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Abstract
The concepts of concurrence, 3-steerability, and Clauser–Horne–Shimony–Holt
(CHSH) inequality are employed to investigate the environmental impacts on the
quantum correlations of the two-spin-1/2 Heisenberg XYZ chain model. In particular,
the effects of a homogeneous magnetic field, symmetric cross interaction, and dipole–
dipole interaction on the entanglement, degree of steerability, and non-locality are
discussed. Results show that the entanglement and steering phenomena are bounded
by the non-locality for both positive and negative values of dipole–dipole coupling. It
has also been observed that higher symmetric cross-interaction strengthens the quan-
tum correlations, whereas the homogeneous magnetic field weakens the quantumness
of the system. The findings indicate that amagnetic field normal to themagnetic dipole
yields better quantum correlations than when they are parallel.

Keywords Quantum correlation · Steering · Non locality · Concurrence

1 Introduction

The study of themagnetic and spin structures of low-dimensional magnets has become
increasingly important due to its potential applications in condensed matter physics
[1, 2]. Numerous computations of magnetic anisotropies, Ising interactions (both
square and dipolar), and long-range dipolar interactions have been conducted [3–
5]. The two-dimensional Heisenberg chain model and dipolar Ising model with the
external magnetic field have been studied in detail [6–8]. The Dzyaloshinsky-Moriya
(DM) interaction, which is responsible for weak ferromagnetism or helimagnetism, is
particularly crucial in systems which lack spatial reversal symmetry [9, 10]. The anti-
symmetric Dzyaloshinsky-Moriya (DM) interaction is responsible for the emergence
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of magnetization in a system [11, 12]. On the other hand, the Kaplan-Shekhtman-
Entin-Wohlman-Aharony (KSEA) interaction, which is a symmetric mixed term, is
responsible for weak ferromagnetism [11, 12]. The quantum correlation of the Heisen-
berg chain model in the presence of the KSEA interaction has been discussed [13].
Further the degree of estimation of the KSEA interaction by using quantum Fisher
information has been explored [14]. Moreover, the dipole–dipole character of certain
substances can result in strong magnetic interactions, while exchange and indirect
interactions tend to be relatively weak [15]. The presence of dipole–dipole interaction
and symmetric KSEA interaction can lead to the encoding of information, while the
rate of the two interactions can determine the extent of this encoding [16].

On the other side, characterizing quantum correlations is an essential part of many
quantum information and computation tasks. Entanglement between quantum states is
an especially intriguing resource for both fundamental physics and applications [17].
Several mathematical functions have been proposed to measure the entanglement,
such as concurrence, negativity, logarithmic negativity, and entanglement of formation
[18–20]. Among the applications of entanglement we may mention quantum key
distribution, quantum computing, and quantum teleportation [21]. The entanglement
of different paramagnetic materials and an open alternating chain of nuclear spins s
= 1/2 with spin-spin couplings have been studied [22, 23]. Also, the entanglement
of Heisenberg chain models [24–26], light-matter interactions [27, 28], and quantum
dot systems [29, 30] have been witnessed. Another indicator of quantum correlations
is the steering between bipartite quantum systems. This measure was introduced by
Schrödinger in 1935 [31]. In particular, numerous inequalities have been formulated
for both continuous- and discrete-variable quantum systems, to study the phenomenon
of quantum steering [32–35]. Investigations into the steerability of Heisenberg models
at finite temperatures, bipartite two-qubit X-states, two-level or three-level detectors in
a non-Markovian environment have been conducted [36–40]. In addition, non-locality
of quantum states is characterized by the violation of Bell inequalities - the simplest of
which being the Clauser Horne ShimonyHolt (CHSH) form [41]. Further, non-locality
has been quantified through the use of uncertainty-induced quantum non-locality [42],
Bell non-locality [43], and measurement-induced non-locality [44].

The aim of our research is to explore a composite system of the XYZ Heisenberg
chain model, which features magnetic dipole–dipole interactions, an external field,
and a symmetric KSEA interaction. This model is capable of exhibiting a wide range
of quantum phenomena and provides an opportunity to analyze the intricate interplay
between different types of interactions, as well as how they affect entanglement and
quantum correlations. Through our study of this model, we can gain valuable insight
into core questions concerning quantum correlation, such as how entanglement is
created and controlled. By utilizing numerical simulations and analytical techniques,
we hope to demonstrate the power of quantum information theory to identify and
understand the effects of various interactions, which could lead to new and interesting
applications in both computational physics and condensed matter.

The paper is organized as follows:- We begin by briefly introducing the mathemat-
ical forms of three quantum quantifiers, namely: quantum concurrence, 3-steerability,
and normalized CHSH-non-locality in the next section. Section 3 discusses the dif-
ferent parts of the Hamiltonian for the physical model and presents the exact solution
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of the Hamiltonian. Additionally, we examine the impact of magnetic fields and sym-
metric cross-interactions on the three quantum quantifiers for different positions of
the dipoles direction. Finally, we conclude with a summary of our results.

2 Preliminaries

This section provides a brief review of the mathematical formulas associated with
quantum non-separability, steerability, and non-locality, based on the concepts of
concurrence, 3-steerability and CHSH-non-locality.

2.1 Concurrence

In a bipartite density mixed state ρ̂AB , the quantification of entanglement (non-
separability) is efficiently achieved through the utilization of the concurrence, made
mathematically accessible by Wootters’ formula [19], given as follows:

E = max
{
0,

√
λ1 − √

λ2 − √
λ3 − √

λ4
}
, λ1 ≥ λ2 ≥ λ3 ≥ λ4 ≥ 0. (1)

where, λi represent the eigenvalues of the non-Hermitian operator ρAB(σy ⊗
σy)ρ

∗
AB(σy ⊗ σy), while ρ∗

AB is the complex conjugated of ρAB . It is noteworthy
that the concurrence of a fully entangled state is equal to 1, whereas separable mixed
states exhibit a vanishing concurrence.

2.2 Steering

The fundamental definition of steering phenomenon goes back to the paradoxi-
cal aspects of quantum mechanics investigated by Einstein-Podolsky-Rosen and
Schrödinger. Later the idea of steering phenomenon was precisely formulated for
discrete observables, and established as an intermediate between non-separability and
non-locality [32]. Remarkably, one of the most effective indicators of steering lies in
the 3-steerability, which be defined for arbitrary density states such as ρAB with an
X-shaped structure, in the form [45],

S = max

{
0,

||�c|| − 1√
3 − 1

}
, (2)

where, �c = {c1, c2, c3}, with ci = Tr [ρABσi ⊗ σi ], ||�c|| ≥ 1, and
√
3 is taken to

normalize the degree of steerability and obtained from the maximum violation of
steering inequality.

2.3 CHSH-non-locality

To gain a more profound understanding of quantum correlations, it is essential to
derive the Bell–Clauser–Horne–Shimony–Holt (CHSH) inequality. To assess CHSH
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Fig. 1 A Sketch of an XYZ Heisenberg chain model, where we choose an arbitrary two qubits that have a
position vector �n and are influenced by a symmetric cross interaction �, and a uniform external magnetic
field �B

non-locality, the Bell operator associated with the CHSH inequality, can be employed
as presented in [46]. Accordingly the Bell-CHSH inequality is defined as follows,

βCHSH = a.σ A ⊗ (b + b′).σ B + a′.σ A ⊗ (b − b′).σ B (3)

where, a, a′,b,b′ are unit vectors. For an arbitrary two-qubit with X-shaped, the
convenient normalizationof themaximal violationof theCHSHinequality is expressed
as,

B = max

{
0,

max Tr [βCHSHρAB] − 2

2
√
2 − 2

}
, (4)

where, 2
√
2 is the maximum value of CHSH inequality obtained according to the pure

maximal entangled states.

3 Physical model

Let us consider a physical model characterizing a two-qubit XYZ Heisenberg chain
that is influenced by a symmetric cross interaction, a uniform external magnetic field,
and a magnetic dipole–dipole interaction. This model is sketched in Fig. 1 , and its
Hamiltonian can be written as,

Ĥ = ĤI + ĤS + ĤM + ĤD. (5)

Here, ĤI is the Hamiltonian of a two-qubit XYZ Heisenberg chain model, which is
given by [47],

ĤI = Jx σ̂
x
a σ̂ x

b + Jy σ̂
y
a σ̂

y
b + Jz σ̂

z
a σ̂ z

b , (6)

where, Ji represent the strength of the exchange coupling between the two-qubit, and
σ̂i = {σ̂ x

i , σ̂
y
i , σ̂ z

i }, i = a, b are the Pauli matrices. The symmetric cross interaction

Hamiltonian ĤS in terms of a symmetric traceless tensor � is defined by [13],

ĤS = �σa .�.�σb. (7)
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The symmetric cross interaction in Eq. (7) for two-qubit system is given by,

HS = (
σ̂ x
a σ̂

y
a σ̂ z

a

)
⎛

⎝
0 �z �y

�z 0 �x

�y �x 0

⎞

⎠

⎛

⎝
σ̂ x
b

σ̂
y
b

σ̂ z
b

⎞

⎠

= �x
(
σ̂
y
a σ̂ z

b + σ̂ z
a σ̂

y
b

) + �y
(
σ̂ z
a σ̂ x

b + σ̂ x
a σ̂ z

b

) + �z
(
σ̂ x
a σ̂

y
b + σ̂

y
a σ̂ x

b

)
.

(8)

Also, ĤM in Hamiltonian 5 presents the magnetic field Hamiltonian model, which is
defined by [8],

ĤM = �B.(�σa + �σb), (9)

where, �B is the magnetic field vector in x, y, and z direction. Finally, the last term in
the Hamiltonian 5 is the dipole–dipole interaction, which reads [5],

ĤD = D

[
|�n|2 �σa .�σb − 3(�n.�σa)(�n.�σb)

]
. (10)

where, D is the coupling of magnetic dipole–dipole interaction with D = μ0γ
2

16π |�n|5 [23,
48], with μ0 is the magnetic permeability of free space, γ is the gyro-magnetic rate,
and �n is the two-qubit distance vector from qubit 1 to qubit 2. In this paper, we assume
the |�n| = 1 for different cases.

By regulating the homogeneous external magnetic field and the symmetric cross
interaction in z-direction, the Hamiltonian (5) can be rewritten as,

Ĥ =Jx σ̂
x
a σ̂ x

b + Jy σ̂
y
a σ̂

y
b + Jz σ̂

z
a σ̂ z

b + �z
(
σ̂ x
a σ̂

y
b + σ̂

y
a σ̂ x

b

) + Bz(σ̂
z
a + σ̂ z

b )+
D

[
|�n|2 �σa .�σb − 3(�n.�σa)(�n.�σb)

]
.

(11)

At thermal equilibrium, one can obtain the density operator in terms of eigensystem,
where the thermal density is expressed by,

ρ(T ) =
∑

i

λi |ψi 〉〈ψi |, with the probability λi = 1

Z
e

−Ei
kT , (12)

where, |ψi 〉 are the eigenstates with the related eigenvalues Eiand Z = ∑
i e

−Ei
kT is

the partition function. The parameters T , and k are the temperature, and Boltzmann’s
constant, respectively. In calculations that follow we set k = 1.
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3.1 The two dipoles are placed on the z-axis �̂n = (0, 0, 1)

Let the dipole–dipole interaction in the z-direction, the thermal equilibrium density
state (12) is calculated as,

ρ̂z(T ) = 1

Z1

⎛

⎜⎜
⎝

A11 0 0 A14
0 A22 A23 0
0 A23 A33 0
A41 0 0 A44

⎞

⎟⎟
⎠ (13)

Where,

A11 = e− Jz−2D
T

(
cosh

ω1

T
− 2Bz

ω1
sinh

ω1

T

)
, A22 = e

Jz−2D
T cosh

Jx + Jy + 2D

T
= A33

A44 = e− Jz−2D
T

(
cosh

ω1

T
+ 2Bz

ω1
sinh

ω1

T

)
, A14 = μe− Jz−2D

T sinh
ω1

T
= A∗

41

A23 = −e
Jz−2D

T sinh
Jx + Jy + 2D

T
, Z1 = Tr [ρ̂z(T )]

with, μ = Jx − Jy + 2i�z√
4�2

z + (Jx + Jy + 2D)2
, and, ω1 =

√
4(�2

z + B2
z ) + (Jx − Jy)2.

Applying the definitions outlined in (1), 2, and 4, we aim to show a comparative
investigation into the generation behaviours of entanglement, steerability, and non-
locality. To achieve this, the impact of factors such as temperature, external magnetic
fields, magnetic dipole, and symmetric cross interaction on the three quantum phe-
nomena shall be analyzed and presented in Fig. 2. The two dipoles shall be applied
along the z-axis for consistency. As highlighted in Fig. 2, steerability displays interme-
diary tendencies between non-separability and non-locality. However, both steering
and non-locality violate their respective inequalities when the density state is chosen
to be separable. Figure 2a–c will be utilized to showcase the three quantifiers as func-
tions of T and D, assuming the two-qubit to be ferromagnetic materials possessing
Jx = −0.3, Jy = −0.7, Jz = −0.9 at �z = 1 = Bz . It is evident that the three
quantifiers alter significantly based on temperature and the coupling of a magnetic
dipole–dipole, with quantum correlations witnessing a decrease as the temperature
increases. Physically, as the temperature increases, the thermal fluctuations in the
environment increase. These fluctuations can cause decoherence, i.e. loss of quantum
coherence in the system. Essentially, as the temperature increases, there is more noise
in the system that can disrupt the delicate quantum correlations. The interaction of
the magnetic dipole–dipole has a transformative effect on the material, resulting in
coupling between σ̂ z

a σ̂ z
b that is equivalent to Jz − 2D. Consequently, in the event that

D is aligned with the negative z-axis, the material converts from a ferromagnetic sub-
stance to an anti-ferromagnetic one, and vice versa. Additionally, the upper limits of
entanglement along the positive z-axis are greater than those seen for both steering and
non-locality degrees, while highest quantum correlations manifest along negative D at
low temperatures. This indicates that the coupling of the magnetic dipole can increase
or decrease quantum correlations based on environmental and material conditions. At
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Fig. 2 The behavior of (a) concurrence (b) steering, (c) Bell-nonlocality, where the two dipoles are in
z-direction Jx = −0.3, Jy = −0.7, Jz = −0.9, at �z = 1, and Bz = 1, the functions plotted against T
and D. (d,e,f) the same as (a,b,c) but the functions plotted against �z and D for T = 1, and Bz = 1. (g,h,i)
the same as (a,b,c) but the functions plotted against Bz and D for T = 1, and �z = 1

higher temperatures, coupling may result in decoherence and reduce entanglement,
but as the value of coupling increases, entanglement may be enhanced instead. In Fig.
2d–f, the three quantum measures are presented as functions of �z and D for fixed T
and B. It is noteworthy that these three quantum correlations display a symmetrical
analogue in the presence of negative values of the magnetic dipole coupling. This
indicates that they are unrelated to the coupling of the symmetric cross-interaction.
However, in the event of positive values of the magnetic dipole–dipole coupling,
the three quantum correlations heavily rely on the coupling of the symmetric cross-
interaction. The phenomena in question are intensified as �z increases. Generally,
the symmetric cross-interaction serves to increase interaction between particles of the
two-spin system. Thus, depending on the specificmagnetic dipole coupling values, the
impact of the symmetric cross-interaction can result in increased entanglement. The
findings illustrate that the upper limits for non-separability surpass those of steering
and non-locality. However, the maximum bounds for steerability exceed non-locality.
The behaviour of these quantum correlations is observed to vary when plotted against
the external magnetic field, as showen in Fig. 2g–i. The figs demonstrate that the
strength of the external magnetic field diminishes quantumness of quantum correla-
tions. As a result, separability increases with the increase in the external magnetic
field, while steerability and non-locality diminish. Furthermore, it is observed that
there are slight differences between S and B, with S being greater than or equal to B
in general.
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3.2 The two dipoles are placed on the x-axis �̂n = (1, 0, 0):

Via assuming that the dipole–dipole interaction in x-direction, one can obtain the exact
solution of density operator in thermal equilibrium as,

ρ̂x (T ) = 1

Z2

⎛

⎜⎜
⎝

B11 0 0 B14
0 B22 B23 0
0 B23 B33 0
B41 0 0 B44

⎞

⎟⎟
⎠ (14)

With

B11=e− Jz+D
T

(
cosh

ω2

T
−2Bz

ω2
sinh

ω2

T

)
, B22 = e

Jz+D
T cosh

Jx + Jy − D

T
= B33

A44 = e− Jz+D
T

(
cosh

ω2

T
+ 2Bz

ω1
sinh

ω2

T

)
, B14 = ξe− Jz+D

T sinh
ω2

T
= B∗

41

B23 = −e
Jz+D
T sinh

Jx + Jy − D

T
, Z2=Tr [ρ̂x (T )],

with, ξ= Jx−Jy+2i�z√
4�2

z+(Jx + Jy − D)2
, and, ω2=

√
4(�2

z + B2
z ) + (Jx − Jy − 3D)2.

Figure 3presents the behaviours of entanglement, steering, and non-locality under
the influence of dipole–dipole in the x-direction, in addition to a symmetric cross
interaction and an external magnetic field. Based on Fig. 3a–c, it is observed that the
maximum bounds of the three phenomena at low temperatures with a magnetic dipole
in the x-direction are significantly larger than those in the z-direction. However, both
steering and non-locality quickly violate their inequalities as the temperature increases,
particularlywith positive values of the dipole coupling. This suggests that thermal fluc-
tuations in the environmentmayblackuce thedipole’s influenceonquantumcoherence.
Notably, the symmetricmagnetic cross interaction has a crucial contribution in enhanc-
ing non-separability, subsequently improving the steering and non-locality. This is
demonstrated in Fig. 3d–f, which exhibit maximum bounds of examined quantities as
the coupling of the symmetric magnetic cross interaction increases. That results sug-
gest that the manipulation and preservation of quantum states can be facilitated with
higher values of the symmetric magnetic cross interaction. In addition, the three quan-
tifiers do not violate the hierarchy of quantum correlations. Figure 3g–i provide that
it is possible to reduce the impact of a homogeneous magnetic field by increasing the
coupling of the two dipoles. These findings suggest that it may be possible to neglect
the aforementioned destructive effect by adjusting certain parameters of the physi-
cal system. This has important implications for the manipulation and preservation of
quantum states in the presence of external magnetic fields.

Upon analyzing the results from the study illustrated in Figs. 2 and 3, it can be
inferred that the quantum correlation is strongly affected with the direction of the
dipole–dipole interaction.When thedipoles are orientedparallel to the symmetric cross
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Fig. 3 The behavior of (a) concurrence (b) steering, (c) Bell-nonlocality, where the two dipoles are in
x-direction Jx = −0.3, Jy = −0.7, Jz = −0.9, at �z = 1 Bz = 1, the functions plotted against T and D.
(d,e,f) the same as (a,b,c) but the functions plotted against �z and D for T = 1, Bz = 1. (g,h,i) the same
as (a,b,c) but the functions plotted against Bz and D for T = 1 and �z = 1

Fig. 4 The behavior of concurrence (orange-solid-curve), steering (green-dash-curve), and Bell-nonlocality
(blue-dot-curve), where Jx = −0.3, Jy = −0.7, Jz = −0.9, at �z = 8, the functions plotted against D
at Bz = 0.1 and T = 5. (a) For the thermal density state (13), (b) For the thermal density state (14)

interaction field, it exhibits weaker correlation strength compared to that observed in
the perpendicular direction. Furthermore, the presence of a homogeneous magnetic
field reduces the strength of quantum correlation, but this effect can be mitigated by
increasing the value of the dipole coupling.

To confirm the results obtained in the two previous thermal density states (13) and
(14), we have plotted Fig. 4. Where we express non-separability, steering, and non-
locality in two dimensions as functions of the dipole–dipole coupling. As shown, under
high temperatures and negative values of the dipole coupling, the three phenomena are
more pronounced there when the two dipoles are perpendicular to the other component
of the system (x-direction, as depicted in Fig. 4a), as opposed to the case of the two
dipoles being parallel (z-direction, as illustrated in Fig. 4b). Conversely, in cases where
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the dipole coupling has positive value, findings reveal that quantum correlations attain
their maximum levels when the two dipoles are parallel to the other components of
the Hamiltonian. Moreover, the three forms of quantum correlation exhibit similar
tendency.

3.3 The two dipoles are placed on the direction �n = (cos�, sin�, 0)

Finally, we consider the casewhere the externalmagnetic field and the symmetric cross
interaction are always perpendicular to the dipole–dipole interaction. So this, we set
the two dipoles in the xy-plane with the vector �n = (cos θ, sin θ, 0), θ ∈ [0, 2π ].
Consequently, the density operator in thermal equilibrium is given by,

ρ̂xy(T ) = 1

Z3

⎛

⎜⎜
⎝

C11 0 0 C14
0 C22 C23 0
0 C23 C33 0
C41 0 0 C44

⎞

⎟⎟
⎠ (15)

where,

C11 = e− Jz+D
T

(
cosh

ω3

T
− 2Bz

ω3
sinh

ω3

T

)
,

C22 = e
Jz+D
T cosh

Jx + Jy + 2D(1 − 3 cos θ)

T
= C33

C44 = e− Jz+D
T

(
cosh

ω3

T
+ 2Bz

ω3
sinh

ω3

T

)
, C14 = ηe− Jz+D

T sinh
ω3

T
= C∗

41

C23 = −e
Jz+D
T sinh

Jx + Jy + 2D(1 − 3 cos θ)

T
, Z3 = Tr [ρ̂xy(T )],

with, η = −Jx + Jy + 2i(�z − 3D
2 sin 2θ)

√
4(�z − 3D

2 sin 2θ)2 + (Jx + Jy)2
,

and, ω3 =
√

4((�z − 3D

2
sin 2θ)2 + B2

z ) + (Jx − Jy)2.

Finally, we need to analyze the optimal position angle of a magnetic dipole with
respect to the XY plane in order to determine the most significant positive impact. It
is important to note that the dipole–dipole interaction always occurs perpendicular to
the homogeneous magnetic field and the symmetric cross interaction, as shown in Fig.
2. In Fig. 5a–c, we assume the coupling strength of two dipoles to be positive with
D = 1. We observe that the maximum bounds at θ � 0, π in the three functions E ,
S, and B are greater than those shown at θ � π/2, 3π/2. These results suggest that
non-separability, steerability, and non-locality are greater when the magnetic dipole is
placed along the x-axis than those directed along the y-axis. It should be noted that there
is a slight effect on the non-separability at θ � π with respect to the temperature. It
is observed that the non-separability, steerability, and non-locality of a dipole–dipole
interaction are dependent on its orientation. Specifically, when the two dipoles are
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Fig. 5 The behavior of (a) concurrence (b) steering, (c) Bell-nonlocality, where the dipole interaction in
xy-plane Jx = −0.3, Jy = −0.7, Jz = −0.9, at �z = 1 Bz = 1 D = 1, the functions plotted against T
and θ . (d–f) the same as (a–c) but �z = 1, Bz = 1, and D = −1

aligned along the x-axis, these properties are greater than when aligned along the
y-axis. Additionally, temperature has a minor impact on non-separability at an angle
of approximately π . Furthermore, when the strength of the dipole–dipole interaction
is negative (D = −1), maximum bounds of non-separability are generated at angles
of approximately π/4 and π , see Fig. 5d. However, maximum bounds of steerability
and non-locality are observed around an angle of π . Overall, it has been found that
as the dipole angle and temperature increase, quantum correlations decrease. These
findings provide valuable insights into the behaviour of our system and their quantum
properties.

4 Conclusion

In this article, we presented a comprehensive comparative study that analyses
the behaviour of three distinct phenomena of quantum correlations, namely non-
separability, steering, and non-locality under thermal conditions. We evaluated these
correlations through the implementation of a two-qubit XYZHeisenberg chain model.
We investigated the effects of symmetric cross interaction,magnetic field, and different
positions of dipole–dipole interaction on each correlation. Furthermore, we analyzed
the interdependence of these three phenomena of quantum correlations. Our results
demonstrate that, in each case, the quantum correlation displays a similar behaviour,
and there is a degree of thermal steerability existing between non-separability and
non-locality. We observe that an increase in temperature and coupling of the external
magnetic field leads to a reduction in the maximum bounds of the three forms of
quantum correlations. Additionally, the symmetric cross interaction can improve the
general behaviour of quantum correlations byminimizing unwanted effects. However,
we find that the orientation of the dipole–dipole interaction plays a significant role in
quantum correlation enhancement, with greater correlations being generated for the
negative values of the dipole–dipole coupling compared to the positive values based
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on environmental and material conditions. Our results suggest that the quantum cor-
relations for displayed along the x-direction are superior to those displayed along the
z-direction at large values of symmetric cross interaction and negative values of the
coupling of the two dipoles. Therefore, regulating the magnetic dipole in a perpen-
dicular position on the system components could enhance the quantum correlations at
high temperatures and large values of symmetric cross interaction. Furthermore, the
steering degree and non-locality are identical for a positive coupling of the two dipoles
in the z-direction. Finally, our study substantiates a hierarchy of quantum correlations
among the three types of quantum correlations for the present system.
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