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1 Introduction

Among the different applications found for quantum
computing, the original aim of using quantum com-
puters to simulate quantum systems and dynamics
[24] still stands out as the most promising one. The
reason is twofold: first, a quantum computer can en-
code the state of the system without needing approx-
imations; and second, since the evolution of (closed)
quantum systems is unitary, simulating it is rather
natural.

Specifically, quantum computing might be partic-
ularly useful to prepare ground states of electronic
Hamiltonians and find out their energies. Conse-
quently, they can be employed in a multitude of chem-
ical and material science problems where the ground
state energy plays a key role. This includes for in-
stance computing chemical reaction rates [58, 69|, and
analyzing battery properties [21, 35] or biological en-
zymes [28].

There exist classical computing techniques able to
tackle these problems, most notably Density Func-
tional Theory (DFT) [37]. However, they often
rely on approximations, for instance, the Kohn-Sham
exchange-correlation parametrized functional, which
may struggle to achieve the high accuracy required
in some of the problems above. For example, chemi-
cal reaction rates depend exponentially on differences
in energy. In contrast, the well-known technique
Quantum Phase Estimation (QPE) in principle allows
achieving the high precision required by these appli-
cations. To understand how it works, remember that
the Schrodinger equation dictates how a quantum sys-
tem evolves according to its Hamiltonian,

A . d
A 1) = ihe 1) 1)

If we assume for simplicity that such Hamiltonian is
time independent, we can write

Y(x,0) = ZanwEn (z) =

2
V(@ t) =Y ane” B Mg, (2), @

for ¥ g, () an eigenstate, and F,, the corresponding
eigenvalue. We are interested in the ground state en-
ergy Ey. Note how the eigenvalues became a phase.
To recover it, we can use an inverse Quantum Fourier
Transform that will encode such phase in the com-
putational basis, from where it can be readily read
out.
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Figure 1: Flowchart of the architecture of our library, divided
into two parts: the first one centered on the computation of
the parameters needed for the cost estimate; and a second
one on using such parameters to compute the number of
T-gates. Methods are colored according to the Hamiltonian
simulation technique in figure 2.

To implement such an algorithm we need to spec-
ify how to implement the quantum Fourier transform,
and also the Hamiltonian simulation e~*/*. The for-
mer is rather straightforward and can be found in Ref.
[53] for example, but the latter is more involved. Fur-
thermore, to obtain a binary description with b bits of
the eigenvalue and probability of failure py, quantum

phase estimation will need to implement (e~**)?" for
j in the range 1,...,b + [log2 (% + i)—‘ [19]. In
other words, it will require the implementation of sev-
eral time segments that scales with the inverse pre-
cision, O(1/egpg). For this reason, it is important
to be able to implement Hamiltonian simulation effi-
ciently.

Such a Hamiltonian might be accessed by the quan-
tum computer in different ways. For electronic Hamil-
tonians, the most convenient one often is in the form
of Linear Combination of Unitaries (LCU). In such
framework, we decompose H = ) j a;H;, for a; some
real positive coefficients, and H; the unitaries, often
Pauli string-like operators.

Given such access, there are also various methods to
simulate the Hamiltonian evolution. The first way dis-
covered was the Trotter method [2, 42], and soon oth-
ers such as Taylor series (or Taylorization) [9], Qubiti-
zation [43, 45] and Interaction picture simulation (or
Dyson series) [34, 44] followed. These Hamiltonian
simulation techniques, reviewed in section 3, are the
backbone of the quantum phase estimation algorithm.
Their objective is to lower as much as possible the
computational cost of QPE, so large quantum sys-
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tems can be simulated to high precision in reasonable
amounts of time, once fault tolerant quantum com-
puters become available. The library we present in
this article, TFermion, is an attempt to standardize
and automatise the computation of the cost of several
quantum phase algorithms in the literature.

However, to use quantum phase estimation, we need
to prepare states with a large overlap with the ground
state. This will translate into a high probability of
measuring the actual ground state energy, and upon
success will also project the system into the ground
state. Unfortunately, it is known that preparing a
representation of the ground state of a 2-body quan-
tum Hamiltonian is Quantum Merlin Arthur (QMA)
complete [33], that is, a quantum computer can ef-
ficiently verify the solution, but not necessarily efhi-
ciently compute it. In other words, finding the ground
state of a 2-body Hamiltonian is not in the Bounded
Quantum Polynomial-time (BQP) complexity class,
the class of problems a quantum computer can solve
in polynomial time. Nevertheless, this does not imply
either that we cannot propose algorithms to solve it
as efficiently as possible [26, 41]. While it is known
that the general 2-body ground state preparation is
QMA-complete, there is hope that the specificity of
electronic Hamiltonians will make it easier to solve
at least heuristically. In fact, over the years signif-
icant effort has been devoted to the formulation of
shallow-depth NISQ ansitze [76] to prepare ground
states such as the Imaginary Time Evolution ansatz
[47] and the Variational Quantum Eigensolver (VQE)
with Unitary Coupled-Cluster [54], adaptative [29],
and hardware-efficient [32]| ansétze.

Similarly, some effort has been devoted to resource
estimates of particular applications [35, 58, 69|, but
to the best of our knowledge, no software library has
been developed to allow a principled comparison be-
tween methods. This is a gap that TFermion aims to
fill with the following contributions:

First, while newer algorithms often provide a spe-
cific non-Clifford gate and qubit count, older ones only
give asymptotic complexity estimates (see figure 2).
Our article aims to estimate the T-gate cost of older
and some of the newer algorithms, with a molecule of
choice from the software users. We believe this will
be helpful to more quickly carry out research for both
academics and industry. Not only that, but our soft-
ware automatically performs optimization based on
the different error sources to minimize the cost, and
low-rank approximations [11].

Second, as an example of use of our software, we
address the question of whether Gaussian basis func-
tions or plane waves are more convenient to simu-
late molecules, comparing the same Taylor series al-
gorithms with a different basis. This comparison is
not definitive because the error arising from a finite-
size basis is difficult to estimate. However, we can
give an idea of which algorithms might be more bene-

ficial according to some rough estimates of how many
plane waves are required to simulate a system to the
same precision than if one were to use Gaussian basis
[6]. We furthermore provide researchers with the pos-
sibility to carry out a similar comparison but deciding
the multiplicative factor for plane waves to represent
a similar precision or if the comparison is not the ob-
jective, the number of plane waves too.

In TFermion, so far we have focused on T-gates as
we believe that non-Clifford gates represent a more
significant bottleneck than the number of qubits.
Nevertheless, in the future, we expect to add this func-
tionality and additional algorithms to the library. The
article itself is structured as follows: first, we give an
overview of the library and how it works. Then, in
section 3 we briefly explain some of the techniques for
Quantum Phase Estimation and Hamiltonian simula-
tion, including figure 2 and table 3 to help the reader
understand the development and relation between dif-
ferent algorithms. In section 4, we give examples of
how our software might be used, including the second
contribution listed above. We then summarize the
conclusions and present future work. Finally, in each
appendix, we quickly describe one of the techniques
studied in this paper, that can be used in combination
with the original references to understand the cost es-
timation functions of TFermion.

2 The TFermion library

The first and main contribution of this article is a
software library called TFermion that automatizes the
estimation of T-gate cost of running a variety of Quan-
tum Phase Estimation algorithms proposed in the lit-
erature during the last years, over arbitrary molecular
geometries.

We envision several use cases of our library:

1. It could serve as a quick assessment for the fea-
sibility of concrete QPE experiments once error-
corrected quantum computers become available,
such as those centered in particular scientific or
industrial use cases [35, 58].

2. It can also help make comparisons between sys-
tems and methods. In particular, it allows com-
paring the impact of the chosen Hamiltonian sim-
ulation technique, or the chosen basis.

The result provided by our library though must be
interpreted as an approximation to the true value, as
the final implementation will be heavily optimized,
both at a hardware and software level. Our library,
in contrast, aims to be more modular and system-
agnostic, but we nevertheless provide built-in error
optimization. It is well known that different error
sources impact the final precision and gate cost in
different ways. As such we have aimed at standard-
izing the way error sources are treated and optimized
(see table 1).
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Figure 2: Diagram showing some of the main techniques involved in the development of post-Trotter Quantum Phase Estima-
tion Techniques. Not shown in the picture but of great importance are the articles crystallizing the concept of ‘Taylorization’
[9] and ‘qubitization’, [44].

Error Mathematical definition ‘ Where does it appear?
€QPE egpr = A27", n precision bits in the QPE algorithm, Due to the Phase Estimation.
and A the 1-norm of the Hamiltonian.
€HS Trotter: ||e™"4/" — S, (H;t/r)||, < W, (%)p—|r1 < €25 [48]. | In Hamiltonian Simulation via
Taylor: ||TIgA |0) [vb) — |0) U [¥h)||, < <22 [9]. Trotter, Taylor or Dyson
Dyson: ‘W — T[efifot/r H(s)dsy)l - < s [44]. series decomposition of e 74T,
€H ’fﬂ f(x)dx =3 co f(x)(AX)d| <2 ex, with d = dim(Q) Error from the approximation
of integrals by Riemannian sums.
es & ess | [|lU = R.(0)]]2 < ess [60] In the synthesis of single
(Using operator norm) rotations €gg and their sum, €g.
€tay Defined as in Taylor’s theorem. Due to Taylor error series (and
others) in arithmetic operations.

Table 1: Notation for the main sources of error that we take into account in the article and software library. Additional
minor sources may appear sporadically in single articles. The norm 2 used in all cases above is the operator norm. The other
algorithms used to compute arithmetic operations are the Babylon algorithm for the square root, and CORDIC algorithm for

the sine or cosine. S,(H;t/r) stands for the order p Trotter step, and W, = O (maxi[[. o [Heyiy Heyyy by Hy ) Hoy, ])

tp+1
the commutator terms that bound the final error [63].
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While not the main objective of our article, we also
believe our work may help provide a more standard-
ized treatment across methods, and as a consequence
help better understand the choices in the Hamiltonian
simulation, basis, or fermion-qubit mapping used.

One feature of our library is that it currently con-
tains older than 1-year-old methods, and as such some
excellent work [39, 62, 69] has not yet been included.
There are two reasons: the first and most obvious one
is that including new methods represents a significant
amount of effort, and we believe these updates can be
done later on. The second is that while for the latest
methods T-gate estimates are more common, for older
ones often only the complexity estimates are available.
While this makes sense as the latest methods might be
more useful for industrial processes, we believe that
understanding well different techniques and not only
the bleeding edge ones can be of significant scientific
interest.

Additionally, our software was developed following
a modular architecture with an easy procedure to in-
clude new methods. The process to add a newer
method or updating an existing one requires two main
steps: first making sure that the molecular parameters
required are already calculated by some of the pro-
vided methods, or adding new ones in molecule.py;
then create a new T-gate cost estimation function and
call it from the class Cost calculator. The philoso-
phy underlying this architecture is to keep TFermion
updated timely and give the authors of the new meth-
ods the possibility to add their own T gate cost esti-
mation to show practical examples of their work and
make it more accessible.

The use of the library is rather straightforward:
the user only needs to provide a molecule name, a
method and optionally some atomic orbital labels (ao
labels) to be used within the active space selec-
tion method AVAS [59] to restrict the calculation and
make it more efficient. This should be supplemented
within a configuration file with the Gaussian basis
to be used. If the method requires plane waves to be
used, the system will by default approximate the num-
ber of basis functions as the thumb rule of 100 times
more plane waves than Gaussian waves [6]. Alterna-
tively, the user might provide this and other molecu-
lar parameters (eg A, N...) in a JSON file under the
name [molecule name] [basis].json. A flowchart
of the working of the library can be seen in figure 1.

As it is shown in figure 1, TFermion is executed
through a main module which receives the molecule
name, the QPE method, and optionally also the ao-
labels to select an active space using AVAS. It starts
with the molecule module creating a molecule in-
stance, which is passed together with the method to
cost calculator. The latter one calls either Gaus-
sian or Plane Waves molecule methods to calculate
all necessary parameters. Finally, cost calculator
minimizes the cost depending on the error sources

Operation Cost
Addition & subtr. [27] | 4n
Multiplication [52] 21n?
Division [67] 14n? + Tn
Comparison [20] 8n

Multi-controlled Not [8]

16(m — 2) m controls

Rotation synthesis [60]

10 + 12[log, €541, SU(2)

10 + 4[logy ege ], R,

State synthesis [61] 27+ — 2 arbitrary

rotations

Table 2: Cost of basic arithmetic operators in T gates unless
otherwise stated, omitting additive O(1) factors. If the ro-
tation synthesis is controlled, the cost will be multiplied by
2 for Ry, Ry and R. gates, as given by Lemma 5.4 in [8].
Notice that HR,H = R,, while R, and R, are particular
cases of the unitary W in that Lemma. Finally, for general
controlled rotations the cost will be thrice the synthesis cost
instead of twice.

on the selected method, and sends the result back
to main.
TFermion manages four types of data:

e Molecule: A class created to save all the molec-
ular data, including geometric information ob-
tained [12]| used to compute the electronic inte-
grals using Pyscf [64].

e MolecularData: An instance from the Open-
Fermion class [49], necessary to get all param-
eters from the Hamiltonian and save them into
instance molecule as attributes.

e Error values: Different QPE methods have dif-
ferent error sources, whose sum must not ex-
ceed a given threshold. By default we will use
the chemical accuracy value of 0.0016 Hartrees
[17]. TFermion optimizes error values to mini-
mize the T-gate cost output of that method with-
out exceeding it.

e T gate cost: Number of T gates needed to execute
the selected method, as well as the time required
to synthesize the corresponding number of magic
states. Calculating this value is the main goal of
our library.

Certain calculations in the library are computation-
ally and memory intensive. The reason for this is that
as the number of basis functions grows, so does the
size of the one and two-body Hamiltonian terms, but
does so at least quadratically. This is reflected espe-
cially in the plane wave case for molecules, where the
larger number of plane waves is due to the need for
significantly more basis functions. Nevertheless, an
effort has been put into making the calculations rel-
atively efficient, making use of some new techniques
[38].
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Algorithm ‘ Simulation ‘ Quantization Basis Encoding
Random Hamiltonian [15, 18] Trotter 2nd quantization | Gaussian Jordan-Wigner
gDRIFT [14, 15] Trotter-related 2nd quantization | Gaussian Jordan-Wigner
Taylorization ‘database’ [3] Taylor series 2nd quantization | Gaussian Jordan-Wigner
Taylorization ‘on-the-fly’ [3] Taylor series 2nd quantization | Gaussian Jordan-Wigner
Configuration Interaction [4] Taylor series 1st quantization | Gaussian Slater determinant

Low-depth ‘Trotter’ [6]

Trotter

2nd quantization

Plane waves

Jordan-Wigner

Low-depth ‘Taylor database’ [6]

Taylor series

2nd quantization

Plane waves

Jordan-Wigner

Low-depth ‘Taylor on-the-fly’ [6]

Taylor series

2nd quantization

Plane waves

Jordan-Wigner

Interaction picture [45]

Dyson series

2nd quantization

Plane waves

Jordan-Wigner

Sublinear scaling inter. pict. [7, 62]

Dyson series

1st quantization

Plane waves

Slater determinant

Sublinear scaling qubitization [7, 62] | Qubitization 1st quantization | Plane waves | Slater determinant
Linear T complexity [5] Qubitization 2nd quantization | Plane waves | Jordan-Wigner
Sparsity and low rank [11] Qubitization 2nd quantization | Gaussian Jordan-Wigner
Double factorization [69] Qubitization 2nd quantization | Gaussian Jordan-Wigner
Tensor hypercontraction [39] Qubitization 2nd quantization | Gaussian Jordan-Wigner

Hybridized method [57]

Trotter & Dyson

2nd quantization

Plane waves

Jordan-Wigner

Table 3: Recent Hamiltonian simulation methods, named after the techniques they use, or the title of the corresponding
article, explaining them for efficient Hamiltonian simulation and Quantum Phase Estimation. Notice that gDRIFT, Random
Hamiltonian and Hybridize method do not specify the basis or the Fermionic encoding, but the ones we indicate seem to be the
most obvious: in the case of gDRIFT and Random Hamiltonian because they are the simplest choice, while in the Hybridized
method, it inherits the plane wave structure from the Interaction Picture. Recent work on Trotter Hamiltonian simulation

[15, 36, 48, 62] has focused on bounding commutator error terms on a different basis, rather than new methods.

Finally, let us briefly mention what our software
does not cover yet. It only provides cost estimates for
T-gate count, as it is well known that the magic state
distillation required to perform the T-gate often car-
ries the largest cost in 2 the dimensional surface code,
which nevertheless exhibits a large threshold. Alter-
natively, there are codes in 3D, like topological color
codes [13] that avoid magic state distillation, and may
provide new ways to improve this counting, but they
require more qubits for similar distance codes. Fur-
thermore, the Clifford gate count may depend on the
specific chip connectivity, and for that reason, we have
preferred to ignore it here. Finally, while we believe
that the qubit count is important, the number of gates
required may provide a more significant constraint in
the long term due to the time required to perform
the algorithms, as these approaches usually require
on the order of 102 to 10* qubits for realistic targets
[35, 58, 62].

The cost of ground state preparation, while signif-
icant, is left for future work too. Rough estimates
may be possible to obtain for moderately sized sys-
tems, using low precision QPE to project the system
into the ground state [10].

3 Quantum phase estimation tech-
niques

In this section, we give a quick overview of the main
techniques used in the literature to perform quan-
tum phase estimation. Quantum phase estimation re-
quires two main ingredients: the use of a controlled
Hamiltonian simulation method and sometimes an in-
verse Quantum Fourier Transform (QFT). While the
original Quantum Phase Estimation protocol did use
QFT [25, 53], more modern versions such as Bayesian
Quantum Phase Estimation avoid it [75]. This latter
approach has also the property of being parallelizable,
implementable with minimal classical postprocessing,
and requires fewer qubits. However, its cost scales as

ATX instead of the theoretical optimum of ™2 [75].
QPE

€

S?II;cEe the extra cost of the quantum Fourier transform
and the qubits it requires are often negligible, we will
instead assume we are using the classical version with
a slightly lower cost. We will now explain the other
main part, the different Hamiltonian simulation tech-

niques.

3.1 Trotter

Let us assume we want to simulate H for a Lin-
ear Combination of Unitaries decomposition H =
Zv w~yH,. The difficulty is that since the different
unitaries H. do not need to commute, we cannot write
e It — I1, e~ "5t Instead, using the product of
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Hamiltonian simulation as we have just done intro-
duces an error O(Y |[H.,, H,,]|t?) that depends on
the commutator.

To handle this error, within the scheme of Trotter,
there are two strategies. The first one is to divide the
evolution in short time segments so we can quadrat-
ically suppress the error. In other words, we imple-
ment

e HE — (He twy Hy t”) +0 (Z| s H |t /7“)

(3)
Alternatively, one may attempt to find higher order
Trotter formulas that further suppress the error. For
example, if (3) is the first order formula, then

r

r 1
e HHE <H eiw.yH.yt/2T> H efiw.yH.yt/?r
y=I"

+0 (Y2 I[1H,, Ho) Ho i /12)

(4)

is the second order one. Higher-order formulas are
known, but they also become more convoluted to im-
plement. Another possibility is to use classical ran-
domization of the order in which each of w.,H, ap-
pears in the Hamiltonian, in each evolution segment
[18], or to apply Hamiltonian simulation of a random
H, for fixed amounts of time, with probabilities given
in by w, /A for A = Y w, [15]. The latter method is
called ‘qDRIFT’ and is explored in appendix A to-
gether with a second-order randomized Trotter sim-
ulation. Other randomized methods have been ex-
plored too [70].

There has also been effort devoted to tightly bound-
ing the commutators to reduce the number of seg-
ments [16, 36, 48, 63]. Of these, one with a favor-
able scaling number of basis functions, O(N?), is the
so-called ‘SHC bound’ for dual wave basis Hamil-
tonian [48, 63]. It is implemented as the method
shc_trotter in our library and can be found in
appendix F. Finally, Trotter simulation has histor-
ically been one of the first methods to be used to
estimate resource estimates, including the famous
FeMoco study [58], and later ones [22].

3.2 Taylor series

Methods invented after Trotterization are usually
called post-Trotter, and their objective is to lower the
Hamiltonian simulation error dependence, €gg, from
polynomial to polylogarithmic. Taylor series simu-
lation or Taylorization aims to expand the evolution

operator of a small time segment as a Taylor series
K
—iH . k
U, = e T » § H(—zm/r) =

i i zt/r

=011,..,0lp=1

()
1~~~alkHl1~~~Hlk~

This expression is a Linear Combination of Unitaries
(LCU), U, = SF  biU;. To implement it, one
introduces operators

Prepare : |

0) =Y Vb Iy, (6)
l
Select : [1) [v) v [1) Uy |9) , (7)

and defines ULTgyU = (Prepare’ ® 1)Select(Prepare ®

1). Since Ut .oy has some failure probability in recov-
ering |0) in the first register, it is customary to use
(oblivious) amplitude amplification [9], that reduces
the error to egg/r in each segment.

3.3 Block encoding and qubitization

Similarly, the Hamiltonian often takes the form of a
linear combination of unitaries H = > a;H;, from
which we can create as the block-encoding operator

H/\ -
Urcu = ( / ) ; (8)
with new Prepare and Select operators
0) = > Varll), (9)
l

Select : [IY |1} v [1) Hy 1) . (10)

Prepare : |

Using them, we obtain,

Urow 103 1) = 10) 2 o)+ /1 = P 0,00

(11)
However, as we saw this LCU implementation has
some probability of failure, which requires amplitude
amplification to suppress. An alternative is to con-
struct a quantum walk operator ) with the same spec-
trum. This is done via a procedure called qubitization
[45]. In the case where the corresponding U? = 1, as
is the case for Urcy = Prepare’ - Select - Prepare, it
can simply be implemented as [45, Corollary 9]

Q = Prepare(2|0) (0| ® 1 — 1)Prepare’ -Select. (12)
R

@ implements a Grover rotation in each eigenspace

Q0) [) = cos(B) [0) [r) — sin(B) |(0, ¥) ") ,

Q(0,4) ") = cos(0x) [(0,%k)*) + sin(0x) 0) v,
(13)
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for cos @, = % In other words, @) is a quantum walk
operator

=P . M. (14)
Eo\\1—5% Sk X

Diagonalizing the subspace spanned by
{10) [¥e) 100, 4w) )}, we  might  write
Qrcu = @, (€% |01) (Or| + 7% [—0)) (k).
We can use this operator to create a Chebyshev series
that approximates e/t [44], with a technique called
quantum signal processing [43]. However, it is more
straightforward to apply phase estimation directly
over +0 [10]. Then, computing cos(fy) we recover
the ground state energy.

Additionally, qubitization has the advantage that
RQR = Qf, so using this trick we can duplicate
the implemented phase with almost no extra cost, so

the prefactor in the cost falls from —2— to 22
€EQPE

2eQPE
[5]. Qubitization is often used in combination with

QROM and factorization techniques [5, 11, 39, 69|,
but has also been used in first quantization [7, 62].

3.4 Interaction picture and Dyson series

While the qubitization method is optimal concerning
the Hamiltonian simulation error, an alternative ap-
proach is to find ways to decrease the 1-norm A of
the Hamiltonian H. Let us assume that H = A+ B
such that ||A|| > [|B||. In the interaction picture,
Hi(t) = e*B(t)e”™* so in this framework, the
norm of the Hamiltonian decreases to || B||, and there-
fore the phase estimation may be cheaper to imple-
ment. In this picture, the Hamiltonian simulation is
implemented as

() = e AT [ Jy H“)ﬂ GOy, (15)

where 7 denotes time ordering. While the e~*A?
might be easy to implement if all unitary operators
in LCU decomposition of A commute, the time or-
dered exponential is more difficult to implement. This
might be done with a Dyson series

_ e—ifo”H(s)ds _ . i)k
v =] ] > (D N

Dy = %/0/0 TTH(t)... H (11 )]d*t,

that similarly to the Taylor series approach, bears a
logarithmic complexity on e g, and requires to imple-
ment the simulation for short time segments and use
amplitude amplification at each of them. Operator B
is implemented as

B

sl <O|PrepareB Selectp - Prepareg|0)  (17)

Using this block encoding of operator B, we can

express the block encoding of a time segment of
e~ UATB)T a5 [62]

k M-1
—i(A+B)T o —1AT 7; Z Z Z
e ~e lim
K—oo Mkk"
M —o00 k=0 m1=0 mp=0

<e—i7—(—1/2—mk)A/MBe—i-r(mL,—m;cfl)A/MB o

Be—ir(m’z—m'l)A/]MBe—i‘r(m/l-i-l/Q)A/M)

K (=i T) =
—IAB
((0\ PrepareB) M’“k' Z
k=0 mi,...,mi=0

<€7iT(M71/2fmk A/]\/[SelectBefi‘r(mk7m;c_1)A/M

Selectp ... SelectBe_"T(m/2 _7'L/1)A/MSelectB

e_iT(mHl/?)A/M) (PrepareB |0) )®K,
(18)

where m/,...,mj are the sorted integers from
mai,...,mg. This series might therefore be imple-
mented in a similar fashion as those from Taylor se-
ries, and will similarly require amplitude amplifica-
tion. The Dyson series simulation was first introduced
in Refs. [34, 45].

4 Results and an use case exam-
ple: comparison between different basis
functions

In this section, we make use of our library to show us-
age examples. For that purpose, we will perform two
tasks: (1) using the FeMoco Hamiltonian provided in
the supplementary material of [39], compute the cost
of performing Quantum Phase Estimation with sev-
eral methods included in the library; and (2) perform
T-gate estimation for a few simple molecules with a
wide range of methods, making a preliminary com-
parison of the impact of Gaussian or plane-wave basis
in the final T gate count, when using Taylorization as
a Hamiltonian simulation method.

FeMoco estimates

Over the last years, FeMoco became a standard
benchmark for quantum algorithms [58]. Such a
benchmark is realistic and useful because it consti-
tutes the metal active center of an enzyme capable of
converting atmospheric nitrogen and hydrogen into
ammonia, bypassing the energy-intensive industrial
Haber-Bosch process. As the first use case example
of our library, we first extend the T-gate cost esti-
mation for several methods. Not only this will help
us understand the complexity of previous examples,
but will also help check the validity of our results for
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FeMoco active space ‘ Reiher et. [58] ‘ Li et. [40] ‘ ’ N ‘ A ‘ TFermion ‘ [5] conditions ‘ [5] results ‘
gDRIFT [15] 7.34e+23 3.62e+23 54 5 7.08¢+08 | 2.69e+07 1.80e+07
Rand. Hamilt. [15] 1.32e+4-28 2.94e+28 128 | 23 | 4.78e+09 | 2.26e+08 1.90e+4-08
Taylor naive [3] 1.15e+22 1.26e+23 250 64 1.96e+10 | 1.09e+4-09 1.10e+09
Spars. low-rank [11] | 2.36e+13 2.17e413 1024 | 640 | 5.58e+11 | 3.88e+10 4.30e+10
w/o faih'lre [11] 4.57e+12 4.12¢+12 Table 5: Replication of the T-gate cost estimates of the
Results in [11] 4.8e+12 3.9e+12 linear_t method with Jellium, similar to those published in

Table 4: Estimation of number of T-gates required to run
different Quantum Phase Estimation algorithms with several
algorithms. The second half of the table shows that our
library gets similar results as [11], where the ‘w/o failure’
row indicates we obtain without taking into account failure
probability.

the low-rank decomposition method, where previous
estimates were available [11].

Using the Taylorization approach [3] has intermedi-
ate cost between that of Trotterization (QDRIFT and
Random Hamiltonian simulation [15]) and more re-
cent rank-decomposition and qubitization techniques
[11]. Furthermore, the last row of table 4 can be com-
pared with the published costs of 1.2-10'? and 9.8-10'!
Toffoli gates for both active spaces [11, 40, 58]. Since
each Toffoli gate is equivalent to 4 T-gates, our es-
timation is very close to the numbers originally re-
ported. We believe the small difference is due to a
combination of factors. In the first place, the error
optimization will usually give more weight to egpg
as it is the most costly error source. Additionally, we
take into account some factors such as the Uniform
subroutines and an amplitude amplification step in
the preparation of uniform superpositions on registers

1048

o o H
1043 4 o O HF
Q o H0
10% J 0 NHs
CH
= 1033 o 4
3 Q o 0O
; 1028 | e o CO;
]
® o o NaCl
ol 8 5e 8 o
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Figure 3: Representation of the results obtained for simple
molecules with the results from table 6. We can see that
choosing the right method greatly impacts the final cost of
the Quantum Phase Estimation algorithm.

table Il from [5]. The third column includes the results with
our library, while the fifth those from the original reference
[5]. Most of the divergence can be explained because the
total error budget has to be allocated between egpr and eg,
and by considering negligible the rotation synthesis cost. To
account for this, the fourth column indicates the results we
get if fixed the phase estimation error to egpr = 0.0016
Hartree, and did not take into account the cost of gate rota-
tion synthesis or failure probability. After this we still do not
get the exact results due to other polylogarithmic contribu-
tions that the original reference did not considered; but we
get quite close.

p and ¢ such that p < g < N/2 (respectively r and s).
We also take a slightly larger number of segments r as
described in section 3A of [62], due to the estimation
of the phase of e~?72rccos H ingtead of e~ *77.

The FeMoco cost of other methods implemented in
the library has not been computed, due to the lack
of geometry-dependent parameters such as the posi-
tion of the atoms in FeMoco, or because they were
conceived for plane waves instead of gaussian wave
functions. In any case, we believe that these results
confirm the usefulness of TFermion.

Simple molecules

Next, we run T-gate cost estimates of all the algo-
rithms included in TFermion, with several molecules.
As a use-case example, we compare the costs of simi-
lar methods on a different basis, something not previ-
ously been done in the literature. While these simple
molecules can also be analyzed with classical meth-
ods, we selected these simple molecules to avoid per-
forming active space selection on them. Of course,
selecting such active space in a molecule of scientific
interest will represent an important step to making
the simulation efficient, but our aim here is to com-
pare the methods rather than obtain novel results for
applications of scientific or industrial interest.

The results from our calculations can be seen in
table 6. We indicate the median value obtained for
each entry after running the procedure 10 times. We
select the median instead of the average because the
results have some inherent stochasticity due to the
error sources optimization, but the distribution tends
to be skewed to the higher values. We also do not
take the lowest value to avoid numerical instability in
the e values that may have given rise to unrealistic
lower costs.
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Method | Hy HF H,0 | NHj CH,4 0, CO, NaCl
gDRIFT [15] 6.2e+16 | 1.2e+19 | 1.4e+19 | 2.4e+19 | 3.9e+19 | 5.0e+19 | 2.4e+20 | 4.0e+20
Rand. Hamilt. [15] 3.0e+17 | 5.2e+22 | 2.4e+23 | 1.4e+24 | 1.9e+24 | 2.4e+23 | 1.6e+25 | 7.1e4+26
Taylor naive [3] 3.0e+13 | 1.3e+17 | 1.4e+17 | 1.9e+17 | 4.1e+18 | 4.7e+18 | 1.1e+19 | 1.4e+19
Taylor on-the-fly [3] 1.4e+27 | 5.9e+29 | 9.4e+29 | 3.3e+29 | 6.8e+30 | 4.6e+31 | 3.0e+33 | 4.8e+33
Config. interaction [4] 1.6e4+36 | 2.4e+39 | 2.8e+39 | 3.9e+38 | 1.0e+40 | 8.3e+40 | 2.5e+43 | 4.3e+46
Low depth Trotter [6] 1.2e4+23 | 1.3e4+26 | 1.1e+26 | 5.0e+25 | 8.5e+25 | 4.4e+26 | 8.4e+26 | 6.9e+27
SHC Trotter [6, 48] 2.3e+22 | 3.6e+25 | 4.2e+25 | 2.5e+25 | 4.2e+25 | 2.0e+26 | 7.5e+26 | 3.2e+27
L. d. Taylor naive [6] 3.1e+15 | 7.8e+16 | 8.4e+16 | 4.9e+16 | 7.6e+16 | 1.2e+17 | 1.8e+17 | 4.Te+17
L. d. Tay. on-the-fly [6] | 1.3e+23 | 2.7e+25 | 4.7e+25 | 3.7e+25 | 8.4e+25 | 1.1e+26 | 5.2e+26 | 8.5e+26
Linear T [5] 3.9e+13 | 1.0e+15 | 1.1e+15 | 6.3e+14 | 9.Te+14 | 1.6e+15 | 2.6e+15 | 6.3e+15
Sparsity low-rank [11] 1.2e10 | 4.6ell | 6.0ell | 1.0el2 | 1.8el2 | 1.5el12 | 6.3el2 | 5.3el2
Interaction picture [45] | 1.4e+18 | 5.7e+19 | 5.0e+19 | 2.4e+19 | 3.6e+19 | 6.6e+19 | 8.0e+19 | 3.3e+20
Table 6: T-gate cost estimates for different molecules and methods obtained using our TFermion, see Fig. 3. The Rank

decomposition technique is the most efficient between the analysed methods, closely followed by the plane wave methods

using QROM and qubitization (‘Linear T') or Taylorization (‘Low depth Taylor naive’).

Taylor on-the-fly algorithm
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® Plane waves (x160)
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Figure 4. T-gate cost of performing the same algorithms
making use of Taylorization as the main Hamiltonian sim-
ulation technique, over different molecules. The number of
plane waves was chosen to be =~ 100 or 160 times larger than
Gaussian functions as recommended by Appendix E in [6].
The cost of computing the electronic integrals on-the-fly is
larger than classically precomputing and loading them. The
comparison between Gaussian and plane-wave basis should
be taken with care as the error due to finite basis size was
not rigorously computed and controlled.

Let us first comment on the results of some meth-
ods. The first thing that calls our attention is the
large cost of the Configuration Interaction method [4].
We believe this is due to a combination of three fac-
tors: the first and most important one is that the con-
dition on the number of segments r imposed by the
Lemmas 1-3 in [4] is a very large value, which may be

understood as an upper bound rather than a real cost
estimate. Secondly, our method to perform the proce-
dure from section 4.1 was not optimized. And thirdly,
it also contains a large number of arithmetic opera-
tions, similar to those in ‘Taylor on-the-fly’. Over-
all this indicates that the estimates for this method
should be treated as an upper bound.

We can also observe that when using a Gaussian
basis, Taylor methods are almost always more efficient
than Trotter ones and that the cost of using the on-
the-fly versions of Taylor is often larger than the naive
one due to the arithmetic operations. The interaction
picture algorithm [6] displays a ‘similar’ complexity as
the Taylorization algorithms [3], as both operate on a
Gaussian basis and decompose the evolution operator
in a Taylor or Dyson series.

The most efficient algorithms among the analyzed
ones are those making use of the QROM techniques,
[5, 11]. Surprisingly though, the Low depth Taylor
naive [6] achieves the third-best complexity just after
the rank-decomposition algorithm [11], and the origi-
nal article introducing the QROM [5]. We believe the
reason for that is that the original article left unspec-
ified the techniques that should be used to implement
Prepare and Select, so we have assumed the use of
modern QROM techniques [5].

To make this comparison fair, we have, as a rule of
thumb, used approximately 100 times as many plane
waves as Gaussian wave functions, as it has been sug-
gested for isolated molecules [6]. The Gaussian ba-
sis used is the standard 6-31G [31], but this may be
changed by the user at will in the configuration file, as
well as the multiplicative factor. Using the previously
mentioned ratio, we can as an example of usage of
our library, compute the cost of the same Tayloriza-
tion methods with Gaussian and plane waves. The
results are shown in figure 4, although these results
must be taken with care as we have not controlled the
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error introduced by different finite basis sets.

5 Conclusions and future work

Over the last years significant effort has been devoted
to creating efficient algorithms for Quantum Phase
Estimation and Hamiltonian simulation since the es-
timation of ground state energy is such a central prob-
lem for quantum chemistry and a very natural appli-
cation of quantum computing. TFermion fills a gap in
standardizing and easing the use of such algorithms.
It should help academics have a better understand-
ing of algorithms for which no complexity estimates
were previously available. The usefulness for the in-
dustry is clear too, as it reduces the effort required
to quickly iterate over specific use-cases. As exam-
ples of usage, we have run calculations with FeMoco
and a range of molecules. Among the most interest-
ing results is the fact that using QROM techniques in
the plane wave naive Taylorization method [6] makes
it particularly efficient, and we have seen hints that
using plane-wave could be more efficient than Gaus-
sian for the same Taylorization techniques in isolated
molecules.

However, the effort is far from complete. On one
hand, exciting avenues of research remain open, par-
ticularly in the use of plane waves [62]. On the other,
we aim to improve this library in several dimensions:
(1) newer algorithms should be added; (2) our algo-
rithms are designed for molecules instead of materi-
als, where plane-wave methods should become very
efficient; (3) TFermion only provides estimates for T-
gates so the addition of other metrics such as the num-
ber of qubits would be a welcomed addition; and (4)
the topic of ground state preparation is barely touched
upon but should be considered a prerequisite to esti-
mate the ground state energy.

We believe this is a particularly exciting time to
explore how quantum computing can be applied to
chemistry and material science. For this reason, we
humbly hope that TFermion will become a useful tool
to advance the field and find beneficial applications for
society.

Code availability

The code for this article can be found at
https://github.com/PabloAMC/TFermion.
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A gDRIFT, a random Hamiltonian
trotterization approach

Using Hamiltonian simulation to estimate the en-
ergy of chemical configurations can be accomplished
through different methods. We will present the main
ones that can be chosen from in our software pack-
age in the following appendices. We first consider the
Trotter-Suzuki decomposition [1, 65, 66|, where the
time evolution of a Hamiltonian H = ZS=1 wyHy,
with H, being a normalized Hermitian operator and
w~ a non-negative Hamiltonian coeflicient, is approx-
imated by

T T
mtHE = T e <H €iw”H7t/T> . (19)
y=1

In the limit of » — oo the equality is exact. Notice
that H and H, do not need to be unitary in gen-
eral, only Hermitian. In contrast, e ** is unitary,
and since the electronic Hamiltonian can be written in
second quantization as a Linear Combination of Uni-
taries, for the estimation of the cost of this method
we will in fact take H., to be unitary, as in the rest of
the described methods. In this section, we present the
gDRIFT and Random Hamiltononian methods, some
of the best method that uses the Trotter-Suzuki de-
composition [15]. The main idea here is to reduce the
complexity of the Trotter Suzuki decomposition above
by randomizing the order in which the terms e~ “#~t/7
are applied. They suggest to simulate a single uni-
tary e~ "M+ randomly from an identical distribution,
where 7 = tA\/r is fixed, A = 25:1 w., and the prob-
ability of choosing an individual unitary is weighted
by the Hamiltonian coefficient w,. We further define
A = max, w,. This markovian method is referred to
as the gDRIFT approach.

The gDRIFT algorithm achieves O(A\?t? /ey s) gate
complexity, where eyg is the desired precision. This
scaling stems from making the zeroth and first-
order expansion terms of the DRIFT quantum
channel coincide with the channel that describes
the unitary evolution. In contrast, the 2k-th or-
der (deterministic) Trotter methods have complexity
O(FZH/%(At)lﬂ/%/e}{;k) [15]. As a consequence,
the qDRIFT algorithm proves advantageous when-
ever A < AT, which is the case for most electronic
structure Hamiltonians, as the majority of terms H,
possess small coefficients w, [11]. On the other hand,
gDRIFT will most likely perform worse than higher-
order Trotter expansion for large evolution times.

In the following, we will present the number of T
gates required for performing the unitary evolution of
Eq. (19) through the ¢DRIFT method and a second
order Trotterization method, respectively. The de-
tails of this analysis are based on the supplementary
material of [15] and consider the problem of estimat-
ing the ground state energy Fy of a Hamiltonian H

using quantum phase estimation. The total number
of gates n of the form e™*"v required to estimate
the energy of the ground state to an additive error dg
using qDRIFT is given by [15]

2)2 /1 2
€tot5E Py

where py is the failure probability inherent to the
quantum phase estimation algorithm and € is the
total Trotter error. Similarly, using a second-order
random Trotterization, this number scales as [15]

€tot \20E pr .

To arrive at the cost in terms of T-gates, we need
to assess the T-gate cost of simulating a gate e *"H~
and then multiply it by n as given by Eq. (20) and
Eq. (21) to give an estimate for the cost of performing
gDRIFT and a second-order Trotterization approach,
respectively.

The difficulty here is that H, will be a string of
Pauli operators, so we cannot just implement the ro-
tation in each qubit separately as it is an entangling
rotation. Fortunately, we can perform each e=*+7 us-
ing Clifford gates and a single C-R, rotation [30, 51].
This, in turn can be decomposed in two R, gates using
Lemma 5.4 from (8], and each rotation implemented
with & 10 + 41log(eg4) T-gates [60].

Finally, notice that in the notation of our article,
we are taking 0p = 2egpr and €r = €y g. Similarly
€ss can be determined by dividing es (which is not
taken into account in [15]), by the number of unitary
Pauli rotations used, 2n.

B Taylorization-based Hamiltonian

simulation

If in the previous appendix we explored the Trotter
and Trotter-like methods for Hamiltonian simulation,
from now on we would like to focus on so-called post-
Trotter methods that allow avoiding having polyno-
mial complexity in the Hamiltonian simulation preci-
sion e;{g. We will start with a method called Tay-
lorization [3].

B.1 Method explanation

B.1.1 ‘Database’ algorithm

The aim of the algorithm is to implement Hamiltonian
simulation for H = 25:1 w~ H,, via ‘Taylorization’,
that is, via a Taylor series:

K ; k
it . N ()T
e ~ U,- = kz: k' =
=0
. (22)

K ;
(—it/r)*
Z Z Tw%...w%H.h....HW,

k=071,...,7x=1
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Figure 5: Abstraction level decomposition of the Taylor
‘database’ algorithm. The x-axis represents the time steps
of the algorithm, while the y-axis is the abstraction level,
higher meaning more abstract. In the lower box, we also
depict the substitution one does to perform the alternative
Taylor ‘on-the-flight' algorithm. Notice that this does not
show minor operations such as the computation of gor the
multiplication in the last step of figure 4 from [3].

loglog(r/ens)
Linear Combination of Unitaries formalism, we can

write, U = > BiV; with B; = ch—l!w%...w% and V; =
(—i)kH.,,...H,,.

Therefore we have to define how to implement
Prepare(8) and Select(V'), defined as

with K = O (M> This means that in the

Prepare(8) 0’ = /L VB 2
J
depicted in figure 1 of [3], and
Select(V) [7) [)) = |5) V; 1) - (23b)

These operators use Prepare(W) and Select(H) re-
spectively:

T
1
Prepare(W) [0)®*# 1 = \ﬂ N vash)  (24a)
y=1

with A =37 Jw;| = O(N*%), and

Select(H) [v) [¢) = |v) Hy [¥) (24b)
or in other words
Select(H) |ijkl) |¢) = |ijkl) alalarar [) . (24c)

To implement (24¢) we have to transform the creation
and annihilation operators according to eq. 20 and
21 from [3]. This same article suggests introducing
four additional qubits so that eq. 23 and 24 from
[3] are finally used, containing only controlled Pauli
operators.

Using those operators, we define the quantum walk
step implementing U, (figure 2 in [3])

W = (Prepare(8) ® 1)'Select(V)(Prepare(3) @ 1) :
25a
)

(
Wi’ ) = L1001+ 1- S 1) s

To be able to use oblivious amplitude amplification,
we need s & 2 [9], what can be achieved if r = At/ In 2.

Then s =3, [B;] = Zszo HIn2k ~ 2.

B.1.2 ‘On-the-fly’ algorithm

The main difference with the ‘database algorithm’ is
that this algorithm aims to compute the integrals on-
the-fly.

One starts observing that the Hamiltonian is con-
stant in time, but at the same time it can be expressed
as a spatial integral over a given region Z, given that
it decays exponentially outside it

H= | HE)dz~ %ZH(Z). (26)
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As done in previous appendices, we divide the
Hamiltonian evolution into segments U,

UNZ ”/’" /7-{ 2)dZ. (27

If we substitute the integrals by Riemannian sums,
s r s
H(Z) = 27:1 w"/(z)H’ya

(28)

Now, the question is how to prepare w., (Z,,) in the
amplitudes. What the article does is first assume we
have a method sample(w) such that

log, M -
V10)S1E M = ) ) |4 (7)) (29)
with @,(Z,) an approximation of w,(Z,). Then the

preparation procedure of the amplitudes consists of
calculating the coefficients w, ,(%Z,) € {£1} of a

sample(w) ) [p

superposition such that w,(2) = <an\f:1 Wey,m (2);
¢ = O(§4%). To do that, defining [I) = |7) |m)|p),
one performs Kickback:

before uncomputing sample(w).

In summary, to prepare the amplitudes, one cal-
culates sample(w) in the basis, performs (30) in a
superposition of |m), and uncomputes the register
prepared by sample(w). We will call such procedure
Prepare(w):

Prepare(w) [0)®082 L1 = [ — o Z \/ vav m(Zo) 1),

where N\ = L% = O(I'Vmaxz, |w,(2)|); L =
O(uM) and M = O(maxz, |wy(Z)|/¢). Addition-
ally, due to equation 66 from [3] we know that

Vmax(juw,(2)]) = 2% max omax: (32)
where the 26 is due to there being a hypercube with
(22 max /07)° terms.

This means that this alternative algorithm is simi-
lar to the ‘database’ one, but substitutes Prepare(1V)
with Prepare(w) that we just explained. The prepa-
ration over |k) is similar to the one depicted in figure
1 of [3], except that A\ gets substituted by \'.

The final, important detail we have to explain is
how to perform the sample(w) routine. We want to

calculate
o (o (B on (7
. L Pl @ (e @) e (i)
wy(Z) = hij(Z, §) = e
|7 — 9
= ol (@)@ — E)pu(@)pr (& — &) I€] sin(6),
(33a)
with 5: Z — 3 and 0 the polar angle of f, as well as
wy(2) = hig(Z)
\ A
_ AT J J
- (107, (l’) 5 Z -
§=0,1,2 2 §=0,...,J |R; |
Vi
= —¢l(@) 5 x(@)
=" Zil€ | sin(0;)0! (F; — &)on( By — &)
J
(33Db)

again transformmg to polar coordinates in the exter-
nal potential, §J = R — Z. We need a subroutine
to calculate the 1ntegrals

éz

Il
-

] (34)

Qu, 1) 10)2152 M = | ) [0 (2,)) -

From the previous equation, one can see that the com-
plexity of @ is N times the complexity of (),,. Notice
that we will have to integrate over the space volume
V, summing over its discretization.

B.2 How to compute its cost

B.2.1 ‘Database’ algorithm

We will use figure 5 as the main guide to compute
the cost of the different abstraction levels. The first
thing we have to take is the simulation time required,
fixed by the error in the Phase Estimation algorithm,
egpr- One takes the number of segments U, to be

M TA

Ei erEln2' (35)

Another important parameter is the value of
K, that controls the number of Prepare(W) in
Prepare(S) and Select(H) in Select(V'), which we can
take from [45] to be

K=|-

The final aspects to take into account are:

2log(2r/ems)
5l

log(log(2r/ens) +

1. 6y initial rotations. This can be done using K —1
controlled I, rotations.
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2. Prepare(W) The cost of an arbitrary state prepa-

ration for can be estimated as 21082 N*1+1 arhi-
trary rotations, using the protocol from [61], as
it is preferable to encode |ijkl) instead of a con-
tinuous register that later on gets converted to
that. This will be the most expensive part of the

algorithm.

3. Select(H) First we have to specify how to cre-

ate the circuit for each operator a; , (analogously
a;r-vq). For that we iterate over n € {1,...,N}. If
j =mn we apply a o, or +io, as dictated by |g),
if 7 < n then we apply o,.

The equality case can be performed via multi-
controller Pauli operators. For each cre-
ation/annihilation operator, there will be 4N op-
tions due to the possible values of |j)|q). We
have to control on one qubit of register |k) en-
coded in unary to take into account the ampli-
tude term corresponding to (t/k’;)k, on |7) with
[logy, N'| qubits, and on |g); we will need to re-
sort to multi controlled gate decomposition.

To avoid the comparison in the case of n < j
we can create an accumulator. That is, when
n = j we switch an ancilla from |[1) — |0), and
controlled on such ancilla (and the unary register
|k)), at each step we perform o, on the n—th
register of |¢). This means N Toffolis and N
multi-controlled (on [logy N qubits) Not gates
due to the equality comparison.

B.2.2 'On-the-fly" algorithm

To compute the cost of the ‘on-the-fly’ variation
of this algorithm, the key step is substituting the
Prepare(W) operator by something less expensive.
The way we do this is by computing the one and two
body integrals on the fly, by creating a sign-weighted
superposition in register |p). Such superposition will
use [log, 4] qubits and can take values from 0 to p—1
where

2r x 6K ’
TS (6H(4301nax + Wmax/xmax)WIBnaxxglax>

N4t "
= @ <((90;nax + @max/zmax)@i;naxxfnax> )
€
(37)

as can be seen from equations 73 and 74, and the text
in the paragraph before equation 61, from [3]. Al-
though this is a large number, it will only appear log-
arithmically in the number of qubits in the |p) register
as explained in (28), so does not represent a too large
complexity overhead. Notice that from equation 60 in
3], 7 = AL = LTV maxz, (Jw,(Z)]), and the factor
of 4 in front of ¢! .. appear because we were deriv-
ing ot ; whereas the 2 appears because if we assume

a hypercube, there should be (2Zmax/dZmax)® blocks

in the discretization. Additionally, we can choose the
coordinate system centered around the orbital such
that Tmax = O(log(Nt/ey)) = Clog(Nt/em), C a
constant given by the software package users. @max
will not depend on N. Similarly, since ( is ey di-
vided by the number of integral terms calculated in
the process,

M= maxz ~ (Jwy(2)|) _ 6KrT'Y maxz ., (|w,(2)])
¢ €m ’
(38)
where we can use the expressions from (32).

The final contribution we should take into account
is that of the arithmetic operations required to calcu-
late ¢;(Z,), which will also depend on the basis func-
tion we are using.

For that we will be using quantum addition [27],
multiplication [52] and integer division [67]. The re-
spective T-gate costs are 4n + O(1), 21n? — 14 and
14n? 4+ Tn 4+ 7, where n is the number of digits,
n = [logy ] /3, as there are three coordinates. Addi-
tionally, performing comparison between two numbers
[20] can be done using 2n Toffoli gates if each of the
inputs to compare is length n, so 8n T-gates.

To calculate the number of operations needed, we
have to first remember that we are using a Gaussian
basis set. In such basis, we expand the wave function
as ¢ = S civi- Bach x;(z,y,2) = (v — X)*(y —
Y)l(z — Z)me=SE-R)* where (X,Y, Z) indicate the
center of the atom, and k + [ + m is the angular mo-
mentum (eg. k -+ 1+ m = 1 means p-type basis etc.
We assume that we only use up to d basis). The
orbitals are usually contracted x; = Z?:l di;x; and
o= Zjvzl cjk;. BEach k; is one of the N basis func-
tions that we use. More information on the topic of
Gaussian basis sets might be found in a recent review
[31].

In any case, to calculate each basis function x; = ¢,
we have to do the following:

1. Calculate (z — X), (y —
12n + O(1) T gates.

Y), and (z — Z), using

2. Calculate (r—R)? = (z—X)?+(y—Y)?+(2—2)?,
with cost 3(21n? — 14) for the multiplications,
that is the leading cost. The sums mean 8n+0O(1)
additional cost.

3. Calculate the exponential (;(r—R)? with a single
multiplication, at T-gate cost (21n? — 14).

4. =GR yig g Taylor series. Expanding to or-
der o means o — 1 multiplications and divisions,
and o sums.

5. The error in the previous expansion can be
bounded as max ({;(r — R)?)” /ol

6. To construct x;(z,y,z) we need 3 multiplica-
tions, so the cost is &~ 3(21n? — 14).
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7. Each x; will be a sum of weighted exponentials,
so the previous cost should be multiplied by d,
the number of terms in such sum.

The number of terms d in each x; depends on the
basis used, but it can be seen in tables 1-4 from [31]
that the number of primitive basis sets x; that form
each x; does not exceed 6 functions in the case of
segmented basis sets (sparse d;;), so we will take d =
6. However, if the basis set is general-contracted, d;;
is dense and the number might be much greater.

Once we have computed k; = ¢;(Z), we want to
compute ., (2):

e Whenever we have to compute f_; or Ej, the cost
is 12n + O(1) T-gates.

e Performing R|€)(0) — |€)||€]sind), and simi-
larly for &;. To do that, observe that |£|siné =

72 + 72, so we need two multiplications at cost

2(21n% — 14), one sum at T-gate cost 4n + O(1),
and a square root calculation. We compute the
square root using the Babylonian method, which
only involves a sum and a division per order.

o Vixp(z) = (42 — 2+ 4k — (1+k)/2?) xi(2).
If we call the parenthesis ag(xz), then
Vixijk(x,y,2) = (ai(z) + a;(y) + ar(2))xijk-
Computing a;(x) can be done using 4 sums, 1
multiplication (22 term) and 1 division. This is
because multiplying by 4 is free, just shifting
bit positions. This has to be multiplied by 3 to
take into account the three coordinates in the
Laplacian, and done before the combination of
the d functions into a single x; = ;.

In a similar fashion can QA be computed, for the sake
of a name for outputting V2.
Overall, the cost of Sample(w) is

e Two-body term: 4Q +R + 4 multiplication +
computation of €.

e Kinetic term: @ + Qa + multiplication.

e External potential term: 2Q +J x R + J multi-
plications by Z; and J—1 sums + J computations

of@-.

Remember that in the previous calculations we are
taking n = [log, u]/3.

The cost of the rotation Kickback between the two
applications of Sample(w) can be seen as a controlled
rotation on the result of a comparison with [log, ]
qubits. This requires one sum, one multiplication,
and one comparison, which should be done twice to
uncompute the result once the rotation has happened.
From the previous, the cost of the ‘on-the-fly’ version
of algorithm [3] can be computed using figure 5.

B.3 How to adapt the Hamiltonian simulation
to control the direction of the time evolution

Quantum Phase Estimation requires being able to
control the time direction of the Hamiltonian evolu-
tion of a segment. We do that by slightly modify-
ing the Select(V) operator: if we want to simulate
e /" for k = 45 + 1 we apply a C-ST operation
(to apply —i phase) and C-S if k = 45 + 3, while if
we instead want to simulate e’#t/" additionally apply
C-X in those situations to flip the sign. Here the Con-
trol bits are the value of k and the control qubits in
Quantum Phase Estimation.

Adapting the Hamiltonian simulation method for
Phase Estimation operation then amounts to two
multi-controlled Not gates, with K/2+ 1 controls be-
cause k is encoded in unary and we are using Bayesian
Phase Estimation with a single control ancilla.

C  Configuration interaction and first
quantization

C.1 Method explanation

In the previous section, we saw how to use Tayloriza-
tion as a Hamiltonian simulation method in second
quantization. Here, we explain the approach of [4],
which relies on the same approach but in first quan-
tization, in a formulation called Configuration Inter-
action. The general structure of the algorithm will
consequently be similar.

In the Configuration Interaction representation one
writes |a) = |ao, ..., ay—1), where each «; indicates an
occupied orbital. The determinant of the correspond-
ing wave functions is an antisymmetric function called
Slater determinant and represents the state of the sys-
tem

<F0, ...’Fn,l‘a> =

Pag (’FO) T gpan—l(f'o)

1 (39)

NG

Pag (7:;7*1) 90047,_10?77*1)

An important aspect of this method is that it can
only be applied with local basis functions, such as
Gaussian orbitals, but not the plane-wave basis. The
reason is that at one point one has to bound the er-
ror by approximating Hamiltonian integrals from Rie-
mannian sums, and bounding the error is only possi-
ble if we are restricted to a local volume of space.
To make it work with molecular orbitals appearing in
the Hartree-Fock procedure, one can use the opera-

tor U = exp (— > mija;raj> that changes the basis
and may be applied using O(N?) gates |71]. & here is

an antihermitian matrix that is obtained by the self-
consistent Hartree Fock procedure.
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Expressing the Configuration Interaction Hamilto-
nian as a linear combination of unitaries is not effi-
cient. On the other hand, though, it can be expressed
as a sparse matrix, called Configuration Interaction
(CI), whose elements are a sum of integrals.

The Slater-Condon rules indicate how to compute
those matrix elements, based on one- and two-body
integrals [4]. Because of them, the sparsity of the
Configuration Interaction matrix is

=)0 00

nt_ N PN
4 2 2

(40)

After decomposing the Configuration Interaction
matrix in 1-sparse operators, we approximate its in-
tegrals as a Riemannian sum of self inverse operators.
Finally, we construct Select(#), that applies such self
inverse operators

Select(H) [1) [p) [) = [} [p) Hup 1) (41)

and allows to evolve the system under the Hamilto-
nian. The steps are the following:

1. Decompose the Hamiltonian into 1-sparse opera-
tors. Such operators will be indexed by 2 4-tuples
(a1,b1,1,p) and (az,bs, j,q) that denote the dif-
fering orbitals. This tuples will be used to per-
form the operator

Q!+ |y) [a) [0)"M%=2 N s |y (@) 8), (42)

within the Select operator (41). The specific al-
gorithms for this procedure can be found in ap-
pendix A of the article of reference for this ap-
pendix [4]. These procedures require, between
other things, the ability to order a list of orbitals,
which we explain in Algorithm 1.

2. Decompose each 1-sparse operator into h;; and
hijri. The Slater Condon rules sometimes re-
quires the sum over 7 integrals. Here we de-
compose the previous sum such that only at
most two integrals are summed for each term.
This decomposition can be seen in section 4.2
of the original article [4]. It will allow us to
write the Hamiltonian as H = > H,, with

T =n+n(n—1)/2+(N 1)’ +(N=1)*n(n—1)/2.

3. Discretising the integrals into Riemannian sums.

Each Hamiltonian term from the previous equa-
tion might be represented as H? = [R27(2)dZ.
Since the domain of each 1ntegra1 might be dlffer—
ent, we write HF;B = p 1 No‘g Here is where we
need the requirement that the orbitals are local.

+ O(n*N +nN?) € O(n>N?).
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Figure 6: Abstraction level decomposition of the Configura-
tion Interaction procedure [4]. The Sample operation shown
is the same as in figure 5.
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4. Decomposition into self-inverse operators. Fi-
nally, we decompose in a sum of M €
O©(max, , [N, ) self-inverse operators,
using a similar strategy as in the previous sec-
tion B [3]. Operators will be indexed by p and
I = (vy,m, s), where m controls whether a phase 4
is added in the Kickback, and s is sign. p controls
the Riemmanian sum. The final decomposition
can be written as H = ¢ Zlel Zﬁzl Hy,p. Using
this we can perform

QU |p) o) 18) = H7'y 1) [p) ) 18),  (43)

which also appears in the Select operator.

In conclusion, one time segment of the Taylorized
Hamiltonian evolution will be

—it¢)k
Ur NZ rkkl Z Z /Hll,m Hlmpkv
S lk=0p1,..,p=0
(44)
where |I) = |y,m,s). The role of Prepare will be

restricted to the preparation of 6 angles for (_Tl,flf,) °
To compute the algorithm cost, we will need con-
stants «, 71 and -5 to comply with equations 28,
29 and 30 from [4], and will bound the error from
computing the Hamiltonian integrals as Riemannian

sums:

e For each [ there is a vector ¢; such that if || —
Gl > Tmax then

Wdﬂlﬁwmm@®< |fau) (45)

max

e For each [, ; is twice differentiable and there
exists 1 and 79 such that

©max
IVar (M)l < m——= (46a)
max
and o
V2@ (P)]| < 72 x;n = (46b)

max

C.2 How to compute its cost

We will use figure 6 as a guide to computing the cost
of the algorithm. There are three key differences with
the cost calculated in the previous appendix. First,
some parameters change. These are notably 7, the
number of time segments, and M, which indicates the
size of register |m) and as a consequence influences the
cost. The other two aspects that change are that we
need to compute the cost of Q% and Q°° in figure 6.

Let us start computing 7, the number of segments.
r = (Lut/1n(2) (according to the paragraph before
equation 68 in [4]), with L = 2(MT) (the 2 be-

cause of register s in |l) = |v)|m) |s)). The product
pmaxy , [|X, || = pM(¢ can optimized from Lemmas
1-3 in the original article [4], so

r = H(MC)/In(2), (47)

with ¢t = W/GQPE and

=)0, O

dN 2N2
= % - L2 + 2 > + O(m*N +nN?) € O(n>N?).
(48)
To compute M, similarly as in the previous appendix
M=0 <maX%pC||Npﬁ|) : (49)

and in the previous appendix we saw that ( is the
error that we allow, modelled as the error budget for
this error source ey, divided by the number of times
we called the decomposition, I'Vr. The reason why V
appeared in place of p is because instead of writing

Hy = wa('gp)

(50a)

we were taking

(50b)

v o
= Zw’Y(ZP)a
"

so the precision must be scaled correspondingly. In
this case however,

Hy =% %,(3), (51)

integrating the cell volume as a multiplicative con-
stant in R, (Z,), so the error has to be appropriately
scaled by V/u. Similarly, this time,

(2 €g
g = = . 52
3-2Kr(#)(#p) 6Krl'p (52
Since max~ , ||X, || is bounded from Lemmas 1, 2
and 3 in [4], we can compute M. These lemmas will
also depend on ¢, taken to be the individual error in
each of the integrals. Therefore, we should take (see
paragraph before eq. 74 in [4]):
(2 )

(== (53)

5= S
6Kr’ Tu

where 6K is the number of times these integrals are
used in each segment, indicated figure 6. We can see
that § depends on r, which depends on pM(, which
from the previously mentioned lemmas depends on
6. We solve this by computing r such that g times
equations 39, 43 and 47 in [4] become approximate
equalities to pM (. This way we obtain a close result
to if we had used 0 = ey /(6KT't).

Now let us turn to two main operators involved in
the algorithm, Q"% in (43) and Q°°" in (42). To com-
pute the cost of Q¥ the procedure is the same as we
did in the previous appendix B. In this case, however,
we will have to compute up to 2 basis functions. To
do so we iterate over the different possibilities of v to
decompose in h;; and hgjxg.
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a.p = 0 = ¢q. This point requires calculating
n terms of type hy,y,, and n(n — 1)/2 terms

(hXinXin - hXinXin )

b. p =0, ¢ # 0. In this case there are (N — 1)n(n —
1). terms of the form hyy, 1, — Piy, 1> and (N —
1)n for the terms of the form hy;.

c. p#0, ¢ =0. No integrals are needed.

d. p # 0, ¢ # 0. All of the integrals in this last
point are of the form hjji; — hijie. There are
(N —1)2n(n —1)/2 of them.

From this and the previous appendix B, the cost of
Qv can be readily calculated.

Computing Q°° requires implementing the proce-
dure ‘Find Alphas’ and a more general one indicated
in cases 2 and 4 in appendix A, that we will call ‘Find
Gammas’ [4]. Both ‘Find Alphas’ and ‘Find Gammas’
require a sorting algorithm that has the peculiarity
that only up to one item might be out of order, and
we know its position. For that reason, we have de-
scribed a possible sorting algorithm 1. To compute
the cost, one should also make use of the basic oper-
ations described in table 2.

Algorithm1 Algorithm to order the orbitals |&) gen-
erated from |3), shift |p) and position |5)

1: procedure ORDER(|S) |p) 7))

2: Calculate unordered |&), subtracting [p) from
1B;)-

3: Use Cnots to create two "basis’ copies of |&),,
called |&), and |&),

4: for i € reversed(range(j)) do

5: if then|d;); == |&;y1), then

6: return Invalid > If this is activated,
reverse the entire computation. Thus cost x2.

£ |0}, < (l&); > lay),)

8: Controlled on |-), swap |&;), and |&i41)y

9: Uncompute |),

10: Uncompute |&),

11:  return |B) |p)|j) &),

Using this and figure 6 it is relatively straightfor-
ward to compute the cost of the present algorithm.
Notice however that the initial Hartree-Fock rotation
U = exp *Zij nkjazaj) has not yet been imple-
mented in the cost estimation, but it is not a domi-
nant factor.

C.3 How to adapt the Hamiltonian simulation
to control the direction of the time evolution

Adapting the Hamiltonian simulation for its use in
Quantum Phase Estimation can be done as in ap-
pendix B.3. The cost can be therefore calculated in
the same way.

D Introducing the QROM

D.1 Method explanation

Quantum
Phase
Estimation

‘ T < N
Segment
(controlled) ) ) 3 .
Hamiltonian cu c-u r——| CU QFT
simulation
[ 1 ] )
Y A

Quantum
walk step W

Prepare Select

T

Prepare’

Is
v

) Y
Subprepare

Y
C-Swap
Dlog M !
| , ] y 209N
Swap Uniforms Comparison | C-Swap | ¥
T
‘ ‘ ‘ QROM > C-Swap
v

Figure 7: Abstraction level decomposition of the procedure

[5].

One of the key innovations used in this method
is that if instead of simulating W(H) = e**#™ one
chooses W(H) = e*tarccostH/2) = one can eliminate
the Taylor series error completely [5], as we already
explained in section 3.3. This idea had been previ-
ously introduced [10, 56|, and has the consequence
that instead of phase estimating the ground state en-
ergy Ey one phase estimates arccos(Ep). We can
simulate W(H) with the standard quantum walk
(Prepare! ® 1)Select(Prepare’ ® 1). Notice that in
contrast to [62] we are using arccos instead of arcsin
because, since arccosf + arcsinf = /2, the change
amounts to a global phase and sign change, and we
want to use similar notation everywhere.

Therefore, in this appendix, we aim to explain the
implementations of the Prepare and Select operators,
and the key innovation of article [5], the proposal of
an efficient QROM that will play an important role
in both Prepare and Select. We will start with the
latter. The role of the QROM is to iterate over all
possible inputs preparing the corresponding outputs.

How can we construct such a unary iterator? The
easiest way is just to use as control all the index qubits
for each of the L values the indices can take. But
this is clearly wasteful since we are often repeating
the same controls over consecutive values in the in-
dices. Therefore, [5] proposes using auxiliary qubits
to hierarchically save the combinations of controls,
giving rise to circuits similar to their figure 5, called
the "sawtooth" circuit. This circuit, in contrast to
the original, can be simplified avoiding the wasteful
repetition of AND gates that we indicated previously.
As shown in their figure 6, allows for converting their
figure 5 to their figure 7, requiring only (L — 1) AND
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gates. Since each AND can be constructed from 4 T
gates, the unary iterator requires 4L — 4 T gates.

A variation over the previous iterator is the ac-
cumulator. Instead of directly applying the chosen
gates to the target qubits, one defines an accumula-
tor qubit, which is at state |0) until we control on the
selected value of the indices and stays |1) until the end
of the iterator, at which point it can be uncomputed
since at the end the accumulator will be at disentan-
gled state |1). A picture of this variant is figure 8
in [5]. This accumulator is specially useful because it
will allow us to apply the Majorana fermion operator

) 18) - [0 ( |¢>) — ) ViZi1.-Zo ), as can

be seen in figure 9 in [5].
This QROM is useful to perform the Prepare cir-
cuit. However, we will not prepare

UngF] — Z \/w77 (54)
I'—1
=3[ e, 6)

with [temp, ) a junk register entangled with |v). The
way to ensure that this entanglement does not inter-
fere with other computations is to ensure that the
same qubits are fed into the uncomputation and that
the reflection R, = (2|£) (£| —1) that appears in the
quantum walk step W = R - Select is done only over
state |0). Here, we will be looking for an algorithm
that performs the following transformation:

but rather

-1
0y A+ 20w Ty S /5 10) [temp,),  (56)
Y

with ., a p-bits binary approximation to w./A. For
this, one chooses

2v/2) AE?
n= ’710g2 (A_E) +10g2 (1 + 8>\2 )

o (1 1211Y]

as given in equation 36 from [5]. Since the Hamilto-
nian is frustrated, the quotient in the last logarithm
is upper bounded away from 1, and thus the last term
is O(1). Similarly, since AE < A, the second term can
be upper bounded by log,(1 + 1/8).

We will prepare this new |£) indirectly, using a cir-
cuit that they depicted in figure 11 and called Subpre-
pare. We start from the uniform superposition > |v)
and have two registers that depend on 7, |keep,) and
|alt,). |keep,) will dictate the probability that we co-
herently exchange |y) and |alt,). The objective is to
find keep, and alt, such that in the end, we obtain

the correct amplitudes. The details of the procedure
can be found in section 3D in the main reference for
this appendix, and it is the inverse procedure of the
depicted one in their figure 13 [5].

The Hamiltonian basis explored in this technique
is plane waves, with the same structure that we saw
in eq. (67) [5]. The article suggests that to make
the basis set as compact as possible, one may choose
Gausslet basis sets, that combine some of the features
of plane waves and of Gaussian waves [72, 73|. They
represent however a very complex basis set, so for the
time being we have not implemented it yet, working
in dual waves instead.

The following question we need to answer is how to
index the terms of the Hamiltonian. We will have reg-
isters |p) and |¢) which in binary encode the orbitals
without taking into account the spin, while |a), and
|8) will take that into account. Thus, |p) and |q¢) will
encode numbers from 0 to N/2 —1 (N the number of
spin-orbitals) and will need [log, N — 1 qubits each.
Then we will have two one-qubit registers |U) and
|V), that will decide what term in the Hamiltonian to
apply. Finally |#) will be used to apply a phase (—1)°.
Overall, we have the following Select operator

Select |97 U,V,p,a,q, ﬂ> |¢> =
(_]—)9 |97 Uv V7p7 Q, q?ﬁ>

Zp.a UN=VA((p,a) =(q,8))
Tyalys UV A(p0) £ (6,5)

® 9 XpaZXga SUAN VA< A(a=p5).
YpaZYya  UA-VA(p>g)A(a=p)
Undefined Otherwise

(58)

As an aside notice that p and ¢ are three dimen-
sional vectors whose elements take integer values in
the range [0, (N/2)'/3 — 1], so we need to map (p, o)
to an integer index representing a qubit. The map-
ping is, for a D dimensional system (D = 3)

D—1
M= (N/2)'P, f(p,0) =0,4MP + > p; M.
§=0
(59)
Similarly, the Prepare operator performs
Prepare : |O>®(3+2[10g2 ND
ZU ) 1)y 10)y [P, o, p, o)
+ 3 T —=a)16,2,) 0) 0}y Ip.o,a,0)
P#q,0
> 1
+ Y Ve-a16,2) 10y 10)y p.o.a.0),
(p,)#(¢,8)
(60)
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with coefficients

_ % TO)+U@) +3, Ve -0
2\ (61)

T(p) _ |Tf\p)|’ X / (p) _ |V;l(/l\))|
and
g — L= sign(=T(0) —Up) — 2,V — 9)
P 2
oo = 1- sig;z(T(p)); o) = 1- sig;(V(p))’

(62)

To implement Prepare, first, we prepare a unitary
operator called Subprepare, which acts as
‘O>®(2+10g2 Ny

N—

,_.

(T(d)18a) 1), 10} + T() 1657} 10 100y (63)

d=0
+ V(@) 1057) 0)g 1)y ) 1)

The construction of Select, Subprepare and Prepare
can be seen in fig. 14, 15 and 16 from [5]. Taking this
into account, the total cost will be r(2 - Prepare +
Select + R), where R stands for the reflection in each
step.

D.2 How to compute its cost

The circuit implementing the Select operator is de-
picted in the above-mentioned figure 14 [5]. It will
require the use of 3 QROM applications of size O(N),
and 2[log, N controlled swaps (Fredking gates) each
requiring one T gate. So, the total T-gate cost is
12N + 8[logy N| — 14.

Subprepare is the main building block for Prepare,
and it is depicted in figure 15 in [5]. It uses one
QROM, with AND complexity 3MP —1 =3N/2 -1,
so T complexity 6N — 4. The 3 is due to the
three possible combinations that can appear in |U)
and |V), whereas MP is due to register |p) hav-
ing D[logy, M| = [logy N/2] qubits. Appart from
the QROM, Subprepare contains 3 + [log, N/2] =
2 + [log, N controlled swaps (each requiring a Tof-
foli gate or 4 T gates); two comparison test between
2 p-sized registers; and finally operators Uniform%[D
and Uniforms.

The Uniform operators prepare an uniform super-
position over the first L basis states, and is ana-
lyzed in figure 12 in [5]. Since in particular we
are using Uniforms and Uniform%[D , this will require
8Mlogy L] + O(logy e55) = 8[logy 3] + O(logegg) T
gates in the first case, and 8Dlog M + O(logegq) =
8[log, N] — 8 + O(logegs) in the second. The
O(log e5s) term stands for 2 rotations R, in each Uni-
form operator. Overall, Subprepare requires 6N +
12[logy N1+ 10p + 16[log, eg5] T gates.

The Prepare operator can be seen in figure 16 in [5].
It requires another Uniform§}”, at cost 8[logy, N +
8[log, e5s]; Dflogy, M| = [logy N — 1 swaps with 4
times as many T gates; 2 multicontrolled Not gates
with [log, N controls each, which can be imple-
mented using 16[log, N T gates [8]; and one sum
over DJlog, M| qubits.

With the previous, we have everything we need to
calculate the total T gate cost accurately.

E Plane and dual wave basis

E.1 Method explanation

When looking for a basis of functions to perform
chemical calculations, one is primarily looking for a
basis that [6]

1. Leads to a small number of terms in the Hamil-
tonian.

2. Allows for simple preparation of initial state.

On the Gaussian basis, initial states are easy to pre-
pare using the Hartree-Fock procedure. However, the
Hamiltonian may have up to O(N*) terms.

One idea to avoid having so many terms in the
Hamiltonian is to use the plane waves and dual wave
basis. The plane wave basis functions have the form

(r) =/~ 27y
(pl/ - Qe ) v — 91/37 (64)
vel[-N"V3 N3P ezd

In the plane wave basis, the Hamiltonian will take
the form [6]

oot
2m Cp,oCq,0'Cq+v,0' Cp—v,0
H=+-5 Z k2
(p,0)#(a,0")
v#0

+3 ka poC

T

(65)

p, ¢ € [-N~1/3 N3] indexing the momentum. No-
tice that in this basis the kinetic operator T is diago-
nal, a property that we will use abundantly.

Fourier transforming (65), we get the dual plane
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wave Hamiltonian,

1
H = IN Z k‘s coslky - Tq—p]a;,oa%a

p,q,V,0
T
_4n 3 <CjCOS[k‘v'(Rj7”p)])n i
Q k2 P
p.§,0,v#0 v (66)
U
27 coslky - Tp—q]
ta Z %”w”w“
(p,0)#(g,0");v#0 v
e
with n, = a;;ap, ap and GL the Fourier trans-

formed annihilation and creation operators, and r, =
p(2/N)/3. We can see that in this basis the potential
terms become diagonal, and since the term V only has
O(N?) terms, the number of terms in the Hamiltonian
is O(N?).

In Jordan Wigner mapping, (66) can be represented

as
oo cos[ky - Tp—g]
Heg Y ey g,
(p,0)#(q,0")
v#0
Tk 2r ¢; coslk —1p)]
— 7'/ 7z
S (g f-2%
1/77'50
1
v >k coslky g p/(XpoZpitioZg-1.0Xg0
7
k2 7N
+Yp,JZp+1,a q— 10 q,0 +Z( )I

(67)

Depending on the situation, to simulate the Hamil-
tonian in the most efficient way possible we will jump
back and forth between dual and primal representa-
tions depending on the operator of the Hamiltonian

H:FFFTT< Zk,, al, 4a )FFFT

T
Am (Cj cosfk, - (R; — ’I“p)]) "
_* 5 o
Q p,4,0,07#0 kl’ (68)
U
27 cos[ky - Tp—g]
“Fﬁ Z Tnp,a'nq,a’
(p,0)#(g,0");v7#0
N

where all the terms are diagonal. To implement this
Hamiltonian, we need to perform a Fermionic Fast
Fourier Transform (FFFT) [23], an adaptation of the
classical Fast Fourier Transform. We cannot use here
the Quantum Fourier Transform because we are using

p,o

the Jordan-Wigner mapping that encodes the value of
the qubits not in the amplitudes but the basis.

E.1.1 Trotterization algorithm

The most basic way to use the plane wave approach is
to use (68) to simulate a segment of the Hamiltonian
simulation procedure

—iH: o o—i(U+V)3:/2,

FRFT O/, Kalotve popp  (69)
RN O},

e

with U and V given in (68). This formulation allows
us to perform Hamiltonian simulation and Quantum
Phase Estimation. The FFFT will be explained later
on in this appendix.

E.1.2 Taylorization ‘database’ algorithm

Alternatively, we may use the Taylorization pro-
cedures from appendix B. Let us start with the
‘database’ algorithm. To carry it out we need to de-
fine how to perform the Prepare(TW) and Select(H)
operators.

Select(H) is virtually the same as the same prepara-
tion method as we describe in appendix D [5], except
that in this case we use the notation of p odd or even
for up and down spin values:

Select(H) [p, q,b) [¥) = |p,q,b) ®
Zp 1Y) P=q
Zqu WJ> (b = O) A (p 7’é Q)
X, ZXgl0)  (b=1)A(>qAlp®g=0
Y, ZY ) (b=1)A(p<q)Ap®q=0)
) b=1)A(poqg=1)

where @ indicates sum modulus 2; and can therefore
be implemented at cost 12N + 8[logy N1 + O(1) T
gates.

Since the Prepare(WW) method is not specified in
the main reference for this appendix [6], we will also
use the method from [5].

E.1.3 Taylorization ‘on-the-fly’ algorithm

In appendix K of [6] it is explained how to use the
‘on-the-fly algorithm’ in this context, which is similar
to what we explained in appendix B [3].

The amplitudes we want to prepare, Wp, 45, can be
divided in a sum

Wpab = Z Wb, (71)
v#0
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where

Wpab =
2
Zy;eo ﬁ - 8kT<I+
ﬁ ZV#O %’;P*Q]

&3, k2 coslk, ]
1 (b=1)A(p@&q=1).

If we have to sum over a large number of atoms J, we
may also decompose each of the terms in the j sum
independently.

Since it is easy to apply phases but not to change
the amplitudes of a given state, [6] proposes further
dividing each

M-—1
Whapw = Z Wp.abwmi  Wpabwm € {£1};

m=0

c-0(5): e (M W)

I't
(73)

To perform the logic of the on-the-fly algorithm we
first have to perform the calculations for the coeffi-
cients, which means we need costly arithmetic opera-
tions:

Sample(W) |p, ¢,b, 1) [0)2"°52 NV s [p.g,0,0) Wy g0.)

(74)
with W), 4., a binary approximation to W, 41,

The complexity will be O(N®+log, €;,), where the
ey appears due to the use of Subprepare techniques
from [5].

E.2 How to compute its cost
E.2.1 Trotterization algorithm

In this subsection we aim to explain the cost of per-
forming Trotterization using this approach. To do so,
we have to compute the cost of the FFFT operator,
as well as the number of single qubit rotations in the
exponentials and the number of segments required, r.

Let us start with the computation of the cost of
FFFT. From [23] it can be seen that the number of
gates required to perform an m-mode Fourier Trans-
form are are (m/2)[log,(m/2)] single qubit rotations
and (m/2)[log, m| F» gates. The matrix representa-

tion of F5 in the Jordan-Wigner representation is

1 0 0 0
0 271/2 271/2 0
Fy =
0 271/2 _271/2 0
0 0 0 -1
1 0 0 0 1 00 0
o 272 272 g 010 0
S lo o272 o2 g 001 0
0 0 0 1 00 0 -1
(75)

Therefore, we can see that F is the product of a ma-
trix that we will call W with a Control-Z. The gate
W works as a Hadamard in the subspace spanned by
{|01),|10)}. Any gate with the structure of a unitary
gate U in that subspace can be constructed as C' — U
between two C-Nots in the opposite direction. In this
case, U is the Hadamard gate, and the controlled-
Hadamard gate can be performed using R,(7/4), a
C-Not, and R, (—m/4). Therefore, in total F; requires
two T gates in the Jordan-Wigner representation.

Overall, the FFFT requires (N/2)logy(N/2) =
(N/2)(logy N — 1) single qubit z-rotations and
(N/2)logy(N) F» gates, as can be seen from figure
1b from [23].

The next step is computing the cost of the expo-
nential rotations in (69). There are 8N terms in U,
8N(8N —1)/2 terms in V and 8N terms in T in (68),
so the same number of R, rotations for operators T
and U. Notice that in the simulation of e=*V7" we will
need Clifford gates and a single C' — R, rotation per
term [30, 51], as it was the case in appendix A.

Finally we want to compute the number of time
segments in the Trotter decomposition r. Using the
equations 5 and 6 from [55] we can see that the error
in each time step is bounded by

2([0 [T U+ VI + (U + V), [T, U+ V)]]) 6. (76)
This, in turn, can be bounded [6] by
2 | (IT19) P max | (10 + V1) 1+

o g (77)
ma | (G{T10) |- max | (6L + V]2) [2)5.

Since there are r := ¢/d; terms, the Trotter error is

€HTS < 2(max [ (Y|T1) i wmax [ (Y|U + Vi) |+

2 t ’
x| (0171} |- | 0+ V1) P) (1)
@

Asymptotically, this means we will take

2N5/6t3/2 Ql/3
Q / A/ EHS N/
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We can find bounds for the expected values of U, V'
and T, in appendix F [6]. From equation F1

27> 1
ma| (V1) | < 205
v#£0 Y
vy L
o 1/3 2 2 27
2mil (Vg ) #(0,0,0) T Tyt
(80a)
from F8
47777
el 0101 < G (6 )
w v
v#0
2
__"n 1
T QLB Z R L
mi2 (Vs ) £(0,0,0) % tvy g
(80b)
and from F10
T < 27T277 2 80
max | WIT1) | < 2 (800

To end up bounding U and V we need equation F6
D
vituvi+uvi T

(6]
N1/3
2 1)
(Va,vy,v2)#(0,0,0)
N1/3 N1/3  N1/3

+/ 3d / / Sdajdy _

22 442

1/3 3

2
/N”s /N” 3dady
22442

(81)

Ar (x/§

Using this and the previous equations, it is possible
to calculate the actual value of r, given t and egg.

E.2.2 Taylorization ‘database’ algorithm

Since the Prepare(TW) method is not specified in the
main reference for this appendix [6], we will also use
the method from [5]. As explained in appendix D, the
cost for Prepare(W) 6N +40[log, N]+16[log, ege |+
10u. Notice that the cost is linear because although
there are O(N?) coefficients, only O(N) are inde-
pendent. In any case this will be multiplied by
A= O(N?).

Similarly taken from [5] and explained in appendix
D the cost of Select(H) can be taken to be 12N +
8[log, N1+ O(1) T gates, since the implementation
proposed in both references (5] and [6]) is virtually
the same.

E.2.3 Taylorization ‘on-the-fly’ algorithm

Finally, the main cost of the ‘on-the-fly’ algorithm
comes from the Sample(W) operations that compute
(72). This will require arithmetic operations as those
indicated in table 2.

The main difference here will be calculating the
value of ), that influences the number of segments
r. From equation K2 in [5] the Hamiltonian will have
the form

H=¢ Z Wp.q.b,0,mHp g, (82)
p,q,b,v,;m
Similarly as in previous appendices, we take
€H
= . 83
(= (53)

In contrast to appendix B there is no integral over any
volume, so we do not include V in the denominator;
and in contrast to appendix C we do not sum over p
so there is no division by p. The main consequence
of this form of preparing the initial state is changing
the value of A, that will now be, from eq. K5 in [6]

A/ = C Z |WP7Q7b7Va77L‘7

P,q,b,v,;m

Whp.abvm € {=1,+1}.

(84)
As a consequence, given that m € 0,..., M — 1, b can
take values 0 and 1 and there are 8N values for p, ¢
and v

N = 2M((8N)3. (85)
Since
o = %00 W] (86)
¢
we have that
A =2(8N)* max < Wo.gb0l (&7)
P,q,b

As the sum of the nuclear charges is equal to the
number of electrons Zj ¢; = m, we can bound
maxp b |Wpqgb| as the maximum of 1 (the iden-
tity term);

™ cos[k —rp)]
— _ <
20k2 8N a9 Q Z G -

0 k2 ™o T ) k2 (88a)

SN *or2 Qk2 - 20k2

20k2 QK2 8N
_Cn+Dr K
T 20k2 SN

7 coslky - Tp—g) ™

— ; 88b

0 k2 Ak (88b)

or

k2 k2

Sv < v

i coslky - Tp_q] < v (88¢)
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Since the smallest value of |k,| for v # 0 is k, =

27 /Q/3 and the largest is k2 = 3 x (27?;7%2/3
max |Wp g0 <
p,q,b,v
(2n+1) 2 1 672
8TQL/3  2NQ2/37 87QOL/3’ N1/3Q2/3 |
(89)
Provided that the first option is the largest,
/ 3 (277 + 1) 7T2
N < (8N) (491/% -~ ) (00)

Now we want to compute the number of arithmetic
operations in the Prepare(w) operation. p = ¢ case of
(72):

1. Calculating k, and r, requires three multiplica-
tions each, one for each coordinate component,
with n = [logy N1/3].

2. There are three subtraction for each value of j in
R; — rp and another r,_, = r, — 14, with n =
[log, N'/3].

3. Computing k2 requires 3 multiplications and 2
additions.

4. Calculating the product within the cosines costs
three multiplications of length n = [log, N'/37,
and two sums between those terms.

5. One of the fastest ways to compute the cosine
is to use the CORDIC algorithm [68], which re-
quires a prefactor division (if expanded to a fixed
order) and 2 sums per order since divisions by
powers of two can be performed virtually.

6. We have to sum J cosine computations.

7. We have to divide or multiply such sum of cosines
by a constant, and k2. Costs up to ~ 3-21 log? N.

Thus, the T- gate cost of this first calculation is =
J [350 +63+
of values of j, that indexes the atoms.

For b=0)A(p#q)and (b=1)A(pDq=0):

1. We can reuse the previously calculated values of
k,, k2 and compute 7, (3 multiplications) and
Tp—g (3 subtractions).

10 ] logg N, where J is the number

2. We can perform the dot product in the cosine
with 3 multiplications and 2 sums

3. Similarly, we have to perform a cosine calculation
via the CORDIC algorithm again.

4. Finally we perform a multiplications and a divi-
sion (by k2)

To perform the case b = 1A (p+¢ =0 mod 2) we can
reuse the cosine result from the previous point, as well
as the k2 value, so we only need two multiplications.

E.3 How to adapt the Hamiltonian simulation
to control the direction of the time evolution

E.3.1 Trotterization method

In the Phase Estimation protocol we should be con-
trolling such rotations depending on the control an-
cilla qubits. However, since they are R, rotations and
XR.(a)X = R,(—a) we can actually use a formu-
lation similar to [5] where the mapping is [1) [¢) —
e |1) |¢) and |0) |¢) — e~¢|0)|p) (except for the
first segment, but this is a minor cost). To control
between both rotations we use C-Nots which change
the direction of the Z rotation [74].

E.3.2 Taylorization methods

Adapting the Hamiltonian simulation for its use in
Quantum Phase Estimation can be done as in ap-
pendix B.3. The cost can be therefore calculated in
the same way.

F  Trotter simulation: tighter bounds

In the previous appendix E we have explained how to
perform Trotter simulation in plane waves. However,
the bounds provided by (77) are somewhat loose, so
the number of steps needed to achieve the same error
are lower than required. Similarly happens for the
methods covered in appendix A. In this appendix we
give tighter bounds for the second order Hamiltonian
simulation deterministic Trotter operator. We aim to
approximate e#%  for H = 25:1 wy H,, with

1
2(H;d¢) = (H 62“’7HW> H e watl | (91)
y=T

This general expression will reduce, for the plane wave
basis, to (69)

o~ iH3t o p—i(U+V)5e/2,

FRFT e O/, Kaloave popp  (92)
e WHVIN/2 4 O(67).

The error in this expression will be

1% — Sy (H; 6,)|| < Wad?, (93)
for §; = t/r and W5 a commutator expression. Since
in plane waves, operators U and V commute, in a
Hamiltonian H = T 4+ U + V we only have to care
about commutators [T, U+V],T] and [T, U+V], U+
V. This can be better seen in the dual basis, where

V= Z VbgTpng (94)
P#q

U=> Upny=
P

and

> Upnpny, (95)
p
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for n,, the occupancy fermionic operator. Since the n,
operators commute with each other, so do U and V.
Consequently, Ref. [63] proposes to write H = T +V
with
Vi=U+V =Y V,gnyng. (96)
pq

One additional insight to bound the commutator
Wy as tightly as possible is to restrict our space to
the space of n electrons. Usually, the error has been
described in terms of the spectral norm distance, that
is, in other words ||H |2 = maxy || (¢¥|H|v) |. How-
ever, this takes into account states ¢ that do not live
in the subspace of n electrons, potentially leading to
a higher norm and a looser bound. To remedy this,
one can instead use the ‘fermionic seminorm’, defined
as

H]y = max |@HE O

for H, the Hilbert subspace with 7 electrons. While
this seminorm fulfills many properties of norms such
as the triangle inequality, it is not a norm be-
cause some operators can evaluate to 0 without be-
ing operator 0 in the full Hilbert space, for example
Inpng|ln=1 = 0.

Using the fermionic seminorm, we express the com-
mutator error bound W as [48]

1
Wa < SO + VL Tlly + [T, U + VLU + V]ily.

(98)

Furthermore, it is possible to bound each of the two
terms independently as ([63] and appendix A in [48]):
[T, V],
I, V],

Tlly < AT NZNV lmaxrn(4n + 1) (99)
Vil < 12] T2V [3a® (20 + 1), (100)

collectively known as the SHC bound, which scales as
O(N3) with the number of basis functions N. Other
bounds exist too (see sections 3 and 4, and table 1 in
[48]), and shall be included in future updates to the
library.

From equation 8 in [6], we also know that

4 Q2/3 O3y
HU+V||max =~ Q 47_[_2 : i T 9

7

(101)

while ||T'||2 can be bounded as we did in (80c). From
this, and the implementation cost of (69) that we dis-
cussed in appendix E.2, we can obtain an even lower
cost of the Trotter simulation.

G Sparsity and low rank factorization

G.1 Method explanation

In the previous appendix we have seen that using care-
fully crafted Prepare and Select operators, it is pos-
sible to lower the complexity of the Quantum Phase
Estimation. However, this came at the cost of having

to use plane waves or similar basis sets. The method
proposed in this appendix allows to leverage QROM
techniques while working in arbitrary basis [5, 11].
The other main consideration of this article is how to
leverage the sparsity and a low rank factorization of
the Hamiltonian to lower the complexity of the algo-
rithm.

Let us start by the second aspect, the low rank
tensor factorization. We know that we can write the
Hamiltonian in the second quantization in the follow-
ing form

N/2
> D hwaabag
oe{t.d} r,g=1

N/2

1
T3 2 D et e

a,Be{t,d} p,q,T5=1

N/2 (102)
Z Z qua;)aq
oe{t.{}pa=1
N/2

+ Z Z quma;fa,aaqaaiﬁas,ﬁ

a,Be{t,d} p,a;ms=1

The coefficients h,, and hpgrs are efficiently com-
putable integrals. On the previous equation, the or-
dering a'a'aa is called the ‘physics notation’ whereas
the second ordering, a'aa’a follows the chemists con-
vention and will be the one we will use because it
allows us to perform the factorization. Notice that
Tpq and Vpqrs are real and have symmetries p < g,
r <> s and pg < rs. Notice also that the one-body
operator changes as a result of the swapping of a,, and
a}; and their anticommutation in the two-body term,
and so does the sign of the latter.

Since V is a 4-rank tensor, with indices rang-
ing from 0 to N/2 — 1, we can transform it to a
N?2/4 x N?/4 matrix called W, with composite in-
dices pg and rs, and symmetric and positive definite.
Diagonalizing W we get,

L
W= wg®g")T
=1

where ¢(!) denotes the I-th eigenvector, with eigen-
value wy, and entries g( )

Let us denote the rank with L. If W where full
rank, L = N?2/4. However, in most cases and due
to Coulomb interaction being a two-body interaction,
the rank will be L = O(N). Now, we can rewrite

Wg® = wg®; (103)

N/2

Z Z qum% alq, aai 80s,8

a,Be{t,}} p,g;ms=1

104
; N2 2 (104)
:sz Z Z gpq a} g0
=1 oe{t,4} pa=1
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From the right-hand side of the equation we can
see that there are O(LN?) = O(N?) independent
coefficients. In fact, due to the symmetry p < ¢
there are 1/2 - N/2(N/2 — 1) terms off diagonal, and
when p = ¢ there are N/2 additional free coefficients.
Therefore, in total there are N2/8+ N/4 independent
terms for each value of . Further factorization is pos-
sible [39, 50, 69], but this work is not covered in this
appendix.

As in the previous article, we do not attempt to
perform phase estimation over e** but rather over
eFiarccos(Ex/X) - which is the phase produced by one
step of the qubitization quantum walk. Also as in
the previous article, this method uses Jordan-Wigner
mapping too.

We have to explain how to perform operators Pre-
pare and Select. Let us start with the former. The
state we want to prepare is the following

v =010 3 Dol
wy
+Zl:\/7|l>l+>\+>®

© > A/lgsa gl 1108 10D) Ip, g, 0) |, s, B)

P,q,7,8,,3

) 10) [p, g, ) [0) +

(105)

Here, Hz(fq) indicates the sign of each term, and are
defined as

l
9(1) _ 0, qu > 0, 0(1) _ 0, gl()ﬁ) > 0.
ra 1, T,y <0, P 1, g% <o.
(106)

We can see that the first register selects between
the T terms (for state |0)) and each of the L terms
for g). The second and third register use |+) to
select between 1, and Z, ,, Z, o and Z; g, whenever
p = q or r = s respectively. Additionally, depending
on whether p > ¢q or p < ¢ we apply Xp,gZ'Xqﬁ or
E/I),UZ}CI,U respectively.

The number of coefficients to fix is (L + 1)(N?/8 +
N/4), so the complexity will be O(N? + logye,, '),
where the p appears due to the use of Subprepare
techniques from [5]. To perform the preparation, we
follow this steps

1. Starting from the state |0), prepare a superposi-
tion over the first register

2|T | wyq
0) |3 23 S S Il ) @
l D,q

®10) [0) |0) |0} [0) |0) .
(107)

If we allow for error egg, the complexity of this
step, in terms of T-gates using the QROM is

4L + 4p + 14[logy L] + 8[logy €g5] [5].  The
€g S dependence is due to the Uniform opera-
tor preparation, that requires to use two con-
trolled Z rotations, at cost 4[log, egs] each. On
the other hand, the Uniform preparation requires
10[log, L] T gates as can be seen from figure 12
in [5], which has to be added to 4[log, L] T-gates
due to the controlled-swap operations in Subpre-
pare. The value of ;1 can be taken from equation
36 in [5].

. Perform a Hadamard in the second register and

another on the third, controlled on the first reg-
ister being |l > 0).

01910y | 3 2l

p.q

WELIEIEI N

©10) |0) 0} [0 -

) (108)

The cost of this step is negligible compared with
the following one, and can be performed using a
multicontrolled Hadamard.

. Prepare a superposition over register six with am-

plitudes /[Tyq| if |l = 0) or 1/|g%4] if |I > 0).

01910 32 /22 10)10) 1.4, 0) +

p.q,0

+ﬁ§l:ﬁ|l> +) [+) ®
@ > lasal [ 1982110)[0) |p, g, @) [0) .

(109)

This step and the following have the largest com-
plexities, since we need to use the unary iterator
and Subprepare circuit of [5]. We have to iterate
over L, p, and ¢, and that gives a Toffoli com-
plexity of (L + 1)N?/4 — 1 plus the cost of the
comparison and the controlled swaps from Sub-
prepare.

4. For |l > 0), prepare weights 1/ |g7(nls)| in register 7.

01100 Y2 /22 10)10) .4, 0) +
w
YLUTEE

@ > VIgeugr sl [0)10) [p,g,a) s, 8)
Pg;7;5,00,8

(110)
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In this step the Toffoli complexity is also LN? /4
plus the cost of the compare and controlled
swaps.

5. Finally, use the QROM to output \0;2) and \0£Q>
in registers four and five.

T,
IHOZ memmm%ww

ONCLIEEE

9509551 1050) 102) [p, 0, @) I, 5, 3) .

(111)

>

P,q,7:8,, 3

To alleviate the cost of this procedure we follow
three procedures:

1. Leverage the p <+ ¢ symmetry in T}, and gpq,
which divides the cost by half. This can be done
preparing initially

l
V2> gl Ip.g. o

p>q

Z |gPP |p7pa >

(112)
Then, one can use the second register, in state
|[+) to swap |p) and |¢) when p # g or to apply
either 1 or 7, , when p = ¢. This means that in
step 3 we will have to prepare (L+1)(N?/8+N/4)
entries, and in step 4, L(N?/8 + N/4).

2. We can also reduce the preparation cost in the
QROM by performing the comparison between
the probability |keep;) and an ancilla in uni-
form superposition, at the same time for all
1 €(0,...,L). The controlled swap between the
register |j) and |alt;) can also be performed for
all values of | simultaneously.

3. The dominant cost is outputting (2L+1)(N?/8+
N/4) qubits using the QROM [5]. The outputs
will have a size M = [logy N2] + [log, eé},E] +
O(1) where [log, N?] is the size of |alt) and p =
[log, eé}DE] + O(1) |keep), the size of the proba-
bility register. The key aspect of this third point
is substituting the QROM of [5] by another from
[46] which allows to trade some gate complexity
by space complexity. We will call it QROAM.
Calling also d = (2L + 1)(N?/8 + N/4) the num-
ber of entries we must look in the QROAM (in-
cluding steps 3, 4 and 5), and k = 2" an arbi-
trarily chosen power of 2. Then the complexity
of computing the QROAM is [d/k.] + M (k. —1)
uncomputing it in Prepare is [d/k, ] + k.., where
the k. and k, in compute and uncompute respec-
tively can be different.

As an aside, we can indicate that if we were to
use dirty ancillae (anciallae that is already be-
ing used for other purposes) the cost would be

2[d/k]4+4M (k—1) and 2[d/k] + 4k for compute
and uncompute respectively.

Since the largest bottleneck is in the number of
Toffolis required, we will focus on minimizing
that variable. This means taking k ~ +/d/M
for compute and k ~ +v/d for the uncompute
step, what means a cost of 2vdM and 2v/d
respectively, giving a total cost of 2v/d(vM +
1). Since we have chosen d ~ LN?/8 and
M = [logs(N?)] + p, this means an overall cost
VLN2([log,(N?)] + p)/2 and half as many an-
cillae. Since L = O(N), the number of Toffolis is
O(N/2\/Tlogy N1 + ).

A technical detail is that since the QROAM requires
a continous output register, we will compute a single
continous register for (I, p, q)

s' =I(N?/8+N/4) +p(p+1)/2+q

(113)

The second operator we have to explain is Select,
which is decomposed in two, Select; and Selects [11],
performed again similarly as is done in appendix D
[5]. The cost of this procedure is not dominant, as
it will have complexity O(NN). From the representa-
tion of Selecty in Figure 1 of [11], we can see that we
need two QROM applications, as well as 2 equality
comparisons.

Apart from the implementation of Prepare and Se-
lect, some other minor costs to have in mind are

e The cost in Select of each ranged operation is
N, and each inequality test is [log, N]. Since
these operations have to be performed twice for
(p,q) and again twice for (r,s), the total cost is
4N + 4[log, N.

e In the Prepare operator we have to initially pre-
pare superpositions over | < L, ¢ < p < N/2,
s < r < N/2. We propose doing this by us-
ing the Uniform routine from the previous ap-
pendix (figure 12 in [5]). The initial uniform su-
perposition over [ requires 8log, L + 8log, egé
T gates. Enforcing an uniform superposition (in
the Subprepare method) where p > ¢ requires
a different method. We will slightly modify the
suggestion of [11] to control the number of Am-
plitude Amplification steps. We do this by im-
plementing the Uniform protocol both for p and
q independently, and then adding an ancilla to

check whether p > ¢g. The success probability will
be N?/84N/4
NZ?/4
Since we cannot straightforwardly amplify that
we add a second ancilla with success amplitude

L %. As a consequence, the product of

which approaches 1/2 from above.

success probabilities will be 1/2 that corresponds
to a Grover’s § = 7/6 which can be amplified to
amplitude 1 with a single step. So this step re-
quires 2 Uniform /o procedures and 1 ancilla ro-
tation, to be performed thrice: preparation and
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twice for Grover step. This second procedure has
to be repeated twice to account for » and s too.

e The inequality test in state preparation has cost
p Toffolis due to the p bits in |keep); and the
same number of gates as qubits needed in the
swap gate. We have to perform swap gates in the
preparation procedure in the QROM where the
register |, p, ¢) has size [log, L] + 2[logs(N/2)].
Then, we have to perform the same swap for
|r, s) controlling on [ > 0, with registers of size
2[logy(N/2)]. This means a Toffoli cost u +

[log, L] 4 4[log, N/2]. Here u ~ [bg <2f>\ﬂ

€EQPE

e For state preparation remember that we only pre-
pare those states that have p > ¢ and then use a
controlled swap. These controlled swap for (p, q)
and (r, s) cost 2[logy N/2]| Toffolis.

e The arithmetic operations for computing (113)
require 2([log, N/2])? Toffolis gates.

In any case, the leading cost of the model
is /LN2(log(N?) + p1)/2 Toffoli gates due to the
QROAM. We can further reduce the cost by increas-
ing the sparsity of the V' operator, by zeroing all the
terms |Vp q.r,s] < ¢. Choosing ¢ should be done in a
way that does not affect the final error AE, as will be
done choosing L too. To do that, the main aspect is
substituting the QROM indexing

d
Z ) [alt;) [keep;) (114)
by another
1
ﬁZm |ind;) [alt;) [keep,) (115)
j=1

where ind; indicates the j-th non-zero index, and d
the number of non-zero terms in each case. This
means that the swapping must now be performed
between ind; and alt;. In this case we cannot
simplify [d/k.] + (ke — V)M + [d/k.] + k., with
M = p+ 2logy N + 2 = logy(N?) + pu, directly to
V/LN2%(log(N2) + p1)/2. The 2 in M is because we

have to choose between T, g

) and grs .

G.2 How to compute its cost

Notice that in contrast to other appendices, this cal-
culation was already present in the original article [11]
so the method to compute the cost is not our contri-
bution. Only the automatisation of the computation
is.

1. Steps 1 and 2 in state preparation can be per-
formed using a QROM for L values and a
multicontrolled-Hadamard gate respectively.

2. The largest cost in each step is the use of the
QROAM for steps 3, 4 and 5, that as we saw
is [d/ke] + M (ke — 1) — [d/k.] + k. Toffolis. It
takes into account both the Prepare and Prepare!
operators. We also use this step to prepare step
5, registers |0p,) and |6,).

3. Here

e d= (2L + 1)(N?/8 + N/4), as we take into
account both steps 3 and 4 at the same time,

e [ istherank of W. If W were full rank, L =
N2/4, but since W has a lot of structure
L = O(N).

o k.~ +/d/M (closest power of 2),
e k, ~/d (closest power of 2),
o M =logy N? + p,

e and =~ {1og (f;g;\)—‘

4. Each step requires to use Select once, at cost
4N + 4[logy N.

5. At each Prepare we have to use Uniform three
times: for ! (accounted for in point 1 of this list),
and two copies of § for (p,q) and (r, s).

6. Other minor contributions of the Subprepare cir-
cuit (see [5]) include a p-bit comparison and a
log,(LN?/4)-bit controlled swap.

7. The calculation of (113), which is carried out for
pairs (p, q) and (r, s) can be done from the value
of § with 2 multiplications and three multiplica-
tions.

8. We need to perform amplitude amplification to
prepare Uniform superposition over p > ¢ and
r > s. This requires 6 Uniformy/, (for p and
q and the three times of Amplitude Amplifica-
tion), thrice an arbitrary rotation of the ancilla,
thrice comparison between registers |p) and |q),
and 2 Multi-controlled Z; and similarly for r and
s respectively.

H Interaction picture

H.1 Method explanation

Although in previous appendices we have explored
both the plane wave and Gaussian basis, there are
two characteristics we have maintained constant over
all the previous methods: all simulations were done
in the Schrodinger picture and second quantization.
These changes in later articles [7, 44, 62], and in this
appendix, we present how the interaction picture can
help make more efficient Hamiltonian Simulation al-
gorithms [44].
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Let us recall that the Schréodinger picture time evo-
lution is dictated by the solution to the Schrédinger
equation

O (1)) = —iH (1) [ (1)) (116)
what implies that
[0(t)s = e~ [1(0)), (117)

whenever the Hamiltonian is time independent. We
can see that in this case it is the state the one that
evolves in time.

On the other hand we have the Heisenberg picture,
where the dynamics are included in the operators. As
such we have

d i 0A
%A(t) = E[H,A(t)] + <6t>H (118)

If the Hamiltonian is time independent this becomes

A(t)g = eYP A(0)e U/, (119)

An intermediate option is to choose the interaction
or Dirac picture, where both the state and the oper-
ators become time dependent. In this case we divide
the Hamiltonian in two parts Hg = Hg o+ Hg,1, where
Hg 1 carries the complexity and time dependence of
the Hamiltonian. Then, the quantum state will evolve
as

() = et 50t 4p(0)) (120)
and the operators will evolve as
A(t)r = etsot/h g(0)e = Hsot/h, (121)
In particular
H(t); = etHsot/h g | emiHsot/h (122)

If the Hamiltonian is time-independent, we can
evolve the state using e *Hf, but if it is time-
dependent, there is no closed expression in general.
The time evolution operator is

_ —iH(t(j—1)/r)T ._ —i ft H(s)ds
Ut) = Tlir&He =Te .

j=1

(123)
The authors of [44] explore two topics. In the first
place, they build a time-dependent Hamiltonian simu-
lation algorithm that is based on synthesizing a Dyson
series. The second part of the article analyses how to
apply the previous algorithm to simulate a Hamilto-
nian in the interaction picture. In particular, this

allows us to simulate e~ *(Hs.otHs1)t yging

O(Artpolylog((Ao + A1)t/e)) (124)
queries to an oracle
H
(0], ©1)01(10), @ 1) = =3+, (125)

and a similar amount of e *H5.07 queries with 7 =
O(A\1). Here we were taking \g > ||Hs,o|| and Ay
[|Hs1||- If we had used the Schrédinger picture we
would have instead needed

v

O(()\o + Al)tpoly log(()\o + Al)t/EHS)) (126)

queries to oracles Op and O;p of the form of (125).
If ||Hso|| > ||Hs1l|, and the complexity of apply-
ing e~ .0t ig similar to Oy, the interaction picture
algorithm is advantageous.

Finally, the article applies the algorithm to the gen-
eralized Hubbard model and the electronic Hamilto-
nian, with a final complexity O(N?t).

Quantum
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Figure 8: Abstraction level decomposition of the interaction
picture protocol of [44]. The boxes in red represent the same
protocol, only decomposed for one of them.
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In contrast with previous algorithms, we can-
not approximate U(t) with a Taylor series unless
[H(¢),H(t')] = 0. The alternative is the Dyson se-
ries that converges absolutely whenever ¢t > 0 and
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bounded ||H (t)]|:
t)=1 i/tH(tl)dtl - /t - H(t2)H (t1)dt1dto

i3 to
+ Z/ / H tg)H(tz)H(tl)dtldtht:; + ..
ts Jita
(127)

We can rewrite the previous expression using the time
ordering operator

Ut) = Tle o ”H“)‘“] = f:(—i)’ka.

b=k [ [ T

As we did for the Taylor series, we have to trun-
cate the series to order K such that the error remains
lower than target egg. We will see that K will be
logarithmic in the corresponding precision.

Let us now focus on the input model. We need two
definitions. The first is the usual block encoding

(128)
H (t)]d"t.

. H

HAM = <H/A > = ((0],®1.)HAM(0),1,) =
(129)

where we decompose HAM as in previous appendices

HAM = (Prepare’ ® 1,)Select(Prepare ® 1,) (130)

For a time dependent Hamiltonian we similarly de-
fine HAM-T as substituting H in the matrix form of
HAM in (129) with

H = Diagonal[H(0), H(t/M), ..., H(1 — t/M)].
(131)

In other words:

(<O|a ® 1&)HAM_T(|O>Q ® 1&)
M-1 mt
= Z |m) (m| ® 7H ()\M) .
=0

Having defined the main constructions for our al-
gorithm, HAM and HAM-T, we now need the main
theorem for simulating a time-dependent Hamiltonian
for a short time segment:

(132)

Theorem 1. [/j] Let H(s) be a time-dependent
Hamiltonian such that maxg||H(s)|| < A and {||H||)
the average value of its time derivative. Let M €

O(EHS(<||H|\>+maXSHH( )||2)). Then, for all t €

0,55] and exs > 0, exists W such that ||W —

Tle™*Jo 7O%)|| < s with probability 1 — Olexs),
1

and K = O (IOLHSl) queries to HAM-T.

loglog €5

The proof is given in Appendix B [44]. The key idea
is that we want to approximate the time evolution op-
erator with W = TDS, the oblivious amplitude am-

plification of TDSsz = ZkK:O Mk,)e By. As customary

to require a single step of oblivious amplitude ampli-
fication, one takes 8 = 2.

The general strategy for TDSg is similar to the Pre-
pare Select Prepare’ scheme. For the Select operator
we first construct a sequence of K unitaries U;...Uk
block-encoding matrices Hy...H:

(0], ® L)U(I0), ® 1) = Hys || Hill <1 (138)
The consecutive applications of such matrices,
Hy...H; x By, the k-th term in the Dyson series.
DYSk is the Select-like unitary that will apply this
sequence Uj...Uy controlled on index |k),

K
(0l ® 1)DY Sk (0) ©1) = Y |k) (k| @ 3 Br, (134)
k=0

where v, = M~F will be a weighting coefficient of
the Dyson series. Constructing such Uy operators is
explained in the appendix B [44].

The second ingredient needed is Prepare-like op-
erators COEF and COEF'!, the difference between
them being the phase in the Dyson series term. This
allows us to perform the TDSg operator (see fig. 6).
Uniformys, needed in the implementation of DYSgk
can be implemented as suggested in the main refer-
ence for this appendix [5], while the rest are arith-
metic operations, and the implementation of HAM-T
discussed later on.

To extend Theorem 1 to longer time periods one
can just apply it multiple times with the correspond-
ing scaled error, as given by Corollary 4 of [44].
Since Theorem 1 indicates that the maximum sim-
ulation time for a single segment is 7 = t/[2\¢]
with maxg ||H(s)|| < A, the number of segments is
r = [2)t], and the error allowed for each segment
0 = egg/r. Then Lemma 5 in [44] states that the
constants K and M for the simulation of a single seg-
ment to error J are

K=|-

M= {167 ({I1£7]]) + max || H (s )|2),K2}' (135b)

2log(2r/ens) W (135)

loglog(2r/egs) + 1

and

The next step is to use this framework to simulate
time-independent Hamiltonians in the interaction pic-
ture

Hy(t) = efsotHg o™ Hsot, (136)

The advantage of simulating in this frame will hap-
pen when the norm of ||H;(t)|| = ||Hsq|| < ||Hs1||+
||Hs,0l|- We can apply this formalism to the Hamil-
tonian in the dual wave basis, equation (68), where
Hso=U+V and Hg; =T.
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To simulate our time-independent Hamiltonian we

use the Theorem 1 and Corollary 4 in [44]. As
[¥s(t)) = e st |y (1)) (137)
= ety 1Oy )

we can divide the evolution in r segments, 7 = t/r,
[9(1)) = (e HsotHs T 4(0))
_ (eiHs,oTT[e—ifo HI(S)dS]) W](O»a

and simulate it in a similar way as suggested by Corol-
lary 4 in [44]. We have already explained ow to per-

(138)

form T[efifo Hi(9)ds) " However, we have yet to spec-
ify how implement HAM-T, which can be done as

M-—1
HAM-T = (Z Im) (m|, ® 1, ® eiHSvon/M> .
m=0

M—1
(14® Hs 1) - <Z Im) (m|, ® 1, ® e—iHs,o‘rm/M) )

m=0
(139)
We also have to explain how to implement
e~ UVt Notice that U and V commute because
they are diagonal in the dual wave basis and can there-
fore be fast-forwarded. However, to avoid the O(N?)
cost in the V' term we will

1. Define the Fourier transform of V coefficients,
V(k) = ZfV(:E’)GZ’”f'k/Nl/d, and of the opera-

tors, Xz = ﬁzfe’Qﬁif‘E/N >, nze; and as-
suming V is real and symmetric, equation 39
from [44] writes

(Z,0)#(F,0")
=Y VEGEE+Y D VE) | npo
E o\ k
(140)
2. Use a Dbinary oracle O4 such that

0al13)10)410) gar, = 13) 143}, 19(3)) garp- Then we
can implement the phase operator

Notice that |n,) indicates the occupancy of the cor-
responding orbital, and as we are working with
fermions, the FFT is the Fermionic Fast Fourier
Transform.

H.2 How to compute its cost

To be able to count the complexity of the circuit it is
useful to first indicate the size of each of the registers
that appear in the algorithm, and more in particular
in the analysis of the TDS operator in appendix B
[44]:

1. Register s is the register containing the state. In
second quantization it has size N.

2. Register a has a size given by the block encoding.
Using [45] this can be bound by the logarithm of
the number of unitary terms in Hamiltonian that
are summed, n, = [log, I'].

3. Register b has n, = log, (K + 1) qubits.

4. Register ¢ has n, = 1 + logy (K + 1) qubits.
5. Registers d and e require log, M qubits.

6. Register f only requires 1 qubit.

Secondly, we have to specify the value of K and
M in (135). For K we already mentioned that
0 = eyg/r, while in the usual definition of r we
will take A = Ay = ||Hg || = ||T||- Instead of tak-
ing 7 = ﬁ [44], we may take it slightly higher,
T = 1;\1—12 as this limit comes from the oblivious am-
plitude amplification technique [9], and we will do
so to carry out similar treatment between the al-

gorithms. Then, since t = €Q7;E this implies that

re=t/r = (|71 = [ Zi |

Additionally, we need to obtain the value of
M. Since max, ||H(s)|| < ||Hs1l| and (||H||) =
[Hs0, Hsall| < 2l Hsoll - ][ Hs.all, substituting 7 =

17) 10), |0>gmb o6, 1) 145), |g(j)>garb 0) s prasin2/A1 and 0 = ens/r = egst/T in the value of M

eI 1A3) 019 gars 10) =1, €741 1) 100610} gars

(141)

We want to implement the oracle Oy to calculate the
Fourier Transform of V' (omitting garbage registers),
so this oracle can be decomposed as

(® na:a>> |0) =apD ® |Z Nyo) = FFT ® [Xk)
x o k

=2 ®||>~<k\2> —xVi ®|Vk|>2k|2>-
k k
(142)

= e 5 (0 + ) ). 2|

16t1In 2
:max{ \ (2||HS71|||Hs,0||+||Hs,1||2)7K2}
1€HS

16t1n 2
maoc{ 22 3 g 4| s, 5.
€ds
(143)
To finish giving a description of the algorithm

we need to particularize HAM-T for the time-
independent Hamiltonian that we want to use, as
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given in Lemma 7 in [44]

M-—1
HAM-T = (Z |m> <m| ®1,® ei(U+V)Tm/]VI> .

m=0

M-—1
(1®O7) - (Z Im) (m| ®1, ® e‘i(UW)T’”/M) .

m=0

(144)

Here,

M-1
(Z Im) (m| ® 1, ® ei(UJrV)Tm/M>

m=0

can be implemented with [log, M| controlled-
rotations of the kind e/ U+VIT/M — oi(U+V)r2/M
Gi(U+V)T4/M

Lastly, performing Opr can be done using
Or = (Prepare;(X)FFFTT)SelectT(PrepareT®FFFT),

where
|T
Preparer |04) = Z /\(—f) D), (145a)
P

Selecty = Z D) (P] ® np, (145b)
P

and FFFT applied using O(N log N) gates, as we al-
ready discussed in appendix E.

Finally, let us highlight that there is a way to
avoid the extra cost posed by Amplitude Amplifica-
tion. The key idea is to implement a block encod-
eFiHT _—iHT

2
tion walk operator will implement e
efiarcsin(sin E;7T)/exp(MT) ~ efiEj'r/exp()\lr) [62], for

ing of sin(H7) = , so that the qubitiza-
—iarcsinpj /A _
pj =sin E;7 and X = exp(A7) [34]. If the segment
time length of the amplitude amplified algorithm is
7 &~ In2/X\;, then the adjusted segment length is
Teft &~ In2/2)\1, and if one increases 7 &~ 1/A1, then
Tet &= 1/(eA1). This means that each step of the al-
gorithm does not need to be amplified, but the num-
ber of time segments increases from A\ /(egpr In2) to
el1/egpr [62]. In this case we also aim to perform
Hamiltonian simulation over H — EO, where Eo is an
approximation to the ground state energy, so that we
operate on the linear regime of the sine and arcsine
functions, and the error introduced is small.

H.3 How to adapt the Hamiltonian simulation
to control the direction of the time evolution.

We will use the trick of setting the controlled evo-
lution of phase estimation [1) @) — €®|1)|¢) and
|0) |[¢) — e~ |0)|p). This will be reflected in the
Dyson expansion, where we will have to add a i fac-
tor to the coefficients in COEF' conditional on the
phase estimation ancilla being on state 1; and in the
sign of the exponential e~ *(U+V)7,
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