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Summary 

Methods are presented for adapting existing 
cavity codes to the computation of the longitudinal 
and transverse coupling impedance of an obstacle of 
general shape above the cut-off of the beam pipe. The 
final result is given as an integral of the fields 
over the cavity or beam pipe surface only where the 
two are different. Numerical results for the longitu­
dinal coupling impedance are compared with semi-analy­
tic computation for a pillbox. In addition the 
"interference" between neighboring obstacles is ex­
plored as a function of frequency and obstacle 
spacing. 

Introduction 

In a recent paper1 we showed that the longitu­
dinal coupling impedance of a cavity with a beam pipe 
can be written as the sum of that for the beam pipe 
alone and a contribution from the cavity, which can be 
written as an integral of the fields over the surface 
of the cavity. A method for obtaining the fields and 
coupling impedance using an adaptation of the program 
SUPERFISH2 was outlined. In the present paper we 
describe the numerical method In some detail, and 
present comparisons with previous calculations. 

Field Analysis 

We consider a beam pipe of cross sectional radius 
b and circumferential length 2πR in which an 
azimuthally symmetric cavity-like obstacle with dimen­
sions small compared to R is located. The longitu­
dinal coupling impedance is defined as3 

ZL(ω) = - ∫ * • dv/|Io|2 (1) 
where is the electric field in the cavity/beam pipe 
combination due to driving current given by 

Jz(r,z,t) = { 
(Io /πa2) e 1 ω z / v , < a 

} (2) Jz(r,z,t) = { 0 , > a } (2) 

The factor exp(-iωt) has been omitted from all fields, 
currents and charges. 

We write the fields in the cavity/beam pipe com­
bination (denoted by subscript 2) as the sum of the 
fields for the beam pipe alone (denoted by subscript 
1) and e,h, the field increments due to the cavity. 
The fields satisfy the homogeneous Maxwell 
equations 

x = iωµ , x = - iωε , (3) 

as well as the wall boundary condition 

2 x = - 2 x on surface S2, (4) 

where is a unit vector normal to the cavity/beam 
pipe wall surface S2. 

* Work supported by the U.S. Department of Energy. 

Equations (3) and (4) represent an equivalent 
SUPERFISH problem, with specified frequency and 
boundary conditions. In our previous work1 we assumed 
no losses, and as a result obtained a purely imaginary 
coupling impedance which reflected the resonant be­
havior of the entire cavity/beam pipe region above the 
cut-off frequency of the beam pipe. We therefore 
modified the program by introducing a small conducti­
vity (imaginary dielectric constant) into the medium 
filling the beam pipe, corresponding to imposing out­
going boundary conditions on and at the cavity/beam 
pipe interface with no reflection. The result 
was a more realistic complex coupling impedance above 
cut-off, varying smoothly with frequency, as expected. 
Other aspects of the computational process may be 
worth mentioning: we assume a regular mesh with mesh 
lines z = constant in the beam pipe. This makes the 
numerical result independent of the values of z cor­
responding to the cavity/beam pipe interface. In 
addition, we perform the matrix inversion by Gaussian 
elimination, leaving the first and last rows to the 
end. In this way all block matrix inversions except 
the last are performed on real matrices. 

Longitudinal Impedance 

By using Maxwell's equations we showed1 that the 
increment in coupling impedance due to the cavity 
could be written as 

Z L = 1 ∫s2 S1 dS 2 × • (5) Z L = 
|Io|

2 ∫s2 S1 dS 2 × • (5) 

where the surface integral is evaluated only over that 
part of the cavity which differs from the beam pipe. 
Further analysis shows that the contribution to Eq. 
(5) can be split into two parts by using 

(6) 

and that the contribution from is imaginary, and 
inversely proportional to γ2. In the. relativistic 
limit, one then can write ZL as a line integral 

Z L -
ZO 

∫S2 S1 rdr e 
-i ωz 

h(r,z), (7) Z L -
ZO 

∫S2 S1 rdr e 
-i c h(r,z), (7) Z L - Io ∫S2 S1 rdr e 
-i c h(r,z), (7) 

where we have used 

Elr = 
ZoIo i ωZ 

(8) Elr = 
ZoIo i c (8) Elr = 2πr e 

c (8) 

and where ZQ = √µ/ε is the impedance of free space. 

Comparison with Previous Work 

In a recent paper, Henke4 calculates impedances 
for single pillboxes with side tubes using series ex­
pansions. We have used the present program for 
several of Henke's pillboxes and find excellent 
agreement of both the real and imaginary part of the 
coupling impedance. An example of this comparison is 

170 



shown in Figure 1 for a pillbox cavity of length = b/20 
and radius = 1.1 b, where the complexity of the 
impedance is well duplicated even for a frequency as 
high as 7 times the cut-off of the beam pipe. 

Fig. 1b. Real and imaginary part from Henke's paper4 

Van Rienen and Weiland5 use the program URMEL6 to 
obtain the impedance of cavities with beam ports above 
cut-off. They employ an approximate outgoing boundary 
condition at the cavity/beam port interface, and 
obtain reasonably good agreement with Henke's calcula­
tions.4 They also compared their results with those 
obtained by using TBCI7 combined with Fast Fourier 
Transform (FFT), and conclude that the TBCI/FFT com­
bination, which is now the primary tool for making 
impedance estimates for the SSC, gives only a "quite 
rough approximation" to the correct results for the 
PETRA cavity. 

We have also obtained the impedance of a 
"bellows" for which Bisognano and Ng8 did a TBCI/FFT 
computation using a Gaussian bunch. The agreement 
with our results for a point bunch shown in Figure 2 
is reasonably good when one makes the frequency depen­
dent correction for the bunch shape. (The Gaussian 
bunch reduction factor is about 0.8 at 21 GHz and 0.5 
at 38 GHz.) 

Fig. 2a. Real and imaginary part or impedance 
for a five "cavity" bellows with b = 1.5 cm, 

p/b = .1, L/b = .9 vs. frequency 
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Fig. 2b. Real and imaginary part from Bisognano and 
Ng8 vs. frequency for same cavity as in Fig. 2a. 

Numerical Results 

In addition to the comparisons described in the 
previous section, we have calculated the impedance of 
two pillboxes as a function of frequency and the 
distance between the pillboxes. The purpose of this 
investigation is to explore the "interference" between 
separated obstacles in order to determine the condi­
tions under which such impedances can be added. In 
these and other computations we use approximately 
2000-3000 mesh points. 

We have chosen each pillbox to have a length = b 
and a radius = 4 b/3. Figure 3 shows the impe­
dance for a single cavity as well as for two cavities 
whose centers are separated by distances L = 3 b/2 and 
2 b. It appears that interference is important in the 
frequency range from 1 to 2 times the cut-off fre­
quency. This work is continuing for cavities of dif­
ferent sizes and shapes. 

Fig. 3c. Real part of impedance; 
2 cavities; ρ = 4b/3, = b, L = 2b. 
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Fig. 3d. Imaginary part of impedance; 
1 cavity; ρ = 4b/3, = b. 

Fig. 3e. Imaginary part of impedance; 
2 cavities, ρ = 4b/3, = b, L = 3b/2. 

Fig. 3f. Imaginary part of impedance; 
2 cavities, ρ = 4b/3, = b, L = 2b. 

Transverse Coupling Impedance 

The conversion of the coupling impedance for an 
obstacle to an integral only over the surface of the 
obstacle works equally well for the transverse 

coupling impedance. Starting with the driving 
current9 

Jz = 
I1 e i ω z / v COS θ δ(r-a), (9) Jz = πa2 

e i ω z / v COS θ δ(r-a), (9) 

one can use Maxwell's equations to show that the 
increment in coupling impedance is given by 

Z(1)T = (ν/ω) Z(1)L, 
where 

Z(1)L = V 
∫s2 s1 ds 2 × *1 • Z(1)L = 

ω|I1|2 ∫s2 s1 ds 2 × *1 • 

= 
V 

∫s1 s2 ds 1 × 2 •*1.
 (10) = 

ω|I1|2 ∫s1 s2 ds 1 × 2 •*1.
 (10) 

Here the superscript (1) denotes the dipole mode. 

The fields for the beam pipe alone (subscript 1) 
can readily be obtained outside the beam from the 
potentials (Lorentz gauge) in the relativistic limit: 

ø = - cAz = -
ZOI1 

( b - r 
) e i k z cos θ, r > a (11) ø = - cAz = - 2πb ( r - b ) e

i k z cos θ, r > a (11) 

where b is the beam pipe radius. 

The computation of the fields = - and requires a program which can handle 

azimuthally asymmetric modes. Work is now in progress 
on the code ULTRAFISH.10 in addition, the URMEL codes 
are now being adapted by van Rienen and Weiland5 for 
this application. 
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