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Abstract. The commutant of the Cartan subalgebra of G2 in its enveloping algebra is
determined, showing that it gives rise to a 66-dimensional polynomial algebra of sixth order. It
is shown that the commutant of the regular subalgebra A2 can be obtained by restriction. An
illustration how to use these results for Hamiltonian systems with G2 as spectrum generating
algebra is given.

1. Introduction

During the last years, there has been a wide interest to find purely algebraic formulations of
superintegrable systems, by associating them to polynomial algebras of various types, such as
subalgebras of enveloping algebras, Racah algebras and generalizations [1, 2, 3]. In this context,
large series of polynomial algebras related to the classical semisimple series have been studied
[4, 5], trying to find characterizations that lead to new superintegrable systems. Most of these
approaches are formulated for specific systems realized in terms of differential operators, which
does not always allow us to determine easily all the structural properties. One advantage of the
algebraic ansatz is the absence of a reference to a given realization, a fact that enables us to
define a generic notion of algebraic Hamiltonians and their corresponding (algebraic) constants
of the motion [6]. With this strategy, it was shown in [4] that the commutant of the Cartan
subalgebra for the classical series An gives rise to a polynomial algebra deeply related to the
Racah algebra R(n), that further correspond to the symmetry algebras of generic superintegrable
systems on spheres Sn−1 (see [7]). The algebraic problem can easily be reformulated in analytical
terms using the symmetric algebra [8]. This further shows the close relation to the so-called
missing label problem [9], hence suggesting that spectrum generating algebras and dynamical
symmetries, as special types of physically relevant systems [10], can also be studied via a purely
algebraic formalism based on enveloping algebras. On the other hand, this approach connects
with the embedding problem of Lie algebras in enveloping algebras, which is still not completely
solved [11].

Besides the case of An, the commutant of the Cartan subalgebra for the remaining classical
series has been systematically analyzed in [12], showing that the root systems play a relevant
role in the structure of the resulting polynomial algebra. For the exceptional Lie algebras, this
analysis is still missing, mainly due to computational obstructions. In this work, we inspect
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the case of the rank-two exceptional Lie algebra G2, showing that it gives rise a a polynomial
algebra of sixth order. We further show how to recover the polynomial algebras corresponding
to (regular) subalgebras containing the Cartan subalgebra, and how to use these results for the
construction of constants of the motion of Hamiltonians with spectrum generating algebra G2.

2. The commutant of Lie subalgebras in enveloping algebras
Given a real or complex (semisimple) Lie algebra s, we denote its universal enveloping algebra by
U(s). For any positive integer p, we consider the subspace U(p)(g) generated by the monomials
Xa1

1 . . . Xan
n satisfying the numerical constraint a1 + a2 + · · · + an ≤ p, where {X1, . . . , Xn}

is an arbitrary (ordered) basis of s. We say that an element P ∈ U(s) has degree d if
d = inf

{
k | P ∈ U(k)(s)

}
. As U(s) is a naturally filtered algebra [13], for p, q ≥ 0 the following

inclusions hold
U(0)(s) = C, U(p)(s)U(q)(s) ⊂ U(p+q)(s). (1)

It can be shown that each U(p)(s) is a finite-dimensional representation of s, from which a
decomposition of U(s) as a sum of finite-dimensional representations of s can be deduced (see
[13]).

On the given basis, the adjoint action of s on the enveloping algebra U(s) and the associated
symmetric algebra S(s) is given by (see e.g. [8])

P ∈ U(s) 7→ P.Xi := [Xi, P ] = XiP − PXi ∈ U(s),

P (x1, . . . , xn) ∈ S(s) 7→ X̂i(P ) = Ckijxk
∂P

∂xj
∈ S(s),

(2)

where Ckij denote the structure constants over the given basis. It can be easily verified that the

differential operator X̂i = Ckijxk
∂

∂xj
is the infinitesimal generator of the 1-parameter subgroup

associated to Xi through the coadjoint representation [14]. The symmetric algebra S (s), that
can be identified with K [x1, . . . , xn] (K = R,C), inherits naturally the structure of a Poisson
algebra through the Berezin (or Lie–Poisson) bracket [15]

{P,Q} = Ckijxk
∂P

∂xi

∂Q

∂xj
, P,Q ∈ S (s) . (3)

By means of the standard symmetrization map

Λ
(
xj1 . . . xjp

)
=

1

p!

∑
σ∈Σp

Xjσ(1) . . . Xjσ(p) , (4)

where Σp denotes the symmetric group of p letters, the canonical linear isomorphism Λ from S(s)
onto U(s) that commutes with the adjoint action is obtained [8]. It should however be observed
that it is not in general an algebraic isomorphism [13]. If S(p)(s) denotes the homogeneous
polynomials of degree p, defining U (p)(s) = Λ

(
S(p)(s)

)
we get U(p)(s) =

∑p
k=0 U

(k)(s). From
this it is straightforward to infer that for P ∈ U(p)(s), Q ∈ U(q)(s), the commutator satisfies

[P,Q] ∈ U(p+q−1)(s).

In this context, we define the commutant CU(s)(a) of an arbitrary subalgebra a ⊂ s as the
centralizer of the subalgebra in U(g), i.e.

CU(s)(a) = {Q ∈ U(s) | [P,Q] = 0, ∀P ∈ a} . (5)
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A special case is given for a = s, in which case we obtain the centre of U(s)

Z (U(s)) = {P ∈ U(s) | [s, P ] = 0} , (6)

consisting of the invariant polynomials of s, i.e., their Casimir operators [14]. If a commutant
CU(s)(a) is finitely generated (e.g., when it satisfies the Noetherian property), we can find a

set {P1, . . . , Ps} of linearly independent polynomials,1 such that any element in CU(s)(a) can be
represented as

P a11 P a22 . . . P ass , ai ∈ N ∪ 0, (7)

where the scalars ai satisfy certain algebraic relations (see [4] and references therein). In this
situation, we say that the linear dimension of CU(s)(a) is dimLCU(s)(a) = s, where the subindex
L indicates linearity. In particular, CU(s)(a) contains the Casimir operators of a, as well as those
C1, . . . , C` of s. As these commute with each element in s, it follows that CU(s)(a) possesses the
structure of a free module over C [C1, . . . , C`] (see [13] for details).

Computationally, it is more convenient to translate the problem of determining commutants
to the analytic frame, using the canonical linear isomorphism Λ. More precisely, for a ⊂ s we
consider the centralizer

CS(s) (a) = {Q ∈ S (s) | {P,Q} = 0, P ∈ a}

with respect to the bracket (3). This enables us to compute these elements as the polynomials
satisfying the linear first-order system of partial differential equations

X̂i (Q) := {xi, Q} = Ckijxk
∂Q

∂xj
= 0, 1 ≤ i ≤ m = dim a, (8)

where the {x1, . . . , xm} correspond to the coordinates in a dual basis of a (see equation
(2)). As is well known, the number of functionally independent solutions of (8) is given by

r0 = dim s− rank(A), where A is the m× n-matrix with entries
(
Ckijxk

)
corresponding to the

equations of the subalgebra generators [14, 16]. The index m makes reference to the number
of subalgebra generators, while n indicates the number of variables in which these are realized.
Clearly, r0 merely provides an upper bound for the number of independent polynomials, as the
system may have rational or even transcendental solutions [8].

This approach can be used to construct formal superintegrable systems from algebraic
structures (see e.g. [17]), leading to alternative notions of integrability and superintegrability
[6]. In this frame, given a ⊂ s and the commutant CU(s)(a), we define an algebraic Hamiltonian
(with respect to the subalgebra) by means of the expression

Ha =
∑
i,j

αijXiXj +
∑
k

βkXk +
∑
`

γ`C`, Xi, Xj , Xk ∈ a; αij , βk, γ` ∈ K, (9)

where C` is a Casimir operator of s. Elements in the commutant correspond to constants of the
motion of the Hamiltonian Ha. The analytical counterpart has the form

H =
∑
i,j

αijxixj +
∑
k

βkxk +
∑
`

γ`C`, (10)

1 The elements are generally functionally dependent, but it should be observed that these dependence relations
are usually defined in the field of fractions, and not in U(s) [8].
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where C` is the symmetric counterpart of C` . For a polynomial P0 in the symmetric algebra
and its image P = Λ(P0) in the enveloping algebra (see equation (4)), the Lie-Poisson bracket
{Ha, P0} = 0 is satisfied.

Depending on the number of independent integrals of the motion obtained, two cases can
arise:

(i) Polynomials in CS(s) (a) all have trivial Berezin bracket. Then Ha is integrable with an
abelian symmetry algebra.

(ii) CS(s) (a) contains non-commuting elements. Then the algebraic Hamiltonian Ha has a non-
commutative (super-)integrability property and the symmetry algebra is non-abelian and
polynomial.

Now, considering a realization by differential operators of s, the previous operators eventually
factorize or satisfy additional dependence relations, reducing the number of independent
constants of the motion. Using this approach, several relevant superintegrable systems have
been analyzed from an algebraic perspective [2, 4].

The argument can also be used for reduction chains of (reductive) Lie algebras. Suppose that
we have a chain of subalgebras

s1 ⊂ s2 ⊂ · · · ⊂ s.

Then clearly CS(s) (s1) contains the commutant of any term si in S(s), so that we obtain the
dual chain

CS(s) (s1) ⊃ CS(s) (s2) ⊃ · · · ⊃ CS(s) (s) . (11)

As the last term corresponds to the Casimir invariants of s, it follows that any commutant is a
(non-abelian) extension of Z(S(s)), consisting of the analytic analogues of the Casimir operators
of s. In particular, the invariant operators of s and the subalgebra a can always be expressed as
polynomials in the elements of the commutant.

3. Missing label operators
The computation of commutants in enveloping algebras can be seen as a special case, restricted
to the class of polynomials, of the more general “internal labelling problem” (see e.g. [18, 19]).
Restricting our attention to the case of semisimple algebras, which is the most relevant in this
context [10], it is often convenient to describe the representations of a Lie algebra s with respect
to some distinguished subalgebra s′ of rank `′ that may correspond to some internal symmetry.
Often, however, the labels provided by the chain are not sufficient to separate state degeneracies

that may appear. The inner distinction of states of s-representations require
1

2
(dim s−`) labels,2,

from which the subalgebra s′ provides
1

2
(dim s′ + `′) labels. It may happen that s′ and s have

some Casimir operators (`0 in number) in common, i.e., that some invariants of s′ are actually
s-invariant.3 As the identity

1

2
(dim s− `) = n0 +

1

2
(dim s′ + `′)− `0

must be satisfied, we conclude that the number n0 of required inner labels is given by

n0 =
1

2

(
dim s− `− dim s′ − `′

)
+ `0 (12)

2 The ` labels corresponding to eigenvalues of Casimir operators do not separate states, but only determine the
representation as a whole.
3 This situation can only appear if s decomposes as a direct sum s = s′ ⊕m of Lie algebras.
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operators to separate the irreducible representations (IRs in short) of s′ that appear with
multiplicity greater than one in the decomposition of Γ. Such operators commute with the
generators of s′, and are commonly called missing label operators (MLO in short) or subgroup
scalars. In the context of the symmetric algebra, missing label operators are obtained as
solutions of the system (8). In particular, polynomial operators are clearly seen to belong
to the commutant of s′ in the enveloping algebra of s, implying that n0 < r0. The converse also
holds, namely, any element in the commutant CU(s)(s′) is a subgroup scalar. In applications to
representations, to prevent undesired interactions and to allow simultaneous diagonalization,
these operators are additionally required to commute with each other [18]. In terms of
commutants, this means that for labelling representations, we always use a maximal abelian
subalgebra of the polynomial algebra CU(s)(s′).
If s′ ⊂ s is an embedding of Lie algebras, it induces branching rules of representations [20]. In
particular, the adjoint representation of s decomposes as:

ad(s) = ad(s′)⊕R, (13)

where R is a (generally reducible) representation of s′ called the characteristic representation.
To compute the missing labels analytically, we can proceed as follows. Let {X1, . . . , Xm} be a
basis of s′ and extend it to a basis B = {X1, . . . , Xm, Y1, . . . Yn−m} of s, where m = dim(s′).
The brackets adopt the form:

[Xi, Xj ] = CkijXk, [Xi, Yp] = Dq
ipYq, [Yp, Yq] = EkpqXk + F rpqYs,

where i, j, k ∈ {1, . . . ,m} and p, q, r ∈ {1, . . . , n−m}. Now we consider those differential
operators that are associated to generators of s′, i.e., the system of PDEs

X̂i = −Ckijxk
∂

∂xj
−Dq

ipyq
∂

∂yp
, 1 ≤ i ≤ m. (14)

where {x1, . . . , xm, y1, . . . , yn−m} are the coordinates in a dual basis of B. We observe that

solutions F to the system (14) such that
∂F

∂yp
= 0 for all 1 ≤ p ≤ n−m correspond to the Casimir

invariants of the subalgebra, while a genuine missing label operator must explicitly depend on
the variables {y1, . . . , yn−m}. Now the system (14) has exactly r0 = n − r′ independent (not
necessarily polynomial) solutions, where r′ denotes the rank of the m×n polynomial coefficient
matrix. From these solutions, ` + `′ − `0 correspond to the Casimir operators of either s or s′,
so that the number of available MLOs is given by χ = n − r′ − ` − `′ + `0. It can be easily
shown (see e.g. [21, 22]) that m−r′ = `0, which implies that χ = 2n0, showing that there are n0
more labels available than required. It should however be noted that among these 2n0 solutions,
at most n0 can correspond to operators that commute with each other [9]. In particular, this
implies that the maximal dimension of an abelian subalgebra of CU(s)(s′) is upper-bounded by
n0.

4. The commutant of H in G2. Generators of G2 in a A2 basis
In this section, we extend the analysis of [12] for the classical series to the lowest-rank exceptional
simple Lie algebra. We consider the (complex) Lie algebra G2, whose set of positive roots is
given by Φ+ = {α1, α2, α1 + α2, 2α1 + α2, 3α1 + α2, 3α1 + 2α2}, as is well known [20]. For
computational purposes, it is convenient to use an A2-basis, corresponding to the regular
embedding A2 ⊂ G2 [23]. Over such a basis, the adjoint representation Γ[1, 0] of G2 decomposes
as follows as sum of A2-multiplets:

Γ[1, 0] = Λ[1, 1] + Λ[1, 0] + Λ[0, 1], (15)
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where Λ[1, 1] is the adjoint representation of A2 and Λ[1, 0], Λ[0, 1] correspond to the quark
and antiquark representation, respectively [24]. According to the decomposition, we label the
generators as Eij , ak, b

l (i, j, k, l = 1, 2, 3), where E11+E22+E33 = 0 holds. With this choice, A2

is spanned by the operators Eij , while {a1, a2, a3} correspond to the fundamental representation
Λ[1, 0] and

{
b1, b2, b3

}
to its dual Λ[0, 1]. The corresponding brackets are given by

[Eij , Ekl] = δjkEil − δilEkj , [Eij , ak] = δjkai,
[
Eij , b

k
]

= −δikbj ,

[ai, aj ] = −2εijkb
k,

[
bi, bj

]
= 2εijkak,

[
ai, b

j
]

= 3Eij .
(16)

As generators of the Cartan subalgebra H we choose the operators H1 = E11 − 2E22 +E33 and
H2 = E22 − E33. The action is given in Table 1.

Table 1. Eigenvalues of H over the basis (16)

X E12 E23 E13 E21 E32 E31 a1 a2 a3 b1 b2 b3

λ1 (X) 3 3 0 −3 −3 0 1 −2 1 −1 2 −1
λ2 (X) −1 −2 1 1 2 −1 0 1 −1 0 −1 1

Table 2. Commutators of G2 in the A2-basis

[◦, ◦] X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14

X1 0 0 3X3 −3X4 3X5 −3X6 0 0 X9 −2X10 X11 −X12 2X13 −X14

X2 0 −X3 X4 −2X5 2X6 X7 −X8 0 X10 −X11 0 −X13 X14

X3 0 W1 0 X7 0 −X5 0 X9 0 −X13 0 0
X4 0 −X7 0 X6 0 X10 0 0 0 −X12 0
X5 0 −X2 −X3 0 0 X11 0 0 0 −X13

X6 0 0 X4 0 0 X10 0 −X14 0
X7 0 W2 0 0 X9 −X14 0 0
X8 0 X11 0 0 0 0 −X12

X9 0 −2X14 2X13 W3 3X3 3X7

X10 0 −2X12 3X4 −X1 3X6

X11 0 3X8 3X5 W4

X12 0 2X11 −2X10

X13 0 2X9

X14 0
W1 = X1 +X2,W2 = X1 + 2X2,W3 = 2X1 + 3X2,W4 = −X1 − 3X2

In order to determine the commutant CU(G2)(H), we use the analytical counterpart,
which corresponds to compute the centralizer CS(G2)(H) in the symmetric algebra of
G2 [4]. For computational purposes, it is more convenient to change the basis
from H1, H2, E12, E21, E23, E32, E13, E31, a1, a2, a3, b

1, b2, b3 to the indexed basis X1, . . . , X14.
Considering the corresponding coordinates x1, . . . , x14 in the dual space G∗2, polynomials in
the centralizer CS(G∗2)(H) correspond to (polynomial) solutions of the linear first-order partial
differential equations

X̂1(F ) =3x3∂x3F − 3x4∂x4F + 3x5∂x5F − 3x6∂x6F + x9∂x9F − 2x10∂x10F + x11∂x11F

− x12∂x12F + 2x13∂x13F − x14∂x14F = 0,

X̂2(F ) =− x3∂x3F + x4∂x4F − 2x5∂x5F + 2x6∂x6F + x7∂x7F − x8∂x8F + x10∂x10F

− x11∂x11F − x13∂x13F + x14∂x14F = 0.

(17)
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This system admits r0 = 14−2 = 12 functionally independent solutions, as the coefficient matrix
has rank two. As the Cartan subalgebra acts diagonally on the root vectors (see Table 1), we

have that X̂s(xk) = λs(xk)xk for any 1 ≤ k ≤ 14 and s = 1, 2. It is hence immediate to verify
that for any monomial P = xν11 . . . xν1414 that satisfies (17), the following relations are fulfilled

X̂s(P ) =

14∑
k=1

νkλs(xk)P = 0, s = 1, 2.

Therefore, we can restrict our attention to polynomials satisfying the eigenvalue constraints

14∑
k=1

νkλ1(xk) = 0,

14∑
k=1

νkλ2(xk) = 0. (18)

With these numerical restrictions, we can proceed recursively, looking for the setAd of monomials
of degree d ≥ 1 that satisfy the preceding condition. Proceeding along these lines, for each of
the degrees 1 ≤ d ≤ 6, and discarding the products of lower-order monomials, we obtain the
following linearly independent monomials:

(i) d = 1
A1 = {Q1 = x1, Q2 = x2}

(ii) d = 2

A2 = {Q3 = x3x4, Q4 = x5x6, Q5 = x7x8, Q6 = x9x12, Q7 = x10x13, Q8 = x11x14}

We have that the cardinality of A2 is given by |A2| = 6 = |Φ+|. In particular, these elements
correspond to the product of the root vectors Xα and X−α.

(iii) d = 3

A3 = {Q9 = x3x6x8, Q10 = x3x10x12, Q11 = x4x5x7, Q12 = x4x9x13, Q13 = x5x10x14,

Q14 = x6x11x13, Q15 = x7x11x12, Q16 = x8x9x14, Q17 = x9x10x11, Q18 = x12x13x14}

|A3| = 10.

(iv) d = 4

A4 =
{
Q19 = x3x6x11x12, Q20 = x3x8x10x14, Q21 = x3x

2
10x11, Q22 = x3x

2
12x14, Q23 = x4x5x9x14,

Q24 = x4x7x11x13, Q25 = x4x
2
9x11, Q26 = x4x

2
13x14, Q27 = x5x7x10x12, Q28 = x5x9x

2
10,

Q29 = x5x12x
2
14, Q30 = x6x8x9x13, Q31 = x6x9x

2
11, Q32 = x6x12x

2
13, Q33 = x7x10x

2
11,

Q34 = x7x12x
2
13, Q35 = x8x13x

2
14, Q36 = x8x

2
9x10

}
|A4| = 18.

(v) d = 5

A5 =
{
Q37 = x3x5x

3
10, Q38 = x3x6x10x

2
11, Q39 = x3x6x

2
12x13, Q40 = x3x7x

3
13, Q41 = x3x8x9x

2
10,

Q42 = x3x8x12x
2
14, Q43 = x4x5x

2
9x10, Q44 = x4x5x13x

2
14, Q45 = x4x6x

3
13, Q46 = x4x7x9x

2
11,

Q47 = x4x7x12x
2
13, Q48 = x4x8x

3
9, Q49 = x5x7x

2
10x11, Q50 = x6x7x

3
11, Q51 = x5x7x

2
12x14,

Q52 = x5x8x
3
14, Q53 = x6x8x

2
9x11, Q54 = x6x8x

2
13x14

}
|A5| = 18.
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(vi) d = 6

A6 =
{
Q55 = x23x6x

3
12, Q56 = x3x

2
6x

3
11, Q57 = x3x

2
8x

3
14, Q58 = x23x8x

3
10, Q59 = x4x

2
5x

3
14,

Q60 = x24x5x
3
9, Q61 = x24x7x

3
13, Q62 = x4x

2
7x

3
11, Q63 = x25x7x

3
10, Q64 = x5x

2
7x

3
12,

Q65 = x26x8x
3
13, Q66 = x6x

2
8x

3
9

}
|A6| = 12.

It can be shown that for d ≥ 7, any indecomposable monomial solution is a product of elements

in the setM = H∪
(⋃6

k=1Ak
)

. Indeed, due to the constraints (18), each monomial that satisfies

the system has zero eigenvalue with respect to the generators of the Cartan subalgebra. Using the
roots of G2, this condition amounts to consider roots β1, . . . , βs ∈ Φ such that β1 + · · ·+ βs = 0
and βi1 + · · · + βir 6= 0 for each set {i1, . . . , ir} ⊂ {1, . . . , s}, as otherwise the monomial is
automatically decomposable. Now, as 3α1 + 2α2 is the root of maximal height ` = 5, the
highest degree that can be obtained is six. Clearly, among the 66 monomials in M, only 12 are
functionally independent, which can be taken as {Q1, . . . , Q9, Q12, Q13, Q14}. In particular, the
Casimir operators C ′2, C

′
3 of A2 and C2, C6 of G2 are expressible as polynomials in the Qi. More

specifically

C ′2 =Q2
1 + 3(Q1Q2 +Q2

2) + 3(Q4 +Q7 +Q8), C2 = C ′2 +Q3 +Q5 +Q6,

C ′3 =2Q3
1 + 9(Q2

1Q2 +Q1Q
2
2) + 9Q1(Q7 − 2Q4 +Q8)− 27Q2(Q4 −Q7) + 27(Q11 +Q12).

(19)

The expression for C6 is skipped due to its length. As the number of linearly independent
elements in the commutant exceeds that of functionally independent operators, elements in M
must satisfy certain algebraic dependence relations. Such constraints can be found systematically
fixing a degree d0 and solving the equation

P =

r0∑
s=1

µs

66∏
k=1

Q
ak,s
k = 0,

where Qi denotes the ith element in M and r0 is the number of non-negative integer solutions
of

d0 =

66∑
k=1

ak,sdeg(Qk).

Up to degree five, a routine computation shows that there is no algebraic relation, while for
d = 6, the following 29 algebraic dependence relations are found:

Q3Q20 −Q14Q18 = 0, Q3Q22 −Q15Q17 = 0, Q3Q24 −Q13Q18 = 0,

Q3Q25 −Q13Q17 = 0, Q3Q27 −Q15Q16 = 0, Q3Q28 −Q14Q16 = 0,

Q4Q32 −Q11Q18 = 0, Q4Q36 −Q12Q15 = 0, Q5Q19 −Q14Q15 = 0,

Q5Q21 −Q17Q18 = 0, Q5Q30 −Q9Q15 = 0, Q5Q31 −Q9Q17 = 0,

Q5Q34 −Q10Q18 = 0, Q5Q35 −Q10Q14 = 0, Q6Q23 −Q13Q14 = 0,

Q6Q26 −Q16Q17 = 0, Q6Q29 −Q9Q14 = 0, Q6Q32 −Q9Q16 = 0,

Q6Q33 −Q10Q17 = 0, Q6Q36 −Q10Q13 = 0, Q7Q30 −Q11Q13 = 0,

Q7Q34 −Q12Q16 = 0, Q8Q24 −Q9Q12 = 0, Q8Q27 −Q10Q11 = 0,

Q3Q4Q5 −Q15Q18 = 0, Q3Q5Q6 −Q14Q17 = 0, Q3Q6Q7 −Q13Q16 = 0,

Q4Q7Q8 −Q11Q12 = 0, Q5Q6Q8 −Q9Q10 = 0.
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For higher degrees, additional algebraic relations appear, the explicit expression of which is
skipped for brevity in the exposition. The monomials in M, subjected to these algebraic
relations, thus generate a polynomial algebra with respect to the Berezin bracket (3), such
that a generic monomial in M can be expressed as

P = Qa11 . . . Qa6666 ,

where the exponents ai have to satisfy the algebraic relations. So, for example, the last of the
relations above implies that a9a10 = 0, etc. It remains to determine the order of the polynomial
algebra. As H commutes with any monomial, it generates the centre of the algebra, hence
{A1,Aj} = 0 for 2 ≤ j ≤ 6. A routine computation shows that for any Berezin bracket
{Qi, Qj}, the dependence on x1, x2 is at most linear, i.e.,

∂2{Qi, Qj}
∂xa∂xb

= 0, a, b = 1, 2; 1 ≤ i < j ≤ 66.

For the remaining sets Ai of monomials, the following relations are obtained

{A2,A2} ⊂ A1A2 +A3,

{A2,A3} ⊂ A1A3 +A2
2 +A4, {A2,A4} ⊂ A1A4 +A1A2

2 +A2A3 +A5,

{A2,A5} ⊂ A1A5 +A1A2A3 +A2A4 +A3
2 +A2

3 +A6,

{A2,A6} ⊂ A1A6 +A1A3
2 +A1A2

3 +A1A2A4 +A2
2A3 +A3A4 +A2A5 +A6,

{A3,A3} ⊂ A1A4 +A1A2
2 +A2A3 +A5,

{A3,A4} ⊂ A1A5 +A1A2A3 +A2A4 +A3
2 +A2

3 +A6,

{A3,A5} ⊂ A1A6 +A1A3
2 +A1A2

3 +A1A2A4 +A2
2A3 +A3A4 +A2A5 +A6,

{A3,A6} ⊂ A1A2
2A3 +A1A2A5 +A1A3A4 +A4

2 +A2A2
3 +A2

2A4 +A2A6 +A3A5 +A2
4,

{A4,A4} ⊂ A1A6 +A1A3
2 +A1A2

3 +A1A2A4 +A2
2A3 +A3A4 +A2A5 +A6,

{A4,A5} ⊂ A1A2
2A3 +A1A2A5 +A1A3A4 +A4

2 +A2A2
3 +A2

2A4 +A2A6 +A3A5 +A2
4,

{A4,A6} ⊂ A1A4
2 +A1A2A2

3 +A1A2
2A4 +A1A2A6 +A1A3A5 +A1A2

4 +A3
2A3 +A2

2A5

+A2A3A4 +A3
3 +A3A6A4A5,

{A5,A5} ⊂ A1A4
2 +A1A2A2

3 +A1A2
2A4 +A1A2A6 +A1A3A5 +A1A2

4 +A3
2A3 +A2

2A5

+A2A3A4 +A3
3 +A3A6A4A5,

{A5,A6} ⊂ A1A3
2A3 +A1A3

3 +A1A2A3A4 +A1A2
2A5 +A1A4A5 +A1A3A6 +A3

2A4

+A5
2 +A2

2A2
3 +A2A2

4 +A2A3A5 +A2A2
6 +A2

3A4 +A4A6 +A2
5,

{A6,A6} ⊂ A1A5
2 +A1A2

2A2
3 +A1A3

2A4 +A1A2
3A4 +A1A2A2

4 +A1A2A3A5 +A1A2
2A6

+A1A2
5 +A1A4A6 +A4

2A3 +A3
2A5 +A2

2A3A4 +A2A3A6 +A2A4A5 +A2A3
3

+A3A2
4 +A3

3A5 +A5A6.

(20)

This shows that the polynomial algebra is of order six. The maximal order is obtained, for
example, for the bracket

{Q61, Q65} = 4Q1Q4Q
3
6Q8 − 18Q1Q4Q

2
6Q

2
8 + 8Q2Q4Q

3
6Q8 − 17Q2Q4Q

2
6Q

2
8 −Q2Q

3
6Q

2
8. (21)

We conclude that the commutant of the Cartan subalgebra in the enveloping algebra of G2 gives
rise to a 66-dimensional polynomial algebra of order six.
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4.1. Recovery of the polynomial algebra associated to A2

Considering the (regular) embedding chain H ⊂ A2 ⊂ G2, we know by (11) that CS(G2) (H)
contains CS(G2) (A2), the elements of which correspond to the subgroup scalars of G2 with
respect to A2. In this case, the subalgebra is generated by the elements X1, . . . , X8,
corresponding to x1, . . . , x8 in the symmetric algebra. Thus, fixing these elements and setting
the remaning coordinates equal to zero, the set of the Ai reduces to the following elements
Q1, Q2, Q4, Q7, Q8, Q11, Q12, which are obviously still linearly independent. A straightforward
computation shows that these elements satisfy the following Berezin brackets

{Q4, Q7} =Q12 −Q11, {Q4, Q8} = Q11 −Q12, {Q4, Q11} = Q4(Q8 −Q7) +Q2Q11,

{Q4, Q12} =Q4(Q8 −Q8)−Q2Q11, {Q7, Q11} = (Q1 +Q2)Q11 + (Q4 −Q7)Q11,

{Q7, Q8} =Q12 −Q11, {Q7, Q12} = −(Q1 +Q2)Q12 + (Q8 −Q4)Q7,

{Q8, Q11} =(Q4 +Q7)Q8 − (Q1 + 2Q2)Q11, {Q8, Q12} = (Q1 + 2Q2)Q12 + (Q4 −Q7)Q8,

{Q11, Q12} =Q1Q4(Q7 −Q8) +Q2Q4(2Q7 −Q8) +Q2Q7Q8.

As expected, this coincides with the polynomial algebra associated to the Lie algebra A2 (see
e.g. [2]).

4.2. Algebraic Hamiltonians and spectrum generating algebras

The construction of commutants is potentially useful for the construction of integrable systems
whose Hamiltonian is given in terms of s′-generators. Indeed, if

H =

dim s′∑
i,j=1

αijXiXj + C2 + C6, αij ∈ K (22)

is a fixed Hamiltonian, then the elements in the commutant CS(G2)(s
′) of a regular (not

necessarily maximal) subalgebra can be determined inspecting how the monomials of CG2(H)
transform, and finding suitable linear combinations. In order to illustrate the procedure, let us
consider the algebraic Hamiltonian

H = Q2
1 +Q1Q2 +Q2

2 +Q4 +Q7 +Q8, (23)

which is expressed in terms of A2-generators. A long but routine computation shows that there
are nine functionally independent polynomials commuting with H, given by

J1 = Q1, J2 = Q2, J3 = Q4, J4 = Q7, J5 = Q8, J6 = Q11, J7 = Q12,

J8 = −(Q1 +Q2)Q3 − (Q1 + 2Q2)Q5 +Q9 +Q10 +Q13 +Q15 +Q16 −Q18,

J9 = (Q1 + 2Q2)(Q13 +Q16) + (Q1 +Q2)(Q9 +Q10)−Q3Q8 −Q5Q7 +Q14 +Q24

+Q27 +Q30 +Q32 +Q34 +Q36 + (Q3 +Q5)(Q4 − 2Q2
2 − 3Q1Q2 −Q2

1).

(24)

With the first seven integrals the Casimir operators of A2 are easily recovered, as it can be
realized by looking at the expressions of C ′2 and C ′3 in equation (19), while the first integrals
J8 and J9 involve variables not belonging to the subalgebra, generally leading to a non-abelian
symmetry algebra. We observe that, for this Hamiltonian, we can see G2 as the spectrum
generating algebra [10], with H depending solely on the subalgebra A2 (the Casimir operators
of G2 corresponding to an overall constant setting the zero of the energy), which also justifies
the interest of this formal approach in the context of exactly solvable problems [1, 25, 26, 27].
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5. Conclusions

Following the systematization initiated in [4] for A` and extended in [12] for the remaining
classical series of semisimple Lie algebras, in this work we have analyzed the commutant of
the Cartan subalgebra in the enveloping algebra of the rank-two exceptional Lie algebra G2,
giving rise to a polynomial algebra of order six and dimension 66. Due to the embedding chain
(11), for any subalgebra H ⊂ s′ ⊂ G2, we have that the commutant of s′ can be determined
from the Cartan commutant. In particular, this holds for the labelling operators required for
the description of G2-representations in a s′-basis. For the case of the regular subalgebra A2,
it has been shown how the polynomial algebra associated to the Cartan commutant in the
enveloping algebra of A2 can be recovered by restriction from CS(G2)(H) to CS(G2)(A2), and how
this information can be used to derive constants of the motion for Hamiltonians expressed in
terms of A2-elements. This constitutes a special case of spectrum generating algebras, which
could provide an alternative approach to the study of G2 systems, by means of appropriate
realizations by (higher) differential operators.

The construction of the commutant of the Cartan subalgebra in the enveloping algebra of
the remaining simple exceptional algebras can be studied along the same lines. Results in
this context would provide an alternative approach to the analysis of systems possessing an
exceptional spectrum generating algebra, specially in connection with minimal realizations (see
e.g. [28]). However, due to their particular structure, it is expected to be a computationally
demanding problem, with very large dimensions and high order of the resulting polynomial
algebra, an obstruction that suggests to search for alternative descriptions of these commutants.
Work in this direction is currently in progress, in collaboration with I. Marquette, D. Latini, J.
Zhang and Y-Z Zhang.
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[26] Sergyeyev S 2007 Exact solvability of superintegrable Benenti systems J. Math. Phys. 48 052114.
[27] Sokolov V V and Turbiner A V 2015 Quasi-exact-solvability of the A2/G2 elliptic model: algebraic forms,

sl(3)/g(2) hidden algebra, and polynomial eigenfunctions. J. Phys. A: Math. Theor. 48 155201.
[28] Joseph A 1974 Minimal Realizations and Spectrum Generating Algebras Commun. Math. Phys. 36 325–338.


