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The action of four-dimensional Horndeski gravity coupled to Born-Infeld electromagnetic fields is given 
via the Kaluza-Klein process. Dyonic black hole solution of the theory is constructed. The metric is devoid 
of singularity at the origin independent of the parameter selections, this property is different from the 
one of Einstein-Born-Infeld black holes. Thermodynamics of the black hole is studied, thermodynamic 
quantities are calculated and the first law is checked to be satisfied. Thermodynamic phase transitions of 
the black holes are studied in extended phase space.
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1. Introduction

Lovelock theorem states that, in four dimensions the tensors that satisfy divergence free, symmetric, and concomitant of the metric 
tensor and its derivatives are no more than the metric tensor and the Einstein tensor [1]. That is to say Einstein’s general relativity (GR) 
is the unique proper theory of gravity in four dimensions. Recently, in order to bypass Lovelock theorem a proposal has been made by 
adding Gauss-Bonnet term to GR [2]. As we know, the Gauss-Bonnet contribution is a topological invariant in four dimensions according to 
Gauss-Bonnet theorem, and does not affect the field equations of the theory. The authors of Ref. [2] first make the replacement α → α

D−4
to cancel the factor D − 4 in the Gauss-Bonnet term contribution to field equations, and then take the D → 4 limit. The resulting four-
dimensional (4D) Einstein-Gauss-Bonnet (EGB) gravity exhibits novel properties not found in GR. Exact solutions of the gravity theory are 
studied in [3–10].

However, Wald entropy of the black hole in the 4D EGB gravity is divergent manifestly in the D → 4 limit. The standard thermodynamic 
relation between free energy and entropy I = −T −1 F = S − T −1 M also implies divergence in the on-shell Euclidean action [11], thus the 
action cannot account for the Euclidean path-integral for the topologically nontrivial solutions. Meanwhile, the Gauss-Bonnet contribution 
to field equations Hμν can be decomposed into two parts Hμν = −2(Lμν + Zμν), where the Zμν part is proportional to D − 4, it is 
regular after the rescaling α → α

D−4 and taking the D → 4 limit. While the tensor Lμν , which can be expressed in terms of Weyl tensor 

Lμν = Cμαβσ C αβσ
ν − 1

4 gμνCαβρσ Cαβρσ , vanishes identically in D ≤ 4, thus Lμν

D−4 is undefined [12–14].
In order to add the Gauss-Bonnet contribution regularly and nontrivially to Einstein gravity in four dimensions, one way is to take 

the Kaluza-Klein reduction of the EGB theory in higher dimensions. The authors of Ref. [15] compactify D-dimensional EGB gravity on 
(D − 4)-dimensional maximally symmetric space, and then make the replacement of the Gauss-Bonnet coupling α → α

D−4 and take the 
D → 4 limit. Through this procedure, an extra scalar degree of freedom is introduced in addition to the spin-2 degree of freedom, the 
resulting model is a special scalar-tensor theory that belongs to the family of Horndeski gravity. Other attempts involve the method of 
conformally rescaling the metric, then subtracting the original action from the new one associated with the rescaled metric, and taking 
the D → 4 limit at last [12,16]. The action obtained via this method is compatible with the one obtained via the Kaluza-Klein method.

We intend to investigate black hole solution of the 4D Horndeski gravity coupled to Born-Infeld (BI) electromagnetic fields. BI elec-
trodynamics was proposed originally with the motivation of obtaining a finite value of the self-energy of electron [17]. In Ref. [18], the 
authors showed that BI action arises naturally from string theory. The D3-brane dynamics was also noticed to be governed by BI ac-
tion [19]. In recent years, BI theory has been vastly used to study dark energy, holographic superconductor, holographic entanglement 
entropy, and holographic complexity [20–23], etc. Black hole solutions have been constructed for BI electromagnetic fields coupled to 
Einstein gravity [24–26], Gauss-Bonnet gravity [27], higher-order Lovelock gravity [28–30], and massive gravity [31,32]. Thermodynamics 
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of the BI black holes have been studied in [26–35]. In this paper, we construct novel dyonic black hole solution of 4D Horndeski gravity 
coupled to BI electromagnetic fields, and study thermodynamics of the black hole.

The paper is organized as, in section 2, the action of 4D Horndeski gravity coupled to BI electromagnetic fields is presented, and the 
dyonic BI black hole solution is given. In section 3, the first law of thermodynamics is checked, and the thermal phase transitions of the 
black holes with different spatially topologies are studied in extended phase space. We summarize our results in the last section.

2. Black hole solution

2.1. Horndeski gravity in four dimensions

In general D dimensions, the action of EGB gravity coupled to BI electromagnetic fields is given by

I D = 1

16πG D

∫
dD x

√−g (R − 2� + αLG B + 16πG D L(F )) , (1)

where LG B is the Gauss-Bonnet density

LG B = Rμνρσ Rμνρσ − 4Rμν Rμν + R2, (2)

and L(F ) takes the form

L(F ) = β2
√

−det(gμν) − β2

√
−det

(
gμν + Fμν

β

)
, (3)

Fμν = ∂μ Aν − ∂ν Aμ is the field strength tensor. Note that (3) tends to the Maxwell Lagrangian − 1
4 Fμν F μν in the limit β → ∞.

To obtain the 4D theory of gravity, one considers the Kaluza-Klein diagonal reduction of the action (1), with metric ansatz

ds2
D = ds2

p + e2φd�2
D−p,λ, (4)

where the breathing scalar φ depends only on the external p-dimensional coordinates. The line elements d�2
D−p,λ describe the internal 

maximally symmetric space, and λ denotes the sign of the Euclidean space curvature. After the Kaluza-Klein procedure action (1) reduces 
to the p-dimensional action [15,16]

I p = 1

16πG p

∫
dpx

√−ge(D−p)φ
{

R − 2�0 + 16πG p L(F ) + (D − p)(D − p − 1)
(
(∂φ)2 + λe−2φ

)
+ α

(
LG B − 2(D − p)(D − p − 1)

[
2Gμν∂μφ∂νφ − λRe−2φ

]
− (D − p)(D − p − 1)(D − p − 2)

[
2(∂φ)2�φ + (D − p − 1)((∂φ)2)2

]
+ (D − p)(D − p − 1)(D − p − 2)(D − p − 3)

[
2λ(∂φ)2e−2φ + λ2e−4φ

])}
, (5)

where Gμν is Einstein tensor. For p ≤ 4, it is free to add

− α

16πG p

∫
dp x

√−g LG B (6)

to action (5) without affecting the field equations, since (6) is just a topological invariant. Now rescaling the Gauss-Bonnet coupling as 
α → α

D−p and taking the D → p limit, one obtains the p-dimensional theory

I p = 1

16πG p

∫
dp x

√−g
[

R − 2� + 16πG p L(F ) + α
(
−2λRe−2φ − 12λ(∂φ)2e−2φ

−6λ2e−4φ + φLG B + 4Gμν∂μφ∂νφ − 4(∂φ)2�φ + 2((∂φ)2)2
)]

. (7)

This is the Horndeski gravity coupled to BI electromagnetic fields. This theory is well defined, and the entropy obtained by Wald formula 
is free from singularity.

2.2. Equations of motion

Variation with respect to the electromagnetic field gives rise to the field equation

EA = ∇μ

[√−h√−g
β(h−1)[μν]

]
= 0 (8)

where hμν ≡ gμν + Fμν

β
, and h ≡ det(hμν). The symmetric part and antisymmetric part of hμν are denoted respectively by h(μν) and h[μν] . 

(h−1)μν denotes the inverse of hμν , similarly, (h−1)(μν) and (h−1)[μν] are the symmetric and antisymmetric parts of (h−1)μν respectively.
2
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The equation of motion of φ is given by [16,36]

Eφ = −LG B + 8Gμν∇ν∇μφ + 8Rμν∇μφ∇νφ − 8(�φ)2 + 8(∇φ)2�φ

+ 16∇μφ∇ν∇ν∇μφ + 8∇μ∇ν∇μ∇νφ − 24λ2e−4φ − 4λRe−2φ

+ 24λe−2φ
(
(∇φ)2 − �φ

)
= 0. (9)

The variation with respect to the metric yields

Eμν =�gμν + Gμν − 8πGβ2 gμν + 8πGβ2

√−h√−g
h(μν)

+ α

[
φHμν − 2R

[
(∇μφ)(∇νφ) + ∇ν∇μφ

] + 8Rρ
(μ∇ν)∇ρφ + 8Rρ

(μ(∇ν)φ)(∇ρφ)

− 2Gμν

[
(∇φ)2 + 2�φ

]
− 4

[
(∇μφ)(∇νφ) + ∇ν∇μφ

]�φ + 3λ2e−4φ gμν

+ 8(∇(μφ)(∇ν)∇ρφ)∇ρφ − 4gμν Rρσ
[∇ρ∇σ φ + (∇ρφ)(∇σ φ)

] + 2gμν(�φ)2

− 2gμν(∇ρ∇σ φ)(∇ρ∇σ φ) − 4gμν(∇ρφ)(∇σ φ)(∇ρ∇σ φ) + 4(∇ρ∇νφ)(∇ρ∇μφ)

+ 4Rμρνσ

[
(∇ρφ)(∇σ φ) + ∇σ ∇ρφ

] −
[

gμν(∇φ)2 − 4(∇μφ)(∇νφ)
]
(∇φ)2

− 2λe−2φ
(

Gμν + 2(∇μφ)(∇νφ) + 2∇ν∇μφ − 2gμν�φ + gμν(∇φ)2
)]

= 0. (10)

Here and in the following we label the gravitational constant G p as G for simplicity.
Combining the last two equations in the following manner yields

gμνEμν + α

2
Eφ = 4� − R − α

2
LG B − 32πGβ2 + 8πGβ2

√−h√−g
h(μν)gμν = 0, (11)

which is independent of the breathing scalar φ and curvature of the internal space.

2.3. Black hole solution

To solve the field equations, we assume φ = φ(r), and take the metric and field strength ansatz as

ds2
4 = −e−2χ(r) f (r)dt2 + 1

f (r)
dr2 + r2

(
du2

1 − ku2
+ (1 − ku2)dϕ2

)
, (12)

F = −a′(r)dt ∧ dr + pdu ∧ dϕ. (13)

Substituting (12) and (13) into (8), and making χ(r) to be zero, one has

a′(r) = qβ√
p2 + q2 + β2r4

. (14)

Note that, unlike Maxwell theory, the infinity in the intensity at r = 0 has been removed, thereby the infinity in the potential at r = 0 is 
absent too. Now combining (11) together with (12), one obtains

− 2α
(

f ′2 + ( f − k) f ′′)
r2

+ 4 f ′

r
+ f ′′ + −2k + 2 f

r2
+ 4�

− 16πGβr−2
(

2βr2 − (p2 + q2 + 2β2r4)
(

p2 + q2 + β2r4
)−1/2

)
= 0, (15)

where we denote df (r)
dr as f ′ , and d2 f (r)

dr2 as f ′′ for short. This equation is not enough to find the explicit form of f (r), one has to find 
other field equations. Substituting the metric ansatz (12) into (7), and discarding the total derivative terms, one obtains the effective 
Lagrangian [15]

L = e−χ

6r2

[
−3

(
4r3 f ′ + 4�r4 + 4r2 f − 4kr2 + 8αkr2 f φ′2

)
+24αkr2φ′( f ′ − 2 f χ ′) − 8αr2 f f ′φ′ (r2φ′2 − 3rφ′ + 3

)
+4αr2 f 2φ′ (4χ ′ (r2φ′2 − 3rφ′ + 3

)
+ φ′ (3r2φ′2 − 8rφ′ + 6

))
+24αλr2e−2φ

(
r2 f ′φ′ − 2r2 f χ ′φ′ − 3r2 f φ′2 + r f ′ + f − k

)
−36αλ2r4e−4φ + 96πG

(
β2r4 − βr2(p2 + β2r4)(p2 + q2 + β2r4)−1/2

)]
. (16)
3
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Taking variation of (16) with respect to f (r), and making χ(r) to be zero, one has(
−r2λ + e2φ(−k + f (rφ′ − 1)2)

)(
φ′2 + φ′′) = 0, (17)

which implies

f (r) = k + r2λe−2φ

(rφ′ − 1)2
. (18)

The solution of φ is given by

φ = log(r) + log
(

cosh(
√

kψ) ± √
1 + λ/k sinh(

√
kψ)

)
,ψ =

r∫
r+

du

u
√

f (u)
. (19)

Variation of the effective action with respect to χ yields an equation that is rather complicated

2e−4φ−χ (2αλe2φ(−k + r f ′(1 − rφ′) + f (1 − 4rφ′ + r2(φ′2 − 2φ′′)))
+ e4φ(k − r( f ′ + r�) − 2kα f ′φ′ + f (−1 + 2α f ′φ′(3 − 3rφ′ + r2φ′2)

− 2kα(φ′2 + 2φ′′)) + α f (r2φ′4 + 4φ′2 − 8rφ′φ′′ + φ′2(−2 + 4r2φ′2))))

− 16πGe−χ
(
β2r2 − β(p2 + β2r4)(p2 + q2 + β2r4)−1/2

)
. (20)

Fortunately, with (18) the equation (20) can be simplified greatly to be

r
(

r2 − 2α f (r) + 2kα
)

f ′(r) + f (r)
(
−2αk + α f (r) + r2

)
+ �r4

+ αk2 − kr2 + 8πG

(
−β2r4 + βr2

√
p2 + q2 + β2r4

)
= 0 (21)

Combining (15) and (21) one is now able to give the exact black hole solution:

f (r) =k + r2

2α

(
1 −

(
1 + 32πGαM

�2r3
− 32πGαβ2

3
+ 4α�

3
+ 32πGαβ2

3

·
⎛
⎝

√
1 + p2 + q2

β2r4
− 2(p2 + q2)

β2r4 2 F1

[
1

4
,

1

2
,

5

4
,− p2 + q2

β2r4

]⎞
⎠

⎞
⎠

1/2
⎞
⎟⎠ , (22)

where �2 is the spatial 2-volume.
In order to study the behavior of f (r), we expand f (r) in the small-r and large-r regions respectively, yielding

f (r) =k −
√

8πGM/(α�2) − 16G
√

βπ(p2 + q2)3/4�(1/4)�(5/4)/(3α)r1/2

−
8
3πGβ

√
p2 + q2 + 64

3 πGβ
√

p2 + q2�(5/4)/�(1/4)√
32πGαM/�2 − 64αG

√
βπ(p2 + q2)3/4�(1/4)�(5/4)/3

r3/2 + r2

2α
+O(r)5/2, (23)

f (r) = k + 3 − √
9 + 12α�

6α
r2 − 8πGM

�2
√

1 + 4α�/3
r−1 +O(r)−2. (24)

From (23) one learns that, f (r) is finite when r → 0. This property is specific for BI black holes, i.e., for BI black holes the metric may be 
free from divergence at the origin while the curvature invariants definitely diverge there. f (r) is finite at the origin originates partly from 
the nonlinearity of matter fields, partly from the model of gravity theory, and partly from the dimensions of spacetime. We only consider 
the case that the dimensions of the spacetime are not less than 4. For the black holes in Einstein-Born-Infeld gravity, f (r) diverges at the 
origin. For the black holes in Gauss-Bonnet-Born-Infeld gravity, f (r) is finite in 5 dimensions while it diverges in higher than 5 dimensions 
at the origin. For the black holes in Gauss-Bonnet-Maxwell gravity, f (r) diverges at r = 0. For the black holes in 3rd order Lovelock gravity 
coupled to BI electromagnetic fields, f (r) is finite in 7 dimensions while it diverges in higher dimensions at r = 0.

One also learns from (23) that, in order to ensure f (r) to be well defined, the black hole mass M is necessary to be larger than some 
critical one

Mc = 2
√

β

3
√

π
(p2 + q2)3/4�(1/4)�(5/4)�2, (25)

which is independent of k. In order to preserve f (r) > 0 in the large-r region, from (24) we know � has to be negative, i.e., we only 
consider the AdS black holes.

In Fig. 1 we present the behaviors of f (r). One sees from Fig. 1 that, for M > Mc , the planar and hyperbolic black holes possess single 
horizon. The inner (Cauchy) horizon of the BI black hole turns into the curvature singularity due to perturbatively instability [38]. While in 
Einstein gravity, the planar and hyperbolic BI black holes may possess more than one horizon for some parameter selections. As shown in 
Fig. 1, the spherical black hole possesses double horizons. For M < Mc , the black holes are not well defined in the whole spacetime [27].
4
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Fig. 1. The metric function f (r) for the parameters selection G = 1, β = 0.2, p = 0.5, q = 0.5, � = −1, α = 0.1. From left to right, the three plots correspond to k = −1, 0, +1
respectively. The red line on each plot denotes the case M = Mc .

The behavior of f (r) implies that, there exists no extremal black hole for our case. We take the k = 0 case as an example to illustrate 
this analytically. We substitute

re ≡ √
8πGβ

(
p2 + q2

�2 − 16πG�β2

)1/4

, (26)

which is obtained by setting the temperature (29) to be zero, into the black hole mass (28), and replace the hypergeometric function with 
1 since 0 < 2 F1

[
1
4 , 1

2 , 5
4 ,− p2+q2

β2r4

]
< 1, then the mass is given by

Me ≡ − (p2 + q2)3/4�2
(
64π2G2β4 − 24πG�β2 + �2

)
3
√

2πGβ�(−16πGβ2 + �)
, (27)

which is definitely negative for � < 0. Therefore, extremal AdS black holes do not exist for the case we discussed.

3. Thermodynamics

In this section, we check first law of thermodynamics and study thermodynamic phase transitions of the black holes in extended phase 
space. First Let’s give the thermodynamic quantities. Mass of the black hole is given by

M = �2

24πGr+

(
3kr2+ + 3k2α + 8πGβr2+

(
βr2+ −

√
p2 + q2 + β2r4+

)

−�r4+ + 16πG(p2 + q2) 2 F1

[
1

4
,

1

2
,

5

4
,− p2 + q2

β2r4+

])
, (28)

where r+ is the outermost horizon of the black hole. Temperature of the black hole reads

T =
−k2α2 + r4+(−1 − α� + 8πGαβ2) + r2+

(
r2+ + kα − 8πGαβ

√
p2 + q2 + r4+β2

)
4απr+(r2+ + 2kα)

(29)

With the Iyer-Wald formula, entropy of the black hole is given by

S = −2π

∮
d2x

√
γ Y μνρσ εμνερσ

= − 1

8G

∮
d2x

√
γ

(
−2 − 4αφ R̃(γ ) + αδ

ρ
[μ∂ν]φ∂σ φεμνερσ − 1

2
α(∂φ)2δ

ρ
[μδσ

ν]εμνερσ

)
, (30)

where the first term in the bracket comes from Einstein gravity, the second term comes from the term αφLG B in action (7), while the 
third and fourth terms come from 4αGμν∂μφ∂νφ in the action. Straightforward calculations show that the last two terms in (30) cancel 
out, i.e., the 4αGμν∂μφ∂νφ term in the action does not contribute to entropy of the black hole. Only the first two terms contribute to the 
entropy, which gives

S = �2(r2+ + 4kα log(r+))

4G
. (31)

The electric and magnetic charges are given by

Q e = �2

√
−h

(
h−1)[tr] ∣∣

r→∞ = q�2, Q m = �2 Fxy|r→∞ = p�2. (32)

Note the above electric charge as a conserved quantity follows from the equation of motion (8). The electric and magnetic potentials are 
given by

�e = q

r+
2 F1

[
1

4
,

1

2
,

5

4
,− p2 + q2

β2r4+

]
, �m = p

r+
2 F1

[
1

4
,

1

2
,

5

4
,− p2 + q2

β2r4+

]
. (33)
5
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Fig. 2. G-T plot for the parameters fixed as G = 1,α = 0.1, β = 10, p = 0.2,q = 0.2.

Table 1
Critical temperatures and pressures for the parameters p and q fixed as 
p = q = 0.2.

α β Tc Pc

0.1 6 0.03797860 0.00259284
0.1 10 0.03797840 0.00259280
0.1 14 0.03797835 0.00259279
0.08 10 0.03887130 0.00270822
0.12 10 0.03714610 0.00248712

In extended phase space, the thermodynamic pressure of the system is identified as [37,39]

P = − �

8πG
. (34)

The thermodynamic volume conjugate to P is given by

V = r3+�2

3
(35)

With all the thermodynamic quantities given above, it’s straightforward to check the first law of thermodynamics

δM = T δS + V δP + �eδQ e + �mδQ m (36)

is satisfied.
Now let’s examine if there exist thermal phase transitions of the black hole. The critical point is determined by the equations

∂ P

∂r+

∣∣∣∣
r+=rc,T =Tc

= ∂2 P

∂r2+

∣∣∣∣
r+=rc ,T =Tc

= 0. (37)

From (29) one can solve out � in terms of T , and substitute � into the definition of pressure (34), yielding

P =
k2α − kr2+ + T (4πr3+ + 8kπαr+) − 8πGβ2r4+ + 8πGβr2+

√
p2 + q2 + β2r4+

8πGr4+
. (38)

From the equation ∂ P
∂r+ = 0, T can be solved out. Substituting this T into ∂2 P

∂r2+
one obtains the final expression of ∂2 P

∂r2+
, which is a little 

lengthy and will not be presented here. While, for k = 0 the expression is quite simple

∂2 P

∂r2+
= 2β(p2 + q2)(p2 + q2 + 3r4β2)

r4(p2 + q2 + r4β2)3/2
, (39)

which can’t be zero. Therefore, no phase transition exists for the planar black hole. For k = −1, the critical equations can be solved 
formally. However, if the solutions are resubstituted into the related quantities, one finds that either f (r) becomes imaginary or the 
entropy becomes negative. Thus, in this case the black hole is thermodynamically stable and no phase transition exists either. For k = +1, 
the critical equation can be solved out numerically, in this case there exists thermodynamic phase transition as shown in Fig. 2, from 
which one sees that the phase transition is the van der Waals-like one-order phase transition.

For different parameter selections, the results are listed in Table 1. From the table, one learns that either α or β increases, both the 
critical temperature and the critical pressure decrease.
6
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4. Conclusions

In this paper, we construct novel dyonic BI black hole solution of a 4D Horndeski gravity which is obtained from higher-dimensional 
EGB gravity through the Kaluza-Klein process. The metric function f (r) is devoid of divergence at the origin, while the essential singularity 
still exists there. This is different from the 4D Einstein BI black hole, which is divergent at the origin. This property is determined by the 
nonlinearity of BI electrodynamics, the scalar-tensor theory and the dimensions of spacetime together. There exist some critical mass 
Mc , the black hole mass must be larger than the critical mass in order to be well defined in the whole spacetime. For the planar and 
hyperbolic black holes, there exist only one horizon. For the spherical black hole, there exist double horizons.

The thermodynamic quantities of the black hole are calculated, the first law is checked to be satisfied. The thermal phase transitions 
are studied in extended phase space. Through solving the P -V critical equations, it’s found that the planar and hyperbolic black holes are 
thermodynamically stable, no thermodynamic phase transition occurs. While, for spherical black holes, the van der Waals-like one-order 
phase transition occurs.
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