
Mach. Learn.: Sci. Technol. 5 (2024) 025022 https://doi.org/10.1088/2632-2153/ad3cb6

OPEN ACCESS

RECEIVED

14 December 2023

REVISED

6 March 2024

ACCEPTED FOR PUBLICATION

9 April 2024

PUBLISHED

29 April 2024

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Review and experimental benchmarking of machine learning
algorithms for efficient optimization of cold atom experiments
Oliver Anton1,5,∗, Victoria A Henderson1,5, Elisa Da Ros1, Ivan Sekulic2,3, Sven Burger2,3,
Philipp-Immanuel Schneider2,3 and Markus Krutzik1,4

1 Institut für Physik and IRIS, Humboldt-Universität zu Berlin, Newtonstr. 15, 12489 Berlin, Germany
2 JCMwave GmbH, Bolivarallee 22, 14050 Berlin, Germany
3 Zuse Institute Berlin (ZIB), Takustraße 7, 14195 Berlin, Germany
4 Ferdinand-Braun-Institut (FBH), Gustav-Kirchhoff-Str.4, 12489 Berlin, Germany
5 O A and V A H are joint first authors.
∗ Author to whom any correspondence should be addressed.

E-mail: oliver.anton@physik.hu-berlin.de

Keywords:machine learning, cold atoms, optimization, Bayesian optimization, benchmarking, noisy expected improvement

Abstract
The generation of cold atom clouds is a complex process which involves the optimization of noisy
data in high dimensional parameter spaces. Optimization can be challenging both in and especially
outside of the lab due to lack of time, expertise, or access for lengthy manual optimization. In
recent years, it was demonstrated that machine learning offers a solution since it can optimize high
dimensional problems quickly, without knowledge of the experiment itself. In this paper we
present results showing the benchmarking of nine different optimization techniques and
implementations, alongside their ability to optimize a rubidium (Rb) cold atom experiment. The
investigations are performed on a 3D 87Rb molasses with 10 and 18 adjustable parameters,
respectively, where the atom number obtained by absorption imaging was chosen as the test
problem. We further compare the best performing optimizers under different effective noise
conditions by reducing the signal-to-noise ratio of the images via adapting the atomic vapor
pressure in the 2D+magneto-optical trap and the detection laser frequency stability.

1. Introduction

Cold atom systems are an essential part of the quantum revolution, facilitating new generations of quantum
technologies. Although the theory behind laser and evaporative cooling techniques is well understood [1–4],
in practice each apparatus is unique and optimal parameters must be found experimentally, typically in a
lengthy manual optimization routine involving a large number of inter-dependent parameters. Such a labour
intensive approach requires a large amount of technical expertise and patience, and will often only find a
local efficiency maximum due to the size and complexity of the parameter space. Thus, by instead optimizing
via machine learning, one can improve the productivity of cold atom experiments and also take steps
towards autonomous operation or control by non-specialist operators. This will be particularly essential for
mobile quantum technologies such as gravimeters [5–9] and lattice clocks [10–14], where the environmental
conditions vary, or space missions on manned and unmanned spacecraft [15–22]. However, the optimization
of problems involving noisy data and large parameter sets is computationally heavy and requires the use of
an appropriate optimization algorithm.

The topic of optimization has been of significant interest in the community, with a variety of approaches
being taken. Earlier examples utilised heuristic optimization algorithms, such as differential evolution
algorithms, to maximize atom number in a magnetic trap loaded from a magneto-optical trap (MOT) [23,
24] and demonstrated a higher atom number than that achieved by manual optimization. Here up to 21
parameters were optimized in 5 h 45 min or 5000 evaluations. Later, neural networks were used to optimize
optical depth in an MOT by optimizing 63 parameters [25], and to optimize an evaporation ramp for 87Rb
Bose–Einstein condensate (BEC) using optical depth (OD) as indicator for the phase space density [26].
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Reinforcement learning is used in [27] to optimize atom number and temperature simultaneously, as well as
preparing a defined number of atoms in the MOT. The optimisation technique is performed on both a
simulation and a real world experiment, using laser detuning as a single optimization parameter. Currently,
the most popular machine learning (ML) technique within the field is Bayesian optimization (BO) using
Gaussian process regression [28–32]. Such routines were, for example, used to optimize the evaporation
ramp for a crossed optical dipole trap (cODT) via a 16 parameter ramp. In this case, the minimization of the
number of atoms in the wings of the cloud was used as an optimization goal [28]. They were also able to
identify which parameters are important to optimize and which could be excluded from the optimization as
unimportant. Another work benchmarks a different Bayesian optimizer against a random search, and shows
the relative importance of different stages of an evaporation ramp for atoms in a cODT [29]; here 8
parameters are used to optimize the number of atoms in a circular area of interest, with 300 trials
requiring 3 h, and repeating the optimization 16 times to reduce the effects of noise. Further benchmarking
work has occurred in [30], comparing BO to neural networks and differential evolution by optimizing 37
parameters for cooling and subsequent evaporation to Bose–Einstein condensate (BEC) in a time-averaged
orbiting potential trap; this showed the significant advantage of BO over neural networks and differential
evolution.

While these results are promising in terms of applying BO for the preparation of ultra-cold atom systems,
more systematic comparisons between different methods are required to facilitate the choice of the most
suitable algorithms. BO as well as other ML methods can have a significant computational overhead for
calculating the next parameter sample due to the required training and evaluation of the underlying ML
model. On one hand, this calls for an efficient implementation of ML methods. But on the other hand, a
quantification of the overhead versus the runtime of the cold-atom experiment is required to decide between
ML methods and less computationally expensive heuristic methods.

Another major challenge that influences the choice of the best optimization method is the inherently
noisy data that is produced in changing environments, especially for mobile experiments. Atom numbers
and temperatures are typical optimization objectives. They are calculated from the fitting of the atom cloud
absorption profiles. This fitting can be very sensitive to fluctuations, especially at low atom numbers. This
can degrade the performance of algorithms to varying degrees, depending on the underlying strategy. This
difficulty can be tackled in a range of ways. For example, one can take the average of several optimization
cycles [29]. An alternative approach is to adjust the algorithm, for example by resampling old population
members in a differential evolution algorithm [24], or by using a cost function which is less sensitive to
noise [28–30]. Many of the alternative cost functions have the additional benefit of requiring less
computation time by using parameters such as OD as an indicator for atom number or phase space density.
It has also been recently shown that one can overcome the problem of a changing environment by using
reinforcement learning, as performed in [33].

In this paper, we study and benchmark how noise and dimensionality influence the performance of a
large set of heuristic and ML optimization methods. We consider the heuristic methods particle swarm
optimization (PSO) [34, 35] and its adaptation LILDE [24], differential evolution (DE), covariance matrix
adaptation evolution strategy (CMA-ES) [36] and downhill simplex, also known as Nelder–Mead
search [37]. As a baseline uninformed method, we include random sampling (RS) from a uniform
distribution. In addition, ML-based BO in various implementations [38, 39] is considered, with particular
emphasis on algorithms that can handle noise in an explicit manner. Moreover, an extension of BO is
studied, which is explicitly designed to cope with noisy data without the need for repeated optimization or
resampling [40]. Although the extended BO method is more elaborate, we developed an efficient
implementation that facilitates the optimization of a large number of parameters using a fitted atom number
as a cost function with a small computational overhead [41].

2. Optimization algorithms for tuning experimental parameters

There is a large number of algorithms that are suitable for minimizing different kinds of objective functions.
The laboratory experiments considered in this work can be regarded as a function f : p ∈ X ⊂ Rd 7→ R that
maps a d-dimensional vector of experimental control parameters p to the objective value f(p). The training
data fed to the minimization methods f̃(p) = f(p)+ ϵ is corrupted by a random noise ϵ that is assumed to
have zero mean. In many cases, its probability distribution is well modeled by a normal distribution with a
constant variance η2noise, i.e. ϵ∼N (0,η2noise). The goal is to find the parameter vector pmin that minimizes
E[ f̃(p)] = f(p) in the search space X . The function f(p) is in general non-convex and derivative information
is unattainable, rendering gradient-based methods inappropriate. Since d has a moderately large value (here
d= 10 or d= 18) and the objective is expensive to evaluate, an exhaustive search in the full space X is also
infeasible. In such a case, one often resorts to heuristic minimization strategies. These do not guarantee

2



Mach. Learn.: Sci. Technol. 5 (2024) 025022 O Anton et al

convergence to a global minimum, however they can explore larger parameter spaces and are to a certain
degree robust towards noise.

2.1. Heuristic minimizationmethods
All considered heuristic strategies start from a random population of N vectors which is updated in each
iteration.

PSO is a global minimization strategy that draws its inspiration from the field of sociobiology and the
intelligence of animal groups (e.g. a flock of birds) [42]. The swarm members move with individual velocities
through the parameter space. These velocities are updated by a randomized weighted sum of the current
velocities, velocities directed to the individual best seen parameters pbest,i, i = 1, . . . ,N, and the best seen
parameters of the whole swarm pbest, swarm.

Differential evolution (DE) is an evolutionary optimization algorithm inspired by the mutation,
crossover and selection processes occurring in nature [43]. In the mutation step, for each member pi of the
population, a mutated genome is created as pmut = a+ F(b− c), where F is the differential weight and a,b,c
are distinct randomly selected population members. Random entries of pi, selected according to a crossover
probability, are replaced with the mutated genome pmut, forming a new candidate. The candidate replaces pi
in the next population if its objective value is lower.

The covariance matrix adaptation evolution strategy (CMA-ES) is another evolutionary algorithm [44].
It draws its N population members from a multivariate normal distributionN (µ,Σ) with mean vector
µ ∈ Rd and covariance matrix Σ ∈ Rd×d. In contrast to DE, it does not replace members on an individual
basis, but uses a weighted subset ofM<N members with the lowest objective values to update the mean µ
and covariance matrix Σ for the next iteration.

Downhill simplex (simplex) or Nelder-Mead search also updates a population of vectors in each
iteration [37]. However, this population is a simplex of only N= d+ 1 vectors (i.e. a triangle in R2, a
tetrahedron in R3 etc) which is much smaller than typical populations of DE and CMA-ES. New candidates
are created through processes called reflection, expansion and contraction of the worst-performing vector of
the simplex. If those three candidates do not lead to a specific improvement, the simplex shrinks towards its
best performing vector pbest, simplex. Due to the small population, simplex is a more local minimization
method that typically converges faster than other heuristic methods as in the worst case d+ 2 evaluations, or
in the best case only one evaluation of the objective is required per iteration.

None of the above algorithms handle noise in an explicit manner. However, the population updates are
often based on many vectors and corresponding objective evaluations (e.g. N individual comparisons for DE,
averaging overM vectors for CMA-ES) such that the impact of noise is diminished. A different approach is
taken in the LILDE extension of DE. This algorithm re-evaluates members that have survived a specific
number of generations [24], further reducing the impact of noise by removing population members whose
fitness value is only good due to noise. We speculate that PSO and simplex can be most severely misled by
noise. For these methods a single vector and corresponding noisy evaluation can act as an attractor of the
population (pbest, swarm for PSO and pbest, simplex for simplex). As long as no lower value is observed, these
vectors are not updated.

2.2. Model-based BOMethod
As described in the previous section, heuristic methods use the state of the current population to generate
members of the next generation. Information on members of previous populations has no direct effect. Due
to this sparse use of information on previous evaluations of f̃(p), heuristic methods require often many trials
and there is a risk they will only converge to local and not necessarily global minima. Model-based
optimization seeks to avoid these problems by using all previous evaluations to fit some kind of regression
model in each iteration. One of the most common model-based optimization methods is BO [45].

BO is a sequential method that uses previous observationsD = { f̃(p1), . . . , f̃(pk)} to train a stochastic
ML model which is used to determine a new parameter vector pk+1 to evaluate. The stochastic model, a
Gaussian process, can be regarded as a posterior distribution over random functions given the
observations [46]. For each parameter vector p∗ it predicts a normal distribution of possible function values
y(p∗)∼N

(
µ(p∗),σ2(p∗)

)
, where
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0
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Here, µ0 and σ2
0 are hyperparameters for the mean and variance of the objective function. The covariance

matrix [Σ]ij = σ2
0κ(pi,pj)+ η2δi j depends on a positive definite covariance function κ(·, ·) and on an

additional hyperparameter for the noise variance η2. The best choice of the covariance function depends on
the assumed differentiability of the objective f(p) [46]. In this work, the considered BO optimizers use the
Matérn-5/2 covariance function,

κ(p1,p2) =

(
1+

√
5d+

5

3
d2
)
exp

(
−
√
5d
)

(3)

with d=

√√√√ d∑
i=1

(p1,i − p2,i)
2

l2i
. (4)

The length scales l1, . . . , ld, at which the covariance decreases, are another set of hyperparameters. The value
of all hyperparameters is determined by their maximum likelihood estimate [46].

The next sampling point pk+1 is chosen by some infill criterion. A common choice is to maximise the
expected improvement of the predicted objective value distribution

EI(p∗) = E [max(0,ymin − y(p∗))] (5)

with respect to the lowest seen objective value ymin.
In the noiseless case (η2 = 0), the predicted variance σ2(p∗), and thus EI(p∗), tends to zero if the number

of neighbouring observations increases. Therefore, a local minimum will always be eventually escaped, since
EI(p∗) will be larger in parameter regions with less data and more predicted variance. In fact, it has been
shown that the expected improvement strategy converges in the noiseless case at a near optimal rate to the
globalminimum if the objective belongs to the reproducing kernel Hilbert space with kernel σ2

0κ(p1,p2) [47].
In the noisy case, σ2(p∗) and thus EI(p∗) do not tend to zero, even if p∗ is an observed point. This can

lead to an oversampling of local minima. Moreover, the best observed value ymin might be corrupted by noise.
Several extensions of BO have been proposed for noisy settings [40, 48]. In this work, we focus on the noisy
expected improvement strategy (NEI) [40]. For this, F sets of random function values Fi = {yi,1, . . . ,yi,k},
i = 1, . . . ,F are drawn from the noisy Gaussian process posterior at the observed points p1, . . . ,pk. The
fantasiesFi are thus possible values of f(p) that are compatible with the noisy observationsD. EachFi is used
to train a noiseless Gaussian process and to determine a noiseless expected improvement EIi(p∗) with respect
to the corresponding minimum ymin, i =min(Fi). The NEI is then defined as the average over the fantasies

NEI(p∗) =
1

F

F∑
i=1

EIi (p
∗) . (6)

2.3. Different implementations of BO
BO is a relatively complex method for which implementation details can have a large influence on the
convergence and computational overhead. Therefore, in this work three different implementations of BO are
considered, the open-source package FMFN [39], the open-source AX framework [38] provided by Meta
Platforms Inc. and the BO optimizer (JCM) included in the commercial software JCMsuite, developed by
some of the authors.

One important implementation difference between the three methods is the strategy used to maximise
acquisition functions. Both, EI(p∗) and NEI(p∗) can be very hard to maximise since at each sample position
the acquisition value is zero. This can lead on one hand to a large number of local maxima between the
samples, and on the other hand to extremely small acquisition values for large parts of the parameter space.
Therefore, the chosen maximization strategy can greatly impact the performance of the BO algorithm.

The open-source package FMFN [39] uses the best result from 10 000 random samples of the acquisition
function and 10 local L-BFGS-B optimizations started from random initial positions. Random sampling can
result in samples of low quality for larger dimensionality d of the parameter space. For example, for d= 18
parameters, 10 000 samples correspond to effectively about 1.7 samples per dimension which can be
considered extremely sparse. The AX framework first evaluates the acquisition function at, by default, 1000
random positions. The best 20 positions are further optimized by the local L-BFGS-B or SLSQP method. We
speculate, that 1000 initial random samples can be again too sparse to find good initial positions for a local
optimization. The JCM optimiser performs an initial DE maximisation of the acquisition function. We
believe that this global heuristic maximisation approach is more appropriate given the increasing number of
local maxima of the acquisition function. The obtained maximum and the previous sample with the lowest
objective value are then tuned by a local L-BFGS-B optimization.
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Another important difference in implementation concerns the handling of noise. AX and JCM can detect
the noise level η2 in order to perform a maximisation of NEI(p∗). FMFN assumes by default that the
objective function is noiseless. The same holds for the JCM optimizer with disabled noise detection.

2.4. Efficient implementation of noisy BO
BO is often applied to optimize very expensive problems such as tuning the hyperparameters of other
complex ML algorithms [49]. For these applications, the computational overhead of training and evaluating
Gaussian processes is often negligible in comparison with testing a hyperparameter set by, e.g. training a
deep neural network for several minutes or even hours. In contrast, the few-seconds runtime of a cold atom
experiment is much shorter. Within our collaboration [41], we have therefore developed different strategies
with the goal of limiting the computational overhead of BO based on noisy experimental data. For this work,
the methods were implemented into the JCM optimizer.

Principally, the NEI approach increases the computational effort of BO by the factor F representing the
number of noiseless Gaussian processes. In order to decrease this overhead, we do not optimize the length
scale hyperparameters of each noiseless Gaussian process, but instead use the length scale hyperparameters of
the noisy Gaussian process as proposed in [40]. Moreover, due to identical length scales, the noiseless
covariance matrix [Σ]noiselessij = σ2

0κ(pi,pi) is identical for each of the F Gaussian processes up to different

optimal prefactors σ2
0 . Therefore, the expensive step of the matrix inversion (i.e. Cholesky decomposition)

only has to be done once.
To further decrease the waiting time for the next sample, the numerical effort of the sample computation

(e.g. the maximum number of DE iterations) is adapted such that the computational overhead is not larger
than the runtime of the experiment itself [50]. Finally, we follow the batch optimization strategy in [40] to
compute the next sampling point already during a pending evaluation of the objective. Taking all approaches
together, it is often possible to provide good new sample values with negligible waiting time between
evaluations of the experiment.

3. Experimental set-up

The apparatus used within this paper is described in figure 1. It is based on a commercial RuBECi vacuum
system, alongside a 2D+MOT platform, magnetic coils [51], and an optical system for the 3D MOT beams.
A rendering can be seen in the box labelled ‘physics package’ in figure 1. The vacuum chamber consists of
two glass cells separated by a differential pumping stage. One chamber is used to create a 2D+MOT which
acts as an atom source. The second chamber acts as a ‘physics package’, where atoms are trapped in a
3D-MOT before further cooling. Here, two separately controllable coils, aligned along the x-axis, provide a
magnetic gradient. Additionally, two pairs of Helmholtz coils, aligned along the y- and z-axis of the
experiment, are used to generate offset fields for cancelling stray magnetic fields. The laser light for trapping
in the 3D-MOT is fed into the system via three collimators providing beams with a diameter of 13.2 mm
which are retro-reflected. The atoms are imaged using absorption imaging.

As shown in the ‘optical setup’ box of figure 1, cooling (F= 2→ F ′ = 3) and repumping
(F= 1→ F ′ = 2) light is generated via two micro-integrated DFB-MOPA modules [52]. The lasers are
frequency stabilized via offset locks to a reference laser locked to the 85Rb F= 3→ F ′ = 3/4 crossover. The
optical power delivered to the experiment is modulated and switched via acousto-optic modulators (AOM),
then combined on a 50:50 fibre splitter, before additional extinction is provided by shutters. No active
intensity stabilization is present in the setup.

In short, the experimental sequence starts with the loading of the 3D-MOT by a 2D+MOT, followed by
the compression and molasses phases, and ends with the imaging of the atoms. A selection of experimental
parameters from this sequence will be used in order to perform the benchmarking.

During the MOT phase, the detuning and optical power of the cooling and repumping lasers can be
varied, as well as the currents delivered to both gradient coils and the z-offset coils.

Within the molasses phase, the power and detuning of cooling and repumping lasers can be ramped over
a variable duration or switched, and the coil currents can also be modified as in the MOT phase. These
tunable molasses parameters are the start point of the ramp for the optical power of the repumping, the
endpoints of the ramps for the optical power of cooling and repumping, the current applied to all coils
responsible for generating offset fields, and the overall length of the molasses phase. Since the molasses phase
is short compared to the rest of the sequence, this parameter does not significantly influence the run-time
and thus the result of the comparison. This sequence is used for all measurements presented in the following
benchmarking measurements. A list of the parameters including their limits can be found in table A1 in
appendix A.
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Figure 1. A block diagram showing the relevant parts of the experimental setup used within this paper, alongside a rendering of
the apparatus (on the right). Dashed lines indicate electrical and solid lines optical signals, similarly green shading represents
electronics components and yellow shading optical components.

Figure 2. Schematic (block diagram) of the control software showing the server’s workflow running the experiment with its
sub-processes. Using the client, a sequence is created to be used by the server for compilation and later used by the sequence
player. Feedback for the optimizer is provided using the acquired data via the data evaluation software. An adapted sequence is
then fed into the compiler.

After a sequence is performed by the experiment, absorption images are evaluated and post-processed in
tailored Python analysis code [53]. Atom number and optical density can be evaluated via either a full 2D
Gaussian fit, or via two 1D fits of row and column sums. This information is then fed into the optimization
algorithm which uses the result to generate a new sequence. This is shown in figure 2.

The offset frequencies, optical powers, coil currents, and timings can be controlled via the Sinara system,
a schematic of which is shown in the ‘Control electronics’ box of figure 1. The Sinara system is a field
programmable gate array (FPGA) based real-time system, developed by Quartiq [54]. The FPGA board is
augmented with digital in/out breakout boards as well as DDS and DAC cards for controlling the experiment.
By using these cards we control our frequency offset locks, coil drivers, shutters and AOMs. The control
software of the experiment is a server-client based system using Python. It is described in appendix D.

4. Results

In the following sections we present benchmarking results of the performance of several optimizers using
post-molasses atom number after 10 ms of free expansion as the test problem. The problem is chosen due to
its resilience to false positives and the potential to adjust the noisiness of the data by worsening the imaging
lasers frequency lock and reducing the rubidium gas pressure in the 2D+MOT. The fitness function for this
problem is f =−Natoms, which converts the maximisation of atom number into a minimization problem as
required by the optimizers used. We also note that this experiment typically takes approximately 2.5 s per
shot.

In the 10-dimensional case we vary parameters that influence the number of trapped atoms, such as laser
frequencies, optical powers and magnetic fields. A complete list of the parameters chosen including the limits
can be found in the table in appendix A. The MOT loading time was excluded due to the effect it would have
on the duration of the experiment and thus the comparability of the results. In addition, we included the
start of the molasses phase: the frequencies of the cooling and repumping lasers, as well as the starting point
of the power ramp of the cooling laser.
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Figure 3. Development of the fitness function (maximization of atom number) over time for different optimizers for (a) a
10-dimensional parameter space and (b) a 18-dimensional parameter space. Each algorithm runs for 400 iterations. The lines
represent the mean value, while the shaded areas show the standard deviation over 10 repetitions.

For the 18-dimensional case we extended this list of parameters to include all remaining variables
influencing the molasses, namely the endpoint of the cooler power ramp, the start and end point of the
repumping power ramp, the offset fields during molasses, and the temporal length of the molasses phase.
Since the length of the molasses phase is short, including this as an optimization parameter does not
noticeably affect the results of the comparison. The power ramps are linear and frequency is instantaneously
switched.

The optimizers were tested using the following procedure. Each algorithm is run using the default
settings for 400 iterations and repeated 10 times to obtain an average performance. The choice of 400
iterations allows for many algorithms to reach a plateau whilst also limiting the time needed for data
acquisition to a reasonable amount. In order to remove systematic errors due to experimental drift, the
algorithms are interleaved rather than run sequentially, that is, each algorithm is run once, one after another,
and then this process repeated 10 times. Parameter limits are chosen such as to reduce the size of the
parameter space where no atoms are measured.

In the following figures, we show the evolution of the mean fitness (i.e. atom number) over time, with the
shaded area representing the standard error of the 10 runs. The optimizers received no initial set and were
initialized randomly within the defined parameter space.

As described in section 2, in order to provide comprehensive benchmarking, we compare at least one
algorithm per family: CMA-ES; the BO methods JCM with noise detection, FMFN and AX; PSO; variations
on differential evolution LILDE and DE; RS; and simplex. We benchmark for both 10- and 18- dimensional
space as well as two different noise levels.

4.1. 10-dimensional optimization
Results for 10-dimensional optimization are shown in figure 3. RS is considered a baseline optimization that
does not take the information from previous evaluations into account. In our benchmarking, it swiftly finds
sets of parameters producing a signal, which indicates that a signal can be found throughout the majority of
the parameter space. Although RS is considered a baseline method, we see that simplex consistently performs
worse, reaching a maximum of (2.0 ± 0.7)× 108 atoms compared to (3.9 ± 0.2)× 108 atoms for RS, as well
as taking longer to reach these values. As described in section 2.1, simplex is a local minimization method
and does not incorporate strategies to limit effects of noise. Noisy observations can deteriorate the algorithm
by attracting population members to regions with relatively low performance.

Following simplex and RS in performance are DE, LILDE and PSO. All three reach similar fitness values
((4.5 ± 0.3)× 108, (4.7 ± 0.2)× 108 and (4.7 ± 0.2)× 108 atoms respectively) but do not plateau within
the given number of iterations. The graphs show jumps in performance at certain times for all three. This is
most visible in the LILDE algorithm at 400 s and 1000 s. The jumps are due to these optimizers relying on a
generational approach where gained knowledge is collected and combined after a defined number of
iterations to generate new sets. The updated process produces a sharp increase in the reached fitness value.
This indicates that an adjustment of the default generation size may increase the performance.

Bayesian optimizers FMFN and AX lie in third and fourth place. Both perform surprisingly equally in
terms of the reached fitness with (5.1 ± 0.3)× 108 and (5.2 ± 0.2)× 108 atoms, respectively. In terms of
optimization speed, they perform similarly to begin with, however, over the full iteration number a clear
advantage of FMFN over AX is visible. We attribute the significant computational overhead of AX to the
more elaborate computation of expected improvement which requires predictions from F (default F= 20)
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Gaussian processes instead of only one. Based on the plateauing of fitness it seems that neither optimizer
would significantly benefit from a higher number of iterations.

CMA-ES performs second best. Here we see a fitness of (5.4 ± 0.3)× 108 atoms which is close to the best
reachable value. Upon reaching 400 iterations, the fitness is still increasing. As a result, it is possible that a
higher fitness value could be reached with further iterations and it may perform similarly to the best
algorithm given enough time. It is surprising that such a simple optimizer still yields such good performance
compared to more elaborate approaches. As such, we conclude that the described approach of updating the
mean vector from a set of points is robust against the noise levels in this problem.

The best performing optimizer in our list is the JCM Bayesian optimizer, which was extended for this
work. It outperforms the others from start to end. The computation time is short compared to AX due to
strategies like precomputing next samples and sharing information between the F Gaussian process
regressions (see the theory section 2.3). It reaches the best fitness ((5.6 ± 0.3)× 108 atoms) after≈1500 s
reaching a plateau afterwards.

Analyzing parameters for optimal fitness gives us an indication of the experiment’s sensitivity to their
variation and their significance within the sequence. In the 10-dimensional case, appendix B displays the
final parameters and their standard deviation for the 4 best performing optimizers. Values for other
optimizers are omitted due to lower relevance, potentially being far from the absolute maximum.

4.2. 18-dimensional optimization
In the 18-dimensional case we find that all optimizers perform consistently worse compared to the
10-dimensional case. Since all limits stayed the same as those used in the 10-dimensional case, one would
expect the optimizers to reach the same, or possibly better, fitness as before. We assume that the larger
parameter space makes the optimization problem much harder such that only lower fitness values are found
within the same number of iterations. However, we note that we are unable to rule out systematic drifts in
the experiment between the time the 10- and 18-dimensional data was taken.

When we look at each optimizer individually, we find that FMFN is now the worst performing optimizer,
notably worse even than simplex and RS. We attribute this behaviour to its very sparse search for good
samples in higher dimensional problems, as described in section 2.3.

LILDE and DE now barely perform better than RS. By default, in these algorithms, the population size is
15 times the number of dimensions. Therefore, for d= 18 dimensions, there are 270 evaluations per iteration
meaning that these optimization approaches reduce to effectively random sampling within 400 iterations.

As in the 10-dimensional example, the high overhead of AX results in it taking far longer than any other
optimizer to finish 400 iterations. Despite the higher computational effort and thus long optimization times,
AX still performs well for higher dimensional problems, reaching a plateau of (4.6 ± 0.3)× 108 atoms.

PSO performs similarly to AX in terms of fitness (reaching (4.4 ± 0.3)× 108 atoms) but takes much less
time.

The best performing optimizers are again CMA-ES and the JCM optimizer reaching similar fitness values
of (4.7 ± 0.3)× 108 and (4.8 ± 0.3)× 108 atoms, respectively. CMA-ES takes marginally less time for 400
iterations, and does not reach a plateau value, therefore its fitness may eventually exceed the JCM optimizer.
Despite this, the JCM optimizer reaches a close-to-optimal fitness value far more quickly than any other
optimizer.

In conclusion, one can see the commercial Bayesian optimizer, JCM, performing best, closely followed by
CMA-ES representing the best open-source optimizer available for this use case. Other optimizers perform
consistently worse and degrade in performance, when compared to the lower dimensional problem. We see
this most prominently for FMFN. As with the 10-dimensional case, table appendix C presents the final
parameters and their corresponding standard deviations for the top four performing optimizers. Values for
other optimizers are once again omitted due to lower relevance, as they may significantly deviate from the
global maximum.

4.3. Influence of noise on the experiment optimization
In order to explore the robustness of the optimizers to noise, we tested the algorithms at two different noise
levels for the 10-dimensional problem described above. The different noise levels were achieved in two ways:
by changing the dispenser current in the 2D+MOT we can reduce the number of atoms loaded into the 3D
MOT; and by changing the PID parameters of the imaging laser we can introduce instabilities in its frequency
and thus in the number of atoms measured. The lower atom number reached in the higher noise test case is
due to the experimental conditions (i.e. a reduced loading rate) rather than the performance of the
optimizers. The two noise levels have a fluctuation in atom number of±5.6% and±19.5%, where we note
that the lower noise level is the typical performance of our experiment. We compared the highest performing
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Figure 4. Development of the fitness function (maximization of atom number) over time for the highest performing optimizers
with different noise levels. Figure (a) shows optimization with an atom number noise level of±5.6%, while (b) shows the same
for a noise level of ±19.5%. The JCM optimizer is tested with and without noise detection activated, with this comparison
highlighted in the insets. The reduced atom number reached in (b) is due to the experimental conditions choosen to increase the
noise level. Each algorithm runs for 400 iterations. The lines represent the mean value, while the shaded area shows the standard
deviation over 10 repetitions.

optimizers, namely AX, FMFN, CMA-ES and JCM, alongside the JCM optimizer without its noise detection
feature.

In the low noise case (figure 4), the same trends are visible as discussed in section 4.1. However, by
comparing the JCM algorithm with and without noise detection we can see that the additional feature does
not increase early optimization speeds, instead it results in a slightly higher fitness value of (5.6 ± 0.3)× 108

(with noise detection) compared to (5.2 ± 0.2)× 108 (without noise detection) atoms and in that higher
fitness being reached faster.

In the high noise case, all five algorithms tested perform relatively similarly in terms of fitness. FMFN
reaches the lowest fitness value ((1.03 ± 0.06)× 108 in 2000 s), followed by AX at (1.08 ± 0.04)× 108 in
4800 s, JCM with and without noise detection reach (1.07 ± 0.03)× 108 and (1.09 ± 0.04)× 108 atoms in
2000 s, and finally CMA-ES reaches a fitness value of (1.10 ± 0.03)× 108 atoms in 1900 s. Although we have
ranked the algorithms here according to the mean fitness value, the differences between them are almost all
within error margins. The main differences in the algorithms can actually be seen in the speed of
optimization. For example, AX is the slowest optimizer at all points in the process, and FMFN slows
dramatically after performing fastest in very early stages.

Due to the additional noise detection capabilities of the algorithm developed here, it was expected to
perform the best in a high noise environment. The benchmarking data shows that it does indeed optimize
faster than all other optimizers and to a higher fitness than all optimizers except CMA-ES. In fact, it reaches
close to its final value within 720 s. This is roughly half the time taken for CMA-ES to reach the same value.
We assume that CMA-ES performs so well in terms of final fitness due to averaging over many vectors which
limits the effect of noise (section 2.1). Nevertheless, the noise detection function provided by JCM
significantly improves the speed of optimization compared to the algorithm without it, and enables it to
perform better than the other BOs tested. In general we find that most optimizers do not reach a plateau in
the available iterations.

In summary, the influence of noise extends the iterations and thus time needed for the optimization. It
also generally reduces the initial speed of optimization considerably, which means that more time is required
to achieve a ‘good enough’ value. There is a trade-off in performance between speed and final fitness, with
CMA-ES providing a marginally better final fitness, and the JCM with noise detection algorithm reaching a
high fitness value much quicker than other algorithms.

5. Outlook

In conclusion, we tested different optimizers and showed their performance for different dimensionalities.
Additionally, the developed implementation of JCM’s efficient noise detection feature was benchmarked
against the three best performing algorithms at two different noise levels. The best performing optimizers
were found to be JCM (with noise detection) and the open source CMA-ES, with JCM providing faster
optimization.

Optimization of the problem using 18 dimensions rather than 10 resulted in a worse performance for all
optimizers. This indicates that optimizing more parameters at once is not always better when it comes to the
optimization of real world experiments. We also tested the influence of noise on optimizer performance,
finding that with increased noise AX, JCM, FMFN and CMA-ES reach similar fitness, however, JCM and
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CMA-ES continued to offer the best performance in terms of speed and fitness. We were able to confirm that
the NEI strategy implemented into the JCM optimizer for this work improves the speed of optimization and
in some cases also the final fitness value.

When choosing a suitable optimizer for an experiment, one must make a trade-off between speed, final
fitness, and cost. The open source algorithm CMA-ES provided a marginally better final fitness, whereas the
JCM optimizer with noise detection reached a high fitness value much quicker than other algorithms.
Therefore, CMA-ES would be better suited to an experiment which would be optimized once or infrequently.
However, for experiments requiring very regular optimization, such as mobile experiments, the speed
benefits of the JCM optimizer would enable more efficient operation.

The results presented could be extended further via investigations at longer iteration numbers or in more
noisy conditions.
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Appendix A. Experimental parameters

Table A1. Optimization parameters and their limits. For the 10 parameter optimization, the parameters up to the line were used, for 18
parameter optimization, all parameters were used. The optimizer values are the values used by our control system to run the experiment.
The physical frequencies are quoted as offsets from the (F= 2→ F ′ = 3) and repumping (F= 1→ F ′ = 2) transition respectively. The
conversion factors of the voltage to magnetic fields are not given for the gradient coils. They can generate offset fields as well as gradient
fields depending on the voltage of the other gradient coils so no limit independent of the setpoint of the other coil can be given.

Optimizer values Physical quantities

Stage Parameter Lower Upper Lower Upper

MOT Cool—frequency 143.0 MHz 146.5 MHz 2.16 MHz −25.84 MHz
MOT Repump—frequency 317 MHz 323 MHz −32.3 MHz 69.7 MHz
MOT Cool—power 0 dB 20 dB 30 mW 4 mW
MOT Repump—power 0 dB 30 dB 3.4 mW 0.1 mW
MOT Gradient coils—X1 −4 V −2.5 V — —
MOT Gradient coils—X2 2.5 V 4 V — —
MOT Offset coil—Z 0.6 V 1.0 V 1.4 G 2.3 G
Molasses Cool—frequency 165 MHz 175 MHz −174 MHz 254 MHz
Molasses Repump—frequency 310 MHz 317 MHz −152 MHz −33 MHz
Molasses Cool—power start 0 dB 20 dB 30 mW 4 mW

Molasses Repump—power start 10 dB 20 dB 1.9 mW 0.2 mW
Molasses Cool—power end 18 dB 30 dB 5 mW 0.1 mW
Molasses Repump—power end 18 dB 30 dB 0.4 mW 0 mW
Molasses Gradient coils—X1 −0.1 V 0.1 V — —
Molasses Gradient coils—X2 0 V 0.2 V — —
Molasses Offset coil—Z −0.3 V 0 V −6.8 G 0.0 G
Molasses Offset coil—Y −0.1 V 0.1 V −6.8 G 6.8 G
Molasses Duration 10 ms 30 ms 10 ms 30 ms

Appendix B. Best parameters reached in the 10 dimensional case

As discussed in section 4.1, parameters for optimal fitness gives us an insights into the experiment’s
sensitivity to their variation and their significance within the sequence. In the 10-dimensional case, table B1
displays the final parameters and their standard deviation for the 4 best performing optimizers. Values for
other optimizers are omitted due to lower relevance, potentially being far from the absolute maximum.

Obviously, all optimisers converge into the same global maximum. Therefore, a smaller standard
deviation between all 10 runs of the optimisers is associated with a steeper gradient around the found
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Table B1.Mean values of the input parameters, including their standard deviation, used to reach the best fitness. The parameters of the
four best performing optimizers are shown. A big standard deviation shows either little influence of this parameter on the result or the
optimizer having difficulties in finding the optimal set.

Stage Parameter BO / JCM CMA-ES FMFN AX

MOT Cool—frequency (MHz) 145.08 ± 0.08 145.09 ± 0.07 145.0 ± 0.1 145.0 ± 0.1
MOT Repump—frequency (MHz) 319.1 ± 0.4 319.0 ± 0.2 319.0 ± 0.4 318.9 ± 0.3
MOT Cool—power (dB) 5 ± 5 6 ± 3 7 ± 2 6 ± 2
MOT Repump—power (dB) 2 ± 2 4 ± 2 8 ± 5 4 ± 2
MOT Gradient coils—X1 (V) −3.72 ± 0.08 −3.80 ± 0.08 −3.8 ± 0.2 −3.7 ± 0.1
MOT Gradient coils—X2 (V) 3.96 ± 0.05 3.98 ± 0.02 3.97 ± 0.05 3.9 ± 0.2
MOT Offset coil—Z (V) 0.82 ± 0.08 0.80 ± 0.09 0.8 ± 0.1 0.82 ± 0.04
Molasses Cool—frequency (MHz) 172 ± 2 171 ± 2 171 ± 2 171 ± 2
Molasses Repump—frequency (MHz) 312 ± 2 313 ± 3 313 ± 2 312 ± 3
Molasses Cool—power start (dB) 10 ± 3 15 ± 4 11 ± 4 10 ± 6

maximum. This highlights the parameter as influential. For shallow maxima, the scattering will be bigger
since it is harder to differentiate between noise and actual improvement. Such a parameter would be less
important, since a deviation does not affect the maximal achievable fitness much.

We evaluate the landscape around the maximum of three selected parameters, the detunings of the
cooling and the repumping lasers, and the attenuation of the RF power provided to the cooling AOM during
the MOT phase. These parameters were chosen as examples that exhibit certain features. The detuning of the
cooling laser describes a precisely defined sharp maximum; the detuning of the repumping laser presents a
shallow maximum; and finally, the RF attenuation scales non-linearly with the optical power and presents a
large plateau. The attenuation parameter is important outside the constant region, but it loses any
significance in the plateau, as no further improvement can be achieved. Since we saw that both JCM and
CMA-ES found the global maximum, we evaluate their behavior first to assess the shape of the landscape.

First, we look at the frequency of the cooling laser. It presents a similarly small standard deviation for
both optimizers (0.08 MHz for JCM and 0.07 MHz for CMA-ES) and thus a sharp maximum. As expected,
this parameter has a significant influence on the final atom number since it is a key parameter for the
achievable trap depth.

In contrast, the repumping laser has a significantly smaller influence, as highlighted by the substantially
higher standard deviation of 0.4 MHz for JCM and 0.2 MHz for CMA-ES. The presence of repumping is
necessary to re-excite the small fraction of atoms that fall into a dark state during the trap loading, but the
detuning itself does not contribute significantly to the final number of trapped atoms. This leads to a shallow
maximum in the landscape and thus to a bigger standard deviation of the optimized parameter.

Finally, we can look at the attenuation of RF power supplied to the cooling AOM during the MOT phase.
Both JCM and CMA-ES identify the plateauing area between 0 dB and 10 dB: JCM finds a mean value of
(5 ± 5) dB, while CMA-ES (6 ± 3) dB. At attenuation values that are higher than 10 dB the atom number
falls since the trap depth is reduced.

It is also interesting to analyse the parameter behaviour for AX and FMFN, which perform well, but do
not match the high fitness levels reached by JCM and CMA-ES. The standard deviation of the frequency of
the cooling laser (0.1 MHz) is slightly bigger for both compared to JCM/CMA-ES. The actual parameter
values differ by 0.08 MHz, which, when tested experimentally, leads to a 0.8% decrease in atom number. A
similar value and standard deviation is reached for the repumping detuning. The main differences occur in
the case of the attenuation of the RF power to the AOM. The standard deviation is significantly smaller with
2 dB compared to JCM (5 dB) and slightly smaller compared to CMA-ES(3 dB). The smaller standard
deviations indicate that FNFM, AX and CMA-ES focus more on this parameter than JCM, despite the
existance of other more influential parameters. If an algorithm focusses on the wrong parameter, more
iterations overall are needed to reach the same fitness value. Evidence for this can be seen in the lack of fitness
plateau for some of the optimizers. Additionally, small deviations add up. For example, if a single parameter
(the cooling detuning) causes barely visible deviation of 0.8%, then across 10 parameters, this is a loss of 8%.

We can see exactly this behavior for AX and FMFN.

Appendix C. Best parameters reached in the 18 dimensional case

As in the 10-dimensional case for JCM, CMA-ES, PSO and AX, we can examine the experiment’s sensitivity
to parameter variation and thier significance through the standard deviations displayed in table C1. In this
case, we examine the detunings of the cooling and repumping lasers, as well as the attenuation of the cooling
laser during the MOT phase.
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Table C1.Mean values of the input parameters, including their standard deviation, used to reach the best fitness. The parameters of the
four best performing optimizers are shown. A big standard deviation shows either little influence of this parameter on the result or the
optimizer having difficulties in finding the optimal set.

Stage Parameter BO / JCM CMA-ES PSO AX

MOT Cool—frequency (MHz) 145.0 ± 0.1 145.0 ± 0.1 145 ± 0.2 145 ± 0.1
MOT Repump—frequency (MHz) 319.1 ± 0.4 319.2 ± 0.4 318.5 ± 0.6 319 ± 0.2
MOT Cool—power (dB) 6 ± 3 7 ± 2 6 ± 5 7 ± 2
MOT Repump—power (dB) 5 ± 2 6 ± 3 3 ± 3 6 ± 2
MOT Gradient coils—X1 (V) −3.7 ± 0.2 −3.8 ± 0.2 −3.8 ± 0.3 −3.5 ± 0.2
MOT Gradient coils—X2 (V) 3.90 ± 0.07 3.95 ± 0.01 3.9 ± 0.2 3.6 ± 0.2
MOT Offset coil—Z (V) 0.9 ± 0.1 0.81 ± 0.09 0.8 ± 0.1 0.80 ± 0.06
Molasses Cool—frequency (MHz) 170 ± 2 170 ± 2 169 ± 3 170 ± 1
Molasses Repump—frequency (MHz) 312 ± 1 312 ± 2 313 ± 3 313 ± 1
Molasses Cool—power start (dB) 9 ± 5 9 ± 5 11 ± 8 11 ± 4
Molasses Repump—power start (dB) 15 ± 2 16 ± 3 15 ± 15 16 ± 1
Molasses Cool—power end (dB) 24 ± 2 23 ± 4 24 ± 4 23 ± 2
Molasses Repump—power end (dB) 22 ± 2 22 ± 3 24 ± 5 23 ± 1
Molasses Gradient coils—X1 (V) 0.02 ± 0.05 0.04 ± 0.04 −0.03 ± 0.06 0.00 ± 0.03
Molasses Gradient coils—X2 (V) 0.08 ± 0.05 0.13 ± 0.05 0.11 ± 0.08 0.09 ± 0.03
Molasses Offset coil—Z (V) −0.18 ± 0.07 −0.19 ± 0.08 −0.2 ± 0.1 −0.16 ± 0.03
Molasses Offset coil—Y (V) −0.01 ± 0.03 0.02 ± 0.02 0.02 ± 0.07 0.00 ± 0.02
Molasses Duration (ms) 18 ± 4 18 ± 5 14 ± 6 20 ± 3

The standard deviations of the cooling frequency for all considered optimizers is comparable to the one
achieved by AX and FMFN in the 10-dimensional case. For JCM and CMA-ES this highlights a deterioration
compared to the result in the 10-dimensional case.

The results for the detuning of the repumping laser do not seem to be affected by the increase of the
dimensionality for JCM, CMA-ES and AX, while PSO not only converges to a different value but also
presents a larger standard deviation. This shift in the detuning also leads to a lower achieved fitness value.

This behaviour repeats for the attenuation of the cooling AOM: JCM, CMA-ES, and AX now result in a
standard deviation of 2–3 dB, a value similar to that found by AX in the 10-dimensional case. The PSO
optimizer instead presents a larger standard deviation of 5 dB, probably due to the swarm approach in a
noisy environment.

In general we see that for multiple parameters the standard deviation became slightly bigger compared to
the 10 dimensional case. This, combined with the fact that the optimizers no longer reach the previous
fitness values, shows how these seemingly insignificant changes in total significantly affect the final fitness.
This underlines how optimizing many parameters at once is not necessarily beneficial for finding the best
parameter set in the case of noisy environments.

If we consider the significance of the additional parameters considered in the 18-dimensional case by
examining their standard deviations, we realise that some are more crucial than others. We find that, for all
optimizers, the parameters controlling gradient and offset coils have rather small standard deviations. This
shows their importance during the molasses phase: such a result is expected since the canceling of stray
magnetic fields during molasses is crucial. All the other additional parameters exhibit rather large standard
deviations, and are therefore of lower significance.

It is worth highlighting how the start and end points of the attenuation ramps of the AOMs, as well as the
overall duration of the molasses phase, exhibit large standard deviations in both CMA-ES and PSO. While
these variations do not significantly influence the atom number, which is chosen as the fitness function, they
are key parameters for another property of the cloud: its temperature. A fully optimised atomic ensemble is
ideally characterised by a high atom number and low temperature. Even though we rely on the atom number
as fitness fuction, we could partially take into account the atom temperature by applying the optimisation
algorithms to the cloud after some time of flight. Hotter atoms leave the detection zone faster as soon as the
trap is released, which will translate into a lower atom number whenever the atoms are hot enough to leave
the field of view before the detection. This is reflected in the smaller standard deviations associated with these
parameters (i.e. start and end points of the attenuation ramps of the AOMs, and duration of the molasses
phase) within JCM and AX.

Appendix D. Experimental control software

The control software of the experiment is a server-client-based system using Python. In our system the client
handles the graphical user interface and user-input to the experiment.
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The server runs on the experiment control PC. It connects to all devices needed to run the experiment
like cameras as well as Sinara, handles the communication between them and external software for data
evaluation, storage and optimization. The workflow within the software for running the experiment can be
seen in the server box of figure 2. Once the server receives instructions for a sequence, this table is compiled
into instructions executable by the Sinara system before being queued for execution in the sequence player.
After the sequence is played, the Sinara system signals to the server that data can be read out from devices.
The acquired data is sent for evaluation in external software and the results are sent back to the server. Back
at the server the data can be used for optimization processes which generate a new sequence using the
suggestions from the optimization algorithm selected.

A single sequence can consist of multiple time steps addressing many channels of the Sinara hardware.
The resulting table can become rather complex and thus laboratory routines can be optimized by the saving
and loading of previously played sequences. Here, each unique, played sequence is stored in a MySQL
database with a hash generated from its content for identification and to avoid duplication. Similarly, each
time a sequence is played, a measurement hash is created, which includes the time of execution and any
volatile settings like calibrations and camera settings. The measurement hashes are linked to the sequence
hash and can be used to identify saved data.

Absorption images are evaluated and post-processed in tailored Python analysis software we call Pical
(Picture analysis for cold atoms). Atom number and optical density can be evaluated via either a full 2D
Gaussian fit, or via two 1D fits of row and column sums. The software is also capable of analysing sequences
of pictures, which allows for the determination of the expansion rate or temperature of the cloud. One can
implement a range of other post-processing calculations such as calculating the phase-space density of the
cloud, or by evaluating an alternative cost function.
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