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Abstract

Experiments with high-energy hadron beams have found renewed attention. In the
near future nuclear studies with hadron beams are planned at least at two facilities,
namely J-PARC in Japan and GSI/FAIR. The aim of this work is an exploratory in-
vestigation of interactions of mesons and baryons with nuclei at energies of interest for
future research with antiprotons at FAIR.

The theoretical discussion is started with an introductory presentation of the optical
model and Eikonal theory as appropriate tools for the description of scattering processes
at high energies. In antiproton interactions with nucleons and nuclei, annihilation
processes into pions are playing the major role for the reaction dynamics. Therefore,
we consider first the interactions of pions with nuclei by deriving an extended self-
energy scheme for a large range of incident pion energies. In order to have a uniform
description over a broad energy interval, the existing approaches had to be reconsidered
and in essential parts reformulated and extended. A central result is the treatment of
pion-nucleus self-energies from high lying N* resonances. Only by including those
channels in a proper manner into the extended pion optical potential, pion-nucleus
scattering could be described over the required large energy range. At low energies the
well known Kisslinger potential is recapped.

Next, the same type of reaction theory is used to analyze antiproton-nucleon and
nucleus scattering from low to highly relativistic energies. The reaction dynamics of
antiproton interactions with nuclear targets is discussed. We start with a new approach
to antiproton-nucleon scattering. A free-space antiproton-nucleon T-matrix is derived,
covering an energy range as wide as from 100 MeV up to 15 GeV. Eikonal theory is
used to describe the antiproton scattering amplitudes in momentum and in coordinate
space. We consider, in particular, interactions with nuclei at energies around and well
above 1 GeV. The antiproton-nucleus self-energies are obtained microscopically in a
folding model using the previously derived T-matrix interactions and nuclear ground
state densities form HFB calculations. For a quantitative description, an extended
eikonal reaction theory is used.

Finally, an outlook is given to applications of the results as ISI and FSI in pion
production in antiproton annihilation on nuclei. Two reaction scenarios are identified
and studied in exploratory calculations.
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Zusammenfassung

Experimente mit hochenergetischen Hadronenstrahlen sind erneut von großem In-
teresse. In naher Zukunft sind mindestens zwei neue Experimente mit hochener-
getischen Hadronenstrahlen geplant: J-PARC in Japan und FAIR in der GSI an
Darmstadt. Ziel dieser Arbeit ist es die Wechselwirkung von Mesonen und Bary-
onen mit Atomkernen exemplarisch zu untersuchen in Energiebereichen, die relevant
für zukünftige Forschung mit Antiprotonen an der FAIR Beschleunigeranlage sind.

Die Arbeit beginnt mit einer einführenden Diskussion der zugrundeliegenden The-
orien, wie die des optisches Potentials und der Eikonaltheorie, als passende Werkzeuge
zur Behandlung von hochenergetischen Streuproblemen. Hauptteil der zugrundelie-
genden Reaktionsdynamik von Antiprotonen Wechselwirkungen mit Nukleonen und
Atomkernen sind Annihilationsprozesse, die in der Erzeugung von Pionen resultieren.
Aus diesem Grund betrachten wir zunächst die Wechselwirkung von Pionen mit Kernen
und erweitern die zugrundeliegenden Selbstenergien zur Beschreibung eines großen
Spektrums von eingehenden Pionenenergien. Um eine einheitliche Beschreibung über
große Energiebreiche zu erhalten, wurden bereits existierende Ansätze zusammen-
fassend betrachtet und schließlich essentielle Teile neu formuliert und erweitert. Ein
zentrales Ergebnis ist die Behandlung der höheren Resonanzen in Pion-Kern Selbsten-
ergien. Nur durch Einbinden dieser Resonanzen in ein erweitertes optisches Potential
konnte die Streuung von Pionen mit Kernen korrekt über weite Energiebereiche bes-
chrieben werden. Für niedrige Energien wird das bekannte Kisslinger-Potential vorges-
tellt.

Als nächstes wurde innerhalb derselben Reaktionstheorie Antiproton-Nukleon und
Antiproton-Kern Streuung von niedrigen bis zu relativistischen Energien analysiert.
Ein neuer Ansatz zur Beschreibung von Antiproton-Nukleon-Streuung wird präsen-
tiert. Die Antiproton-Kern T-Matrix wird mit einem Ansatz gerechnet, der eine Bes-
chreibung von einem Energiebereich von wenigen MeV bis zu 15 GeV ermöglicht. Die
Eikonaltheorie wird dazu genutzt, die Streuamplitude sowohl im Orts- als auch im Im-
pulsraum zu berechnen. Die Antiproton-Kern Selbstenergien werden durch Faltung der
Grundzustandskerndichte, Ergebnis von HFB Berechnungen, und der zuvor erwähnten
T-Matrix berechnet. Im Ausblick werden schließlich die Anwendungen dieser Rech-
nungen als Input für Eingans- und Ausgangskanalwechselwirkungen komplexer Reak-
tionen diskutiert: der Pionproduktion bei Antiproton-Annihilation im Kern. Zwei
Reaktionsszenarien werden vorgestellt und exemplarische Berechnungen präsentiert.

v



vi



Contents

1 Introduction 1

2 Theory of Hadron-Nucleus Interactions 5
2.1 The Optical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 The Klein-Gordon Wave Equation . . . . . . . . . . . . . . . . . . . . . 10
2.3 Meson Exchange Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Eikonal Approach to the Wave Equation . . . . . . . . . . . . . . . . . 20

3 Pion-Nucleus Interactions 27
3.1 Properties of the Pion . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Isospin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.2 Partial Wave Decomposition . . . . . . . . . . . . . . . . . . . . 30
3.1.3 Self-Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Pion-Nucleus Interaction Potential . . . . . . . . . . . . . . . . . . . . 37
3.2.1 Low Energy Behaviour . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.2 Kisslinger Potential . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.3 Higher Energies Beyond the ∆-Resonance . . . . . . . . . . . . 45
3.2.4 True Absorption – Two-Nucleon Term . . . . . . . . . . . . . . 47

3.3 Consequences of Momentum Dependent Potentials . . . . . . . . . . . . 52
3.3.1 Nuclear Density: Regularized Fermi-Function . . . . . . . . . . 52
3.3.2 Krell-Ericson Transformation . . . . . . . . . . . . . . . . . . . 54
3.3.3 Higher-Order Corrections to the Eikonal Approach . . . . . . . 56

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4.1 Comparison to Pion-Nucleon Scattering Data . . . . . . . . . . 60
3.4.2 Collection of Terms Contributing to the Pion-Nucleus Potential 61
3.4.3 Comparison to Pion-Nucleus Scattering Data . . . . . . . . . . 63

4 Antiproton-Nucleus Interactions 73
4.1 Antinucleon-Nucleus Potential . . . . . . . . . . . . . . . . . . . . . . . 73

4.1.1 Antinucleon-Nucleon Interaction . . . . . . . . . . . . . . . . . . 73
4.1.2 Microscopic Models . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.1.3 Phenomenology . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Step Towards Pion Production . . . . . . . . . . . . . . . . . . . . . . . 79
4.2.1 Peripheral In-Flight Reactions . . . . . . . . . . . . . . . . . . . 81
4.2.2 In-Situ Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . 84

vii



Contents

5 Conclusion and Outlook 87

A Feynman Diagrams 91

viii



1 Introduction

Within the last decades, many questions concerning fundamental physics have risen
and later been answered by scattering experiments. This is especially true for the
understanding of how the matter surrounding us is built. One of the most important
breakthroughs was made by Rutherford, who observed that the atomic nucleus is con-
centrated at a small core, while the electrons surround it at some distance with nothing
in between. But what keeps the nucleus, especially the protons so close together? From
the Coulomb-force one would expect the protons to repel each other due to the electric
charge. So there must be an additional force acting. This force is called “strong force”
and counts as one of the four fundamental forces, along with the already mentioned
electromagnetic force (Coulomb), the weak interaction and gravity. These forces are
transferred by the exchange of bosons. The exchange boson investigated best is the
massless photon, which transmits the electromagnetic interaction but has no electric
charge itself. This is different for the gluons, which are mediators of the strong force,
but carry colour charge themselves. Therefore, the gluons interact with each other as
well as with quarks.

The reason why protons and neutrons are bound within a nucleus is only indirectly
caused by the strong force. As mentioned before, the strong interaction acts between
quarks and gluons, due to their colour charge. The nucleons, however, are colour-
neutral, but a residual force acts between them. This is comparable to the binding
of neutral atoms that form a molecule. The so-called Van-der-Waals force is induced
by the polarization of the atoms. Two atoms, which are electrically neutral, can not
feel the strength of the Coulomb force as long as they keep a distance larger than a
typical electron cloud surrounding the nucleus. When the atoms come closer, their
electron cloud gets polarized, which induces a dipole moment, finally leading to the
Van-der-Waals force and binding. When colour-neutral nucleons come as close as a
typical quark distribution, their inside also gets polarized, and a residual interaction
leads to the binding.

Because the colourless nucleons do not couple to the strong force directly, the in-
teraction can be described on the basis of the exchange of colour-neutral bosons. The
idea of the model goes back to Hideki Yukawa, who predicted the existence of such an
exchange particle, which was found later and called pion. The pion is an isospin triplet
particle and formed by an antiquark-quark pair from the first generation. The pion
with its small mass of about 140 MeV is the lightest meson and therefore well suited
to describe the long-range behaviour of the NN -interaction. Because the one-pion-
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1 Introduction

exchange (OPE) model was so successful, also other, heavier particles, were considered
to describe the NN -interaction. The models, which have been developed and discussed
most actively are the Paris-, Jülich- and Nijmegen-models.

The pion is interesting due to at least two reasons. First, because it is a mediator of
the strong force, and second, because it is the lightest meson and therefore it appears
in many reactions. The pion is of central interest for strong-interaction physics, due to
its Goldstone-boson character and because it is the lowest member of the pseudo scalar
octet. The work of [EE66] was a breakthrough in the description of pion interactions
with the nuclear medium and nuclei and inspired many models [OTW82,Klu91,LR02].
At very low energies the pion can be captured by the nucleus and becoming deeply
bound, building a pionic atom. The derived spectra from the pion cascading down
to its bound state revealed a lot of information about nuclei. Nowadays, this very
low energy region can be well described within Chiral Perturbation Theory, due to
the dominance of s-waves in this energy region [OGRN95,KW01,KFW02,DO08]. Ap-
proaching the threshold of the ∆-resonance at 1232 MeV, p-wave contributions become
more and more important and lead to a more complicated description. An approved
model of [JS96] succeeded with an extension of the work of [EE66] to a the higher en-
ergy region. This was done by the use of a phenomenological optical potential applied
within an effective Klein-Gordon wave-equation.

In this work, however, an approach capable of describing pion-nucleon and pion-
nucleus interactions over wide energy-ranges is presented. Good descriptions of pion
interactions can be used for investigation where the pion appears in the final state. Up-
coming experiments studying matter-antimatter interactions, where final state inter-
actions are known to be of importance, are for example PANDA and AIC. To describe
such complex reaction mechanisms, the consistent description starting with the initial
state NN interactions, including the production mechanism and finally describing the
final state πN interactions, is mandatory. It is known from former LEAR experiments
that there is a broad distribution of pion multiplicities in antinucleon-nucleon inter-
actions in nuclei, peaking at five pions. The produced pions may be absorbed by the
nucleus and make it difficult to distinguishexperimentally between two types of events:
Both involve initial production and the same number of pions in the final state, but
in one case, all pions escape the nucleus, and in the other, some are absorbed. This
situation calls for a consistent theoretical description which is sensitive to such details.
In this work, steps towards such a description are presented.

First steps towards the pion production in antiproton nuclear reactions are presented
within this work. Motivated by the upcoming experiments in the near future, we aim
for a description in a wide energy range from 100 MeV up to 1 GeV for both, pions
and antiprotons. This work is organized as follows:

Starting in chapter two with the introduction of hadron-nucleus interactions, the
treatment of many-body scattering problems within an optical approach is presented.
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The formulation of the Klein-Gordon wave equation reveals the special character
of the pions being the lightest mesons and is used to describe the long-range part of
the nucleon-nucleon interaction. After the success of the one-pion exchange models,
many other models have been developed treating more and more particles as exchange
particles. The Eikonal theory is briefly introduced and the derivation of the Eikonal is
presented, serving as a basis the for later calculation for interaction cross sections.

In the third chapter the basics of pion-nucleus inetarction are presented. Starting
with rather low energies, the suitable Kisslinger-potential is recovered and extended to
higher energies.

The extension does not only include higher resonances of the pion-nucleon interac-
tion, but also contains a more involved density dependence, contributing especially to
the “true absorption” term. The description of the density is improved for interactions
located at the nuclear center, leading to the regularized Fermi-function.

An improvement of higher-order corrections to the Eikonal approach failed due to
divergence of the procedure. The calculations are presented but neglected in our final
calculations. The description of the pion-nucleus interaction is compared to the pion-
nucleus cross section at the energy range of interest. The same parameter set is used
for all our calculations, and comparisons to light nuclei such as Lithium up to heavy
nuclei like Bismuth are presented.

In chapter four the antinucleon-nucleon interaction is tackled in the same man-
ner as the pion-nucleon inetarction. A folding approach is presented and microscopic
models are briefly introduced, namley the Jülich/Bonn, the Paris and the Nijmegen
model. These models derive their description from G-parity transformed nucleon-
nucleon potentials and additional antinucleon-nucleon terms. Due to limitations to
rather low energies a simple phenomenological approach is presented, agreeing well with
antiproton-proton cross section data. The findings of pion-nucleus and antinucleon-
nucleus interactions are combined in chapter five to the description of pion production
in antinucleon-annihilation by nuclei. Two different reaction mechanisms are presented.
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2 Theory of Hadron-Nucleus
Interactions

This chapter covers the bases which underly the models used within this work. First,
the solution of the Klein-Gordon equation is derived by studying pion interactions as
am exemple. Starting with an effective interaction Lagranian, the well-known Yukawa
potential is derived. Extending the static ansatz by a time-dependency, the interaction
is described by particle exchange. The one-meson-exchange theory builds a theory
using mesons as exchange particles leading to a description of the nucleon-nucleon
(NN) interaction. The nucleon-nucleon interaction is relevant for the understanding of
effects of the nuclear medium, and it also builds the basis of the microscopic models
of Paris and Bonn. These models use the G-parity transformation of NN models to
derive Anti-nucleon-nucleon potentials as introduced in section 4.1.2. The aim of this
work is to develop a model describing both, the scattering of pions as an interesting
reaction itself and the pion production in antiproton-nucleus annihilations within one
framework.

2.1 The Optical Model

The optical model is inspired by the scattering of light on an obstacle. The refractive
index changes due to the properties of the obstacle, making studies of the obstacles
possible by detecting the light. We face a similar situation when particles scatter by a
nucleus and the scattered particles are detected for nuclear structure studies. To ana-
lyze the nucleus, however, the interactions along the reaction must be well understood
and reasonably described. The nucleus is composed of interacting nucleons, which are
moving inside. With an increasing number of nucleons involved, the description of the
scattering process gets more complicated. An exact solution of pion-nucleus scattering
can not be calculated. Therefore, in this section some techniques and approximations
will be introduced, which will help to approach the solution of the pion nucleus scatter-
ing problem. The major properties of this scattering problem are assumed to be based
on free pion-nucleon interactions and on nuclear structure effects. Therefore, closely
following [SS74, Klu91], the pion-nucleon scattering problem is briefly discussed and
applied to a nuclear environment afterwards.

Starting point is the non-relativistic Schrödinger equation for free pion-nucleon scat-
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2 Theory of Hadron-Nucleus Interactions

tering:

Hψ(r) = [H0 + vj(r)]ψ(r) = Eψ (2.1)

where the Hamiltonian H0 is composed of the kinetic energy operators of the pion
and of the nucleon H0 = Kπ + KN . The potential vj of eq. 2.1 describes a two-
body interaction between the pion and the jth nucleon. At a large distance from
the reaction centre, this potential will vanish, and the solution of eq. 2.1 becomes a
plane wave |ϕ〉. The general solution of the full scattering problem |ψ〉, however, is a
sum of the homogeneous solution (the plane wave) and the particular solution to the
inhomogeneous equation. This general structure of the solution is typical for scattering
processes, which can not easily been seen from eq. 2.1. It is convenient to transform
the Schrödinger equation into an integral equation, namely the Lippmann-Schwinger
equation using ket-vectors:

|ψ〉 = |ϕ〉+G0vj|ψ〉 (2.2)

where the Green’s function G0 = 1/(E − H0 + iε) carries the information about the
boundary conditions. A very powerful tool is to use the free scattering operators tj
instead of the potential, leading to a more symmetric description in the sense that on
the right hand side of eq. 2.2 the same ket-vectors occur:

|ψ〉 = |ϕ〉+G0tj|ϕ〉 (2.3)

In tj, all possible processes are included, and it is connected to the potential in the
following way:

tj = vj + vjG0tj. (2.4)

Before the inner structure or possible solutions of tj are discussed, this ansatz is embed-
ded into the nuclear medium. The nucleons of the nucleus differ from the free nucleons
mainly by the fact that they are bound and their location is spatially restricted. The
discussion of surface effects we shift to 3.2.4 and assume infinite nuclear matter for now.
The Hamiltonian is modified such, that it contains the target Hamiltonian HA, where
the subscript A indicates the mass number of the target nucleus. It enters into the
Green’s function G = 1/(E−Kπ−HA+ iε), which is modified by the nuclear medium.
The interaction potential, however, is still assumed to be of two-body character, which
leads us to the effective pion nucleon scattering operator

τj = vj + vjGτj = vj + vj
1

E −Kπ −HA + iε
τj. (2.5)

To derive the pion nucleus scattering operator TA we need to collect all nucleons

TA =
A∑
j=1

vj +
A∑
j=1

vj
1

E −Kπ −HA + iε
τj (2.6)

6



2.1 The Optical Model

After replacing the potential by the τj operator and performing an iteration of eq.
2.6 [Klu91], we derive:

TA =
∑
j

τj +
∑′

j,k

τjGτk +
∑′

j,k,l

τjGτkGτl + . . . (2.7)

Here, the notation of a primed sum is introduced, which stands for the exclusion
of equal indices e.g. j 6= k. Eq. 2.7 is called multiple-scattering series and carries
still the full complexity of the pion-nucleus many-body problem. Nevertheless, eq.
2.7 helps with the interpretation from the physics point of view: The pion-nucleus
interaction is a sequence of medium affected pion-nucleon scattering events. The first
term corresponds to scattering with one nucleon, the next term describes scattering on
two nucleons and so forth. To reduce the complexity, we introduce briefly the concept
of the optical potential. Within the framework of an optical potential, the many-
body scattering problem is truncated to an effective one-body interaction described
in a corresponding Schrödinger or Lippmann-Schwinger equation. The aim is to find
a scattering amplitude which is an exact solution of the multiple-scattering series of
πN scattering. To perform those calculations, it is necessary to introduce and discuss
approximation schemes in the following.

Coherent Approximation In the following, excitations of the nucleus in the final state
are neglected. Accordingly, the expectation value of the ground state |0〉 gives:

〈
0
∣∣T 0
A

∣∣ 0〉 =

〈
0

∣∣∣∣∣
A∑
j=1

τj

∣∣∣∣∣ 0
〉

+
∑′

k,j

〈
0

∣∣∣∣τk 1

E −Kπ −HA + iε
τj

∣∣∣∣ 0〉+ . . . (2.8)

The equation above contains the full nuclear Hamiltonian, which fulfils the equation:

HA|n〉 = εn|n〉 (2.9)

Now, intermediate nuclear excitations can be explicitly expressed in a multiple-scattering
series:〈

0
∣∣T 0
A

∣∣ 0〉 =

〈
0

∣∣∣∣∣
A∑
j=1

T jA

∣∣∣∣∣ 0
〉

+
∑′

k,j

∑
n

〈0|τk|n〉
1

E −Kπ − εn + iε
〈n|τj|0〉+ . . . (2.10)

The probability to scatter the incident pion with the same nucleon twice is small,
because very large momentum transfer is needed to get such large angles involved.
However, the pion might scatter on two nucleons, which has a non-neglicible effect as
discussed in 3.2.4. If there are no shell-model correlations [Klu91], only the ground
state n = 0 contributes, and the nucleus remains in the ground state throughout the
scattering event. Therefore, the expectation value of TA gives:〈

0
∣∣T 0
A

∣∣ 0〉 = A 〈0 |τj| 0〉+ (A− 1)〈0|τj|0〉
1

E −Kπ − ε0 + iε

(
A

A− 1
〈0|T 0

A|0〉
)
, (2.11)

7



2 Theory of Hadron-Nucleus Interactions

where the optical potential is defined by:

Uopt =

〈
0

∣∣∣∣∣
A∑
j=1

τj

∣∣∣∣∣ 0
〉

= A〈0|τj|0〉 (2.12)

To calculate the expectation value, the ground state wave function must be known.
The antisymmetrisation of the wave function within a many-body system is challenging
[Hü75]. In our approach, an eikonal ansatz is used for the wave function. In section
2.4 the derivation of such an Eikonal wave funktion is briefly introduced. Extensions
to the standard Eikonal are discussed in section 3.3.3 along with effects of momentum
dependent potentials. Consequences of complex potentials are presented in section
4.1.3.

Impulse Approximation The exact solution of 2.3 takes into account both, the scat-
tering itself, but also the binding energy of the target nucleons. Finding a solution
without approximations is too challenging, but within this work, the dynamics of the
system and the nuclear structure and its spatial form are of interest. The impulse ap-
proximation disantagles the bounding effects from the two-body interaction and treats
the nucleons as quasi-free. This is a plausible approximation because the incident en-
ergy of the pion is high compared to the nucleon binding energies. This argument is
supported by the πN collision time, which is much shorter than the time associated
with the nucleon motion. Therefore, the reaction mechanism is expected to be domin-
ated by one-step processes, where the pion interacts only with one nucleon of the target
nucleus. This will finally lead to a linear dependence on the nuclear density. Interac-
tions with two nucleons lead to a quadratic dependence accordingly, as shown in section
3.2.4. Neglect of the binding energy of the nucleons is reflected in the truncation of
the scattering operator to the free one:

τj = tj (2.13)

Even within the impulse approximation, it is possible to consider binding effects after
derivation of the transition matrix, as it is discussed in [Sch72].

No-Recoil Approximation If the incident energy of the pion is high, the nucleons
are assumed to be frozen, which means that their positions are unchanged during the
scattering process. As an illustration we calculate the expectation value for nucleon 1
with associated coordinates R1, R′1 and coordinates r, r′ referring to the projectile:

〈r′,R′1|t1|r,R1〉 ≈ 〈r′,R1|t1|r,R1〉δ3(R′1 −R1) (2.14)

= δ3(R′1 −R1)

∫
d3kd3k′e−ik

′·(r′−R1)〈k′|t|k〉e−ik·(r′−R1) (2.15)

8



2.1 The Optical Model

Lowest Order Optical Potential Putting all findings so far together, one gets

〈r′|t1C |r〉 =

∫∫
d3R1d3R′1ψ

∗
1(R′1)〈r′,R′1|t1|r,R1〉ψ1(R1) (2.16)

=

∫∫
d3kd3k′e−ik

′·r′〈k′|t|k〉
∫

d3R1|ψ1(R1)|2e−i(k−k′)·R1). (2.17)

Referring to nucleon 1, summation over all nucleons leads to

A∑
α=1

∫
|ψα(Rα)|2e−i(k−k′)·Rα)d3Rα = A

∫
ρ(R)e−i(k−k

′)·R)d3R = Aρ(k− k′) (2.18)

which depends on the nuclear density ρ, which has the Fourier-transform ρ(k−k′). For
a nucleus with arbitrary isospin and spin configuration and the pion isospin operator
tπ, the final optical potential in momentum space is [SS74]

〈k′|V |k〉Aρ(k− k′)

[
〈k′|t0|k〉+

1

A
〈k′|ts|k〉I · k× k′ + 〈k′|tT |k〉T · tπ

]
(2.19)

This is a very important result, in the sense that it will build the basis of the potential
to describe the pion-nucleus interaction 3.56. As a first order potential, eq. 2.19 de-
pends on the nuclear density linearly. For more involved considerations, higher orders
in the nuclear density will become of importance, as will be seen later in section 3.2.4.
In addition to the nuclear density, the optical potential depends on the two-body pion-
nucleon t-matrix and on the spin and isospin configuration of the pion-nucleus system.
The properties of the pion and the pion-nucleon system are summarized in section 3.1.

In this section we have discussed the scattering of a pion with a nucleus within
the scope of a complex many-body approach resulting in a comparatively simple phe-
nomenological optical potential. The derived optical potential separates the nuclear
properties from the reaction mechanism. The nuclear density takes into account nuc-
lear properties, and the reactions are described by an effective pion-nucleon interaction.
Several approximations have been introduced to make calculations manageable more
easily. Those simplifications have been used frequently and are approved in the low-
density region and for pions with high kinetic energy. When the pion is scattered by
the nucleus the absorption domiantes the interaction and the pion can not penetrate
deeply into the nucleus, as shown in our results, in section 3.4. This work, however, is
also directed towards the pion creation within antinucleon-nucleus interactions. The
annihilation causes also a surface dominance of the interaction, but the trajectories of
the produced pions might also point in the direction of the center of the nucleus, rather
than escaping trough the low-density region. Therefore, an advanced treatment of the
density-dependence is discussed in section 3.2.4.

While in this section we discussed a general structure of the potential derived in a
many-body approach, we will examine general aspects of the Klein-Gordon equation
and its solution for exploratory studies within a field-theoretical framework in the
following section.

9



2 Theory of Hadron-Nucleus Interactions

2.2 The Klein-Gordon Wave Equation

Pions and (anti-)nucleons are composed of quarks, and their interaction is based on
the strong force. The corresponding fundamental theory to describe strong interactions
is quantum chromo dynamics (QCD), where quarks and gluons build the basis of the
description. In this work, however, hadronic degrees of freedom are used, mainly due
to two facts: First, in a low and intermediate energy range the inner structure of pions
and (anti-)nucleons can not be resolved. And second, a description of hadron dynamics
on a quark level is nowadays possible on the lattice [EM12], but complex reactions in-
volving several hadrons are both time- and computing-power-consuming, which makes
it effective to work with microscopic models using hadronic degrees of freedom.

Microscopic models work with effective degrees of freedom, treating hadrons as ele-
mentary, structureless particles. There has been a lot of success describingNN and π N
reactions in this so called One Boson Exchange (OBE) models. As the name already
suggests the strong force (or rather the whole interaction) is described in terms of bo-
son exchange. This theory is built on the theoretical investigations of Hideki Yukawa.
In this approach, the lightest bosons, namely the pions, are the mediator of the strong
force. Later, one found that pions, due to their low mass, are well suited to describe
the long-range part of the NN interaction, while the exchange of heavier mesons made
the breakthrough in the description of the short-range area. These theoretical investig-
ations are usually built in a field theoretical framework. In quantum mechanics, Dirac
could succeed with introducing Dirac-spinors, where particles and also antiparticles
could be treated in one theory, with all their spin and isospin properties. In quantum
theory, the second quantisation is a powerful tool to express potentials and their con-
nected Hamiltonians with creation and destruction-operators, defining the character-
istics of specific states. In field theory, one takes one step further, and all particles are
treated as fields. The guideline, how to implement such fields to a reaction and how
interactions in general are treated is shown in the following.

The pion field: mediator of the strong force Field theory is a very powerful the-
ory which can describe many phenomena in physics. There are mainly two types of
field theories: the classical field theories and the quantum field theories. The classical
field theories are often applied to electromagnetic problems, while the quantum field
theory is heavily discussed in quantum chromo-dynamical frameworks nowadays. In
both classical and quantum field theory one usually aims for the Lagrangian density
or Hamilton operator which then lead to the equation of motion. In this work, we will
use an effective field theory, where the underlying quark and gluon effects enter into
effective couplings and form factors. Therefore the pion, the nucleon and so forth are
treated as elementary particles.

This section is organized as follows: first, we would like to discuss basic aspects of a

10



2.2 The Klein-Gordon Wave Equation

field in case of a free pion field, and second, we will study the response of the pion field
to an external disturbance, closely following [dWS86]. In the following the pion field
will be introduced and general aspects of interactions with it. Before mathematical
aspects and Feynman diagrams will be discussed, it is necessary to clarify what a field
is. A field describes physical particles, but in addition it also acts as a mediator of a
force. The pion field is denoted by φ and enters into the Lagrangian, which in the case
of a free pion looks like this:

L = −1

2
(∂µφ)2 − 1

2
m2φ2. (2.20)

The Lagrangian is Lorentz-invariant and a scalar. To derive the equation of motion,
the Lagrangian is then implemented into the Euler-Lagrange equation

∂µ
∂L

∂(∂µφ)
− ∂L
∂φ

= 0. (2.21)

Because the pion is a spin 0 particle and it is treated relativistically the expected
Klein-Gordon equation

�φ−m2φ = 0 (2.22)

is derived, where � = ∂2
µ = ∇2 − ∂2

t .

Solution of the Klein-Gordon equation with source term The purpose of our stud-
ies, however, is to get a better understanding of the interaction of the pion with a
medium. Therefore, an external disturbance to the free pion field is applied and its
response is examined. For the Lagrangian, it is assumed

L = −1

2
(∂µφ)2 − 1

2
m2φ2 + Jφ (2.23)

which leads to the following equation of motion

(�−m2)φ = −J (2.24)

with an external source term J . The solution of the Klein-Gordon equation with source
term is composed of the homogeneous solution (with J = 0) and the particular solution
of the disturbed differential equation. In a physical picture this means that the field
of a free pion denoted by φ0 is modified by the interaction δφ

φ = φ0 + δφ. (2.25)

The field of a free pion is known, but in the following δφ will be in focus. Because J
in 2.24 has the same structure as a charge current in electromagnetics the solution is

11



2 Theory of Hadron-Nucleus Interactions

constructed accordingly by using the Green’s function G(x). The Green’s function is
a solution of

(�−m2)G(x) = iδ4(x) (2.26)

with the four dimensional δ-distribution, which is given in the Dirac representation

δ4(x) =
1

(2π)4

∫
d4keik·x. (2.27)

By comparison it is straightforward to construct the Green’s function in such a way
that it solves 2.26

G(x) =
1

i(2π)4

∫
d4k

eik·x

k2 +m2
(2.28)

Finally a general solution of the Klein-Gordon equation with a source term of 2.24 is
derived:

φ(x) = φ0(x) +

∫
dyiG(x− y)J(y). (2.29)

To be able to interpret the solution on a physics level, a concrete source term of a
static piont-like source will be discussed as an explicit example in the following. The
point-like source term is located at r0

J(x, t) = gδ3(x− r0) (2.30)

The deviation caused by the point-like source is:

δφ = ig

∫
d4yG(x− y)δ3(x− r0) (2.31)

=
g

(2π)3

∫
d3k

eik·(x−r0)

k2 +m2
(2.32)

=
g

8π2r

+∞∫
−∞

dk

(
1

k + im
+

1

k − im

)
eik·r (2.33)

After performing contour integration in the upper half of the complex k plane, the final
result gives

δφ(x) =
g

4πr
e−mr. (2.34)

If one considers two point-like sources, the calculation results in the Yukawa potential,
named after Hideki Yukawa, who predicted a particle acting as a mediator of the
strong force with a mass about 100 MeV. This particle was later discovered as the pion
with a mass of about 140 MeV. This was a breakthrough in understanding the long-
range characteristics of the strong interaction, and Hideki Yukawa was honered with
the Nobel Prize. In addition, this potential inspired and built the basis of all boson
exchange models, where the bosons act as mediator of a force between two sources. As
has already been mentioned, fields also have a particle interpretation, which we would
like to discuss in the following

12



2.2 The Klein-Gordon Wave Equation

The pion field: particle interpretation, its mathematical implementation and the
Feynman rules To deepen the understanding of the pion field, the external source
will no longer be restricted to be static, but be time dependent. Writing the time
dependence explicitly

δφ(x) =

∫
d3keik·x

∫
dk0e−ik0t

J(k, k0)

k2 +m2 − k2
0

. (2.35)

The factor e−ik0t characterises the intrinsic time scale in which the source variations
take place. If the rest of the integrand is regular, δφ will be zero due to the Riemann-
Lebesgue theorem. Therefore, only the poles of 2.35 will survive the quick oscillations
at large values of |t|. These contributions are plane waves whose energies and momenta
obey the dispersion relation

k2
0 − k2 −m2 = 0. (2.36)

The poles introduced by 2.36 correspond to real particles. All contributions to the
propagator which do not obey 2.36 are called virtual. This will become more clear when
the actual integration is performed and details about the mathematical calculation are
revealed. The integral occurring in 2.35 has the form

I(t) =

+∞∫
−∞

dk0e−ik0tf(k0) (2.37)

and can be solved by contour integration. The contour integration is calculated by
shifting the integration contour from the real axis to a, into the lower half of the
complex k0-plane, displayed in fig. 2.1. The integrand of 2.37 is not changed as long
as the contribution vertical to the real axis vanishes, then

I(t) = e−at
+∞∫
−∞

dk0e−ik0tf(k0 − ia) +

∮
C

dk0e−ik0tf(k0). (2.38)

The contour integral will mainly give the poles due to Cauchy’s residue theorem:∮
C

dk0e−ik0tf(k0) = 2πi
∑
n

e−iωntf(ωn) (2.39)

where ωn give the location of the poles of f(k0). If there is more than one pole, the
one closest to the real axis will dominate the asymptotic behaviour. Mathematic-
ally, negative times are also allowed and can be handled in the same way by shift-
ing the integral contour into the upper k0-plane, accordingly. The poles appear at

k0 = ±ω(k) =
√
k2 +m2. The poles shifted into the upper k0-plane will dominate
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2 Theory of Hadron-Nucleus Interactions

Figure 2.1: Schematic demonstration of contour integral

the asymptotic behaviour at large negative time, while shifting the poles into the lower
k0-plane will give the dominance of asymptotic behaviour at large positive time. Be-
cause poles belong to real quantum mechanical particles, the system is asymptotically
dominated by a quantum mechanical wave moving with momentum k and energy ω(k)
at large positive time. In addition, the contributions from k0 = −ω(k) should be sup-
pressed. This is achieved by shifting the k0 = ω(k) slightly below the real axis and
move the k0 = −ω(k) contribution above the real axis. The integrand of eq. 2.35 gives:

eik·x
∫

dk0
e−ik0tJ(k, k0)

k2 +m2 − k2
0

=

{
2πiJ (k, ω(k)) exp[i(k · x− ω(k)t)]/(2ω(k)) k0 = +ω(k)

2πiJ (k,−ω(k)) exp[i(k · x+ ω(k)t)]/(2ω(k)) k0 = −ω(k)

(2.40)

Solution 2.40 introduces two kind of scenarios. Either the particle is emitted with
momentum k by a source J(k) or the particle with momentum −k is absorbed by the
source. If two sources are considered, the Greens function becomes the mediator of the
force between those two sources. With this ansatz, the full emission and absorption
scenario can be described. The emitted wave of the first source carries its intrinsic
properties to the second source, where it is absorbed. The Greens function is therefore
called propagator.

G(x) =
i

(2π)4

∫
d3keik·x

∫
C−

dk0
e−ik0t

k2
0 − ω(k)2 + iε

, t > 0, (2.41)

G(x) =
i

(2π)4

∫
d3keik·x

∫
C+

dk0
e−ik0t

k2
0 − ω(k)2 + iε

, t < 0. (2.42)

Pictographically this is expressed in a Feynman graph. The solution valid for negative
time is identified with an antiparticle, while the solutions for positive time describes
a particle. The great advantage of using Feynman diagrams is that they are under-
standable intuitively, even though the underlying mathematical structure can be very
complex.

In this section, we discussed the pion in a field-theoretical approach. In vacuum,
the pion is described by a field which satisfies the free Klein-Gordon equation. In ad-
dition to the description of physical particles, the pion field can also be the mediator
of the strong force. This is already clear from its response to two static, point-like
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2.3 Meson Exchange Theory

Figure 2.2: Schematic demonstration of lowest order Feynman-diagrams for one-meson
exchange potentials

external sources leading to the Yukawa-Potential. The study of the time dependence
of an external source leads to the definition of virtual and real particles. Those find-
ings are then summarized in Feynman diagrams, which take care of the full physical
interpretation and the mathematical structure. It also expresses the propagation of
antiparticles which travel backwards in time. The Feynman rules are therefore a very
powerful tool to study possible contributions to the interaction from the exchange of
virtual particles.

2.3 Meson Exchange Theory

Our interest is directed towards the understanding of the pion-nucleon and the (anti-
)nucleon-nucleon interaction. (Anti-)nucleon-nucleon and pion-nucleon interactions are
described by different potentials, but they are connected via rotation in Mandelstam-
space as discussed in [RHKS96]. To understand in-medium effects, like those which
are visible in our results in section 3.4, a basic knowledge of NN interaction is helpful.
The NN interaction also enters indirectly to the nuclear densties, which accompany
all our potentials. Using the G-parity transformation of the NN potentials leads to
a contribution to microscopic antinucleon-nucleon potentials developed by the groups
from Paris and Jülich/Bonn briefly introduced in section 4.1.2. In this section, the
NN interaction is, therefore, in the focus of the discussion, but the general form and
the way to construct the Lagrangians from particle exchange are very similar.

The meson exchange potential Vα(q,q
′
), where α stands for any possible mesons

exchanged, α = π, ρ, σ, . . ., has the general structure

Vα = g1ū1(q
′
)Γ1u1(q)Dα(q − q′)g2ū2(−q

′
)Γ2u2(−q), (2.43)

as is shown schematically in fig. 2.2. In this notation, ui (ūi) are the incoming (outgo-
ing) particle-fields, while Γi denotes the vertex-function and Dα the meson propagator:

Dα =
dα

(q − q′)2 −m2
α

, (2.44)
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2 Theory of Hadron-Nucleus Interactions

where dα depends on the type of the exchanged meson. To construct an interaction
Lagrangian there are symmetries which need to be fulfilled and are therefore crucial
for the structure of e.g. the vertex-functions. The constructed Lagrangians need to
fulfil the Lorentz invariance and be scalar. To build a Lagrangian, bilinear forms of
ψ̄(x)Γψ(x) with definite Lorentz-transformation properties are required. The possible
bilinear covariants [NV86] are:

ψ̄
′
(x)ψ

′
(x) scalar

ψ̄
′
(x)γ5ψ

′
(x) pseudo-scalar

ψ̄
′
(x)γµψ

′
(x) vector

ψ̄
′
(x)γ5γ

µψ
′
(x) axial vector

ψ̄
′
(x)σµνψ

′
(x) second rank tensor

Depending on the particle coupling to the nucleon, the Lagrangian is composed of one
or several bilinear covariants above. The Lagrangians are derived in a field-theoretical
approach by symmetry considerations. The Lagrangian densities are scalar functions
and Lorentz invariant. According to the basic tree Feynman diagrams, the interactions
are constructed from the particle fields themselves, the coupling and the propagator of
the exchanged particle.

This interaction can be described effectively by an exchange of a meson, just like the
photon is the mediator of the electromagnetic interaction. The crucial point is that the
meson carries a mass, and as a consequence, the range, calculated from the Compton
wavelength, is finite, even short-ranged. The pion (as the lightest boson) expresses in
this picture the long-range part of the interaction. Accordingly, the exchange of heav-
ier mesons (σ) can be used for the description of the intermediate-range part of the
NN interaction. Depending on the quantum numbers of the mesons and the way they
couple to the nucleon, they give different contributions to the interaction, like in fig. 2.3.

The ordering of the diagrams is difficult and the complexity increases with energy,
because more and more particles can be produced. Because there are infinite diagrams
to consider in an effective theory, one treats specific channels explicitly and use a

Figure 2.3: Pictographic display of the one meson exchange theory, like [MP00]
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phenomenological ansatz for all other contributions. Even though this procedure is
very powerful also in the NN interaction as has been shown by Jülich, Paris and
Nijmegen groups, these models are limited to an incident kinetic energy of the pion of
about 300 MeV. The reason is that, in case of NN and πN interactions, the ∆ and
many more channel thresholds are reached and it is impossible to include all reactions.

For completeness, an example of an one-pion exchange (OPE) potential is shown
[EW88]:

VOPE =
1

3
mπc

2 f
2

4πc

e−µr

µr

(
~σ1 · ~σ2 +

[
1 +

3

µr
+

3

(µr)2

]
S12

)
~τ 1 · ~τ 2 (2.45)

µ = mπc =
1

λC,π
(2.46)

where the Yukawa function exp(−µr)/µr is characteristic for the exchange of massive
mesons and gives the typical finite range behaviour of the NN interaction. f is the
coupling constant which gives the strength of the interaction between the nucleon and
the corresponding exchanged meson. ~σ1,2 (~τ 1,2) are the spin (isospin) pauli matrices
and S12 the tensor component. This effective description of the NN interaction comes
to its limits at very short ranges, when the relevant degrees of freedom change. When
the distance between the two nucleons becomes smaller than 1 fm, their density dis-
tributions have a large overlap, and the underlying quark- and gluon-dynamics come
into play. To take care of this phenomenologically, extra terms like cut-off functions
are introduced. The newly introduced parameters are fixed with experimental data.

One basic rule in QCD is that any formed object must be colourless, or so-called
white. The necessity of the colour quantum number can be understood by analysing
the Ω−−. Quarks are fermions, and therefore obey the Pauli-principle: Two fermions
of the same kind cannot occupy the same state. In addition, the wave function of
a fermion must be antisymmetric. All quarks of the Ω−− have the same flavour and
charge, but different colour.

Similar to the interaction between neutral atoms via the Van-der-Waals interaction
the white nucleons interact via an effective interaction, induced by the strong force.
Therefore, in understanding the nucleon-nucleon interaction lies the link between the
fundamental QCD and corresponding effective theories. In the case of atoms nowadays
it is possible to derive the atom-atom interaction from numerical solutions of the
quantum mechanical many-electron-problem, but the extraction of nucleon-nucleon
interaction from solving QCD relies usually on either truncations or on specific as-
sumptions. The impressive success gained within Lattice-QCD frameworks [EM12] is
still quite time- and computational-power-consuming. Therefore, it is worthwhile to
look into the properties of the NN interaction, which are already known from experi-
ments, to build a basis of a phenomenological model.
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Figure 2.4: The exchange of pions dominates the long-range part of the central potential
and is also responsible for a strong tensor contribution in the long-range
part. The σ meson is used to describe the intermediate-range attraction and
can be understood as effectively describing correlated two-pion exchange.
The vector mesons (such as δ) contribute to the repulsive core. Identifying
the contributing exchange-particles, the pion-nucleon potential is derived
in a similar way [SHS+95].

In the following some facts about the NN interaction are collected to build an
ansatz for a nucleon-nucleon potential. The NN -interaction potential can be divided
into three characteristic sections: the short range part (|r| < 1 fm), the intermediate
range (|r| = 1− 2 fm) and the long range part (|r| > 1 fm).

short-range Figure 2.4 indicates a repulsion at small distances. The analyses of the
phase show a change of sign from positive to negative. Therefore, at small momenta
with corresponding large distances between the nucleons, the interaction is attractive,
while for large momenta with corresponding small distances, the interaction is repulsive.
A repulsion at small distances also means that increasing force is required to bring
nucleons closer together. This is also seen in the saturation of the nuclear density.
However, the saturation is mainly caused by the Pauli-blocking.
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intermediate range The intermediate range of the NN -potential shows a minimum
at about 1 fm seen in fig.2.4. This is due to the fact that bound nuclei exist. The
average distance between neighbouring nucleons is of the order of 1− 2 fm, which can
be extracted from the nuclear matter density of about ρ0 = 0.17 fm−3, and therefore
gives the scale in which the NN interaction is attractive.

long range The interaction between two nucleons dies out quite quickly, which can
be seen in fig.2.4. This is because the NN interaction is of short-range character. This
is also seen in the scaling-behavior of the binding energy. The binding energy is mostly
proportional to the mass number, rather than scaling with the number of interaction
partners (A(A-1)/2). This indicates that the nucleon interacts with a constant number
of neighbours and therefore the long-range part of the potential reaches zero already
at small distances of less than 3 fm. Despite the properties discussed above which
are characteristic for their individual intervals, there are additional properties, which
are of general character. First, the tensor part of the nucleon-nucleon interaction, and
second, the spin-orbit effects. The non-vanishing quadrupole moment and the magnetic
moment of the deuteron indicate, that the ground state has not only s-wave contri-
butions, but also a component of d-wave character. This mixture can only appear in
a non-central interaction, where matrix elements with different angular momenta are
not equal to zero. The so called Tensor interaction is the simplest form to cause these
effects.

Alltogether, these arguments have consequences for the mathematical structure of
the involved Hamiltonian, which will only be briefly mentioned. The Hamilton op-
erator must be: hermitian, invariant against particle exchange, translational invari-
ant, Galilei invariant, rotational invariant, time translation invariant, invariant against
time reversal, parity invariant and independent of electric charge. After taking these
constraints into account, an ansatz for the NN potential can be composed by three
potentials

VNN = VZ + VT + VLS (2.47)

where VZ is the central part of the interaction, VT the tensor part and VLS the contri-
bution from spin-orbit effects. The central potential VZ is expressed in terms of spin
and isospin potentials

VZ =
∑

S,T=0,1

VST [~σ1 · ~σ2]S [~τ 1 · ~τ 2]T (2.48)

= V00 + V01~τ 1 · ~τ 2 + V10~σ1 · ~σ2 + V11~σ1 · ~σ2~τ 1 · ~τ 2 (2.49)

which can also be represented by spin and isospin projectors

VZ = VW + VBPσ + VHPτ + VMPr (2.50)
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where the notation comes from corresponding findings about the NN force: Wigner
(W ), Bartlett (B), Heisenberg (H), and Majorana (M). While VW does not contain
contributions from exchange of spin or isospin, VB is connected to spin exchange, VM
to isospin exchange and VH to the combination of both. The tensor part of the NN
potential has the following structure

VT = [V1 + Vτ~τ 1 · ~τ 2]S12 (2.51)

S12 =
3

r2
[~r · ~σ1] [~r · ~σ2]− ~σ1 · ~σ2 (2.52)

and the spin orbit contribution can be expressed as follows

VLS = [V1 + Vτ~τ 1 · ~τ 2] ~L · ~S (2.53)

~L = ~r × ~p (2.54)

~S = ~s1 + ~s2 =
1

2
(~σ1 + ~σ2) (2.55)

At present there is a large variety of potentials, which are of almost equal quality.
This is due to the fact that the potential must be extracted from phases, which makes
it an inverse scattering problem. The solution is not unique, or in other words: there
is an infinite number of potentials which lead to the same phase.

2.4 Eikonal Approach to the Wave Equation

The Eikonal approximation is used to describe a scattering process. The approximation
works best for high-energy scattering, where the projectiles are mainly scattered in
forward direction. Initially, the Eikonal theory was introduced by [Bru95], who worked
on the scattering of light with atoms. This idea was taken over by [GBD67], who applied
the techniques used in Eikonal theory to scattering of particles with the nucleus. In
this work, the Eikonal approximation is used to describe the scattering of both pions
and antinucleons with various nuclei. The main idea of the Eikonal approximation is
to use an ansatz for the wave function

ψ = eiS̃ = eiS+ikz (2.56)

Because the energy region of interest is high, small scattering angles are expected for the
scattered wave. Therefore, cylindrical coordinates are used. The incident momentum
k defines the z-direction, and the impact parameter b describes the distance to the
nucleus, as can be seen in fig 2.5. The interaction is described within the optical model,
which is taken into account by a potential U . The potential is then implemented
into a wave equation. Within this work, both the pion-nucleus interaction and the
antinucleon-nucleus interaction are calculated within the same framwork. Pions and
antiprotons are usually described with different wave equations, namely the Klein-
Gordon and the Dirac equation, but both are merged into a Schrödinger-like equation.
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Figure 2.5: Schematic demonstration of scattering

Therefore, the introduction of the Eikonal theory and also the derivation of the Eikonal
are presented with the Schrödinger equation.

The Eikonal- model got a lot of attention when [GM70] extended the original Eikonal
method to use it within many-body interactions. Initially, the Eikonal-model was used
to describe scattering of light. The Eikonal-method took advantage of the fact that
the scattered light contains information about the target. In other words, when the
scattered wave is understood, properties of the target can be studied. This was done
successfully with the scattering of light on atoms, and many atoms were probed with
this technique. Being so successful, the use of Eikonal models was extended to other
research fields, for example nuclear scattering, where massive projectiles are used in-
stead of massless photons. The Eikonal theory brings together two important ideas:
on the one hand, the intuitive understanding, due to its origin in optics, where the
behaviour of the wave can be described with geometrical help, and on the other hand,
the quantum mechanical character, including the wave functions and phases.

In this work, the Eikonal model is used to find a description of scattering cross-
sections. Before a brief summary of the mathematical background of the Eikonal theory
is given and the derivation of the Eikonal is shown, a more intuitive way to approach
the Eikonal theory is presented. Limitations of the Eikonal and the challenges to find
higher-order corrections are discussed in section 3.3.3. The Eikonal approximation is
especially well suited for scattering processes where the projectile has a high kinetic
energy compared to its mass. In such scattering processes, small angles are expected
in the final state. This goes well along with the picture of scattering of light, where
the description is based on beams of light. Analogously, for an incoming wave in z-
direction φ = eikz, the outgoing wave is assumed to be a plane wave, but disturbed by
the so-called Eikonal S in such a way that φf = ei(kz+S). The disturbance depends on
the influence of the target. The corresponding interaction is denoted by a potential U .
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The Eikonal approximation may be implemented to any kind of wave equation, but in
the following the Klein-Gordon equations is chosen:

[∇2 +K2]φ = 0. (2.57)

Using the Eikonal approximation, with corresponding derivatives:

φ = ei~k·~r+iS(~r) (2.58)

~∇φ = i
(
~k + ~∇S

)
φ (2.59)

∇2φ =

(
−k2 −

(
~∇S
)2

+ i~∇2S

)
φ (2.60)

leading to the Eikonal equation:

i~∇2S −
(
~∇S
)2

+K2 − k2 = 0 (2.61)

In order to solve the Klein-Gordon equation, a solution of S is needed, finally giving:

S = S+ =

z∫
−∞

dz′
√
K2 − k2 (2.62)

The solution is found under the assumption that ∇2S is small compared to S or even
∇S. This is reasonable, because a rather smooth behaviour of S is expected and
the corresponding derivative of first and second order should be small. However, the
discussion of consideration of higher order terms is in section 3.3.3.

Even though the structure of the solution is rather simple, it strongly depends on the
included potential and its complexity. The constraints to the potential and the limits
to the validity of the solution can be understood better by following the arguments of
the derivation of the introduced solution, which is briefly discussed in the following.

To finally derive the cross section in Eikonal representation, the scattering amplitude
is calculated from the wave function. The scattering amplitude is defined as:

f = −2π2〈φkf |U |φ
(+)
ki
〉 (2.63)

= −(2π)3/2

4π

∫
exp(−i~kf~r

′)U(~r′)φ
(+)
ki
. (2.64)

Implementing the previously introduced wave function gives:

fE = − 1

4π

∫
d~r exp(−i~kf~r)U(~r) exp

−i~ki~r −
1

2k

z∫
−∞

U(x, y, z′)dz′

 (2.65)
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2.4 Eikonal Approach to the Wave Equation

By substituting the wave vector transfer ∆ = ki − kf into the equation above, we
get [Joa75]

fE = − 1

4π

∫
d~r exp(−i~∆~r)U(~r) exp

− i

2k

z∫
−∞

U(x, y, z′)dz′

 (2.66)

Using cylindrical coordinates, the decomposition of vector ~r reads

~r = ~b+ zk̂i (2.67)

where b is an “impact parameter” and the z-component is chosen to be in the z-direction
of the incident wave k̂i. The scalar product in 2.66 gives:

~∆~r = ~∆(~b+ zk̂i) = ~∆~b+ kz(1− cos θ) ≈ ~∆~b (2.68)

As previously mentioned, from high-energy scattering, mainly forward scattering is ex-
pected, justifying the neglect of the term quadratic in θ. Nevertheless, it is still possible
to achieve the relation of eq. 2.68 by choosing a more clever coordinate system. If the
integration of z′ is performed along the bisector of the scattering angle, accordingly

~r = ~b+ zn̂. (2.69)

The scalar product of ~r and ~b gives exactly ~∆~b, because the vector n̂ is perpendicular
to ~∆. Without approximation, the scattering amplitude gives [Joa75]:

fE =
k

2πi

∫
d2~b exp(i~∆~b)

[
exp(iχ(k,~b))− 1

]
(2.70)

where

χ = − 1

2k

+∞∫
−∞

U(~b, z)dz (2.71)

If the potential has cylindrical symmetry, the expression of the scattering amplitude
can be simplified with the Bessel function

J0(x) = (2π)−1

2π∫
0

dφ exp(ix cosφ) (2.72)

which gives

fE =
k

i

∞∫
0

db bJ0(~∆~b)
[
exp(iχ(k,~b))− 1

]
. (2.73)
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2 Theory of Hadron-Nucleus Interactions

Here the angular dependence was integrated out, leaving χ only depending on b and k.
The meaning of χ (eq. 2.71) can be understood when the derived Eikonal scattering
amplitude is compared to its expansion in partial waves

f(θ) =
1

2ik

∞∑
`=0

(2`+ 1)[exp(2iδ`(k))− 1]P` cos θ, (2.74)

where P` cos θ are the Legendre-polynomials. Because high-energy scattering is con-
sidered, many partial waves of high order are expected to contribute significantly to
the amplitude, so that the sum is replaced by an integral. Furthermore, the impact
parameter is approximated by

b '
√
`(`+ 1)/k ≈ (`+ 1/2) (2.75)

giving

f(θ) = ki

∞∫
0

db bJ0(2kb sin(θ/2)) [exp(2iδ(k, b))− 1] (2.76)

With the help of the just found scattering amplitude, the scattering cross sections are
calculated in the following. In order to give a more general formula, an (at this step
unspecified) optical potential U = V + iW is considered. The total cross section is
given by the optical theorem

σtot =
4π

k
Imf(θ = 0) = 2

∫
d2b[1− exp(−Imχ) cos Reχ]. (2.77)

With an azimuthal symmetric potential, the angular dependence can be integrated out,
giving

σtot = 4π

∞∫
0

db b[1− exp(−Imχ) cos Reχ]. (2.78)

The total elastic cross section is given by

σeltot =

∫
dΩ|fE|2. (2.79)

After extension of the upper integration limit of the momentum transfer and the use
of the completeness of the Bessel function [Joa75],

σeltot = 4π

∞∫
0

db b[1− exp(−Imχ) cos Reχ]− 2π

∞∫
0

db b[1− exp(−2Imχ)] (2.80)
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2.4 Eikonal Approach to the Wave Equation

where azimuthal symmetry of U is again implied. While the first term in equation
2.80 gives exactly the result which was achieved beforehand for the total cross section,
the second term has also an interpretation. Because the total cross section contains all
processes, the subtraction of just the elastic scattering leaves only those contributions
which are actual reactions.

σrtot = 2π

∞∫
0

db b[1− exp(−2Imχ)] (2.81)

Although, the description of these scattering cross sections is an approximation, cov-
ering mainly forward scattering, we are also interested in an angular distribution. The
differential cross section is calculated in the following way:

dσ

dΩ
= |fE|2 (2.82)

Finally, the scattering amplitude, the wave function and cross sections (both elastic
and inelastic) are derived. To get these results, a smoothly varying potential was
assumed i.e., the kinetic energy of the projectile is expected to be so high that possible
fluctuations in the interacting potential are on a different scale. As can be seen later in
this work, reasonable results can be achieved within the Eikonal model, but the limits
of the model need to be understood as discussed in section 3.3.3.

25



2 Theory of Hadron-Nucleus Interactions

26



3 Pion-Nucleus Interactions

3.1 Properties of the Pion

After introducing basic models and techniques of hadron-nucleus interactions, the focus
in this chapter is to present more concrete approaches. To derive the pion-nucleus
potential, we summarize some properties of the pion. First, we present the isospin
structure and its consequences for the expected cross sections. Second, the partial wave
decomposition is derived, leading us to the corresponding amplitudes. Finally, the self
energy is briefly introduced. The following section covers the low-energy behavior,
while the intermediate-energy range is described by the Kisslinger-potential presented
afterwards. The consequences from the momentum dependent potentials are presented,
and the potential is extended to higher resonance regions. Finally, the results are
presented for several nuclei, covering a large energy range.

3.1.1 Isospin

The investigation of underlying symmetries of pion-nucleon interactions is helpful in
two ways: First, the corresponding calculations may become easier to perform when
the system’s complexity is reduced, and second, the understanding of symmetries gives
the possibility to make predictions beyond the existing data. In 1932 the fact that
the proton and neutron have almost the same mass inspired Heisenberg to interpret
them as different states of the same particle, the nucleon. This idea is only valid
when the electromagnetic interaction is negligible, because the proton and neutron
differ by their electric charge. However, when only the strong force is considered,
they are indistinguishable particles. According to Noether’s theorem, this underlying
symmetry introduces an invariant, the isospin. The isospin is no observable, but a
theoretical construct, where we need to chose the notation. Unfortunately, the choice
of notation differs in the literature. Similar to the spin, only the magnitude I and one
component of the isospin, I3, can be specified simultaneously. Therefore, in this work
the isospin is denoted by |II3〉 and chosen for the nucleons in the following way:

p =

∣∣∣∣12τ 1

2
τ3

〉
=

∣∣∣∣12 1

2

〉
, n =

∣∣∣∣12τ 1

2
τ3

〉
=

∣∣∣∣12 − 1

2

〉
(3.1)

where we have chosen τ = 1 and τ3 = ±1 to be an integer and write the factor 1/2
explicitly. The isospin of the pion is defined accordingly, with total isospin t = 1 and
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3 Pion-Nucleus Interactions

a third component which is equal to the pion charge.

π− = |1 − 1〉 , π0 = |1 0〉 , π+ = |1 1〉 (3.2)

As has already been mentioned: Symmetries introduce invariances, and in fact, the
isospin is an invariant in strong interactions. Vice versa, the knowledge of the isospin
is also knowledge of underlying symmetries. The investigation of the isospin structure
of the pion-nucleon interaction will therefore tell us something about the symmetries
we can expect from the cross section. Therefore, we would like to exploit the derivation
of the isospin-decomposition of each reaction in detail, to get a good understanding of
the connection to the cross section. This is necessary, because we chose to work with
isospin amplitudes, and by going beyond the ∆-resonance in energy we soon leave the
(nowadays) experimentally accessible region. In this sense, the derived cross sections
will be predictions. In our work, we are interested in elastic scattering, which will serve
us as basis for the pion-nucleus interaction. In pion-nucleon interaction, however, there
are six elastic processes:

(a) π+ +p → π+ +p

(b) π0 +p → π0 +p

(c) π− +p → π−+p

(d) π+ +n → π++n

(e) π0 +n → π0 +n

(f) π−+n → π−+n

In addition to the elastic processes above, there are also four single charge exchange
processes:

(g) π0 +p → π++n

(h) π−+p → π0 +n

(i) π+ +n → π0 +p

(j) π0 +n → π−+p

These channels also carry isospin, which can be decomposed into the pion and nucleon
isospin. To derive the total isospin of the reaction, we couple the isospin of nucleon and
pion with the help of the Clebsch-Gordon coefficients. For our purposes, the coupling
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of 1 and 1/2 is of importance. It is summarized in the following:

π+ + p :

∣∣∣∣1 1

〉 ∣∣∣∣12 1

2

〉
=

∣∣∣∣32 3

2

〉
π0 + p :

∣∣∣∣1 0

〉 ∣∣∣∣12 1

2

〉
=

√
2

3

∣∣∣∣32 1

2

〉
−
√

1

3

∣∣∣∣12 1

2

〉
π− + p :

∣∣∣∣1 − 1

〉 ∣∣∣∣12 1

2

〉
=

√
1

3

∣∣∣∣32 − 1

2

〉
−
√

2

3

∣∣∣∣12 − 1

2

〉
π+ + n :

∣∣∣∣1 1

〉 ∣∣∣∣12 − 1

2

〉
=

√
1

3

∣∣∣∣32 1

2

〉
+

√
2

3

∣∣∣∣12 1

2

〉
π0 + n :

∣∣∣∣1 0

〉 ∣∣∣∣12 − 1

2

〉
=

√
2

3

∣∣∣∣32 − 1

2

〉
+

√
1

3

∣∣∣∣12 − 1

2

〉
π− + n :

∣∣∣∣1 − 1

〉 ∣∣∣∣12 − 1

2

〉
=

∣∣∣∣32 − 3

2

〉
With the knowledge of the isospin decomposition of each channel, we can now determine
the matrix element, which will give us information about the cross section. As we have
already discussed in the introduction of this section, the isospin is conserved in the
strong interaction. Therefore, initial and final total isospin must be the same and are
characteristic for each matrix element:

Mfi = 〈ψf |M |ψi〉 (3.3)

MI = 〈ψ(I)|Aif |ψ(I)〉 (3.4)

which is finally connected to the cross section:

σ ∝ |MI |2 (3.5)

Each reaction channel is now described by a matrix element, which is composed of
different isosspins with certain weights:

Ma = M3/2 (3.6)

Mb =
2

3
M3/2 +

1

3
M1/2 (3.7)

Mc =
1

3
M3/2 +

2

3
M1/2 (3.8)

Md =
1

3
M3/2 +

2

3
M1/2 (3.9)

Mb =
2

3
M3/2 +

1

3
M1/2 (3.10)

Mf = M3/2 (3.11)
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3 Pion-Nucleus Interactions

The charge-exchange processes all have the same weighting of isospin

Mg = Mh = Mi = Mj =

√
2

3
M3/2 −

√
2

3
M1/2. (3.12)

which gives the following ratios between the different reaction channels:

σa : σb : σc : σg = 9
∣∣M3/2

∣∣2 :
∣∣M3/2 + 2M1/2

∣∣2 :
∣∣M3/2 + 2M1/2

∣∣2 : 2
∣∣M3/2 −M1/2

∣∣2 .
(3.13)

In order to obtain extract information about the cross section, we simplify the ansatz
by assuming a negligible contribution from the isospin 1/2 amplitudes. This is valid
in the region of the ∆-resonance, which is seen prominently in the cross section. The
ratios between the different reactions is then given by:

σa : σb : σc : σg = 9
∣∣M3/2

∣∣2 :
∣∣M3/2

∣∣2 :
∣∣M3/2

∣∣2 : 2
∣∣M3/2

∣∣2 , (3.14)

so that finally we expect the ratio of π+ to π− cross section to be:

π+p→ π+p

π−p→ π−p
=

9

2 + 1
= 3 (3.15)

This, in fact, describes the ratio of the cross sections in the ∆-region. Due to the
dominance of the ∆-resonance, we explicitly introduce a model for it.

3.1.2 Partial Wave Decomposition

The pion-nucleon or pion-nucleus interaction has been approached from two sides so
far. First, in a field-theoretical description leading to an effective interaction mediated
by exchange of particles. Second, a description within a many-body scattering problem
leading to a truncation to a two-body interaction within a surrounding nuclear medium.
In this section, these findings are joined into a phenomenological approach. To give
a connection between the scattering problem and the particle-exchange picture, the
K-matrix is introduced, and corresponding contributions are briefly presented, taken
from [EW88].

The K-matrix is a convenient way to describe the interaction. If the K-matrix is
chosen to be symmetric and purely real, it automatically guarantees unitarity of the
S-matrix

Sα =
1 + i|q|Kα

1− i|q|Kα

(3.16)

At threshold the K-matrix is related to the scattering length (in case of s-wave) or
scattering volume (in case of p-wave)

aα = lim
|q|→0

|q|−2lKα (3.17)
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In case of purely elastic reactions, it is also connected to the experimentally accessible
phase shift

Kα =
1

|q|
tan δα (3.18)

which itself enters into the S-matrix

Sα(ω) = e2iδα(ω) (3.19)

and finally connects to the scattering amplitude

fα(ω)
1

2i|q|
[Sα(ω)− 1] (3.20)

In the previous sections, we discussed how to handle the scattering process in a
Lippmann-Schwinger approach. The central quantity is the free pion-nucleon transition
operator, which can be adopted within a nuclear-matter problem. In this section, we
will focus on the inner structure of the transition operator tπN and its isospin structure.
The tπN is connected to the scattering amplitude:

f(θ) = − µ

2π
〈ϕ′|tπN |ϕ〉 (3.21)

where µ is the reduced mass of the pion and the nucleon. The total differential cross
section is then calculated by:

dσ/dΩ = |f(θ)|2 (3.22)

Our aim is to describe pion-nucleus interactions over a wide energy range. As basis we
use pion-nucleon interactions, which gives us the opportunity to study nuclear matter
effects when the pion interacts inside a medium. Therefore it is useful to describe
already the pion-nucleon interaction in such a way that it can also be used for bound
nucleons. This is achieved in a phenomenological approach, where the main dynamics
of the s- and p-wave are well reproduced. After giving a brief introduction to main
quantities in scattering theory, a phenomenological ansatz for both s- and p-wave will
be presented.

Partial Wave Expansion of the pion-nucleon scattering amplitude The scattering
amplitude can be expressed in terms of Legendre polynomials Pl(x) and the corres-
ponding derivatives P′l(x) = dPl(x) = dPl/dx

F(q′, q) =
∑
I

P̂I

{∑
l

[(l + 1)fI,l+ + lfI,l− ] Pl(cosθ)

−iσ · n
∑
l

[fI,l+ − fI,l− ] P′l(cosθ)

}
(3.23)

using the isospin projectors P̂I and the unit vector n = (q×q′)/|(q×q′)| perpendicular
to the scattering plane. It is found that in the energy range of interest, the scattering
amplitude is dominated by p- and s-waves.
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3 Pion-Nucleus Interactions

s-wave interaction The interaction of a pion with a nucleon can be described in an
effective field-theoretical framework by exchanging particles. A good starting point
are the easiest possible Feynman diagrams, which contribute as so called Born terms.
Especially for scattering of two particles it is convenient to introduce Lorentz-invariant
variables. The so called Mandelstam-variables are characterized by the invariant mass
of the propagator. When qµ = (ω, q) (q′µ = (ω, q′)) denotes the initial (final) 4-
momenta of the pion and pµ = (ω,p) (p′µ = (ω,p′)) the 4-momenta of the nucleon the
Mandelstam variables are defined

s = (pµ + qµ)2 = (E + ω)2 =
(√

M2 + q2 +
√
m2
π + q2

)2

(3.24)

t = (qµ − q′µ)2 = −2q2(1− cos θ) (3.25)

u = (pµ − q′µ)2 = (E − ω)2 − 2q2(1 + cos θ) (3.26)

Possible candidates for the exchanged bosons B in the s-channel are restricted to the
involved quantum numbers. A systematic procedure to identify forbidden quantum
numbers is to look for Feynman rules. At each vertex, the quantum numbers have to
be conserved. In the πN interaction, there are two vertices: one is the ππB vertex,
and the second the NNB vertex. The isospin of the boson must be 0 or 1, because the
isospin transfer to the involved nucleon can only be smaller or equal 1. In addition to
the isospin transfer, the momentum transfer is also restricted to smaller or equal to 1.
In the static limit, where the nucleons are assumed to be infinitely heavy, the boson
can at most flip the nucleon spin. The possible angular momentum of the boson will be
0 or 1. Due to the vertex of the exchanged boson with the pion line, the boson needs
also to be able to transform into two pions. The wave function of a pion pair must be
totally symmetric, therefore the only possible exchange mechanisms are scalar-isoscalar
exchange and vector-isovector exchange. These can be identified with t-channel ρ-
exchange (vector-isovector) and σ-exchange (scalar-isoscalar). In the approach of the
Jülich group, they dynamically produce the mass of the σ by considering it as a two-pion
correlated state [RHKS96,SHS+95]. The s-wave contribution to the πN -interactions is
especially of interest in the very low energy region. In a nuclear medium, a pion with
very low kinetic energy might be captured by the nucleus and bound in a pionic atom
[IYSNH,GROS88,OGRN95]. A typical phenomenological Hamiltonian is presented in
terms of isospin-even (λ1) and isospin-odd (λ2) scattering length:

Lint = λσΦ ·ΦΨΨ + λδΦ×ΦΨτΨ + λρΦ× ∂µΦΨγµτΨ (3.27)

Hs =
4π

mπ

λ1Φ ·Φ +
4π

m2
π

λ2τ ·Φ× ∂tΦ (3.28)

introduced by Koltun and Reitan [KR66]. In this approach, the λ2 can be identified
with the isovector ρ-exchange, while there are mainly two contribuitions to λ1, the
virtual pair creation and the exchange of the σ.

p-wave interaction The most prominent structure in pion-nucleon interaction in both
π−p and π+p is the ∆-resonance, which is a p-wave resonance. Hence, it is important
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3.1 Properties of the Pion

to describe the ∆-resonance well. This inspired some groups to treat the ∆ isobar as
an elementary particle and develop the so-called ∆-isobar model [EW88]. The inner
degrees of freedom of the ∆ are neglected. Together with the nucleon, the ∆ builds
the basis of the πN interaction in the ∆-isobar model. This phenomenological ansatz
is constructed from an effective static Hamiltonian, which introduces the coupling of a
one-pion state to the vacuum.

Nucleon

〈πb(q′)|HπNN(x)|0〉 =
if

mπ

σ · q′τbeiq′·x (3.29)

〈0|HπNN(x)|πa(q)〉 =
−if

mπ

σ · qτbeiq·x (3.30)

Using second order perturbation theory with HπNN , the expectation value of the Born
terms of the transition matrix T for the direct and crossed reaction is

〈πb(q′)|T (d)
Born|πa(q)〉 =

f 2

mπ

(σ · q′)(σ · q)

Ei − (ωq + E)
τbτa ≈

f 2

mπ

(σ · q′)(σ · q)

−ωq
τbτa (3.31)

〈πb(q′)|T (c)
Born|πa(q)〉 =

f 2

mπ

(σ · q)(σ · q′)
(Ei + ωq + ωq′)− (E + ωq)

τaτb ≈
f 2

mπ

(σ · q)(σ · q′)
ωq′

τaτb

(3.32)

where d denotes the direct Born terms and c the crossed Born terms.

Figure 3.1: Nucleon and ∆ direct and crossed Born terms, taken from [EW88]

∆-isobar In analogy with the πNN coupling, the static effective Hamiltonian HπN∆

is

HπN∆ = − f∆

mπ

(
S+ ·∇

) (
T+ · φ

)
+ h.c. (3.33)
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The correct coupling to the spin and isospin amplitudes is guaranteed by the spin
and isospin transition matrices S+ and T+, respectively. These can be derived in
the Rarita-Schwinger formalism, which introduces the implementation of (iso)-spin
3/2 fields, in analogy to (iso)-spin 1/2 field in the Dirac theory. The static effective
Hamiltonian for pion-nucleon interaction is composed of both Hamiltonians introduced
above:

Hint = HπNN +HπN∆ (3.34)

In the K-matrix approach, intermediate states appear as poles on the real axis at the
value of the physical mass. Therefore, in the ∆-isobar model, the contributing poles
are at the masses of the nucleon and the pion. In the static limit, the K-matrix is the
sum of those two contributions

〈πb(q′)K|πa(q)〉 = KN +K∆ (3.35)

〈q′, N ′|K(s, u)|q, N〉 ∝
∑
X

〈q′, N ′|HπNX |X〉〈X|H+
πNX |q, N〉

MX −
√
s

(3.36)

Phenomenological expression of the scattering amplitude It is useful to express
the scattering amplitude in the following way:

F = b0 + b1(t · τ ) + [c0 + c1(t · τ )] (q · q′) + i [d0 + d1(t · τ )]σ · (q × q′) (3.37)

where the introduced complex and energy dependent amplitudes are composed of scat-
tering lengths and scattering volumes in the following way [EW88]:

b0 = (a1 + 2a3)/3 b1 =(a3 − a1)/3

c0 = (4a33 + 2a31 + 2a13 + a11)/3 c1 =(2a33 + a31 − 2a13 − a11)/3

d0 = (−2a33 + 2a31 − a13 + a11)/3 d1 =(−a33 + a31 + a13 − a11)/3 (3.38)

The d-amplitudes in eq. 3.37 are the so called spin-flip amplitudes and known to play a
minor role in pion-nucleus interactions. Therefore, they are neglected in the following
discussions. The structure of the partial wave expansion of the scattering amplitude
in eq. 3.37 describes the s- and p-wave behaviour. The subscript 0 denotes spin and
isospin averaged parameters, while the subscript 1 is carried by isospin dependent
parameters. The b-amplitudes are dominated by s-waves, while parameters named c
have p-wave character. Because the intermediate pion-nucleon scattering is dominated
by p-waves, these c parameters are of importance. The introduced isospin-averaged
amplitudes contain very complex information, covering energy-dependence of the whole
reaction process. Until today, they cannot be derived from fundamental interactions,
but especially in the s-wave part, connections could be given in the low energy regime,
where chiral effective field theory is successful [DO08].
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3.1.3 Self-Energy

In previous sections, the concept of virtual particles and its application to form an
effective interaction description have been developed (see section 2.2). Virtual particles
are used in an effective field-theoretical framework as mediator of the strong force. Like
in the previous section, these interactions are commonly built from the exchange of
virtual particles in so-called tree diagrams. Those diagrams are able to describe the
main features of the interaction and dominate the model. Nevertheless, beyond those
diagrams, closed loops can also be formed, and the corresponding consequences are
briefly introduced in this section. These loop diagrams lead to quantum-mechanical
corrections to the classical field theory introduced so far. In a picture where loop
diagrams are taken into account, a real particle permanently emits and absorbs virtual
particles, and a so called virtual cloud surrounds it. This picture changes the nature
of the physical particle in such a way that the strength of the interaction depends on
the momentum transfer. It becomes a composite object, which introduces non-trivial
functions of external momenta which are usually truncated to a form factor. To study
effects which are introduced by loop diagrams, all possible Feynman diagrams with two
external legs need to be collected. As an example the contributing diagrams to the σ-π-
π vertex (discussed in [dWS86]) are shown in figure 3.2. Intuitively, one might expect

Figure 3.2: Quantum corrections to the σ-π-π vertex, like [dWS86]

from figure 3.2 that taken into account quantum corrections via loop diagrams comes
along with more than one pole to consider. In fact, all those contributions are generated
by only one propagator. In order to understand that, only irreducible diagrams are to
be considered. Irreducible means that a diagram can not be divided into two stand-
alone diagrams without cutting the external line. By denoting all reducible diagrams
by Σ(p), the sum of all irreducible diagrams read explicitly

G(p) =
1

i(2π)4

1

p2 +m2
+

1

i(2π)4

1

p2 +m2
Σ(p)

1

i(2π)4

1

p2 +m2
+ . . . (3.39)

= G0 +G0ΣG0 + . . . (3.40)

=
∞∑
j=0

(G0Σ)jG0 (3.41)

with the geometric series giving finally

G =
1

1−G0Σ
G0 (3.42)
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which is called Dyson equation. From eq. 3.42 we see that the structures given in the
Feynman-diagram were generated by only one propagator. The corresponding mass of
a particle is given by the poles of its propagator, hence

G =
1

i(2π)4

1

p2 +m2 − Σ(p)/(i(2π)4)
=

1

i(2π)4

1

p2 +M2
(3.43)

where

M2 = m2 − 1

i(2π)4
Σ(p)

∣∣∣
p2=−M2

(3.44)

The permanent emission and absorption leads to a change of the mass of the physical
particle and is called self energy. So far, the contributions to the pion self-energy from
a surrounding virtual particle cloud was calculated in the vacuum, leading to a change
of the mass of the pion by the amount of the self-energy. In other words: The mass of
the pion depends on its interactions.

When the pion is applied to the nuclear medium, the Feynman-diagrams must be
identified and calculated accordingly. The commonly used folding appoach assumes a
form seperable of the pion-nucleus self-energy ΠπN into pion nucleon scattering amp-
litude fπN and the nuclear density ρ:

ΠπN ∝ fπNρ (3.45)

In this work the pion interaction within a nuclear medium and especially pion-like low
lying nucleon-hole excitations contribute strongly to the pionic field. The effect on the
pion is therefore twofold: On one side, the pion affects the nuclear matter, and on the
other side, the pion is affected by the nuclear matter. Both contributions can be taken
into account by the self-energy.

36



3.2 Pion-Nucleus Interaction Potential

3.2 Pion-Nucleus Interaction Potential

3.2.1 Low Energy Behaviour

For low-energy pions, the self-energy can also be determined within a perturbation
theory framework, which demands a clear ordering of the included diagrams. This
has been investigated for low-energy s-wave interaction [KW01]. The calculations
of [KW01] are performed beyond the linear density approximation and are designed
for asymmetric nuclear matter. Some of the diagrams used within the calculation are
shown in figure 3.3. The nucleons are characterized with the solid line, the pion with
the dashed lines accordingly. The first diagram in fig. 3.3 contributes to the linear
approximation. The last three diagrams are coming from the scattering process of two
nucleons from the Fermi-sea and represent two-nucleon correlations.

In the study of [KW01], pionic self-energies are obtained beyond the standard linear
density approximation by including various 2-loop diagrams. The self-energy is, there-
fore, separated into the linear approximation term Πf , the relativistic correction Πrel

(for second diagram) and the correlation term Πcorr

Π−(kp,n) = Π−f (kp,n) + Π−rel(kp,n) + Π−corr(kp,n) (3.46)

Π−f (kp, kn) =
k3
n

3π2

(
T

(−)
πN − T

(+)
πN

)
−

k3
p

3π2

(
T

(−)
πN + T

(+)
πN

)
(3.47)

with the isospin-odd and isospin-even pion-nucleon threshold T -matrices T
(−)
πN , T

(+)
πN .

Π−rel(kp, kn) = − g2
Amπ

10(Mπfπ)2
(k5
n − k5

p) (3.48)

Figure 3.3: Pion-self energies diagram from [KW01], displaying linear density diagrams,
calculated to 1-loop order in χPT and corrections accounting for relativistic
and two-nucleon correlation effects.
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Π−corr(kp,n) =
4m2

π

(4πfπ)4

{
2(k2

n + k2
p)

2 + 2knkp(kn − kp)2 + (k2
n − k2

p)
2 ln
|kn − kp|
kn + kp

}
+

g2
Am

2
π

(4πfπ)4

{
2k2

n(m2
π − 2k2

n) + 2k2
p(m

2
π − 2k2

p)

+8k3
nmπ arctan

2kn
mπ

+ 8k3
pmπ arctan

2kp
mπ

−m2
π

(
m2
π

2
+ 4k2

n

)
ln

(
1 +

4k2
n

m2
π

)
−m2

π

(
m2
π

2
+ 4k2

p

)
ln

(
1 +

4k2
p

m2
π

)}
.

(3.49)

where fπ is the weak pion decay constant and gA the nucleon axial vector coupling
constant. The description in terms of proton- and neutron-number densities is derived
by integrating over the according Fermi-spheres

ρp,n = trs

(∫
d3k

(2π)3
ns(k, µp,n)

)
(3.50)

where ns is the momentum distribution function, depending on the chemical potential
µ. In our context, cold (T=0) and spin-saturated nuclear matter is considered, which
simplifies eq. 3.50 to

ns(k, µp,n) = Θ(k2
p,n − k2), (3.51)

leading to the connection of proton- or neutron-number density with the Fermi-momentum
kF :

ρp,n(kp,n) =
k3
p,n

3π2
(3.52)

This leads to to a power series of the nuclear density, which makes the description of
pion-nucleus scattering complicated and makes it necessary to care about terms of high
order in ρ. The power series of the nuclear density can be interpreted in the following
way: While the term linear in ρ is understood as the interaction with one nucleon, the
quadratic term can be identified with the interaction with two nucleons. Therefore,
the dependency of higher order terms of the nuclear density expresses contributions of
interactions with more than one nucleon. This is seen in the low-energy region, but gets
even more relevant at higher energies. To describe these effects, a phenomenological
approach is developed. It is introduced in section 3.2.4. Independent of the choice of the
describing model, the complete pionic self-energy would include all possible interaction
scenarios and is therefore very sensitive to the surrounding matter. The self energy
is composed of the well known folding approach and additional contributions which
can be interpreted es polarization effects. As has been briefly mentioned, the mass
of the pion depends on its interaction with its environment. The creation of virtual
pairs in the vacuum already involved calculations of loop diagrams leading to quantum
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corrections of the pion self-energies. The situation is even more complicated when the
pion is applied to the nuclear medium, even if the Dirac sea is occupied up to the Fermi
momentum, blocking those states also for virtual nucleons. On the one hand, the pion
polarizes the nuclear medium, and on the other hand, the nuclear medium affects the
pion-self energy.
The pion self-energy is connected to the corresponding interaction potential. For low
energies the dependencies simplify to:

2ωUopt = Πs(r) (3.53)

where Πs(r) is the low-energy s-wave dominated self-energy [DO08]. In this section,
the pion self-energy was studied in nuclear medium. In addition to the change of
mass, the self-energy depends on the nuclear density in a non-trivial way. Even though
investigations of low s-wave contributions lead to a power series of high order in the
nuclear density, in this work only up to quadratic order is used. This is justified, due to
the surface-dominance in the energy region of interest. Keeping the relation between
the self-energy and the potential 3.53 in our mind, we will focus in the following section
on the development of the concrete interaction potential. In this work, we study pions
with an incident energy up to 1.5 GeV, which is (still) not high enough to penetrate
into the nucleus deeply. Therefore, the corresponding description of the interaction is
dominated by its surface character. This we take as a justification to neglect higher-
than-quadratic order terms, due to the low density at the nuclear surface region.

3.2.2 Kisslinger Potential

Kisslinger [Kis55] invented the form of a velocity-dependent term, expressed by the
scalar product of incoming and outgoing momentum, giving therefore also the off-
shell behaviour. After a double Fourier transformation one then derives the so-called
Kisslinger-type potential. The velocity-dependence leads to a potential, which is ac-
companied by derivatives. These derivatives act also on the nuclear density, which
leads to a surface dominated interaction like we find in pion-nucleus scattering. The
ansatz of Kisslinger was also used in the work [JS96] leading to quite a good descrip-
tion of pion-nucleus scattering data. The work of [JS96] can be understood as starting
point for our model [LLW12a,LLW12b,LLW13]and will therefore be introduced in the
following. Because our aim is an exploratory study of pion-nucleus interactions over a
broad energy range, we were interested to have one unified working scheme with one
parameter set. The corresponding extensions and also new introduced concepts are
presented afterwards. When the Kisslinger-potential is entered into the Klein-Gordon
equation, the wave equation, which needs to be solved reads:{

−(~c)2∇2 + 2ω(UK + V 2
C)
}
ϕ = (~kc)2ϕ (3.54)

where ω denotes the total energy of the pion in the center of mass, k is the wave
number, VC the Coulomb potential and UK the Kisslinger-potential. Solutions of eq.
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3.54 are equivalent to those of a Schrödinger-like equation [Sat92] (see section 3.3.2):[
−~2/(2µ)∇2 + UL + VC

]
ϕ = Ecmϕ (3.55)

neglecting the quadratic contribution from the Coulomb potential V 2
C = 0. Eq. 3.54

reduces to the Schrödinger equation 3.55 with reduced mass µ and the center of mass
energy Ecm = (~k)2/2µ with the reduced mass µ = ω/c2 and a local potential UL. This
formalism is called Krell-Ericson transformation, and its derivation is shown in section
3.3.2 as well as an alternative procedure derived within the Eikonal approach. Because
the Krell-Ericson transformation is well established, we chose it for our calculations.
Starting with the Kisslinger-type potential

UK = Us + ∇Up∇ (3.56)

where Us is the part of the potential dominated by s-waves, while Up is dominated
by p-waves accordingly. In our model, we use the basis of [JS96] with extensions to
higher energies. In [JS96], the authors use isospin-averaged amplitudes separated into
contributions from an isoscalar and isovector nucleon density.

ρ = ρn + ρp (3.57)

δρ = ρn − ρp (3.58)

used in the formulation of the potentials:

Us(r) = −4π γ1[ b0%(r)− qπb1δ%(r)]− 4π γ2[ B04%(r)n%(r)p −QπB1δ%(r)] (3.59)

The complex energy-dependent interaction paramters bi and ci (i = 0, 1) have already
been defined within the partial wave expansion (see eq. 3.38). The paramters Bi, Ci,
however are defined in [GJ80, JS96, JS83b, JS83a]. These amplitudes are taken from
Johnson and Satchler who discuss their findings in [JS96]. Equation 3.59 and the
following equations of the pion-nucleus potential are valid for all three charge states
of the pion, using the electric charge qπ = 0,±1. Us(r) is the amplitude for s-wave
interactions, which is composed of the isospin averaged amplitudes b0,1 and B0,1. These
amplitudes are mostly important for low-energy scattering of the pion well under the
range of th ∆-resonance and adjusted to pionic-atoms data. For our purposes, these
amplitudes are of minor interest. Following Johnson and Satchler we do our studies
with B0,1 = 0. The kinematic transformation factors γi depend on the nucleon mass M
which enters into ε = ω/Mc2, giving: γ1 = 1 + ε, γ2 = 1 + ε/2. The p-wave dominated
potential is composed of two amplitude α1 and α2. Where the latter one describes two
nucleon interactions:

Up(r) =
α1

1 + ξ/3α1

+ α2 (3.60)

where the Ericson-Ericson-Lorentz-Lorenz factor ξ [EW88] is used in other calculations
[KE69,MFJ+89,JS96] is neglected in our calculations ξ = 1 due to weak effects in the
calculations.

α1(r) = 4π [c0 %0(r)− qπc1%1(r)]/γ1 (3.61)

40



3.2 Pion-Nucleus Interaction Potential

α2(r) = 4π [C0 4%n(r)%p(r)− qπC1 %1(r)%0(r)]/γ2. (3.62)

In our approach, we use the parameters for highest energy available of Johnson and
Satchler (at 297 MeV) and add higher resonances, which are occurring in the pion-
proton cross section. In section 3.2.3 it is shown how the higher amplitudes are attached
to the model. The amplitude α2 is dominated by two-nucleon interactions, and a new
description is found presented in section 3.2.4.

Us(r) = Us(r)
∣∣∣
B0,1=0

+ Us(r)
∣∣∣
b0,1(297 MeV)

+
∑
I

qIπfIρI (3.63)

The sum in eq. 3.63 indicates the summation over several higher resonances. Section
3.2.3 shows, how the resonances are apllied to our potential. After defining the s-wave
contribution to the potential, we focus on the p-wave contribution. The Kisslinger-
potential is a function of the scattering amplitude and the nuclear density:

UK = UK(f ; %) (3.64)

The amplitudes ci and Ci are the p-wave dominated amplitudes containing also the
∆-resonance. The ∆-resonance is the strongest structure visible in the pion-nucleon
total cross section, for both π+- and π−-scattering. In the work of [JS96], parameters
for three different energies were presented. For our purposes, however, the full energy-
dependence is required. Therefore, in the following, the development of the amplitude
describing the ∆-resonance is presented.
As a starting point we recap the partial wave decomposition of the scattering amplitude
(eq. 3.37). The composition of the scattering amplitude f and also the density %
depends on the quantum numbers of the pion and the nucleus, which will be discussed
later. Omitting the small contribution of the spin-flip amplitude, the partial wave
decomposition can be written as:

f =
∑
I

P̂I

{∑
l

[(l + 1)fl+ + lfl−]Pl(cosθ)

}
(3.65)

where the fl+ amplitude corresponds to spin j = l + 1/2 and the fl− amplitude cor-
responds to spin j = l − 1/2. Pl(cosθ) are the Legendre-polynomials and P̂I are the
projection operators of the total isospin I with possible values I = 1/2, 3/2.

P̂ 1
2

=
1

3
(1− t · τ ); P̂ 3

2
=

1

3
(2 + t · τ ) (3.66)

Because the s- and p-waves dominate the interaction, we express them explicitly:

f =
∑
I

P̂I

{
f0+ + (2f1+ + f1−) cos θ +

∑
l≥2

f

}
(3.67)
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In the region of interest, there are several p-wave amplitudes listed in [B+12]:

f1+ = ∆(1232) + ∆(1600) + ∆(1920) +N(1720) (3.68)

f1− = ∆(1750) + ∆(1910) +N(1440) +N(1710) (3.69)

Unfortunately, the situation is not clear, because many resonances are listed in the
literature, while the evidence of the existence of some resonances is very poor. After
deriving this general form of f in eq. 3.67, we will now focus on the isospin-structure.
The scattering amplitude is often expressed in isoscalar and isovector amplitudes, which
gives:

f = b0 + b1 (t · τ ) + [c0 + c1 (t · τ )] |k′| · |k| cos θ (3.70)

f33 =
1

3
(2 + t · τ )2 cos θ∆(1232) (3.71)

=
2

k′ · k
(∆(1232))k′ · k (3.72)

where we assumed an off-shell amplitude, which was initially introduced by [Kis55]. In
his work, the cosine term of the on-shell amplitude (in eq. 3.71) is interpreted as the
scalar product of initial and final momentum (eq. 3.72), while taking the reciprocal
quadratic momentum into the definition of the amplitude.

f33 = 2f∆k
′ · k (3.73)

Thus, on the energy shell

f∆ = − 1

2k2
f

3/2
(1232). (3.74)

Because an extrapolation far above the maximum is required, we assume an off-shell
separable form of Breit-Wigner type:

f∆(k, k′) =
γ v(k)v(k′)

Er − E − iγk3 [v(k)]2
, (3.75)

with a form-factor v(k) and position of the maximum Er that determine the profile of
∆(1232). As a starting point, we used the form factor of the form

v(k) = exp

(
−k

2

κ2
2

)
, (3.76)

but the description of the left shoulder of the ∆-resonance was not satisfactory. We
introduce a more involved structure of the form factor, which leads to a better descrip-
tion of the low-energy data without spoiling the already reasonable agreement with
data at the right shoulder of the ∆-resonance. The form factor

v(k) =
1

1 + λ

[
1 + λ exp

(
−k

2

κ2
1

)]
exp

(
−k

2

κ2
2

)
(3.77)
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is chosen in such a way that the limit for small k is euqal to one and for large k it
behaves like a common form factor. Therefore, we introduce the separable form:

v(k) = vl(k) exp

(
−k

2

κ2
2

)
(3.78)

vl(k) =
1

1 + λ

[
1 + λ exp

(
−k

2

κ2
1

)]
(3.79)

The form factor v(k) cuts off the tail of the resonance, which dies out rather slowly
due to the momentum dependent width:

Γ/2 = γk3 [v(k)]2 (3.80)

The profile of v(k) is chosen to reproduce the π+p cross section via the unitarity relation
(for more details see eq. 3.186 and eq. 3.187 in section 3.4.1)

σ(π+p) = −4π

k
Imf(π+p). (3.81)

In this way one obtains γ = 1.2 fm−2 , Er = 1232 MeV, and the form-factor parameters
κ1 = 0.118 GeV/c and κ2 = 0.552 GeV/c. With these definitions, we can describe the
shape of ∆ in the pion-nucleon cross section satisfactorily at the price of introducing
some parameters. The description of the ∆-resonance is especially challenging, because
we aim for a good description of both shoulders of the resonance. This we guarantee
with a rather involved structure of the form-factor which indicates underlying dynam-
ics that are not resolved in our ansatz.

Even though the discussion of the underlying quark content is beyond the scope of our
studies, the energy dependence of the pion-nucleon and pion-nucleus scattering comes
from the excitation of inner degrees of freedom. To understand these effects, we would
like to briefly summarize the findings of [EW88]. We follow [DM81,GW05], where the
formation of the Λ(1405) is described with a model studying the coupling of the bare
quark state to the actual baryon. Due to the p-wave character of the ∆-resonance,
we apply the WE-model of [DM81,GW05] to p-wave interaction. In their model, they
distinguish between two different interaction potentials, which are of separable form.
First, there is the interaction between the channels, which is described with a potential
U , and second, the additional interaction of the baryon state with the bare-quark state,
which we define as V . The bare-quark state with bare mass m(0) is non interacting and
therefore has no transitions. To describe the full process, including both interactions,
we need to solve a Lippman-Schwinger equation, where the corresponding propagator
carries the information of the interaction. The propagators depend on the invariant
Mandelstam variable s and on the actual mass, which varies with the interaction. In
the case of a bare quark state it reads g0 = (

√
s−m(0))−1. When a baryon is formed,

however, the channels are coupled via a potential, which we assume to be separable
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into the strength of the potential λ and form-factors v, hence U = vλv. Accordingly,
the propagator is g = (

√
s − m(0) − U)−1. The coupling of the channel state to the

bare-quark state is generated by an additional potential V , which leads to the following
full propagator,

G = g + gV G (3.82)

including both interaction potentials U and V . This translates into a K-matrix, which
is composed of two main contributions: a non-resonant background part K(B), which
smoothly varies in energy, and a resonant part K(R). Under the assumption that the
interference between background and resonant part is negligible, the K-matrix is simply
a sum

K = K(B) +K(R). (3.83)

In an effective-range expansion with an additional form-factor F (q2) to have control of
the high energy behaviour, the background term in general is:

K(B)
α (q) =

q2`

− 1
aα

+ 1
2
q2rα · · ·

F (q2) (3.84)

characterized by a set of effective low-energy range parameters aα, rα · · · . ` = j ± 1
2

is
the orbital angular momentum, belonging to the total angular momentum j such that
the parity πα = (−)` is conserved. πN resonances are contained globally in

K(R)
α =

1

q

∑
r

Γr(s)/2√
s−mr(s)

. (3.85)

The resonance width Γr(s) and the mass mr(s) depend on the centre-of-mass energy

s. The mass may be expressed in terms of a bare resonance mass m
(0)
r and a dispersive

mass shift, which can be calculated by the principal value integral

Pa,b(E) = P

∫
dq

(2π)2Ered

q2va(q)vb(q)√
s−√s0

, (3.86)

where
√
s0 = mπ + mN denotes the physical energy threshold. The mass shift is

generated by vo,cgcvc,o. While the discussions of the structure of the K-matrix are of
general kind and valid for the full spectra of πN scattering, we focus on the p-wave
∆-resonance with the final expression

K∆ = k k′
[
Kpot(k, k′) +

vc,o(k)vc,o(k
′)√

s−mr

]
. (3.87)

In figure 3.4 the WE-model is compared to the bare ∆, showing an effect on the ∆-
width mostly prominent at low energies..
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Figure 3.4: Comparison of the ∆-resonance amplitude. The dashed line (blue) is de-
rived by a fit to the experimental pion-nucleon cross section, the solid line
(red) represents the bare ∆ and the solid line (light blue) is calculated
within the WE-model, including a non-resonant term, coming from effects
of the bare quark state interacting with the actual baryon. [B+12]

3.2.3 Higher Energies Beyond the ∆-Resonance

In our approach, we are interested in pion-nuclear interactions as possible final states
in antiprotonic annihilation reactions. Therefore, we need to have a description for
an energy range from about 100 MeV up to 1.5 GeV, without aiming for a detailed
spectroscopic description. The higher the energy becomes, the more high partial waves
are accessible.

We describe the formation of resonance states in a simple approach by using a Breit-
Wigner function. The Breit-Wigner form is a simple way to describe the underlying
propagator structure. In the energy range of interest, a long list of resonances is
given in the literature [B+12]. Unfortunately, the agreement of different analyses is
very poor, which makes the situation still unclear. In tables 3.1 and 3.2 we show the
resonances listed in the PDG [B+12]. In their notation, the uncertainty is expressed
with the lack of stars, while four stars indicated that this resonance is seen by different
experiments and also in other corresponding reactions. Even though the existence
of those resonances is confirmed, the width, position and branching ratio might still
differ strongly from one analysis to another. Many of the referred analyses have been
done, without including the η meson. Because the neighbouring resonances have a
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large overlap, there are no clear structures seen in the cross section. Due to these
arguments, we decided to proceed in the following way: The PDG listing is used as
a guideline, but we combine the (anyhow indistinguishable) neighbouring resonances
and introduce an effective multiplicity, which is fitted to the data of the total cross
section.

There have been several analyses of the partial-wave decomposition of pion-nuclear

Name (Er) Γ [MeV] R I JP kr [1/fm]
N(1440) P1 300 0.60 1/2 1/2+ 2.013
N(1520) D3 150 0.35 1/2 3/2− 2.278
N(1535) S1 150 0.35 1/2 1/2− 2.278
N(1650) S1 165 0.60 1/2 1/2− 2.362
N(1675) D5 150 0.40 1/2 5/2− 2.856
N(1680) F5 130 0.68 1/2 5/2+ 2.873
N(1700) D3 100 0.15 1/2 3/2− 2.940
N(1710) P1 100 0.15 1/2 1/2+ 2.974
N(1720) P3 100 0.15 1/2 3/2+ 3.008

Table 3.1: Higher I = 1/2 resonance parameters, (PDG data). The last column is the
CM momentum for π N decay. L2J notation.

Name (Er) Γ [MeV] R I JP rank
∆(1600)P3 350 0.10− 0.20 3/2 3/2+ ∗ ∗ ∗
∆(1620)S1 118 0.20− 0.30 3/2 1/2− ∗ ∗ ∗∗
∆(1700)D3 300 0.10− 0.20 3/2 3/2− ∗ ∗ ∗∗
∆(1750)P1 300 0.10− 0.20 3/2 1/2+ ∗
∆(1900)S1 200 0.10− 0.30 3/2 1/2− ∗∗
∆(1905)F5 330 0.09− 0.15 3/2 5/2+ ∗ ∗ ∗∗
∆(1910)P1 250 0.15− 0.30 3/2 1/2+ ∗ ∗ ∗∗
∆(1920)P3 200 0.05− 0.20 3/2 3/2+ ∗ ∗ ∗
∆(1930)D5 270 0.05− 0.15 3/2 5/2− ∗ ∗ ∗
∆(1940)D3 ∼ 200 0.05− 0.15 3/2 3/2− ∗
∆(1950)F7 285 0.35− 0.45 3/2 7/2+ ∗ ∗ ∗∗
∆(2000)F5 ∼ 200 0.00− 0.07 3/2 5/2+ ∗∗

Table 3.2: Higher I = 3/2 resonance parameters, (PDG data). The widths are very
uncertain, those recommended by PDG are given in the second column. R
are branching factors for the πN channel.

cross sections, but unfortunately, the agreement between different analyses is unclear.
Beside the resonances which might be excited in the pion-nucleon interaction, there are
also thresholds of pion production, which open at higher energies. To finally describe
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the elementary cross section, we make an ansatz, indicated by the subscript a, of
higher-lying resonances which are put together in a schematic way:

Im f 1/2
a = −Im Σh

1

kh

λΓ/2

Eh − E − iΓ/2
, (3.88)

Re f 1/2
a = −Re Σh

R

kh

λΓ/2

Eh − E − iΓ/2
(3.89)

with branching ratio R, width Γ and position of the Resonance Eh. The same definition
is used for isospin 3/2 amplitudes

Im f 3/2
a = −Im Σh

1

kh

λΓ/2

Eh − E − iΓ/2
, (3.90)

Re f 3/2
a = −Re Σh

R

kh

λΓ/2

Eh − E − iΓ/2
(3.91)

The sum extends over four “ansatz” states f
1/2
(1440), f

1/2
(1520), f

3/2
(1635), f

3/2
(1700) specified in Table

3.3.

I Eh Γ [MeV] R λ kh [1/fm]
1/2 1440 300 0.60 0.2 2.010
1/2 1520 120 0.50 3 2.311
1/2 1635 165 0.60 1 2.772
1/2 1700 100 0.20 5 2.940
3/2 ∆(1232) 1 2 1.151
3/2 1650 120 0.15 1.8 2.770
3/2 1800 100 0.10 4 3.278
3/2 1950 285 0.40 4 3.789

Table 3.3: Ansatz resonances used to describe the local optical potential. The gradient
potential due to ∆(1232) is discussed in the text.

3.2.4 True Absorption – Two-Nucleon Term

Even though the πN interaction builds the basis of πA interactions, there are also
reactions which do not have a counter part in the free scattering case. In free space, the
absorption is an actual rearrangement, which can be seen by cutting the corresponding
Feynman diagrams at different times, finding always the pion line. In the nucleus,
however, the surrounding nucleons can absorb flux too, so that a true absorption
becomes possible, where the pion vanishes completely in between.

So far, the discussion of pions was focused on the interaction with only one nucleon.
In the nuclear medium however, more nucleons are available as interaction partners,
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3 Pion-Nucleus Interactions

and the higher order of nuclear densities becomes important. In this section, the in-
teraction of one pion with two nucleons will be discussed.
In the literature one finds different approaches to the two-nucleon term. Especially, the
inclusion of the real-part is treated differently. [JS96] use a real-part in their calcula-
tion, while [GAK98,NLG98,GG82] neglect it. In the following, an ansatz is estimated
with a simple form factor in order to derive a power series in the momentum and jus-
tify the omission of the real part in our calculation. After fixing the structure of the
two-nucleon amplitude C, the density dependence is developed on basis of contributing
Feynman-diagrams. Finally, a potential and its application to the two-nucleon absorp-
tion cross section are presented.

The reaction of the pion with two nucleons is also known as ’true absorption’ due to
the fact that the pion line in a corresponding Feynman diagram truly vanishes rather
than forming a ∆. Hence, the reaction of interest reads

VπNN→NN GNN VNN→πNN . (3.92)

Here V are the interaction potentials of absorption and emission of the pion and GNN

is the NN propagator. Contributions from two-nucleon interactions are known to be
of importance and are taken into account in a phenomenological ansatz by assuming
the interaction is separable into nuclear density and an amplitude [JS96]:

α2(r) = 4π [C0 4%n(r)%p(r)− qπC1 %1(r)%0(r)] 2/(1 + γπ) (3.93)

The amplitudes Ci (i = 0, 1) carry the energy dependence and strength of the inter-
action, while the nuclear densities describe nuclear properties. To the strength of Ci
contribute exchange potentials, but in the nuclear medium, NN correlations have an
effect. Altogether, the isoscalar, the isovector and the NN correlation amplitudes are
three different contributions and should be considered separately, but to simplify the
model, we assume Ci ≡ C, which is defined by dispersion relation

C = f 2
∆Nπ

(Γ/2)2

(Tr − T )2 + (Γ/2)2

∫
dk

(2π)2µNN

v(k)2PNN(k)

ENNπ − ENN(k)
, (3.94)

where f∆Nπ is a coupling strength, ENNπ is the initial energy, ENN(k) is the energy
of the intermediate NN pair and PNN(k) is the Pauli exclusion operator. An analytic
expression can be derived with PNN = 1 and a form factor of the form

v(k) = k

[
1 +

k2

κ2

]−3/2

, (3.95)

leading to a power series

C = f 2
∆N

(Γ/2)2

(Tr − T )2 + (Γ/2)2
v(k0)2[ik3

0 +
κ3

8
(1 + k2

0/κ
2)2 +

κk2
0

2
(1− k2

0/κ
2)], (3.96)
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3.2 Pion-Nucleus Interaction Potential

where k0 is the on-shell NN relative momentum determined by the pion energy and
binding energies of the nucleons and

k0 =
√
M(Eπ − 2EB) ∼ 2− 3[fm−1]. (3.97)

The result 3.96 has both a real and an imaginary part, but analysing it we find that
the real part is an order of magnitude smaller than the imaginary part. Nevertheless,
in high order ∆, N collisions, the real part becomes important. On the other hand,
within the nuclear matter, an averaging over nuclear binding energies has to be carried
out, leading to an even smaller real part of C. The corresponding imaginary part gives

Im C =
f 2

∆NπΓ/2)2

(Tr − T )2 + (Γ/2)2
< k3

0 v(k0)2 >, (3.98)

where < k3
0 v(k0)2 > is an average over nucleon binding energies which involves a

momentum cut-of for k0 smaller than the Fermi momentum kf . The energy and density
dependence of Im(C) can be calculated in the local density approximation:

< k3
0v(k0)2 >=

∫
dk1

N1

∫
dk2

N2

k3
0 v(k0)2Θ(k0 > kf1)Θ(k0 > kf2) (3.99)

where N = 4πk3
f . Form-factor 3.95 was used to derive an analytical expression C, it is

now changed to a more realistic p-wave one of the form

k(1 + k2/β2)2. (3.100)

v =
1

1 + λ

(
1 + λe

− k
2

κ21

)
e−

k2

κ2 (3.101)

The imaginary part of C turns fairly stable against the density changes thanks to the
exclusion principle. At pion energies larger than 400 MeV the energy dependence may
be stronger, but the quadratic resonant factor in equation 3.98 suppresses this capture
mode at higher meson energies. Constant C is a fair first-order approximation. Hence,
we follow the ansatz of [GAK98,AB90]:

WNN(r) = −iWo
(Γ/2)2

(Tr − T )2 + (Γ/2)2
4ρ(r)n ρ(r)p (3.102)

and use a purely imaginary amplitude. Because our model of the pion interaction
is also applied to final-state interactions of antinucleonic reactions in nuclear matter,
deep penetration into the nucleus is expected, and an improved density dependence is
demanded. In our model, we assume a two-step process, where the pion gets captured
by a nucleon to form a ∆ first, and after propagating, it decays into a nucleon, emitting
a pion, giving

VπNN→N = VπN,(N)→∆,(N) G∆N V∆N→NN . (3.103)
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π−

p

p

π−

p

p

∆0 p ∆0

π− π−

n

Figure 3.5: Feynman diagram

Vice versa, after the propagation of GNN

VNN→NNπ = VNN→∆N G∆N V(N),∆→πN,(N) (3.104)

As an example the Feynman diagram of the interaction of a π− with two protons is
shown in fig. 3.5. In appendix A all considered diagrams are shown. After calculating
the Clebsh-Gordan coefficients in the example√

2

3

√
2

3
·
√

2

3

√
2

3
· ρnρp =

4

9
ρnρp (3.105)

Summarizing over all contributions taken into account gives the density dependence

π− : 5 ρpρn+ρ2
p (3.106)

π0 : 4 ρpρn+ρ2
p + ρ2

n (3.107)

π+ : 5 ρpρn + ρ2
n (3.108)

In terms of isoscalar and isovector densities one gets:

π− :
1

2
[3ρ2−2δρ2 − 1ρδρ] (3.109)

π0 :
1

2
[3ρ2−1δρ2 ] (3.110)

π+ :
1

2
[3ρ2−2δρ2 + 1ρδρ] (3.111)

To implement it to the interaction potentials, the density dependence is given with a
function % in terms of the charge of the scattered pion:

% =
1

2
[3ρ2 − (1 + q2

π)δρ2 + qπρδρ] (3.112)

In addition, the corresponding derivatives are displayed, which are used in the Kisslinger-
type potential:

%′ =
1

2
[6ρρ′ − 2(1 + q2

π)δρδρ′ + qπ(ρ′δρ+ ρδρ′)] (3.113)

%′′ =
1

2
[6(ρ′2ρρ′′)− 2(1 + q2

π)(δρ′2 + δρδρ′′) + qπ(ρ′′δρ+ 2ρ′δρ′ + ρδρ′′)] (3.114)
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3.2 Pion-Nucleus Interaction Potential

leading to the Laplacian:

∆% = 3ρ∆ρ− δρ(1 + q2
π)∆δρ+

1

2
qπδρ∆ρ+

1

2
qπρ∆δρ+ 3ρ′2

− (1 + q2
π)δρ′2 +

1

2
qπ2ρ′δρ′ (3.115)

Finally we obtain the contribution to the interaction potential:

−→
∂ α2

−→
∂ ⇒ WNN(r) = −iWo

(Γ/2)2

(Tr − T )2 + (Γ/2)2
%(r) (3.116)

The cross section for the absorption is calculated with the Eikonal wave function ψ,
which contains the full interaction potential UL and the imaginary part of the derived
potential WNN given in eq. 3.116:

σabs =
2ω

k

∫
|ψ|2ImWNNd3r. (3.117)
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3 Pion-Nucleus Interactions

3.3 Consequences of Momentum Dependent Potentials

The derivatives in the Kisslinger-potential eq. 3.56 have several effects which need
special treatment. In the following the considered consequences are presented, starting
with the effect on the nuclear density, followed by the challenges meeting within the
eikonal approach.

3.3.1 Nuclear Density: Regularized Fermi-Function

Within this work, the nuclear density is described in form of the commonly used Fermi-
function

F (x) =
1

1 + ex
. (3.118)

A good approximation to proton (q = p) and neutron (q = n) ground-state densities is

ρq(~r) ∝ ρ0F ((r −Rq)/aq) (3.119)

where aq is the diffuseness parameter and Rq the half density radius and the form factor
ρ0, which is about 1.2 fm and has the form

ρ0 =
3Nq

4πR3
q

1

1 +
(
πaq
Rq

)2 +O(e−Rq/aq) (3.120)

with the normalization

Nq =

∫
d3rρq(~r) (3.121)

giving either the number of protons or the number of neutrons. While ρ0 in eq. 3.120
leads to a good description of the nuclear density itself, it fails when it comes to
derivatives of ρ. The Laplace-operator in the wave equationcontains a term of the first
derivative multiplied with the inverse of radius

∆r ∝ 1/r∂ρ/∂r (3.122)

leading to a divergence at the origin. This is due to the constant behaviour of the
first derivative, which can not compensate the 1/r behaviour. However, this is not
what one would expect, because close to the origin mainly s-waves contribute to the
wave-function

ϕl(r) ≈ a0r
l + a2r

l+2 + . . . (3.123)

lim
r→0

ϕl ≈ a0 + a2r
2 +O(r4) (3.124)
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3.3 Consequences of Momentum Dependent Potentials

Figure 3.6: Comparison of the Fermi function and the regularized Fermi function for
the nuclear density of 12C (left) and its Laplacian (right).

where the nuclear density is calculated by the square of the wave function, giving

ρ ∝ a2
0 + 2a0a2r

2 + a2
2r

4 (3.125)

lim
r→0

ρ ≈ a2
0 + 2a0a2r

2, (3.126)

neglecting contributions of the order of r4. The Laplacian finally gives

ρ ≈ 12a0a2 (3.127)

which is constant, as would be expected intuitively.
To derive such a behaviour also within a description in terms of the Fermi function,

the divergent 1/r term needs to be suppressed for small r. This is achieved by the
introduction of an ultraviolet form factor applied to the first derivative, where the
divergence arises. The regularized derivative of the Fermi function gives

f ′ =
(

1− exp
(r
b

))
· F ′. (3.128)

The actual density is derived by integrating ansatz 3.128. The general form of the
integral of 3.128 gives a hyper-geometric function, but an analytic expression can also be
derived when the parameter b of the form factor is chosen to be equal to the diffuseness
parameter aq finally giving

f(r) = (1− exp(−r/aq))F (r)− exp(−Rq/aq) [ln(1 + exp(−(rr)/aq))] (3.129)

This regularized Fermi function still has the behaviour of a common Fermi distribution
for large and intermediate values of r, but succeeds also in the derivatives of the
density at the origin. In figure 3.3.1 the comparison between the Fermi function and
the regularized Fermi function is shown for 12C. The nuclear density in this work is
hence

ρ = ρ0f(r), (3.130)
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where the diffuseness parameter and the half-density radius are described via a para-
metrization in terms of proton number Z and mass number A derived by fits to Skyrme
calculations1, (similar to [HL98])

ap = 0.4899− 0.1236
A− 2Z

A
(3.131)

Rp = 1.2490A1/3 − 0.5401− 0.9582
A− 2Z

A
(3.132)

an = 0.4686 + 0.0741
A− 2Z

A
(3.133)

Rn = 1.2131A1/3 − 0.4415 + 0.8931
A− 2Z

A
(3.134)

3.3.2 Krell-Ericson Transformation

In this section, the derivation of the solution of the wave equation is presented. To
introduce the procedure in use, it is not necessary to look into the explicit form of
the involved potential. The crucial point is that terms enter into the potential which
contain a derivative of first order.

UπA = Us +∇Up∇, (3.135)

where Us is dominated by s-waves and Up by p-waves, accordingly. The inner structure
of Us and Up was given in previous chapters. In this section, it is only mentioned that
Us and Up depend on r and on the nuclear density ρ. In the following, the so called
Krell-Ericson transformation is introduced, which leads to an effective potential within
a new wave equation.

As has been discussed previously, the scattering of pions with a nucleus can be
described by the Klein-Gordon equation, with the momentum dependent potential as
in eq. 3.135: [

∆ + k2 − Us −∇Up∇
]
φπ = 0. (3.136)

φπ is the pion wave function, where the Coulomb interaction is neglected for the mo-
ment. The aim is to transform 3.136 in such a way that the first derivative term is
eliminated. To that end, the wave function is separated into an amplitude a and a
transformed pion wave function ψπ:

φπ = a(r)ψπ. (3.137)

To express the Klein-Gordon equation in terms of the ansatz wave function, the cor-
responding derivatives give:

∇φπ = (∇a)ψπ + a∇ψπ, (3.138)

∆φπ = (∆a)ψπ + a∇ψπ + 2∇a · ∇ψπ. (3.139)

1private communication with Prof. Dr. Lenske, unpublished
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3.3 Consequences of Momentum Dependent Potentials

These terms appear in the derivative term of the Klein-Gordon equation, which gives
explicitly:

∇Up∇φπ = (∇Up) · ∇φπ + Up (∆φπ) (3.140)

= (∇Up) · [(∇a)ψπ + a∇ψπ] (3.141)

+Up [(∆a)ψπ + a∆ψπ + 2∇a · ∇ψπ] . (3.142)

After reordering the terms of the Klein-Gordon equation regarding the order of differ-
entiation, we derive:

{[(1− Up) a] ∆

+ [2 (1− Up)∇a− a∇Up] · ∇
−Us − (∇Up) · (∇a) + (1− Up) ∆a+ k2

}
ψπ = 0. (3.143)

In order to let the first derivative vanish, the amplitude a must fulfil the equation:

2(1− Up)∇a− a∇Up
!

= 0 (3.144)

and, separated by variables,:

1

2(1− Up)
∇Up =

1

a
∇a. (3.145)

giving, with the help of Lebesgue’s dominated convergence theorem,

∇ ln

(
a

a0

)
= −1

2
ln

(
1− Up
1− Up0

)
(3.146)

and finally comparing the arguments:

a = a0

(
1− Up
1− Up0

)−1/2

= a0

√
1− Up0
1− Up

(3.147)

For large distances of r, the amplitude must be equal to one

lim
r→∞

a = 1 (3.148)

giving a0

√
1− Up0 = 1 and therefore:

a (~r) =
1√

1− Up(~r)
. (3.149)

The implementation of the amplitude into equation 3.143 gives:{√
1− Up∆ +∇− Us − (∇Up) · (∇a) + (1− Up) ∆a+ k2

}
ψπ = 0 (3.150)

and finally eq. 3.55: [
−~2/(2µ)∇2 + UL + VC

]
ϕ = Ecmϕ (3.151)

with

UL =
Us

1− Up
− k2Up

1− Up
−

[
1
2
∇2Up

1− Up
+

( 1
2
∇Up

1− Up

)2
]

(3.152)
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3.3.3 Higher-Order Corrections to the Eikonal Approach

It is difficult to predict the effect of neglecting higher-order derivatives, as has been
presented in the derivation of the Eikonal, especially when the involved potential has
such a complex structure. Nevertheless, in the following, two procedures are introduced
which have been studied within this work, but happen to be numerically unstable and
therefore have not been taken into consideration in the final calculations.

Iterative procedure As a first idea, an iterative procedure is taken into account,
where the second derivative is non-zero in the second step of the iteration. In the
derivation of the solution of

[−i∆S + (∇S)2 − k2 + U ]φ = 0 (3.153)

the derivative of second order, namely the −i∇2S term, has been neglected in the
previous discussions. Indeed, the second derivative is expected to be small, but to get
a better understanding, it is considered in a second step within an iteration process.
First it is neglected (∆S0 = 0), but in the following step, the second derivative can be
calculated from the first result and taken into account

K =
√
k2 − U + i∆S. (3.154)

To derive a formula for the second derivative, an oriented gradient ∂ = k̂~∂ is applied
to K, giving

~∂k̂K = ∆S =
∂(k2 − U)

2
√
k2 − U + i∆S

+
i∂∆S

2
√
k2 − U + i∆S

. (3.155)

leading to iterative formula

∆Sn+1 =
∂(k2 − U)

2
√
k2 − U + i∆Sn

+
i∂∆Sn

2
√
k2 − U + i∆Sn

(3.156)

with the initial condition ∆S0 = 0, and therefore

∆S1 =
∂(k2 − U)

2
√
k2 − U

= ∂
√
k2 − U (3.157)

∆S2 =
∂(k2 − U)

2
√
k2 − U + i∆S1

+
i∂∆S1

2
√
k2 − U + i∆S1

(3.158)

=
∂(k2 − U)

2
√
k2 − U + i∂

√
k2 − U

+
i∂2
√
k2 − U

2
√
k2 − U + i∂

√
k2 − U

. (3.159)

Unfortunately, the application of these correction terms lead to numerical instabilities.
Therefore, another approach was studied, which will be presented in the following.
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Alternative procedure Before the next approach to derive higher order corrections
is presented, the relevance in terms of the dependence of k is estimated. Reusing the
notation from the above, the local momentum is defined

K2 = k2 − U (3.160)

leading to the Eikonal equation[
−i∆S +

(
~∇S + ~k

)2
]

= K2. (3.161)

Using cylindrical coordinates and ~k = kêz, the differential equation gives explicitly:(
~∇S + ~k

)2

=

(
k +

∂S

∂z

)2

+

(
∂S

∂b

)2

(3.162)

hence (
k +

∂S

∂z

)2

= K2 −
(
∂S

∂b

)2

+ i∆S. (3.163)

Analogous to the derivation of the iteration formula, the second order derivatives and
derivatives in b are neglected as a first step, giving the known result

S1(b, z) =

z∫
−∞

dz′ (K(b, z′)− k) . (3.164)

To estimate the contribution of the derivative of b, it is performed to the first-step
solution above, giving

∂S

∂b
≈ ∂S1

∂b
=

z∫
−∞

dz′
∂K

∂b
=

z∫
−∞

dz′
(
−1

2

1

K(b, z′)

∂U

∂b

)
∼ O

(
∂U/∂b

k

)
(3.165)

and correspondingly

∂2

∂b2
S ≈ ∂2S1

∂b2
∼ O

(
∂2U/∂b2

k

)
(3.166)

while the leading order term is

k +
∂S

∂z
= K ∼ O (k) (3.167)

hence, (
~∇(kz + S)

)2

=

(
k +

∂S

∂z

)2

+ i∆S

(
+ O

(
1

k2

))
. (3.168)
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The second derivative in z gives

∂2

∂z2
S =

∂2

∂z2
(kz + S) =

∂

∂z
K =

−∂U/∂z
2k
√

1− U/k2
∼ O

(
∂U/∂z

k

)
(3.169)

Summarizing these findings: The derivations in b are of order O(U ′/k2) and O(U ′′/k).
For the latter, the additional suppression due to the second derivative in U comes into
play, which is usually small. Both terms are considered to be negligible. The second
derivative in z, however, is taken into account in the following calculations. Therefore,(

k +
∂S

∂z

)2

− i
∂2

∂z2
S = K2 (3.170)

To solve this equation we define a new variable

Ω = kz + S (3.171)

so that

∂

∂z
Ω− i

∂2

∂z2
Ω = K2 (3.172)

Defining v = ∂Ω/∂z leads to the differential equation

v2 − iv′ = K2, (3.173)

where the prime indicates the derivative in z. Like in the earlier considerations, v′ is
neglected in the first attempt, getting

v0 = K. (3.174)

v′ is expected to be a small correction to v0, hence

v = v0 + ε, v2 ∼ v2
0 + 2εv0 and (3.175)

v2
0 + 2εv0 − i(v′0 + ε′) = K2. (3.176)

Substituting v0 = K gives

K2 + 2εK − i(K ′ + ε′) = K2, (3.177)

leading to

ε′ + 2iKε = −K ′, (3.178)

an inhomogeneous differential equation of first order. The solution of the homogeneous
equation is

ε0 = A exp(−2iS0) (3.179)
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where

S0 =

z∫
−∞

dz′K (3.180)

and, by variation of the constant,

A′ = −K ′ exp(2iS0) (3.181)

A(b, z) = −
z∫

−∞

dz′K ′(b, z′) exp(2iS0(b, z′)). (3.182)

Finally, the solution of eq. 3.178 is

ε = A(b, z) exp(−2iS0(b, z)). (3.183)

Getting back to the original variables

v = Ω′ = K(b, z) + ε(b, z) (3.184)

finally gives

S = Ω− kz =

z∫
−∞

dz′(K(b, z′)− k) +

z∫
−∞

dz′ε(b, z′). (3.185)

Unfortunately, the exponential function in ε rises too rapidly for small incident energies,
giving enormously large cross sections (infinite). This effect dies out so slowly that also
regions of interest are spoiled in our calculation. Therefore, these correction terms were
not included in our calculations in order to prevent numerical instabilities.
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3.4 Results

In this section, the results for pion-nucleon cross sections, as well as the scattering of
pions with several nuclei are presented. The parameter set has been fixed to the pion
nucleon data. For the calculation of the pion nucleus potential, these parameters have
not been changed.

3.4.1 Comparison to Pion-Nucleon Scattering Data

We derive the cross sections of pion scattering with a proton in the following way:

σ(π+p) =
4π

k

[
Imf 3/2 + Imf∆

]
(3.186)

σ(π−p) =
4π

k

[
1

3

(
Imf 3/2 + Imf∆

)
+

2

3
f 1/2

]
(3.187)

The resulting fit, with experimental data for comparison, is shown in figure 3.7 for
σ(π+p) and in figure 3.8 for σ(π−p)
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Figure 3.7: π+ scattering in comparison with data from [B+12]

The derivation of the pion-nucleon cross sections is based on our schematic ansatz-
amplitudes (see section 3.2.3) due to the uncertain situation of resonances listed in the
PDG. We have chosen a special amplitude for the ∆-resonance (eq. 3.75), which dom-
inates the region of interest from 100 MeV up to 1.5 GeV incident pion energy. The
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Figure 3.8: π− scattering in comparison with data from [B+12]

amplitude for ∆ has been chosen in such a way that it reproduces the purely isospin
3/2 cross section of π+p scattering. This was achieved by use of an energy-dependent
width and form factors. For all other ansatz amplitudes, simple Breit-Wigner func-
tions were used.

3.4.2 Collection of Terms Contributing to the Pion-Nucleus Potential

The final pion-nucleus potential has been developed within the previous sections. The
approach of [JS96] has been used as basis, but several changes to the potential have
been applied. Nevertheless, the main structure of the used Kisslinger-type potential
3.56 has stayed intact:

UK = Us + ∇Up∇ (3.188)

Using the Krell-Ericson transformation, a local potential 3.152

UL =
Us

1− Up
− k2Up

1− Up
−

[
1
2
∇2Up

1− Up
+

( 1
2
∇Up

1− Up

)2
]

(3.189)

is derived. The s-wave potential Us is composed of s-wave contributions. We use the
amplitudes b0,1 from [JS96] at 291 MeV with an additional higher energy resonance
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potential:

U1/2 =4πγ1 · f 1/2 1

3
(ρ+ qπ δρ) (3.190)

U3/2 =4πγ1 · f 3/2 2

3

(
ρ− 1

2
qπ δρ

)
(3.191)

with scattering amplitudes f 1/2 (eq. (3.88 and 3.89) and f 3/2 (eq. (3.90 and 3.91).
The corresponding s-wave potential reads:

Us(r) = Us(r)
∣∣∣
B0,1=0

+ Us(r)
∣∣∣
b0,1(297 MeV)

+ U1/2 + U3/2 (3.192)

The p-wave potential from [JS96] has been changed in such a way that the amplitudes
are not taken from [JS96], but our ansatz has been developed where f∆ (eq. 3.75) is
used, leading to:

c0 =
2

3

1

k2
f∆ (3.193)

c1 =
c0

2
(3.194)

implemented into α1 (eq. 3.61):

α1(r) = 4π [c0 %0(r)− qπc1%1(r)]/γ1 (3.195)

The two-nucleon contribution did not only introduce a differeynt description of the
amplitudes, but also a different density dependence (eq. 3.116)

α2 = 4π

[
−iWo

(Γ/2)2

(Tr − T )2 + (Γ/2)2
%(r)

]
/γ2 (3.196)

with the density (eq. 3.112):

% =
1

2
[3ρ2 − (1 + q2

π)δρ2 + qπρδρ] (3.197)

and therefore the p-wave dominated potential (eq. 3.60):

Up(r) =
α1

1 + ξ/3α1

+ α2. (3.198)

Finally, the Coulomb potential is added:

U(r) = UL + VC (3.199)

The Krell-Ericson transformation (see section 3.3.2) leads to a Schrödinger-like equa-
tion. It is solved in Eikonal approximation, where the cross sections are defined in the
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following. The absorption cross section and the absorption cross section for two-nucleon
reactions read:

σabs =
2µ

k

∫
dbb2πdz |ψ|2 ImV opt

σ2N
abs =

2ω

k

∫
dbb2πdz |ψ|2 ImW0NN (3.200)

The other cross sections depend on χ (eq. 2.71):

χ = − 1

2k

+∞∫
−∞

U(~b, z)dz (3.201)

giving

σtot =
4π

k
Imf (ϑ = 0) = 4π

∞∫
0

db [1− exp (−Imχ) cos (Reχ)]

σel
tot =

∫
dΩ (fE)2

=4π

∞∫
0

db [1− exp (−Imχ) cos (Reχ)]− 2π

∞∫
0

db [1− exp (−2Imχ)]

σr
tot =σtot − σel

tot = 2π

∞∫
0

db [1− exp (−2Imχ)] . (3.202)

3.4.3 Comparison to Pion-Nucleus Scattering Data

The nuclei presented in the following have been chosen due to the availability of data
mainly. The data [ANA+81,CTA+74] provides both informations: scattering of π− and
of π+, giving the opportunity to study also isospin structures. The following results are
used for exploratory studies from very light nuclei such as Lithium up to very heavy
nuclei like Bismuth. For all calculations we use the same paramter-set. As we have
discussed within this work, the highly complicated structure of the amplitudes can
quite successfully be described with phenomenological amplitudes. To conserve most
information from the microscopic models, we keep the number of free parameters as low
as possible. The price we pay are small discrepancies with the data. This is expected
from the rather simple ansatz we use, which fails to describe the very maximum of
the ∆-resonance for almost every nucleus. This could be improved by taking into
consideration the separation energy, which is characteristic for valence nucleons of
each nucleus. The nuclei which are discussed in this work vary from few MeV in the
case of 209Bi to almost 20 MeV in the case of 12C. If a nucleon is bound strongly, more
energy is needed to produce a resonance, which in our description leads to a shift of
the position of the resonance. The effect of the resonance shift is shown in fig. 3.9.
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Figure 3.9: Comparison of calculation with (dashed line) and without (solid line) sep-
aration energy. Shown are total (blue), elastic (red) and 2 N absorption
cross sections for π+ scattering on 12C

In addition to the resonance shift due to the separation energy, we introduce an addi-
tional collision-broadening width, which we assume to be equal for all nuclei and which
has the value of 20 MeV. With the introduction of these parameters, our calculation
has been improved, but still shows descripancies, where for 12C we do worst.

In the following, these calculations are presented for several nuclei. The lightest
nucleus we use is Li, while the heaviest is Bi. The experimental data is mainly taken
from [ANA+81,CTA+74].
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Lithium
7Li is a stable nucleus and constitutes 95% of Lithium in nature. It is composed of
three protons and four neutrons. Because it is very small, it is mainly dominated by
surface effects. This leads to a sensitivity to the derivative of the nuclear density and
therefore of its shape. For differential cross sections, we compare to data from 6Li,
where we find a good description for 100 MeV, but with increasing energy, we cannot
describe the second maximum and fail to describe the first minimum for all cases, see
fig. 3.10. Due to the neutron excess of 7Li we describe the π− (fig. 3.11) cross sections
better than π+ (3.12). Unfortunately, there are only two data-points available.
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Figure 3.10: Differential cross section for π+ (left) and π− (right) scattering on 6Li for
the energies 100 MeV, 180 MeV and 240 MeV.
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Figure 3.11: Shown are total (blue), elastic (red) and 2 N absorption cross section for
π− scattering on 7Li

σ
 [

m
b
]

Tπ [MeV]

Figure 3.12: Shown are total (blue), elastic (red) and 2 N absorption cross section for
π+ scattering on 7Li
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Carbon

Carbon in nature consists to about 98% of the stable 12C, which is built of six protons
and six neutrons. Even thogh it is a symmetric nucleus, it is rather complicated, and
our model shows the largest discrepancies to the data as can be seen in fig. 3.9. The
figure shows also that 12C has the largest effect in our selection of nuclei by shifting the
∆-resonance by the amount of the separation energy, which is almost 20 MeV. This
large separation energy can, to some extent, be explained by the nuclear shell model.
The valence nucleons (both valence-proton and -neutron) fill the 1p3/2 shell exactly
half.
Half filled shells are known to give a comparable large binding and therefore make
this state more stable, but it is unlikely that only these shell effects lead to such
high separation energies. In addition to the nuclear shell structure of 12C, there is a
contribution to the binding due to the involved structure of 12C. The high separation
energy might also be caused by the intrinsic formation of three α-particles, which
themselves are known to be strongly bound. However, we aim for a more general
description, covering wide ranges of the nuclear chart, without taking into account
individual properties of each nucleus. Our simple model is therefore not suited to
perform a detailed spectroscopy of each nucleus.

In fig. 3.13 several calculations are displayed. The solid curve (red) represents the
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Figure 3.13: Interaction density and nuclear density in the C nucleus, along the meson
trajectory (b = 0) . Impact momentum k = 187 MeV/c.
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interaction density of the full potential, the dottet curve (blue) only the two-nucleon
contribution, defined as integrand of eq. 3.200, respectively. the dashdotted line (green)
is the nulear density. The figure shows, that the interaction with the 12C is surface
dominted., having not much overlab with the nuclear density. The contribution of
the two-nucleon absorption term is very high and can be understood by the estimated
effective number of participating nucleons Neff from [ANA+81] at about Γ∆/2 from the
maximum, which gives 1.39.
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Oxygen
16O is one of the double-magic nuclei, which are known to be especially stable due to
their closed shell. 16O has 8 protons and 8 neutrons filling up the 1p shell. For oxygen,
experimental data exists for differential cross sections well beyond the ∆-resonance to
check our approach. The comparison is shown in fig. 3.14, where the differential cross
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Figure 3.14: Differential cross section for π+ scattering on 16O for the energies 162
MeV, 240 MeV and 343 MeV.

section is shown for π+ scattering on 16O for 162 MeV, 240 MeV and 343 MeV incident
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energy of the pion. The description improves with increasing incident energy. The
calculation of the highest energy in fig. 3.14 agrees satisfactorily well over five orders
of magnitude and is surprisingly good at large angles. The Eikonal approximation is
expected to work well for high energies, but is conceived actually for small angles. One
argument might be that the 16O nucleus is rather round and may be easier described
within our model, which does not take into account advanced nuclear structure effects
or vibrational excitation modes. Nevertheless, despite the round shape, 16O can even
form a linear chain structure by clustering into four α-particles like 12C, as discussed
in [IMIO11].
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Bismuth
209Bi is a heavy nucleus with a closed neutron shell 3p with 126 neutrons. The number of
protons is 83, which is one additional proton to the closed 3s shell of 82 protons, leading
to a high nuclear spin of 9/2 and a corresponding magnetic moment of 4.1106 µ/µN .
209Bi can be treated as a stable nucleus because its estimated half-life is about 100
billion times larger than the age of the universe. In figures 3.15 and 3.16 the cross
sections are plotted for π+ and π−scattering, respectively. The description of all three
cross sections, namely total, elastic and absorption, is satisfactorily well for π+, but
surprisingly weak for π−. The π− mainly reacts with the valence proton. The valance
proton may be covered by the neutron skin, which is not taken into account in our
approach, and might cause the discrepancies. Nevertheless, the data for π− scattering
is scarce and accompanied with large error-bars. Comparing 209Bi with 12C, we find
that the pion penetrates more deeply into the nucleus. This can be seen in fig. 3.17,
where the full and the two-nucleon absorption terms are plotted together with the
neutron density. In comparison to 12C (fig. 3.13), the two-nucleon absorption term
is drawn more into the nucleus and has approximately only half the magnitude. This
can be understood from the estimated effective number of participating nucleons Neff

from [ANA+81] at about Γ∆/2. It indicates that on average there are more than 2
nucleons involved (4.32), which are therefore not contributing to the two-nucleon term
and explain the big difference.
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Figure 3.15: Shown are total (blue), elastic (red) and 2 N absorption cross section for
π+ scattering on 209Bi
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Figure 3.16: Shown are total (blue), elastic (red) and 2 N absorption cross section for
π− scattering on 209Bi
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Figure 3.17: The interaction density (integrand of absorption cross section) in the Bi
nucleus, along the meson trajectory (b = 0). Impact momentum k = 187
MeV/c.
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4 Antiproton-Nucleus Interactions

4.1 Antinucleon-Nucleus Potential

Following the strategy introduced for pions in chapter 3, we will first discuss aspects
of the two-body antinucleon-nucleon interaction and second apply our ansatz to the
nuclear medium by using a folding approach, where the nuclear density contributes.

4.1.1 Antinucleon-Nucleon Interaction

Investigating interactions involving antinucleons is challenging, but provides unique
possibilities. First, the interaction of antinucleons with matter is interesting itself. The
annihilation is known to play a dominant role in the interaction process, but is still
not fully understood. Especially in the quark picture, the description is very complex
and unclear. The fundamental understanding of antimatter-matter interactions is of
renewed interest these days due to many upcoming experimental set-ups. Due to
the manifold reactions and the ensuing large background, however, the experimental
situation is quite challenging too.

Second, the antinucleon, in particular the antiproton, is well suited for use as a
probe for nuclear matter investigations. It allows to study nuclear properties along
isotopic chains as proposed in AIC. The antiproton is also sensitive to the nuclear
radii [LK07,Len09] and yields a possibility of the estimation of the radius of both pro-
ton and neutron in the same experiment, which has never been done.

In this work, we investigate the meson production in a reaction of antinucleons with
different nuclei. Therefore, we are interested in a wide energy range which will be,
for example, covered by the PANDA experiment at GSI in the near future. We would
like to pave the way towards the full description of meson production in antinucleon-
annihilation reactions on nuclei on a quantum mechanical level.

To derive the description of antinulceon-nucleus interactions, we follow the procedure
which has been introduced for the pions. Similar to the pion, the antinucleon cannot
penetrate deeply into the nuclear medium, and the interaction therefore takes place
mainly at the peripheral surface region of the nucleus, at very low densities.

The interaction of antinucleons with nucleons is strongly related to the interaction
of pions with nucleons. The involved Feynman diagrams can be transformed from one
interaction into another by simple rotation. A detailed description of the underlying
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symmetries which link those two reactions is discussed in [RHKS96]. Because the anti-
protons are absorbed in nuclear matter even more strongly, we use a folding approach,
where the elastic free-space antinucleon-nucleon T -matrix is folded with the nuclear
densities, taken from self consistent Hartree-Fock-Bogoliubov calculations.

The Eikonal approximation, which will yield us the information about the incoming
and outgoing wave function, works even better for antinucleons than pions, due to the
higher mass.

Over the last decades microscopic models have been quite successful to describe
antinucleon-nucleon interaction. The advantage of a description on a hadronic level is,
that cross references to other reactions, such as pion-nucleon interactions, is possible.
The corresponding Feynman diagrams share the same vertices and can be obtained from
rotation in Mandelstam-space as discussed in [RHKS96]. Those microscopic models,
however, face a big problem, because the exchanged particles, which are used as medi-
ators of the interaction, are themselves composite objects. The corresponding theories
are therefore not fundamental, and renormalization is a challenge. With increasing
energy, more and more complicated interaction-graphs can be constructed. We present
two possible ways to tackle this problem.

First, we focus on specific channels, which are treated explicitly, while all other
contributions are taken into account by an ansatz optical potential. This is done by
the Jülich/Bonn group, the Paris group and the Nijmegen group. The work of the first
two will be briefly introduced in the following.

Second, the existing data can be used to find a description for the full energy range,
starting from 100 MeV and going up to a few GeV by making an phenomenological
ansatz, inspired by observables. This will be discussed after introducing the microscopic
models mentioned above.

4.1.2 Microscopic Models

The microscopic models, such as Bonn/Jülich, take advantage of the Feshbach-projectors,
which allow to give a full solution even though they are generated only inside a chosen
model-space. In other words: In these models, specific channels are treated explicitly,
depending on the selection of quantities and observables. This has been very successful
in the energy-range up to 300 MeV. Depending on the energy, many channels open, and
the number of possible intermediate states increases. Because there are no limits to the
complexity of the interaction, there are infinitely many Feynman diagrams which can
be included into the description of antinucleon-nucleon interaction. For general under-
standing, however, the number of diagrams can be truncated to only three classes of
diagrams. These build the basis of the description and can be put together or iterated
to derive more complicated structures. The three basic Feynman diagrams for elastic
antinucleon-nucleon interaction are:

1. the purely elastic part expressed in one-meson exchange
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2. the dispersive part, which has no counterpart in NN interaction

3. the resonance part.

Those digrams are shown in fig.4.1.

Figure 4.1: Classes of diagrams for NN interaction. Left: purely elastic part (from
G-parity transformation), middle: dispersive parts, right: resonance
contribution.

Purely elastic part The elastic part is built from models describing NN interaction.
To derive the NN amplitudes, the G-parity transformation of the NN potentials is
performed, which includes a charge conjugation plus 180◦ rotation around the y axis in
isospin space. The G-parity transformation can be understood as a more generalized
form of the charge conjugation, which transforms, for example, the electron into its
antiparticle, the positron. Accordingly, for fermion-antifermionic systems the selection
rules are

(−1)L+S+I . (4.1)

In a meson-exchange picture, this leads to a simple change of sign for G-parity-
transformation of the NN (Paris [EBLLW09], Bonn [MH95]) interaction for some
mesons, while others stay the same:

odd G-Parity vertices

VNN(π, ω, δ) = −VN̄N(π, ω, δ)

even G-parity vertices

VNN(σ, ρ, η) = VN̄N(σ, ρ, η)

This procedure has been criticized, because the early microscopic models calculated
very large potential depths of about a few GeV with the G-parity transformation. The
G-parity transformation is used for both microscopic models [BP68,KW86], which will
be briefly introduced in the following.
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Paris [EBLLW09] The Paris NN model is based on NN interactions, namely the
NN Paris potential, which is then transformed with G-parity transformation. The
Paris model is built in such a way that it is globally defined. This is achieved by using
a linear energy dependent optical potential, which has both real and imaginary parts.
The potential is optimized by a fit to the data.

Bonn [MH95] The NN potential of the Bonn/Jülich group is derived from the Bonn
NN potential, accordingly. The Bonn/Jülich group treats two-meson intermediate
states explicitly, while all other contributions are taken into account by a purely ima-
ginary potential with no additional energy dependence. No fitting procedure is used
to optimize parameters.

Nevertheless, both models use boson-exchange diagrams as the fundamental model
and therefore work with hadronic degrees of freedom. Because hadrons are composed
objects and therefore have to be understood as mediators of an effective interaction,
they do no obey a fundamental theory. This is no disadvantage, as long as one is
restricted to a rather small energy range or the treatment of specific channels only.
With increasing energy, the complexity of the system increases accordingly, and the
number of terms contributing to Feynman diagrams have to be added, which is at some
point no longer manageable. The Paris and Bonn models provide good descriptions of
the existing scattering data up to an incident energy of the antiproton of about 300
MeV. At about 1232 MeV the threshold of the ∆(1232)-resonance opens along with
many more ∆ and N -resonances, which makes the description difficult.

4.1.3 Phenomenology

Rather than treating specific chennels explicitly and therefore being restricted to small
energy-ranges, we aim for a description for wide energy ranges. In the following, a
phenomenological approach for NN interactions is introduced [LLW14], leading to a
satisfacory description of the pp total and elastic cross section. Like the microscopic
model introduced above, we use a complex potential as a starting point for our calcu-
lations:

V = U − iW (4.2)

The Energy Dependence Because the cross section changes its behavior drastically
from a rapid decrease at low laboratory momentum to a smooth slope at the high
momentum range, we introduce two parameter-sets:

Vj = Uj − iWj j = 1, 2 (4.3)

Both the real and imaginary part are parametrized in terms of Gaussian radial form
factors with energy dependent strength and width parameters:

U(r, k) = U(k)e
− r2

a2(k) ;W (r, k) = W (k)e
− r2

b2(k) (4.4)
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with the momentum dependent amplitude

U(k) = U1 f(k) + U2 (1− f(k)) (4.5)

and the same form used for the range parameters α(k) = a(k), b(k):

α = α1 f(k) + α2 (1− f(k)), (4.6)

where

f(k) =
1

1 + e(k−Q)/q
(4.7)

This separation into two sections can be interpreted as a visualization of the modi-
fication of scales. In the high-energy range the hadrons are no longer the degree of
freedom, but quark and gluon induced reactions become important. Later, the fit to
the antiproton-proton and antiproton-nucleon data will reveal that this separation of
scales happens at a larger laboratory momentum plab, as one might expect from a
look at the cross sections. This might indicate an influence of the underlying quark
dynamics up to higher momenta.

The Strength of the Potential Microscopic approaches, as e.g. in [HHP89, MH95,
TRdS94,ZT12,CLL+82,EBLLW09], use G-parity transformed NN potentials which are
usually accompanied by an absorptive potential that is anomalously deep at very short
distances. The analysis of our approach shows a different behaviour. The imaginary
bare potential is rather long-ranged and comparatively shallow. The overall strength,
however, as expressed by the volume integral shown in fig. 4.2, agrees well with the
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Figure 4.2: Volume integral IV of the potential as a function of plab.
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Figure 4.3: Volume integral IT of the T -matrix as a function of plab.

strength used in other approaches. We derive the strength of the real and imaginary
parts of our potential by simultaneously fitting the total and elastic cross sections. This
allows us to have control of the challenging real part. To get a better understanding of
the quite strong real part and the long range characteristic of the potential, we study
the T -matrix, assuming a local operator:

T̂
(
k
′
, k
)

=

∫
d3rT (~r|k) e

i
(
~k−~k′

)
·~r

= T
(
k − k′

∣∣∣ k) . (4.8)

In Eikonal theory the Fourier-transformed T -matrix is given by

T (ρ, z|k) = V (ρ, z|k)eiS(ρ,z|k) (4.9)

where the complex Eikonal S = φ+ iκ is devided into a plane wave contribution κ and
a residual Eikonal depending on φ. The cross section is calculated in Eikonal approach
using formulas 3.202. This complex Eikonal leads to a mixing of the real and imaginary
parts of the potential in the T -matrix:

Re(T ) = (U cos(φ) +W sin(φ)) e−κ

Im(T ) = (U sin(φ)−W cos(φ)) e−κ

Due to the mixing of the real and imaginary parts, there is a strong cancellation, which
reduces the unexpected long range of the potential to a typical short-range interaction.
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The volume integral of the T -matrix

IV =

∫
d3rV (4.10)

IT =

∫
d3rT (4.11)

is shown in fig. 4.3. The resulting elastic and total cross sections in comparison to the
data [B+12] are shown in fig. 4.4.

In this section, a phenomenological approach to antinucleon-nucleon scattering has
been presented. Due to the visible modification of scales in the antiproton-proton cross
section, a two-parameter set was introduced. The ansatz was fitted to the available
data of total and elastic cross section simultaneously, giving control over the challenging
real part. The surprisingly long range potential has a comparable strength as other
approaches due to strong cancelations

4.2 Step Towards Pion Production in Antinuleon
Annihilation in Nuclear Reactions

As has been discussed in this work, the interactions of pions and antiprotons with
nuclear matter is very interesting and challenging at the same time. Both types of
particles are strongly absorbed in nuclear matter. To overcome the difficulties which
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Figure 4.4: Phenomenological model total and elastic pp cross sections compared to
data [B+12].
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are introduced by the use of microscopic models, phenomenological models are used
as described in sections 3.4.2 and 4.1.3. The interactions have been developed in an
Eikonal theory framework, which gives also access to the involved wave functions. The
knowledge of both the wave functions and the potential available gives the opportunity
to reuse them in a more complex reaction: the pion production in antiproton-nucleus
annihilation reactions. Similar to the antiproton- and pion-nucleus interactions, the
corresponding Feynman diagrams can be divided into different classes of diagrams,
depending on the available energy. In Fig. 4.5, the Feynman diagrams are shown for

Figure 4.5: Feynman diagrams for the production of two pions within antinuclon-
nuleon annihilation in nuclear matter

t- and s-channel interactions for the reaction

N + A→ B +m1 +m2. (4.12)

The solid line indicates nucleons (traveling forward in time) and antinucleons (going
backward in time). First, the nucleons are bound within a nucleus A indicated by a
circle, where in the final state the residual nucleus is B. The dashed lines represent
the pions and the wavy line a ρ-meson. The antinucleon, indicated by the arrow going
backwards in time, annihilates with a nucleon from the initial nucleus A = A(N,Z),
creating an intermediate state, which then decays into two mesons m1 and m2. The
residual nucleus B can either be formed after an annihilation with a neutron, hence
B = B(N − 1, Z) or after an annihilation with a proton, giving B = B(N,Z − 1),
accordingly. Even if the produced mesons are reabsorbed and do not escape the nuc-
leus, we consider the nucleus to be in a well-defined quantum state, also neglecting
higher-order core polarization.

To derive a description of the process shown in fig. 4.5, it is divided into three main
steps: The initial-state antinucleon-nucleus interaction, the production mechanism and
the final-state pion-nucleus interaction. The description of the full reaction gives the
opportunity to gain information about the annihilation reaction or the nuclear proper-
ties of the involved nucleus. These are especially of interest for several new upcoming
experiments at the FAIR facility at GSI, such as the PANDA experiment [Lan09], but
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also suitable for nuclear structure studies of short living isotopes at the AIC experi-
ment [Kru05]. Both initial- and final-state interactions are important and need to be
implemented in the calculation to achieve a full description of the pion production.
Only then it is possible to investigate nuclear properties and information about anni-
hilation processes by measuring the produced pions.

Despite the challenges which are met in calculations, there are also a lot of difficulties
to perform the actual experiment. The higher the incident energy of the antiproton
is, the deeper it can penetrate the nucleus and collect data of its inner structure. In
our investigation, however, we are limited to non-excited residual nuclei, which stay
intact after the reaction. This becomes less likely with increasing energy. In addition,
there is a lot of background to this reaction, especially coming from multi-pion pro-
duction. As has been discussed in [Ghe74,Ams98], the average pion multiplicity peaks
at around five and reaches up to fifteen pions. The challenge will be to distinguish
reactions where multiple pions were produced, but only two or even fewer escaped the
nucleus, from reactions were only two pions were produced. Furthermore, a 4π detector
would be needed to cover the whole reaction space, because also backward scattering is
possible. Under these circumstances, it is worthwhile to identify the concrete reaction
mechanisms, which will be discussed in the following.

The derivation of the interaction of antinulceons with a nucleus and the interactions
of pions with a nucleus are used as initial- and final-state interactions, respectively. As
shown before, we have a reasonable understanding of both the initial- and final-state
interaction. The corresponding studies contribute to the calculation of the cross section
for the whole reaction mechanism:

d9σαβ = Nαβ

(
~c
2π

)9
d3k1

E1

d3k2

E2

d3kB
EB

∣∣∣Mαβ

(
~k1, ~k2, ~kB; ~kα

)∣∣∣2
× δ

(
~k1 + ~k2 + ~kB

)
δ
(
E1 + E2 + EB −

√
s
)

(4.13)

where Nαβ is a normalization constant and the subscripts 1 und 2 stand for each pion,
while B denotes the residual nucleus and s is the total centre-of-mass energy. While
the delta accounts for energy and momentum conservation, the underlying physics is
described by the matrix element:

Mαβ ≈ tNN→2π(s)〈χ(−)
1β χ

(−)
2β |ϕB|χ

(+)

NA
〉. (4.14)

In eq. (4.14), the nuclear amplitude and the production amplitude are factorized. This
is a good approximation, because the nuclear contribution proceeds on the scale of
the Fermi-momentum (≈ 250 MeV/c), while the production involves baryon exchange
(≈ 1 GeV/c), and therefore a separation of scales is introduced. The description of
the cross section and the matrix element has been chosen to be rather general, but in
fact the interpretation of ϕB, tNN→2π and χ

(−)
1β χ

(−)
2β strongly depends on the reaction

scenarios which will be indicated below.
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4.2.1 Peripheral In-Flight Reactions

Figure 4.6: Demonstration of peripheral in-flight reactions. The nucleon is picked up and
annihilates with the incoming antinucleon outside of the nulceus. The produced
pions, however, might scatter back, penetrating the nucleus.

In this mechanism, the antinucleon picks up a target nucleon and forms an inter-
mediate NN correlated state, subsequently decaying into mesons in free space, shown
pictographically in fig. 4.6. The produced mesons then interact with the residual
nucleus in the final state. Their self-interactions, however, are not considered here.
Therefore, the outgoing wave functions χ

(−)
1β χ

(−)
2β of eq. (4.14) are of baryonic charac-

ter, as they describe the propagation of NN . The intermediate NN state is expressed
in terms of the centre-of-mass and relative motion. Approximating the short-ranged
NN interaction by a contact interaction, the relative-motion wave function is integ-
rated out analytically. The amplitude tNN→2π then describes the decay of NN and the
production of the mesons.

As a first step we calculated the production of a hadron cloud. Fig 4.7 shows the
pick-up of valence neutrons of 48Ni, stable 58Ni and neutron-rich 78Ni target nuclei.
The low-momentum transfer in this reaction leads to clearly visible nuclear structure
effects indicated by the diffraction pattern of the angular distributions shown in in Fig.
4.7. Such differences between the different annihilation partner visualizes the idea of
studying nuclear structer effects from reactions of antiprotons with nuclei, like pro-
posed for the AIC experiment [Kru05]. The calculation is presented in [LLW14] using
the folding approach to derive the optical potential:

Uopt(r) =
∑
N=p,n

∫
d3r

(2i)3
ρN(q)tpN(Tlab, q

2)eiqr (4.15)

The corrsponding matrix element Mαβ reads

Mαβ = G

∫
d3rβd3rαξ

(−)∗
β (rβ,kβ)ϕ(rn)ξ(+)

α (rα,kα) (4.16)
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Figure 4.7: As a first step, we calculate the cross section of the production of a hadron cloud
with a mass of a pion, not resolving its inner structure. The differential cross
sections are shown for valence neutrons of 48Ni, stable 58Ni and neutron-rich 78Ni
and Tlab = 800 MeV.

where G is the coupling constant and ξ indicate distorted waves. The nucleon wave
function ϕ(rn) corresponds to the nucleon, which annihilated with the antiproton. The
matrix element 4.16 reveals the direct connection between the cross section and the
underlying nuclear structure, making nuclear spectoscropy possible
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4.2.2 In-Situ Reactions

Figure 4.8: In-situ reaction. The antinucleon gets stopped inside the nucleus and produces
the pions inside. Here, also higher density regions are of interest, which are
usually not reached in pion-nucleus scattering due to the strong absorption at
the nuclear surface already.
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Figure 4.9: As a first step, we calculate the cross section of one meson production, namely
ρ−, which then decays into two pions. The relative motion of the two pions
has been integrated out. The differential cross sections are shown for meson
production on a 78Ni target and Tlab = 800 MeV.

This reaction mechanism is quite similar to former experiments at LEAR [A+91].
The antinucleon is stopped in the nucleus, annihilates and produces mesons in the
nuclear medium, displayed in fig. 4.8. ϕB is the corresponding initial and final nuclear
overlap function, while the mesonic χ

(−)
1β χ

(−)
2β are the outgoing distorted waves for each

pion.
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As a first step, we consider ρ-meson production, which then decays into two pions. The
relative motion of those pions has been integrated out. In Fig 4.9, the cross section is
shown for the valence neutrons of a 78Ni target, taken from [LLW14].

Strangeness production, either by KK pairs or hyperon-antihyperon pairs, will be
favourable at high energies, proceeding mainly through the s-channel annihilation.

In this section the most basic facts of the antinucleon-nucleon microscopis models
were recovered. An alternative phenomenological approach was presented, overcoming
the difficulty to extend the models beyond 300 MeV incident energy. The antinucleon-
nucleus and pion-nucleus description developed within this thesis have been applied to
formulas describing more complex processes. Two different reaction mechanisms were
presented.
Interactions with antiprotons and interaction with pions have been calculated within
the same approach. This gives the oportunity to replace parts of the interaction easily.
This is suitable for improved potentials, but also other calculations could easily be
performed such as kaon production.
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This work paved the way for the description of pion production in antinucleon-nucleus
reactions. To describe pion production from annihilation of protons with nucleons in
nuclear matter, the calculation of initial state and final state interactions are mandat-
ory. Both have been tackled within this work and have been calculated on the basis of
two body interactions.

Within the next years the FAIR facility will be built, and many experiments con-
cerning antiprotons will be active. Because the pion is the lightest meson, it will be
produced in many reactions and also appear as background in more rare events. There-
fore, the interaction of pions with nucleons and also with nuclei was studied in this
work. Even though, there have already been investigations for the interaction of pi-
ons with nuclei, they were restricted to a quite limited energy range or used an extra
parameter-set for each nucleus. In this work pion nucleus differential and total cross
sections have been presented for elastic and inelastic reactions. The so called true
absorption cross section of pions reacting with two nucleons was studied in detail. The
results presented cover very light nuclei, such as Lithium, passing Carbon and also
heavy nuclei such as Bismuth have been shown. The nuclear densities were taken from
parametrizations of self-consistent Hartree-Fock-Bogoliubov calculations and have been
considered up to quadratic order in the pion-nucleus optical potential. The description
of the differential and also total cross sections could be improved by taking more nuc-
lear structure effects into account. Overall a satisfactory agreement with the available
data could be achieved.

To calculate the cross sections the Eikonal model was used and the implementation
of momentum dependent potentials was presented in this work. The calculation has
been structered in such a way that quantum-mechanical amplitudes derived from fun-
damental optical potentials were used and can also be used as input. This general
structure gives the opportunity to extend the model to describe additional reactions.
The strangeness production (in nuclear matter) is of high interest and kaon production
can easily been applied to the ansatz used in this work.

The description of antinucleon-nucleon interactions has been developed by several
groups (Paris, Juelich Nijmegen) using a G-parity transformation from their corres-
ponding NN potentials. Within their models, various channels are selected to be
treated explicitly, while all other contributions are taken into account via an optical
potential. This procedure is sucsessful up to an incident energy of the antinulceon of
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about 300 MeV. Beyond this threshold, too many channels open and the microscopic
models come to their limit. To overcome this difficulty, a phenomenological ansatz has
been presented within this work. Despite the simple structure a very good description
of the actual available antiproton-proton cross section data could be achieved. This
ansatz indicates that the antiproton seems to pass two ”phases”, depending on the
energy. It seems that the change of behaviour is due to the change of relevant degrees
of freedom. If so, the influence of the quark degrees of freedom is more extended than
initially expected.

After the derivation of pion-nucleus and also antinucleon-nucleus interaction, pos-
sible reaction scenarios have been briefly introduced. Within this work, the in flight
and the in situ reaction mechanisms are taken into account. The first describes the
scenario where the nucleon gets caught by the antinucleon in flight. On average 5
pions are emitted, mainly outside of the nucleus. The in situ reaction is similar to
the former LEAR experiment where the antinucleon gets stopped inside the nucleus.
The formulation of the cross section to describe the pion production in an annihilation
reaction with antiprotons in nuclear matter have been shown. The separation of scales
gives the opportunity to study nuclear properties separated from the reaction process
itself.

So far, the calculation of pion production in antinucleon-nucleon annihilation within
nuclear matter is covered by the presented ansatz. The important steps, to finally cal-
culate the corresponding cross sections have been presented. To improve the description
of nuclear structure effects, a more advanced description of nuclear densities could be
used. The calculations are organized in such a way that alternative descriptions of e.g.
pion-nucleon or antinucleon-nucleon amplitudes could be used easily. Especially, the
use for strangeness production in form of kaons would be very interesting.
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