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Abstract

Axions are one of the most motivated particles beyond the standard model. One of the
motivations to consider axions is the string theory, which predicts a plentitude of ax-
ions in our universe, which is called the axiverse scenario. The axions from the string
theory can have mass in various ranges. In particular, when the axion has a mass with
its Compton wavelength comparable to the size of rotating black holes, the macroscopic
condensate of the axion will spontaneously form by the energy and angular momentum
extraction mechanism called superradiance. The presence of the axion condensate opens
the possibility of detecting or constraining the axion through gravitational wave obser-
vations. One possibility is the detection of characteristic gravitational waves emitted by
the condensate. In particular, self-interaction of the axion is thought to cause the vio-
lent collapse of the condensate, called bosenova, which leads to the burst of gravitational
waves. On the other hand, the self-interaction also dissipates the condensate, which may
result in the saturation of the condensate. In such a case, condensate will emit continu-
ous gravitational waves. To detect or constrain the axion with future gravitational wave
observations, precise knowledge of the evolution of the self-interacting axion around the
rotating black hole is required.

In this thesis, we study the effect of the self-interaction on the evolution of the axion
condensate. Our main goal is to track the evolution of the self-interacting condensate,
starting from the extremely small amplitude, such as the quantum fluctuation, to the
large amplitude where bosenova may happen. We propose two new methods, the pertur-
bative and the non-perturbative numerical methods, to examine the evolution. The basic
strategy in both methods is to employ the adiabatic approximation, the large hierarchy
between the growth time scale and the dynamical time scale. With our methods, we
find that the evolution of the condensate depends on the mass of the axion. In particu-
lar, we show that for most of the axion mass the condensate is likely to evolve into the
quasi-stationary configuration, in which the energy gain by the superradiance and the
dissipation by the self-interaction balance. For this case, bosenova is not expected. We
also present exceptional cases when bosenova can be expected.
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Chapter 1

Introduction

Axions are well-motivated particles beyond the Standard Model in a variety of contexts.
They were originally proposed as a solution to the strong CP problem [1, 2, 3, 4, 5, 6, 7],
and then noticed to be a good candidate for dark matter [8, 9, 10, 11, 12]. In addition,
string theory naturally predicts plentitude of axions in its low energy sector [13, 14, 15, 16],
which is called axiverse scenario [15]. In the axiverse scenario, axions can have Compton
wavelengths in various scales, up to cosmological scales. In this thesis, we focus on the
axions in the string theory (string axion) with the Compton wavelength in the range
of astrophysical scales. In such cases, axions are expected to cause various interesting
astrophysical phenomena, which are detectable by gravitational wave observations [15, 17].

We consider an axion field around a rotating black hole. Similar to the famous Penrose
process [18, 19], a bosonic field can extract the energy and the angular momentum from
the rotating black hole. This energy extraction mechanism is called superradiance [20,
21, 22, 23, 24, 25]. Note that the axion is bounded by the gravitational potential of
the black hole, owing to its mass. Therefore, the axion which extracted energy from
the black hole does not dissipate to infinity. Therefore, the bounded axion accumulates
around the black hole, which implies instability. This instability is called superradiant
instability [26, 27, 28, 29, 30, 25], and its time scale can be much shorter than the age
of the Universe when the Compton wavelength of the axion is comparable to the size
of the black hole. Due to the superradiant instability, the axion would spontaneously
form a macroscopic condensate around the rotating black hole. In this thesis, we call the
macroscopic condensate of the axion an axion condensate. For the special case when the
axion condensate is composed of the single unstable mode, we refer it as an axion cloud.

The presence of the axion condensate allows us to detect the axion through gravita-
tional wave observations. Since the axion condensate grows by extracting the rotational
energy of the black hole, the existence of the axion implies the spin-down of the black
hole [17, 31]. The spin-down by the axion might be observed through the distribution of
the black hole spin. In addition, the axion condensate has the quadrupole moment and
thus radiates continuous gravitational waves. Observation of the characteristic gravita-
tional waves can also verify the axion [32, 33, 34, 35, 36].

Several effects can have an impact on the evolution of the axion condensate. These
effects include the axion self-interaction [17, 37, 38, 39, 40, 41, 42], the tidal interaction
in binary systems [43, 44, 45, 46, 47, 48, 49], and interactions with other fields [50, 51].
The axion self-interaction is particularly interesting among these effects. For example, if
the self-interaction is attractive, the condensate is thought to collapse when it becomes
dense [37, 39]. This collapse, called bosenova, is thought to cause a burst of gravitational
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waves. It has also been suggested that the interaction between clouds may dissipate the
energy of the condensate efficiently and forces it to settle into a quasi-stationary state [42].
In such cases, explosive phenomena will not occur.

However, the previous works on the self-interaction have to be improved to constrain
or detect the axion by future gravitational wave observations. Most works treat the self-
interaction perturbatively [17, 40, 41, 42], but perturbative expansion breaks down once
the growth is accelerated by the attractive self-interaction (see Chpater 3). In addition,
many works assume non-relativistic approximation, where the Compton wavelength of the
axion is much longer than the size of the black hole. The non-relativistic approximation
allows one to calculate in analytic form but cannot handle the most interesting parameter
region where the instability time scale is shortest. Furthermore, low order perturbation
theory misses the deformation of the condensate.

Other works study the self-interaction by the numerical simulations [37, 39]. The limi-
tation of the dynamical simulation comes from the large hierarchy between the dynamical
time scale and the instability time scale. For this reason, numerical simulation can be
performed only in a time much shorter than the time shorter than the condensate grows
from a small amplitude where the linear approximation is valid to a large amplitude where
the self-interaction collapses the condensate. Thus, to study the evolution in a strongly
nonlinear regime, one needs to guess the configuration of the condensate with a large am-
plitude. In [37, 39], they take the initial condition for the numerical simulation by simply
scaling the solution of the linearized equation. However, it is difficult to justify such an
initial condition since the condensate changes its shape by the effect of self-interaction as
it grows.

The aim of this thesis is to study the consistent evolution of the self-interacting axion
condensate. In particular, we focus on tracking the evolution from small to large ampli-
tude, where the nonlinearity is strong. We overcome the above problems by formulating
higher order perturbation theory which can be used for any axion mass [52, 53] (Chapter 3)
and developing a method to track the nonlinear evolution [54, 53] (Chapter 4). Our basic
strategy is to use the adiabatic nature of the problem, which is a significant discrepancy
between the dynamical time scale and the instability time scale. Our calculation shows
the condensate settles to a quasi-stationary state in most cases owing to the dissipation
of the condensate by the self-interaction. This indicates that explosive phenomena rarely
happen. Moreover, we show that the realized quasi-stationary state turns out to be stable
against further level transition due to the self-interaction [53] (Chapter 5). We also show
an exceptional case when the dissipative effects are too weak to prevent the condensate
from the explosion [53] (Chapter 6).

In this thesis, we take the unit c = G = ℏ = 1 unless otherwise stated. The useful
conversion in our unit is

1eV ∼ 7.5× 109M−1
⊙ ∼ 5.1× 109km−1 ∼ 1.5× 1015s−1 .

Thus, the Compton wavelength of the axion is comparable to the size of the solar mass
black hole when the axion mass is ∼ 10−10eV. Also, our metric convention is (−,+,+,+).
This thesis is organized as follows.

Chapter 2

We review the basics of the axion condensate, superradiant instability and the observable
phenomena associated with it.
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Chapter 3

We formulate the perturbative method to take into account the effect of the self-interacting
condensate. This Chapter is based on the author’s previous work:

H. Omiya, T. Takahashi and T. Tanaka, “Renormalization group analysis of superra-
diant growth of self-interacting axion cloud,” PTEP 2021, no.4, 043E02 (2021) [52],

and the work under the review:
H. Omiya, T. Takahashi, T. Tanaka and H. Yoshino, “Impact of multiple modes on the

evolution of self-interacting axion condensate around rotating black holes,” [arXiv:2211.01949
[gr-qc]] [53].

Chapter 4

We formulate the nonlinear method to track the evolution of the condensate in the strongly
nonlinear regime. This Chapter is based on the author’s previous work:

H. Omiya, T. Takahashi and T. Tanaka, “Renormalization group analysis of superra-
diant growth of self-interacting axion cloud,” PTEP 2021, no.4, 043E02 (2021) [52],

and the work under review:
H. Omiya, T. Takahashi, T. Tanaka and H. Yoshino, “Impact of multiple modes on the

evolution of self-interacting axion condensate around rotating black holes,” [arXiv:2211.01949
[gr-qc]] [53].

Chapter 5

We investigate whether the configuration obtained in the previous chapters can be altered
by further perturbative effects or not. This Chapter is based on the author’s work under
review:

H. Omiya, T. Takahashi, T. Tanaka and H. Yoshino, “Impact of multiple modes on the
evolution of self-interacting axion condensate around rotating black holes,” [arXiv:2211.01949
[gr-qc]] [53].

Chapter 6

We briefly comment on the case in which the condensate starts with the dominance of a
higher multipole mode.This Chapter is based on the author’s work under review:

H. Omiya, T. Takahashi, T. Tanaka and H. Yoshino, “Impact of multiple modes on the
evolution of self-interacting axion condensate around rotating black holes,” [arXiv:2211.01949
[gr-qc]] [53].

Chapter 6

We summarize our study and comment on its future direction.
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Chapter 2

Review: Axion Cloud

If the string axion exists in our universe with an appropriate mass range, the axion will
spontaneously form a macroscopic condensate of the axion around a rotating black hole.
The basic formation mechanism is superradiance, which is the energy and the angular mo-
mentum extraction from the black hole by a bosonic field. If the condensate significantly
grows within the age of the universe, it will induce observable phenomena. One is the
spin-down of the black hole. Since the axion cloud extracts the angular momentum from
the black hole, a highly spinning black hole in the corresponding mass range is forbidden if
the axion exists. Another is the emission of the characteristic gravitational waves. These
phenomena open the possibility of detecting the axion by gravitational wave observations.

In this chapter, we review the basics of the axion condensate. In Sec. 2.1, we briefly
review the superradiance and the instability associated with it. In Sec. 2.2, we present
the solution of the linearized equation of motion of the axion field around a rotating black
hole. Finally, in Sec. 2.3, we summarize possible observational signatures of the axion
cloud.

2.1 Superradiance and superradiant instability

2.1.1 Superradiance

Superradiance is the scattering process of the wave where the reflected wave has a larger
amplitude than the incident wave. Here, we explain the superradiance of a massless
complex scalar field Φ by a rotating black hole. The equation of motion of the scalar field
Φ is given by

□gΦ = 0 , (2.1)

where □g is the d’Alambertian in the Kerr space-time, whose explicit form is given in
Appendix. A. Owing to the symmetry of the Kerr space-time, separation of the variable
is possible [55]. We take the ansatz

Φ = e−i(ωt−mφ)Slmω(θ)Rlmω(r) . (2.2)

Here, the functions Slmω and Rlmω denote the angular and radial mode functions, respec-
tively. The solution is specified by the frequency ω and the angular quantum numbers l
and m. The radial mode function satisfies the following differential equation [55]

d2

dr2∗
ulmω − Veff(r∗)ulmω = 0 , (2.3)
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Figure 2.1: Scattering of a massless scalar field by the black hole. The scalar wave with
the unit amplitude is coming from infinity and is scattered by the black hole with the
transmission and the reflection amplitudes, T and R. The black solid curve shows the
effective potential Veff . Owing to the rotation of the black hole, the radial wave number
at infinity and the horizon is different.

where ulmω =
√
r2 + a2Rlmω and r∗ is defined by dr∗ = (r2 + a2)/∆dr. The definitions

of r, a, and ∆ are shown in Appendix A. Here, Veff is the effective potential of the wave
equation given by

Veff =− ω2 − a2m2 − 4amMrω

(a2 + r2)2
− ∆(a2ω2 + Λlm(ω))

(a2 + r2)2

+
∆(a2 − 4Mr + 3r2)

(a2 + r2)3
− 3∆2r2

(a2 + r2)4
, (2.4)

with Λlm(ω) as a separation constant. The asymptotic form of Veff is

Veff →

{
ω2 , (r → ∞) ,

k2H , (r → r+) ,
(2.5)

with kH = ω −mΩH , where ΩH ≡ a/2Mr+ is the angular velocity of the horizon．
Suppose that an incident wave comes from infinity (r = +∞) with the unit amplitude.

The wave is partially absorbed by the black hole, and the rest is scattered back to infinity
(see Fig. 2.1). The mode function in such a situation behaves in the asymptotic region
as

Rlmω(r) →

{
T e−ikHr∗ , (r → r+) ,

e−iωr∗ +Re+iωr∗ , (r → ∞) ,
(2.6)

where T and R is the transmission and the reflection coefficients, respectively. Even
though the precise forms of the coefficients T and R are not known, their relation can be
obtained by the conservation of the Wronskian

W = R∗
lmω∂r∗Rlmω −Rlmω∂r∗R

∗
lmω . (2.7)

By evaluating the Wronskian at the horizon and infinity, we obtain

kH |T |2 = ω(1− |R|2) . (2.8)

Thus, the reflected wave has a larger amplitude than the incident wave, i.e., |R| > 1,
when kH < 0, or equivalently when

ω < mΩH . (2.9)

This amplification mechanism of the wave is called superradiance [25]. The condition
(2.9) is called the superradiance condition. When the superradiance condition is satisfied,
the energy and angular momentum of the black hole are extracted by the scalar field.

10



2.1.2 Superradiant instability

Now we consider the case when the scalar field is massive. Because of the mass, the
scalar field can be bounded by the gravitational potential of the black hole. Therefore,
the scalar field that extracts the energy from the black hole by the superradiance can be
reflected back to the black hole, avoiding the escape to infinity. Then, the scalar field
experiences the superradiant scattering repeatedly and further extracts the energy of the
black hole. Thus, the amplification of the scalar field outside the black hole continually
occurs, indicating the existence of instability. In this subsection, we mathematically
formulate the instability of a massive scalar field on the Kerr space-time.

The equation of motion of a massive complex scalar field is given by

(□g − µ2)Φ = 0 . (2.10)

In a similar manner as the equation of motion of a massless complex scalar field (2.1),
Eq. (2.10) can be decomposed under the ansatz Eq. (2.2). The mode functions obey

1

sin θ

d

dθ

(
sin θ

dSlmω

dθ

)
+

[
c2(ω) cos2θ − m2

sin2 θ

]
Slmω = −Λlm(ω)Slmω , (2.11)

d

dr

(
∆
dRlmω

dr

)
+

[
K2(ω)

∆
− µ2r2 − λlm(ω)

]
Rlmω = 0 , (2.12)

with

c2(ω) = a2(ω2 − µ2) , K(ω) = (r2 + a2)ω − am ,

λlm(ω) = −2amω + a2ω2 + Λlm(ω) , (2.13)

and Λlm(ω) is the separation constant. Since we are interested in the bounded modes, we
can concentrate on the region |ω| < µ. Under the condition |ω| < µ, the asymptotic form
of Rlmω is

Rlmω(r) →


(
r − r+
M

)−i
2Mr+
r+−r−

(ω−mΩH)

, (r → r+) ,

1

r/M
r
− µ2−2ω2
√

µ2−ω2 e−
√

µ2−ω2r , (r → ∞) .

(2.14)

To show the existence of the instability ωI ≡ Im [ω] > 0, we consider the energy-
momentum tensor of the free scalar field T µ

ν , which is

T µ
ν =

1

2
(∂µΦ∂νΦ

∗ + ∂µΦ∗∂νΦ) + δµν

(
−1

2
|∂αΦ|2 −

µ2

2
|Φ|2

)
. (2.15)

Owing to the conservation of T µ
ν , we have

(T µ
νξ

ν
(t));µ = 0 , (2.16)

where ξµ(t) = (1, 0, 0, 0) is the timelike killing vector corresponding to the static observers

at infinity (see App. A). To consider the fluxes going through the event horizon, it is
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convenient to consider in the ingoing Kerr coordinates (t̃, r, θ, φ̃) (see App. A for the
definition). Integrating Eq. (2.16) over t̃ =constant surface Σ, we obtain

− ∂

∂t̃

(∫
Σ

√
−g̃00ρ2 sin θdrdθdφ̃ T µ

νξ
ν(n(t̃))µ

)
=

∫
∂Σ

ρ2 sin θdθdφ̃ T µ
νξ

ν(n(r))µ , (2.17)

where (n(t̃))µ = −δ0µ and (n(r))µ = −δ1µ. The right-hand side of Eq, (2.17) corresponds to
the energy flux through the boundaries of Σ, at infinity and the event horizon. Since we
are considering bounded modes, the flux through the infinity vanishes. The contribution
from the event horizon is calculated as

(R.H.S.) = 4πMr+ωR

(
|ω|2

ωR

−mΩH

)
|Rlmω(r+)|2 . (2.18)

Therefore, energy flux is negative, when

|ω|2

ωR

< mΩH , (2.19)

is satisfied. The condition (2.19) becomes the superradiance condition (2.9), when ωI ≪
ωR. Here, ωR is the real part of the frequency ω. On the other hand, the left-hand side
shows the change rate of the energy on Σ. The straightforward calculation shows

(L.H.S.) = 2ωI

∫
Σ

√
−g̃00ρ2 sin θdrdθdφ̃ T 0

0 . (2.20)

Combining Eqs. (2.17), (2.18) and (2.20), we obtain

2ωIE = 4πMr+|Rlmω(r+)|2ωR

(
mΩH − |ω|2

ωR

)
, (2.21)

with

E =

∫
Σ

√
−g̃00ρ2 sin θdrdθdφ̃ T 0

0 . (2.22)

Equation (2.21) shows that the mode is unstable (ωI > 0), when both the condition (2.19)
and E > 0 hold. Since the condition (2.19) is similar to the superradiance condition (2.9),
this instability is called superradiant instability. From the derivation in this subsection,
the inverse of the instability timescale ωI and the energy stored in the unstable mode
determines the energy extraction rate from the black hole.

2.2 Configuration of the axion cloud

The previous section shows that a massive scalar field on a Kerr space time can possess
unstable modes. To show the presence of unstable modes, here we numerically solve the
radial equation (2.12) under the boundary condition (2.14). In this thesis, we use the
continued fraction method presented in [30] to solve these differential equations. The
detail of the numerical method is reviewed in appendix B.

The pair of boundary conditions (2.14) forces the spectrum of the frequency ω to be
discrete. Following the spectrum of the Hydrogen atom, we label the spectrum by the
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Figure 2.2: (Top) The real part of the frequencies ω(n). The red solid, blue dashed, and
black dotted curves correspond to n = l + 1+ n′, with n′ = 0, 1, and 2, respectively. The
spin of the central BH is set to a/M = 0.99. (Bottom) Similar plot for the imaginary part
of the frequencies ω(n).

principal quantum number n = n′ + l + 1, n′ = 0, 1, 2, . . . . We express the mode function
with the principal quantum number n as

Φnlm = e−i(ω(nlm)t−mφ)Slmω(nlm)(θ)Rlmω(nlm)(r) . (2.23)

We refer to the mode with the smallest n as the fundamental mode for each pair of l and
m, and modes with larger ones as overtone modes.

In Fig. 2.2, we show the real and the imaginary part of ω(nlm). First, we observe that
the real part of the frequency satisfies ωR ≲ µ. In addition, ωR gets closer to µ as n
increases. Another feature is that , for µM ≪ 1, the spectrum becomes almost identical
to the case of a Hydrogen atom, which is independent of l and m, as [28]

ω
(nlm)
R ∼ µ

(
1− (µM)2

2n2

)
. (2.24)

The imaginary part of the frequency is much smaller than the real part. In particular,
ωI is significantly reduced as µ is decreased. For a fixed axion mass, the fundamental mode
with the smallest l(= m) that satisfies the superradiance condition has the largest ωI in
most of the parameter region of µM . The ωI of overtones with the same orbital angular
momentum l is smaller by a factor of order unity, where ωI is significantly suppressed
for larger l. Recall that ωI corresponds to the energy extraction rate from the black
hole. The scalar field must tunnel through the angular momentum barrier to extract the
energy from the black hole. The angular momentum barrier is higher for the larger l,
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Figure 2.3: (Left) The real part of the radial mode function Rlmω. The red solid, blue
dashed, and black dotted curves correspond to n = l + 1 + n′, with n′ = 0, 1, and 2,
respectively. The angular quantum numbers are set to l = m = 1, while the axion mass
to µM = 0.42 and the spin of the central BH to a/M = 0.99. The mode functions are
normalized to peak amplitude of unity. (Right) The same figure but for fundamental
modes with l = m = 1, l = m = 2, and l = m = 3, instead of the overtones of the
l = m = 1 mode.

which explains the suppression of ωI for large l. The suppression for large l can also be
seen by the approximate formula

ω
(nlm)
I ∼2r+

M
(µM)4l+5(−µ+mΩH)

24l+2(2l + n+ 1)!

n!(l + n+ 1)2l+4

×
(

l!

(2l)!(2l + 1)!

)2 l∏
j=1

(
j2
(
1− a2

M2

)
+ 4r2+(µ−mΩH)

2

)
, (2.25)

for µM ≪ 1 [28].
Next, we show the real part of the radial mode functions in Fig. 2.3. We observe

that the behavior of the mode functions away from the event horizon is similar to the
wave function of the Hydrogen atom. As the principal quantum number increases, the
number of nodes in the far region (r∗ ≳ 0) increases. In addition, the mode functions get
more widely extended. For larger l, the mode functions become more extended to the
far region. This is because the angular momentum barrier extends to further regions for
larger l. The larger height of the angular momentum barrier for large l also explains the
significant suppression of the mode functions with larger l near the horizon.

To summarize, the unstable bounded modes satisfy the superradiant condition

ω
(nlm)
R < mΩH , (2.26)

and evolve adiabatically,

ω
(nlm)
I ≪ ω

(nlm)
R . (2.27)

Even if the instability time scale ω−1
I is much longer than the dynamical timescale ω−1

R , it
is much shorter the age of the universe [17]. For example, the time scale of the instability
with a/M = 0.99 and µM ∼ 0.42, which gives almost the shortest instability time scale
[30], is

1

ωI

∼ 1min

(
M

M⊙

)
, (2.28)
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which is much shorter than the age of the universe.
Thus, the condensate of the axion will spontaneously form by the superradiant insta-

bility. As already mentioned, we call an axion condensate formed by the single unstable
mode an axion cloud. Since the axion is a real scalar field, the configuration of the axion
cloud is given by

ϕnlm = Φnlm + Φ∗
nlm . (2.29)

In the following, we normalize the radial mode function such that the energy of ϕnlm on
the constant t surface satisfies,∫

dr d cos θ dφ (r2 + a2 cos2θ)
√
gttTµν(ϕnlm)ξ

µ
(t)n

ν
(t) = F 2

aM , (2.30)

where Fa is the decay constant of the axion, M is the mass of the black hole and

Tµν(ϕnlm) = ∂µϕnlm∂νϕnlm + gµν

(
−1

2
(∂ϕnlm)

2 − V (ϕnlm)

)
. (2.31)

Here, V (ϕ) is the potential of the axion. In the linearized approximation adopted in this
section, it is given by

V (ϕ) =
µ2

2
ϕ2 . (2.32)

2.3 Observational Signature of the axion cloud

We showed that an axion spontaneously forms a macroscopic condensate around a rotating
black hole. In this section, we briefly explain the possible observational signals of the axion
condensate.

2.3.1 Spin-down of the BH

The axion condensate extracts the angular momentum of the black hole by the superradi-
ance. This angular momentum extraction can be observed as the almost depleted region
on the black hole spin and mass.

Let us demonstrate how the depleted region can be obtained, following Ref. [17]. For
the axion to extract the black hole angular momentum, it must have an unstable mode,
which corresponds to the condition (2.26) or

ω
(nlm)
R (µ,M, a) <mΩH = m

a/M

2(1 +
√

1− (a/M)2)
. (2.33)

Another condition is that angular momentum extraction must be fast enough. For exam-
ple, the spin-down of the black hole cannot be observed if the time scale of the angular
momentum extraction is longer than the age of the Universe. Therefore,

ω
(nlm)
I (µ,M, a) >75τ−1

uni , (2.34)

must be satisfied. Here, τuni ∼ 10Gyr is the age of the Universe and the factor 75 cor-
responds to the required e-folding number for the axion condensate to have the angular
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Figure 2.4: Each region shows the value of the BH spin and mass cannot exist under the
presence of the axion with µ = 10−13eV. We show the region for l = m = 1, 2, 3, 4, 5, and
6.

momentum comparable to the black hole. We show the region which satisfies these in-
equalities in Fig. 2.4, using the non-relativistic approximation (µM ≪ 1) for ω

(nlm)
R,I (see

Eqs. (2.24) and (2.25)) and setting µ = 10−13eV. Roughly speaking, if the black hole in
the shaded region is observed, we can rule out the axion with mass µ = 10−13eV. More-
over, as we change the mass of the axion, the shaded region shifts horizontally. In this
way, one can constrain the axion in various mass ranges.

However, the above argument is premature to be applied to give a constraint on the
mass of the axion. Various effects may change the shape of the excluded region. For
example, environmental effect, such as the spin-up of the black hole by the accretion,
offset the shape of the excluded region [31]. In addition, we assumed that the evolution
of the axion condensate is described by the linear approximation, even if the condensate
grows to a large amplitude. When the amplitude is large, the non-linear effect of the self-
interaction can alter the evolution of the condensate significantly. Therefore, to constrain
the axion by the black hole spin measurement, the precise evolution of the axion under
various effects must be known.
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2.3.2 Continuos gravitational wave emission

Since the axion condensate can have a significant mass, it can be a source of gravitational
waves. Let us consider the case when the condensate is a superposition of two different
superradiant modes

ϕ =
√
E1ϕ1 +

√
E2ϕ2 , (2.35)

where ϕ1 = ϕn1l1m1 and ϕ2 = ϕn2l2m2 . For simplicity, we assume m1 ≤ m2 and ω1 < ω2.
Note that ϕ1 and ϕ2 are normalized to have unit energy in the unit of F 2

aM . Thus E1

and E2 correspond to the energies of the cloud 1 and the cloud 2.
We consider gravitational waves sourced by the condensate. Since the energy-momentum

tensor of the scalar field is quadratic in ϕ, it is made from the terms such as

∂µϕ1∂νϕ1 , ∂µϕ2∂νϕ2 , ∂µϕ1∂νϕ2 .

Therefore, the t- and φ- dependence of each term in the energy-momentum tensor takes
the form of e−i(ωt−mφ). The terms which give the dominant contribution to gravitational
waves are (ω,m) = (2ω1, 2m1) and/or (ω2 − ω1,m2 − m1), since they have smaller |m|
than the other term. These two contributions are called a pair annihilation signal and a
level transition signal, respectively.

For l1 = m1 = 1, n1 = 2 and l2 = m2 = 2, n2 = 3 case under µM ≪ 1, the amplitude
of these gravitational waves can be calculated as [17, 42]

hanngw ∼5.6× 10−18(µM)6
(
1kpc

d

)(
M

M⊙

)
E1

M
, (2.36)

htransgw ∼2.4× 10−18(µM)3
(
1kpc

d

)(
M

M⊙

)√
E1

M

E2

M
. (2.37)

Their frequencies are approximated as

ωann ∼4.0× 102(µM)

(
M⊙

M

)
kHz , (2.38)

ωtrans ∼2.8× 10(µM)3
(
M⊙

M

)
kHz . (2.39)

Since the frequency of the transition signal is given by the difference between the frequen-
cies of the two modes, it is much smaller than that of the annihilation signal in general.
Simultaneous detection of these continuous waves would be strong evidence of the axion.

Nonetheless, it is non-trivial whether the condensate can grow to a significantly large
amplitude, when nonlinear effects such as the self-interaction of the axion are considered.
For example, the energy dissipation due to the self-interaction is essential when the cloud
becomes dense [17]. In addition, self-interaction can significantly alter the evolution of the
condensate and cause another gravitational wave emission, as we explain in the following
subsection.

2.3.3 Bosenova

Other than the continuous gravitational waves, the burst of gravitational waves can be
emitted when one considers the self-interaction of the axion. Owing to the attractive
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nature of the self-interaction1, the condensate can collapse when it becomes dense. Since
the mass of the condensate can be a few % of the central black hole, a sizable burst
of gravitational waves can be expected. The collapse of the condensate associated with
the burst of gravitational waves is named bosenova, in analogy with the explosion of the
Bose-Einstein condensate in cold-atom experiments [56].

The precise non-linear dynamics of the condensate during the collapse must be un-
derstood to estimate the amplitude of the burst-like gravitational waves. The occurrence
of the bosenova has been suggested by the dynamical simulation in Ref. [37, 39]. The
amplitude of the gravitational waves at a distance of a kpc is estimated as [32]

h ∼ 10−21
( ϵ

0.05

)( 16

cbn

)2(
M

10M⊙

)(
µM

0.4

)(
Fa

6× 1016GeV

)
, (2.40)

where ϵ is the fraction of the condensate falling into the black hole, cbn is the ratio of
the duration of the collapse and the light crossing time of the condensate (∼ M/(µM)2

for µM ≪ 1), and Fa is the decay constant of the axion. The quantities ϵ ∼ 0.05 and
cbn ∼ 16 is obtained from the numerical simulation. The amplitude is large enough for
the advanced LIGO to detect.

However, it is too early to conclude the bosenova occurrence because of the uncertainty
of the initial condition in the dynamical simulation. Since there is a large discrepancy
in the dynamical time scale and the instability time scale (see Sec. 2.2), performing the
dynamical simulation for a sufficiently long time is difficult. Thus, dynamical simulation
cannot track the whole evolution of the condensate, starting from such a small ampli-
tude as seeded by quantum fluctuation to a sufficiently large amplitude enough to make
bosenova happen. In Ref. [37, 39], the initial condition is given by scaling a linearized
solution. However, such a prescription is difficult to justify, since the distribution of the
condensate should gradually change from the linear one as it evolves under the effect of
the self-interaction. Therefore, to simulate the bosenova in a realistic situation, we need
a more sophisticated calculation, including the effects of the self-interaction.

1If one considers cosine-type potential, the leading non-linear term is attractive.
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Chapter 3

Perturbative Approach to the
self-interacting axion condensate

In the previous section, we reviewed that the self-interaction may cause the observationally
interesting phenomenon called bosenova. To further investigate such a possibility, the
evolution under the effect of the self-interaction starting from a small amplitude must
be understood precisely. For this purpose, we first study the early stage of evolution,
where the amplitude is still small. In such a regime, the self-interaction can be treated
perturbatively. In this chapter, we formulate a perturbative method to track the evolution,
based on our paper [52] and [53].

In the rest of this thesis, we adopt

S = F 2
a

∫
d4x

√
−g
{
−1

2
gµν∂µϕ∂νϕ− V (ϕ)

}
, (3.1)

as the action of the axion, with the potential

V (ϕ) = µ2(1− cosϕ) . (3.2)

Note that we normalize the axion field by the decay constant Fa to make ϕ dimensionless.
Then, the equation of motion of the axion is given by the sine-Gordon equation on the
Kerr space-time

□gϕ− µ2 sinϕ = 0 , (3.3)

which is independent of Fa.

3.1 Formulation

In the rest of this chapter, we solve nonlinear equation (3.3) perturbatively. Since we are
interested in the regime where the amplitude is small, we approximate Eq. (3.3) as

(□g − µ2)ϕ = −λϕ3 , (3.4)

and perturbatively expand the axion field as

ϕ = ϕ(0) + λϕ(1) + · · · , (3.5)
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where λ =
µ2

3!
. The leading order and the next of Eq. (3.4) are

(□g − µ2)ϕ(0) = 0 , (3.6)

(□g − µ2)ϕ(1) = −
(
ϕ(0)
)3

. (3.7)

The solution to the zeroth order equation (3.6) is ϕnlm, given in Eq. (2.29). We take ϕ(0)

to be a superposition of two different clouds ϕ1 = ϕn1l1m1 and ϕ2 = ϕn2l2m2 :

ϕ(0) =
√
E1ϕ1 +

√
E2ϕ2 . (3.8)

Same as before, we take the normalization of ϕlimiωi
such that the energy of the i-th cloud

on the constant t surface is equal to 1, in the unit of F 2
aM . Thus, E1 and E2 correspond

to the energies of the cloud 1 and the cloud 2 in the unit of F 2
aM , respectively.

We solve the first order equation (3.7) by the Green’s function method. The retarded
Green’s function Gret satisfies

(□g − µ2)Gret(x, x
′) =

1√
−g(x)

δ(4)(x− x′) . (3.9)

We decompose the Green’s function as

Gret(x, x
′) =

1

2π

∑
l,m

∫
C

dω

2π
e−iω(t−t′)eim(φ−φ′)Slmω(θ)Slmω(θ

′)Glmω(r, r
′) , (3.10)

where

Glmω(r, r
′) =

1

Wlm(ω)

(
Rin

lmω(r)R
up
lmω(r

′)θ(r′ − r) +Rin
lmω(r

′)Rup
lmω(r)θ(r − r′)

)
. (3.11)

Here, the functions Rin
lmω and Rup

lmω are the solutions to the radial equation of motion (2.12)
satisfying the boundary conditions

Rin
lmω −→



e−i(ω−mΩH)r∗ , (r → r+)

Ain(ω)r
+i µ2−2ω2

√
ω2−µ2 (ω)

e−i
√

ω2−µ2r

r

+ Aout(ω)r
−i µ2−2ω2

√
ω2−µ2

e+i
√

ω2−µ2r

r
,

(r → +∞)
, (3.12a)

Rup
lmω −→


Bin(ω)e

−i(ω−mΩH)r∗ +Bout(ω)e
+i(ω−mΩH)r∗ , (r → r+)

r
−i µ2−2ω2

√
ω2−µ2

e+i
√

ω2−µ2r

r/M
, (r → +∞)

. (3.12b)

We choose the branch such that Im
[√

ω2 − µ2
]
> 0 for ω2 < µ2. This choice implies the

boundary conditions at infinity for ω2 < µ2 are

Rin
lmω −→Ain(ω)r

+ µ2−2ω2
√

µ2−ω2
e+

√
µ2−ω2r∗

r

+ Aout(ω)r
− µ2−2ω2
√

µ2−ω2
e−

√
µ2−µ2r∗

r
, (3.13)

Rup
lmω −→r

+ µ2−2ω2
√

µ2−ω2
e−

√
µ2−ω2r∗

r
. (3.14)
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Figure 3.1: The integration contour C in Eq. (3.10) on the complex ω plane. The fre-
quencies ω(nlm) and ωQNM are the frequencies of the superradiant unstable modes and the
quasi-normal modes, both of which are zero points of the Wronskian. The frequency ω′

corresponds to the frequency of the source in Eq. (3.7).

These boundary conditions imply that the in-mode (up-mode) solution Rin
lmω (Rup

lmω) is
purely ingoing (outgoing) at the event horizon (infinity). See Appendix B for the numer-
ical construction of these mode functions.

The function Wlm(ω) in Eq. (3.11) is the Wronskian defined by

Wlm(ω) ≡ ∆
(
Rin

lmω∂rR
up
lmω −Rup

lmω∂rR
in
lmω

)
. (3.15)

With the boundary conditions (3.12), the Wronskian is evaluated as

Wlm(ω) = 2i
√
ω2 − µ2Ain(ω) . (3.16)

We choose the integration contour C on the complex ω plane to pass above all zero points
of the Wronskian Wlm(ω) (see Fig. 3.1). Note that frequencies of clouds, ω(nlm), are the
zero points of the Wronskian because the boundary condition of the cloud (see Eq. (2.14))
implies Ain(ω

(nlm)) = 0. This choice of the contour C corresponds to taking the retarded
boundary condition.

Using the Green’s function, the formal solution to the first order equation (3.7) is

ϕ(1) =−
∫ √

−g(x′) d4x′Gret(x, x
′)s(1)(x′) + (homogeneous solution) , (3.17)

where s(1) is the source term in (3.7) given by

s(1) = −
(
E

3/2
1 ϕ3

1 + E
3/2
2 ϕ3

2 + 3E1E
1/2
2 ϕ2

1ϕ2 + 3E
1/2
1 E2ϕ1ϕ

2
2

)
, (3.18)

and we added an arbitrary homogeneous solution since the first order equation has ambi-
guity in their choice. Later in Sec. 3.3, we utilize this ambiguity to improve the pertur-
bative expansion. Since each term is composed of a product of ϕi, its (t

′, φ′)-dependence
is factorized as ∝ e−i(ω′t′−m′φ′), with some (ω′,m′). Now, recall the Green’s function in
the form of spectral decompotsition (3.10). The (t′, φ′)-dependence of ϕ(1) also takes the
form e−i(ωt−mφ).

The integration over φ′ gives δmm′ . Therefore, the summation overm picks upm = m′.
The integration contour C in Fig. 3.1 is taken such that both t′ and ω integrals converge.
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Then, we can exchange their order and perform the integration with respect to t′ first.
The integration over t′ gives

e−iωt

∫ t

−∞
dt′ ei(ω−ω′)t′ =

e−iω′t

i(ω − ω′)
. (3.19)

Then, the integral over ω takes form∫
C

dω

2πi

e−iω′t

ω − ω′Slmω(θ)Slmω(θ
′)Glmω(r, r

′)s
(1)
ω′m′(r

′, θ′) , (3.20)

where s
(1)
ω′m′ is the coefficient of the e−i(ωt′−m′φ) component in the source s(1). Taking into

account 1/ω factor in the inverse of the Wronskian, the integrand decays faster than |ω|−2

at large |ω|, if the growth of the mode functions Rlmω and Slmω as |ω| → ∞ is slower than
|ω|0.

Now, we deform the integration contour C to the one composed of a small circle
around the pole at ω = ω′ and a large semi-circle in the upper half-plane. The integral
at a large semi-circle vanishes since the integrand drops as fast as ∝ |ω|−2. Therefore, we
only need to care about the poles at ω = ω′. After the above procedure, the first order
solution (3.17) takes

ϕ(1) =−
∑

(ω′,m′)

∑
l≥m′

Slm′ω′(θ)e−i(ω′t+m′φ)

×
∫

dr′dθ′ (r′2 + a2 cos2 θ′)Slm′ω′(θ′)Glm′ω′(r, r′)s
(1)
ω′m′(r

′, θ′)

+ (homogeneous solution) . (3.21)

Thus, after identifying all possible (ω′,m′) in the source term, the first order solution is
obtained by r′ and θ′ integration through Eq. (3.21).

Let us identify (ω′,m′) contained in s(1) and classify them by the superradiance condi-
tion (2.26), the boundedness |ω| < µ, and the size of the wavelength compared to the radial
extension of the cloud rc ∼M/(µM)2.1 The third condition determines the suppression of
the r′ integration in Eq. (3.21). For concreteness, we work with l1 = m1 = 1, n1 = 2, and
l2 = m2 = 2, n2 = 3, the fundamental modes of the lowest and second lowest multipoles2.
Note that ϕ is real. Therefore, the term with (−ω′∗,−m′) always appear if the term with
(ω′,m′) exists. We abbreviated the former in the following classification of (ω′,m′), since
it is just the complex conjugate of the latter.

The possible combinations of (ω′,m′) are summarized and classified in Table 3.1. The
property of each class is the followings:

High frequency radiation

These modes are unbounded and escape to infinity. Thus, The modes in this class
cause the dissipation of the condensate. However, the energy dissipation is sup-
pressed because the wavelengths are much shorter than the spatial extension of the

1This approximation is valid as long as µM ≲ 1 and the deformation of the condensate from its linear
configuration can be neglected.

2We take the second mode not to be a l = m = 1 overtone which has a more significant growth rate
than the l = m = 2 modes since l = m = 1 overtones turn out to decay in the two mode approximation
adopted in this section. This point will be discussed in Sec. 5.2.
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Table 3.1: Classification of (ω′,m′) contained in s(1) based on the superradiance condition,
the boundedness, and the size of the wavelength compared to the radial extension of the
cloud rc.

Class (ω′,m′)
Superradiance

condition
Boundedness Wavelength

High frequency
radiation

(3ω1, 3), (3ω2, 6),
(2ω1 + ω2, 4),
(ω1 + 2ω2, 5)

Superradiant Unbound ≪ rc

Low frequency
radiation

(2ω2 − ω∗
1, 3) Superradiant Unbound ∼ rc

Non-superradiant
dissipative mode

(2ω1 − ω∗
2, 0) Non-superradiant Bound ∼ rc

Superradiant
bounded mode

(2ω1 − ω∗
1, 1),

(2ω2 − ω∗
2, 2),

(ω1 + ω2 − ω∗
2, 1),

(ω2 + ω1 − ω∗
1, 2)

Superradiant Bound ∼ rc

cloud. In fact, we will show that the energy dissipation through these modes is much
slower than the superradiant instability as long as the self-interaction can be treated
perturbatively in Chapter 4. Thus, these modes cannot terminate the growth of the
cloud, and we neglect them in this section.

Low frequency radiation

In a similar manner to the high frequency radiation, the mode in this class also
satisfies Re [ω′] > µ, thus escapes to infinity. Unlike in the case of the high frequency
radiation, its wavelength (∼ 1/µ(µM)) becomes comparable to the size of the cloud.
Thus, the energy dissipation can be large enough to be relevant for the saturation
of the superradiant instability [42].

Non-superradiant dissipative mode

This excited mode is bounded, i.e., ω′ < µ. Thus, it does not contribute to the
energy dissipation to infinity. However, this mode cannot satisfy the superradiance
condition (2.26) because m′ = 0. Such a non-superradiant excitation contributes to
positive energy flux to the horizon, which means the energy dissipation to the BH.

Superradiant bounded mode

These excited modes have almost the same ω′ (the difference is at most O(ω1,I),
which is small) and the strictly same m′ as those of the superradiant modes in the
zeroth order solution. Therefore, these modes are both bounded and superradiant.
In Sec. 3.3, we show that these modes contribute to accelerate the superradiant
instability. We refer to these modes as superradiant bounded modes.

In the followings, we separately deal with these modes and calculate the contribution
on the time evolution of the condensate.
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3.2 Energy dissipation

First, we treat the source terms corresponding to the low frequency radiation and the
non-superradiant dissipative modes. For these modes, s

(1)
ω′m′ is given by

sω00 = 3E1

√
E2R1(r

′)2R∗
2(r

′)S1(θ
′)2S∗

2(θ
′) , (3.22)

sω33 = 3
√
E1E2R

∗
1(r

′)R2(r
′)2S∗

1(θ
′)S2(θ

′)2 . (3.23)

Here, we introduce ω0 = 2ω1 − ω∗
2 and ω3 = 2ω2 − ω∗

1. According to Eq. (3.21), the first
order solution contains terms with

ϕ(1) ⊃− 3E1

√
E2e

−iω0t
∑
l

Sl0ω0(θ)

∫
dr′dθ′ (r′2 + a2 cos2 θ′)Sl0ω0(θ

′)

×Gl0ω0(r, r
′)R1(r

′)2R∗
2(r

′)S1(θ
′)2S∗

2(θ
′)

− 3
√
E1E2e

−iω3t+3φ
∑
l

Sl3ω3(θ)

∫
dr′dθ′ (r′2 + a2 cos2 θ′)

× Sl3ω3(θ
′)Gl3ω3(r, r

′)R1(r
′)∗R2(r

′)2S1(θ
′)∗S2(θ

′)2 . (3.24)

We consider the long-term effect of dissipation due to these modes by promoting E1

and E2 to time-dependent variables. Using the relation between the energy E and the
angular momentum J of a cloud with (ω,m), 3

J =
m

ω
E , (3.25)

the energy and the angular momentum conservation laws lead to

dE1

dt
+
dE2

dt
= −FE

tot , (3.26)

m1

ω1,R

dE1

dt
+

m2

ω2,R

dE2

dt
= −F J

tot . (3.27)

Here, FE
tot and F J

tot are, respectively, the net outgoing energy and angular momentum
fluxes evaluated at the boundaries substituting ϕ = ϕ(0) + λϕ(1).

The energy fluxes at the boundaries, FH+ from the event horizon and FI+ from infnity,
are given by

FH+ =

∫
d cos θdφ 2Mr+Tµν(ϕ)ξ

µ
(t)l

ν |r=r+ , (3.28)

FI+ =

∫
d cos θdφ (r2 + a2 cos2θ)

√
grrTµν(ϕ)ξ

µ
(t)n

ν
(r)|r→∞ . (3.29)

Here, lµ is the outgoing null vector specified by lµ = 1
2
(1,∆/(r2 + a2), 0, a/(r2 + a2))

[22], and nµ
(r) is the outward-pointing unit vector normal to the r = constant surface.

The angular momentum flux can be calculated by replacing the time-like killing vector
ξµ(t) with the rotational killing vector −ξµ(φ) = (0, 0, 0,−1). For the energy and angular

momentum fluxes composed of a single (ω,m), the angular momentum flux is obtained
by multiplying m/ω to the energy flux. After some calculation, we obtain

FH+ = 2ω1,IE1 + 2ω2,IE2 − F0E
2
1E2 , (3.30)

FI+ = −F3E1E
2
2 , (3.31)

3Note that this relation holds only for a cloud satisfying the linearized equation of motion.
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Figure 3.2: Figures (a) and (b) visualize the energy dissipation processes by the excitation
of (ω′,m′) = (ω0, 0) and (ω3, 3) modes, respectively. The solid horizontal lines correspond
to the energy levels of the bound states involved in the process. In the case of (a), one
of the two axions in the l = m = 1 cloud makes a transition to the l = m = 2 cloud.
Owing to the energy and angular momentum conservation laws, the other simultaneously
generated axion occupies the (ω,m) = (ω0, 0) mode with ω0 = 2ω1 − ω2 < µ. Since the
m = 0 mode is non-superradiant, this axion particle transfers the energy to the BH. In
the case of (b), one of the two axions in the l = m = 2 cloud makes a transition to the
l = m = 1 cloud. In this case, the axion after transition occupies the (ω,m) = (ω3, 3)
mode with ω3 = 2ω2 − ω1 > µ, which carries the energy to infinity.

with

F0 =
∑
l≥0

72πMλ2r+ω
2
0,R

∣∣∣∣ 1

Wl0(ω0)

∫ ∞

r+

dr

∫ π

0

dθ (r2 + a2 cos2θ)

×Rup
l0ω0

(r)Sl0ω0(θ)R1(r)
2R2(r)

∗S1(θ)
2S2(θ)

∣∣∣∣2 , (3.32)

F3 =
∑
l≥3

36πλ2ω3,R

√
ω2
3,R − µ2

∣∣∣∣ 1

Wl3(ω3)

∫ ∞

r+

dr

∫ π

0

dθ (r2 + a2 cos2θ)

×Rin
l3ω3

(r)Sl3ω3(θ)R2(r)
2R1(r)

∗S2(θ)
2S1(θ)

∣∣∣∣2 . (3.33)

In Appendix C, we show the details of the calculation. Note that F0 corresponds to the
energy flux carried by the (ω0,m0) modes and F3 is that by the (ω3,m3) modes. Note also
that the dissipation comes from the second order in λ. In the following, we keep only the
most dominant l mode in the summation. In the present case, they are the l = 0 mode
in F0 and the l = 3 mode in F3.

The evolution equations for energies (3.26) and (3.27) reduce to

dE1

dt
+
dE2

dt
=2ω1,IE1 + 2ω2,IE2 − F0E

2
1E2 − F3E1E

2
2 , (3.34)

1

ω1,R

dE1

dt
+

2

ω2,R

dE2

dt
=2ω1,I

1

ω1,R

E1 + 2ω2,I
2

ω2,R

E2 −
3

ω3,R

F3E1E
2
2 . (3.35)

Simple algebra transforms Eqs. (3.34) and (3.35) to

dE1

dt
= 2ω1,IE1 −

2ω1,R

ω0,R

F0E
2
1E2 +

ω1,R

ω3,R

F3E1E
2
2 , (3.36)

dE2

dt
= 2ω2,IE2 +

ω2,R

ω0,R

F0E
2
1E2 −

2ω2,R

ω3,R

F3E1E
2
2 . (3.37)
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These equations describe the physical picture of the dissipation processes caused by the
(ω′,m′) = (ω0, 0) and (ω3, 3) modes. The process involving (ω′,m′) = (ω0, 0) causes
the dissipation of the energy of the l = m = 1 cloud and feeds some energy to the
l = m = 2 cloud. The case with (ω′,m′) = (ω3, 3) is the opposite, reducing the energy
of the l = m = 2 cloud and feeding the l = m = 1 cloud. We show these processes
schematically in Fig. 3.2.

3.3 Acceleration of the instability

We treat the superradiant bound modes in this section. Since the dissipation appears
from the second order in λ, we will calculate the effect of the fourth class up to the second
order in λ. Also, we consider the effect sourced only by the l = m = 1 cloud. If the
source involves the higher multipole l = m = 2 cloud, its effect on the evolution should
be subdominant, since the large spatial extension of the l = m = 2 cloud reduces the
strength of the interaction.

3.3.1 First order perturbation

We start with the first order perturbation. When we focus on the source composed solely
of the l1 = m1 = 1 cloud, the first order particular solution is given by

ϕ(1) = −
∑
l≥l1

[
A3e−3i(ω1t−m1φ)Sl3m13ω1(θ)f

(1)
l3m13ω1

(r)

+3A|A|2e2ω1,I te−i(ω1t−m1φ)Slm1ω1+2iω1,I
(θ)f

(1)
lm1ω1+2iω1,I

(r)
]
+ c.c.

+ (homogeneous solution) , (3.38)

where A(t0) is the amplitude of the l1 = m1 = 1 cloud at the reference time t0 defined by

A ≡
√
E1e

−iΘ , (3.39)

where we included the phase for later convenience. Here, f
(1)
l3m13ω1

(r) and f
(1)
lm1ω1+2iω1,I

(r)
are defined by

f
(1)
l3m1ω

(r) ≡
∫
dr′d cos θ′ (r′2 + a2 cos2 θ′)Sl3m1ω(θ

′)Gω
l3m1

(r, r′)

× S1(θ
′)3R1(r

′)3 , (3.40)

f
(1)
lm1ω

(r) ≡
∫
dr′d cos θ′(r′2 + a2 cos2 θ′)Slm1ω(θ

′)Gω
lm1

(r, r′)

× |S1(θ
′)|2S1(θ

′)|R1(r
′)|2R1(r

′) . (3.41)

The perturbative solution (3.38) grows exponentially, and thus the amplitude of the per-
turbation quickly becomes large, breaking the assumption of perturbative expansion (3.5).
In the following, we apply the renormalization group (RG) method to avoid the break-
down of the perturbation theory. The RG method is the technique to eliminate the secular
divergence that appears in a singular perturbation theory [57, 58, 59, 60].

The first step of the RG method, is to identify the term that diverges in ω1,I → 0 limit
and subtracts them by choosing the appropriate homogenous solution in Eq. (3.21). The
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divergent part comes from the factor W−1
l1m1

(ω1 +2iω1,I) contained in f
(1)
l1m1ω1+2iω1,I

(r). As

mentioned earlier, the boundary conditions of the cloud lead to Wl1m1(ω1) = 0, which im-

plies f (1) is divergent in the limit ω1,I → 0. Therefore, the leading term of f
(1)
l1m1ω1+2iω1,I

(r)
in the limit ω1,I → 0 is given by

f
(1)
l1m1ω1+2iω1,I

(r) ∼C(1)
l1m1ω1

Rl1m1ω1(r) , (3.42)

C
(1)
l1m1ω1

≡ 1

2iαω1

√
ω2
1 − µ22iω1,IAout(ω1)

∫
dr′d cos θ′

× (r′2 + a2 cos2 θ′)|Sl1m1ω1(θ
′)|2Sl1m1ω1(θ

′)2

×Rl1m1ω1(r
′)|Rl1m1ω1(r

′)|2Rl1m1ω1(r
′) , (3.43)

where we defined αω1 by the leading term in the Taylor expansion of Wlm(ω):

Wlm(ω) ∼ 2i
√
ω2
1 − µ2αω1(ω − ω1) + · · · . (3.44)

We utilize the relation, Rin
lmω = Aout(ω)R

up
lmω for (l,m, ω) = (l1,m1, ω1). We call Eq. (3.42)

a divergent term, although it is not strictly divergent since ω1,I is small but not vanishing.
Before choosing the appropriate homogeneous solution, we show

Re
[
C

(1)
l1m1ω1

]
= O(ω0

1,I) , (3.45)

Im
[
C

(1)
l1m1ω1

]
= O(ω−1

1,I ) , (3.46)

which state that the divergence only comes from the imaginary part of C(1). To prove
Eqs. (3.45) and (3.46), notice that most of the quantities, except for

√
ω2
1 − µ2, involved in

C
(1)
l1m1ω1

are related to the mode functions Rl1m1ω1 and Sl1m1ω1 . We can choose these mode
functions to be real in the limit, ω1,I → 0, since the radial and the angular equations (2.12)

and (2.11) are both real in this limit. Therefore, the leading term in C
(1)
l1m1ω1

is real except

for the factor
√
ω2
1 − µ2. Since the unstable modes are bounded, i.e., ω1,R < µ, the

factor
√
ω2
1 − µ2 is purely imaginary in the limit under consideration. Therefore, only

Im
[
C

(1)
l1m1ω1

]
is divergent in the limit ω1,I → 0.

Since the divergent part is proportional to the original unstable mode, we only need to
choose an appropriate amplitude to cancel the divergence. Note that there is still freedom
of choosing the non-divergent part. The appropriate choice of the amplitude leads to the
first order perturbative solution

ϕ =
(
A+ 3λC̃

(1)
l1m1ω1

A|A|2e2ω1,I t0
)
e−i(ω1t−m1φ)Sl1m1ω1(θ)Rl1m1ω1(r)

− λ

(
∞∑

l=3m1

[
A3e−3i(ω1t−m1φ)Sl3m13ω1(θ)f

(1)
l3m13ω1

(r)
]

+
∞∑

l=m1

[
3A|A|2e2ω1,I te−i(ω1t−m1φ)Slm1ω1+2iω1,I

(θ)f
(1)
lm1ω1+2iω1,I

(r)
])

+ c.c. , (3.47)

where C̃(1) = C(1)+ δC(1) and δC(1) denotes the finite part (O(ω0
1,I)) which represents the

arbitrariness in the choice of the non-divergent part. Actually, this ambiguity is related to
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the choice of the definition of the amplitude [52]. In the expression (3.47), we introduced
a reference time t0, which is arbitrary. The divergent term is canceled only at t = t0.

To remove the divergence globally, we impose the RG equation

∂ϕ

∂t0
= 0 , (3.48)

on the solution (3.47). Taking care of dependence of the amplitude on t0, we obtain the
evolution equation for the amplitude as

dA(t0)

dt0
= −6λω1,IC̃

(1)
l1m1ω1

A(t0)|A(t0)|2e2ω1,I t0 +O(λ2) . (3.49)

We redefine the amplitude A to include the exponentially growing factor owing to the
superradiant instability, which is accomplished by rewriting A in terms of A ≡ Aeω1,I t.
Then, the evolution equation for the redefined amplitude is

dA
dt

= ω1,IA− 6λω1,IC̃
(1)
l1m1ω1

A|A|2 . (3.50)

Substituting the solution of Eq. (3.50) to Eq. (3.47), and setting t0 = t, we obtain the
renormalized first order perturbative solution

ϕ =A(t)e−i(ω1,Rt−m1φ)Sl1m1ω1(θ)Rl1m1ω1(r)

− λ

(
∞∑

l=3m1

A3(t)e−3i(ω1,Rt−m1φ)Sl3m13ω1(θ)f
(1)
l3m13ω1

(r)

+
∞∑

l>m1

[
3A(t)|A(t)|2e−i(ω1,Rt−m1φ)Slm1ω1+2iω1,I

(θ)f
(1)
lm1ω1+2iω1,I

(r)
]

+ 3A(t)|A(t)|2e−i(ω1,Rt−m1φ)δϕ(1)

)
+ c.c. , (3.51)

where

δϕ(1) ≡ Sl1m1ω1+2iω1,I
(θ)f

(1)
l1m1ω1+2iω1,I

(r)− C̃
(1)
l1m1ω1

Sl1m1ω1(θ)Rl1m1ω1(r) , (3.52)

is the non-divergent part of f
(1)
l1m1ω1+2iω1,I

(r). Now, the solution does not have a divergent
term which breaks the validity of the perturbation theory.

3.3.2 Second order perturbation

We move to the second order perturbation. The second order equation is given by

(□g − µ2)ϕ(2) = −3
(
ϕ(0)
)2
ϕ(1) . (3.53)

Same as the first order perturbation, we solve Eq. (3.53) by the Green’s function method,
which gives

ϕ(2) =− 3

∫ √
−g(x′)d4x′Gret(x, x

′)
(
ϕ(0)
)2
ϕ(1)

+ (homogeneous solution) . (3.54)
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Here, ϕ(1) is given by the O(λ) part in Eq. (3.47). As we see in the first order perturba-
tion, the divergent term in the limit ω1,I → 0 originates from the Wronskian Wl1m1(ω1).
Therefore, the term contained in ϕ(2) that has the potentially divergent Wronskian is

ϕ(2) ⊃3A|A|4
∑
l,l′

∫
d cos θ′

∫
dr′(r′2 + a2 cos2 θ′)e4ω1,I te−i(ω1t−m1φ)

× Slm1ω1+4iω1,I
(θ)Slm1ω1+4iω1,I

(θ′)G
ω1+4iω1,I

lm1
(r, r′)

×
(
S∗
l1m1ω1

(θ′)2R∗
l1m1ω1

(r′)2Sl′3m13ω1(θ
′)f

(1)
l′3m13ω1

(r′)

+ 6|Sl1m1ω1(θ
′)|2|Rl1m1ω1(r

′)|2Sl′m1ω1+2iω1,I
(θ′)f

(1)
l′m1ω1+2iω1,I

(r′)

+ 3Sl1m1ω1(θ
′)2Rl1m1ω1(r

′)2

×S∗
l′m1ω1+2iω1,I

(θ′)f
(1)∗
l′m1ω1+2iω1,I

(r′)
)
. (3.55)

The divergent part in the expression (3.55) is identified to be

3C
(2)
l1m1ω1

A|A|4e4ω1,I te−i(ω1t−m1φ)Sl1m1ω1Rl1m1ω1 , (3.56)

where C(2) is defined by

C
(2)
l1m1ω1

≡ 1

2iαω1

√
ω2
1 − µ24iω1,IAout

∑
l′

∫
d cos θ′

∫
dr′

× (r′2 + a2 cos2 θ′)Sl1m1ω1(θ
′)Rl1m1ω1(r

′)

×
(
S∗
l1m1ω1

(θ′)2R∗
l1m1ω1

(r′)2Sl′3m13ω1(θ
′)f

(1)
l′3m13ω1

(r′)

+6|Sl1m1ω1(θ
′)|2|Rl1m1ω1(r

′)|2Sl′m1ω1+2iω1,I
(θ′)f

(1)
l′m1ω1+2iω1,I

(r′)

+ 3Sl1m1ω1(θ
′)2Rl1m1ω1(r

′)2

S∗
l′m1ω1+2iω1,I

(θ′)f
(1)∗
l′m1ω1+2iω1,I

(r′)
)
. (3.57)

There are two contributions to C(2). One is due to ω = 3ω1 modes (the high frequency
radiation of the classification in Sec. 3.1), which dissipates energy to infinity. The other
is due to ω = ω1 + 2iω1,I modes (the superradiant bound modes of the classification
in Sec. 3.1), which decays at infinity and does not contribute to the energy dissipation.

However, one can numerically confirm that the dissipative effect in C
(2)
l1m1ω1

is subdomi-
nant [52].

Other than Eq. (3.56), we also have the divergence in the second order solution sourced
by the divergent homogeneous solution we added to eliminate the divergent part in the
first order solution. The formal solution from this type of source is given by

−9|A|2e2ω1,I t0

∫ √
−g(x′) d4x′Gret(x, x

′) (ϕ(0)(x′))2

×
(
AC

(1)
l1m1ω1

e−i(ω1t′−m1φ′)Sl1m1ω1(θ
′)Rl1m1ω1(r

′) + c.c.
)
. (3.58)

The divergent part of this expression is identified as

−9A|A|4e2ω1,I t0e2ω1,I t
(
2C

(1)
l1m1ω1

C
(1)
l1m1ω1

+ C
(1)∗
l1m1ω1

C
(1)
l1m1ω1

)
×e−i(ω1t−m1φ)Sl1m1ω1(θ)Rl1m1ω1(r) + c.c. . (3.59)
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The appropriate homogeneous solution to eliminate the divergences (3.56) and (3.59) is

−3λ2
[(
C

(2)
l1m1ω1

+ δC
(2)
l1m1ω1

)
−3
(
2C

(1)
l1m1ω1

C̃
(1)
l1m1ω1

+ C̃
(1)∗
l1m1ω1

C
(1)
l1m1ω1

)]
× A|A|4e4ω1,I t1e−i(ω1t−m1φ)Sl1m1ω1Rl1m1ω1 . (3.60)

Again, we introduced δC(2) to represent the non-divergent part.
Since we have identified the divergent terms, the evolution equation of the amplitude

can be obtained by imposing the RG equation, as in the first order case. A similar
calculation to the first order case leads to

dA

dt
+3λδC

(1)
l1m1ω1

(
2|A|2dA

dt
+ A2dA

∗

dt

)
e2ω1,I t

= −6λω1,IC̃
(1)
l1m1ω1

A|A|2e2ω1,I t + 12λ2ω1,IC̃
(2)
l1m1ω1

A|A|4e4ω1,I t , (3.61)

where C̃
(2)
l1m1ω1

and Ĉ
(2)
l1m1ω1

are defined by

C̃
(2)
l1m1ω1

≡ Ĉ
(2)
l1m1ω1

+ δC
(2)
l1m1ω1

− 3

2
C

(1)
l1m1ω1

(
2δC

(1)
l1m1ω1

+ δC
(1)∗
l1m1ω1

)
, (3.62)

Ĉ
(2)
l1m1ω1

≡ C
(2)
l1m1ω1

− 3

2
C

(1)
l1m1ω1

(
2C

(1)
l1m1ω1

+ C
(1)∗
l1m1ω1

)
. (3.63)

We note that Ĉ(2) is O(ω−1
1,I ) quantity owing to the cancellation of the O(ω−2

1,I ) terms in

C(2) and C(1)(2C(1) + C(1)∗).
Let us rewrite the amplitude equation (3.61) in terms of the energy E1. Recalling the

relation (3.39) and incorporating the superradiant instability as in Eq. (3.50), we obtain

1

2ω1,I

dE1

dt
=E1 − 6λRe

[
C(1) + δC(1)

]
E2

1 + 12λ2Re
[
Ĉ(2) + δC(2)

]
E3

1

+ 18λ2Re
[
δC(1)

(
2δC(1) + δC(1)∗)]E3

1 , (3.64)

δω

ω1,I

=6λIm
[
C(1) + δC(1)

]
E1 − 12λ2Im

[
Ĉ(2) + δC(2)

]
E2

1

+ 18λ2Im
[
2C(1)δC(1)∗ − δC(1)

(
2δC(1) + δC(1)∗)]E2

1 . (3.65)

Here, we defined the frequency shift by

δω ≡ dΘ

dt
. (3.66)

Equations (3.64) and (3.65) show that the evolution of the energy and the frequency
shift is subject to the renormalization group scheme, the choice of the finite part δC(1)

and δC(2). In particular, we should be careful that the meaning of E1 depends on the
prescription we choose. On the other hand, we can show the scheme independence of
δω [52]. However, to obtain the scheme independent evolution equation in terms of δω
up to O(λ2), we need to proceed our calculation to the next order in λ, which requires
tedious calculation. In the following, we fix δC(1) and δC(2) by requiring the minimal
subtraction instead of pushing the perturbation theory to the next order.

We choose the simplest scheme4

δC(1) = δC(2) = 0 . (3.67)

4See Ref. [52] for other choice of the scheme.
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Table 3.2: The frequency of the mode, Re
[
C

(1)
l1m1ω1

]
, and Re

[
Ĉ

(2)
l1m1ω1

]
for the µM = 0.42

and 0.3 with a/M = 0.99 is shown.

(µM, l1,m1, n1) MωR MωI Re
[
C

(1)
l1m1ω1

]
Re
[
Ĉ

(2)
l1m1ω1

]
(0.42,1,1,0) 0.4088 1.504× 10−7 −3.29× 10−3 2.72× 10−5

(0.3,1,1,0) 0.2963 2.681× 10−8 −2.54× 10−3 1.99× 10−5

Under the scheme (3.67), the evolution equations are given by

dE1

dt
= 2ω1,I

(
1− 6λRe

[
C

(1)
l1m1ω1

]
E1 + 12λ2Re

[
Ĉ

(2)
l1m1ω1

]
E2

1

)
E1 , (3.68)

δω

ω1,I

= 6λIm
[
C(1)

]
E1 − 12λ2Im

[
Ĉ

(2)
l1m1ω1

]
E2

1 . (3.69)

We observe that the self-interaction effect effectively changes the growth rate ω1,I . By

numerically calculating the coefficients, we can show Re
[
C(1)

]
< 0 and Re

[
Ĉ(2)

]
>

0 which indicates the acceleration of the growth. One concern is whether E1 in the
prescription we choose corresponds to the actual energy of the cloud. In Sec. 4.1, we
will show the perturbative evolution of E1 follows almost the same track as the nonlinear
evolution when the amplitude is small (see Fig. 4.4). This suggests that E1 in the current
scheme is in good agreement with the actual energy of the condensate.

3.4 Perturbative evolution of the self-interacting con-

densate

Now, we combine the evolution equations (3.36) and (3.68) by simply replacing the growth
rate ω1,I in (3.36) by

ω1,I

(
1− 6λRe

[
C

(1)
l1m1ω1

]
E1 + 12λ2Re

[
Ĉ

(2)
l1m1ω1

]
E2

1

)
. (3.70)

Thus, the perturbative equations governing the evolution of the condensate composed of
two clouds are

dE1

dt
=2ω1,I

(
1− 6λRe

[
C(1)

]
E1 + 12λ2Re

[
Ĉ(2)

]
E2

1

)
E1

− 2ω1,R

ω0,R

F0E
2
1E2 +

ω1,R

ω3,R

F3E1E
2
2 , (3.71)

dE2

dt
=2ω2,IE2 +

ω2,R

ω0,R

F0E
2
1E2 −

2ω2,R

ω3,R

F3E1E
2
2 . (3.72)

In Fig. 3.3, we show examples of the time evolution for µM = 0.42 and µM = 0.3
with the black hole spin a/M = 0.99. We also show the actual values of C(1) and Ĉ(2) for
these cases in Table 3.2.5 Since the cloud should start with extremely small energy, we

5The values of Re
[
C

(1)
l1m1ω1

]
, and Re

[
Ĉ

(2)
l1m1ω1

]
are different from our paper [52], since the normaliza-

tion of the radial mode function is different. In Ref. [52], the normalization is given by∫
dr r2|Rlmω|2 = M3 . (3.73)
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Figure 3.3: Time evolution of the energy of each mode when the axion cloud is composed
of two modes l = m = 1 and l = m = 2 in the perturbtive approach. The left (right)
panel shows the time evolution of the energy of the l = m = 1 cloud, E1(red solid), and
that of the l = m = 2 cloud, E2 (blue dotted), with the axion mass µM = 0.42(0.3).
In both panels, black dotted lines are the time evolution of the l = m = 1 cloud energy
in the linear approximation. We set the spin of the BH to a/M = 0.99. We take the
initial energies of the two clouds to be E1 = E2 = 10−70F 2

aM . We normalized the time
in the horizontal axis by the superradiant growth rate of the l = m = 1 cloud, ω−1

1,I .
The horizontal dashed line in the right panel describes the energy where the dynamical
instability sets in (see chapter 4 for detail).

take the initial condition as

E1(tini) = E2(tini) = µ ∼ 10−70

µM

( µ

10−13eV

)2
F 2
aM , (3.74)

which corresponds to the case in which each axion cloud starts with a single axion particle.
Here in Eq. (3.74), The choice of parameter, µM = 0.42, gives an instability rate close
to the maximum value [30]. On the other hand, the axion mass µM = 0.3, as we will
show in the Sec. 4.1, is in the range where bosenova occurs if we consider the evolution of
the condensate composed of a single cloud. In both cases, the qualitative behavior of the
obtained time evolution is the same. In early times, both l = m = 1 and l = m = 2 clouds
grow owing to the superradiant instability, independently of the effect of self-interaction.
Since the instability timescale of the l = m = 2 cloud is much longer than that of the
l = m = 1 cloud, only the l = m = 1 cloud grows in practice.

As the cloud grows, the instability is accelerated by the self-interaction. After the
energy of the l = m = 1 cloud gets close to the maximum value, overshooting the value
at which the first and second terms in the right-hand side of Eq. (3.71) balance, in the
end the rapid dissipation of l = m = 1 cloud and simultaneously the excitation of the
l = m = 2 cloud happen. Overshooting occurs because the energy dissipation through
the non-superradiant dissipative mode (the left panel of Fig. 3.2) is proportional to the
energy of the l = m = 2 cloud and hence suppressed before the l = m = 2 cloud becomes
large. After this rapid energy dissipation, eventually, the whole condensate settles into a
superposition of the two clouds, sharing comparable energies between them. Interestingly,
the excitation of the l = m = 2 cloud occurs more rapidly than the initial growth rate
of the l = m = 1 cloud, which is much faster than the initial rate of the superradiant
instability of the l = m = 2 cloud.

The overall picture so far is based on the perturbation theory. However, because of the
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presence of the overshooting, the cloud inevitably enters the nonlinear regime, where the
deformation of the cloud configuration from the linear one cannot be appropriately taken
into account perturbatively. In the fully nonlinear description, the numerical coefficients
in Eqs. (3.72) and (3.71) are altered, leading to a modification of the time evolution. In
the next section, we perform non-perturbative calculations to examine whether a more
accurate treatment of the nonlinear effects can qualitatively change the evolution.
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Chapter 4

Nonperturbative method to track
the evolution of the condensate

In the previous chapter, we found that even if we consider the dissipation by the self-
interaction, the condensate inevitably enters the regime where the perturbative method
cannot be trusted. To predict the final fate of the condensate, we need to study the
evolution taking into account the nonlinear effects that are dismissed by the perturbative
method, such as the deformation of the condensate. However, because of the adiabatic
nature of the evolution (the instability time scale ≫ the dynamical time scale), we cannot
follow the evolution of the condensate by the dynamical simulation. In this chapter, we
propose a new method to track the evolution in a strongly nonlinear regime with the aid
of the adiabaticity of the evolution. This chapter is based on our works Ref. [54] and [53].

4.1 Single mode calculation

For simplicity, we start with the condensate composed solely of the fastest growing mode
(n1, l1.m1) = (2, 1, 1). In the next section, we consider the effect of the second mode
(n2, l2,m2) = (3, 2, 2). Our strategy is to use the fact that the cloud grows adiabatically,
which means that the dynamical time scale of the cloud is much larger than its growth
rate, i.e.,

ωI ≪ ωR . (4.1)

In other words, the amplitude and the configuration of the axion field vary only gradually
with the long time scale (∼ ω−1

I ). Thus, in a short time scale (≪ ω−1
I ), we can regard the

axion field configuration to be almost stationary with an approximately fixed amplitude
A1. During the adiabatic evolution, it is likely that the symmetry of configuration is
preserved. Since the configuration of the cloud in the linear approximation has helical
symmetry, we assume an approximately helical symmetric configuration

ϕ(A1) =
∞∑
k=1

∞∑
l≥km1

e−ik(ω1(A1)t−m1φ)R̃kl(r;A1)Ylkm1(cos θ) + c.c. , (4.2)

as the configuration of the axion field with an arbitrary amplitude A1. Here, Ylm(x) is
defined as

Ylm(x) ≡ Nm
l P

m
l (x) , (4.3)
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with Pm
l (x) is the associated Legendre polynomial and

Nm
l =

√
(l −m)!(2l + 1)

2(l +m)!
, (4.4)

is the normalization constant such that Ylm(x) satisfies∫ 1

−1

dx Ylm(x)Yl′m(x) = δll′ . (4.5)

The amplitude A1 is a parameter that corresponds to the amplitude of the fundamental
mode at a large radius, i.e.,

R̃1l1(r;A1) → A1
e−

√
µ2−ω2

1r

r/M

( r
M

)−M
µ2−2ω2

1√
µ2−ω2

1 (1 +O(r−1)) , (r → ∞) . (4.6)

Since the self-interaction causes the frequency shift, we take the fundamental frequency
of the configuration, ω1 = ω1(A1), to depend on the amplitude A1.

We plug in the ansatz (4.2) to the equation of motion (3.3) and obtain

d

dr

(
∆
dR̃kl

dr

)
+

[
k2(ω1(r

2 + a2)− am1)
2

∆
− µ2r2 + 2ak2ω1m1 − a2k2ω2

1 − l(l + 1)

+a2(k2ω2
1 − µ2)

1− 2l(l + 1) + 2k2m2
1

3− 4l(l + 1)

]
R̃kl

+ a2(k2ω2
1 − µ2)

(
(l − 1− km1)(l − km1)

(2l − 3)(2l − 1)

Nkm1
l−2

Nkm1
l

R̃kl−2

+
(l + 2 + km1)(l + 1 + km1)

(2l + 3)(2l + 5)

Nkm1
l+2

Nkm1
l

R̃kl+2

)

+

∫ 2π

0

dφ

2π

∫ 1

−1

dx Ylkm1(x)e
−inm1φ(r2 + a2x2)V ′(ϕ) = 0 . (4.7)

Here, the time derivative of the amplitude A1 is neglected, since the change of the ampli-
tude is very slow during the adiabatic evolution. The appropriate boundary condition to
impose on R̃kl is the ingoing boundary condition at the event horizon and the outgoing
(exponentially decaying) boundary condition for ω > µ (ω < µ) at infinity. In the asymp-
totic region (r → +∞ and r → r+), the nonlinear terms drop sufficiently fast owing to
the localized nature of the condensate. Neglecting the nonlinear term in Eq. (4.7), we
obtain the asymptotic solutions satisfying these boundary conditions as

R̃kl −→A
(in)
kl

(
r − r+
M

)−ik
2Mr+
r+−r−

(ω1−mΩH)

, (r → r+) , (4.8)

R̃kl −→A
(out)
kl

e+i
√

k2ω2
1−µ2r

r/M

( r
M

)−iM
µ2−2k2ω2

1√
k2ω2

1−µ2

×
(
1 +

a1
r/M

+
a2

(r/M)2
+ · · ·

)
, (r → ∞) . (4.9)
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We determine the coefficients a1, a2, · · · analytically order by order. In our calculation,
we take the coefficients up to a7. Here, A

(in)
kl and A

(out)
kl are the parameters describing the

asymptotic amplitude of mode specified by k and l, which will be determined by solving
the non-linear equation.

The ansatz (4.2) cannot describe the solution which tracks the evolution over the
growth time scale ω−1

1,I . We obtain a globally valid solution in time by promoting the
amplitude A1 to be time-dependent. To obtain a solution global in time, we demand the
amplitude A1 to vary in time slowly. In particular, we require that the family of solutions
parametrized with A1, {ϕ(A1)}A1 , is swept to satisfy the energy balance. Specifically, we
determine the time evolution of A1 by

dE(A1)

dA1

dA1

dt
= −Ftot(A1) , (4.10)

where we introduce the energy E(A1) and the net energy flux Ftot(A1) of the quasi-
stationary configuration (4.2). For a given amplitude A1, E(A1) and Ftot(A1) is calculated
by

E(A1) =

∫
dr d cos θ dφ (r2 + a2 cos2 θ)

√
gttTµν(A1)ξ

µ
(t)n

ν
(t) , (4.11)

Ftot(A1) = FH(A1) + F∞(A1) , (4.12)

FH(A1) =

∫
d cos θdφ 2Mr+Tµν(A1)ξ

µ
(t)l

ν |r=r+ , (4.13)

F∞(A1) =

∫
d cos θdφ (r2 + a2 cos2 θ)

√
grrTµν(A1)ξ

µ
(t)n

ν
(r)|r→∞ . (4.14)

Here, the energy-momentum tensor Tµν(A1) in the one for the axion configuration (4.2).
The explicit expressions are given by

(r2 + a2 cos2 θ)
√
gttTµνξ

ν
(t)n

ν
(t) =

(r2 + a2)2 −∆a2 sin2 θ

2∆
(∂tϕ)

2 +
∆

2
(∂rϕ)

2

+
1

2
(∂θϕ)

2 +
∆− a2 sin2 θ

2∆ sin2 θ
(∂φϕ)

2 + V (ϕ) , (4.15)

Tµνξ
µ
(t)l

ν |r=r+ =(∂tϕ+ ΩH∂φϕ)∂tϕ , (4.16)

(r2 + a2 cos2 θ)
√
gttTµνξ

µ
(t)n

ν
(r)|r→∞ =(r − r+)(r − r−)∂rϕ∂tϕ , (4.17)

where we omit the argument of ϕ for notational simplicity. The angular momentum
J(A1) can be evaluated by simply replacing ξµ(t) in Eq. (4.11) by −ξµ(φ) = (0, 0, 0,−1). The
explicit formula is

J(A1) =

∫
dr d cos θ dφ (r2 + a2 cos2 θ)

√
gttTµν(A1)

(
−ξµ(φ)

)
nν
(t) , (4.18)

(r2 + a2 cos2 θ)
√
gttTµν(A1)ξ

µ
(φ)n

ν
(t) =

(
(r2 + a2)2 −∆a2 sin2 θ

∆
∂tϕ+

2ar

∆
∂φϕ

)
∂φϕ .

(4.19)

When the nonlinearity is small, E(A1) and J(A1) is related as

J(A1) ∼
m1

ω1,R(A1)
E(A1) . (4.20)
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4.1.1 Summary of the numerical calculation

In this subsection, we explain our numerical method to solve the Eq. (4.7) under the
boundary conditions (4.8) and (4.9). In our calculation, the infinite summation in Eq. (4.2)
is truncated at lmax = 5, kmax = 5 (see App. D for the justification of the truncation). Since
we start with the l1 = m1 = 1 mode and the potentials we use (Eqs. (4.21)-(4.23)) are even
function of ϕ, only modes with odd l,m appear in our calculation. Specifically, we only
need to care with the modes (l,m) = (1, 1), (3, 1), (5, 1), (3, 3), (5, 3), and (5, 5). The modes
with (l,m) = (1, 1), (3, 1), and (5, 1) are bounded and represent the l = m = 1 cloud1. On
the other hand, modes with (l,m) = (3, 3), (5, 3), and (5, 5) is unbounded modes which
radiate energy to infinity. In particular, they correspond to the high frequency radiation
discussed in Sec. 3.1.

To find the nonlinear configuration for a given amplitude A1 (the amplitude of the
fundamental mode at large r), we need to determine the 12 remaining complex parameters
consistently. The 12 parameters are the frequency ω1 and the amplitudes of modes at
the horizon A

(in)
kl ((k, l) = (1, 1), (1, 3), (1, 5), (3, 3), (3, 5), and (5, 5)) and at a large radius

A
(out)
kl ((k, l) = (1, 3), (1, 5), (3, 3), (3, 5), and (5, 5)). These parameters are obtained by the

shooting method. We guess 12 complex parameters and integrate Eq. (4.7) from both
ends of the domain r∗ ∈ [rmin, rmax] to r∗ = rmatch. We impose the boundary conditions
Eq. (4.8) at r∗ = rmin and Eq. (4.9) at r∗ = rmax. Then, we adjust the parameters until
the solution joins smoothly at the r∗ = rmatch. We take rmin = −100M, rmax = 100M, and
rmatch = 5M in our calculation.

To apply Eq. (4.10), we need to obtain the dependence of the configuration on the
amplitude A1. For this purpose, we gradually increase A1 from a small amplitude where
the linear approximation is valid (A1 = 10−3) and calculate the 12 parameters for each
value of A1. When we solve the coupled nonlinear ordinary differential equations (4.7), we
linearize them by expanding around an approximate solution. We guess the approximate
solution by extrapolating the configuration from the previous step. The process is then
repeated by solving a set of linearized equations expanded around the improved approx-
imate solution until we confirm the convergence of the 12 parameters. The orthogonal
collocation method is used when we perform the projection of nonlinear terms to (l,m)-
harmonics (see Appendix. D). The θ and φ directions are discretized by 16 and 31points,
respectively.

4.1.2 The evolution of a cloud for the fastest growing parameter
set

In the following, we show the numerical calculation results with the method presented in
the previous section. First, we present the result with the black hole spin a/M = 0.99
and axion mass µM = 0.42. We perform the calculation with three different potentials,

V (ϕ) = µ2

(
1

2
ϕ2 − 1

4!
ϕ4

)
, (4.21)

V (ϕ) = µ2

(
1

2
ϕ2 − 1

4!
ϕ4 +

1

6!
ϕ6

)
, (4.22)

V (ϕ) = µ2 (1− cosϕ) , (4.23)

1Appearance of different l modes comes from the difference between the spheroidal harmonics Slmω

and spherical harmonics Ylm. The former is written by the superposition of the latter with various l.
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Figure 4.1: (Left) The energy of the configuration as a function of the amplitude A1. The
red solid, blue dashed, and black dotted curves correspond to the cases with the potentials
Eqs. (4.21), (4.22), and (4.23), respectively. (Right) Relation between the total flux Ftot

on the energy E. Same as the left panel, the red solid, blue dashed, and black dotted
curves correspond to the respective choices of potential.
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Figure 4.2: The real part of the axion field ϕ on the equatorial plane. The red and blue
dashed curves show the nonlinear and the linear case, respectively. For the nonlinear case,
we take potential to be the cosine potential (4.23). We fixed the energy to E = 1768F 2

aM ,
where the growth of the amplitude due to the superradiance saturates, in both cases,.

to see whether the higher-order terms of the potential have an influence on the result or
not.

In Fig. 4.1, we show the energy E (left panel) and the total flux Ftot (right panel) of
the configuration as a function of the A1. We observe that the energy with the potential
truncated at ϕ4 (4.21) satisfies dE/dA1 = 0 around A1 ∼ 3. As discussed in the context
of the stellar instability [61], the appearance of a maximum of E indicates the existence
of a dynamical instability at this amplitude. Later in Sec. 4.1.4, we will build a toy model
which gives a physical picture of the presence of a maximum of E. This criterion of a
dynamical instability implies that the axion condensate with the attractive ϕ4 potential
will become unstable at this amplitude. On the other hand, the condensate with the
potential from the higher order terms (4.22) or (4.23) has no maximum, showing no
evidence of the instability. Since the leading higher order term in the potential is repulsive,
they stabilize the cloud.

In the early epoch, where the energy (amplitude) of the axion is small, the total
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Figure 4.3: (Left) The time evolution of the amplitude A1. The red solid curve and the
blue dashed straight line show the nonlinear (cosine-type potential (4.23)) and the linear
time evolutions, respectively. The horizontal axis time normalized by the growth rate in
the linearized model ω
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1,I . We should emphasize that ω
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1,I is, in general, different from the
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Figure 4.4: The same figure as the left panel of Fig. 4.3 but with the cloud energy E
instead of the amplitude A1. We added the black dashed line which corresponds to the
evolution obtained by solving the perturbative equation (3.68).

energy flux is negative, which indicates the growth of the condensate (see Fig. 4.1). This
is because the total energy is dominated by the negative energy flux at the horizon,
superradiance. As the amplitude grows, the energy flux to the infinity starts to increase
faster than the superradiance, and eventually, two fluxes balance to give Ftot = 0 at
A1 ∼ 12 or E ∼ 1.8×103F 2

aM . Thus the quasi-stationary configuration would be realized
since the condensate is stable throughout the evolution for potentials (4.22) and (4.23).
In Fig. 4.2, we show the quasi-stationary configuration of the axion field on the equatorial
plane. We observe that the nonlinear configuration is more compact than the linear
configuration at the same energy. This is because the leading ϕ4 term in the cosine
potential is attractive.

To obtain the time evolution of the amplitude A1, we solve Eq. (4.10) using the rela-
tion between amplitude and the energy and the energy flux that we have just obtained.
The time evolution of the amplitude A1 is shown in the left panel of Fig. 4.3. In the early
time, when the amplitude is small, the amplitude follows the linear evolution. When the
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Figure 4.5: Growth rates of the cloud evolution. The Red solid and blue dotted curves
correspond to the growth rate defined by Ȧ1/A1 and Ė/2E, respectively. We normalize
the growth rate by the imaginary part of the frequency, ω1,I . Again, we mention that ω1

is the fundamental frequency of the nonlinear configuration, not the frequency obtained
by the linear analysis in Sec. 2.3, ω
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1 .

amplitude gets larger, the growth is slightly accelerated, which is predicted by the per-
turbative calculation in Sec. 3.3. We can directly compare to the perturbative calculation
by translating amplitude A1 to the cloud energy E1 and confirm the good agreement with
the perturbative evolution for E ≲ 500 (see Fig. 4.4). Eventually, the energy dissipation
to infinity balances the superradiant growth and the acceleration stops. In the right panel
of Fig. 4.3, we present the inverse time scale of the amplitude evolution. We observe that
the growth rate is at most 100 times larger than the growth rate predicted by the linear
analysis. However, our assumption on the adiabatic evolution (4.1) is still valid since there
is large discrepancy between the original growth rate ω1,I and the dynamical timescale
ω1,R. There ratio is about ω1,I/ω1,R ≲ 10−7.

We further examine the consistency of our numerical method by comparing the imag-
inary part of ω1 to the growth rate defined by the amplitude (Ȧ1/A1) and the energy
(Ė/2E). In Fig. 4.5, the time evolution of these two growth rates normalized by the
imaginary part of the frequency ω1,I is shown. These ratios deviate from unity by at most
O(10) until saturation occurs. That is to say, the growth rates defined in different ways
differ by a tiny amount O(10ω0I). This difference represents the error of our calculation
scheme which comes from the naive ansatz (4.2). Therefore, when we substitute the so-
lution of the form (4.2) with the time-dependent amplitude A1(t) into the equation of
motion (3.3), the error should be comparable to ω1,I . Note that when we derive Eq. (4.7),
we have neglected the time dependence of A1. Now we can conclude that to correct this
error, we only need tiny higher order corrections. We would like to mention that Ė/2E
stays close to ω1,I even when the amplitude is large and the nonlinear effect is not small.

4.1.3 Dependence on the axion mass and black hole spin

Next, we vary the black hole spin a/M and the axion mass µM to see how the variation
of these parameters affects the evolution. Table 4.1 presents the parameter sets presented
in this section. In the following, the axion potential is fixed to (4.23).

Let us first examine how the dependence of the energy E on amplitude A1 is altered
by changing the axion mass and the black hole spin. In Fig. 4.6, we show the function
E(A1) for µM = 0.29 (left) and µM = 0.15 (right). For both cases, a local maximum of
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Table 4.1: The five parameter set (a/M, µM) we show in Sec. 4.1.3. For each parameter
set, we show the real and the imaginary part of the frequency, ω1,R and ω1,I , of the
unstable mode when we neglect the self-interaction.

(a/M, µM) Mω1,R Mω1,I

(0.99,0.29) 0.2867 2.154× 10−8

(0.9,0.29) 0.2867 1.543× 10−8

(0.99,0.15) 0.1496 1.837× 10−10

(0.9,0.15) 0.1496 1.737× 10−10

(0.7,0.15) 0.1496 1.154× 10−10
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Figure 4.6: The same figure as the left panel of Fig. 4.1 but with different axion mass
and black hole spin. The axion potential is fixed to cosine-type (4.23). (Left) The case
with µM = 0.29. The red solid and blue dashed curves correspond to the a/M = 0.99
and a/M = 0.9 cases, respectively. (Right) The case with µM = 0.15. The red solid,
blue dashed, and black dotted curves correspond to the a/M = 0.99, a/M = 0.9, and
a/M = 0.7 cases, respectively.

E exists for any value of a/M . Therefore, the cloud is expected to be unstable if µM is
not very large, independent of the value of a/m. In the next subsection, we introduce the
toy model to explain the difference between the case µM = 0.42 and the cases µM = 0.29
and 0.15.

Next, we check whether the energy flux is large enough to saturate the condensate.
Energy fluxes from the horizon and to infinity are shown in Fig. 4.7 (µM = 0.29 on the
left and µM = 0.15 on the right). We observe that even when the cloud energy is large
enough to cause the instability, the flux to infinity is much smaller than the flux from
the horizon to terminate the growth. The suppression of the flux to infinity is explained
by similar argument as suppression of the flux due to the high frequency radiation of the
classification in Sec. 3.1. The reason is the wavelengths of the radiative modes are much
smaller than the size of the flux. To summarize, for the small axion mass, the dissipation
to infinity is inefficient to terminate the growth and the cloud becomes unstable at a
certain amplitude.

4.1.4 Toy model of the bosenova

In this subsection, we give a toy model that explains the presence (absence) of the sign of
instability, that is a local maximum of the energy, in the numerical calculation presented
in previous subsection. Our model is based on the effective theory proposed in [37]. We
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Figure 4.7: The energy fluxes at the horizon (upper panels) and infinity (lower panels) as
the function of the energy of the cloud. The left and right panels correspond to the case
with µM = 0.29 and µM = 0.15, respectively. energy flux at the infinity and the horizon,
respectively. In the left panels, the red and the blue curves correspond to a/M = 0.99
and 0.9 cases, respectively. In the right panels, the red, blue, and black curves correspond
to the a/M = 0.99, a/M = 0.9, and a/M = 0.7 cases, respectively.

assume the configuration of the axion field to be

ϕ =
1√
2µ

(
ψe−iµt + ψ∗e+iµt

)
, (4.24)

and requires that the characteristic length scale of the function ψ be much longer than
the axion Compton wavelength µ−1. In addition, we ignore the spin of the BH and adopt
the non-relativistic approximation µM ≪ 1. Therefore, the first term of the expansion
with respect to µM is preserved.

Our goal is to obtain the configuration of ψ and its dependence on µM . Under the
above approximations, the action (3.1) recast to

SNR = F 2
a

∫
dt d3x

(
i

2

(
ψ∗ψ̇ − ψψ̇∗

)
− 1

2µ
|∂iψ|2 +

µM

r
|ψ|2 + µ2

∑
n=2

(−1/2)n

(n!)2
|ψ|2n

µn

)
.

(4.25)

This non-relativistic action shows that the potential energy of the condensate is given by

V =

∫
d3x

(
1

2µ
|∂iψ|2 −

µM

r
|ψ|2 − µ2

∑
n=2

(−1/2)n

(n!)2
|ψ|2n

µn

)
. (4.26)

Our numerical calculation in the previous subsection shows that a single spherical har-
monics well approximates the configuration of the cloud. For this reason, we take an
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Figure 4.8: The potential V/µN |σ=σeq for different values of N∗. Each curve corresponds
to a different value of N∗. The left and the right panel shows the case with µM = 0.15
and 0.42, respectively.

ansatz

ψ = Ape
− (r−rp)

2

4σ2 Yl1m1(x)e
+im1φ . (4.27)

The configuration (4.27) is characterized by the peak amplitude Ap, the position of the
peak rp, and the radial width of the condensate σ. We evaluate the potential energy (4.26)
with the ansatz (4.27) and set l1 = m1 = 1 to obtain

V

N
=

r2p + 3σ2

8µσ2(r2p + σ2)
+

1

µ(r2p + σ2)
− µMrp
r2p + σ2

− µ2

(
N∗

160π
√
2πµ4σ(r2p + σ2)

− 3N2
∗

17920π3µ7σ2(r2p + σ2)2
+ · · ·

)
. (4.28)

here, we defined the particle number N of the l1 = m1 = 1 mode in the condensate as

N =

∫
d3x |ψ|2 ∼ 2π

√
2πσ(r2p + σ2)A2

p , (4.29)

where the inner cutoff of the radial integration is ignored. The radial integrations in Eq.
(4.26) are approximated similarly. We also defined the dimensionless quantity N∗ ≡ µ2N .2

For each particle number N , the shape of the condensate is determined by the ex-
tremum of the potential (4.28), i.e.,

∂rpV = ∂σV = 0 . (4.30)

By eliminating N∗ from these equations and solving for σ, we obtain the radial width of
the equilibrium configuration σeq as

σ2 = σ2
eq ≡

1

6µ2M

(
−2rp + µ2Mr2p + rp

√
4 + 2µ2Mrp + µ4M2r2p

)
. (4.31)

2The correct particle number is given by F 2
aN , since the axion field ϕ in our convention is normalized

by the decay constant Fa. This normalization eliminated Fa from the equations. We introduced N∗ by
multiplying N by µ2 instead of F 2

a not to reintroduce Fa in the potential.
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E t
ot

/M

Ap

0.0 0.5 1.0 1.5 2.0
0

2000

4000

6000

8000

10000

12000

Ap

E t
ot

μM=0.15μM = 0.15

E t
ot

/M

Ap

0.0 0.5 1.0 1.5
0

500

1000

1500

Ap

E t
ot

μM=0.42μM = 0.42

Figure 4.10: The total energy Etot of equilibrium configuration as the function of the peak
amplitude Ap. The left and the right panel shows the case with µM = 0.15 and 0.42,
respectively.

After substituting σeq to Eq. (4.28), the potential energy is regarded as a function of the
peak position rp. In Fig 4.8, we show the dependence of V/N |σ=σeq on N∗ with µM = 0.15
(left) and 0.42 (right). The value of rp at the extremum of V/N |σ=σeq , rp,eq shows the
peak position of the condensate at the equilibrium. We show rp,eq as a function of N∗ in
Fig. 4.9. We also show how the total energy of the equilibrium configuration

Etot = µN + V |σ=σeq (4.32)

depends on the peak amplitude Ap by translating N to Ap by Eq. (4.29), in Fig. 4.10.
First, we consider the case µM = 0.15. When N∗ ≲ 900, the dominant contribution

to the potential is from the Newtonian potential and the angular momentum barrier.
Thus, there exists a single extremum made by the Newtonian potential and the angular
momentum barrier. The self-interaction gives a small correction to the potential. As we
increase N∗, the attractive force of the leading ϕ4 term in the self-interaction decrease
rp. At 900 ≲ N∗ ≲ 1650, three extrema appear: two stable points (the outer and the
inner points) and one unstable point. The origin of the outer stable point is the same as
the extremum in the region where N∗ is small. The inner stable point and the unstable
point appear due to the self-interaction. The leading attractive ϕ4 and the sub-leading
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Figure 4.11: (Left) Red solid, blue dashed, and black dotted curves show the position of
the peak of the fundamental mode R̃11 as a function of the energy E for µM = 0.31, 0.33,
and 0.35, respectively. The spin of the central black hole is fixed to a/M = 0.99. Different
configurations with a given E can exist only for µM = 0.31 case. (Right) Red solid, blue
dashed, and black dotted curves show the energy of the configuration at the extremum as
a function of the peak amplitude of the fundamental mode R̃11 for µM = 0.31, 0.33, and
0.35, respectively. A local maximum in this plot appears only for µM = 0.31 case.

repulsive ϕ6 terms make the deep potential well in the small rp region. When we further
increase N∗ to N∗ ≳ 1650, the outer stable point disappears and only the inner stable
point remains. Therefore, the condensate originally resides at the outer stable point in
the small N∗ jumps to the inner stable point when N∗ reaches around N∗ ∼ 1650.

This jump would indicate the onset of a phase transition. Comparing the left panel
of Fig. 4.10 with the right panel of Fig. 4.6, we can see that the pattern of instability
is the same both in this toy model and in the numerical calculation in the previous
subsection. This phase transition might be violent and lead to explosive phenomena such
as bosenova. Since our calculation assumes the adiabatic evolution, we need to perform
dynamical simulations to study the dynamics of the phase transition or the post-phase
transition state.

We now examine the behavior for the case µM = 0.42. In contrast to the µM = 0.15
case, a single extremum exists regardless of value of N∗. As µM increases, the contribution
of the Newtonian potential becomes larger. As a result, the radius at which gravity
and centrifugal force are balanced becomes smaller than the small µM case. Then, it
approaches the radius where the secondary minimum due to self-interaction appears. For
sufficiently large µM , there is no more range of amplitudes where the two local minima
coexist. In such a case, we expect no phase transition to occur. Then the condensate is
stable throughout the evolution and eventually, the energy gained by the superradiance
is balanced by the energy flux to infinity, which is not included in our toy model, at some
N∗. This is consistent with the numerical calculations in the previous subsection.

The above discussion suggests the existence of a critical gravitational coupling µcM
below which phase transition is expected. We numerically determine the critical value
µcM by solving the nonlinear evolution of the axion condensate with different values of
µM . Fig 4.11 shows the relation of the energy of the cloud and the peak position (left
panel) and peak amplitude (right panel) of the fundamental mode R̃11 for µM = 0.31, 0.33,
and 0.35 with fixed a/M = 0.99. The corresponding figures obtained from the toy modes
are Figs. 4.9 and 4.10. We observe from Fig 4.11 that the critical value should be around
µcM ∼ 0.32.
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4.2 Extension to the multiple modes

Now we extend our numerical scheme to include the second mode (n2, l2,m2) = (3, 2, 2).
We write the axion field composed of the l = m = 1 cloud with the amplitude A1 and the
l = m = 2 cloud with the amplitude A2 as

ϕ(A1, A2) = ϕ1(A1, A2) + ϕ2(A1, A2) + ϕr(A1, A2) . (4.33)

Here, ϕ1 corresponds to the l = m = 1 cloud and ϕ2 corresponds to the l = m = 2
cloud. We also include excitations of the radiative modes (e.g. (ω,m) = (2ω2−ω∗

1, 3) and
(2ω1 − ω∗

2, 0) modes) by ϕr.

Since the essential picture obtained from the perturbation theory analysis should be
correct, the amplitude of the l = m = 1 cloud is larger than the l = m = 2 cloud in
the situation that we are interested in. In such a situation, the l = m = 2 cloud self-
interaction is weak and the l = m = 1 cloud deformation due to the l = m = 2 cloud can
be safely neglected. But, of course, the nonlinear effect of l = m = 1 cloud cannot be
ignored. With these considerations, we approximate the configuration as

ϕ1(A1, A2) = ϕ1(A1) , (4.34)

ϕ2(A1, A2) = A2ϕ2(A1) , (4.35)

neglecting all the nonlinear effects sourced by the ϕ2 mode, except for excitations of the
radiative modes. Then, the configuration of ϕ1 is determined by solving

□gϕ1 − µ2 sinϕ1 = 0 , (4.36)

independent of ϕ2 and ϕr. We solve Eq. (4.36) with the method presented in the previous
section.

With ϕ1 given as a background, ϕ2, and ϕr are determined by solving linearized equa-
tions of motion,

□gϕ2 − µ2 (cosϕ1)ϕ2 = 0 , (4.37)

□gϕr − µ2 (cosϕ1)ϕr = Sr . (4.38)

Here, Sr represents the source terms for the radiative modes given by

Sr = µ2(cosϕ1)ϕ2 −
µ2

2
(sinϕ1)ϕ

2
2 + · · · . (4.39)

When solving Eq. (4.37), we take an ansatz for ϕ2 to be similar to ϕ1 (see Eq. (4.2)),
which is

ϕ2 =
∑
l

e−i(ω2t−m2φ)R̃2
l (r)Ylm2(x) + c.c. . (4.40)

Substitution of the ansatz (4.40) to Eq. (4.37) and projection to the (l,m2) harmonics
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give

d

dr

(
∆
dR̃2

l

dr

)
+

[
(ω2(r

2 + a2)− am2)
2

∆
− µ2r2 + 2aω2m2 − a2ω2

2 − l(l + 1)

+a2(ω2
2 − µ2)

1− 2l(l + 1) + 2(2m2)
2

3− 4l(l + 1)

]
R̃2

l

+ a2(ω2
2 − µ2)

(
(l − 1− 2m2)(l − 2m2)

(2l − 3)(2l − 1)

Nm2
l−2

Nm2
l

R̃2
l−2

+
(l + 2 + 2m2)(l + 1 + 2m2)

(2l + 3)(2l + 5)

Nm2
l+2

Nm2
l

R̃2
l+2

)
+

∫ 2π

0

dφ

2π

∫ 1

−1

dx Ylm2(x)e
im2φ(r2 + a2x2)(1− cosϕ1)ϕ2 = 0 . (4.41)

This system of ordinary differential equations defines a two-point boundary value problem
for finding the eigenvalue ω2 assuming that the l = 2 component is dominant3. The
boundary conditions are the same as in Eqs. (4.8) and (4.9), but (ω1,m1) is replaced by
(ω2,m2). The normalization of the solution is arbitrary, but for later convenience, we
choose a normalization such that the energy computed for ϕ2 is unity in units of F 2

aM .
Now that ϕ1(A1) and ϕ2(A1) are obtained, we can solve the equations for the radiative

modes (4.38) in the same way as we obtained ϕ2(A1). Since we are interested in the
excitations of the m = 0 and m = 3 modes, we project the equations to their respective
components. This projection guarantees that ω is given by 2ω1−ω2 and 2ω2−ω1, for the
respective modes4.

The solution ϕ(A1, A2) obtained above is valid only for a short time and cannot de-
scribe the growth due to the superradiant instability. As in the previous section, we
promote A1 and A2 to the time-dependent variables A1(t) and A2(t) to obtain a solution
that can describe the instability. We determine the time development of these variables by
the equations derived from the energy and angular momentum conservation laws, which
are

dE(A1, A2)

dt
=
∂E(A1, A2)

∂A1

dA1

dt
+
∂E(A1, A2)

∂A2

dA2

dt
= −FE(A1, A2) , (4.42)

dJ(A1, A2)

dt
=
∂J(A1, A2)

∂A1

dA1

dt
+
∂J(A1, A2)

∂A2

dA2

dt
= −FJ(A1, A2) . (4.43)

Here, the energy E(A1, A2) and the energy flux FE(A1, A2) are evaluated by the similar
formulas as Eqs. (4.11)-(4.14). The explicit formulas are

E(A1, A2) =

∫
dr d cos θ dφ (r2 + a2 cos2θ)

√
gtt Tµν(A1, A2)ξ

µ
(t)n

ν
(t) , (4.44)

FE(A1, A2) = FH
E (A1, A2) + F∞

E (A1, A2) , (4.45)

FH
E (A1, A2) =

∫
d cos θdφ 2Mr+Tµν(A1, A2)ξ

µ
(t)l

ν |r=r+ , (4.46)

F∞
E (A1, A2) =

∫
d cos θdφ (r2 + a2 cos2θ)

√
grr Tµν(A1, A2)ξ

µ
(t)n

ν
(r)|r→∞ , (4.47)

3As mentioned previously, the solution consists of a superposition of various l harmonics, but it only
describes a single mode. This is due to the fact that the elevation angle dependence of this mode is not
given by a single component of an ordinary spherical harmonic.

4Here, we neglect the imaginary part of the frequency because it is much smaller than its real part
due to the adiabatic nature of the evolution.

48



Nonperturbative l=m=1
Perturbative l=m=1
Nonperturbative l=m=2
Perturbative l=m=2

0 2 4 6 8 10
1

5
10

50
100

500
1000

ω1,I t

E
/(
F
a2
M
)

a/M=0.99, μM=0.42

Nonperturbative l=m=1
Perturbative l=m=1
Nonperturbative l=m=2
Perturbative l=m=2

0 2 4 6 8 10
1

5
10

50
100

500
1000

ω1,I t

E
/(
F
a2
M
)

a/M=0.99, μM=0.3

Figure 4.12: Comparison of time evolutions of the energy of the axion cloud in the non-
perturbative and perturbative approaches. The left and right panels show the time evo-
lution of the energy of the l = m = 1 and l = m = 2 cloud with µM = 0.42 and that
with µM = 0.3, respectively. The red solid and black dotted lines correspond to the
nonlinear evolution of the l = m = 1 and l = m = 2 clouds, respectively. The blue dashed
and green dot-dashed lines show the same quantities but calculated with the perturba-
tive method. We take the initial energy of the cloud to be E1 ∼ 0.27F 2

aM (12F 2
aM) for

µM = 0.42 (0.3), and E2 = 10−8F 2
aM . Time is normalized by ω1,I , the instability rate

calculated from the linear analysis. Black dashed horizontal line around E = 3000F 2
aM

in the right panel indicates the energy where the l = m = 1 cloud is predicted to become
unstable by the non-perturbative single mode calculation.

where Tµν(A1, A2) is the energy-momentum tensor evaluated for the configuration given
by ϕ(A1, A2). Again, the expressions for the angular momentum J(A1, A2) and its flux
FJ(A1, A2) are obtained by replacing ξ(t) with −ξ(φ) in the above formulae for the en-
ergy. Note that under the assumptions (4.34) and (4.35), the total energy (4.44) is the
summation of the energy of the l = m = 1 cloud and l = m = 2 cloud

E(A1, A2) = E1(A1) + E2(A1, A2) . (4.48)

Here, E1(A1) and E2(A1, A2) is calculated from the energy-momentum tensor evaluated
with ϕ1(A1) and ϕ2(A1, A2), respectively. The cross term between ϕ1 and ϕ2 vanishes
since ϕ1 is superposition of (l,m) harmonics with odd m and ϕ2 is that with even m. In
addition, from the assumption 4.35, E2(A1, A2) is quadratic in A2, i.e.,

E2(A1, A2) = Ê2(A1)|A2|2 . (4.49)

4.2.1 Results

Figure 4.12 shows the time evolution of the amplitude calculated by the non-perturbative
method explained in the current section and that by the perturbative method explained
in Chapter 3, for a/M = 0.99 with µM = 0.42 and 0.3. The overall qualitative picture
obtained from the perturbative method is reproduced in the non-perturbative case. In
the early evolutionary phase, when the cloud energy is small, the non-perturbative and
perturbative analyses follow the linear evolution track. As the cloud energy increases, the
self-interactions begin to alter the evolution. In particular, dissipation by the interaction
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Figure 4.13: Snapshots of the absolute values of the radial mode functions in the per-
turbative and the non-perturbative evolutions. The red solid and black solid curves,
respectively, show the absolute value of the mode function for the l = m = 1 mode
and that for the l = m = 2 mode, when the self-interaction is taken into account non-
perturbatively. The blue dotted and green dashed curves represent the same quanti-
ties but when the self-interaction is neglected. We set the energy of the cloud to be
E1 ∼ 660F 2

aM,E2 = 660F 2
aM , which is close to the peak value of E1, in the right panel

of Fig. 4.12. We choose the energy of the secondary cloud to be the same as the first one,
just for convenience. The axion mass and the spin of the BH are set to µM = 0.3 and
a/M = 0.99.

between the modes terminates the superradiant growth and eventually, the condensate set-
tles to the quasi-stationary configuration. It should be noted that the amplitude of clouds
is sufficiently small in the quasi-stationary state, and hence the entire field configuration
is almost the same as that of the quasi-stationary state predicted by the perturbative
calculation.

The quantitative difference appears in the peak energy, which is determined by the bal-
ance between the energy dissipations and the energy gain due to the superradiance. From
Fig. 4.12, we find that the peak energy decreases by fully turning on the self-interaction.
The mechanism that promotes this difference is the enhancement of dissipation, which
can be understood as follows. Owing to the self-interaction, the two clouds attract each
other (see Figure 4.13). The overlap between the two modes then increases. Since the
dominant dissipative mode arises from a source composed of the product of these two
modes, the increased overlap enhances dissipation in the nonlinear region.

Next, we examine how the time evolution of l = m = 1 clouds depends on the E2(tini),
the energy of the l = m = 2 cloud at the initial time. Figure 4.14 shows examples of the
time evolution of the primary l = m = 1 cloud for several values of E2(tini). As E2(tini)
is reduced, the maximum energy of E1 increases. Of course, in the limit of E2(tini) → 0,
the evolution of the l = m = 1 cloud is the same as that of the single cloud discussed in
Sec. 4.1, and the bosenova can occur. Therefore, we are most interested in how sensitively
the maximum energy of E1 depends on the initial small energy of the secondary cloud
E2(tini).

There would be no need to consider nonlinear effects rigorously since an extremely
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Figure 4.14: Dependence of the time evolution of the energy of the l = m = 1 mode on
the initial energy of the l = m = 2 mode E2(tini). The red, blue, and black solid lines
show the energies of the l = m = 1 cloud, starting with E2(tini)/(F

2
aM) = 10−8, 10−12,

and 10−14, respectively. The dotted lines with the same color represent the case when the
self-interaction is treated perturbatively. The values of the axion mass and the BH spin
are set to µM = 0.42 and a/M = 0.99.

small initial amplitude of the secondary cloud is sufficient as a seed. For this reason, we
assume that the amplitude of the l = m = 2 cloud is kept small when we evaluate the
maximum energy of the l = m = 1 cloud. By keeping only the leading terms of E2, the
evolution equations (4.42) and (4.43) are approximated as

dE1

dt
+
dE2

dt
∼ −F SR,1

E (E1)− F diss
E (E1)E2 , (4.50)

dJ1
dt

+
dJ2
dt

∼ − 1

ω1,R

F SR,1
E (E1) . (4.51)

Here, F SR,1
E (E1) is the normalized energy flux at the horizon induced by the l = m = 1

mode and F diss
E (E1) is that at the horizon by the l = m = 0 mode, for the unit energy of

the l = m = 2 cloud (E2 = 1). When the energy is small, we can use the perturbative
method to calculate F SR,1

E and F diss
E (E1), which gives

F SR,1
E (E1) ∼− 2ω1,I

(
1− 6λRe

[
C(1)

]
E1 + 12λ2Re

[
Ĉ(2)

]
E2

1

)
E1 , (4.52)

F diss
E (E1) ∼F0E

2
1 . (4.53)

We neglect the energy flux at the horizon induced by the l = m = 2 mode since the
superradiant instability of the l = m = 2 mode is much smaller than that of the l = m = 1
mode (see Sec. 2.2). Note that F SR,1

E (E1) < 0 because the l = m = 1 mode extracts the
energy flux from the black hole.

Owing to the helical symmetry of the configuration,

1

ωi

∂ϕi

∂t
+

1

mi

∂ϕi

∂t
= 0 , (4.54)

we can directly calculate the variation of the energy and the angular momentum of each
cloud and show the relation

δEi

ωi,R

=
δJi
mi

, (4.55)

51



where we neglected ωi,I since ωi,I ≪ ωi,R. Then, we can simplify Eqs. (4.50) and (4.51)
as

dE1

dt
∼ −F SR,1

E (E1)− 2F diss
E (E1)E2 , (4.56)

dE2

dt
∼ F diss

E (E1)E2 . (4.57)

The maximum value of E1 is determined by the condition dE/dt = 0, which leads to

−F SR,1
E (Emax

1 ) = 2F diss
E (Emax

1 )E2(tmax) , (4.58)

where Emax
1 denotes the maximum value of E1 and tmax is the time when E1 = Emax

1 is
reached. Before E1 gets sufficiently close to Emax, the approximation

dE1

dt
∼ −F SR,1

E (E1) , (4.59)

should be valid. Then, we can formally integrate Eq. (4.57) and get

E2(tmax) = E2(tini) exp

(∫ Emax
1

E1(tini)

dE1 g(E1)

)
, (4.60)

where

g(E1) = − F diss
E (E1)

F SR,1
E (E1)

. (4.61)

When evaluating the integral in , the take E1(ttini) = 12F 2
aM , which is the same as the

initial condition of Fig. 4.12. We would like to emphasize that taking E1 below this value
do not change the result because g(E1) ∝ E1 for small E1 (see Eqs. (4.52) and (4.53)).
After the substitution of Eq. (4.60) into Eq. (4.2.1), we obtain

E2(tini) =
1

2g(Emax
1 )

exp

(
−
∫ Emax

1

E1(tini)

dE1 g(E1)

)
, (4.62)

which approximates the initial energy of the secondary cloud E2(tini) as a function of the
maximum energy of the l = m = 1 cloud.

We show the relation between E2(tini) and Emax
1 in Fig. 4.15. For the range of ini-

tial conditions displayed in Fig. 4.14, our analytical estimate reproduces the peak energy
with an error of 3%. As can be seen from Fig. 4.15, the actual peak value of the pri-
mary cloud energy is always smaller than the estimate from the perturbation calculation.
This indicates that of the two effects of self-interaction, enhanced energy dissipation and
accelerated growth, the former effect is always dominant.

To attain bosenova, E2(tini) must be set to extremely tiny values. Indeed, when we set
Emax

1 = EBN
1 ∼ 3100, which is the threshold for the dynamical instability at µM = 0.3 and

a/M = 0.99 obtained by the single mode calculation presented in Sec. 4.1, the integral in
the exponent Eq. (4.62) is evaluated as∫ EBN

1

E1(tini)

dE1 g(E1) ∼ 3.9× 103 . (4.63)
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Figure 4.15: Relation between the maximum value of energy of the l = m = 1 mode in the
time evolution Emax

1 and the initial energy of the l = m = 2 mode E2(tini). The red solid
and blue dashed curves show the relations obtained by solving Eq. (4.62) under the non-
perturbative scheme and the perturbative approximation, respectively. The perturbative
curve is calculated with approximate expressions (4.52) and (4.53)

Therefore, E2(tini) must be an extremely small quantity multiplied by a factor exp(−3.9×
103). Even if the l = m = 2 cloud starts with a single axion particle (the number of excited
particles is 1), E2(tini) ∼ 10−70F 2

aM (see equation (3.74)). This is far beyond the small
upper bound of the initial energy required for the bosenova to happen. Note that the
Hawking temperature of the rotating black hole is given by [62]

TH =
1− a2

r2+

8πM
. (4.64)

For the astrophysical black hole, the upper bound of the inverse of the Hawking temper-
ature is given by T−1

H < 211M (we adopted the “Throne limit” a < 0.998 [63]). For the
axion mass in the range µM ≲ 1, the thermal radiation of the axion field from the black
hole is not sufficiently suppressed such that the initial cloud to be sufficiently vacant for
the bosenova to happen.
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Chapter 5

Late-time evolution with various
perturbative processes

In the previous section, we confirmed that the axion condensate consisting of two clouds
settles into a quasi-stationary state even though nonlinear effects are fully taken into
account. In this chapter, we investigate whether or not the quasi-stationary state we
have obtained would subsequently disappear due to other effects. These effects include
quantum processes and excitation processes of other modes (overtone modes or higher
multipole modes), which cannot be captured by the classical two mode analysis in the
previous chapters 3 and 4.

5.1 Quantum process

First, let us consider quantum processes. The “quantum processes” here are those that
cannot be described by the classical equations of motion (3.3). An example of the simplest
quantum process is shown in Fig. 5.1. The important point is that this type of process
involves more than two empty states. To see if a quantum process can compete with the
classical processes, such as processes in Fig. 3.2, we first identify what is the effective
reduced Planck constant in the present context. For a moment, we recover G = M−2

pl .
The action (3.1) in terms of non-dimensional quantities normalized by the length scale
GM is given by

S =

(
Fa

Mpl

)2(
M

Mpl

)2 ∫
d4x̂

√
−g
{
−1

2
gµν ∂̂µϕ∂̂νϕ− µ̂2 (1− cosϕ)

}
. (5.1)

Here, the quantities with “ˆ” are non-dimensional, i.e. µ̂ = GµM , x̂ = x/M, ∂̂µ = ∂/∂x̂µ.
From the above expression, we find the combination M4

pl/F
2
a /M

2 acts as the effective
reduced Planck constant. When the nonlinear effects are important, the amplitude of the
condensate is |ϕ| ∼ 1. In such a situation, the difference in the amplitude of the classical
processes and the quantum processes should be solely determined by the effective Planck
constant. Thus, the quantum processes must be suppressed by the factor(

Mpl

Fa

)2(
Mpl

M

)2

∼ 10−96

(
Mpl

Fa

)2(
M⊙

M

)2

. (5.2)

In fact, one can directly calculate the rate for the process in Fig. 5.1 and show that
this process is suppressed by the factor F 2

aM
2/M4

pl, compared to processes (a) and (b)
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Figure 5.1: The simplest quantum process induced by the self-interaction.

in Fig. 3.2. The quantity (5.2) is extremely small for astrophysical black holes unless Fa

takes a significantly small value, which is unlikely for string axions. Hereafter, we only
focus on processes that can be described by the classical equations of motion.

5.2 Excitation of other modes

In chapter 4, we confirmed that the quasi-stationary configuration could be well approx-
imated by a linearized solution whose amplitude is determined by the balance between
processes (a) and (b) in Fig. 3.2. Therefore, it is safe to neglect the deformation of clouds
due to self-interaction when discussing the subsequent evolution. We use the linearized so-
lution to describe the quasi-stationary configuration in the following calculations. For the
same reasons as in chapter 3, we will only consider excitations of low-frequency radiation
and non-superradiant dissipative modes (see Sec. 3.1 for their definitions).

So far, we have considered an axion condensate that starts with only two component
clouds belonging to the l = m = 1 and l = m = 2 fundamental modes. However, quantum
fluctuations should seed all modes with small amplitude. Therefore, the source terms of
the nonlinear interaction that contain processes involving other modes, such as overtone
modes and higher multipole modes can be relevant. These processes have been extensively
studied in Ref. [42] under the non-relativistic approximation µM ≪ 1. Here, we extend
the analysis to the relativistic regime µM ∼ 1.

5.2.1 Excitation of l = m = 1 overtones

First, let us include an overtone mode (n > 2) of the l = m = 1 multipole. We denote the
frequency of the overtones as ωo. We determine the possibly excited modes by writing
down the source terms of the first-order perturbation equation with respect to λ (see
chapter 3 for a similar discussion on the interaction between the (ω,m) = (ω1, 1) and
(ω2, 2) modes). As as in Sec. 3.1, we can select the relevant processes for the dissipation
of the quasi-stationary configuration by the frequency ω and the angular quantum number
m of the excited mode. The conditions for (ω,m) are (i) ω ≳ µ (low frequency radiation),
or (ii) ω < µ and ω > mΩH (non-superradiant dissipative mode). Note that the leading
contribution to energy dissipation comes from the case in which the excited mode has the
lowest orbital angular momentum in the acceptable range. In the following, we focus on
the most dominant modes relevant to energy dissipation. We summarize the processes
under consideration in Fig. 5.2.

The essential difference from the interaction between the l = m = 1 and l = m = 2
fundamental modes is in that no process transfers the energy to the secondary modes,
i.e., l = m = 1 overtone modes. In particular, process (e) of Fig. 5.2 shows a noticeable
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Figure 5.2: The dissipative processes when the l = m = 1 overtone modes are taken into
account. The top two diagrams ((a) and (b)) correspond to the processes that dissipate
energy to infinity. The bottom three diagrams ((c), (d), and (e)) correspond to the
processes that dissipate energy to the central black hole. The direction of the flux to
the black hole is opposite for process (e), since the excited (2ωo, 1) mode satisfies the
superradiance condition. As in Fig. 3.2, we only consider the excited modes having the
smallest possible l.

difference. The corresponding process in Sec. 3.2 is one described by the left panel of
Fig. 3.2, which dissipates the l = m = 1 fundamental mode and feeds the l = m = 2
fundamental mode. On the other hand, process (e) of Fig. 5.2 generates the l = m = 1
fundamental mode from a l = m = 1 overtone. This is because the excited mode has
m = 1 and satisfies the superradiant condition (2.9). Thus, the energy is not lost but
extracted from the BH, which indicates that the direction of the transition and hence
that of the energy flow is opposite. The presence of this process is why we could have
concluded that l = m = 1 overtones decay in the two mode approximation adopted in
Sec. 3.2.

Here, we should also notice that the production of an overtone mode from the l =
m = 2 mode is absent, in contrast to the production of the l = m = 1 fundamental
mode from the l = m = 2 mode (see right diagram in Fig. 3.2). The reason is that
the other excited modes are bounded, i.e. 2ω2 − ωo < µ. 1 In summary, the interaction
between an l = m = 1 overtone mode and the l = m = 1 or l = m = 2 fundamental

1Under the non-relativistic approximation, where the real part of the frequency can be approximately
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Figure 5.3: Examples of the time evolution including an l = m = 1 overtone mode. The
red solid and blue dotted lines correspond to the l = m = 1 and l = m = 2 fundamental
modes. The black dashed line corresponds to the overtone mode. From left to right,
the label n of the overtone modes is varied from 3 to 5. The horizontal axis is the time
normalized by the superradiant instability rate of the l = m = 1 fundamental mode. We
set the axion mass and the BH spin to µM = 0.42 and a/M = 0.99.

mode always dissipates the overtone mode. Therefore, overtone modes can grow only by
the superradiant instability in the early epoch, and eventually, the dissipation due to the
mode-mode interaction begins to decelerate the instability.

Similarly to the method in Sec. 3.1, the time evolution equations with an overtone
mode can be derived from the local energy and angular momentum conservation laws.

estimated by using the well-known result for the hydrogen atom,

2ω2 − ωo = 2µ

(
1− (µM)2

2× 32

)
− µ(1− (µM)2

2n2
) = µ

(
1− (µM)2

(
1

32
− 1

2n2

))
< µ , (5.3)

for n ≥ 3.
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The coupled evolution equations of the three clouds are given by

dE1

dt
=2ω1,IE1 −

2ω1,R

2ω1,R − ω2,R

F0E
2
1E2 +

ω1,R

2ω2,R − ω1,R

F3E1E
2
2

+
ω1,R

2ωo,R − ω1,R

F1∗ooE1E
2
o +

ω1,R

ω2,R + ωo,R − ω1,R

F1∗2oE1E2Eo

− 2ω1,R

2ω1,R − ωo,R

F11o∗E
2
1Eo −

ω1,R

ω1,R + ωo,R − ω2,R

F12∗oE1E2Eo , (5.4)

dE2

dt
=2ω2,IE1 +

ω2,R

2ω1,R − ω2,R

F0E
2
1E2 −

2ω2,R

2ω2,R − ω1,R

F3E1E
2
2

− ω2,R

ω2,R + ωo,R − ω1,R

F1∗2oE1E2Eo

+
ω2,R

2ωo,R − ω2,R

F2∗ooE2E
2
o +

ω2,R

ω1,R + ωo,R − ω2,R

F12∗oE1E2Eo , (5.5)

dEo

dt
=2ωo,IEo −

2ωo,R

2ωo,R − ω1,R

F1∗ooE1E
2
o −

ωo,R

ω2,R + ωo,R − ω1,R

F1∗2oE1E2Eo

+
ωo,R

2ω1,R − ωo,R

F11o∗E
2
1Eo −

2ωo,R

2ωo,R − ω2,R

F2∗ooE2E
2
o

− ωo,R

ω1,R + ωo,R − ω2,R

F12∗oE1E2Eo . (5.6)

Here, Eo is the energy of the overtone mode. The coefficients Fabc in Eqs. (5.4) - (5.6)
are the values of the energy flux of the diagrams in Fig. 5.2 with the energy of each cloud
contained in the source term set to F 2

aM . For example, F1∗2o corresponds to process (b)
in Fig. 5.2, given by

F1∗2o =144πλ2ω′
3

√
(ω′

3)
2 − µ2

∑
l≥2

∣∣∣ 1

Wl2(ω′
3)

∫
dr′d cos θ′(r′

2
+ a2 cos2θ′)Rin

l2ω′
3

×R∗
1(r

′)∗R2(r
′)Ro(r

′)S∗
1(θ

′)S2(θ
′)So(θ

′)
∣∣∣2 , (5.7)

where ω′
3 = ω2 + ωo − ω3.

The time evolution of the three mode system consisting of (n, l,m) = (2, 1, 1), (3, 2, 2),
and (n, 1, 1) mode is shown in Fig. 5.3 for n = 3, 4, and 5. As expected from the above
discussion, the overtone modes initially accumulates by the superradiance, and eventually,
the growth saturates at the point where the dissipation balances the superradiance. We
observe that the growth of the n = 5 cloud delays compared to the n = 3 and n = 4
overtones. This is because the difference between the growth rate of the superradiance
and the dissipation rate caused by the processes involving only one overtone mode in the
source term (processes (b) and (c) in Fig. 5.2) becomes small as one increases n. In fact,
it can be numerically confirmed that the dissipation rate is faster than the growth rate
due to superradiance for n ≥ 6. In other words, the growth of the l = m = 1 overtone as
shown in Fig. 5.3 occurs only for n ≤ 5. Interestingly, the time evolution of the energies
of the l = m = 1 and l = m = 2 fundamental modes is almost unchanged. This is because
the dissipation of l = m = 1 overtones is so strong that the overtones do not dominate
the entire condensate.
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Figure 5.4: The processes involved when overtone modes of l = m = 2 are included.
The top three diagrams ((a), (b), and (c)) correspond to the processes which dissipate
energy to infinity. The bottom two diagrams ((d) and (e)) correspond to the processes
that dissipate energy to the BH. Since 2ωo − ω2 > µ holds only for n ≥ 5, the process
specified by the diagram (c) can dissipate energy only for n ≥ 5.

5.2.2 Excitation of l = m = 2 overtones

Next, we consider the excitation processes of l = m = 2 overtones. We summarize the
relevant processes in Fig. 5.4. The main difference from l = m = 1 overtones in that
there is a process that excites the l = m = 2 overtones from the l = m = 1 fundamental
mode (process (d) in Fig. 5.4). This process is the same as the generation process of the
l = m = 2 fundamental mode (left panel in Fig. 3.2). However, owing to the smaller
overlap between the l = m = 1 fundamental mode and the l = m = 2 overtones compared
to that between the l = m = 1 and l = m = 2 fundamental modes, the growth of
l = m = 2 overtones is suppressed compared to the growth of l = m = 2 fundamental
modes. Thus, the condensate first reaches a quasi-stationary configuration consisting of
l = m = 1 and l = m = 2 fundamental modes. At this point, the energy of the l = m = 2
overtones is much smaller than that of the fundamental modes.

For l = m = 2 overtones to continue to grow even after the fundamental modes reach
the quasi-stationary configuration, the growth rate of l = m = 2 overtones must remain
larger than its dissipation rate. Since the energy of l = m = 2 overtones is small even
after the growth of the fundamental modes saturates, it is sufficient to consider the terms
linear in Eo in Eq. (5.6). Keeping only the terms linear in Eo, the evolution equation for
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Figure 5.5: (Left) The dependence of ωeff
n22,I on the axion mass µM . The red solid and

blue dotted lines correspond to the case with n = 4 and n = 5, respectively. The spin of
the central BH is set to a/M = 0.99. (Right) The same figure but taking into account
the correction by the l = m = 1 overtone mode. The red solid line is same as that in
the left panel. The blue dotted lines show ωeff

422,I calculated by Eq. (5.9), respectively.
When calculating ωeff

422,I with Eq. (5.9), we take into account the cloud composed of the
l = m = 1, n = 4 mode that has the largest energy in the quasi-stationary configuration
at a late time among clouds composed of l = m = 1 overtones.

an l = m = 2 overtone takes the form of

dEo

dt
∼

[
2ωo,I −

(
ωo,R

ω2,R + ωo,R − ω1,R

F1∗2o +
ωo,R

ω1,R + ωo,R − ω2,R

F12∗o

)
Eqs

1 E
qs
2

+
ωo,R

2ω1,R − ωo,R

F11o∗ (E
qs
1 )2
]
Eo

≡2ωeff
n22,IEo . (5.8)

Here, Eqs
1 and Eqs

2 are the energies of the l = m = 1 and l = m = 2 clouds in the
quasi-stationary state, which can be determined by the perturbative analysis in chapter 3
in a good approximation. If ωeff

o,I < 0 holds, the l = m = 2 overtone cannot grow. In
Fig. 5.5, we show the behavior of ωeff

o,I for n = 4 and 5. The figure shows that ωeff
n22,I is

always negative, indicating that no accumulation of l = m = 2 overtones occurs. We
present examples of the time evolution for the three mode system composed of (n, l,m) =
(2, 1, 1), (3, 2, 2), and (n, 2, 2) with n = 4, and 5 in Fig. 5.6. As expected from the above
discussion, the l = m = 2 overtone clouds decrease after the l = m = 1 and l = m = 2
fundamental modes reach the quasi-stationary configuration.

However, it is premature to conclude that there is no growth of l = m = 2 overtones.
As shown in Sec. 5.1, l = m = 1 overtones can grow after the growth of the fundamental
modes saturates (see Fig. 5.3). In this case, the other processes caused by the interaction
involving both the l = m = 1 and the l = m = 2 overtones come into play. The relevant
processes for the n = 4, l = m = 2 mode are shown in Fig. 5.7. These processes modify
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Figure 5.6: The same figures as Fig. 5.3, but with l = m = 2 overtones instead of
l = m = 1 overtones. The black dashed lines in the left and right panels correspond to
the l = m = 2 overtone with n = 4 and n = 5, respectively.

the ωeff
n22,I defined in Eq. (5.8) to

2ωeff
n22,I =2ωo2,I −

(
ωo2,R F1∗2o2

ω2,R + ωo2,R − ω1,R

+
ωo2,R F12∗o2

ω1,R + ωo2,R − ω2,R

)
Eqs

1 E
qs
2

+
ωo2,R F11o∗2

2ω1,R − ωo2,R

(Eqs
1 )2 +

ωo2,R Fo1o1o∗2

2ωo1,R − ωo2,R

(
Eqs

o1

)2
+

(
ωo2,R F1o1o∗2

ω1,R + ωo1,R − ωo2,R

− ωo2,R F1∗o1o2

ωo1,R + ωo2,R − ω1,R

)
Eqs

1 E
qs
o1
, (5.9)

where the subscripts o1 and o2 correspond to overtones of l = m = 1 and l = m = 2,
respectively. In addition, Eqs

1 , E
qs
2 , and Eqs

o1
represent the energies of the (n, l,m) =

(2, 1, 1), (3, 2, 2), (n, 1, 1) modes in the quasi-stationary configuration of the system con-
sisting of these three modes. If the terms involving Eqs

o1
in Eq (5.9) is larger than the

negative contribution from Eq. (5.8), the l = m = 2 overtone can overcome the dissipa-
tion and grow. The right panel of Fig 5.5 shows that even with the l = m = 1 overtone,
ωeff
422,I is also always negative which indicates that the l = m = 2 overtone does not grow.

This result can be explained by the fact that the energy of the l = m = 1 overtone
Eqs

o1
is smaller than that of the fundamental modes Eqs

1 and Eqs
2 . The fluxes with the

source involving the l = m = 1 overtone are small compared to the fluxes sourced by the
fundamental modes.

5.2.3 Excitation of higher multipole modes

Finally, we consider the excitation of higher multipole modes. The analysis is performed
in parallel with the excitation of overtone modes. Specifically, we focus on higher-order
multipole modes with l = m = 3 and n = 4. Figure 5.8 shows the relevant processes
incorporated in the numerical evolution that is presented below. Similar to l = m = 2
overtone modes, the l = m = 3 fundamental mode is generated by the interaction between
l = m = 1 and l = m = 2 fundamental modes (processes (c) and (e) in Fig. 5.8). At the
same time, the l = m = 3 mode dissipates through the process shown in diagram (a).

The l = m = 3 fundamental mode can grow only in the parameter region where the
production is more efficient than the dissipation. In a similar manner to ωeff

n22,I in Eq.
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Figure 5.7: Processes for the interaction between the l = m = 1 overtone modes (subscript
o1) and the l = m = 2 overtone modes (subscript o2) . The top diagram (a) describes a
process that dissipates energy to infinity. The bottom two diagrams ((b) and (c)) describe
processes that dissipate energy to the BH.

(5.8), we define the effective growth rate of the l = m = 3 fundamental mode ωeff
433,I as

2ωeff
433,I ≡2ωh3,I +

ωh3,R

2ω1,R − ωh3,R

F11h∗
3
Eqs2

1

+

(
− ωh3,R

ω2,R + ωh3,R − ω1,R

F1∗2h3 +
ωh3,R

ω1,R + ω2,R − ωh3,R

F12h∗
3

)
Eqs

1 E
qs
2 .

(5.10)

Here, the subscript h3 stands for the l = m = 3 fundamental mode. In the left panel of
Fig. 5.9, we show the value of ωeff

433,I as a function of µM . The sign of ωeff
433,I is determined

as a result of competition between the leading two comparable contributions represented
by processes (a) and (c) (F1∗2h3 and F12h∗

3
). We present dependence of F1∗2h3 and F12h∗

3
on

µM in the right panel of Fig. 5.9. For most of the axion mass µM , the dissipative process
of the l = m = 3 fundamental mode (process (a) in Fig. 5.8, correspondingly F1∗2h3)
dominates resulting in ωeff

433,I < 0. In such cases, the l = m = 3 cloud cannot be excited
(see, for example, the right panel of Fig. 5.10). On the other hand, for 0.12 ≲ µM ≲ 0.24,
the excitation process of the l = m = 3 fundamental mode (process (c) in Fig. 5.8,
correspondingly F12h∗

3
) dominates and we have ωeff

433,I > 0. Hence, the growth of the
l = m = 3 cloud is expected. In the left panel of Fig. 5.10, we show the evolution of cloud
energies for µM = 0.16. We observe that the l = m = 3 cloud eventually dominates the
whole condensate.

The behavior of ωeff
433,I comes from the enhancement of F1∗2h3 around 0.12 ≲ µM ≲ 0.15

and relative suppression for µM ≳ 0.15 (see right panel of Fig. 5.9). In particular, pivot
around the µM ∼ 0.15 is the key. Since F1∗2h3 is the flux by m = 0 mode, its behavior can
be understood by looking at the effective potential of them = 0 mode function. We define
the effective potential Veff by transforming the radial equation (2.12) to the Schrödinger
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Figure 5.8: Relevant processes involving the l = m = 1, the l = m = 2 and the l = m = 3
fundamental modes. The subscript h denotes the l = m = 3 fundamental mode. The
top two diagrams ((a) and (b)) describe the processes in which the energy of the excited
unbounded modes are dissipated to infinity, and the bottom three ((c), (d), and (e))
describe the ones in which the excited modes are absorbed by the horizon.

form

d2u

dr2∗
+ (ω2 − Veff)u = 0 . (5.11)

Here, u is related to the radial mode function Rlmω by

u ≡
√
r2 + a2Rlmω . (5.12)

The actual expression of Veff is given by

Veff =
−a2m2 + 4amMrω

(a2 + r2)2
+

∆µ2

a2 + r2
+

∆(a2 (ω2 − µ2) + Λlm(ω))

(a2 + r2)2

+
∆(a2 − 4Mr + 3r2)

(a2 + r2)3
− 3∆2r2

(a2 + r2)4
. (5.13)

Figure 5.11 shows the effective potential of the l = m = 0 mode excited by process
(c) of Fig. 5.8 for various values of µM . For µM ≲ 0.1, the frequency of this m = 0
mode is much smaller than the potential barrier. Thus, the energy flux to the horizon
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Figure 5.10: The same figures as Fig. 5.3, but with the fundamental l = m = 3 mode as
the third mode, instead of l = m = 1 overtones. The left and right panels correspond to
the case with µM = 0.16 and 0.42, respectively.

is suppressed. On the other hand, when µM ≳ 0.1, the axion mass begins to lower
the potential barrier. 2 Thus the dissipative process involving the m = 0 mode becomes
relatively faster as one increases µM . However, beyond µM ∼ 0.16, the potential barrier
goes below the frequency of the m = 0 mode. Therefore, significant enhancement of the
flux does not occur even if we increase the axion mass. This explains the pivot of F12h∗

3

around the µM ∼ 0.15.

In a similar manner, we study the excitation of the l = m = 4 fundamental mode. The
relevant processes are shown in Fig. 5.12. The main difference from interaction with the
l = m = 3 fundamental mode is the presence of the process that dissipates the l = m = 4
mode and excites the l = m = 2 mode (process (d) in Fig. 5.12), owing to ω

(544)
R > ω

(433)
R .

2Note that frequency of the m = 0 mode varies with the axion mass µ.
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Figure 5.11: The effective potential for the l = m = 0 mode function. The red solid, blue
dotted, black dashed, and green dotted-dashed lines corresponds to the effective potential
of the l = m = 0 mode function with µM = 0.06, 0.16, 0.23, and 0.42. The spin of the
central BH is set to a/M = 0.99.

The effective growth rate for the l = m = 4 fundamental mode is given by

2ωeff
544,I ≡2ωh4,I +

ωh4,R

2ω1,R − ωh4,R

F11h∗
4
Eqs2

1 +
ωh4,R

2ω2,R − ωh4,R

F22h∗
4
Eqs2

2

+

(
− ωh4,R

ω2,R + ωh4,R − ω1,R

F1∗2h4 +
ωh4,R

ω1,R + ω2,R − ωh4,R

F12h∗
4

)
Eqs

1 E
qs
2 .

(5.14)

In Fig. 5.13, we show the ωeff
544,I as a function of µM . We observe that ωeff

544,I < 0 for
µM ≲ 0.2. Therefore, the l = m = 4 fundamental mode decay in this range of the axion
mass. On the other hand, for µM ≳ 0.2, we have ωeff

544,I > 0, which indicates the growth
of the l = m = 4 fundamental mode. The example of the time evolution for µM = 0.16
and 0.42 are shown in Fig. 5.13. We see a behavior expect from the sign of ωeff

544,I , for
µM = 0.16, the l = m = 4 fundamental mode decays and for µM = 0.42, it grows.

We have some overlapping regions where both the l = m = 3 and l = m = 4 modes
can grow, 0.2 ≳ µM ≲ 0.24. For this case, we need to perform the calculation by
considering 4-state at the same time. Of course, the number of interaction processes gets
more significant, and thus the calculation becomes more and more complicated. Hence,
we leave the examination in this region for future work.

Lastly, we consider the multipole with m ≥ 5. The key process for the excitation of
the additional mode is the excitation of the m = 0 mode since this process has a large
flux owing to a small angular momentum barrier. However, the interaction between the
l = m = 1, l = m = 2 and m ≥ 5 modes cannot generate the m = 0 mode. Therefore,
these modes cannot be excited, at least in the 3-state approximation adopted in the
current chapter. After the l = m = 3 or l = m = 4 modes are excited, it might be
possible for them to excite. Again, to analyze such a situation, we need to handle four or
more clouds simultaneously. We also leave this case for future work.
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Chapter 6

Primary cloud composed of a higher
multipole mode

So far, we have focused on the axion condensate dominated by the l = m = 1 fundamental
mode. This is the case when axion mass is in the range µM ≲ 0.45 (see Fig. 2.2). In
this chapter, we discuss the case with the condensate starting with the l = m = 2
fundamental mode, which corresponds to the parameter range, 0.45 ≲ µM ≲ 0.92. All
of our formulations can be straightforwardly applied to current case by setting (l1,m1) =
(2, 2).

In parallel with the case with the dominance of the l = m = 1 fundamental mode, we
choose the secondary cloud to be the next higher multipole mode, i.e., (l2,m2) = (3, 3).
The relevant process is shown in Fig. 6.1. Whether or not process (b) in Fig. 6.1 con-
tributes to the energy dissipation depends on the axion mass µ. This is because the
binding energies of different modes depend on µ in a slightly complicated manner. As
a reference, let us consider the well-known energy levels in the non-relativistic approxi-
mation (µM ≪ 1). Then, the real part of the axion cloud frequency is approximated by
Eq. (2.24), which gives

ω1|l1=m1=2 ∼ µ

(
1− (µM)2

2× 32

)
, (6.1)

ω2|l1=m1=3 ∼ µ

(
1− (µM)2

2× 42

)
. (6.2)

The frequency of the mode excited by process (b) in Fig. 6.1 is given by

2ω2 − ω1 ∼ µ− µ
(µM)2

144
< µ . (6.3)

Therefore, this mode is bounded by the gravitational potential and cannot carry the energy
to infinity. In addition, the mode is superradiant and thus contributes to the dissipation
of the l = m = 2 mode. In Fig. 6.2, we show the frequency of the excited mode obtained
by the numerical calculation. We observe that the excited mode is bounded for µM ≲ 0.8.
Therefore, saturation of superradiance cannot be expected for an axion mass in this range,
and the l = m = 3 cloud keeps growing. The interesting point is that the growth of the
l = m = 3 cloud is accelerated by the presence of the l = m = 2 cloud.

On the other hand, for µM ≳ 0.8 everything is parallel to the case of the l1 = m1 = 1
mode dominance. The condensate settles into a quasi-stationary configuration composed
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Figure 6.2: The frequency of the excited mode presented in the right diagram (b) of
Fig. 6.1.

of the l1 = m1 = 2 and l2 = m2 = 3 clouds. In Fig. 6.3, we show examples of the time
evolution, setting µM = 0.6 and µM = 0.88 with a/M = 0.99.

The qualitative picture presented above does not change even if we include the l =
m = 4 mode (see Fig. 6.3). In fact, the l = m = 4 mode cannot be excited. This is
because the processes producing the l = m = 4 fundamental mode are smaller than the
processes dissipating the l = m = 4 mode. The situation is similar to the decay of the
l = m = 2 overtones for condensate starting with the l = m = 1 fundamental mode (see
Sec. 5.2).

In summary, the condensate starting from the dominance of a higher multipole mode
with l ≥ 2 would terminate the growth due to the superradiant instability only when
the axion mass marginally satisfies the superradiance condition. In the case of initial
l = m = 2 dominance, only when the axion mass falls in the range, 0.8 ≲ µM ≲ 0.92, the
superradiant instability is regulated by dissipation. For the case µM ≲ 0.8, the l = m = 3
fundamental mode will grow to a large amplitude. In this case, explosive phenomena such
as bosenova can occur. In principle, whether bosenova happens or not can be studied by
the method in Sec. 4.1 by taking l1 = m1 = 3 there. However, we need to determine the
imaginary part of the frequency, which is much smaller than the case for the l = m = 1
or l = m = 2 (see Fig. 2.2). Therefore, the calculation with the l = m = 3 mode requires
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Figure 6.3: Time evolution of energy of the modes l = m = 2, l = m = 3, and l = m = 4
when the primary cloud is composed of the l = m = 2 mode. The red solid, blue dashed,
and black dotted lines correspond to the fundamental mode of l = m = 2, l = m = 3,
and l = m = 4, respectively. The left and the right panels show the cases with µM = 0.6
and 0.88, respectively. We set the BH spin to a/M = 0.99.

a high computational cost. For this reason, we leave the investigation of the l = m = 3
mode in the large amplitude regime to future works.
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Chapter 7

Summary and Discussion

In this thesis, we studied the evolution of the self-interacting axion condensate around
rotating black holes, targeting the detection of the axion by future gravitational wave
observations. In particular, we focused on tracking the whole evolution of the condensate,
starting with a small amplitude, such as quantum fluctuation, to a large amplitude where
the nonlinear effect by the self-interaction is not negligible. For this purpose, we formu-
lated the perturbative method (chapter 3) and nonlinear numerical method (chapter 4) to
track the evolution in the two mode approximation. Our formalism is capable of tracking
the evolution for any value of the gravitational coupling µM .

Using our method, we extensively studied the case with a condensate starting from
the dominance of the l = m = 1 fundamental mode, corresponding to a gravitational
coupling in the range µM ≲ 0.45. With the perturbative RG method, we revealed that
an acceleration of instability by the self-interaction is the first effect that influences the
evolution (chapter 3). In addition, we showed that the condensate inevitably enters the
nonlinear regime where perturbation theory cannot be trusted. Then using the nonlin-
ear numerical method, we clarified the condition of bosenova occurrence with neglecting
clouds other than the l = m = 1 fundamental mode (Sec. 4.1). For this case, the bosenova
can occur only for µM ≲ 0.32 and when the energy of the l = m = 1 cloud reaches

E1 ∼ 3× 102(µM)−2F 2
aM . (7.1)

For the gravitational coupling in the range 0.32 ≲ µM ≲ 0.45, the gravitational potential
is deep enough to prevent the occurrence of the bosenova. In this case, the condensate
settles into a quasi-stationary configuration, and the radial profile becomes much more
compact than the original configuration because of the attractive self-interaction (see
Fig. 4.2).

Then, we studied whether the inclusion of the secondary l = m = 2 mode can change
the above picture (Sec. 4.2). In this case, the dissipation due to the interaction between
the l = m = 1 and l = m = 2 fundamental modes is sufficiently strong to overcome the
superradiant growth much before the primary cloud approaches the critical energy (7.1).
In particular, since the self-interaction is attractive for a typical cosine-type potential,
the different modes attract each other, leading to the significant enhancement of energy
dissipation due to the mode-mode interaction. Thus, even if the secondary l = m = 2
cloud begins to grow from the tiny amplitude expected by quantum fluctuations, the
dissipation will inevitably become strong and the primary cloud will stop growing. As
a result, the condensate settles to a quasi-stationary configuration, determined by the
balance between the energy gain by the superradiance and the energy dissipation by the
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interaction between the modes. Interestingly, the saturation occurs in the small amplitude
regime where the self-interaction can be treated perturbatively.

We further investigated whether the quasi-stationary state is stable under the influence
of other self-interaction effects (chapter 5). For example, there could be dissipation due to
processes involving modes other than the two fundamental modes or quantum mechanical
processes. However, these processes are much slower than the classical processes between
the l = m = 1 and l = m = 2 fundamental modes and in many cases do not significantly
alter the quasi-stationary state composed of these two modes. As a result, the final
cloud configuration consists mainly of l = m = 1 and l = m = 2 fundamental modes,
accompanied by l = m = 1 overtones with subdominant amplitude. The l = m = 2
overtones do not grow due to dissipation by interaction.

The higher multipole modes with l = m = 3 and l = m = 4 can grow when the axion
mass satisfies 0.12 ≲ µM ≲ 0.24 and 0.2 ≲ µ, respectively. In these exceptional cases, the
l = m = 3 and/or the l = m = 4 fundamental mode could be the dominant mode, and
further interactions involving the l = m = 3 and the l = m = 4 mode could significantly
change the configuration. In this case, calculations beyond the 3-state approximation
employed in this thesis would be required. However, the number of possible processes due
to the interaction between the modes becomes tediously large. For this technical reason,
we leave the investigation for the future.

We also studied the case in the case in which the l = m = 2 fundamental mode is
dominant in the initial stage of the evolution. This corresponds to the axion mass in the
range 0.45 ≲ µM ≲ 0.92. In this case, the evolution of the condensate depends qualita-
tively on the axion mass. When the axion mass is smaller than 0.8, a quasi-stationary
state cannot be achieved, unlike the case starting from the l = m = 1 fundamental mode.
This is because the dissipative processes at work in the l = m = 1 case are prohibited
owing to the change in the size of the energy level differences. In this case, the l = m = 3
mode grows to have a very large amplitude, requiring nonlinear calculations to track the
evolution. Unfortunately, due to the high computational cost, we could not present results
for this case and leave it for future studies.

On the other hand, when the mass is larger than 0.8, the shift of the energy spectrum
due to the relativistic effect is sufficiently large to open the dissipation channel, which was
absent for µM ≲ 0.8. In this case, the final state is a superposition of clouds consisting
of the l = m = 2 and l = m = 3 fundamental modes. We summarized our results in
Tab. 7.1.

We should mention that the calculations in Chapters 5 and 6 are done with the spin
of the central black hole fixed to a/M = 0.99. One concern is the possibility that the
spin of the central black hole may affect the result. However, we expect that our results
are robust under the change of the BH spin since we showed that nonlinear calculation
in Sec. 4.1 black hole spin only has a small effect on the evolution of the self-interacting
cloud, except for the presence of the superradiant instability and its rate. However, as we
will discuss below, a detailed analysis of the dependence on the BH spin is necessary for
the actual application to observations.

Finally, we discuss the future directions of our study. In this thesis, we treated the
axion as a test field and fixed the background to the Kerr spacetime. Our treatment
misses two important effects for future observations: the gravitational wave emission by
the condensate and the spin-down of the central black hole. Quantitative studies on these
effects are needed. In the followings, we briefly comment on them.

First, we discuss gravitational wave emissions from the condensate. As we showed in
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Table 7.1: Summary of our results classified by the size of the gravitational coupling. The
first two low corresponds to the single mode calculation in Sec. 4.1. Others correspond
to the case when the excitation of the several modes is considered. Note that in the
overlapping region 0.2 ≲ µM ≲ 0.24, our analysis is not enough to conclude the dominant
modes in the quasi-stationary configuration.

The range of gravitational
coupling µM

occurrence of bosenova
Example of

time evolution

µM ≲ 0.32 bosenova
need

dynamical simulation
µM ≳ 0.32 no bosenova Fig. 4.4

The range of gravitational
coupling µM

Dominant modes (n, l,m) in the
quasi-stationary configuration

Example of
time evolution

µM ≲ 0.12
Dominant:(2, 1, 1) + (3, 2, 2)
Subdominant:(n, 1, 1), n ≤ 5

Fig. 5.3

0.12 ≲ µM ≲ 0.24 (2, 1, 1) + (3, 2, 2) + (4, 3, 3) Fig. 5.10(left panel)
0.2 ≲ µM ≲ 0.45 (2, 1, 1) + (3, 2, 2) + (5, 4, 4) Fig. 5.14 (right panel)
0.45 ≲ µM ≲ 0.8 (4, 3, 3) Fig. 6.3(left panel)
0.8 ≲ µM ≲ 0.92 (3, 2, 2) + (4, 3, 3) Fig. 6.3(right panel)

this thesis, the axion condensate reaches the quasi-stationary state with several modes
simultaneously excited. Then we expect two types of gravitational wave emission pro-
cesses: the pair annihilation and the level transition. These processes emit gravitational
waves in the different frequency bands (see Sec. 2.3). Simultaneous detection of these
gravitational waves can be strong evidence for the axion. We would like to mention that
the strain amplitude of the gravitational waves should be proportional to the square of
the axion decay constant F 2

a , since the energy of the configuration we obtained scales
as F 2

aM . Therefore, from the detection of the continuous gravitational waves, we can
also extract information on the decay constant. Numerical calculations are necessary to
precisely estimate the amplitudes and the frequencies of the emitted gravitational waves,
and we leave them for future work.

Next, we discuss the black hole spin-down. Owing to the adiabatic nature of the
evolution, we can describe the change of the BH spin as

dJBH

dt
= −2m1ω1,I

ω1,R

E1 −
2m2ω2,I

ω2,R

E2 ∼ −2m1ω1,I

ω1,R

E1 . (7.2)

Then, we can estimate the spin-down timescale τspin as

τ−1
spin =

1

JBH

dJBH

dt
∼ 2m1ω1,I

Eqs
1

aM
∼ 102m1ω1,IFa

2 . (7.3)

Here, we take Eqs
1 ∼ 102F 2

aM from our numerical calculation. We have τspin ∼ 104ω−1
1,I

for the string axion (Fa ∼ 10−3). This is sufficiently long compared to the instability
timescale, indicating that the condensate first settles to the quasi-stationary state pre-
sented in this paper.

However, we need to carefully examine the effect of the black hole spin-down to discuss
the actual observability of gravitational waves. Note that the quasi-stationary state is
supported by the superradiant instability. Thus, as a black hole spin down, the instability
rate becomes smaller and the overall amplitude of the condensate decreases. As a result,
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the amplitudes of gravitational waves gradually drop as the condensate extracts the spin
of the black hole. We should also mention that the evolution of the whole system can
be altered once multiple modes are excited [64]. We also leave the issues related to the
spin-down for future work.
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Appendix A

Kerr space-time

In this appendix, we show formulas of the Kerr space-time [65] used in the thesis. The
metric of the Kerr space-time in the Boyer-Lindquist coordinates is given by

ds2 = −
(
1− 2Mr

ρ2

)
dt2 − 4aMr sin2 θ

ρ2
dtdφ

+

[
(r2 + a2) +

2Mr

ρ2
a2 sin2 θ

]
sin2 θdφ2 +

ρ2

∆
dr2 + ρ2dθ2 ,

(A.1)

where

∆ = r2 − 2Mr + a2 , ρ2 = r2 + a2 cos2 θ . (A.2)

The two roots of ∆ = 0, which are

r± =M ±
√
M2 − a2 , (A.3)

correspond to the position of the event horizon (r = r+) and the Cauchy horizon (r = r−).
When we consider the behavior of the fields around the event horizon, tortoise coordinates
r∗ defined by

dr∗ =
(r2 + a2)

∆
dr , (A.4)

is more convenient than r. Integration of Eq. (A.4) gives

r∗ = r +
2M

r+ − r−

(
r+ log

r − r+
r+

− r− log
r − r−
r−

)
. (A.5)

The volume form and the inverse of the metric are given by
√
−g =ρ2 sin2 θ , (A.6)

gµν∂µ∂ν =− 1

∆

[
(r2 + a2) +

2Mr

ρ2
a2 sin2 θ

]
∂2t −

4aMr

ρ2∆
∂t∂φ

+
1

∆sin2 θ

(
1− 2Mr

ρ2

)
∂2φ +

∆

ρ2
∂2r +

1

ρ2
∂2θ . (A.7)

The d’Alembertian takes the form

□g =
1

ρ2

[
∂

∂r

(
∆
∂

∂r

)
+

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 4Mar

∆

∂2

∂t∂φ

−
[
(r2 + a2)2

∆
− a2 sin2 θ

]
∂2

∂t2
+

1

sin2 θ

(
1− a2 sin2 θ

∆

)
∂2

∂φ2

]
. (A.8)
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Another important property of the Kerr space-time is that it is stationary and axisym-
metric. Therefore, there exist two killing vectors ξt and ξφ. In the Boyer-Lindquist
coordinates, they are ξt = (1, 0, 0, 0) and ξφ = (0, 0, 0, 1).

Another coordinate system used in the thesis is the ingoing Kerr coordinates (t̃, r, θ, φ̃).
The metric in the ingoing Kerr coordinates takes the following form,

ds2 = −
(
1− 2Mr

ρ2

)
dt̃2 + 2drdt̃− 2a sin2 θdrdφ̃+ ρ2dθ2

− 4Mar

ρ2
sin2 θdφ̃dt̃+

1

ρ2
[
(r2 + a2)2 −∆a2 sin2 θ

]
sin2 θdφ̃2 . (A.9)

The transformation of the Boyer-Lindquist coordinates to the ingoing Kerr coordinates is
given by

dt̃ = dt+
r2 + a2

∆
dr , dφ̃ = dφ+

a

∆
dr . (A.10)

Note that in the ingoing Kerr coordinate, ingoing null geodesics pass through the event
horizon in a finite coordinate time t̃. In addition, they become a straight line dr = dt̃.
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Appendix B

Numerical construction of the mode
functions

In this appendix, we show the numerical methods to accurately solve the angular and the
radial equations

d

dx

(
(1− x2)

dSlmω

dx

)
+ [c2(ω)x2 − m2

1− x2
]Slmω = −Λlm(ω)Slmω , (B.1)

d

dr

(
∆
dRlmω

dr

)
+

[
K2(ω)

∆
− µ2r2 − λlm(ω)

]
Rlmω = 0 , (B.2)

with

c2(ω) = a2(ω2 − µ2) , K(ω) = (r2 + a2)ω − am ,

λlm(ω) = −2amω + a2ω2 + Λlm(ω) , x = cos θ . (B.3)

We set GM = 1 in this appendix for notational simplicity. The mode functions used in
this thesis are constructed by the method presented here.

It is known that Eqs. (B.1) and (B.2) can be transformed to the generalized spheroidal
wave equation [66]

z(z − z0)
d2y

dz2
+ (B1 +B2z)

dy

dz
+
(
ω̃2z(z − z0)− 2ηω̃(z − z0) +B3

)
y = 0 , (B.4)

or the confluent Heun equation1 [67, 68]

z(z − 1)
d2y

dz2
+ (γ(z − 1) + δz + ϵz(z − 1))

dy

dz
+ (αz − q) y = 0 . (B.5)

A general property of these equations is that they have two regular singular points and
one irregular singular point. It is worth mentioning that the solution to the Confluent
Heun equation with a regular behavior around regular singular point is implemented in
the Mathematica as HeunC[q, α, γ, δ, ϵ, z]. In the following, we transform Eqs. (B.1)
and (B.2) to the generalized spheroidal wave equation or the confluent Heun equation and
solve them.

1The confluent Heun equation and the generalized spheroidal wave equation is related by replacing y
in the generalized spheroidal wave equation by eiωzy and rescaling z by z0.
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B.1 Angular equation

We start with solving the angular equation (B.1). The boundary conditions are the
regularity at x = ±1. Let us transform the angular function as

Slmω(x) = (1 + x)k1(1− x)k2ec(1+x)g(x) . (B.6)

Then Eq. (B.1) transforms to

(1 + x)(1− x)
d2g

dx2
+ (2c(1− x2)− 2(k1 + k2 + 1)x+ 2(k1 − k2))

dg

dx

+

(
2k21
1 + x

+
2k22
1− x

− 2c(k1 + k2 + 1)x+ c2 + 2c(k1 − k2)

−(k1 + k2)(k1 + k2 + 1)− m2

1− x2
+ Λlm

)
g = 0 . (B.7)

To obtain the solution regular around x = ±1, we chose k1,2 = |m|/2. Now, we transform
the variable x to u = x+ 1. Then Eq. (B.7) recast to

u(u− 2)
d2g

du2
+ 2 (cu(u− 2) + (|m|+ 1)u+ |m|+ 1)

dg

du
+
(
2c(|m|+ 1)u− c2 − 2c(|m|+ 1) + |m|(|m|+ 1)− Λlm

)
g = 0 . (B.8)

Since g is regular around u = 0, we expand g as

g(u) =
∞∑
n=0

anu
n , (B.9)

with a0 = 1. Substituting Eq. (B.9) to Eq. (B.8), we obtain the three term recurrence
relation

αθ,nan+1 + βθ,nan + γθ,nan−1 = 0 , (n = 0, 1, · · · ) , (B.10)

with a−1 = 0. Here, the coefficients αθ,n, βθ,n, and γθ,n are given by

αθ,n = −2(n+ 1)(n+ |m|+ 1) , (B.11)

βθ,n = n(n− 1) + 2n(|m|+ 1− 2c) + |m|(|m|+ 1)− 2c(|m|+ 1)− c2 − Λlm , (B.12)

γθ,n = 2c(n+ |m|) . (B.13)

The solution (B.9) is guaranteed to be regular at u = 0 (x = −1). The regularity at
x = 1 holds only if the summation converges uniformly on 0 ≤ u ≤ 2. The condition for
the uniform convergence is

lim
n→∞

∣∣∣∣an+1u
n+1

anun

∣∣∣∣ < 1 . (B.14)

for any 0 ≤ u ≤ 2. The asymptotic relation among the ratios Rn = an+1/an is obtained
by keeping leading terms in n in Eq. (B.10) as

−2n2Rn + n2 + 2cn
1

Rn−1

∼ 0 . (B.15)
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Thus, assuming Rn ∼ Rn−1, the asymptotic form of Rn is

Rn ∼ 1

2
, (B.16)

or

Rn ∼ −2c

n
. (B.17)

The sequence with the behavior (B.16) as n→ ∞ is called dominant. The case with (B.17)
is called minimal. 2 The minimal sequence is the one that leads to uniform convergence.
The existence of the minimal sequence is possible if and only if the expression for R0

written by means of continued fraction

R0 = − γθ,1
βθ,1−

αθ,1γθ,2
βθ,2−

· · · ≡ −
γθ,n

βθ,n −
αθ,nγθ,n+1

βθ,n+1 −
αθ,n+1γθ,n+2

. . .

, (B.18)

is consistent (see [69] for the proof). It is also shown that the relation

Rn−1 = − γθ,n
βθ,n−

αθ,nγθ,n+1

βθ,n+1−
· · · , (B.19)

holds for the minimal sequence.
The convergence of the continued fraction occurs only for special values of Λlm. The

sufficient condition for the convergence is when Λlm satisfies the equation

−βθ,0
αθ,0

= R0 = − γθ,1
βθ,1−

αθ,1γθ,2
βθ,2−

· · · . (B.20)

Solving this equation determines the eigenvalue Λlm. In this thesis, we construct the
right-hand side of Eq. (B.20) using the recursion relation

Rn = − γθ,n
βθ,n + αnRn+1

. (B.21)

At a large enough n = Nmax (say 600), we set RNmax = −2c/Nmax, assuming the conver-
gence to the asymptotic form, and use this relation recursively until we reach R0.

3 After
obtaining the correct value for Λlm, we solve three-term recurrence relation (B.10) from
a−1 = 0, a0 = 1 to large enough n to construct the angular mode function. If l ̸= |m|,
solving inversion of Eq. (B.20) at ñ = l − |m| [71],

−βθ,ñ
αθ,ñ

+
γθ,ñ
αθ,ñ

αθ,ñ−1

βθ,ñ−1−
αθ,ñ−2γθ,ñ−1

βθ,ñ−2−
· · · αθ,0γθ,1

βθ,0−
= − γθ,ñ+1

βθ,ñ+1−
αθ,ñ+1γθ,ñ+2

βθ,ñ+2−
· · · , (B.22)

2More precise definition of the dominat and the minimal sequence of three-term recurrence relations
is followings [69, 66]. Consider the two independent solutions of any three-term recurrence relation, An

and Bn. The sequence An is called minimal if

lim
n→∞

An

Bn
= 0 .

Any non-minimal solution is called dominant.
3Another method to construct the continued fraction is Steed’s algorithm [70]. This algorithm does

not require knowledge of the asymptotic form of the sequence.
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is numerically more stable. For example, Eq. (B.20) cannot give a correct answer Λlm ∼
l(l + 1) in the small c limit if l ̸= |m|. Solving Eq. (B.20) with c → 0 gives Λlm ∼
|m|(|m|+1), regardless of a value of l. On the other hand, the inversion at l− |m| (B.22)
gives Λlm ∼ l(l + 1).

Another way to obtain the angular mode function is to use the confluent Heun function
implemented in the program, such as Mathematica. Rescaling u in Eq. (B.8) to u/2,
one obtain the confluent Heun equation with

q = 2c(1 + |m|) + c2 − |m|(|m|+ 1) + Λlm , α = 4c(1 + |m|) , γ = 1 + |m| ,

δ = 1 + |m| , ϵ = 4c , z =
1 + x

2
. (B.23)

Thus, the solution guaranteed to be regular at x = −1 is given by

Sx=−1
lmω = (1 + x)|m|/2(1− x)|m|/2ec(1+x)HeunC

[
2c(1 + |m|) + c2 − |m|(|m|+ 1) + Λlm,

4c(1 + |m|), 1 + |m|, 1 + |m|, 4c, 1 + x

2

]
.

(B.24)

Note that this solution is not generally regular at x = +1. Similarly, we can perform the
same procedure with z = (1 − x)/2. For this case, we obtained the solution guaranteed
to be regular at x = +1 as

Sx=+1
lmω = (1 + x)|m|/2(1− x)|m|/2ec(1−x)HeunC

[
2c(1 + |m|) + c2 − |m|(|m|+ 1) + Λlm,

4c(1 + |m|), 1 + |m|, 1 + |m|, 4c, 1− x

2

]
.

(B.25)

Again, the solution is not generally regular at x = −1. The solution become regular both
at x = ± when two solutions S±1

lmω is proportional. In other words, Wronskian of two
solutions S±1

lmω is zero

(1− x2)
(
S+1
lmω∂xS

−1
lmω − S−1

lmω∂xS
+1
lmω

)
= 0 . (B.26)

Solving (B.26) for Λlm, we obtain the eigenvalue Λlm and the eigenfunction Slmω.

B.2 Radial equation

Now, we solve the radial equation (B.2). First, we transform the radial mode function as

Rlmω = (r − r+)
k+(r − r−)

k−y(r) . (B.27)

Similarly to the calculation in App. B.1, the function y obeys

(r − r+)(r − r−)
d2y

dr2
+ ((2k+ + 1)(r − r−) + (2k− + 1)(r − r+))

dy

dr

+

[
k2+
r+ − r−
r − r+

+ k2−
r− − r+
r − r−

+ (k+ + k−)(k+ + k− + 1)

+
K2

∆
− µ2r2 − λlm

]
y = 0 . (B.28)
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The behavior of the quantities inside [· · · ] in Eq. (B.28) near the regular singular points
r = r± is given by4[

k2+
r+ − r−
r − r+

+ k2−
r− − r+
r − r−

+ (k+ + k−)(k+ + k− + 1) +
K2

∆
− µ2r2 − λlm

]

−→


1

r − r+

(
±2bk2+ ± (2r+ω − am)2

2b

)
, (r → r+) ,

1

r − r−

(
±2bk2− ± (2r−ω − am)2

2b

)
, (r → r−) ,

(B.29)

where we defined 2b = r+ − r−. To eliminate the singular behavior in the Eq. (B.28), we
choose k± to be

k+ = ±i2r+ω − am

2b
, k− = ±i2r−ω − am

2b
. (B.30)

The choice of k± determines the behavior of the mode functions at the event horizon and
the Cauchy horizon. For example, near the event horizon, (r − r+)

k+ behave as

(r − r+)
k+ ∼ exp (±i(ω −mΩH)r∗) , (B.31)

where we used the fact r∗ ∼ r+/b log(r − r+) if r ∼ r+. Clearly, + sign corresponds to
the outgoing wave and − sign corresponds to the ingoing wave near the event horizon, for
ω > mΩH . Actually, this is true even when the wave satisfies the superradiance condition
ω < mΩH (see Appendix B of [72] for a detailed explanation).

B.2.1 Unstable mode

First, we solve Eq. (B.2) with an ingoing boundary condition at the event horizon and
exponentially decaying boundary condition at the infinity. This boundary condition corre-
sponds to the superradiant unstable mode in Sec. 2.2. Regarding the boundary condition,
we take k± to be

k+ = −i2r+ω − am

2b
, k− = +i

2r−ω − am

2b
. (B.32)

After changing variable to z = r − r−, Eq. (B.28) takes the form

z(z − 2b)
d2y

dz2
+ (−2b(2k− + 1) + 2(k+ + k− + 1)z)

dy

dz
+
(
(ω2 − µ2)z(z − 2b)− 2(µ2 − 2ω2)(z − 2b) + (k+ + k−)(k+ + k− + 1)

+4ω2(2 + b)− 2µ2(1 + b)− a2(ω2 − µ2)− Λlm

)
y = 0 , (B.33)

which is the generalized spheroidal wave equation with

z0 = 2b , ω̃ =
√
ω2 − µ2 ,

η =
(µ2 − 2ω2)

ω̃
, B1 = −2 (b+ i(2ωr− − am)) ,

B2 = 2(1− 2iω) , B3 = −2(1 + b)ηω̃ − 2iω − Λlm − a2ω̃2 . (B.34)

4Note that

K2

∆
= ∆ω2 + 4ω2r − 2amω + 4ω2 +

(2ωr+ − am)2

2b(r − r+)
− (2ωr− − am)2

2b(r − r−)
.
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We take the branch Im [ω̃] > 0 for ω2 < µ2, so that ω̃ = i
√
µ2 − ω2 for bounded modes.

Since we want to impose the exponentially decaying boundary condition at infinity,
we transform y by

y = eiω̃zz−B2/2−iηf(z) , (B.35)

and bring z = +∞ to a finite point by u = (z − z0)/z. Then Eq. (B.33) transform into

u(1− u)2
d2f

du2
+ (c1 + c2u+ c3u

2)
df

du
+ (c4 + c5u)f = 0 , (B.36)

with

c1 =
B1

z0
+B2 , c2 = −2(1 + iη − iω̃z0 + c1) ,

c3 = c1 + 2(1 + iη) , c4 =

(
iω̃z0 −

(
B2

2
+ iη

))
c1 +B3 ,

c5 =

(
B2

2
+ iη

)(
B2

2
+ iη +

B1

z0
+ 1

)
. (B.37)

In the same way as Sec. B.1, we expand f as

f(u) =
∑
n=0

bnu
n ,

and obtain the three term recurrence relation

c1b1 + c4b0 = 0 ,

αnbn+1 + βnbn + γnbn−1 = 0 , (B.38)

where

αn = (n+ 1)(n+ c1) ,

βn = −2n(n− 1) + nc2 + c4 ,

γn = (n− 1)(n− 2 + c3) + c5 . (B.39)

The appropriate sequence which satisfies the boundary condition at r → ∞(u = 1) is the
minimal sequence (see Appendix B.1). The minimal solution exists only for special ω,
which is the solution to

−β0
α0

= − γ1
β1−

α1γ2
β2−

· · · . (B.40)

Eq. (B.40) can be solved by the usual root finding method5. After obtaining ω, the

5We construct the continued fraction in right-hand-side of Eq. (B.40) in a similar way as explained in
Appendix B.1. To speed up the calculation, we expand the asymptotic form of Un = an+1/an up to

Un = 1 +
x1√
n
+

x2

n
+

x3

n3/2
+O(n−2) .

The coefficients xi is given by

x1 = ±i
√
c1 + c2 + c3 ,

x2 = i(η − ω̃z0)−
3

4
,

x3 = −x1

2
(c1 +

3

2
)− x2

2x1

(
−i(η − ω̃z0)−

7

4

)
− c4 + c5 − 2iη

2x1
.

The ± in x1 must be chosen such that the real part of x1 is negative. For the bounded modes |ω| < µ, +
sign is appropriate one. This type of expansion is also used to determine the quasi-normal modes [73].
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coefficients bn is obtained from the three term recurrence relation (B.40) with b−1 =
0, b0 = 1.

B.2.2 Up-mode and Down-mode

Next, we solve for both up-mode and down-mode. The boundary conditions are

Rup
lmω −→

Bin(ω)(r − r+)
−i

2r+
r+−r−

(ω−mΩH)
+Bout(ω)(r − r+)

+i
2r+

r+−r−
(ω−mΩH)

, (r → r+)

r
−i µ2−2ω2

√
ω2−µ2 e+i

√
ω2−µ2r

r
, (r → +∞)

.

(B.41)

for up-mode and

Rdown
lmω −→

B∗
out(ω)(r − r+)

−i
2r+

r+−r−
(ω−mΩH)

+B∗
in(ω)(r − r+)

+i
2r+

r+−r−
(ω−mΩH)

, (r → r+)

r
+i µ2−2ω2

√
ω2−µ2 e−i

√
ω2−µ2r

r
, (r → +∞)

,

(B.42)

for down-mode. To obtain the solution, we further transform Eq. (B.33) by y = z−B2/2h(z)
and v = ω̃z, which results in

v(v − ω̃z0)

(
d2h

dv2
+

(
1− 2η

v

)
h

)
+ d1ω̃

dh

dv
+

(
d2 + d3

ω̃

v

)
h = 0 , (B.43)

with

d1 = B1 + z0B2 , d2 = B3 −
B2

2

(
B2

2
− 1

)
,

d3 = −B2

2

(
B1 + z0

(
B2

2
+ 1

))
. (B.44)

We expand h by the coulomb wave function uL+ν as

h =
+∞∑

L=−∞

b
(c)
L uL+ν . (B.45)

Here, ν is an undetermined constant which will be determined below. The coulomb wave
functions are the solution to the coulomb wave equation

d2uL+ν

dv2
+

(
1− 2η

v
− (L+ ν)(L+ ν + 1)

v2

)
uL+ν = 0 , (B.46)

and the satisfy recurrence relations

duL+ν

dv
= − L+ ν + 1

2L+ 2ν − 1
uL+ν−1 −QLuL+ν −

L+ ν

2L+ 2ν + 3

[
1 +

η2

(L+ ν + 1)2

]
uL+ν−1 ,

(B.47)

1

v
uL+ν =

1

2L+ 2ν − 1
uL+ν−1 −QLuL+ν +

1

2L+ 2ν + 3

[
1 +

η2

(L+ ν + 1)2

]
uL+ν+1 ,

(B.48)
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where

QL =
η

(L+ ν)(L+ ν + 1)
. (B.49)

After some algebra, we obtain the three-term recurrence relation for b
(c)
L as

αν
(c)Lb

(c)
L+1 + βν

(c)Lb
(c)
L + γν(c)Lb

(c)
L−1 = 0 , (B.50)

with

αν
(c)L = − ω̃

2L+ 2ν + 1
[(L+ ν + 1)(L+ ν + 2)z0 − (L+ ν + 2)d1 − d3] , (B.51)

βν
(c)L = (L+ ν)(L+ ν + 1) + d2 + ωQL[(L+ ν)(L+ ν + 1)z0 − d1 − d3] , (B.52)

γν(c)L = − ω̃

2L+ 2ν + 1
[(L+ ν)(L+ ν − 1)z0 + (L+ ν − 1)d1 − d3]

×
(
1 +

η2

(L+ ν)2

)
. (B.53)

We choose ν such that the sequence b
(c)
L becomes the minimal. Let us derive the

equation which determines ν. As explained in Appendix B.1, minimal sequence satisfies
the relation

U(L) ≡ b
(c)
L

b
(c)
L−1

= −
γν(c)L
βν
(c)L−

αν
(c)Lγ

ν
(c)L+1

βν
(c)L+1−

· · · . (B.54)

A similar expression for lowering operator holds:

U †(L) ≡
b
(c)
L−1

b
(c)
L

= −
αν
(c)L−1

βν
(c)L−1−

γν(c)L−1α
ν
(c)L−2

βν
(c)L−2−

· · · . (B.55)

These relations imply

U(L)U †(L) = 1 . (B.56)

We chose ν as a solution of Eq. (B.56) with L = 0. We construct the continued fraction
following the numerical methods in [74]. After ν is obtained, we determine coefficients

b
(c)
L by multiplying raising and lowering operators U(L) and U †(L) to b0 = 1.

The coulomb wave equation (B.46) has two independent solutions. The appropriate
solution for the up and down modes are

gL+ν(v)± ifL+ν(v) =(−1)Leπη∓iπ(ν+1/2)e±iv(2L+ 2ν + 1)
Γ(L+ ν + 1)

Γ(L+ ν + 1∓ iη)

× (2v)L+ν+1U(L+ ν + 1± iη, 2L+ 2ν + 2,∓2iv) , (B.57)

where U(a, b, z) is the confluent hypergeometric function [75]. The asymptotic form at
v = ω̃(r − r−) → ∞ is given by

gL+ν(v)± ifL+ν(v)
v→∞−−−→ exp

(
±i
(
v − η log 2v − (L+ ν)

π

2
+ σ±

L

))
, (B.58)

σ±
L = ∓i log

[
(l + 2ν + 1)eπη/2

Γ(L+ ν + 1)

Γ(L+ ν + 1∓ iη)

]
. (B.59)
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Thus, + sign gives the up mode and − sign gives the down mode. To summarize, the
up-mode is given by

Rup
lmω =N−1

up (r − r+)
k+(r − r−)

k−−B2/2e+iω̃(r−r−)+πη−iπ(ν+1/2)

×
L=+∞∑
L=−∞

(−1)Lb
(c)
L

(2L+ 2ν + 1)Γ(L+ ν + 1)

Γ(L+ ν + 1− iη)
(2ω̃(r − r−))

L+ν+1

× U(L+ ν + 1 + iη, 2L+ 2ν + 2,−2iω̃(r − r−)) , (B.60)

where N−1
up is the normalization constant given by

N−1
up =

e+iη log(2ω̃)∑L=+∞
L=−∞(−1)Lb

(c)
L

(2L+2ν+1)Γ(L+ν+1)
Γ(L+ν+1−iη)

. (B.61)

The quantities k±, ω̃, η, and B2 are shown in Eqs. (B.32) and (B.34). The down-mode is
given by a similar expression.

B.2.3 In-mode

Finally, we solve for in-mode Rin
lmω, which satisfies the boundary condition

Rin
lmω −→

(r − r+)
−i

2r+
r+−r−

(ω−mΩH)
, (r → r+)

Ain(ω)r
+i µ2−2ω2

√
ω2−µ2 (ω) e

−i
√

ω2−µ2r∗

r
+ Aout(ω)r

−i µ2−2ω2
√

ω2−µ2 e+i
√

ω2−µ2r∗

r
, (r → +∞)

.

(B.62)

To obtain the solution, we transform Eq. (B.2) by

Rlmω = (r − r+)
k+

(
r − r−
r+ − r−

)k−

eiω̃(r+−r)p(u) , u =
r+ − r

2b
. (B.63)

Here, we take k± as

k+ = −i2ωr+ − am

2b
, k− = −i2ωr− − am

2b
. (B.64)

After some calculation, we obtain

u(1− u)
d2p

du2
+(1 + 2k+ − (1 + 2(k+ + k−) + 1)u)

dp

du
− (k+ + k−)(k+ + k− + 1)p

= e1u(1− u)
dp

du
+ (e2 + e3u)p , (B.65)

with

e1 = −4ibω̃ ,

e2 = −a2ω̃2 − Λlm − 2(1 + b)ω̃η + 4ω2 − 2ibω̃(1 + 2k+) ,

e3 = 4ibω̃(1 + k+ + k− − iη) . (B.66)

Now, we expand p in terms of hypergeometric functions

p =
+∞∑

n=−∞

cνnpn+ν ,

pn+ν = 2F1(n+ ν + k+ + k− + 1,−n− ν + k+ + k−, 1 + 2k+;u) . (B.67)
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Here, pn+ν satisfies the hypergeometric differential equation

u(1− u)
d2pn+ν

du2
+ (1 + 2k+ − (1 + 2(k+ + k−) + 1)u)

dpn+ν

du
− (−n− ν + k+ + k−)(n+ ν + 1 + k+ + k−)pn+ν = 0 . (B.68)

Furthermore, we introduce a constant ν, which will be determined below.
Using the recurrence relation of hypergeometric functions 2F1(a, b, c;u)

u(1− u)
d

du
2F1(a, b, c;u) =

b(c− a)

b− a+ 1
2F1(a− 1, b+ 1, c;u)

+

(
(a− c)(b+ 1)

b− a; 1
+ bu

)
2F1(a, b, c;u) , (B.69)

u2F1(a, b, c;u) =

(
1 +

(c− a)(a− 1)

(a− b)(b− a+ 1)
− (c− b)(c− b+ 1)

(a− b)(b− a− 1)

)
2F1(a, b, c;u)

+
b(c− a)

(a− b)(b− a+ 1)
2F1(a− 1, b+ 1, c;u)

+
a(c− b)

(a− b)(b− a− 1)
2F1(a+ 1, b− 1, c;u) , (B.70)

we obtain the three-term recurrence relation

αν
nc

ν
n+1 + βν

nc
ν
n + γνnc

ν
n−1 = 0 , (B.71)

where

αν
n =− (n+ ν + 1− (k+ + km))(n+ ν + 1− (k+ − k−))

2(2(n+ ν) + 3)(n+ ν + 1)

× (e1(n+ ν + 2) + (k+ + k−)e1 + e3) , (B.72)

βν
n =(n+ ν)(n+ ν + 1) + e2 −

e3
2

(
1 +

(k+ + k−)(k+ − k−)

(n+ ν)(n+ ν + 1)

)
+
k+ − k−

2
e1

(
1 +

(k+ + k−)(k+ + k− + 1)

(n+ ν)(n+ ν + 1)

)
, (B.73)

γνn =− (n+ ν + (k+ + km))(n+ ν + (k+ − k−))

2(2(n+ ν) + 1)(n+ ν)

× (e1(n+ ν − 1)− (k+ + k−)e1 − e3) . (B.74)

We determine ν in parallel with the determination of ν in Appendix. B.2.2. Interestingly,
ν determined here coincides with the ν determined by Eq. (B.56). This allows one to
obtain the reflection and transmission coefficients without numerically integrating the
wave equation on the Kerr space-time [76, 77].

The in-mode solution can also be written by the confluent Heun function, implemented
in Mathematica. Notice that Eq. (B.65) takes the same form as the confluent Heun
equation (B.5). Thus, p can be written by

p(u) = HeunC [−(e2 + (k+ + k−)(k+ + k− + 1)), e3, 1 + 2k+, 1 + 2k−,−e1, u] . (B.75)
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Appendix C

Calculation of the energy flux

In this appendix, we evaluate fluxes at the horizon (3.28) and at infinity (3.29) and show
the flux formulas (3.30) and (3.31). Substituting the energy-momentum tensor of the
scalar field

Tµν(ϕ) = ∂µϕ∂νϕ+ gµν

(
−1

2
(∂ϕ)2 − V (ϕ)

)
, (C.1)

to (3.28) and (3.29), we obtain

FH+ = 2Mr+

∫
d cos θ dφ ∂tϕ(∂tϕ+ ΩH∂φϕ)|r→r+ , (C.2)

FI+ =

∫
d cos θ dφ r2∂tϕ∂rϕ|r→∞ . (C.3)

As shown in Sec. 3.2, the axion field ϕ up to the leading order in λ is given by

ϕ =
√
E1ϕ1 +

√
E2ϕ2 + E1

√
E2ϕ

(1)
0 +

√
E1E2ϕ

(1)
3 , (C.4)

where

ϕ
(1)
0 =− 3λe−iω0t

∑
l

Sl0ω0(θ)

∫
dr′d cos θ′(r′

2
+ a2 cos2θ′)Sl0ω0(θ

′)

×Gl0ω0(r, r
′)R1(r

′)2R∗
2(r

′)S1(θ
′)2S∗

2(θ
′) + c.c. , (C.5)

ϕ
(1)
3 =− 3λe−iω3t+3φ

∑
l

Sl3ω3(θ)

∫
dr′d cos θ′(r′

2
+ a2 cos2θ′)Sl3ω3(θ

′)

×Gl3ω3(r, r
′)R∗

1(r
′)R2(r

′)2S∗
1(θ

′)S2(θ
′)2 + c.c. . (C.6)

The first, second, and third terms in Eq. (C.4) contribute to the flux at the horizon FH+

and the fourth term contributes to the flux to infinity FI+ .1

Let us first calculate the flux at the horizon. The contribution from the first and the
second terms is responsible for the superradiant instability of the l = m = 1 and the
l = m = 2 modes. From the calculation in Sec. 2.1.2, their flux at the horizon is simply
given by

−2ω1,IE1 − 2ω2,IE2 . (C.7)

1The fourth term can also contribute to the flux at the horizon. However, its contribution is much
smaller than that the flux from m = 0, so we simply ignore it.
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To evaluate the contribution from the third term, ϕ
(1)
0 , we need its asymptotic behavior

near the horizon. Using the expression (3.11) and the asymptotic behavior of the mode
functions (3.12), the behavior of the field close to the horizon is

ϕ
(1)
0 → −3λe−iω0t−iω0r∗

∑
l

ZH+

l Sl0ω0(θ) + c.c. , (C.8)

with

ZH+

l =
1

Wl0(ω0)

∫
dr′d cos θ′(r′

2
+ a2 cos2θ′)Sl0ω0(θ

′)Rup
l0ω0

(r′)

×R1(r
′)2R∗

2(r
′)S1(θ

′)2S∗
2(θ

′) . (C.9)

From the orthogonality relation∫
d cos θ SlmωS

∗
l′mω = δll′ , (C.10)

we obtain

FH+ ⊃2Mr+

∫
d cos θdφ ∂tϕ

(1)
0 (∂tϕ

(1)
0 + ΩH∂φϕ

(1)
0 )|r→r+

=

(
72πMλ2r+ω

2
0

∑
l

|ZH+

l |2
)
E2

1E2

≡F0E
2
1E2 . (C.11)

The energy flux to infinity is calculated similarly. The asymptotic behavior of ϕ
(1)
3

near infinity r → +∞ is

ϕ
(1)
3 →− µ2

2

e−iω3t+3iφ+i
√

ω2
3−µ2r∗

r

∑
l

ZI+

l Sl3ω3(θ) + c.c. , (C.12)

with

ZI+

l =
1

Wl3(ω3)

∫
dr′d cos θ′(r′

2
+ a2 cos2θ′)Rin

l3ω3

×R∗
1(r

′)R2(r
′)2S∗

1(θ
′)S2(θ

′)2 . (C.13)

Substituting Eq. (C.12) to Eq. (C.3), we obtain

FI+ =

(
36πλ2ω3

√
ω2
3 − µ2

∑
l

|ZI+

l |2
)
E1E

2
2

≡F3E1E
2
2 . (C.14)

The net energy flux is obtained by summing up all the fluxes, which gives

FE
tot =FH+ + FI+

=− 2ω1,IE1 − 2ω2,IE2 + F0E
2
1E2 + F3E1E

2
2 . (C.15)

The angular momentum flux can be calculated from the energy fluxes calculated above.
Note that the ratio between the angular momentum flux and the energy flux of the wave
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with given (ω,m) is m/ω [25]. Using this relation and noting that the respective terms in
Eq. (C.15) have (ω,m) = (ω1, 1), (ω2, 2), (ω0, 0), and (ω3, 3), we obtain the total angular
momentum flux as

F J
tot =− 2ω1,I

1

ω1,R

E1 − 2ω2,I
2

ω2,R

E2 +
3

ω3

F3E1E
2
2 . (C.16)

Other fluxes relevant in Chapter 5 can be calculated in a similar manner. For example,
the energy flux by the m = 0 mode excited by the process involving the l = m = 1 and
l = m = 2 fundamental modes and the l = m = 2 overtone mode is given by

F12o∗ =288πMλ2r+(ω
′
0)

2

×
∑
l≥0

∣∣∣∣ 1

Wl0(ω′
0)

∫
dr′d cos θ′(r′

2
+ a2 cos2θ′)Rup

l0ω′
0

×R1(r
′)R2(r

′)R∗
o(r

′)S1(θ
′)S2(θ

′)S∗
o(θ

′)| , (C.17)

where o stands for the l = m = 2 overtone mode, and ω′
0 = ω1 + ω2 − ωo. Factor 4

difference from Eq. (C.11) comes from the fact that there is no symmetric factor for this
case.

C.1 Non-relativistic estimation

Here, we estimate the values of F0 and F3 in the non-relativistic limit µM ≪ 1. In the
non-relativistic limit, the frequency ω(lmn) can be approximated as [28]

ω(lmn) ∼ µ

(
1− (µM)2

2n2

)
, (C.18)

thus Mω(lmn) → 0 as µM → 0. Then the spheroidal harmonics Slmω can be simply
approximated by the spherical harmonics

Slmω ∼ Ylm(θ) . (C.19)

The radial mode functions, the superradiant unstable mode, in-, and up- mode are given
by the wave function of the hydrogen atom in the region far from the horizon r ≫ r+ [28],

Rlmω(lmn) ∼(µM)2

√
(−l + n− 1)!

πn4(l + n)!

×
(
2µ2Mr

n

)l

e−
µ2Mr

n L2l+1
−l+n−1

(
2µ2Mr

n

)
, (C.20)

Rin
lmω ∼ (2kr)l e−ikr

1F1

(
iµ2

k
+ l + 1; 2l + 2; 2ikr

)
, (C.21)

Rup
lmω ∼(−2ikM)−

iµ2

k
+1(−2ikr)leikr

× U

(
−iµ

2M

k
+ l + 1, 2l + 2,−2ikr

)
, (C.22)

where k =
√
ω2 − µ2. We took the normalization of Rin to put Rin(r = 0) = 1 for l = 0

modes. In parallel to the fact that the radial extension of the hydrogen wave function is
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given by the Bohr radius, Equation (C.20) shows that the radial extension of the cloud is
∼ nM/(µM)2 [17].

From the asymptotic form of the confluent Hypergeometric functions 1F1 and U [75],
asymptotic behavior of the in- and up-mode near infinity are given by

Rin
lmω →(−2ik)−1− iµ2M

k Γ(2l + 2)eil
π
2

Γ
(
− iµ2M

k
+ l + 1

) r−
iµ2M

k
e−ikr

r

+
(2ik)−1+ iµ2M

k Γ(2l + 2)e−ilπ
2

Γ
(

iµ2M
k

+ l + 1
) r+

iµ2M
k
e+ikr

r
, (C.23)

Rup
lmω →r

iµ2M
k
eikr

r
, (C.24)

We can also evaluate their Wronskian as

Wlm(ω) ∼ 2ikM
(−2ikM)−1− iµ2M

k Γ(2l + 2)eil
π
2

Γ
(
− iµ2M

k
+ l + 1

) . (C.25)

We first evaluate ZH+

0 and ZI+

3 that gives dominant contribution in the l summa-
tion of F0 and F3, respectively. Since the cloud resides in the region very far from the
black hole, we can approximate all the mode functions involved in ZH+

0 and ZI+

3 by the
expressions (C.20) - (C.22), we obtain

ZH+

0 ∼ 1

W00(ω0)
C0;112

∫
dr′r′

2
Rup

00ω0
(r′)R1(r

′)2R∗
2(r

′) , (C.26)

ZI+

3 ∼ 1

W33(ω3)
C0;221

∫
dr′r′

2
Rin

33ω3
(r′)R2(r

′)2R∗
1(r

′) , (C.27)

with

ω0 ∼µ
(
1− 7

36
(µM)2

)
, (C.28)

ω3 ∼µ
(
1 +

1

72
(µM)2

)
, (C.29)

C0;112 =

∫
d cos θ′Y00(θ

′)Y11(θ
′)2Y ∗

22(θ
′) , (C.30)

C3;112 =

∫
d cos θ′Y33(θ

′)Y22(θ
′)2Y ∗

11(θ
′) . (C.31)

Let us examine the µM dependence of ZH+

l and ZI+

l . From Eqs. (C.28) and (C.29), we
observe

k0 =
√
ω2
0 − µ2 ∼ i

√
7

18
µ(µM) , (C.32)

k3 =
√
ω2
3 − µ2 ∼ 1

6
µ(µM) . (C.33)

Therefore, k in the expressions in the non-relativistic limit is proportional to µ(µM).
By changing integration variable r′ to r̃′ = µ(µM)r′, one can confirm that leading µM
dependence of the coefficients ZH+

0 and ZI+

3 are

ZH+

0 ∝(µM)2M3 , ZH+

3 ∝M3 . (C.34)
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Therefore, leading µ dependence of the fluxes F0 and F3 are

F0 ∼2πMr+µ
6|ZH+

0 |2 ∼ 4.2× 10−7 × r+
M

(µM)10 , (C.35)

F3 ∼π
µ6(µM)

6
|ZI+

3 |2 ∼ 1.1× 10−8 × (µM)7 . (C.36)

Here, we numerically evaluated the radial and angular integration to obtain the µM
independent factor. Other fluxes Fabc can be calculated similarly.
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Appendix D

Details of nonlinear calculation

In this appendix, we show the details of the numerical calculation in Sec. 4.

D.1 Discrete orthogonality of spherical harmonics

Here, we show the discrete orthogonal property of the spherical harmonics, which is used
to efficiently compute the projection of the nonlinear terms in Eq. (4.7). The discrete
orthogonality is the following:

J∑
j=1

I∑
i=1

Ylm(µj)Yl′m′(µj)e
imλie−im′λiωj = Iδll′δmm′ , (D.1)

where

λi = 2π
i− 1

I
, (D.2)

and µj is the j-th zero of the J-th order Legendre polynomial PJ(x), PJ(µj) = 0. Here,
ωj is the weight given by

ωj =
2(1− µ2

j)

J2(PJ−1(µj))2
. (D.3)

In addition, I and J must satisfy I > |m − m′| and l + l′ < 2J − 1. These conditions
determine the number of grid points in the φ and θ directions.

One can easily confirm that the summation over i in Eq. (D.1) gives the factor Iδmm′ .
The summation over j can be performed using the property∫ +1

−1

f(x)dx =
J∑

j=1

f(µj)ωj , (D.4)

for polynomial f(x) with degree smaller than 2J − 1. Using Eq. (D.4), the summation
with j is evaluated as

J∑
j=1

Ylm(µj)Yl′m(µj)ωj =

∫
Ylm(x)Yl′m(x) = δll′ . (D.5)

Let us prove Eq. (D.4).
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Proof. We first approximate f(x) by the Lagrange interpolation

L(x) =
J∑

j=1

f(µj)
J∏

k=1,k ̸=j

x− µk

µj − µk

. (D.6)

At x = µj(j = 1, 2, · · · , J),

L(µj) = f(µj) . (D.7)

Suppose that the degree of f(x) is K．If K ≤ J − 1, Eq. (D.7) immediately implies

f(x) = L(x) , (D.8)

for any x.
Now consider the case with J ≤ K ≤ 2J − 1. Since the f(x) − L(x) has the same

zeros as PJ(x), it must be written as,

f(x)− L(x) = PJ(x)S(x) , (D.9)

where S(x) is the polynomial with degree K−J(≤ J −1), which can be written as a sum
of Pn(x)(n < J). Then the orthogonality of the Legendre polynomial implies the right-
hand side of Eq. (D.9) to vanish after integration over (−1, 1). Therefore, for K < 2J−1,
we have ∫ +1

−1

f(x)dx =

∫ +1

−1

L(x)dx . (D.10)

The right-hand side of Eq. (D.10) is evaluated as follows:∫ +1

−1

L(x)dx =
J∑

j=1

f(µj)

∫
dx

∏J
k=1(x− µk)

(µ− µj)
∏J

k=1,k ̸=j(µj − µk)

=
J∑

j=1

f(µj)

∫
dx

PJ(x)

(x− µj)P ′
J(µj)

. (D.11)

From the recurrence relation

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x) , (D.12)

we have

(n+ 1) det

(
Pn+1(x) Pn(x)
Pn+1(y) Pn(y)

)
− n det

(
Pn(x) Pn−1(x)
Pn(y) Pn−1(y)

)
= (2n+ 1)(x− y)Pn(x)Pn(y) . (D.13)

By summing up this relation from n = 0 to n = J − 1, we obtain

J(PJ(x)PJ−1(y)− PJ(y)PJ−1(x)) =
J−1∑
n=0

(2n+ 1)(x− y)Pn(x)Pn(y) , (D.14)
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Figure D.1: The Same figure as Fig. 4.1, but added the blue dotted curve corresponds to
the calculation with additional higher multipole modes (l,m) = (7, 1) and (7, 3). Depen-
dence of the total flux Ftot(A1) on the energy E. The red solid curve in this figure shows
the same line as the blue solid curve in the right panel of Fig. 4.1. Owing to the high
computational cost to include the additional modes, blue dotted curve is ended around
A1 ∼ 11.

which implies

PJ(x)

x− µj

=
J−1∑
n=0

(2n+ 1)
Pn(µj)

JPJ−1(µj)
Pn(x) , (D.15)

for y = µj. Thus, we can further evaluate the integral in Eq. (D.11) as∫
dx

PJ(x)

(x− µj)P ′
J(µj)

=

∫
dx

J−1∑
n=0

(2n+ 1)
Pn(µj)

JPJ−1(µj)P ′
J(µj)

Pn(x)

=
2

JPJ−1(µj)P ′
J(µj)

=
2(1− µ2

j)

(JPJ−1(µj))2
. (D.16)

Here, we used the relation

(1− x2)
dPJ(x)

dx
= JPJ−1(x)− JxPJ(x) . (D.17)

Combining Eqs. (D.10), (D.11), and (D.16), we obtain∫ 1

−1

dxf(x) =

∫ +1

−1

dxL(x) =
J∑

j=1

2(1− µ2
j)

(JPJ−1(µj))2
f(µj) . (D.18)

D.2 Justification of the truncation of l and k

In this appendix, we show that the truncating l and n at lmax = 5, kmax = 5, which
is adopted in our numerical calculation values does not change the results much. In
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Figure D.2: Each curve shows the real part of (r∗/M)R̃lm near infinity at the amplitude
A1 = 11. Again, A1 ∼ 11 is the largest value of the amplitude we could have calculated,
owing to the high computational cost. The red solid curve, blue dashed curve, black
dotted curve, and purple dashed dotted curves correspond to (l,m) = (3, 3), (5, 3), (5, 5),
and (7, 3) modes, respectively.

particular, we present the results with two additional modes (l,m) = (7, 1), and (7, 3).
Here, we fix the axion mass and the black hole spin to µM = 0.42 and a/M = 0.99,
respectively. We also set the axion potential to be the cosine type (3.2). We do not
consider the modes with m ≥ 5, since our calculation already show that these modes are
suppressed compared to the m = 1 and 3 modes (see, for example, Fig. D.3). Therefore,
the modes (l,m) = (7, 1), and (7, 3) would be sufficient to justify the truncation at lmax = 5
and kmax = 5.

We show how the total flux Ftot depends on the energy E in Fig. D.1. It can be seen
that the total flux differs by a factor of ∼ 1.3 when the amplitude is large. This is due to
the addition of the radiation mode (l,m) = (7, 3), which increases the flux to infinity.

To see the contribution of each mode to the flux to infinity, we show the behavior of
the mode function near infinity for A1 = 11 and m ≥ 3 in Fig. D.2. The figure shows
that the (l,m) = (5, 3) mode makes the largest contribution, contrary to the naively
expected dominance of the (l,m) = (3, 3) mode. This large contribution of the higher
l modes is similar to the gravitational radiation from the axion cloud [78]. The next
dominant mode is the (l,m) = (3, 3) mode, while the (7, 3) mode is further suppressed
but not completely negligible in determining saturated configuration. However, as shown
in the figure, including the (l,m) = (7, 3) mode has little effect on the configuration of
all modes. Therefore, the energy flux through (l,m) = (7, 3) can be calculated by the
linearized expression from the configuration neglecting the (l,m) = (7, 3) mode, as shown
in Fig. D.4. Furthermore, we confirmed that the (l,m) = (5, 5) mode gives a much smaller
contribution than the m = 3 mode. Thus, including higher m modes does not change the
result, as we noted at the beginning of this section.
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Figure D.3: Each panel shows the real part of mode function R̃lm at amplitude
A1 = 11. From the top left to the bottom right, R̃11, R̃31, R̃51, R̃33, R̃53 and R̃55

are plotted, respectively. The red solid curve is calculated with six modes (l,m) =
(1, 1), (3, 1), (5, 1), (3, 3), (5, 3), and (5, 5), while the blue dashed curve is calculated by
adding two more modes (l,m) = (7, 1) and (7, 3).
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Figure D.4: The same figure as Fig. D.1 but added new black dotted curve calculated by
solving the linearized equation from the configuration neglecting the higher l,m modes. .
The red solid and blue dashed curves correspond to the respective lines in the right panel
of Fig. D.1.
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