
T,

nnlTip) = [ s 1) = k)] (408)

where £ = /T is regarded as a parameter, and
1
exp [(VE2 +m? — ) /T] £1

is the phase-space thermal distribution '* for particles with rest mass m and momentum k.
For || < 1 we may expand Eq. (409) in powers of ¢ to obtain

g7T?
6
13Other mechanisms for baryogenesis in the context of brane-world models have been recently analyzed,

e.g. in Refs. [173]-[179).
140Of course, the plus sign is for fermions and the minus sign for bosons.

[k, ) = (409)

np(Tip) = -+ 0(¢) (410)
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where ¢ is the number of degrees of freedom of the field corresponding to ng. Upon substi-
tuting in for the expression of i, one therefore finds

Ng
6 M.

np(Tsp) = 2972 () (411)

Regardless of the specific mechanisms which break baryon number conservation, we as-
sume that there is a temperature Tf at which the baryon number violating processes become
sufficiently rare so that ng freezes out (7r will in fact be called the freezing temperature).
Once this temperature is reached as the universe cools down, one is left with a baryonic asym-
metry whose value is given by Eq. (411) evaluated at 7' = Tg. The value of the parameter
7 remains unchanged in the subsequent evolution.

7.2 Radion Induced Spontaneous Baryogenesis

We have discussed how the mechanism of spontaneous baryogenesis may explain the observed
baryonic asymmetry. We shall now argue that it might occur naturally in brane-world
models. In particular, we shall consider the five-dimensional RS model of Ref. [168] perturbed
by matter on one or both branes [170]-[172]. The reader is referred to Ref. [169] for more
details on the framework and notation used hereafter.

In this model the metric can be written in the form

ds* = n*(y,t) dt* — a*(y,t) [(dm1)2 + (dm2)2 + (dx3)2] — b (y,t) dy?
= gup(z,y) dz’ dz® (412)

where t is the time, 2% are the spatial coordinates along the branes and y is the extra-
dimensional coordinate. In this formalism, the Planck brane is conventionally located at
y = 0 and the TeV brane at y = 1/2. The Einstein equations are given by Gap = k*Tap,
where % = 1/(2M?3) and M is the five-dimensional Planck mass. The energy-momentum
tensor T3 contains a contribution from the bulk cosmological constant A of the form TRYx =

A gap and a contribution from the matter on the two branes,

1
T, B braves _ . d(y) diag [Vi + pu, Vi — s, Vi — pi, Vi — 04, 0]
1
+30(y = 1/2) diag [V + p,V = p,V = p,V = p, 0] (413)

where V, is the (positive) tension of the Planck brane and V' the (negative) tension on the
TeV brane. We have correspondingly denoted by p, and p. the density and pressure of the
matter localized on the positive tension (Planck) brane (assuming an equation of state of
the form p, = w, p.) and by p and p the density and pressure of the matter on the negative
tension (TeV) brane. Once a stabilizing potential for the radion is included, the stress-energy
tensor picks up an additional term and the solution of the Einstein equations may be written
as a perturbation of the usual RS solution,

n(y) = a(y) = el (414)
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with V. = 6mg/k* = =V and A = —6m?/k. We also recall that the constants by and myq
determine the effective four-dimensional Planck mass as (8 7 Gy ) ™' = M3, = (1—-Q2) /K% my,
where Q = e ™0b0/2,

In order to obtain an effective action for the four-dimensional theory, one perturbs the
metric about the RS solution in the form

a(t,y) = a(t) e W1+ da(y, t)]
n(t,y) = e ™ OWI1 4 on(y, t)] (415)

b(t, y) = b(t)[1 + 0b(y, 1)]

and drops the metric perturbations which contribute only to second order in da, dn and db
(see Refs. [170]-[172] for the effects of the latter). It is then useful to introduce the notation
Qy,b(t)) = e Ol and Q, = Q(1/2,b(t)) (Qp evaluated at b = by is then given by Q).
By integrating over the fifth dimension, one obtains an effective action for the radion field.
Further, upon examining the equations of motion for b(t), one notes that, since €2, depends
on b, the presence of matter on the two branes generates an effective potential for b(¢) given
by

f1(b)
4

Ve (b) = V,.(b) + [p. = 3p. + (p—3p) Q4] (416)

with

= (1) (a17)

The function V, = V,.(b(t)) is the potential which would stabilize the radion at the value
b = by in the absence of matter. It can therefore be expanded near its minimum as '°

1 myo b() 2 b— bo 2
v =y (1) ota (1) (13)

where

w = 2LV ) gy

= 419
AT VER (419)

and m, is the effective radion mass. Thus the radion, in the presence of matter on the two
branes, is stabilized to a shifted value by + db determined by

3b 1 (1-02\ p—3p+QB(p.—3p.)
b() N 3 i bo m% Qg M]E2’1

(420)

15This expression follows from Eq. (4.12) of Ref. [169] by defining \/3/2¢/Aw = mob (where Ay =
QO Mp] ~ 1T6V)
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where 0b is the distance between the minima of Vg with and without matter.

From the above expression, we see that, since the trace of the stress-energy tensor vanishes
for radiation, even if the Universe on the TeV brane is in a radiation dominated era (p =~
3p), the radion evolution is determined by the behavior of massive matter on the TeV and
Planck branes. This is the essential ingredient which allows for the possibility of inducing
spontaneous baryogenesis. We note that the factor Q32 in front of p, would make this term
negligible for comparable energy densities on the TeV and Planck branes, but the fact that
the natural energy scale on the Planck brane is of the order of Mp; may nonetheless allow
for a relevant contribution to baryogenesis from the Planck brane.

Let us now assume that the high energy Lagrangian for matter on the TeV brane contains
an interaction term of the form given in Eq. (407),

Lint = A,mobng (421)

where b now plays the role of ( gz5> Such a term is the same as that in Eq. (4.30) of Ref. [169].
On using Eq. (420) to estimate b ~ ¢b, we finally obtain

mo b 1 1\ d
0="2" = o (1) 5 (0= 39498 (0. =30 (422

Due to the expansion of the Universe, the time derivative on the right hand side of this
equation will in general acquire a non vanishing (expectation) value and the baryonic sym-
metry is therefore dynamically broken in the model. We also note that the radion field is
likely very massive 6, and one can then assume that the radion follows instantaneously any
changes of the matter density.

7.3 Applications

In order to complete our analysis, we shall now estimate the baryonic asymmetry (422) at
the freezing temperature T in three specific scenarios:

1. If the effect of matter on the Planck brane is negligible in Eq. (422), the condition to
generate the observed baryonic asymmetry (405) can be estimated as

1 d
——(p—3 > 10710 TeV* 423
T3 (p—3p) . e (423)

Let p,,, be the energy density of any non-traceless component of the energy momentum
tensor. By using the continuity equation and the Friedmann equation for a radiation
dominated Universe up to an energy density of the order of 1TeV?, which is roughly
the limit of validity for the RS model, one obtains the requirement

Pm > 1070 TeV* (424)

for this mechanism to produce sufficient baryonic asymmetry.

6For example, if the radion is stabilized by the Goldberger-Wise mechanism [184], one has m,. ~ 1 TeV.
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2. Since the Planck brane remains hidden, one can allow for a very large term proportional
to p. in Eq. (422) (we recall that matter energy on the Planck brane is allowed up to
the Planck scale). The radion velocity would hence be larger than in the previous case,
and the freezing temperature correspondingly lower. The bound in this case is

1d
=—(p.—3p.)| >107" My, (425)
T dt "

3. Another possibility is to consider the stage when the radion is still stabilizing towards
the equilibrium value by and the effect of matter on the branes is negligible. A typical
radion velocity would be larger than in both previous cases, mob ~ H(T) Mp/Aw,
and

T > 10%eV (426)

which allows the widest range of temperature among the three possibilities outlined.

Of course, the above list is not exhaustive and one could consider many other situations. For
example, one could include more bulk fields or different couplings between the radion and
brane fields. A complete analysis of all possible cases however goes beyond the scope of the
present work and will not be given here. We have shown that the perturbations induced by
the addition of matter on one (or both) of the two branes of a cosmological RS model with
a stabilizing potential for the radion naturally lead to a non-vanishing expectation value for
the velocity of the radion field. Since the latter couples with the baryonic current on the
branes, this naturally induces the onset of spontaneous baryongenesis, as described by the
general formula (422).

Having outlined the main ideas in the present paper, the next step would be to analyze
all possible scenarios. For specific cases, it may in fact be possible to reproduce the observed
baryonic asymmetry 1 in Eq. (405). Conversely, the required value of 1 can be viewed as a
constraint that brane-world models must satisfy.
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8 Brane Cosmology

Higher and higher precision data which are about to be collected in new experiments of
particle physics and astrophysics in the next few years convey considerable attention to
theories with extra dimensions. The main role of such theories, originally introduced in the
20’s by Kaluza and Klein [186, 187], is to provide a connection between particle physics
and gravity at some level. At a deeper level, string theory unifies all the interactions by
means of some n-dimensional manifold (with n > 4) where the fundamental objects are
supposedly living; at a more phenomenological level, models which assume the existence
of extra dimensions, no matter their origin, are considered in order to solve some puzzles
of particle physics, cosmology and astrophysics, giving rise to many possible observable
consequences.

Originally proposed in order to solve the problem of the large hierarchy between Gravity
and Standard Model scales, the Randall-Sundrum model of Ref. [188] (RS I) has acquired
considerable relevance due to its stringy inspiration. It represents the prototype of the so-
called brane-world and differs from previous models in that it constrains standard matter on
a four-dimensional manifold (the brane) just letting gravity (and exotic matter) propagate
everywhere. The RS I solution to the hierarchy problem needs one additional compactified
(orbifolded) spatial dimension with two branes located at its fixed points, plus a negative cos-
mological constant filling the space between such branes (the bulk). The bulk cosmological
constant A warps the extra dimension and generates the effective four-dimensional physi-
cal constants we measure. It was soon realized that the modifications to four-dimensional
gravity induced by the fifth dimension may be reduced to such a short distance effect to be
unobservable even in the presence of just one brane and infinite compactification radius (the
RS II model of Ref. [189]).

The cosmological features of the RS models are nowadays being investigated even more
than its particle physics consequences, due to the refined results lately obtained and to the
major problems recent astrophysical data have revealed: the possible late time acceleration
from supernovae, CMBR spectrum, dark matter and dark energy quests suggest either a
full revision of the modern theoretical physics approach or the possibility of the existence of
further, up to now ignored, ingredients such as the extra dimensions.

In particular the single brane RS II cosmological dynamics [190, 191] is known to generate
(p/V')? corrections to standard Friedmann and acceleration equations, where p is the energy
density of the fluid filling the brane and V' is the constant brane tension. These corrections
are negligible when p <V, the regime in which the RS II model is reliable and leads to
standard cosmic evolution. The two brane RS I setup is much more involved: a stabilization
mechanism for the distance between the branes, such as that of Ref. [192], is necessary to
get the correct hierarchy in the absence of matter. Moreover, a bulk potential for the radion
(the metric degree of freedom associated with the fifth dimension) is necessary to achieve
solvable junction conditions when matter is present on the boundaries [193]. In this case,
cosmological solutions to order p/V [194] are not sufficient to grasp the particular features
of the background metric evolution originated by the extra dimension and one needs to
investigate the effect of terms of order (p/V)? (as was done in Ref. [195]) or higher.

The aim of this article is to go beyond the first order approximation in brane cosmology
for RS I models with two branes. Our approach will differ from Ref. [195] in that we do
not consider a bulk scalar field to stabilize the radion but include an effective stabilizing
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potential directly into the equations (see also Ref. [196]). Consequently, our perturbative
expansion is around the RS I solution. The calculations are then carried out in order to
show how p? contributions to the four-dimensional Hubble parameter may affect the model
(or may be unobservable). Such terms are expected as fingerprints of the fifth dimension in
analogy with the single brane RS II framework. The latter case will also be studied as RS I
in the limit when the distance between the branes diverges. Some hints about the possibility
of an accelerated expansion driven by exotic fluids with pressure p = w p and w > 0 will be
presented, thus suggesting the necessity to go beyond the second order approximation.

The paper is organized as follows: in Section 9.1, we present the complete setup of
the model under consideration; in Section 9.1 the second order ansatz is described and
Einstein equations are perturbatively solved; in Section 9.2 cosmological consequences of the
solutions are analyzed and compared to the known brane-world solutions; in Section 8.8 the
analysis of the approximations is performed and, finally, in Section 8.9, some conclusions are
drawn. For the five-dimensional metric g4p we shall use the signature (4, —, —, —, —), so
that g = det(gap) > 0.

8.1 Einstein equations

Let us consider a RS I model perturbed by the presence of matter on the two branes. The
bulk metric is given by

ds? JAB da? dz?

n?(y,t) dt* — a*(y, t) do' dz’ — b*(y, t) dy? (427)

The Einstein tensor for this metric is

a\? ab n?|a’ AN
GOOZ‘”’{(&) +@‘z72[3+(5) - b]} (428)

_a 92_2@4_29_@ ﬁ_gé +§ (429)
n? a an a b\n a b

(430)

! / ! 2 : : ’ p
G44:3{g <ﬂ+ﬁ)—b—2lg<g—ﬁ>+g” (431)
a a n n a \a n a

where a prime denotes a derivative with respect to y and a dot a derivative with respect to
the universal time ¢. The energy-momentum tensor in the bulk is that of an anti-de Sitter
space with the addition of a term generated by a field which serves the purpose of stabilizing
the distance between the two branes of the RS I model,

T = A g’y + T (432)
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where, as usual,

- 2 5£stab
Tap=—— 433
AT g 0gAP (433)
and L.y is the Lagrangian of the stabilizing field (for a scalar field, see e.g. Ref. [192, 194,

195]).

We shall consider the particular case in which the stabilizing mechanism can be effec-
tively described by a harmonic potential for the radion, with an effective Lagrangian of the
form [193]

Log = —+/gw’ (b—by)* = —/gU(b) (434)

when the metric is written as in Eq. (525), and the potential U depends on the component
gs4. The two 3-branes have opposite tensions and their contribution to the total energy-
momentum tensor is given by

oy —wi)
b
xdiag (V; + pi, Vi — pi, Vi — pi, Vi — i, 0) (435)

A _
Tip =

where i = p, n, and y, = 0 (y, = 1/2) is the position of the positive (negative) tension
brane. The Einstein equations in the bulk,

Gap = k*Typ (436)

form a system of four differential equations for the three independent functions f, = (n,a,b).
On using the Bianchi identity V 4G4° = 0, it is then straightforward to show that the three
equations

GOO = kz TOO
Gouu=0 (437)
G44 - k2 T44

are independent and form a complete set. This means that a solution to Eqs. (437) also
solves the full set (436). Moreover, since G 45 is trivially conserved because of the Bianchi
identities, the tensor Tp is also automatically conserved regardless of the fact that the
effective potential in Eq. (434) does not appear covariant.

For computational purposes, it is convenient to do some further manipulation. The first

of Egs. (437) can be replaced by [190, 191]
(ﬁa‘*) T9 =0 (438)

Flly,t) + = 12
oy

6

with

F(y,t) = - (439)
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which, on intergating along the extra dimension, can be written as

d2 n2 CL/2 /{?2 - k’2 n2 A 0N/
@ a6 ot Gy /“ (To) y
2
n- .

where ¢&(t) is related to the boundary conditions at the branes. The conservation equation
VT4 =0 yields

/ /

by (e Y
b = (bo b)<n+3a+2b> (441)

which is identically satisfied by the solutions of the system (437). Instead of the three
Eqgs. (437), we shall therefore solve the equivalent system

(.2 2 /2 2 2,2 / 2
& —nr —Ep2re 4 —%:4 a* (TY) y = 22¢(t)

b= (b —b) (% +3% +2%) (442)

G44 = k2 T44

\

Moreover, bulk solutions must satisfy the boundary equations given by the junction
conditions on the two branes,

( / k’2
lim & = = (Vi+p;) b
ta 0
(443)
/ /{?2
lim = = —" [V, — (24 3w) pi] b
\ y—>y¢+ n 6 Y=Yi

where we assumed an equation of state for the vacuum perturbations of the form p; = w; p;.
When p; — 0 the RS I solution is fully recovered and one finds the usual warped static
metric with ¢(¢) = 0 and

nrs(y,t) = ars(y,t) = exp (—mby |y|)

(444)
brs = bo
which also require the well known fine-tuning
6 6m?
V=V, = 2 A= (445)
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8.2 The Low Density Expansion

A perturbative approach can be adopted in brane cosmology to investigate solutions to the
Einstein equations by taking as a starting point the static RS I metric with p; = 0 reviewed
in the previous section. In fact, in the low density regime

Pi
Vil

<1 (446)

one can express the corrections to the solution (444) to all orders in p;/V; by assuming that
the metric functions f, = (n,a,b) can be written as 7

fa = frs +0fa (447)

with 5fa ~ Zni,anI Cni”j p?l p;LJ .

In order to keep track of the various orders in the above expansion, it is useful to introduce
an expansion parameter € by replacing p; — €ep; (and setting e = 1 at the end of the
computation). We make the following ansatz for the metric,

n(y,t) = exp (—mbo |y|) 1+ dfn(y.t)] (448)
a(y,t) = an(t) exp (—mbo [y|) [14 6 faly,1)] (449)
b(y,t) = bo + 6 fo(y, ) (450)

so that the homogeneous scale factor ay(t) is factored out, and by is the equilibrium point
corresponding to the RS I model [see Eq. (444) above|. The solutions to the equations (529)
can then be completely expressed in terms of the functions o f, and Hj, = a,/ay, which we
expand to second order in € as

5fa == € [f0) pp+ 00 (Y) pal (451)
+e [£O W) o2+ O w) 02 + F2) pp o]
o ~ e (hﬁf,; pp+ hi) ,on)

2 2 2
+e* (hé,ﬁ, Py + hin pa + B2 oy pn) (452)

12

We also expand ¢ = ¢/a} as

c(t) ~ € (cél) pp + ctV Pn)
+é (P oo+ ¢ ph 4 ¢ pp o) (453)
Note that the time dependence is just carried by the functions p; = p;(t) and that, of all the

n)

coefficients appearing above, only the féﬂ- 's in Eq. (539) depend on y, whereas the others
are constant.

"Note that the approximation which makes use of an effective Lagrangian is only compatible with second

order calculations.
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In order to proceed with the perturbative expansion, one also needs to expand p;. From
the conservation equation '8

pi = —3H(yi,t) (1+w) p; (454)

it immediately follows that the time evolution of the matter densities is adiabatic, since
H =a/a ~ p'/? and, therefore,

. 1/4
ol (2N (455)
o/t Vil

If we now assume that, to second order in ¢,

H*(y,t) = € [h(y) pp + b (y) pn) (456)
+e [ (y) po + WD (y) oo + B (Y) pp o]

the coefficients of the above expansion can be related to the corresponding ones in Egs. (540)
and (539) for a = a by equating the two expressions for H? at y = y; up to second order,

HA(y 1) = (Hh<t> E %) (457)

With the help of Eq. (454), one finally obtains

ny) = by (458)
B ) = h® = 6(1+w) b)) £ (y) (459)

hP(y) = h) —6(1+w,) bl fO(y)
—6(1 +w,) i F O (y) (460)

p

8.3 First order results

In order to solve the bulk equations order by order, one has to substitute the previous
expansion in the dynamical equations (529). This will allow us to determine explicitly the
coefficients 0 f, once the boundary conditions are imposed. Let us begin with first order
equations.

At order €, the constraint (441) reads

!/ /
18 oo+ Fi3) oo — Ao [ £32) oy + £ pa] =0 (461)

If we allow p, and p,, to be arbitrary functions of the time, the above equation splits into
two independent equations for the coefficients of p;, and one finds

£33 () = b exp (4mbyy) (462)

18Note that this conservation equation can be obtained by taking the limit y — y; in the equation Goy = 0.
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The functions féll) (y)’s can now be calculated by solving Eq. (440). Since the contribu-
tion of the stabilizing potential vanishes at order €, the integral-differential equation (440)

becomes the first order linear differential equation

Ze_2mboypi <2 m2 bgl) e4mb0y _ bO Cl(l) e4mboy + bO hg’z e2mb0y + 2mfé’12)/) =0 (463)

On solving for each coefficient of p; independently, one obtains

1

(1) (1)
f(l) — _e2mboy [e2mboy (Ci . bz
a,? 8

m2 b()

i)
-2 m2

+c (464)

Finally, one can expand the equation G4 = k2 Ty to first order,

sz [emeoy (660}12172) + 9b0wlh§blﬂ) — gbocgl)e2mb0y . 6m2b§1)62mb0y + 4k2w2b§b§1)e2mb0 y)]

—6m Z sz;glz) =0
and solve the two equations for f,(:i) (y). The result is

(1) (1)
(0 _ L gy [cms (K62, 03
w9 3m? ! 4m2  2b

We are now left with six numerical coefficients

WY B o

(2
and four integration constants

RORINO

a,t n,t

(465)
(2 + 3 wi) (1) (1)
oz M || T (466)
(467)
(468)

In order to fix the above, one has to use the junction conditions. These four conditions,
written in terms of the coefficients of p;, form a system of eight equations: the discontinuity

constraints for a'(y,t) at y = y; imply

Pp (3 -3 h&; + k? m) + 3 P, (cg) - hgi) =0

(469)
30y (et D)
+pn (3 cHe2mbo _ 3 hﬁ})lembo — k2 m) =0
whose solution is given by
k% membo k2 m e mbo
hl) = hil) = 470
P 3 (embo — 1) om0 3 (embo — 1) (470)
k*m k2 m e mbo
1) — (1) 471
D T 3emh—1) T 3(emh—1) (471)
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The two analogous constraints for n’(y,t) are both equivalent to the equation

e™ [m (3w, — 1) +4w? by bV (e™? —1)] p, (472)
+[m(Bw, — 1) +4w? by bDem™b (em —1)] p, =0

which yields

(1) _ m (3 Wy — ]_)
P 4w? by (embo — 1)

(473)
m (3w, —1)e b
4w? by (emb — 1)

b =

We see that the junction conditions are not sufficient to determine the integration constants
(468). Such freedom is in fact related to the gauge freedom in the choice of the initial value
for the scale factor and time variable. Without loss of generality, and to simplify the second
order calculations, we then set cSZ = 0. The values of the cﬁg’s are related to the choice
of the time variable. Since one usually considers the negative tension brane in RS I as the
four-dimensional “visible Universe”, it is natural to use the proper time 7 on this brane and

choose the CS)

N

’s so as to have n(y,,7) = 1. This can be achieved by setting

) e?mbo 3m? (3w, — 1) + 202 k? w? (3w, + 2)]

P 48 m b w? (emb — 1)
(474)
) e™% [3m? (3w, — 1) + 203 k2 w? (1 —2e7™") (3w, + 2)]
e 48 m b3 w? (embo — 1)

and defining the time coordinate 7 as

mbo

dr = exp (_T) f (475)

With this choice, the cosmological Friedmann equations can be easily compared to standard
ones.

Let us now comment on the first order results. As far as the radion perturbation is
concerned, we found

m e4mb0y

W [(1 — 3wp) Pp + e_mbo(l — 3wn) pn} €
+0O(e?) (476)

ofp =

which was expected, as it is due to the known coupling of the radion with the trace of the
energy-momentum tensor of brane matter. Traceless fluids, such as radiation, have no first
order effect on the excitation of the radion. If one fills the branes with some pressureless
fluid, the distance between the two branes grows. This effect, being counter-intuitive for the
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attractive nature of Newtonian gravity, is in fact a consequence of the form of the stabilizing
potential. Its non trivial contribution to the bulk energy-momentum tensor at order € is

T44 ~ —2 bg u)2 (Sfb (477)

The first order expressions are identical to those for a static solution, as they can be obtained
by neglecting p;. Every kind of matter on the branes thus acts so as to detune the brane
tensions from the bulk cosmological constant and can be balanced by some constant pressure
along the fifth dimension. Such pressure is given by the first order contribution of (477) which
increases when 0 f; decreases.

Note that (476) is proportional to the inverse of w?, which represents the effective spring
constant coming from some stabilization mechanism. When such a constant diverges, the
correction ¢ f, vanishes and the length of the fifth dimension is fixed as expected, even if
there is a finite, w-independent Ty, pressure term. On the other hand, the correction to the
scale factor,

e2mb0y

§f, = Bl (@ 1) {[ngk2w2 (eme‘)y —Qemb‘)) +3m? (3w, — 1) ezmb‘)y} Pp

+e —mbgy [2b2 k2w ( 2mboy _2) _|_3m2(3wn _ 1)e2mboy] pn}€—|—0(e2) (478)

never vanishes when matter is present on the branes, even if that is trace-less. Furthermore
a finite, non vanishing ¢ f, can be obtained in the limit of infinite spring constant, regardless
of the matter equation of state.

The correction to the lapse function,

o2mboy
48 m b3 w? (embo — 1)

{[205 k* w* (3w, + 2) (Qembo — ezmb‘)y) +3m? (3w, — l)eme‘)y} Pp

e [205 k2w (3w, +2) (2= ®™MY) +3m* (3w, — 1) ™Y p,} e
+ect) py, +ecl) po+ O() (479)

5f, =

does not vanish when the branes are filled with trace-less matter. Note, however, that
a vanishing correction can be obtained for some exotic fluid with w; = —2/3 and negative
pressure in the limit w — oo. Apart from these exceptions, one has non negligible corrections
everywhere in the bulk.

In order to compare the first order results with the RS II case of a single brane, we must
instead use the proper time on the positive tension brane. This is achieved by setting

[3m*(3w, — 1) + 203 k*w? (1 — 2e™b) (3w, + 2)]

P 48 m b3 w? (embo — 1)
(480)
A e"™m% [3m?(3w, — 1) + 203 k* w? (3w, + 2)]
wn 48 m bt w? (1 — embo)

and letting by — 0o. The Friedmann equation is simply obtained by keeping O(€) terms in
H?(y;,t). Since the first order four-dimensional Hubble parameter is homogeneous, it reacts
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to all the sources along the y direction. On the positive tension brane one has, to first order
in e,

2 m bg —m by 2
o mk*(embp, +emp )y mk
, = 3 (embo — 1) € 3 Pre€ (481)

regardless of the value of w. When the negative tension brane is moved to infinity, its
contribution goes to zero and one recovers the usual first order effect in brane cosmology.

On the visible brane, the Friedmann equation is slightly modified by the rescaled time
parameter 7,

m k? (e2mb°,0p + ,On) pp—0  Mk? ppe

H? = A 482
n 3(emb0_1) € 3(embo_1) ( )
The acceleration equation is homogeneous as the Friedmann equation and becomes
a’(?/u t) m k2 [embo(l + wp)pp _I— e_mbo(l + wn)pn}
= €
a(yi, t) 6(1—emb)
(483)

which has the weighted brane fluid energy densities as sources.

8.4 Second order results

We are now ready to evaluate O(e?) corrections to the vacuum solution RS I. The procedure
will be analogous to the one used for first order results in the previous section.

As a first step, one can impose the constraint (441) in order to find the dependence on y
of the second order coefficients in ¢ f,. We are then left with three inhomogeneous equations
obtained by setting to zero the coefficients of the independent matter densities in

18 024 £ 024 £ oy pn — Amby (1) 24 £33 2+ 130y )
m (1 — 3w,)?eSmboy
24 b2 (embo — 1)
2 2mbo (3y—1
I
m (1 —3w,)(1 —3w,)embo6y=1)
24 b2t (embo — 1)
=0 (484)

62008 (62 4 b2 k2 w?) — B2 K2 w2 ™) 2

n

262000 (6m® + 65 k2 w?) — B3 k2 WP (14 €™™)] p, o
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which contains the first order parameters previously determined. The solutions are

2 4am

(2) _ _4Amboy b(2)_ (1—3U)p> etmboy 6 2 b2]€2 2—2b2]€2 2 ;mbo (2y—3) 485

fop = ¢ P 96b3w4(emb0—1)2[ TR RR W SRR wne [ (s9)
0

1—3 n 2 _6mby (y—1)
fol = o7 {b,?) - (96 5334)(;1)0 —1)? [®m 07 (6m” 4 05 K w?) — 265 k* w?] £486)
0

m bg —
f(2) _ odmboy {b(2) B (1 —3w,) (1 —3w,) e (6y—5) [emeOy (6 m2 + b(z) k2 WZ)}} (487)

bym " 48 b3 w* (embo — 1)?
where
SIS (488)

are integration constants to be determined from the junction conditions. Once we plug the
fb(i)’s into the second order terms in Eq. (440), we get the equations for the fé?’s, which
are not displayed for the sake of brevity. Finally, by solving G = k? Ty one obtains the
corrections ffl?i)’s. The results will contain six integration constants from the solutions of the

first order differential equations for féi-) and f,fi),

2B (489)

a,i ) n,s

and nine parameters related to the radion, the four-dimensional Hubble parameter and c()
respectively,

ne o oo, Y (490)

3 (2

where ¢ runs over p, n and m for second order quantities. Analogously to the first order case,
one can fix the coefficients (490) by imposing the junction conditions, which form a system
of nine independent equations. Nonetheless, one is again not able to fix the constants (489).
We do not give their finale expressions due to their length. Here are the solutions obtained
at the end of the calculations described above:

2) _

B =
2 = s
O =

2) _
FB = e
FB = s (491)

8.5 Second order cosmology

Let us now look at the physical consequences of the above results as applied to two different
cosmological scenarios. The Friedmann and acceleration equations will be showed and their
phenomenology investigated in different regimes of w and for different matter equations of
state on the branes.
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8.6 RSI

We begin from the case with two branes ! for which we shall study how cosmology would
be described by observers on the negative brane. In order to achieve that, one can use the

corresponding proper time by fixing the CSZ’S as in Eq. (474), choosing cg;,, c£321 and 05122,1

and rescaling n(y, t) to satisfy the condition n(1/2,7) = 1. The Friedmann equation we are
interested in is given by the second order expression of the Hubble parameter at y = 1/2 as
a function of 7,

k*m
3 (embo — 1)
B m2k? (e + 1)
- {% A8B2w? (embo — 1)
. {k_4 m2k? (3w, — 1) (e + 1)
36 96b2w? (embo — 1)

3m?k? (embo 4 1)
3202w2 (embo — 1)?

H*(1/2,7) = (pn + €™ p,) — (w,, +1) Bw, — 1) P2 (492)

5 [18w§ — Jwy(w, — 1) — 9w, — 1—1—} } e"mbo Pp Pn

[3w, + 7 — 4™ (3w, + 4)] } e*mb p?

Note that this result does not depend on the integration constants cgg’s and ng’s, which

reflects the fact that the three-dimensional spatial curvature has been set to zero ab initio.

The Friedmann equation contains coefficients up to second order in the vacuum pertur-
bations of both branes. First and second order contributions in Eq. (492) are consequences
of the adiabatic regime of the five-dimensional dynamics which determines the value of the
integration constant ¢(t) in Eq. (440). The value of the latter is affected by the presence
of matter on both branes through the junction conditions and, for instance, up to O(€?) is
given by

mk? (Pp + embOPn)

lim ¢V = 493
w1—>n<;loc 3 (embo — 1) ( )
]{34 e2mb0_'_2embo -1 embO+1 2 e—2mbo_'_2e—mbo -1
: (2) - 2 —mbg 2
u}lljlélC)c 36 (emo — 1)2 Py (767%0 — 1) e PpPn + (omio — 1)2 Phr

in the limit of infinite spring constant. Furthermore, as previously noted, this effect is also a
consequence of the radion field potential acting as a source in Eq. (440). One can expect to
cancel some terms in Eq. (492) by arbitrarily increasing the spring constant of the effective
radion potential in order to decrease the radion shift from equilibrium. This mechanism
partially works as the first order contributions to the bulk potential vanish along the time-
time direction, whereas only second order terms, which depend on the matter equation of
state, cancel when w — oco. One is then left with

. 5 ~ mE? (pn+e¥mp,)
i a2 = D
4

k m bg k4 2mby 2
35 Pt ge e Py (494)

19The unperturbed brane distance is taken to be finite and equal to by /2.
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which is analogous to what has been obtained in Ref. [195]. The matter on the positive
tension brane appears at second order with the role of some “dark” fluid and acts as a
sort of Brans-Dicke field which adiabatically modifies the Newton constant perceived in the
visible Universe. This behavior is somehow inherited by the dynamics of the radion which
is known to modulate the strength of gravity on the visible brane.

Note that while first order coefficients are positive definite, irrespective of the brane
tension, the sign of second order ones depends on the matter equation of state. Differently
enough from unstabilized brane cosmology, this fact implies that leading order cosmological
equations have the correct behavior on both branes. Letting the energy density p, — 0 in
Eq. (492), one obtains

3m? k2 (emb‘) + 1) )

H?*(1/2,7) = (w, +1) (1 — 3w, z
(1/2.7) = (w4 1) (1= Bwn) s e
mk? p,
495
+3(emb0—1) (495)

which has the usual first order solution for both radiation and a cosmological constant on
the visible brane. A matter dominated Universe would otherwise generate second order
corrections.

We now come to the equation for the acceleration, which has the general form

a(1/2,1)

_ 496
a(1/2,7) (496)
m k2 3m2k> (embo + 1)
— [(Bw, + 1)p, +e2™(3 1 n+1) (3w, — 1 2
6 (1 _ embo) [( Wy + )p +e ( wp + )pp} + ('LU + ) ( w ) 32()3&)2 (embo . 1)2pn
— k—4(3w +1)(3w, + 1) + mk [e*™% (3w, — 1)(18w? 4+ Jw,w,)
144" ? 96b2w? (embo — 1) ! " P

P96+ B+ S+ 1L+ 1+ 2wy —

+54w) — 2Tww, + 99w, — 18wyw, + 24w, — 13] } ™ py, pn

N { K m?k*(3w, — 1) (€™t + 1)

— (3w, +1)* +
(3up 1) 96b2w? (embo — 1)

1 [e™(27Tw? + 54w, + 23) — 9w, — 5] } e*mbp?

and, for w — oo, reduces to

a(1/277—) mk2 b
a2 (1 —emm) LBt Dot G0, 1 1))
il b ’ 2 2mby 2
— 117 3w + D Bwy + 1)e™ py o+ T (3w, +1)%™ 0 pp - (497)

which is again analogous to the result of Ref. [195]. The coefficient of p2 in Eq. (497) is
positive or zero in this limit and provides an accelerating contribution to the equation. The
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coefficient of the mixed term has a positive value when just one fluid has w; < —1/3. For
pp — 0, one is further left with

3m2k? (embo 4 1
24 e (aos)

a(1/2,7)  mk* (3w, + 1) B "
a(12,7) G ey /o DB T ) Bun ) o e )

where the second order contribution is inversely proportional to w and vanishes for radiation
and a cosmological constant. This peculiarity leads to the standard cosmological evolution
up to O(p?) until the matter dominated era.

A singularity in the lapse function n(y,t) for by — oo prevents us from analyzing the
correct limit when the distance between the branes becomes infinite, we shall thus comment
on this problem in the next subsection. On setting p, — 0, Eq. (494) admits the finite but
trivial limit

lim H*(1/2,7) =0 (499)
0—00
in which one also has
a(l/2
lim A/27) (500)

bo—o0 a(1/2, 7')

This result is due to the reduced strength of the gravitational interaction at infinity.

8.7 RSII

On can think of the RS II model as the limit of RS I in which the distance between the
two branes becomes infinite, thus one expects that only p, contributes in this limit. The
cosmological proper time is now the one on the Planck brane and is recovered upon choosing

1
2) — 4 _ 2mbo (o, 2 mbo . 2
Cnp 4608771263@‘)4 (embo — 1)2 {9m (3wp 1) [18e (3wp + 4w, + 1) + 18e (3wp + dw, + 1)

21w, + 7] + m*bgk*w?® [6e*™™ (162w + 243w? + 60w, — 37)
—2e" (162w + 279w? + 192w, — 5) — 81w + 90w, + 75
AW (1 — 26™0)? (6w, + 5)} (501)

—2mbg
= 46087"12;014 (embo . 1)2 {9m4(3wn — 1) [4e2mbo(1 _ 3wn) + 18€mb0 (3wT2L + 4wn + 1)
0

+54w? + 63w, + 21] — m*bgk*w? [54e*™° (5w + 2w, — 3)
—6e™ (162w + 207w 4 12w, — 65) + 324w + 153w, — 102w, — 91]
+dbgk*w* [2 (7™ — 2e™) (9w? + 6w, — 1) + 3(6w?2 + 6w, + 1)] } (502)
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cn)ﬂ = 2304m2b‘01¢e::b(0em1’0 P {om* [e¥™™ (3w, — 1)(18w?2 + Jwyw, + 3w, + 27w, + 11)
+9emb°(6wg + 6w’ + 3w§wn + 3wyw? + 7w§ + Tw? + dwpw, — w, — w, — 2)
(3w, — 1)(18w) + Ywyw, + 27w, — 6w, + 14)] + m*bjk*w? [6e”™* (54w], + +27w,wy
+117w] — 36wyw, — 33w, + 30w, — 19) + 2™ (162w} — 54w + 81w w, — 2Tw,w,
+351w; — 117w} + 96w, — 30w, — 11) — 108w? — 5dw’w, — 234w’ + Iwyw, + 39w, — 87w,
—4bok*w* [e¥™ (Qwyw, + 3w, + 3w, — 1) + (1 — 2™°) (3w, + 2) (3w, + 2)] }

together with Eq. (480). The Friedmann equation, for a finite by, reduces to

H*(0,t) = (504)
mk? m by —mbo 3m’k?em ™ (e 1)
3 (embo _ 1) (e pp + € pn) _'_ (wp _'_ 1) (1 - 3wp) 326(2)(,02 (emb() o 1)2 pp
A ) m?k? (e 4-1) €™ (18w — Qwpw, — Jw, + Jw, — 1)(9w) + 9w, —4) | _
_lr e N
36 24b2w? (embo — 1)? Prl
k* 22 (embo + 1) (3w, — 1) [e™ (3w, + 7) — 4(3w,, + 4
I ——l—m (e ) (Bw ) [e (w2 ) — 43w )] o2t 2
36 96b3w? (embo — 1)
which is similar to Eq. (492) but has the finite, non trivial limit
k’2
Jim H?(0,) = m3 oy (505)
0—00

This is precisely the standard Friedmann equation one has in four-dimensional cosmology.
Furthermore, the equation for the acceleration to second order in terms of the time on the
positive tension brane is given by

a(0,t)  mk?embo

2(0.1) 61— o) (3w, + 1)pp + (3w, — 1)e 2™t ] (506)

BmZkZembo (embo + 1) )

+ (wp, + 1) (3w, — 1) (Bw, + 2) 3077 (o 1)2 0y

kA m2k2 mb
_ {m(B'LUp +1)(3w, + 1) — 96HR2 (e — 1) [e*™% (54w} 4+ 2Tw,w?: + 99w — 18wyw,

—21w, + 24w, — 13) + 9™ (6w + 6w + 3wiw, + 3w,w? + 11w + 11w + 2w,w,
+w, + w, — 4) + (3w, — 1)(18w] + Jwyw, + 39w, + 15w, + 23)] } e pon
E m2k? (e™) (3w, — 1
+ 4 — (3w, +1)* - () ( 2)
96b3w? (embo — 1)

144
and, compatibly with Eq. (505), yields

a(0,t) m k>
- — 1
bolm 2(0,1) 5 (3w, + 1) pp (507)

{embo (97~Un + 5) — 27w,% + 54w, + 23] } e_2mb0,0i
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in the limit of infinite brane distance. Thus second order effects, typical of brane cosmology,
become more and more negligible when the distance between the branes grows, which conse-
quently leads to unobservable deviations from standard four-dimensional General Relativity.

8.8 Approximation analysis

The results obtained so far hold with the assumption that p; < M* where M is, in general,
the natural mass scale of the model. By taking all the mass parameters to such a natural
scale, one expects the solutions to second order provide a good approximation for Eq. (529).
In this regime, however, second order effects are certainly sub-leading and thus insufficient
to significantly alter first order behavior. We shall hence present below a numerical analysis
of the validity of our approximate solutions in the attempt to extend the range of the
parameters in which ours results hold valid and widen the conclusions one can draw from
second order expressions. In particular, we are interested in possible deviations from standard
cosmological equations due to terms of O(e?) in the first and third of Eqgs. (437). Note that
all numerical results will be obtained by setting the expansion parameter ¢ = 1 as previously
prescribed.

In order to test our approximations, since Eqs. (529) are not analytically solvable, we
substitute the second order solutions into the exact Einstein equations to obtain an estimate
of their non vanishing remainders which we then compare with the leading contributions
(satisfying the corresponding approximate equations). Since the time dependence is con-
tained in p; in our expansions (539)-(453), it is also convenient to trade the time for p. We
thus divide Eq. (440) into the following five terms

) (508)

m(y, p)

Il
~ | =~

1 d(y, )\’
(Y, p) ) <a(y’t)) (509)
mp) = o) (510)
m(y,p) = W/yaél (7%) x (511)
mnn) = -~ (512)

in which ¢ = ¢(p) in the right hand sides is understood as the time when p = p,, (p, will be
chosen either equal to p, or zero). The sum,

Ry(y,p) = (513)

evaluated on the second order solutions yields R,(y, p) = O(e*) as a measure of the corre-
sponding error. Similarly, the third of Eqs. (529) may be written as the sum of the following
six terms
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) = o o (514)
_ L (dy0))

) = g (59) o)

Glv.p) = g LD (516)

a0 = oy (G - s (517

n?(y, 1) \a*(y, 1)  aly,t)n(y,t)
G0 = —o (At D) (518)
olvrp) = —3 2w b(y,1) [bst) — b (519

and

Re(y,p) =) & (520)

l

with Re(y, p) = O(€?) for the same approximate solutions. One may now assume that ap-
proximate metric functions computed to O(e?) are accurate approximations of exact solutions
to Egs. (529) if

| > [Ba| and &[> [Ry| (521)

for every term in Eqgs. (508)-(519) evaluated to O(e?). (It should actually be sufficient to
satisfy the above conditions for the leading terms of each equation.) Throughout this section,
where unspecified, a natural choice 2° of dimensionful parameters is considered.

Fig. 11 shows the functions n; and &; evaluated to second order in € and the corresponding
R, and R for p; =2 - 10~ M* and w; = 0.5. The box in the first row on the left shows the
absolute values of the leading terms 7, and 73, which are roughly one order of magnitude
larger than the remaining terms 7;’s displayed in the plot on the right along with R, (the
dotted line). In the second row of Fig. 11, the modula of the leading terms &, &3 and &5
are plotted on the left while the remaining coefficients & and Re(y) are presented on the
right. Thanks to the relatively large amplitudes of the leading terms, one can rely on the
second order approximation even when the p;’s are not too small, implying that a great
improvement over first order results can be achieved in a regime where p; ~ 1072, In this
case the errors produced by truncating the expansion to O(€?) are much smaller than one
percent.

Let us further consider the particular case p, = 0. This choice is made in order to
study the cosmological consequences experienced on the negative tension brane (at y = 1/2)
generated by second order terms proportional to p2. We therefore use the proper time 7

20In terms of the fundamental scale M one has m = M, k> = M3, by = M, and w? = M".
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on the negative tension brane 2. In each graph in Fig. 12 we plot the squared Hubble

parameter on the negative tension brane of Eq. (495) and the acceleration of Eq. (498) for a
given energy density p, as a function of its equation of state w,. The plot on the left in the
first row is for the small density p, = 1072 M* < M* and shows a behavior which is typical
of standard four-dimensional cosmology. In fact, only w, < —1/3 leads to an accelerating
phase. This trend is modified by higher densities, as it emerges in the remaining graphs of
Fig. 12. In particular when p, = 2-107' M* (plot on the left in the second row) the second
order corrections seem to provide an accelerated regime for 0 < w, < 1. The acceleration
appears amplified when p, = 6 - 107! M* < M* (plot on the right in the second row) or
higher. Note however that the Hubble parameter, a positive definite quantity, constrains
the region swept by w, which is not allowed to reach unity. Finally the intermediate case is
showed in the plot on the right the first row: due to the second order effect, H? exhibits a
dependence on w,, otherwise not present.

The four regimes described above have to be tested with particular accuracy because the
acceleration and Hubble parameter plotted in Fig. 12 are not the leading terms in Eqgs. (529)
and could thus be comparable with the remainders. In this case, it is somehow possible that
the remainders significantly modify the behavior. We first note that H? ~ n; and a/a ~ &,
as defined above in Eqs. (508) and (514), hence we can use 7; and & in place of H? and
a/a respectively. We then plot in Fig. 13 the ratio between the remainder R, (evaluated to
second order) and the squared Hubble parameter 7; evaluated to first and second orders.
The four plots show this ratio for different choices of p, and w,, (the same as in Fig. 12 and
in the same order) as a function of y. In particular, we choose w,, = 0.95 in order to explore
regions where the acceleration has an unconventional behavior for p, = 1072 M4, 10! M*,
2107 M* and w,, = 0.65 for p, = 6 - 10~ M*. Apart from the last case, the corrections
given by the neglected terms cannot significantly modify H? on the negative tension brane.
In the first line of Fig. 14, the ratios between R (to second order) and the acceleration &; to
first and second order are analogously plotted. For low enough energy densities, the second
order expressions appear to be good approximations. On the other hand, in the second row
it is shown that, in the unconventional regime of the acceleration (that is p, = 2- 107! M*
and w, = 0.95, and p, = 6 - 1071 M* and w,, = 0.65) the two terms are of the same order
of magnitude. This shows that one should go beyond O(€?) in order to determine the true
behavior of d/a for such equations of state.

8.9 Summary

We have computed approximate cosmological solutions of five-dimensional Einstein equations
for Randall-Sundrum models in the presence of a radion effective potential. The calculations
were performed up to the second order in the energy densities of the matter on the branes
and assuming an adiabatic evolution of the system. Our approach differs from Ref. [195]
in that we do not include a specific bulk field to achieve stabilization, and is therefore
more general. Interestingly, their results are recovered in the limit of very large warp factor
and radion mass. For the RS I model with matter localized only on the negative tension

(1) and 0(2)- which sets

n,s n,i

21Let us recall that this is achieved by adopting the particular gauge choice for ¢
) = @) =0and ') = ) =o.
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brane, we found negligible corrections for the Hubble parameter in the case of radiation or
cosmological constant, thus supporting one of the main results of Ref. [195]. For RS II, we
found negligible corrections for the equations of state just described and in the limit when
the distance between the branes is taken to infinity.

On inspecting our results, we finally found some evidence of an accelerating phase for a
wider range of values of the equation of state p, = w, p, on the negative tension brane if
the distance between the branes is finite. However, one should then carry the computation
to higher orders, since such an effect appears near the limit of validity of our perturbative
expansion.
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9 (Gauss-Bonnet Brane Inflation

Following the approach used in [197] we analyze the cosmological implications of the GB
action in a RS setup ([188, 189, 192, 198, 199])with radion stabilization through the addition
of an effective term for the radion field to the total action. The Einstein equations are solved,
assuming the adiabatic evolution of the fluids on the branes, up to the second order in p/V
where p is the energy density of the fluids and V' the tension of the branes. Finally the
corrections to the Friedmann and acceleration equations are analyzed and compared to the
case in which the GB term is switched off.

9.1 Einstein equations and Static Solutions

Let us start with the following action for the five-dimensional bulk dynamics

1 «
Sbulk = ﬁ dSI’\/ —dg (['EH + §£GB> (522)
where
Lry = R+2K*(A-0) (523)
Log = R*—4R*PR,p+ RY°PR,pcp (524)

with U the effective contribution which stabilizes the size of the extra-dimension ([193, 194]).
The boundary conditions for the above action are fixed by the brane contributions to the
stress-energy tensor; in order to recover RS I when the GB contribution is switched off and
no matter is present on the boundaries we consider two branes with different tensions located
at the fifth dimension orbifold fixed points. If we choose the following ansatz for the metric

ds® = gABd:cAdmb
—n?(y, t)dt* + a*(y, t)dx'dz’ + b*(y, t)dy? (525)

we can express the stabilizing contribution as
U = M(b(y,t) —r) (526)
where r is the expectation value of the radion field and the boundary terms are given by

oy — i)

TA —
i B b

where i = p,n, y; = 0,1/2 are the positions of the branes and V;’s are the brane tensions.
By varying the total action one obtains the Einstein equations

Gap+aHsp = K <A9AB + Tup + Z(Ti)AB) (528)
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where H,p is the second order Lovelock tensor and T§ = —diag(U,U,U,U,U + bdU /db)
is the radion potential contribution. The equations (528), given the ansatz (525), form a
system of four differential equations. Due to the fact G4 and Hp satisfy the Bianchi
and Bach-Lanczos identities, respectively only three equations are independent. The bulk
dynamics is thus determined by the system

( Gy + aHy = k? <Agtt + Ttt)

V= (r—b) (+3%+2%) (529)

| Gyy + aHy, = k2 (Agyy + Tyy)

(see [190, 191))where a prime denotes a derivative with respect to y. The boundary equations
give the following junction conditions on the two branes:

( 3 ;
do (d 6 a® \ d k?
im (=2 (2) — 2 (11202 )2 = Z 4 p,
yirif b <a) b2< * aaan) a] b( i)

Y=Y

b%n? an? bn3 an?  bn? b’n a’n?  abn? an?

2
y—>yj b a

L (@' 360 (b i\ i d6a (ai ] R
¥\ a n  b2n? b n/) a bn?2l\an a ! b

where a dot denotes a derivative with respect to the universal time ¢. Note that the egs.
(529-530) reduce to the standard case (without GB contribution) in the limit & — 0. Before
investigating cosmology, in the setup just described, for p; # 0, we should consider the case
p; = 0 in order to find the static solutions to perturb about. It is easy to verify that a
warped metric still satisfies eqs.(529-530). In fact, if one makes the ansatz

a(y,t) = n(y,t) = exp [-mry]; b(y,t) =r (531)

the Einstein equations and junction conditions are verified provided

1 2
= R _ .2
m= |- (1 /1 5k aA) (532)

\ Y=Yi

with %kzaA < 1 and

v, = v, = (1 - _m2a) | (533)

an?

4w Sab?  2aan  dabn  2ad 4ab o/ 2042 Saab  16aan  Sai
lim 1 — + + — - + —

)



136

Apart from the two expected solutions which reduce to the static RS when o — 0, namely

Mg = =+ % <1 —/1— gk%z/\) i ik:\/%, (534)

two additional solutions are obtained (see [200]) which are interestingly less sensitive to the
bulk cosmological constant, since in the limit o« — 0 the warp factor becomes independent
of the bulk content

1 2 a—0 1
vew = £ | — [ 14 4/1 = Zk2an | 220+
m 5o ( + gkt ) NG (535)

Furthermore, due to the GB terms, warped solutions are still present when the bulk is filled
with a positive cosmological constant as (532) is still real in that case. Note that a tuning
of brane tension is required only if one looks for static solutions: different tunings could be,
as usual, treated as a perturbation p; = AV, and p; = —AV; and generate an expanding
(contracting) phase which can be studied by means of the formalism we introduce in the
next section.

9.2 The perturbed solutions

We now investigate the cosmological evolution in the brane-world with GB contribution.
The calculations are based on the perturbative approach (p;/V; < 1) discussed in details
in [197] (starting from a slightly different set of equations). The starting point is a static
solution of the form (531) where 22 m = |mg4| or m = |Mye|. When some kind of matter is
added to the branes the system is detuned and evolves in time. The solution becomes

n(y,t) =exp (—mr ly[) [1+dfu(y,1)] (536)
a(y,t) = ap(t) exp (—mr |y]) [1+0fa(y,t)] (537)
b(y,t) =1+ dfp(y,t) (538)

and the differential equations (529) can be written in terms of H, = ap/an, 0fs (with
B = a,n,b) and their derivatives. Moreover we note that when such a detuning is small, one
can rely on the perturbative ansatz

6fs = e |150) oo+ S5 (w) pul (539)
+? [féii(y) P2+ fE ) o2+ £ () oy pn}
1 = e (hilpy+ bl on)

2 2 2
+€” (hé,ﬁ, Py hin pa + B2 oy pn) (540)

22without loss of generality we choose the overall sign to be positive and consequently tune the brane at

y = 0 with a positive tension and the brane at y = 1/2 with an opposite tension;
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and expand these equations up to second order in e. Note that the time dependence in
the approximate solution above is encoded in p;(f) which evolves, as usual, satisfying the
constraint of the continuity equation for a 4-dimensional fluid with equation of state p; = w;p;
that is p; = —3[a(y;,t)/a(y;, t)](1 + w;)p;. One can finally, order by order in €, solve egs.
(529), which now contain just derivatives with respect to y, and determine the integration
constants and the unknowns parameters in (540) by making use of the boundary conditions
(530). Iterating the procedure described above up to second order is almost straightforward
(see [197] for details). Due to the fact that the pZ ’s evolve independently, one needs to solve

15 differential equations for the coefficients f 510 Ji @ " Once such bulk equations are solved,
one is left with 25 coefficient to be fixed (10 of Wthh derive from first order calculatlons)
and the junctions conditions still to be imposed. It is possible to divide these coefficients
into two categories: the ones which are related to the gauge freedom of the metric (they
have to do with the definition of the time and of the three-dimensional scale factor a(t)),
and the ones that are related to the boundary dynamics. The junction conditions form a
system of 15 independent equations which determine just the dynamical coefficients. Five
gauge coefficients can be fixed by arbitrarily defining a time evolution parameter and five
(those related to the scale factor) may remain arbitrary since they are not present in the
expressions of physical observables.

The Friedmann and the acceleration equations on the negative tension brane (the negative
tension brane, in RS I setup with m > 0, is supposed to be the 4-dimensional space-time
manifold in which we live) can thus be obtained by fixing n(1/2,t) = 1 and expressing
H? = (a(1/2,t)/a(1/2,t))? and a/a = a(1/2,t)/a(1/2,t) as functions of the time measured
on the same brane. This leads to (we let ¢ — 1 at the end of the calculations)

K2m [(3wy + 1) py + (3wn + V)pn] | 27Km? (€™ + 1) (wn + 1) (wn +3) (wn —

1
3

_)2

a = 6 (e —1) 2mZa + 1) 320M12 (e — 1)° (2m2a + 1) P
K Eim2a (€™ +3) (Bw, + 1) Bw, +1)  m2k% (1 — 4m*a?)
3w, + 1)(3 1 P “ —
+{144( wn + 1) (3w, + 1) + 72 (e — 1) 96T2M(em’"—1)2

% [ezmr(Bwn —1)(18w? + Qwyw, + 15w, + 39w, + 23) 4+ 9e™" (wa; + 6w? + 3w§wn

+3w,w? + llwg + 11w} + 2wyw, + w, + w, —4) + 54w2 + 27w§wn + 99w12, — 18w,wy,

mr N 2]{32 3 —1(1—-4 4.2 mr 1
+24wp—21wn—13]} e’ p,p 2_{m (Bw, — 1) ( mag(e +1)
(2m?2a —1) (2m2a +1) 96r2M (emr — 1)
k1 k'm2a (14 3¢™) (3w, + 1)°
mr(o 2 4 23) — — 1 £
x [ (27wy + 54wy, + 23) — 9w, — 5] + T (3w, + 1) — 2 (e 1)
2mrp12)

X 2
(2m?a —1) 2m2a +1)

(541)
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H? =
k*m

n

2mr -
S 1) @mtast) & Pt ee)

+k_4 N m2k? (1 — 4m*a?) (e™ + 1)
36 A8r2 M (emr — 1)
y e"™" pp P B {m2k2(3wp — 1) (1 —4m*a?) (e™ +1)
(2m2a — 1) (2m2a + 1)° 96r2M (emr — 1)
+k;_4  E'mPa(3e™ 4+ 1) } e p2
(2m2a — 1) (2m2a +1)°

32r2M (em —1)% (2m2a + 1)

36 18 (e — 1)

The above expressions are quite involved as they contain contributes from the fluids on both
branes and reduce to the ones already found in [195, 197] for & — 0 and m = m,q4. Note
that, due to the choice of the time parameter, the coefficient of p? vanishes when p, behaves
as vacuum energy or radiation. As a consequence, when p, is negligible, the second order
terms, which would be otherwise responsible for a deviation from the standard cosmological
evolution, vanish for w,, = —1 or w,, = 1/3. This important feature of brane-world scenarios
with radion stabilization was already present in the case o = 0 and is furthermore conserved
when GB contribution is present. After some algebra one can partially absorb the GB
coupling in (542)-(541) by redefining k? = k?/(2m?a + 1) which means that GB corrections
can be observed only through the indirect contribution of positive tension brane matter.
Furthermore note that « is always multiplied by m? and consequently the GB contributions
vanish in the limit o — 0 only if we consider the case m = mg;y. In the other case m = myey,
one has

lim a-my,, =1 (543)
and the evolution obeys a dynamics which is modified with respect to the standard RS
case. In this case, keeping just the leading contributions and letting w, — —1 (small brane
detuning), one is left with

R m*ppp. | M2,
H? — 5 {mpp — (Bw,, +4) (3w, — 1) 8r2§\4 + 53 ]\ﬂ (544)
a 2 m2p,pn  MA02
— =" [2mp w— 1) (3w, +4 nt 1 L L 4
- =R [ mp, + (3w ) Bw, +4) (Bw, +1) $2 0] T’ZM:| (545)

where p, = €™ p, and one should keep m - p, and m - p,, small. Apart from the contribution
of p, to the effective cosmological constant, the term proportional to p? is negligible and one
observes the usual contribution to the expansion rate at w,, = —1 or w,, = 0.

Finally we note that, when M — oo, some of the second order terms vanish, as they did in
the standard case a = 0. In fact these terms derive from the radion dynamics: such dynamics
is sensible to the state equation of the fluids on the branes and generates a complicated w;
dependence in (542-541). In the limit M — oo when the radion is fixed to the minimum of
the stabilizing potential r it becomes trivial and these terms vanish.

3m? (1+e™) (w, + 1) (wn — 3) Eim2a (e™ + 3)
18 (em — 1)

[18w? — 9w, (w, — 1) — Ywy, — 1 4 2™ (9w? + 9w, — 4)] }

[Bw, + 7 — 4™ (3w, + 4)]

(542)
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9.3 Summary

We have examined the four-dimensional cosmological equations deriving from the Einstein
equations for a brane-world with a stabilizing potential in the presence of a Gauss-Bonnet
term in the action. We found solutions performing an expansion up to the second order
in p/V in order to examine the cosmological behavior on the negative tension brane. The
formalism can be easily extended to describe the positive tension brane as well.

Due to the Gauss-Bonnet extra terms, the system admits two different static solutions: one
behaves as the usual RS when the Gauss-Bonnet coupling a goes to zero, while the second
one has a warping factor independent of the bulk content in the limit a« — 0 .

At first order the deviations from standard (without GB term) equations can be reabsorbed
with a redefinition of the 4-dimensional Newton constant. The same holds when one con-
siders second order equations with a vanishing p,. On the other hand, if one considers the
contributions due to matter perturbations on the positive tension brane some deviations
appear. An interesting feature emerging is that in the limit o — 0 such deviations are not
swept away when perturbing the solution that does not reduce to the usual RS.

We would like to thank R. Casadio for the helpful comments.
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10 Conclusions

We have described some features of High Energy Cosmology within the context of inflationary
and extra-dimensional models of our early universe. We have applied the basic ingredients
of these models to obtain predictions on corrections to the CMB spectrum and to build
models potentially explaining the observed baryonic asymmetry and the current cosmological
acceleration.
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A Evolution of the curvature perturbation on super-

horizon scales

In this appendix, we repeat the general arguments following from energy-momentum conser-
vation given in Ref. [75] to show that the curvature perturbation on constant-time hyper-
surfaces v is constant on superhorizon scales if perturbations are adiabatic.

The constant-time hypersurfaces are orthogonal to the unit time-like vector field n* =
(1 —A,—0'B/2). Local conservation of the energy-momentum tensor tells us that T}, = 0.
The energy conservation equation n”T} = 0 for first-order density perturbations and on
superhorizon scales give

6p = —3H (0p+ 6p) — 3¢ (p+ p).

We write dp = 0ppaq + ¢20p, where dp,aq is the non-adiabatic component of the pressure
perturbation and ¢? = §p,q/dp is the adiabatic one. In the uniform-density gauge ¢» = ¢ and
dp = 0 and therefore dp,q = 0. The energy conservation equation implies

: H
:_—5na-
¢ ot Pnad

If perturbations are adiabatic, the curvature on uniform-density gauge is constant on super-
horizon scales. The same holds for the comoving curvature R as the latter and { are equal
on superhorizon scales, see section 7.
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Figure 1: The black body spectrum of the cosmic background radiation
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scale factor a. From Ref. [46].
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Figure 3: The CMBR anisotropy as function of ¢. From Ref. [74].
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Figure 4: The behaviour of a generic scale A\ and the horizon scale H~! in the standard

>

inflationary model. From Ref. [46].
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Figure 5: Large field models of inflation. From Ref. [46]
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Figure 6: Small field models of inflation. From Ref. [46].
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Figure 7: Hybrid field models of inflation. From Ref. [46].
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Figure 8: The horizon scale (green line) and a physical scale A (red line) as function of the

scale factor a. From Ref. [46].



160

Reference Spacelike

Sz S
R e SRR
R R RATALR LS.
e e e
P o e
S g e e o s

Spatial
Sections
Flat

7/ ””

Actual Spacelike

SN
S
AR, \
N\ N s
I, A
7 = const Hypersurfaces "l':'.',','};.;:;f““‘:i&t,l[[’l”’,"’iimg”!”l

=

N\tey, N vs
ANy, LA
£ R R L TR
A Z S8 ay gy 0| "' L7
R Ziige ooy, [] v
A & iy
NN\ et
R NN SRS A T A T T AT TN F T T
2NN AT T AT T T ALT T AL NN L
2NN NS S oo o Sy OGS S ea gl
RN T A T NG ]
NN AL T AR T
2 N ST AT
S
1/ o,
7] "
1771

Spatial
Sections
Curved

1

Figure 9: In the reference unperturbed universe, constant-time surfaces have constant spatial
curvature (zero for a flat FRW model). In the actual perturbed universe, constant-time

surfaces have spatially varying spatial curvature. From Ref. [46].

Figure 10: The ratio R, for P, in Eq. (402) and ¢ = 2 (solid line), ¢ = 3/2 (dotted line) and
q = 4/3 (dashed line). The momentum index k is in units with A = 77 = 1 and the regions
of physical interest are those for k > 10% (¢ = 2), k > 103 (¢ = 3/2) and k > 10* (¢ = 4/3).
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Figure 11: The graphs on the left contain the plot of the absolute values of the leading terms
among 1, (above) and & (below) to O(e?). The graphs on the right show the subleading
terms among 7; (above) and & (below) and the corresponding remainders R, and R to
O(€?) (dotted lines). All plots are for p; = 2- 107! M* and w; = 0.5 and cover all the bulk

between the two branes.
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Figure 12: Plots of H?(1/2,7) (solid line) and d(1/2,7)/a(1/2,7) (dotted line) to O(€?) at
a given time, as functions of w,, for p, = 1072 M*, 107t M*, 2107 M* and 6 - 10~ M*?
(from top left to bottom right).
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Figure 13: The two graphs in the first row show the ratio between R, to O(€*) and n; ~ H? to
O(e) (dotted line) and to O(€?) (solid line) at a given time, for p, = 1072 M* and w,, = 0.95
(left) and for p, = 107! M* and w,, = 0.95 (right). In the two graphs in the second row, the
same ratios are are given for p, = 2- 107! M* and w,, = 0.95 (left) and for p, = 6- 107" M*
and w,, = 0.65 (right). The plots cover all the bulk between the two branes.
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Figure 14: The two graphs in the first row show the ratio between Re to O(e?) and & ~ d/a to
O(e) (dotted line) and to O(€?) (solid line) at a given time, for p, = 1072 M* and w,, = 0.95
(left) and for p, = 107! M* and w,, = 0.95 (right). In the two graphs in the second row,
Re to O(€?) (solid line) is compared to the modula of & to O(e) (dashed line) and to O(€?)
(dotted line) for p,, = 2-107! M* and w,, = 0.95 (left), and for p,, = 6-10~! M* and w,, = 0.65
(right). The plots cover all the bulk between the two branes.



