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Abstract

This thesis presents a study of the measurement of the top pair production cross section
in the semileptonic decay channel with soft muon b-tagging at the ATLAS detector
using early LHC data. A theoretical overview of current research in particle physics,
motivating the construction of the LHC and the ATLAS detector is discussed followed

by the main motivations behind a measurement of the top cross section.

A summary of my work undertaken for the semiconductor tracker (SCT) collaboration
on ATLAS, including shift work and the refurbishment of the SR1 barrel sector and spare
endcap disk is detailed. Following this the electron isolation in top and Z boson events
was examined with Monte Carlo simulated events to optimise the selection criteria for

electrons from W boson decay in top events.

As part of the top cross section measurement, the efficiency and scale factor, compared
to Monte Carlo studies, of using a Xfmtch cut on soft muons was calculated using the
decay of the J/v in early LHC data. The last chapter details the development of an
analysis framework and measurement of the top pair production in the semileptonic
decay channel with soft muon b-tagging. This measurement builds on the work in the
previous chapters utilising both the electron isolation requirement from Monte Carlo
simulations and the scale factor on the soft muon Xfmtch cut for b-tagging to yield a

measurement of the top cross section in 2.9 pb~! of LHC data.
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Chapter 1

Motivation

The study of elementary particles and the theory behind their interactions has for
the past 35 years been governed by the Standard Model. It has had great success in
predicting a number of interactions and particles that have subsequently been confirmed
through experimental observation. The theory’s robustness and accuracy has been

confirmed through numerous experiments that have been performed since its inception.

This thesis focuses on proton-proton interactions produced at the Large Hadron Collider
(LHC) at the European Organization for Nuclear Research (CERN). The LHC is to
date the most powerful particle accelerator in operation with multiple detectors placed
at collision points around the 27km ring. One of these detectors is the ATLAS detector
which has been designed to study a wide range of physics processes with extremely

high accuracy.

One area of particular interest where ATLAS will have a large role to play is in the
potential discovery of the Higgs boson, one of the few remaining missing pieces of the
Standard Model. Alongside the search for the Higgs the ATLAS detector will provide
an ideal platform to refine current knowledge of known particles as well as searching

for signs of new physics beyond that of the Standard Model.



The interactions that this thesis will focus on will be those when two top quarks are
produced and the resultant particles from their decay detected. As the last quark to be
discovered there still exists a certain amount of uncertainty about its various properties,
such as why the mass of the top quark is /40 times larger than that of the bottom
quark, its nearest in mass. There also exists the possibility that the large mass of the
top quark could indicate that it has a special role in the electroweak symmetry breaking

mechanism of the Higgs boson.

This thesis will focus on making a measurement of the cross section of the ¢t process
in early data and a study into various aspects involved in the measurement. This
measurement is important in establishing the top-quark production at ATLAS and
verifying that the cross section is in agreement with expectations of QCD and that there
are no new physics processes visible. Also in using the soft muon tagging algorithm in
this measurement and validating it, it allows for the use of the tagging algorithm in

other analyses at ATLAS.



Chapter 2

The Detector and the Collider

The story of the Standard Model is a long one that has been built up over many years
of research and multitudes of different experiments and yet even after nearly half a

century of research it does not explain everything that we see.

There are many different areas that are not complete in the Standard Model, for
example it does not attempt to explain gravity in any way and requires the use of

19 numerical constants whose values are unrelated and arbitrary.

Thus the LHC was designed with the idea of probing the Standard Model and creating
collisions an order of magnitude higher in energy and luminosity than those previously
seen. With centre of mass energies of the order of ~14 TeV it is hoped that the LHC will
be able to help bridge the gaps that currently exist in our knowledge of the elementary

particles and fundamental interactions.

To observe new states of matter and possible new interactions the ATLAS detector was
designed to accurately measure the full range of fundamental particles and cover as
many different models/scenarios as possible for new physics. The ATLAS detector will
explore the TeV mass scale where ground-breaking discoveries are expected. A focus

will also be placed on the investigation of electroweak symmetry breaking and linked



to this the search for the Higgs boson and Physics beyond the Standard Model.

2.1 The Large Hadron Collider

The Large Hadron Collider (LHC) is situated in the 27 km long former Large Electron-
Positron Collider (LEP) tunnel at CERN, Geneva, Switzerland. It is designed to
accelerate two counter-rotating beams of protons that are delivered from the Super
Proton Synchrontron (SPS). There are four main interaction points where there are
detectors located. These include Point 1 (ATLAS detector), Point 2 (ALICE detector),

Point 5 (CMS detector) and Point 8 (LHCb detector) as shown in Figure

LHC PROJECT ) qA o s UNDERGROUND WORKS

Figure 2.1: Schematic view of the LHC and SPS accelerator rings

The LHC first entered beam commissioning in September 2008 but 9 days later a fault
occurred in the electrical connection between two of the superconducting dipole magnets
that produced an electrical arc, compromising the liquid-helium containment. The
resultant shock wave produced from the liquid-helium filling the vacuum was sufficient

to break the 10 tonne magnets from their mountings.

Repairs to the LHC ring lasted until late November 2009 when the proton beams
were successfully circulated once more at energies of 450 GeV. Shortly after on 30th

of November 2009 the circulating beams reached an energy of 1.18 TeV per beam,



surpassing the previous record held by the then current highest energy collider, the

Tevatron at Fermilab.

On 30th March 2010 the LHC was started up again after winter shut down and achieved
3.5 TeV per beam, which till now is the energy the beams will be kept at until further
upgrades are undertaken. These upgrades are planned for 2011 and are required as
a result of the investigation into the incident that occurred in September 2008. It is

currently planned that the LHC will produce ~ 1fb~! before the next shut down.

2.1.1 The Beam and Magnets

The performance requirements of the LHC set significant challenges for the design and
construction of the accelerator. The LHC is the last part of a series of accelerator
systems that are combined to produce the beam that finally circulates within the LHC

itself.

The first system is the linear particle accelerator (LINAC 2) which generates 50 MeV
protons that are fed into the Proton Synchrotron Booster (PSB). Within the PSB the
protons are accelerated to 1.4 GeV and injected into the Proton Synchrotron (PS),
where the protons energy reaches 26 GeV. The last stage before entering the LHC is
the SPS which is used to further increase the protons energy to 450 GeV before they
are at last injected into the LHC. Within the LHC the protons are accumulated into
bunches of about 10'' particles that are then accelerated up to the desired energy,

currently set at 3.5 TeV but with a design goal of 7 TeV.

To keep the beams circulating within the ring, the LHC employs 1,232 dipole (Fig
2.2) magnets, which cover ~ 20 km of the ring length. The focusing of the beam
is done using quadrupole magnets that boost the luminosity at the collision points.
These quadrupole magnets are also employed along the straight sections of the ring

and number 392 in total.
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Figure 2.2: Cross section of the LHC dipole magnet system

One of the main drawbacks with any circular accelerator is synchrotron radiation,
which is released as ultra relativistic charged particles are accelerated in a circular
motion by magnet field. Indeed this was the main limiting factor for the LEP collider

that inhabited the ring where the LHC now resides.

However, as the LHC is based on accelerating protons and not electrons/positrons the
energy loss incurred is much less. The energy loss due to synchrotron radiation in an

accelerator ring of radius R per revolution is:
T 2
0E = 43—; B34
where v = Bc and E = ymc?. In the case of the LEP collider a 50 GeV electron has a

~ of 98,000 while a proton in the LHC would have a v of 54 for the same energy.

Although the problem associated with having a circular ring could be solved by having
a linear accelerator, the benefit of keeping 2808 bunches circulating creates a far higher
luminosity over time than what would be achieved with a linear accelerator. The
luminosity, the number of events per unit cross-section of a circulating accelerator is

given by:
Luminosity = nf %

where there are n bunches in each beam revolving at a frequency f, with N7 and Ny



particles in the colliding bunches with an overlapping area of A.

The LHC is designed as a discovery machine, the collisions that occur between the
two proton beams will generally create “messy” events with large number of particles
in them. The focus of the physics programmes will tend to be searches for signatures
of new physics, that could have large implications on our current understanding, these
signatures are likely to appear in events where the centre of mass energy is at its highest.
The high luminosity and increased cross-sections at the LHC will enable further high

precision tests of QCD, electroweak interactions, and flavour physics.

2.1.2 Event Rate and Pile Up

The design luminosity of the LHC envisaged a peak luminosity of 103*cm=2s~! that
would produce on average 23 interactions per bunch crossing [1], varying according to
a Poisson distribution. With the starting luminosity expected to be a factor of 100
less than the optimal running (assuming the same number of bunches in each case) we

expect to see a mean of 0.23 events per bunch crossing.

In early running the effect of multiple events per bunch crossing, known as pile up,
is therefore expected to be low and when an event is triggered there is most likely
only going to be one interaction. However in later running as the luminosity increases
the effect of multiple interactions per bunch crossing is going to be closely monitored
to account for it in the calibrations, such as in the background subtraction in the

calorimeter.

2.2 The ATLAS Detector

ATLAS is an acronym for A Toroidal LHC ApparatuS

Figure [2.3] shows an overview of the ATLAS detector with the main components listed

as follows; the inner detector, electromagnetic (EM) calorimeter, hadronic calorimeter,
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muon spectrometer and magnet system.

Tile calorimeters

: LAr hadronic end-cap and
forward calorimeters
Pixel detector

LAr eleciromagnetic calorimeters

Toroid magnets
Muon chambers Solenoid magnet | Transition radiation fracker
Semiconductor fracker

Figure 2.3: Overview of the ATLAS detector layout [I].

2.2.1 Physics at ATLAS

Placed at Point 1 on the LHC ring the ATLAS detector is one of the largest particle

detectors ever built and the collaboration consists of more than 2000 physicists.

The ATLAS detector is one of two “general purpose detectors” that are placed on the
LHC ring, the other being CMS. They are designed to take advantage of the rich physics
potential of the LHC to perform more precise measurements of the Standard Model

parameters and to search for new physics phenomena.

One of the main considerations when designing ATLAS was to ensure that the detector
would maximise its discovery potential for the long sought after Higgs particle.
Depending on its mass, the Higgs has a number of different production mechanisms.

These range from photon pairs, H — ZZ — 4l (I = muons or electrons).

To cover all the possible decay modes of the Higgs particle and allow for the full range of

discovery potential the ATLAS detector has been designed as general purpose detector
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with excellent particle identification, excellent calorimetry and excellent tracking and

vertex detection, details of which are covered in the next section.

2.2.2 Important Definitions

A common set of coordinate axes are defined within ATLAS, with the z axis oriented
along the beam pipe, and x and y axes defined as shown in Figure The z axis
is horizontal and points from the interaction point towards the centre of the LHC
ring. The y axis is perpendicular to the x axis and points upwards; it is inclined
by 1.23% with respect to the local vertical. This inclination of the y axis is because
the detector is inclined to follow the beam slope. The cylindrical coordinates radial
coordinate r = \/m is sometimes also used. ¢ is measured around the z axis and
pseudo-rapidity 7 is measured from the beam axis around the point of interaction as

shown.

Pseudo-rapidity, n defined as:

n = —In(tan g) (2.1)

and the difference in pseudo-rapidity between two particles independent of Lorentz

boosts along the beam axis.

Theta (eta)

Z (heam)

Figure 2.4: Definition of the ATLAS coordinate system

Within the detector the n — ¢ space is used to define the position of a given particle.



The angular separation between two particles is measured as AR:

AR = \/A$? + A2, (2.2)

where A¢ and An are the differences in 77 and ¢ for the given two particles.

2.2.3 Overall Concept
To support a range of physics programmes envisaged, a series of general requirements
were set for the detector:

e Due to the experimental environment of the LHC, the detectors require fast,

radiation-hard electronics and sensor elements.
e Large acceptance in pseudo-rapidity and azimuthal angle.

e Good charged-particle momentum resolution and inner track reconstruction

efficiency.

e Very good electromagnetic (EM) and hadronic calorimetry for identification of

electrons, photons, jets and E7"*%°.
e Good muon reconstruction across a wide range of momenta.

The ATLAS detector is nominally forward-backward symmetric with respect to the in-
teraction point, about 44 metres long, 25 metres in diameter and weighs approximately

7000 tonnes.

ATLAS is essentially divided up into 4 sub-detector systems moving from the beam

interaction point out:

e The inner detector which is immersed in a 2 T solenoidal field, crucial for the

measurement of charged particles;
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e Liquid-argon calorimetry systems provide energy and position measurement for

electromagnetic and hadronic particles;
e Muon spectrometer for identification and position measurements of muons;

e Outer eight-fold azimuthal magnet system for bending the trajectory of (charged

particles) muons.

Muon
Spectrometer

Hadronic
Calorimeter

The dashed tracks.
are invisible to
the detector

Electromagnetic
Calorimeter

“Solenoid magnet
Transition
Radiation i {\C\
Tracking { Tracker ; £
PixelSCT i ‘E
detector 3 EXPERIMENT

http://atlas.ch

Figure 2.5: Schematic view of the particle detectors within ATLAS responding to
different particle types. Not drawn are the toroid magnets between the hadronic
calorimeter and the muon spectrometer.

2.2.4 Inner Detector

The innermost detector module is aptly named the Inner Detector (Figure ; it
consists of three different types of tracking modules: the Pixel Detector, Semiconductor
Tracker (SCT') and the Transition Radiation Tracker (TRT). At smaller |7| the modules
are placed parallel to the beam pipe but at larger || their orientation is changed so

that they are perpendicular to it (Table .

Closest to the beam pipe are the pixel detectors, they cover the region of |n| < 2.5.
From 4 c¢m to 13 cm from the beam pipe, coverage is provided by three layers of pixel

detectors. The pixel modules within the inner detector provide the highest granularity
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of all the components in the detector but at a high financial cost, therefore the number
of layers is limited to 3. With a fine resolution of 12 pum in n — ¢ and 66 um in z the
pixel detector is very well suited to the detection and identification of the secondary
vertices caused by b— and c—flavoured hadrons and 7 leptons. The innermost layer of
the pixel detector is critical for reconstructing displaced vertices from b-quark decays

and is referred to as the “b-layer”.

Surrounding the pixel detector is the SCT, it consists of 4 barrel layers and 9 end-cap
disks that span the radius from 30 c¢m to 52 ecm. It is designed to provide up to 8
measurements per track with a resolution of 16 ym in n — ¢ and 580 pum in z. The
SCT within ATLAS provides a surface area an order of magnitude larger than that of

previous generations of silicon microstrip detectors.

The TRT detector is made up of a large number of straws that detect the transition-
radiation photons given off as charged particles pass through the foils of radiator
material that are placed between the straws. It is expected that the TRT will provide
up to 36 measurements per track on average covering the detector radius up to 107 cm

with a resolution of 170 pum per straw.

" End’cap semiconductor fracker

Figure 2.6: Overview of the ATLAS Inner Detector, with labels and dimensions. [I]
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2.2.5 Calorimeter

The ATLAS calorimeter, see Figure is one of the central components used for the
triggering of events and energy measurements. It consists of three main parts: the
electromagnetic (EM) calorimeter, the hadronic calorimeter, and forward calorimeters.
All play an important role for electron/photon identification and measurements of
missing transverse energy (J7), the total vector momentum sum of an event, electron,

photon and jet energy.

There are two main sections to the calorimeter, the barrel and the end-cap regions that
are both lead-liquid argon (LAr) detectors with accordian-shaped kapton electrodes and
lead absorber plates over its full coverage. The accordion-shaped Kapton electrodes are
designed in such a way that they give complete ¢ coverage without azimuthal cracks
over the covered area. The total thickness of the EM calorimeter is > 22 radiation
lengths (X) in the barrel and > 24X in the end-caps. In the region of |n| < 1.8, a
presampler detector is employed to correct for the energy lost by electrons and photons
upstream of the calorimeter. This is achieved by measuring the multiplicity of a particle
shower that develops due to interactions with inactive material. The amount of inactive
material in front of the calorimeter varies between 1 Xy and 3 X, with occasional spikes

towards 5 Xg close to the beampipe.

In the forward regions and the end-cap (~ 1.5 < |n| < 4.9) the LAr is also used for
hadronic calorimetry but the majority of detection in the barrel is covered by a sampling
calorimeter called the tile calorimeter. The tile calorimeter is made from different

materials to that of the LAr and instead uses iron as the absorber and scintillating tiles

In[ |0 071417 | 2.5
Pixel | 3 barrel layers | 5 end-cap disks ‘
SCT | 4 barrel layers | 9 end-cap disks ‘
TRT | barrel layers | end-cap disks ‘

Table 2.1: Inner detector placement.

13



are placed radially to the beam.

For photons or electrons of moderate transverse energy (E7) (50 GeV), the combined

energy resolution of the EM calorimeter is expected to be of the order 1.6% or better.

For lower energy photons or electrons (10 GeV) the total resolution is about 5% in the

barrel and 3% in the end cap.

LAr electromagnetic ‘
end-cap (EMEC)

A

L=

LAr electromagnetic

barrel "N “ﬁ,
LAr forward (FCal) &

Figure 2.7: The ATLAS calorimeter system.

) |0/05]1.0]15[20]25[3.0[35[40]45]5.0
EM | barrel | endcap | |
Hadronic | barrel | end-cap | |
Forward | | forward |

Table 2.2: Relative calorimeter placement, rounded to nearest 0.5 in 7.

2.2.6 Magnet System

The ATLAS magnet system is shown in Figure 2.8l The inner magnet system, the

central solenoid (CS), enables ATLAS to take momentum measurements on charged

particles within the inner detector, it is placed around the inner detectors in front of

the EM calorimeter. The 27" magnetic field runs parallel to the beam pipe and will
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bend any charged particles that enter the field.

In the region outside the hadronic calorimeter and within the barrel region (BT) of
the detector there are eight toroid magnets that generate a circular field centered in
the beam pipe. The 8 coils of the toroid magnet are assembled radially around the
beam and the peak field strength is 3.97". The use of toroidal magnets was chosen
because a solenoid magnet of sufficient size would be prohibitively expensive to build
and momentum measurements in the large volume of the muon system are not required

to be as precise.

At the far ends of the detector are the End-cap toroids (ECT), installed either side
of the BT they produce a magnetic field of 4.17. The coils in the ECT have been
rotated by 22.5° with respect to the BT system to provide a radial overlap. As super-
conducting magnets both the BT and ECT are cooled down to 4.5K by enclosing them
within aluminium casings and using liquid helium to hold them at temperature. The
BT roughly covers the range || < 1.0 and from 1.4 < |n| < 2.7 the ECT field is
dominant. In the area between these two regions the effective field is a combination of

the two.

Figure 2.8: The magnet system (CS, BT and ECT) [1].
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2.2.7 Muon Spectrometer

There are two main sections of the muon system, see Figure the barrel region and
the end-cap region. In the barrel region the muon chambers are arranged cylindrically
and in the end-cap region they are instead placed perpendicular to the beam direction.

In each region there is both one tracking section and one trigger section.

Thin-gap chambers (TEC)
i ] Cathode strip chambers (CSC)

Resistive-plate
chambers (RPC)

Monitored drift tubes (MDT)

Figure 2.9: The ATLAS muon system.

The muon spectrometer in the barrel consists of Monitored Drift Tubes (MDT’s) which
are used for tracking. They are aluminium gas chambers with a wire in the centre and
are arranged in multilayer pairs to help improve accuracy. The trigger section in the
barrel comes from Resistive Plate Chambers (RPC’s) and are used as they provide
good time resolution for triggering. Between the plates of the RPC’s there is a narrow

gap filled with a gas mixture.

Located in the end-cap are the Cathode Strip Chambers (CSC’s) and they are used for
the precision measurements in this region. They are multi-wire proportional chambers
with a cathode strip readout. For trigging in the end-caps, Thin Gap Chambers
(TGC'’s) are instead used; they are are multi-wire proportional chambers whose anode

wire pitch is larger than the cathode-anode distance.
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Figure 2.10: Cross-section of a TGC triplet and doublet module from the ATLAS muon
system. The triplet has three wire layers but only two strip layers. The dimensions of
the gas gaps are enlarged with respect to the other elements.[I]

2.2.8 Trigger and Data Acquisition

At full luminosity the pp interaction rate within ATLAS is of the order of 1 GHz [I]
(bunch crossing rate 40 MHz with 23 interactions per bunch crossing). This creates far
too much data to be stored. Most of this data is not interesting and as a result a trigger
system, see Figure has been designed to select events of interest, and record at a
rate of ~200 Hz with a rejection factor of 5 x 10° against the undesired minimum-bias

events that produce many low-pp particles.

The level-1 (LVL1 or L1) trigger makes the initial selection based on crude single or
multiple object selections such as high-pr electrons, photons, jets and 7-jets. There is
also an initial EZ,TC”SS and sum FE7p calculation preformed that can also be trigged on.
Information regarding the muon system comes from the RPCs and TGCs. The L1
decision is performed with custom integrated electronics with a maximum accept rate

of 75 kHz (upgradable to 100 kHz) and a maximum latency of 2.5 us.

When the L1 accepts an event it identifies regions of interest (ROI). The second level of
trigger (LVL2 or L2) is then provided with the full detector information for that ROL.

The L2 trigger further reduces the event rate to below 3.5 kHz, with an average event
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processing time of ~40 ms.

The last stage of the ATLAS trigger system is the event filter (EF) which uses offline
analysis algorithms to further select events down to a rate of 200 Hz, with an average

processing time per event of ~4 s.

Interaction rate
~1 GHz CALO MUON TRACKING
Bunch crossing
rate 40 MHz
Pipeline
LEVEL 1 mg:'lories
TRIGGER
< 75 kHz
Derandomizers
i Readout dri
Regions of Interest | || | | | {I:nglil Hvers
LEVEL 2 Readout buffers
TRIGGER {ROBs}
Q1 kH=

[ Event builder |

EVENT FILTER Full-eventdbuffers
an
~ 200 Hz processor sub-farms

Data recording

Figure 2.11: Block diagram of the Trigger system.
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Chapter 3

Physics at the LHC

Our current knowledge of physics is based around the understanding of four fundamen-
tal interactions, namely: gravity, electromagnetism, the weak and strong interaction.
For particle physics the effect of gravity is of minor importance since it is postulated
that we would need to produce particles with energy of the order of the Planck scale
(10'GeV) before its effects would become important. The electromagnetic interaction,
described by Quantum Electrodynamics (QED), is experienced by all charged particles
and provides the binding forces in atoms and molecules. The weak interaction is present
in a wide range of particle decays, including nuclear 8 decay and all processes involving
neutrinos. The strong interaction is described by Quantum Chromodynamics (QCD)

and only takes place between quarks and gluons.

It was in 1961 that one of the first milestones in particle physics happened. The
unification of the electromagnetic and the weak interaction was proposed by Glashow[2].
Shortly after, in 1967 Glashow’s electroweak theory included the Higgs mechanism [3]
incorporated into it by Steven Weinberg and Abdus Salam [4, [5]. Glashow, Salam and
Weinberg would later on be awarded the 1979 Nobel Prize in Physics for their work on

the electroweak theory.
Following the work done by Gell-Mann [6] and Zweig [7] on the strong interaction
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and the quark model, experimental evidence throughout the mid 1970s confirmed that

hadrons were composed of fractionally charged quarks.

Together the theories of electroweak interactions and QCD form the basis of the

Standard Model and have been used to create the current table of fundamental particles

(Table [3.1].

Particle Type Name Spin  Charge [e] Mass
up (u) 3 —|—% 1.5 to 3.3 MeV
down (d 3 —3 3.5 t0 6.0 MeV
Quarks charm (c) 3 +3 1.271097 GeV
(Fermions)  strange (s) 3 —% 105732 MeV
top (t) 3 +2 171.34+ 1.1 £ 1.2 GeV
bottom (b) o ~% 4.207537 GeV
electron (e) 3 -1 0.511 MeV
muon (1) 3 ~1 105.66 MeV
Leptons  tau (1) I 1776.84 4 0.27 MeV
(Fermions)  e-neutrino (ve) 3 0 << 1 MeV
p-neutrino (v,) % 0 << 1MeV
T-neutrino (v;) 3 0 << 1 MeV
photon () 1 0 0
Gauge Gluon (g) 1 0 0
Bosons W+ 1 +1 80.398 + 0.025 GeV
z" 1 0 91.1876 + 0.0021 GeV
Higgs Boson! H? 0 0 > 114.4 GeV

Table 3.1: The fundamental particles of the Standard Model.[§]

3.1 The Standard Model

The Standard Model has two types of fundamental particles accounting for all of known
objects in the universe, these are called Leptons and Quarks. The model includes
three generations of both leptons and quarks, with each generation consisting of two
leptons and two quarks. This “family” of particles can be seen in Table with each
member also having its anti-particle, which creates a total of 12 leptons and 12 quarks

as fundamental particles for the model.

No observation to date.
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The interaction of quarks and leptons with each other is determined by the properties
and behaviours of the gauge bosons (Table which are the force carriers in the
Standard Model.

As all the forces of the Standard Model act on the top quark, I will give a brief summary

of them.

3.1.1 Quantum Chromo-Dynamics (QCD)

The theory of the strong force in the Standard Model is Quantum Chromo-Dynamics
(QCD), it describes the interactions of coloured particles. There are three colours,
or quantum states, used in QCD, “red”, “blue” and “green” but they have nothing
to do with colours of the visible electromagnetic spectrum. The strong interaction is
mediated by 8 gauge bosons through the exchange of a quantum number, in this case

colour.

Quarks come with a specific colour, but the observation of a free quark is not possible
due to “confinement”, whereby the self-coupling of gluons, which occurs because they
too are coloured, induces a larger potential at distance. Therefore all free particles
appear as colour-singlet states called hadrons which are colourless combinations of
quarks, anti-quarks and gluons. This process can be seen when a high momentum
particle is incident on a quark in a hadron, the separated quarks undergo a process
called “hadronisation” whereby the coloured quarks group themselves into colour-
neutral objects such as new hadrons. These new objects which originate from the

outgoing partons form a “jet” [9] which carries the momentum of the original quark.

The coupling strength of the strong force (as) has also been shown to be dependent
on the interaction energy, ). The strong coupling constant decreases logarithmically
as a function of interaction energy, conversely this also means that it increases with
decreasing energy making perturbative calculations at low energy extremely impossible.

[10]
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3.1.2 Quantum Electro-Dynamics (QED)

Quantum Electro-Dynamics (QED) is a combination of relativistic quantum field theory
(QFT) and electrodynamics. It describes how light and matter interact and was the

first theory that successfully combined quantum mechanics and special relativity.

QED describes electromagnetic effects by probabilities for the emission, flow and
absorption of photons (7). Photons act as the gauge bosons of the electromagnetic force,
they have no rest mass, a spin of 1 and cannot interact with each other because they
have no electric charge. The rules of QED apply to all electromagnetic phenomena with

charged fundamental particles, such as electron-position annihilation and Compton

scattering, (Figure .

The agreement between QED and experimental results has been stringently tested in
various energy ranges and has been found to be correct to within ten parts in a billion
(1078). This is based on the comparison between the electron anomalous magnetic

dipole moment and the Rydberg constant from atomic recoil. |11, 12]

b ¥

e e

Figure 3.1: Compton scattering showing photon emission

3.1.3 The Weak and Electroweak Interaction

The weak interaction is mediated by the exchange of heavy W and Z bosons and the

weak interaction is so aptly named because relative to the electromagnetic force is 10~
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times weaker and some 10713 times weaker than the strong force. The weak interaction
was first postulated in the 1930s by Enrico Fermi [I3] and experiments in subsequent
years also established that it violates parity because it exclusively acts on left-handed

particles.

The weak interaction is the only force within the Standard Model that allows for flavour
changing, this can be seen clearly in 8~ decay whereby one of the down quarks of the
neutron changes to an up quark. This change occurs via the emission of a W~ boson

which then goes on to decay into an electron and electron anti-neutrino, as shown in

Figure [3.2]

udu Ve

udd
n

Figure 3.2: Feynman diagram for 5~ decay.

The flavour-changing in the quark sector via the weak interaction is parametrised by
the Cabbibio-Kobayashi-Maskawa (CKM) matrix [14, [I5]. The CKM matrix, Eq.
allows for each generation of quarks to couple to other generations via the small off-
diagonal elements. Flavour changing in the lepton sector was confirmed in 1998 by the
observation of neutrino oscillation at the Super-Kamiokande experiment [16], implying

that neutrinos have non-zero mass.
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In 1961 Glashow put forward his theory of unification of the weak and electromagnetic
interaction [2] and with further developments by Weinberg and Salam the theory was
solidified. The existence of electroweak interactions was proven with the discovery of
neutral current neutrino scattering at the Gargamelle experiment [I7, 18] [19] in 1973.
In 1983 the predicted force carriers of the electroweak force, the W=+ and Z°, were

discovered by the UA1 and UA2 experiments at CERN.

One of the major elements of the electroweak theory is the spontaneous symmetry
breaking mechanism suggested by Higgs [3], which explains why the W*, Z° and all
other massive SM particles have mass. The Higgs mechanism also predicts the ratio
between the W boson and Z boson masses as well as their couplings with each other
and with the SM quarks and leptons. The LHC will cover the full range of potential
Higgs masses in its search, for this boson which is currently not possible at Fermilab.
Direct searches for the Higgs at LEP excluded a Higgs boson with a mass below 114.4
GeV with a 95% confidence level [20] and the Tevatron excluded a mass range between
158 GeV and 175 GeV at 95% confidence level [21]. The Standard Model requires that

the Higgs to be is not heavier than ~ 1 TeV.

3.2 Beyond the Standard Model

One aspect of the Standard Model that leaves physicists puzzled is the fact that it
requires 19 free parameters that can only be determined from experiment. More

importantly, the Standard Model contains no particles with the right properties to
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form the dark matter that accounts for 83% of the known matter in the universe [22].
The existence of these gaps in the Standard Model predictions and others not mentioned
here, has led physicists to look for ways to incorporate the ideas of the Standard Model

into new theories.

One of the models that seems to solve some of the limitations of the Standard Model
is Supersymmetry, or more commonly SUSY models. It is based on the premise that

for every elementary particle with spin s there is a corresponding SUSY particle with

1
3

spin s —
There currently exists no direct evidence for Supersymmetry and since no partners of
any of the Standard Model particles have been observed to date, Supersysmmetry, if

it exists, will be of a broken symmetry to allow the particles to be heavier than their

corresponding Standard Model particles.

Although Supersymmetry has no evidence to date, it is appealing for a number of

reasons, some of which are:

o If Supersymmetry exists close to the TeV energy scale it will allow for a
solution to the hierarchy problem within the Standard Model, whereby quantum
corrections to the couplings and masses within the Standard Model can lead to

inconsistencies, especially in the case of the Higgs.

e Supersymmetry at the TeV scale also allows for the high-energy unification of the

electroweak and strong interactions [23].

e It provides a number of dark matter candidates in the form of super-symmetric
weakly interacting massive particles (WIMPS), thought to have around 100 times

the mass of a proton.

Supersymmetry, although quite appealing, is just one of a large number of different
theories that have been put forward to help explain the inconsistencies of the Standard

Model. However at the moment the Standard Model has preformed remarkably
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well with any measured phenomena seen in particle physics and its parameters are

continuing to be tested at the LHC.

3.3 Introduction to Top Quark Physics

The existence of a third generation of quarks was first postulated in 1973 by research
done by Makoto Kobayashi and Toshihide Maskawa in an effort to explain the observed
CP violations in kaon decay [I5]. They showed that the CP violation seen could not
be explained with just four flavours of quarks, but only with six flavours and that the

Standard Model could accommodate such a model.

With the discovery of the Tau lepton at SLAC [24] confirming a third generation of
leptons in the mid 1970’s the search for the two members of the third generation of
quarks began. The 5th quark, the bottom, was discovered in 1977 at Fermilab [25] but

discovery of the 6th and final quark took a lot longer than many at the time believed.

It was finally discovered in 1995 [26, 27], roughly two decades after the discovery of the
bottom quark and was named the top quark. The eventual discovery of the top quark
caused a wave of interest as its mass was considerably heavier than any of the other
quarks. With the top’s mass being so large it has opened up a new area of research
into investigating the cause of the higher mass and the overall effect it plays on its own

properties and that of other particles, such as the theorized Higgs boson.

Investigations into the top quark will form a major element of the research that will
take place at the LHC, not only since further understanding of this fermion is desired
but also because top quark events will form one of the major backgrounds for many

different studies.

Current data on the top quark comes from only two sources: LEP, and the Tevatron.
Although the top quark was never directly seen at LEP, data was gathered by the
DELPHI, ALEPH and OPAL experiments via indirect higher order processes that
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gave an indirect measurement on the top quark mass that was later confirmed at the
Tevatron. The only experiments directly producing top quarks before the LHC are

CDF and D@ at the Tevatron.

Since the discovery of the top quark, the experiments at the Tevatron have continued
to collect data to the present day and with refinements in analysis techniques and
accumulated data the error on the top quark mass is now only +1.1 GeV with the

measured mass of 173.3 + 0.6(stat) £+ 0.9(sys) GeV [28].

Mass of the Top Quark

July 2010 (* preliminary)
—

CDF-I dilepton 167.4 +11.4 103+ 4.9)

) L 4
D@-I dilepton 168.4 £12.8 (+12.3+3.6)
. ———

CDF-II dilepton * 170.6 £ 3.8 (x2.2+3.1)
. -——

D@-II dilepton * 174.7 £ 3.8 (:29£24)

_ =
CDF-I lepton+jets 176.1+ 7.4 (+51+53)

) —_———

D@-I lepton+jets 180.1+ 5.3 (+3.9+36)
. @

CDF-Il lepton+jets * 173.0+ 1.2 zo07+11)

. -~
D@-II lepton+jets * 173.7+ 1.8 (08:16)
—_———————
CDF-| alljets 186.0 £11.5 (+10.0+5.7)
A ——
CDF-Il alljets 1748+ 2.5 (17+19)
——
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L L ]

Tevatron combination * 1733+ 1.1 =06+09)
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Xe/dof = 6.1/10 (81%)
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Figure 3.3: Combined results of CDF and D@ on the mass of the top quark [2§].

With the initial design of the LHC stated to achieve a centre-of-mass energy of 14 TeV
and luminosity of 103%cm™2s~! the LHC could, in one day, achieve the equivalent of
ten years of data collection at the Tevatron. However, with the stated problems with
the LHC the current running is planned to only have collisions at 7 TeV and a peak

luminosity of no more than 1033cm=2s71.

Fortunately even with these reductions in beam energy and luminosity the LHC will
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still produce top quarks in quantities far in excess of those seen at the Tevatron.

3.3.1 Top Quark Production

By far the largest production of top quarks at the LHC will come from ¢t events. The
dominant t¢ production process at the LHC is shown in Figure with the highest
contributions from gluon-initiated processes. The total cross section for ¢t at the LHC

is presently calculated as 164.8ﬂé:§ pb [29] for 7 TeV collisions at near-NNLO precision.

q 7

|

Figure 3.4: Leading order ¢t production.

Single top-quark production will also occur at the LHC and contributes a large fraction
to the overall top quark production. The leading order diagrams for this process are
shown in Figure and the LHC will offer the first real chance to study this channel
with large statistics. The cross section for single top quark is approximately half of

that for tt.

Figure 3.5: Single top-quark production diagrams.

The tt events are likely to be the primary source of data when measuring the top-quark

properties at the LHC.
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3.3.2 Top Quark Decay

With a mass of ~ 175 GeV and a lifetime of ~ 5 - 1072° seconds the decay of the top
quark is interesting by itself. With such a short lifetime the top quark decays before

hadronization and will also not form any bound states, which would require about

10724 seconds.

q' /v

q/l

Figure 3.6: Feynman diagram of top quark decay.

According to the SM the top quark decays almost exclusively to a W boson and a
b quark as shown in Figure In fact about 99.8% top quarks will decay through
t — W + b, while the remaining 0.2% includes Cabbibo suppressed t — W + s. Figure
[3:7] shows the relative percentages for each different decay of top quark pairs. The
decay modes of the W boson are used as a way to classify the events, whereby it is

possible to have “all-hadronic”, “dileptonic” or “lepton + jets”.

The work presented in this thesis will focus on the “lepton + jets” channel shown in
Figure [3.§]

The “lepton + jets” channel is of interest for a few reasons: requiring that one of the W
bosons decays leptonically to an e or u, substantially reduces the amount of background
without reducing significantly the branching ratio, which is ~ 30% of all ¢ events. One
of the important tools for selecting clean top quark samples, particularly in the single
lepton plus jets channel, is the ability to identify b-quarks. One of the main sources of
background for ¢ decay to lepton plus jets are the W + multi-jet processes. Requiring

a tagged b-quark jet in an event can substantially reduce this source.
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Figure 3.7: Proportion of different ¢t decay modes.

T Jet
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Figure 3.8: Lepton + Jets decay mode of tt.
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Jets originating from the decay of a b-quark can be identified using two different
techniques: vertex or soft lepton tagging. For this analysis we will be using soft lepton
tagging which will be further discussed in Section [6.2] There are several properties
of the b quark that can be used to identify them from jets which contain only lighter

quarks.

e The fragmentation of the b quark is hard and the b-hadron retains about 70% of

the original b quark momentum;

e The semi-leptonic decays of the b-hadrons can be used by tagging the lepton in

the jet, soft lepton tagging;

e Hadrons containing a b quark have a relatively long lifetime, of the order of 1.5
ps. A b-hadron in a jet with a pr = 50 GeV will therefore have a significant flight
path length < | >= fB~cr, travelling on average about 3 mm in the transverse
plane before decaying. Such displaced vertices can be identified by measuring the

impact parameters of the tracks from the b-hadron decay products;

e The mass of b-hadrons is relatively high (> 5 GeV). Thus, their decay products
may have a large transverse momentum with respect to the jet axis and the

opening angle of the decay products is large enough to allow for separation.
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Chapter 4

Detector Simulation and Event

Reconstruction

4.1 Introduction

Before any measurements are taken using ATLAS on the particle collisions from the
LHC it is important to investigate the various different models of particle interactions

that exist.

Moreover with a totally new detector it is important to understand as best we can
the predicted detector response via the simulation of a range of different particle

interactions within it.

In this chapter, the main generators used in top-quark physics studies and the
simulation and reconstruction of Monte Carlo (MC) events and data within ATLAS

will be briefly described.
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4.2 Monte Carlo Generators

Before any data was taken with ATLAS and like numerous experiments before it, a vast
programme of simulation was undertaken to try and understand the performance of the
detector in regards to important physical processes. This was done using Monte Carlo
generators. These are programmes which use theoretical or empirical models built from

data collected by previous experiments as a basis for simulating potential processes.

Monte Carlo generators follow a paradigm that divides the collision event into stages

shown in Figure This is stated in [30] as the following:

e Hard Scattering - This is the core of the interaction between two hadrons. It
is usually the theoretically best understood and experimentally interesting part.
The scattering of the two partons within the hadron is governed by the parton
distribution function f(z;,Q?)(PDF) that gives the probability to resolve a
parton ¢ with longitudinal momentum fraction x; inside a hadron by a momentum
transfer of Q? between the incoming particle and the resolved parton. This can
be calculated to leading order (LO) and next to leading order (NLO) relatively

easily.

o QCD-Bremsstrahlung - This is also commonly known as the parton shower and
consists of gluons emitted by accelerated colour partons. This leads to a cascade
of partons which are modelled by perturbation theory and has a low energy cut

of =~ 1 GeV where perturbation theory becomes unreliable.

e Hadronisation - This step confines coloured partons into uncoloured hadrons.
This is an enormously complex part of the process and currently there are two
phenomenological models used to predict this, the string model [31] which is used
in the PYTHIA [32] and Sherpa[33] generators and the cluster model which is

used in the HERWIG [34] generator.

¢ QED-Bremsstrahlung - Photons are emitted from charged accelerated particles
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in a mathematically similar fashion to that of QCD-Bremsstrahlung, except in

this case limited to the QED sector.

e Underlying Event - Refers to the beam remnants and multiple particle inter-
actions. As hadrons are not fundamental in nature, there can be an initial
hard scatter between two partons, leaving a background of particles from the

fragmentation of the remaining object.

—
: -igggc LI
By

Figure 4.1: Representation of a proton-proton collision event simulated by Monte Carlo.
The incoming protons are drawn in dark blue. The hard scattering process is shown at
the dark red circle. QCD-Bremsstrahlung is drawn for the initial state (blue) and final
state (red). The underlying event, in this case multiple parton interactions, is shown in
purple. The hadronization of partons is depicted by light green ellipses. The decay of
hadrons is represented by dark green. QED-Bremsstrahlung is shown in yellow. [35].

There exist many different Monte Carlo generators and they can each take a slightly
different approach in modelling certain aspects of a particle interaction. Table gives
a brief overview of the main properties of the three Monte Carlo generators that I will

use throughout my analysis. Details studies on the differences between the generators
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can be found in [36].

Matrix Parton . .

Generator Element | Shower! Hadronization | Underlying Event

HERWIG LO :iilrl:é cluster model Jimmy [37]
MC@NLO(38] NLO or é)ej;e q via HERWIG via HERWIG

multiple
PYTHIA LO pr string model interactions,
ordered
beam remnants
Alpgen[39] LO or g;e q via HERWIG via HERWIG

Table 4.1: Main properties of the Monte Carlo generators used within this analysis.

The default generator for the ¢t production within ATLAS is MC@QNLO [38],36]. Due to
the various different approaches used in each of the generators there is often slight
discrepancies between them, therefore during first collisions there will be a lot of
investigation into well understood regions of data. These control regions will enable
the extraction of scale factors and distributions that are often poorly predicted by MC

simulations, due to either theoretical uncertainty or detector simulation limitations.

4.3 The ATLAS Software

The development of the software tools used in the ATLAS collaboration have been
under way since 1990 and have a crucial role to play in an experiment of this size and
complexity. It is based on object-oriented (OO) design with C++ and is called under

its framework name, Athena, which was fully released in 2000.

The Athena framework is an enhanced version of the Gaudi framework that was
originally used by the LHCDb experiment, but the development has now become
a combined ATLAS-LHCb project. The Athena framework handles all levels of

processing of ATLAS data, from the initial high-level trigger, through event simulation,

1Order in which the Monte Carlo shower algorithm evolves the parton.
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reconstruction and analysis. Keeping the same framework throughout the “Full Chain”
of data reconstruction allows for a common set of tools to be made with the knowledge

that all geometry and conditions data will universal across applications.

4.3.1 Full Detector Simulation and Reconstruction

Producing a complete description of the ATLAS detector is a major challenge as it
involves the modelling of a large number of different physics processes within the
various detector elements of ATLAS. There has been considerable testing of detector
components in test beam and the GEANT4 [40)], 41] simulation toolkit was chosen as it

provided the required agreement [42].

The initial test-beam data showed very good agreement, of the order 1% or better in
most cases [43], in particular the performance of electromagnetic calorimetry is well
understood. However with the recent full LHC in operation an updated comparison

has shown room for improvement in hadronic shower modelling [42].

The complexity of the ATLAS detector and of the events that are simulated to occur
within it, requires a lot of computational resources and this has been in operation
successfully for a number of years on the Grid. Figure [4.2]shows how the simulated raw

data, Raw Data Object (RDO), is produced from the generated Monte Carlo events.

During simulation these events will create hits within the GEANT detector geometry
and may produce secondary particles which can also be reconstructed as separate

objects.

4.3.2 Data Formats

The ATLAS detector is expected to produce approximately 3 PB of raw data per year
[43]. This is quite a staggering amount of data that has required the building of the

Grid for the distribution and storage across multiple sites around the world. The
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Figure 4.2: Schematic diagram of “full chain” Monte Carlo production.

computation demands of such large amounts of data in physics analysis have also
dictated that the data not be stored in one location. Depending on the requirement

there are various stages of data reconstruction:

e Byte-stream Data - This is a persistent presentation of the event data flowing

from the high level trigger.

e Raw Data Object (RDO) - A C++ object representation of the byte-stream data.
RDO files produced from simulation are designed to mirror precisely the RDO’s

from data.

e Event Summary Data (ESD) - Contains the full output of the detector recon-
struction produced from raw data. Holds all the required information for particle

identification, track reconstruction, jet calibration etc.

e Analysis Object Data (AOD) - A summary of the ESD, containing sufficient

information for common object analysis, such as tracks, calorimeter clusters, jets,
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photons, electrons and muons.

e Derived Physics Data (DPD) - A user or physics group derived format from AOD’s

that contains objects or properties relevant to a particular analysis.

From the typical user point of view the data format you are expected to run your

analysis on is either the AOD or a centrally produced DPD from a physics group.

P

=

Partic|
) - Electron
.; e Covmnm > ||
TrackParticle/Muon N 7 - Taulet

ESD

Photon

!
i

Vertex/Primary |
>

= | TrackParticle/ID Blet

. | Tr.’lckl’.’u‘ticle/Muun|\<—( Muon |

Figure 4.3: A simplified view of the contents of the ESD and AOD. The solid lines
indicate objects that allow “back navigation” to a more generic object. The dotted
lines indicate objects that are duplicated between the ESD and AOD. [43]

4.4 Object Reconstruction

The aim of reconstruction is to derive from the stored raw data a series of particle and
objects necessary for physics analysis, such as: photons, electrons, muons, jets, missing
transverse energy. The full detector information is used and combined to give optimal

information on the four-momentum of an object for use in an analysis.

A typical reconstruction algorithm will take information from one or more collections

as an input (such as the inner detector tracking and muon spectrometer) and outputs
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one collection of reconstructed objects. The finer details of some of the more complex
reconstruction algorithms is beyond the scope of this thesis but a full account can be

found in [44].

4.4.1 Tracking

A seeded track finding tool takes measurements from the SCT and pixel sub-detectors
and extrapolates them out towards the straw tracker [45]. Firstly track seeds are
formed from a combination of space-points in the three pixel layers and the first SCT
layer. These seeds are then extended throughout the SCT to form track candidates.
Next, these candidates are fitted and “outlier” clusters are removed, ambiguities in the
cluster-to-track association are resolved, and fake tracks rejected. This is achieved by
applying quality cuts. For example, a cut is made on the number of associated clusters,
with explicit limits set on the number of clusters shared between several tracks and
the number of holes per track (a hole is defined as a silicon sensor crossed by a track
without generating any associated cluster). Track candidates are extended out to the

TRT with a global refit performed when necessary.

A complementary track-finding strategy, called back-tracking[45], searches for unused
track segments in the TRT. The back-tracking procedure finds unused segments in the
TRT and the extends them into the SCT and pixel detectors in an effort to recover
tracks whose seed was not found and to improve the tracking efficiency for secondary

tracks from conversions or decays of long-lived particles.

4.4.2 Electron/Photon Reconstruction

The seed for an electron or photon starts with a cluster of electromagnetic energy
in the calorimeter. The separation of electron and photon candidates is achieved
by requiring the electrons to have an associated track in the inner detector but no

associated conversion into an electron/position pair. Only EM clusters that have been
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matched to an inner detector track of greater than 5 GeV and that point to within
An < 0.05 and A¢ < 0.1 of the cluster form electron candidates. Similarly for photons
we require that there is no matched track to the EM energy deposit, but there can be

a matched reconstructed conversion.

The main background for electron/photon candidates comes from hadronic jets, most
of which are composed of neutral pions that decay into pairs of photons. In the case
of photons it is quite easy for a hadronic jet to fake a photon, especially when they
contain single or multiple neutral hadrons that decay to produce a high fraction of

O — ~7. To aid in rejecting hadronic jets from real

photons from decays such as 7
electrons and photons a series of calorimeter and inner detector information is stored
regarding numerous variables, such as the lateral and longitudinal EM shower shapes.
The shower shape allows for the distinction between an electromagnetic shower, that

typically has a very narrow deposit of energy, and that of an hadronic jet which tends

to spread its energy over a wider area.

Specifically during this analysis I will be using two particular ATLAS definitions for
electron identification, the “Egamma author” = 1 or 3 and the “IsEM” = medium
bit mask. The author definition refers to only electron candidates that have been
reconstructed using seeds in the calorimeter and not candidates based solely on track

information.

The IsEM definition provides three reference sets of cuts based on calorimeter, tracker
and combined calorimeter/tracker information. The reference set of cuts are defined
with increasing background rejection power: Loose, Medium and Tight. The Loose
definition uses shower shape variables of the second calorimeter layer and hadronic
leakage variables in its selectionﬂ The Medium definition adds on to the loose selection,
first layer calorimeter cuts, track quality requirements and track-cluster matching in

In|. The Tight definition adds further selection information on cluster energy E and

'The hadronic leakage is defined as the ratio of the transverse energy reconstructed in the first
compartment of the hadronic calorimeter in a window An X A¢ = 0.2 x 0.2 to the transverse energy
reconstructed in the electromagnetic calorimeter.
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momentum p ratio, E/p, b-layer hit requirements and the particle identification of the

TRT [46].

4.4.3 Muon Reconstruction

ATLAS has a variety of strategies for identifying and reconstructing muons:

e Standalone - This approach reconstructs muons by finding tracks in the muon

spectrometer and then extrapolates these to the beam line.

e Combined - Uses standalone muons and matches them to nearby inner detector
tracks and then combines the measurements of from the muon spectrometer and

inner detector.

e Tagged - Inner detector tracks are extrapolated to the muon spectrometer and

matched to any nearby hits if they exist.
Each strategy for muon reconstruction within ATLAS includes two algorithms:
e STACO [47], which uses the MuonBoy algorithm [47].
e MulD [48], which uses the MOORE algorithm [49].

Throughout this analysis only the STACO algorithm is used, as required by the
top-quark working group. Both algorithms operate in similar fashion and start by
identifying muon spectrometer tracks and extrapolate them back to the inner detector,

where a search is done to match them to tracks within the inner detector.

Of particular interest in this analysis is the “combined” muon: this is a muon candidate
that has both a muon spectrometer track and a matched inner detector track. With a
combined muon it is possible to use the an atehs defined as the difference between the

outer and inner track vectors weighted by their combined covariance matrix [45]:

Ximatch = (?MS - ?ID>T(CA’ID + CA'MS)il(?MS — ?ID) (4.1)
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Where ? is a vector of five track parameters expressed at the point of closest approach

to the beam line and C is its covariance matrix.

Muons with a pr between 3 and 6 GeV will loose a large fraction or most of their
energy in the calorimeters and may not cross the full muon spectrometer, this can
cause problems with starting the reconstruction there. In this case, muon tracks are first

found within the inner detector and extrapolated to hit segments in the spectrometer.

4.4.4 Hadronic Jet Reconstruction

The calorimeter system is the main sub system used in the reconstruction of hadronic
jets within ATLAS. As the ATLAS calorimeter has about 200,000 cells of different size
and geometry it is necessary to combine all the cell information in a way that is practical
as an input for a jet finder algorithm. At present this is done in two possible ways,
either as CaloTowers or CaloClusters objects [43]. The CaloTower objects represent a
tower of cells on a fixed grid in pseudo-rapidity and azimuth with a typical bin size of
Anx A¢ = 0.1 x0.1. The CaloCluster objects represent groups of cells with correlated
signals to the neighbouring cells. Both CaloCluster and CaloTower carry the required

four-momentum information required for the input into different jet algorithms.

There are many different jet reconstruction algorithms available for use, the details
of which are beyond the scope of this analysis. The top-quark group within ATLAS
has an object recommendation [50] that allows for consistent comparison between
different top analyses. The recommended jet reconstruction algorithm is the the anti-
kr algorithm [511 [52], based on topological clusters, with a cone size of D = 0.4, where
D = \/An? + A¢?, with A¢ and An the separation in n and ¢ for the cluster deposits

used in the jet reconstruction.
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4.4.5 Calorimetric Isolation Variables

The amount of energy surrounding a lepton is often used to discriminate lepton
candidates from W or Z decays from objects faking their signature; isolated electrons
and muons will deposit their energy in a narrow calorimeter cluster. In the case of non-
isolated electrons, muons and jets, the candidate is accompanied by further particles,
which deposit additional energy in the vicinity. Throughout this analysis I will make use
of the calorimetric isolation of both electrons and muons. The way in which the isolation
energy is calculated for electrons and muons differs, although both are calorimetric

variables.

In the case of electrons, the calorimetric isolation is computed from the amount of
energy that is deposited in a cone of radius Ry around the electron candidate, where

the 5 x 7 (n x ¢) cells of the electron cluster are removed [53]:

E$"“(Ro) = Y Erp(cell) — Ep(5 x 7 cells)[GeV] (4.2)
A?%eESRo

A range of standard cone sizes are used in ATLAS, such as Rye{0.2,0.3,0.4}. The
corresponding isolation variables named E$9"¢(0.2), E$"¢(0.3), E$"¢(0.4) respectively

are stored in the AOD. Graphically, E5"¢ for e/~ objects is represented in Figure

In the muon system the difference between the energies in two cones is used to compute
the E$?"¢ around a muon candidate [45]. An inner cone of radius 0.05 is used to define
the 7" of the muon with varying outer cone sizes such as 0.2, 0.3 and 0.4. Visually

ES"¢ is shown in Figure [4.5 and is defined mathematically as:

E¢"(Ro) = Y Ep(cell) = Y EF[GeV] (4.3)
cells cells
AR<Rg R=0.05
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Figure 4.4: Graphical representation of ES"¢ for e/ objects.

Figure 4.5: Graphical representation of E7*"¢ for Muon objects.
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Chapter 5

Electrons in Z — ee and ¢t decays

5.1 Introduction

The tagging of events where the top quark decays via the emission of a W boson is
heavily dependent on the correct identification of the high-pr lepton from the W. This
is also the case when looking into Z decays where both products are high-pr leptons.
One way to distinguish the electrons from the decay of W and Z bosons from those
present in light and heavy-flavour decays is to use a discriminating variable that takes
into account the jet activity surrounding the electron. Electrons that decay from the
W and Z will in general be more isolated than those present in light and heavy-flavour

jets.

Prior to this analysis the recommendation by the top-quark working group within
ATLAS was to use a quantity called E%OMQO as a cut on isolation energy. E%O”EQO
is the total transverse energy FEp in a cone of opening AR = 0.2 around an EM
cluster centroid, minus the EM cluster Ep. The requirement was E%"”em < 6 GeV,
however we found upon initial examination of this cut that the efficiency drops off as
a function of electron pr as there is no consideration of the increased bremsstrahlung

and electromagnetic shower at high-pr.
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This analysis was instigated to try and find a cut that would maintain efficiency at
high-pp, whilst also ensuring that background rejection of QCD jets faking electron
signatures is not altered, if not improved upon. Maintaining efficiency at high-pr
is important for detecting boosted top quark events and to study differential cross
sections which may be sensitive to new physics with top-like signatures, as well as

being important for searches into SUSY with W and Z-like signatures.

The analysis presented in this chapter aims to highlight the deficiency in a constant
isolation cut and propose an alternative choice of isolation requirement that maintains
efficiency across a large pr range whilst improving background rejection of QCD jets

faking isolated electrons.

5.2 Event Selection and Monte Carlo samples

The AOD simulated samples were produced with a centre of mass energy of 10 TeV
and with ATLAS Athena release version 14. The ¢t sample was used alongside the
Z — eTe™ sample as a way to gauge whether increased event noise in t¢, (for example
nearby hadronic jets, increased calorimeter activity) events would have an effect when
optimising the alternative isolation requirement. Care was taken to ensure both samples
used the same ATLAS reconstruction and simulation version. The MC@QNLO ¢t sample
was semi-leptonic, in that it had one top quark forced to decay via W + b — [vb decay.
Table provides a summary of the cross sections, number of events and equivalent

luminosity.

Process | Generator oeff [Pb] Ngpy L [pb~1]
tt MC@NLO | 202.86 - 1.07 | 1106024 | 5095.47 (NNLO)
Z —ete Pythia 1143.96 - 0.96 | 1500000 1365.87 (LO)

Table 5.1: Cross section (times the filter efficiency), number of events and integrated
luminosity for the two samples used in this study. For the t¢ sample the number of
events is the sum of the weights.

Electrons were considered to have come from the decay of a W or Z if they passed the
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following selection criteria:
e pr > 20 GeV/c
e |n| < 2.47 except barrel/end-caps “crack” region 1.37 < |n| < 1.52
e “Kgamma author” =1 or 3
o “IsSEM” = mediumNolso

Information regarding the “Egamma author” and “ISEM” definitions can be found in
Section Note the use of “IsEM” = mediumNolso is to remove an upper isolation
cone requirement that was present in version 14 of the ATLAS software, this requirement
was removed in version 15, the “mediumNolso” definition is otherwise identical to

“medium” definition in version 15. Other event selection criteria is as listed in [54].

Truth information from Monte Carlo simulation is used in this analysis to ensure that
the electron candidates used in this analysis were from real W-electrons reconstructed
within the detector. This was achieved by first matching the reconstructed electron
to a truth electron from the Monte Carlo information by requiring that the angular
separation between reconstructed electron and truth electron, was AR < 0.01, and

then requiring that this electron has either a W or Z boson as its parent.

5.3 Electron E9"* distributions

Figure shows the distribution of isolation energy measured as E:CFO”EQO for an electron
from W decay (in top quark events) and Z — ete™ decay. Using the standard
reconstruction and selection cuts to find potential electrons from W decay in ¢t events
and electrons from Z decay, Figures show the profile plots of the mean
and RMS of the E$"¢?0 distributions as a function of Er. Using the same candidate
electrons but adding an additional requirement that the electrons are truth matched

to either a W, in tt events or from a Z decay, produces Figures Matching
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to truth is done by requiring that the parent particle in the decay chain matches a W

or Z boson.

What can be clearly seen in the figures is that there is an increase in the electromagnetic
energy surrounding the electron with higher Ep, simply as a result of increased
electromagnetic shower size and bremsstrahlung. Similar behaviour is seen in both
tt and Z events in regards to the mean value of E%O”ezo for isolated electrons. The
RMS for these isolated electrons does show a difference, with the electrons from the tt
sample having a larger RMS. This is likely caused by the different complexity of the
events: tf events will in general have more jets in the event than Z — eTe™ events and
we have not included a cut on the minimum distance from a jet for W-electrons at this
stage. The prior recommendation of the top-quark working group to cut at a constant
Egme20 < 6 GeV can be seen via the dashed horizontal line in the figures. This cut
can be seen to be particularly inadequate for higher energy electrons and will reduce
substantially the selection efficiency for electrons with an Er approaching or higher

than about 100 GeV.

One other interesting observation that these simulations indicate is that the surrounding
energy as measured by E$"“?Y does not tend to zero as Er — 0 GeV. The exact cause
of this noise was never directly investigated, however it is known that the simulations
include calorimeter noise of about 20-30 MeV per calorimeter cell, leading to about
350 MeV for a cone of AR = 0.2 opening. It is also possible that there is an incorrect
subtraction of the electrons E7 in the E%"”GQO definition. We believe that the dominant
cause of this offset seems to be caused by calorimeter noise, Figure [5.2] indicates that
the offset increases as a function of the isolation cone size. If the dominant factor was
indeed an incomplete energy subtraction of the inner 2x2 cluster, changing the size of
the outer isolation cone would not have an effect. We also calculated the ES?0 in
regions of the calorimeter away from an isolated electron and found a value of ~=350

MeV being returned.
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Figure 5.1: The mean value and RMS of the E$"¢20 distributions as a function of
electron Ep, for: reconstructed W-electrons in top quark decay (a), reconstructed
and matched to truth W-electrons in top quark decay (b), reconstructed electrons in
Z — eTe™ decay (c) and reconstructed and matched to truth electrons in Z — ete™
decay (d).
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Figure 5.2: The profile of E:CFO”EQO, E:Cpone‘go, Efcp‘m640 distributions vs Ep for W-electrons

from ¢t (a) and Z — eTe™ (b).

An example of the E%‘mezo distribution for the selected, truth matched, W-electrons and
Z — ete™ electrons can be seen in Figures|5.3a] respectively. The two distributions
show similar bodies, returning a mean value with a difference of 270 MeV, but the ¢t

distribution has a longer tail, most likely caused by nearby jet activity to the electron.

2 ol jaaanaiaaassanassannzry § AP FTTTTTTTTT T T T T e
E_:u, E Entries 44264 E E E Entries 280651 E
u Mean  1.485+0.01145 | 10 Mean 1215 0.002571 |
10°E El F RMS 13620001818 | ]
E RMS  2.408 + 0.008096 | F e
i ] 10°g E
102 E E L ]
E 3 10°E E
10 - i ]
E 3 10¢ 3
15 E = VUUUTOUTIOTI | 1|1 0 [0 TN W TR

0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
etcone20 [GeV] etcone20 [GeV]

(a) (b)

Figure 5.3: The E$"¢0 distributions for W-electrons from t (a) and Z — ete™ (b),
both truth matched and in the E7 range of 20-25 GeV.

The efficiency of the E%O”GQO < 6GeV cut as a function of electron E7 is shown in

Figures for W-electrons from top quark events and Figures show

the efficiency for electrons in Z — ete™ decays. From an initial efficiency of about

98% for Ep = 20 — 30 GeV the efficiency drops down to only ~55% for electrons with
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an Fp ~ 250 GeV. This drop in efficiency is a result of the E%‘mezo distributions seen

earlier in Figure [5.1
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Figure 5.4: The efficiency of the EZ"?0 < 6 GeV cut for: W-electrons matched to
truth (a) and with a zoomed-in range (b), and Z — e*e™ decay electrons matched to
truth (c¢) and with a zoomed-in range (d).

5.4 Isolation ratio Iy

In an effort to account for the increased electromagnetic shower with higher electron
Er, dividing through by the electron Er gives a useful quantity known as the isolation

ratio, Ip:

cone20
_ ET

Ip=—"4L Nl
R By (5.1)
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Figure 5.5: The mean value and RMS of the I = EZ"¢?0/ Er distributions as a function
of electron FEr, for: reconstructed and truth matched W-electrons in top quark decay
(a) and reconstructed and truth matched electrons in Z — eTe™ decay.

The mean value and RMS of I as a function of electron E7 can be seen in Figure for
both W-electrons from top quark decay and electrons in Z decay. The dependence on
E7 is noticeably reduced compared to E%’”QQO alone and a suitably chosen requirement
of Ir, such as Ir <0.1 or 0.12 would recover electrons at high F7 as well as maintaining
a good efficiency in the lower Er range. The efficiency of cutting on I <0.1 or 0.12 is
shown in Figure [5.6] as a function of electron Ep. At low Ep < 30 GeV there is a small
efficiency loss that could be recovered by considering calorimeter noise, as seen in the
next section, however the aim to recover the efficiency at higher Er is achieved. Yet
one must also consider the Ep distribution of the W-electrons in top quark decays and
the electrons in Z decays, also shown in Figure The peak in these distributions,
Figures occur in the region where the Ir based cuts are not at their most
efficient, nevertheless we can calculate and compare the overall efficiency of the different
isolation requirements. The total integrated efficiency over the whole energy range for
the various isolation cuts is shown in Table It indicates that cutting on Ir maintains
a slightly lower overall efficiency for both ¢t and Z events for selected electrons Er > 20

GeV whilst recovering high-Er electrons, compared to cutting purely on E{}"”EQO <6

GeV.
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Figure 5.6: The efficiency of the Ir < 0.1 and I < 0.12 requirement for: W-electrons
in top quark decay matched to truth (a) and Z — ete™ decay electrons matched to

truth (b).

Figures (¢) and (d) show the total electron Ep distributions for ¢t and
Z — eTe” events respectively.

Efficiency of different isolation cuts [%)]

tt | Z—ete
B0 < 6 GeV 96.6 99.4
Ir < 0.10 GeV 94.7 96.3
Ir < 0.12 GeV 96.4 97.9
Egre?) < 44 0.023 - Bp GeV | 96.4 99.4

Table 5.2: The integrated efficiency of the various electron isolation cuts applied to a
sample of tf and Z — ete™ events.
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5.5 Sliding isolation cut

Figure shows lines corresponding to the Ir = 0.1 and Ir = 0.12, overlaid onto the
same plot shown in Figure Since we have shown that E%‘mezo does not approach
zero as Fp — 0, this implies that while a selection based on Ir recovers high-Ep
electrons it is at the cost of efficiency in the 20-50 GeV region. A better solution would
be to use a cut shown by the continuous line in Figure that includes a constant term
and scales as a function of electron E7. This cut runs parallel to the mean E%mem tt
distribution at a distance of approximately two standard deviations, which is shown

simply as the form:

E$20 < C) + Cy - Er[GeV] (5.2)

Such a cut is designed to guarantee a constant efficiency across the entire Er range,
whilst being tighter than the existing E%One?o < 6 GeV cut at lower energies, such as
Er < 100 GeV, where it is expected QCD multi-jet production will be at its highest.
For example, by using C1 = 4.0 GeV and Cy = 0.023 (which corresponds to the line
placed 2.20 from the mean value in ¢t events) one can achieve efficiency close to 100%

(see Figure over a range of Er between 20 and 300 GeV.
The actual choice of constants depends on three main factors;

e The increase in energy surrounding an electron with the electron Er is due
to increased electromagnet shower size and this phenomena is normally well
modelled in Monte Carlo simulations. Therefore C5 can be reliably taken from

simulations and its impact is measured in terms of efficiency directly from data.

e The constant C] term in the E%O"ezo plots is likely due to calorimeter noise and can
therefore be set to a chosen value and measured directly on data in Z — ete™

data by plotting E%O”QQO vs Ep as shown in Figure However, in practice
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once the cause of the constant term has been established in data, one could
simply choose a value that is not too restrictive and measure the efficiency of the
selection in data using the Tag and Probe method [55] on Z — eTe™ events and

adjust accordingly [56].

e Studies have also shown [56] that using a cut of the form Eq.(5.2]) can significantly
improve the rejection of non-isolated and fake electrons in light- and heavy-flavour
jets over the rejection that is achieved using the previous standard E%me?o <6

GeV requirement, since the latter is un-necessarily loose at low Erp.

5.6 £ dependence on 7

A check on the dependence of the value of the electrons’ E%O"EZO as a function of
electron 1 was performed. Figure shows the mean and RMS of E$"¢?Y versus 7,
for W-electrons from top quark decays in two ranges of E7 between 20 and 30 GeV
(Figure[5.9a) and Er between 150 and 200 GeV (Figure[5.9D)). It can be seen that there
is a mild dependence of E%"”e% on 7 for the selected electrons in the forward regions,
of order 1 RMS, which can easily be taken into account when choosing an isolation
requirement. An interesting point to take from these plots is how the requirement of

Egme20 < 6 GeV would have started to affect the more forward (|n| > 1) electrons first.

5.7 Multijet background rejection

A full study of the dijet and multijet background rejection by the isolation requirement
was not undertaken at the time of this study, not least because this study was done
before jet data was available. Moreover we were not interested in optimizing the electron
isolation requirement, which would be dependent on specific analyses. However it was
instructive to see how the jet background may populate the isolation versus Er profile

plots.

55



LA S I LA B R

\

etcone20 [GeV]

|
|
! 111 ‘ L1

P R R

|
200 250 300
Er [GeV]

I T T S N SO N

| |
100 150

12xxxx[xxwxﬂxﬁxw[xwxw[xwxw[xwxw
S.

\‘\\\‘\\\\

etcone20 [GeV]

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 50 100 150 200 250 300
E, [GeV]
(b)
Figure 5.7: The mean value and RMS of the E%One?o distributions as a function
of electron Ep for W-electrons in t¢ (a) and electrons in Z — ete™ (b), overlaid
with possible selection requirements. Selections considered are E:CFO”GQO < 6 GeV,

Egne® /Er < 0.1 and EZ"?/Er < 0.12, and E$"?0 < 4.0 4+ 0.023 - Er GeV
(continuous red line).

56



> . —— S — - > A —— S — -
5 1= . 5 = st Y =
8 F | o0 ] o C v —f—‘—+— ]
& F - ] & F —— 1
0.9 —— - 0.9 -
L —y— 4 L 4 4
C —¥— ] C ]
2 b
0.7 - 0.7k -
[ -eetcone20<C,+C, E. ] ] | -eetcone20<C, +C, E. + ]
0.6 + = 0.6 =
r " etcone20 < 6 GeV 7 r ~*etcone20 < 6 GeV 7
e v v v b v b b b b 1y T Cov v v b v b b b b b 1

05 50 100 150 200 250 300 05 50 100 150 200 250 300
E, [GeV] E, [GeV]

(a) (b)

Figure 5.8: The efficiency as a function of EFr with a cut of the form: E%O”eQO <
Ci1+ Cy - Ep, with C7 =4 GeV and Cy = 0.023, compared to the standard E%O”EZO <6
GeV requirement, for W-electrons in top quark decay (a) and Z — ete™ electrons (b),
both matched to truth.

SN,
TURTE I L i
N | - (b) -

Figure 5.9: The mean and RMS of E:’}?"EQO versus 7 for W-electrons from top quark
decay matched to truth, in E7 ranges of E7 between 20 and 30 GeV (a) and Er between
150 and 200 GeV (b).

o7



The multijet QCD background is an important consideration when looking for electron
signatures as they form the majority of fake electron detections. With the combination
of charged tracks in the hadronic jets and with photon production via neutral pion
decay, these two separate processes can align, a charged hadron track leading to a
photon deposit, to give the signature of an electron. Figure shows the average
E:‘;O"EQO distributions vs. FEp for all candidate electrons, in simulated di-jet events
(with different Monte Carlo jet energy thresholds at generator level), that pass all
the standard electron reconstruction cuts. The Monte Carlo sample consisted of three
different Alpgen-produced di-jet samples, with the py cut of the jets placed at 70, 140
and 280 GeV, this was required to understand the jet E%"”QQO profile in di-jet events

across the energy range this study was undertaken in.

The horizontal line indicates the E%""QQO < 6 GeV requirement, while the diagonal
line indicates the sliding E%""e% cut. It can be seen that the average E%‘mem for the
softer jets is closer to the E:CFO"GQO < 6 GeV requirement and a tighter cut on isolation
is beneficial in this region of the phase space. At higher energies, the looser sliding
E%’”EQO cut should not affect the rejection significantly, since the average E%O”GQO for

hard jets is much higher than the cone energy of real isolated electrons.

Monte Carlo studies of the expected electron reconstruction and identification perfor-
mance of the ATLAS detector have calculated the efficiency of detecting an electron using
the “medium” definition with an isolation requirement that is optimised for different
pr and 7 regions. Using an isolation requirement with 95% efficiency on a Z — ee
sample gives a total jet rejection, including hadron fakes and background electrons
from photon conversions and Dalitz decays, of 20000 + 350 [57]. Monte Carlo studies
for the top-quark working group have shown the QCD rejection power of the sliding
E$m¢20 cut to be better than a static track based isolation cone cut [56]. Both of these
studies highlight the large cross section of QCD di-jet and multijet events and the need
to use electron isolation cuts that balance efficiency against background rejection and

the need to study electron fake rates in LHC data.
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Figure 5.10: Average E%mezo distribution versus Er for electrons that pass all standard

ID requirements, in simulated di-jet events (with different jet transverse momentum
thresholds).

5.8 Summary

The features of the calorimeter isolation variable E%"”em for W-electrons in top quark
events and for electrons in Z — eTe™ decays has been studied. It was found that due to
increased electromagnetic shower size, following the previous recommended selection of
E%‘m‘ﬁo < 6 GeV would affect dramatically the efficiency of selecting high- Er electrons.
We investigated recovering the efficiency at high-Er via the use of a cut based on
the isolation ratio Ip = E$"?°/Er < 0.1,0.12 which is a significant improvement.
However accounting for the calorimeter noise present in the detector via a cut of the
form E:CFO"EQO <Cq14Cqy - Ep gives the optimal performance as it follows the natural
E%O"SQO distribution versus E7. This maximises the isolated electron efficiency against
background rejection. The constant C' is due to electromagnetic shower size and can be
easily determined in Monte Carlo simulations and its effect measured in the efficiency
from Z — eTe™ data. The constant term C7 ~ 3.5 — 4.0 GeV, as it appears in current
simulations, presumably comes from calorimeter noise and its value can be set a-priori

and then optimised using E:CFO"GQO profile plots versus Er from Z — eTe™ data.
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As a result of this study and presentations to the top-quark working group within
ATLAS, the cut of the form E%"”EQO <C1+Cs - Er was made a standard cut on all
top quark analyses selecting isolated electrons as of February 2010. Also the first
measurement of the ¢t production cross section at /s = 7 TeV [58] utilised this cut for

selecting isolated electrons.
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Chapter 6

Soft Muon Tagging Efficiency in
J/¢ Events

6.1 Introduction

The narrow resonance of the J/1 production and its decay J/¢ — ppu is an ideal sample
for performance studies of the muon system within ATLAS. Understanding the muon
reconstruction efficiencies is of particular importance for this analysis in regards to
identifying soft muons from b-quark decay, and the J/ production of low pp muons is
an ideal channel to study this. This analysis focuses on the muons from the J/v decay
within the ATLAS detector from the first months of operation, with the aim to calculate
initial combined muon reconstruction efficiency and data vs. Monte Carlo scale factors.
The quantity detailed in Section an atch 18 studied in this analysis and an initial
efficiency and scale factor calculated from data. The efficiency measurement of Xgnatch
and scale factor information calculated in this section will then be used in Section [ as

part of the top-quark pair production cross section measurement.

The mechanisms by which the production of prompt charmonium states occur will not

be covered in this analysis, nor will there be investigations of the production cross
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section and other areas of J/1 study, such as polarisation. The various experiments
that have investigated heavy quark production in high energy hadronic collisions and
their findings are detailed in [59] and offer an insight into the variety of potential

measurements within ATLAS.

6.2 Soft Muon Tagging

The ATLAS soft muon tagging (SMT) algorithm [45] can be applied to a sample of
jets to significantly enhance the heavy flavour content of that sample. It relies on
the branching fraction of b-hadron decays via b — puvX or b — ¢X — purX resulting
in 20% of b decays producing a muon. X denotes a hadronic system of one or more
mesons. The standard SMT algorithm within ATLAS looks for reconstructed muons
within AR < 0.5 of a jet and because of the high purity of the muon reconstruction at
ATLAS a relatively large light-jet rejection rate can be achieved, details in Table [6.1]

Light-jets refer to light-quark (u and d) or gluon jets.

The performance of the SMT algorithm can be further enhanced by making use of the
muon-jet pgfl: the muon momentum in the plane orthogonal to the jet axis (axis of the
cone encompassing the jet), after the jet axis has been corrected for the presence of the
muon. The jet axis is recalculated by adding the muon momentum to it. Real muons
that are the result of the decay of the heavier b-hadrons will tend to have a larger
p’"Tel than those resulting from pion/kaon decays or fakes. The current SMT algorithm
includes the use of a cut on the 1-D likelihood ratio built from simulated Monte Carlo
p?pd distributions of light-jets and b-jets. It was demonstrated in [59], that a light
jet rejection (LJR) factor of 380 could be achieved for a b-jet tagging efficiency (ep)
of 10% using pTTel based likelihood tagging which included the semi-leptonic branching

ratios, the detector acceptance, muon reconstruction efficiency and jet-muon association

efficiency.

An alternative variable that can be used to enhance the light-jet rejection is detailed in
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Section and is defined as the X%q, ateh, Of the match between the Muon Spectrometer
and Inner Detector tracks of a combined muon. Studies detailed in [60] and summarised
in Table show that cutting directly on this variable with a value of X?natch < 3.2
can achieve a performance in tt simulated events that is at least as good as using p}el

but with the following advantages:

e The an ateh, Variable is part of the combined muon reconstruction algorithm and as
such does not require the presence of a jet. Therefore, assuming no dependence
from surrounding particles, the efficiency can be determined using J/¢ — pupu,
T — pp and Z — pp “tag and probe” techniques [61], of which the J/v — pu

channel will be studied here.

e The ability of the p’"Tel variable to discriminate between reconstructed muons in
b-jets and reconstructed muons in light-jets diminishes at high jet Ep, whereas

the x2 ., variable is not affected in the same way [60].

In Section the efficiency of the anatch < 3.2 requirement will be investigated using
the ATLAS J/1 — pp data.

p?l—tagger Xfmtch—tagger
€p p}el-weight > X LIJR X?natch <X LIJR
8% 3.7 790 + 19 1.8 740 £ 17
9% 3.4 585 + 12 2.3 595 4+ 12
10% 3.14 430 + 8 3.2 470 £ 9
11% 2.93 310 £ 5 6.0 330 £ 5

Table 6.1: Comparison of light jet rejections factors for several b-tagging efficiency
rel

operating points of the Xfmtch—tagger and pr¥'-tagger using the purified light jet sample
(as defined in the text) [60].

The light jet rejection factors quoted in Table were calculated excluding light jets
in the vicinity of which a b-jet, c-jet, or tau lepton was found (within a cone of size
AR = 0.8). The light jet sample obtained after this additional selection is referred to

here as the purified light jet sample.
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6.3 Data and Monte Carlo samples

6.3.1 Data sample

The collision data at a centre-of-mass energy of 7 TeV, taken between June 24th and
August 29th 2010 is included in this analysis and covers ATLAS data periods “D”
through to “F”. Only the luminosity blocks that have been declared good are used in
this analysis following the guidelines set out by the ATLAS muon group. The criteria
for a good luminosity block covers the state of all the relevant ATLAS detector elements

and that the LHC beam is also stable.

For this analysis the MS, ID and magnet system are required to be fully functional so
that the data is of sufficiently high quality to be suitable for physics analysis. Taking
into account the luminosity block selection, the total integrated luminosity for the

sample is calculated to be 3.140.3 pb~!. The details of each run period are shown in

Table 6.2]
Period and ATLAS Run Numbers | Integrated Luminosity (nb~!)
D:158045-159224 311.83
E:160387-161948 893.29
F:162347-162882 1856.81
Total 3061.92

Table 6.2: The recorded luminosity for the runs in periods D and F, after removing the
luminosity blocks that are flagged as unsuitable for physics analysis.

6.3.2 Monte Carlo sample

Monte Carlo comparisons were made using signal samples generated with the PYTHIA
6 [32] program, tuned using the ATrLAs MCO09 tune [62] and MRST LO* [63] parton
distribution functions. The signal .J/1 event samples rely on the Pythia implementation
of prompt J/1 production sub-processes that have been tuned to describe Tevatron

results [64]. The prompt J/v production includes direct production from the hard
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interaction, as well as radiative feed-down from y. — J/v¢~y decays. Included at the

generator level there is a pr > 4GeV and |n| < 2.5 cut on the muons.

6.4 Event and candidate selection

As detailed earlier in Section [2, the ATLAS detector covers almost the full solid
angle around the collision point with many differing detectors, calorimeters and muon
chambers. For this analysis, the trigger system, inner detector and muon spectrometer

are of particular importance for the detection of low-pr muons.

The data used in this analysis was taken during periods where elements of the ATLAS
detector were still being commissioned and the instantaneous luminosity was rising
from run to run. For this analysis we have relied on the use of the Minimum Bias
Trigger Scintillators (MBTS) at the final event filter level (EF). The MBTS is based
on scintillators mounted at each end of the detector in front of the LAr calorimeter
cryostats at z = +3.56 m, segmented into eight sectors in azimuth and two rings in
pseudo-rapidity (2.09 < |n| < 2.82 and 2.82 < |n| < 3.84). The MBTS trigger is
configured so that it requires two hits above threshold from either side of the detector
from which a dedicated muon trigger at the EF level is used to confirm the candidate

events.

A particle in a solenoidal field follows a helical trajectory that can be parametrised
with five track parameters as shown in Figure two of those parameters, which are

particularly relevant for this analysis are:

e The transverse impact parameter d0, which is the distance of the closest approach

of the track projected into the x—y plane relative to the nominal interaction point.

e The longitudinal impact parameter zg, which is the z value of the point of closest

approach determined as above.

There also exists the ability to distinguish between prompt and non-prompt J/v within
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particle
track v, pe

particle
track

P ... nominal interaction point
A ... point of closest approach to P C ... center of helix in (x-y) plane
V ... vertex p ... radius of the helix in (x-y) plane

Figure 6.1: The five track parameters, split into three transverse values (z — y plane)
and two longitudinal values (r — z view) for a helix track in a cylindrical detector
geometry [65].

data by using the radial displacement, L, of the two-track vertex from the beamline

to calculate the pseudo-proper time tg, as defined by:

Lyy - My

O b ¢ o

where M, and pr(J/1) represent the J/v invariant mass and transverse momentum,
¢ is the speed of light in vacuum. Prompt J/¢ decays will have a zero pseudo-
proper time whereas non-prompt .J/t primarily come from B-hadron decays with an
exponentially decaying pseudo-proper time distribution due to the lifetime of the parent
B-hadrons. It has been shown that a pseudo-proper time cut of less than 0.2ps will

allow to retain prompt J/v with an efficiency of 90% and a purity of 97% [66].
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6.4.1 Tag and Probe Method

The tag and probe method [55] requires muon pairs that are selected by having one
well reconstructed muon, the “tag”, and an inner detector track, the “probe”, with an
invariant mass that is consistent with coming from a J/¢ — u*u~ decay. This method
allows for the “probes” to be selected independently of the ATLAS muon spectrometer
and can be used to measure the efficiency for reconstructing a muon based on the muon

spectrometer, a combined muon.

After selecting an inner detector track and muon pair that are within the J/v invariant
mass window, which is defined in Section the efficiency of the combined muon

reconstruction algorithm can then be determined from Equation

J/v candidates reconstructed with a muon probe
J /v candidates reconstructed with an inner detector probe

The muon probe collection is a sub-set of all the inner detector probes that have been

reconstructed using the combined muon reconstruction algorithm discussed in Section

443

We also measure the efficiency of a cut of type X%@ateh < X on the reconstructed

combined muon, this is simply defined as:

_J/¢ candidates reconstructed with a muon probe and Xoaten < 32

6.3
J /¢ candidates reconstructed with a muon probe (6.3)

6.4.2 Tag Selection Criteria

The requirements on the Tag muon candidates are:
e The track should be a combined muon.

e The combined muon should be within the geometrical acceptance of the Inner
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Detector, |n| < 2.5.
e The pr of the combined muon must be pr > 4.0 GeV.

e Reconstructed tracks should have at least 1 hit in the Pixel and at least 6 hits in

the SCT system.

e Tracks that fall within the acceptance of the TRT (|n| < 2.0) are required to have

10 TRT hits.

e The impact parameter (dp) and distance in the z-direction (zp) of the track with
respect to the Primary Vertex should be dyp < 1.0 mm and 2y < 5.0 mm and the

corresponding significances should be less than 2.5.

e The tag is also required to match to at least one of the muon triggers requested
in the event selection; the matching with the L1_ MUO trigger item is satisfied if

the tag is in the region of interest where the L1 trigger was produced.

6.4.3 Probe Selection Criteria

The probe candidates are picked from the reconstructed inner detector track pool

according to the following criteria:
e The same hit quality cuts on the reconstructed track as those for the Tag.

e The probe track should not match the electron ISEM “medium” flag, which would

imply that the muon is likely an electron candidate.
e The probe must be of opposite charge to the tag.

The muon probe candidates are all combined muon tracks matching the same criteria as
the inner detector probe tracks, with the addition of being reconstructed as combined
muons. To calculate the efficiency of the anatch muon variable detailed in Section
a further probe collection is created, satisfying the requirement inatch < 3.2; this

selection is a further sub-set of the muon probe collection.
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6.4.4 J/¢ Selection Criteria

The tag and probe criteria used to select possible .J/1 candidates and remove potential

backgrounds follows that laid out in [61] and is:
e Tag and Probe candidates are required to have emerged from a common vertex.
e The x? of the fit to the vertex should be below 6.

e The pseudo-proper time of the reconstructed J/v should be less than < 0.2ps in
order to help reject the dominant bb — pX and cé — pX backgrounds. As a

result most indirect J/v’s will be sacrificed by applying this cut.

e The separation in AR between the tag and probe should be 0.1 < AR < 0.7 to
help eliminate non-prompt J/1. The separation angle AR provides a background
rejection of more than a factor of 5 for the two dominant background modes:
bb — pux and c¢é — py, and more than a factor of 1.5 for the combinatorial

background of both prompt and indirect J/1).

e At least one of the muons in each pair is required to be a combined muon.

6.5 Fit of J/¢ mass distributions

The invariant mass of all J/¢ candidates passing the required criteria with an inner
detector probe is shown in Figure and for all J/v candidates with a muon probe is
shown in Figure[6.2b|from data. The fit to the invariant mass was done by modelling the
background with a one dimensional polynomial and the signal region with a Gaussian.
The combined function of the one dimensional polynomial and the Gaussian is then
minimized through ROOT (a data analysis framework [67]) using MINUIT [68] to

produce the fit and parameters shown.

The signal region is defined by the range +30 from the reference mass of the J/1 of

3.071 GeV. The reference mass is used instead of the returned value of the mass from
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Figure 6.2: The invariant mass of all muon pair candidates reconstructed with an inner
detector probe (a), reconstructed with a muon probe (b) and that have passed the
X2, aien, Tequirement (c), all from data.
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the fit as we are not concerned with a measurement of the J/1¢ but to keep a consistent
signal region for measuring muon reconstruction efficiency. The signal region is defined
from the inner detector probe plot for calculating the combined muon reconstruction
efficiency and from the muon probe plot for calculating the efficiency of the x2, ., < 3.2

requirement.

The signal is calculated by removing the area under the background fit from the total
integral in the defined 30 regions. The ratio between the calculated signal in the
numerator and denominator plots is then used as a measure of the efficiency for the

relevant reconstruction algorithm.

The small peak in the invariant mass distribution at ~ 3.7 GeV is caused by the 1/,
which has a mass of 3686 MeV and is an excited c¢ hadron. It will decay very quickly
into a variety of states, but sometimes into two pions and a J/¢. When fitting the

background, the region around 3.7 GeV is excluded from the fit.
The results of the efficiency calculations are shown in Section

For Monte Carlo simulations, the same procedure is used to calculate the signal but as
the simulations include only signal there is no background subtraction in the defined

regions.

6.6 Systematic studies

This section will discuss the systematic uncertainties present within this analysis and to
what level they affect the accuracy of the muon and an atch, TeCONstruction measurement.

We will investigate the systematic effects due to:
e Signal fit procedure

e Background shape used in the fit
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Figure 6.3: The invariant mass of all muon pair candidates reconstructed with an inner
detector probe, (a), reconstructed with a muon probe (b) and that have passed the
X2 aten Tequirement (c), all from Monte Carlo.
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6.6.1 Signal fit

The systematic uncertainty from fitting the J/¢ signal was calculated by measuring
the difference in efficiency by changing the signal region between 30 and 50 from the
world-average J/1 mass. Increasing the signal window from 3¢ to 50 should not affect
the result, but does help account for bremsstrahlung from the muon that would lower
the average mass of the J/1¢ and any tracking errors that could result in an incorrect
reconstruction of a muon track pr. An example resulting systematic uncertainty for

the combined muon reconstruction efficiency is shown in Appendix

6.6.2 Background shape

The background systematic was estimated by looking at what effect increasing and
decreasing the size of the sideband regions has on the calculated efficiencies. A range of
possible efficiencies was also determined by varying the parametrized background slope
and constant within their uncertainties. In Figure the red and blue dashed lines
represents the background with the slope increased and the constant decreased and the

blue dashed line the opposite.

The background shape was also examined by looking at same-sign (SS) muon pairs as
a possible way to model the background. Figure shows that although the shape
of the same-sign muon pair background is similar to that of the fitted opposite-sign
(OS) signal background, the slope of the same sign background is not “compatible” as

a means to model the opposite sign background.

6.7 Statistical uncertainty

The statistical uncertainty was computed using the binomial approximation shown in

Equation [6.4] where m is the number of signal probes that pass the required criteria
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the returned fit uncertainties. (See text for more details)
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set out in Section and N is the total number of probes before selection. This

approximation is valid in all but cases where ¢ = 1 or 0, which is valid for this analysis.

m(l —m/N)

e = ~

(6.4)

6.8 Efficiency and Scale Factor measurements

6.8.1 Combined Muon Reconstruction Efficiencies and Scale Factors

The efficiency of the combined muon reconstruction algorithm using 3 pb~! of LHC
data at /s = 7 TeV is shown in this section. The binning for the plots shown is coarse
because of the still limited statistics available but gives a good indication of the initial

performance of the muon reconstruction compared to Monte Carlo simulation.

The combined muon reconstruction as a function of probe pp is shown in Figure
there is good agreement between Monte Carlo predictions and data in the pr =4 — 8
GeV range, with a scale factor almost exactly 1. However in the ppr > 8 GeV range, the
efficiency of the combined muon reconstruction diverges from that predicted by Monte
Carlo, showing a reduced efficiency. The result of the reduced efficiency measured in
this range results in a scale factor for the two higher pr bins of ~ 0.85. The reason
for this drop has not been completely understood yet. The full efficiencies and scale

factors as a function of pr are given in Table

pr bin [GeV] | Data Efficiency [%] || MC Efficiency [%] || Scale Factor
4-6 86.6 £ 0.3 86.7 £ 0.1 1.00 £0.01
6-8 96.2+1.1 949+ 04 1.01 £0.01
8-10 83.2+1.0 94.94+0.5 0.88 £0.01
10+ 80.9+1.5 94.0£0.3 0.86 +£0.02
Total 90.6 £ 0.5 89.6 £ 0.2 1.01 £0.01

Table 6.3: The combined muon reconstruction efficiency as a function of pp.

Figure [6.7| shows the efficiency as a function of 1. The “U” shape of this plot can
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Figure 6.6: The measured efficiency of the combined muon reconstruction algorithm as
a function pp with the scale factor as a function of pr shown below.

be explained by the gaps in the muon system coverage. Namely the central gap at

n = 0 and the barrel to endcap transition region at n = £1.2, reduce the average

efficiency in the central region. This is modelled well in Monte Carlo, has been studied

previously [45] and can be seen in Figure The current measurements in 1 show

agreement between data and Monte Carlo for all but one data point within the measured

uncertainties. The scale factors vary across the 1 range but are consistently below 1

except the n > 2 bin. The measured efficiencies and scale factors as a function of 7 are

given in Table [6.4]

bin | Data Efficiency [%)]

MC Efficiency [%)]

Scale Factor

n
(3)-(2)
(2)-(-1)

(-1)-0

96.8+9.4
83.3+£7.6
83.3 7.7
86.2+ 3.9
86.1 £2.1
101.7+ 4.8

100.6 £1.0
91.24+0.1
85.3£0.1
86.9£0.1
91.44+0.1
100.5£1.0

0.96 + 0.09
0.91+£0.08
0.98 +0.09
0.99 +0.05
0.94 +0.02
1.01 £0.05

Table 6.4: The combined muon reconstruction efficiency as a function of 7.

The geometrical effect of the detector feet on the muon reconstruction efficiency in ¢,

shown to occur in [45] (see also Figure[6.10]), is not visible in Figure because of the
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coarse binning used due to low statistics currently from data. There is also a distinct
difference in efficiency as a function of ¢ between Monte Carlo simulations and data
measurements, with all the data measurements showing a reduced efficiency compared
to Monte Carlo predictions. This results in scale factors all below 1 as a function of ¢.

Table details the efficiencies and scale factors as a function of ¢.
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Figure 6.9: The measured efficiency of the combined muon reconstruction algorithm as
a function of ¢, with the scale factor as a function of ¢ shown below.

¢ bin Data Efficiency [%] || MC Efficiency [%] || Scale Factor
3.2) (2) 75.6 £ 3.7 873 +£0.2 0.87 £ 0.04
(-2)(-1) 79.6 £ 5.4 87.3£0.1 0.91 £ 0.06
(-1)-0 81.2£0.6 89.3+0.2 0.91£0.01
0-1 842+ 1.1 92.5+0.3 0.91£0.01
1-2 91.2+1.6 92.0£0.3 0.99 £0.02
2-3.2 86.9 £4.0 89.2+0.2 0.97 £ 0.05

Table 6.5: The combined muon reconstruction efficiency as a function of ¢.

6.8.2 X2, Efficiencies

All muon probe candidates that passed the combined muon reconstruction algorithm
will have a Xgnat ., value associated to them that determines the quality of the muon-

track matching. Requiring X2, , oh < 3.2 as explained in Section the same cut that
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Figure 6.10: The efficiency of the combined muon reconstruction algorithm as a function

of ¢ from Monte Carlo, showing the dips in efficiency caused by the detector feet.

will be preformed in the top quark cross-section analysis [7] allows us to look at the
efficiency of that cut on soft muons from J/v decay. Figure shows the anat o Of

all probe candidates that have been reconstructed with the combined muon algorithm.
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Figure 6.11: The measured Xgnatch of all muon probes having passed the combined
muon requirement in data and J/v) — pu Monte Carlo simulations.

Figure shows the efficiency of the anatch cut as a function of pr after all probes

have passed the combined muon requirement. The efficiency of the anat ., cut is seen
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to be very well modelled in Monte Carlo, with all scale factors very close to 1. Table

[6.6] shows the efficiencies and scale factors as a function of pr.
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Figure 6.12: The measured efficiency of the xfmtch < 3.2 cut as a function of pr with
the scale factor as a function of pr shown below.

pr bin [GeV] | Data Efficiency [%] || MC Efficiency [%] || Scale Factor
4-6 85.7+0.4 86.8 £0.3 1.00 £ 0.01
6-8 87.1+0.5 88.1+0.4 0.97 +£0.01
8-10 87.7+£0.6 88.1+0.5 0.99 £0.01
10+ 86.7 0.9 88.3+0.4 0.99 £0.01
Total 86.3 £0.3 87.3+£0.3 0.99 £0.01

Table 6.6: The xfmtch < 3.2 cut efficiency in several py bins for all combined muon
probe candidates.

The efficiency of the Xfmtch < 3.2 as a function of n is shown in Figure which
indicates that there are some differences between Monte Carlo modelling and the
measured values; this is especially the case in the n range between -2 and -1, where
the measured efficiency in data is of the order ~ 10% less than Monte Carlo. This bin
includes the barrel-endcap transition region in the detector and it could be possible
that certain material aspects of the detector are not fully modelled. A finer binning
in this region would help investigate the potential cause of this loss in efficiency but

requires more statistics than the 3.1pb~! available for this analysis. In other n bins
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there are small variations in data from Monte Carlo, but no further large discrepancies,

Table [6.7] shows the complete efficiencies and scale factors as a function of 7.
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Figure 6.13: The measured efficiency of the Xfmtch < 3.2 cut as a function of n with
the scale factor as a function of n shown below.

nb Data Efficiency [%] || MC Efficiency [%] || Scale Factor
3)- ( 2) SL.0£ 1.0 STSE05 0.057 £ 0.012
(-2)-(-1) 71.8£0.7 84.8 +0.3 0.847 + 0.008
(-1)-0 90.1£04 87.4+0.1 1.031 £ 0.005
0-1 92.8 +0.3 89.6 £0.1 1.035 £ 0.003
1-2 87.9+£04 86.6 £0.4 1.015 £ 0.006
2-3 84.8 £1.0 85.2+0.5 0.996 £ 0.013

Table 6.7: The X?natch < 3.2 cut efficiency in several n bins for all combined muon
probe candidates.

The dependence of the x?, ., < 3.2 cut as a function of ¢ is shown in Figure it
shows very good agreement between Monte Carlo and data, with all scale factors very
close to 1. There are no bins showing large differences between data and Monte Carlo.

Full details of the efficiencies and scale factors are shown in Table [6.8]
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Figure 6.14: The measured efficiency of the X%’Latch < 3.2 cut as a function of ¢ with
the scale factor as a function of ¢ shown below.

¢ bin Data Efficiency [%] || MC Efficiency [%)] || Scale Factor
(-3.2)-(-2) 84.4+0.5 85.8£04 0.983 + 0.007
(-2)-(-1) 84.9 + 0.7 86.1 + 0.4 0.986 = 0.010
(-1)-0 86.9 £ 0.6 88.1£04 0.987 + 0.008
0-1 87.6 £0.5 88.8 £0.3 0.987 £ 0.006
1-2 87.8 £0.5 88.1+0.3 0.996 £ 0.006
2-3.2 86.2£0.5 87.0£0.3 0.992 £ 0.007

Table 6.8: The anatch < 3.2 cut efficiency as a function of ¢ for all combined muon
probe candidates.
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6.8.3 X2, Efficiency as a function of isolation

The purpose of investigating the efficiency of the x2 ., < 3.2 cut in J/¢ data is
to understand the behaviour of soft muons within data, and then extrapolating this
knowledge for use in soft muon tagging in b-jets within ¢t events. One of the major
factors that could affect the efficiency of reconstructing muons within b-jets is localised
jet activity around the muon, producing other charged tracks and particles that could

interfere in the detection of muons from the decay of the b quark.

It is therefore important to try to understand the anatch efficiency as a function of

isolation.
Muon probe isolation was studied using three different isolation variables;
e Calorimetric isolation, E$°"¢, which is described in detail in Section

e Track based isolation, p7?"¢, the sum of the pr of all tracks with a pr > 1 GeV

within a given cone size, minus the object track pr;

e Number of tracks within a give cone size, known as nu®"™.

Figure shows the an ateh, < 3-2 cut efficiency as a function of E:CFO"@?’O. There is very
good agreement between Monte Carlo simulations and data, with all scale factors being
very close to 1. Importantly as well the efficiency of the anatch < 3.2 cut is shown to
be flat over the range of isolation studied. Negative values of E%"”em are possible due

to noise fluctuations in the calorimeter [69].

Figure shows the X%nat o < 3.2 cut efficiency as a function of p§9”630. There is very
good agreement with Monte Carlo predictions. Again all scale factors are close to 1
and the efficiency of the X?natch < 3.2 is shown to be flat over the range of isolation

studied.

The efficiency of the X%@ateh < 3.2 cut as a function of nu"¢3 is shown in Figure

nuc®30 shows similar properties to the other isolation variables: good agreement with
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Figure 6.15: The measured efficiency of the Xfmt on < 3.2 cut as a function of Egones0
with the scale factor as a function of E%O”ego shown below.
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Figure 6.16: The measured efficiency of the xZ . < 3.2 cut as a function of pf
with the scale factor as a function of p§9"630 shown below.
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Monte Carlo predictions and scale factors all close to 1. The efficiency as a function of

nu™3Y is shown to be flat across the range of isolation studied.

> = T =
g - ]
g = -
= [ -
w — —
o5 . =
———=% ¥ * .
08— -
o7 =
- [—=— T&P Pythia JW - pu b
06— | —e— T&P data —
5 i ]
& 1.2
w - -
@ - ]
©
®
[8) == - = b i
s N ]
3 - ]
8 0.8
0 1 2 3 4 5 6

8
M nucone30 [GeV]

Figure 6.17: The measured efficiency of the x? ., < 3.2 cut as a function of nu®ne30

with the scale factor as a function of nu™30 shown below.

The isolation environment within J/v events quite evidently will be different to that
of tt events. Figure shows that muon probes within data have a much higher
energy density around them than is modelled in direct J/v — pu Monte Carlo and
a much longer tail in the distribution. Even with the differences in Monte Carlo and
data, there is good agreement in the highest isolation bins studied and the efficiencies

remain flat, indicating that the X?mtch < 3.2 is robust against isolation.

However Figure [6.18b] is a reminder that the isolation environment in ¢t events can
extend a lot further than in J/1¢) — pp Monte Carlo. In muon probes from J/¢ data,
the mean E5"¢30 in J/¢) data is 1.65 GeV, yet in J/1 — pu Monte Carlo the mean is

0.50 GeV and in ¢t Monte Carlo the mean is 24.3 GeV.
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Figure 6.18: Comparison between the distributions of E$"3? of muon probes that
pass xfmtch < 3.2 in data and J/v» — pp Monte Carlo simulation shown in Figure
(a). Figure (b) shows the distribution of E$"¢3Y for soft muon candidates that pass
X2aten < 3.2 in tf Monte Carlo simulation.

6.9 Summary and conclusions

The efficiency of the combined muon reconstruction algorithm in J/1 production from
LHC first data collisions has been studied and scale factors calculated as a function
of pr, n and ¢. Also the efficiency of cutting on the X%mtch of combined muons at a
value of 3.2 has been studied and scale factors calculated as a function of pr, 1, ¢ and

selected isolation variables.

For the muon reconstruction efficiency, there exist notable divergences between Monte
Carlo predictions and data measurements for pp > 8 GeV. The effect of the lower than
predicted efficiency in this region is not understood and should be studied further with

more LHC data.

In the ¢ bins measured there is a reduced efficiency in data in every bin when
compared against Monte Carlo. The reason for this divergence was not investigated,
but explanations could involve non-perfect alignment of the detector elements or more
“dead” material in the detector than simulated, reducing the chance a low-p7r muon will

reach the muon chambers and for a combined muon track to be reconstructed. Within
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the uncertainties calculated there is agreement between Monte Carlo predictions and
data for the reconstruction efficiency of the combined muon algorithm within the n

ranges measured.

The efficiency of cutting on the anatch of combined muons at a value of Xfmtch < 3.2
shows good agreement with Monte Carlo in all but one bin of 7, with most scale factors
close to 1.0. The reason for reduced efficiency in the n = (—2) — (—1) bin is not
understood, but this is a transition point between the barrel and endcap areas of the
detector where there exists are large fraction of “dead” material. Further investigation
of this reduced efficiency should be undertaken but fell out of time constraints for this

analysis.

The efficiency of the x?, ., < 3.2 cut as a function of different isolation variables
shows good agreement with Monte Carlo and is flat across the isolation ranges studied.
However it has been noted that the isolation environment in J/v events differs greatly
from that in ¢ events, for which the efficiency of the x2 ., < 3.2 has been measured
for. Therefore any exploration of efficiencies and scale factors to higher isolation events

should be done with care.

Future measurements of the efficiency of the anatch cut as a function of isolation could
aim to include J/1 production in events with high jet activity as a means of increasing
localised jet activity around the muon probes. At the time of writing this was not

feasible with the statistics available but should be possible with more collision data.

87



Chapter 7

Top-Quark Pair Production
Cross Section with Soft Muon

Tagging

7.1 Introduction

The goal of observing top quark pair production is regarded as one of the key milestones
for the early LHC physics program. Measuring the top quark pair production cross

section is interesting for several reasons;

e A large tt sample is expected to be collected in the first year of data taking, which

can be exploited to investigate many aspects of detector performance;

e tt production is an important background for several searches for physics beyond

the SM;

e New physics at /s = 7 TeV could give rise to additional ¢t production

mechanisms, not previously seen.
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The Standard Model prediction for the t¢ cross-section in pp collisions at a centre of
mass energy of /s = 7 TeV is calculated to be o7 = 164.6f%:§ pb at approximate

NNLO [70; [71].

As stated in Section the top quark almost always decays in the mode ¢t — Wb, and
the decays of the W bosons dictate the final topologies of the events. The semileptonic
decay mode (tt — blvbjj) is studied in this analysis and provides a good balance
between the branching ratiom of 43.8% (which includes both e and p channels) and
the relatively low background [58]. The semileptonic channel will give rise to final
event states with one lepton, missing transverse energy and jets, two of which will be

b-flavoured.

This section aims to give an early measurement of the ¢t production cross-section with
the ATLAS detector in the semileptonic channel, utilising soft muon tagging via anatch
to identify b flavour jets. Using soft muons to tag b-jets creates a complementary
sample of ¢t events to that using displaced vertex tagging. The data sample using soft
muon tagging is ~ 20% of that via displaced vertex tagging as a result of the branching

fraction of b-hadron decay.

7.2 Data and Monte Carlo samples

7.2.1 Data samples

The collision data at a centre-of-mass energy of 7 TeV, collected between June 24th and
August 29th 2010 are included in this analysis and cover ATLAS data taking periods
“D” through to “F”. Only the luminosity blocks that have been declared good are used
in this analysis following the guidelines set out by the ATLAS top-quark working group;
the criteria for a good luminosity block cover the state of the relevant ATLAS detector

elements and that the LHC beam is stable.

'The quoted branching ratios also include small contributions from leptonically decaying taus.
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The analysis code was run on a data sample provided by the ATLAS top-quark working
group, this data sample is derived from the full data set and is required to pass a set
of loose object selection cuts. The dataset is split into two separate channels defined
by primary lepton used to trigger the event, this analysis used the “ElectronEvent”

and “MuonEvent” channels (details of certain criteria listed in these definitions are

described in Section and Section 4.4.3]).

ElectronEvent

Events containing at least one electron with
e Calorimeter cluster Ep > 15 GeV
e Author =1 or 3
o “ISEM” = loose
or at least one electron with
e Calorimeter cluster Er > 15 GeV
o B2 < 4 GeV

MuonEvent
Events containing at least one muon reconstructed with the STACO [47] or MulD

[48] algorithm
e pr > 15 GeV

Using the list of runs approved by the top-quark working group within ATLAS, that
excludes any luminosity block that contains a prescaled trigger used in this analysis,
gives a combined integrated luminosity of 2869.44 nb~!, the details of which are shown

in Table [T.1]
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7.2.2 Monte Carlo samples

This analysis method was developed with the help of simulated ¢t samples which were
also used to calculate the acceptance of ¢t events in the ATLAS detector. The generation
of tt signal events was done with the next-to-leading order (NLO) generator MC@QNLO

[38], with an assumed top-quark mass of 172.5 GeV.

Using approximate NNLO calculations [70, [71], the cross-section of the tf production
is normalised to 164.6 pb. All hadronisation is performed using the HERWIG [34] and
Jimmy [37] programs. All samples have been reconstructed using the standard ATLAS
detector and trigger simulation [72] and are subject to the same reconstruction and

analysis algorithms used in data.

7.3 Object selection

Reconstructing ¢t events makes use of all of the different parts of the ATLAS detector, in
that electrons, muons, jets and the missing transverse energy EIWSS (which is sensitive
to the presence of neutrinos) are all reconstructed. For this analysis the following

selection criteria are used, as required by the top-quark working group for comparison

of results:
Electron
e pr > 20 GeV
Period and ATLAS Run Numbers | Integrated Luminosity (nb—1)

D:158045-159224 278.46

E:160387-161948 1002.32

F:162347-162882 1588.66

Total 2869.44

Table 7.1: The recorded luminosity for the runs in periods D and F after removing the
luminosity blocks that are flagged not usable for top quark physics analysis.
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e “Egamma” Author =1 or 3
e |n| < 2.47 except barrel/end-caps region 1.37 < |n| < 1.52
e “IsEM” = RobusterTight

e Require at least 1 hit in the b-layer to suppress background from photon

conversions
o Eme20 <(C14Cy - By [GeV], with C; = 4 GeV and Cy = 0.023

e Additionally, all electron candidates are required to pass cuts that check the

condition of the detector in the region the candidate is found in.
Muon
o pr > 20 GeV
o |n| <25
e Muon has a combined muon track.
o pine30 < 4 GeV
o EFe30 < 4 GeV

The isolation criteria (E$"¢) for both electrons and muons are described in Section

it uses cone sizes defined in Equation to help reduce the background due to

leptons from the decays of hadrons (including heavy flavours) produced within jets. The
cone

additional isolation requirement of p7?"¢ is defined as the scalar sum of track transverse

momenta in a cone minus the track momenta of the muon object itself.

As the instantaneous luminosity delivered by the LHC increased during the different
run periods the trigger chains for electrons and muons evolved to ensure that at no

point were pre-scaled triggers in use,
Egamma Trigger
e Data Period D - L1_EM10
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e Data Period E - EF _g17_etcut

e Data Period F - EF_el0_medium
Muon Trigger

e Data Period A-E3 - L1 _MU10

e Data Period E4-F - EF _mul0_-MSonly

The electron trigger in use for period D, L1_EMI10, is based solely on requiring an
electromagnetic object passing a certain energy threshold in the EM calorimeter. From
period E onwards the HLT uses calorimeter clusters that are seeded from L1 regions of
interest and associated with tracks. The HLT uses the full granularity of the calorimeter

and the fast calorimeter and track reconstruction algorithms.

The muon trigger for periods A-E3 relies on just the L1 trigger. The L1 muon triggers
for this are the resistive plate chambers in the barrel region and thin-gap chambers in
the end-cap and forward regions of ATLAS. The muon pr cut is placed at 10 GeV. For
the later periods the muon trigger evolved to using the EF level trigger, seeded by a

L1-MUO region of interest.

7.3.1 Jet Reconstruction

As described in more detail in Section [4.4.4] jets are reconstructed using the anti-k;
algorithm [73] with a cone size chosen as AR = 0.4 from topological clusters [74] in
the calorimeters. The jets are calibrated at the electromagnetic scale appropriate for
the energy deposited by electrons or photons. The jets are further calibrated to the
hadronic energy scale, using a correction factor obtained from simulation [74] which

depends upon pr and 7. Finally jets are required to have pr > 25 GeV.
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7.3.2 Electron-Jet Overlap

An overlap removal between jets and electrons is necessary, if the closest object to an
electron candidate that has passed all the selection criteria is a jet. This is because
electrons can also be reconstructed as jets by the jet algorithms. If the separation
between the electron candidate and the closest jet is AR < 0.2, the jet is removed in
order to avoid double-counting of electrons as jets. It is also possible that a real jet is
found near the electron, in which case the jet algorithm merges the jet cluster with the
electron cluster. The effect of double counting the electron energy in nearby jets can
be seen in Figure [7.1b] which shows the average Er of jets as a function of AR from
W-electrons. When the jet and electron from the decay of the top quark are heavily
boosted, the jet reconstruction algorithm includes both the jet energy and electron

energy in one object.

With a jet cone size of 0.4 there still exists the possibility of including nearby electron
energy in the jet reconstruction. Figure shows a number of jets with axis close to
a true electron from W decay, but this effect in top quark events is estimated to affect

only about 1% of the events.
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Figure 7.1: Distance in AR space between W-electrons matched to truth and the closest
nearby jet (a) and the average Ep of these jets as a function of AR space (b).
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7.3.3 b-Jet Tagging

The tagging of b-jets is done via the an aten, Variable associated to muons that are within
AR < 0.5 of ajet. The an atch, Variable is described in Section and has been shown
to have an average efficiency = 86.% in tagging muons in J/v data (Section[6.8.3) when

selecting muons with Xfmtch < 3.2.

7.3.4 Missing transverse energy

Missing transverse energy is constructed from the vector sum of all calorimeter cells
contained within the topological clusters in an object-based approach. Calorimeter
cells are associated to a parent object in the chosen order of electron, jets, muons such
that no cell is counted twice [75]. Energy corrections are calibrated for the cells in
respect to which object they were associated to: electron objects are calibrated at the
electron energy scale and cells associated to jets are calibrated at the corrected energy
scale for jets. Lastly the contribution from muons is included after adjusting for the

muon contribution to calorimeter energy deposits.

7.4 Event selection

The semileptonic t¢ final state is characterised by an isolated lepton with relatively high
pr and missing energy corresponding to the neutrino from the leptonic decay of the W
boson, along with two b quark jets and two light jets from the hadronic decay of the
w.

Following the requirements set out in Section [7.3] on the reconstructed objects the
semileptonic analysis also requires selection criteria on the event topology as set out

below:

e The firing of the single-electron or single-muon trigger for the appropriate data
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period;

e The event contains exactly one and only one reconstructed lepton passing the

quality criteria set out in Section [7.3
e EMiss > 20 GeV, (rejects a significant fraction of the QCD background);

o BN + mp(W) > 60 GeV @ Further rejection of QCD events is achieved by
applying a cut in the (EX*S mp(W)) plane: true W — (v decays have a large
EMss and also a large mp(W). QCD events can also occur with a large EFs
but typically small mp(W). The above two requirements discriminate between

the two cases.
e 1 >Njets>4 jets with pr > 25 GeV and with |n| < 2.5.

The events are labelled depending on the number of jets and whether or not at least
one jet passes the b-tagging requirement. The Njet > 4 sample with at least one b-jet
tag is used as the signal region and the other samples are used for the determination

of backgrounds.

As seen in Tables for electron and muon channels respectively, the pre-tag
background is dominated by W +jets events, which have the same signature as tt signal
events at this point in the event selection. There is also a large contribution from
multijet events produced by strong interactions that do not contain either isolated
leptons nor E{F”iss, however they are present in the selected samples due to the imperfect

reconstruction of these objects in the detector.

Tables show the event selection after the b-tagging requirement for the electron
and muon channels respectively. The background in the muon channel is still dominated
by W+jets events but in the electron channel the background from multijet events is

similar in number to that from W +jets events.

*The W transverse mass mr (W) is defined as \/2p5.pi.[1 — cos(¢? — ¢*)] where the measured Ef**®
vector provides the neutrino information.
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e+jets channel
1-jet pre-tag 2-jet pre-tag 3-jet pre-tag >4-jet pre-tag
QCD (DD) 464 £ 81 157 + 36 55 + 21 22 + 11
W+jets (DD) 1592 £ 93 252 + 42 54 + 24 15+ 5
Total (non-tt) 2056 + 124 409 £ 55 109 £+ 32 37 £ 12
tt (MC) 1.6 £0.3 59 + 1.2 9.5+ 1.9 13.7 £ 2.7
Total expected —— —— 119 + 32 51 + 12
| Observed | 2058 415 119 57

Table 7.2: Number of events before b-tagging with different jet multiplicities in the
single-electron channel. The observed number of events are shown, together with the
Monte Carlo simulations estimates for ¢ signal events, normalised to the data integrated
luminosity of 2.9 pb~!. The data-driven estimates (DD) for QCD multijet and W +jets
backgrounds are also shown. The uncertainties on QCD data-driven background
estimates include the statistical and all systematic uncertainties, the W +jets only
include systematics on the 4-jet column. The 1-jet and 2-jet bins are normalised to
the number of observed events and used in extrapolating backgrounds in the 3 and 4
jet bins, therefore there is no expectation in the 1-jet and 2-jet bins.

e+jets channel
1-jet tagged 2-jet tagged 3-jet tagged >4-jet tagged

QCD (DD) 42 4+ 1.2 1.5+£04 1.4 £ 0.8 1.4 +1.0
W+jets (DD) 5.3+ 6.5 1.7 £ 2.1 0.5+1.1 0.2 £0.3
Total (non-tt) 9.5 £ 6.6 32+21 1.9+ 14 1.6 £ 1.0
tt (MC) 0.2 £ 0.04 0.9 £0.2 1.6 £ 0.3 2.6 £ 0.5

Total expected 107 —— 4+1 4+1

’ Observed \ 10 4 2 5

Table 7.3: Number of tagged events with different jet multiplicities in the single-
electron channel. The observed number of events are shown, together with the Monte
Carlo simulations estimates for ¢f signal events, normalised to the data integrated
luminosity of 2.9 pb~!. The data-driven estimates (DD) for QCD multijet and W +jets
backgrounds are also shown. The uncertainties on QCD data-driven background
estimates include the statistical and all systematic uncertainties, the W +jets only
include systematics on the 4-jet column. The 2-jet bin is normalised to the number
of observed events and used in extrapolating backgrounds, therefore there is no
expectation in the 2-jet bin.
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pu~+jets channel
1-jet pre-tag 2-jet pre-tag 3-jet pre-tag >4-jet pre-tag
QCD (DD) 412 + 44 100 £ 20 33 £15 6+ 3
W+jets (DD) 1223 £+ 56 261 £ 25 o5 £ 17 15+ 3
Total (non-tt) 1635 £ 72 361 £ 32 89 £ 23 21 +4
tt (MC) 1.5 £0.3 6.2 + 1.2 11.5 £ 2.3 18.2 + 3.7
Total expected —— —— 100 £+ 23 40 + 6
| Observed | 1637 367 97 51

Table 7.4: Number of events before b-tagging with different jet multiplicities in the
single-muon channel. The observed number of events are shown, together with the
Monte Carlo simulations estimates for ¢ signal events, normalised to the data integrated
luminosity of 2.9 pb~!. The data-driven estimates (DD) for QCD multijet and W +jets
backgrounds are also shown. The uncertainties on QCD data-driven background
estimates include the statistical and all systematic uncertainties, the W +jets only
include systematics on the 4-jet column. The 1-jet and 2-jet bins are normalised to
the number of observed events and used in extrapolating backgrounds in the 3 and 4
jet bins, therefore there is no expectation in the 1-jet and 2-jet bins.

pu~+jets channel
1-jet tagged 2-jet tagged 3-jet tagged >4-jet tagged

QCD (DD) 9.2 + 3.6 3.3 +0.38 2.2+09 0.4 +£0.2
W+jets (DD) 20.7 £ 7.5 8.8 £ 29 2.6 £1.0 1.0 £ 0.5
Total (non-tt) 29.8 + 8.3 12.1 £ 3.0 4.8 £ 1.3 1.4 + 0.5
tt (MC) 0.1 £ 0.02 0.9+ 0.1 2.0+£0.1 3.7+ 0.8

Total expected 30 + 8 —— 7T+1 5+ 1

| Observed | 16 13 5 8

Table 7.5: Number of tagged events with different jet multiplicities in the single-
muon channel. The observed number of events are shown, together with the Monte
Carlo simulations estimates for ¢f signal events, normalised to the data integrated
luminosity of 2.9 pb~!. The data-driven estimates (DD) for QCD multijet and W +jets
backgrounds are also shown. The uncertainties on QCD data-driven background
estimates include the statistical and all systematic uncertainties, the W +jets only
include systematics on the 4-jet column. The 2-jet bin is normalised to the number
of observed events and used in extrapolating backgrounds, therefore there is no
expectation in the 2-jet bin.
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7.5 QCD Background Determination

QCD multijet processes form a large fraction of the backgrounds to ¢t events and involve
events that have some E%”SS and an identified lepton which does not come from a real
W decay. The lepton can be real, coming from light-flavour decays or from the semi-
leptonic decay of a B hadron. The signal lepton can also be faked in numerous ways,

such as:
e Decay-in-flight of a 7% or K meson,
e Reconstruction of a 7¥ as an electron,
e Reconstruction of an electron from a photon conversion.

CD events do not in general have large E7*%¢ in comparison to tt events, however when
g ge Lip
jets occur in the gaps in the detector or there are incorrect jet energy measurements a

large EY% can be formed for the event.

7.5.1 QCD background estimate in the ;4 jets channel

To estimate the background in the p+jet channel the “ABCD method” was used. This
relies on the assumption that the QCD event distribution can be factorised in a (z,y)
plane, where x and y are two uncorrelated variables. In this case we have chosen y
to be lepton isolation in the form of E:CFO”€30 or p%one?’o, and x to be E:’}”SS . Figure
illustrates the different regions used in the ABCD method; they represent the following

quadrants:
e A: non-isolated lepton, low E7ss
e B: isolated lepton, low E;i”ss
e C: non-isolated lepton, high EIs

e D: isolated lepton, high E7"** (signal region)
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Assuming we can neglect the signal contribution in regions A and B, and assuming that
Egne30 and B are uncorrelated, the number of QCD events in the signal region, D,

can be evaluated as Np = N x % and its relative statistical error as:

60 70 80

ET [GeV]

Figure 7.2: Separation of the isolation (E$"¢30) vs EI$ plane into signal region (D),
control region (B) and the background dominated regions (A,C) from data.

where AN are the statistical uncertainties.
Figures show the E$"¢30 vs ET% plane in the 2-jet bin before and after

b-tagging respectively. Figures show the E%‘me?’o Vs E?ms plane in the 4-jet

signal bin, before and after b-tagging respectively.

The systematics using the ABCD method were investigated by looking at the difference
in the predicted background contributions between using E%O”e?’o and p§9”630 as the

isolation variables.

The final predictions of the QCD background in the p+jets channel uses the average

value returned between using E%O”E?’O and p§9ne30 as the isolation variable in the ABCD
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Figure 7.3: E$"¢30 vg EMS plane used in the ABCD method for the muon channel,
for the 2-jet sample: pre-tag (a) and b-tagged (b). Signal region for the 4-jet sample is
shown in: pre-tag (c) and tagged (d) from data.
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method. This gives a systematic uncertainty ranging from 11% through to 68%
depending on jet multiplicity after b-tagging has been applied. Table [7.6] shows the

predictions on QCD events in the p+jets channel.

Number of jets 1 2 3 >4
pre-tag (EB$me30) [ 431.9 £ 32.1 | 91.3 £ 8.2 26.6 + 4.5 7.5+ 24
pre-tag (p5e"30) | 392.7 £ 24.9 | 109.1 £ 13.6 | 40.2 £ 10.0 5.0 + 2.4

Tagged (E$"30) | 10.7 + 2.1 3.6 +£0.8 2.1+0.8 0.5+ 0.5
Tagged (psee3Y) 7.6 £ 3.0 3.1+1.2 23+15 0.3+04

Table 7.6: Number of predicted QCD events in 2.9 pb™! of data for a given number of
jets, using either the muon E%On&go or p§9”630 in the ABCD method, pu+jets channel.
Only statistical uncertainties on the quadrant calculations are shown.

7.5.2 QCD background estimate in the e+jets channel

In the e+jets channel we did investigate the use of the ABCD method but found that
the ISEM cut definition produced a jump in the isolation variable, as shown in Figure
This meant that the use of the ABCD method, as used in the u+jets channel,
would not be appropriate in estimating the QCD background in the e+jets channel.
Time constraints meant that the we were unable to fully investigate a solution to this
jump in isolation energy at ~ 5 GeV, but the cause was likely to be related to the
electron-jet overlap removal. In cases where the candidate electron has passed all cuts
except the isolation requirement, the overlap removal of nearby jets, defined in Section
is not performed on these non-isolated electrons. There are in general many
more 2-jet than 3-jet events and due to the electron-jet overlap not being performed on
non-isolated electron candidates, they are then counted as jets. Therefore a 2-jet event

will become a 3-jet event along with a migration of energy at the isolation cut point.

Therefore to estimate the QCD background in the e+jets channel we used a different,
but just as suitable method involving the use of an “anti-electron” sample. This
method is based around extrapolating the QCD contribution from low to high Er}”iss

region, with the QCD contribution being modelled using an “anti-electron” sample.
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Figure 7.4: The distribution of the isolation variable ES"¢?0 — 0.023 - Er [GeV] for
candidates passing the ISEM = RobusterTight definition.

The standard electron selection defined in Section [7.3]is followed apart from the ISEM
= RobusterTight definition. Objects that fail the ISEM definition are defined as “anti-
electrons” and all those that pass are defined as good electrons. Both the “anti-electron”

sample and good-electron sample are required to pass all other selection criteria.

The anti-electron sample will mostly consist of the QCD background to the signal tt
e+jets sample with the EQ”}iss shape being used to model the QCD background in the
signal region. Figure shows the low EM*$ region in which the anti-electron sample
is scaled to the good-electron sample. The scale factor is then used to extrapolate into
the QCD events into E%mss > 20 GeV signal region and will give the expected number
of QCD background events; this process is done in all jet bins up to Njet > 4. Table
details the number of predicted QCD events using the anti-electron model before

and after b-tagging has been applied.

Number of jets 1 2 3 >4
pre-tag anti-electron | 464.1 + 11.3 | 156.6 + 7.1 55.3 + 5.0 22.5 + 2.0
Tagged anti-electron 42+ 1.0 1.5 £ 0.3 1.4 +£0.3 1.4 +£04

Table 7.7: Number of predicted QCD events in 2.9 pb~! of data for a given number of
jets for the anti-electron model in the e+jets channel. Only statistical uncertainties on
the calculations are shown.

Systematics using this method were not investigated, but the anti-electron method has
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Figure 7.5: The anti-electron method, the low—E%”ss region is scaled to the lepton+jets
data using the E}mss shape from the anti-electron sample.

been studied in detail in [76] for the same data periods used in this analysis and the
systematic uncertainties of this method, ranging from 16% to 66% depending on jet
multiplicity and b-tagging requirement, are included here. Systematics were determined
by using two different fake lepton samples, one being the anti-electron definition used
in this analysis and the other an anti-jet sample. The anti-jet sample follows the
standard jet selection criteria defined in Section but requires that the jet has an
electromagnetic energy fraction of between 0.8 and 0.95 and at least four associated

tracks.

7.6 W+jets Background Determination

This section details the techniques used to determine the W-+jets background in the
tt channel measured in this analysis. A series of measurements are made on a control
sample of W events with low jet multiplicity to determine the background into the top
quark signal region where there is higher jet multiplicity. The production of W-bosons

in association with jets is one of dominant sources of background to top-quark pair
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production in the single lepton plus jets channel.

7.6.1 W+jets Background Determination in the pretag sample

The ratio of W +n + 1 jets to W + n jets production is expected to be approximately
constant as a function of n, via the so-called Berends-Giele scaling, [77,[78] and therefore
the number of W events with at least 4 selected jets, before b-jet tagging, can be

obtained as:

oo
W24jets _ W2jet5 . Z(WQjetS/leet)i (72)

i=2
Equation thus gives the rate of W production with at least 4 jets before the b-
tagging requirement has been made. This method is applied to both the electron and

muon channels.

The W + 1,2 jet event candidates are selected from data using the same event criteria

as the full ¢¢ signal selection, (Section . This includes:

e Single lepton trigger,

Exactly one reconstructed lepton,

Emiss > 20 GeV,

Emiss 4 mp(W) > 60 GeV,

One or two jets with pr > 25 GeV and |n| < 2.5.

The data samples are split into 1 or 2 jet bins. We first remove from the number of
events the data driven estimates of QCD and the expected ¢t from Monte Carlo, as
shown in Table The uncertainty on the W+jet rates encompass the uncertainties

derived from the data-driven QCD estimates and the contribution from ¢t Monte Carlo.

The ratio between the 2-jet and 1-jet events is found to be 0.21 £ 0.014 (stat.) =+
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0.018 (syst.) for the muon channel and 0.16 £+ 0.014 (stat.) =+ 0.024 (syst.) for
the electron channel, where the first uncertainty is statistical and the second derived
from systematics on background predictions. The larger fraction of QCD events in
the electron channel (due to QCD jets faking an isolated electron signature) makes the
measurement in this channel of poorer precision in relation to that of the muon channel.
Since it is expected that the ratio between the 2 jet and 1 jet rates is independent of
W decay mode, the muon channel estimate can also be used for the electron channel.
Therefore the number of W events with at least 4 selected jets before b-tagging in the

electron channel is obtained as:

00
W8V24jets _ Wez/Qjets . Z(Wﬂy2j6t8/WuV1j6t)i
=2

(7.3)

In the electron channel the number of predicted events in the 4 jet pre-tag sample is
51 + 12 and we observe 57 data. Using the data driven methods to estimate the QCD
multijet and W+jet in the 1-and 2-jet bins and extrapolating to the 4-jet bin shows
good agreement. In the muon channel the predicted number of events in the 4-jet pre-
tag sample is 40 £+ 6 with the number of observed in data as 51. This shows a slight
discrepancy beyond the uncertainties calculated for the QCD multijet, W+jet and tt

Monte Carlo.

The number of W events in the 3-jet bin is defined in Equation using the ratio

between the 2-jet and 1-jet rates in the muon channel for extrapolation in both channels.

] Process W — ev+ljet | W — ev+2jet | W — pv+ljet | W — pv+2jet
Candidates 2058 415 1637 367
QCD 464 + 81 157 £+ 36 412 + 44 100 £ 20
tt 1.6 £0.3 59 £ 1.2 1.5+ 0.3 6.2 £ 1.2
Observed W (lv) 1592 £ 93 253 + 42 1223 + 56 261 £+ 25

Table 7.8: Number of selected data events in W — v 4+ 1 jet and W — v 4 2 jets

sample from data.
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W€V3j6ts — W6V2jets . (W}Ll/2jets/WMV1jet) (74)

In the electron channel the prediction in the 3-jet channel of 119 + 32 and the observed
in data of 119 are in perfect agreement, notwithstanding the 27% uncertainty on the
prediction. In the muon channel the pre-tag prediction of 100 + 23 and the observed
of 97 in data are in agreement within the uncertainties. Full details for the electron

and muon channels can be seen in Tables [7.4] respectively.

7.6.2 W+jets Background Determination in the tagged sample

The W+jets background estimate after b-tagging has been preformed is constructed in

the following way,

tagged—>4jets __ pretag—>4jets = p>4jets
w =W ftagged (75)

The value of Wrretag—=24jets s the extrapolation described in the previous section and

>4jets

fagged is the fraction of these events that will be tagged with a b-jet, calculated as,

f24jets_ 2jets  pcorr (76)
tagged — Jtagged J2—>4 .

The value of ft%j;;: 4 18 a measurement taken in the 2-jet channel of the fraction of jets

tagged as being a b-jet, which is calculated to be (0.7 4+ 0.8)% in the electron channel
and (3.4£1.1)% in the muon channel. Tables [7.9/and show the number of W+jet

events before and after b-tagging was applied for the electron and muon channels that

corr

go into calculation of fgjets The correction factor, f§2I2, accounts for the different

tagged”

event tagging probability between the 2-jet and 4-jet samples [75].

The value of f32{%, is naively taken to be 2.0£0.8, purely from the scaling of the number
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of jets. The value of f3°{% , has been calculated with b-tagging using a secondary vertex-
based tagging algorithm to be 2.8 + 0.8, the details of which can be found in [79]. This
is a different tagging algorithm to the one used in this analysis (inatch) and it is
very likely background for the secondary vertex tagger will scale with factorial of the
number tracks, whereas the xfmtch is more likely to be linear. Unfortunately there
was not enough time to investigate this via Monte Carlo simulations and we take the
linear scaling value of 2.0 £+ 0.8 with the uncertainty taken from the secondary vertex

algorithm.

For the 1-jet and 3-jet samples there does not exist a correction factor that can be

referenced, but to first order effects it can be estimated simply from knowing ffj;;i J

and that it represents the probability to tag at least one of the two jets. This equates to
the 1-jet tag rate being ~ 0.5 - fil];gt:d and the 3-jet tag rate being ~ 1.5 - ffj;;zd. These
rates are based on the tagging probability per event and not per jet. Table details

the expected W+jet contributions in data for both the electron and muon channels.

Number of jets 1 2 3 >4
W +jets 1223.0 4+ 56.3 260.6 £ 25.1 55.5 + 17.1 15.0 £ 3.2
pre-tag ()
W +jets 1592.3 £ 93.4 | 252.5 £ 42.1 53.8 £ 24.2 14.6 + 5.2
pre-tag (ev)

Table 7.9: Number of W+jet events in 2.9 pb~! of data for a given number of jets for
e+jets and p+jets channels before b-tagging has been applied. The 1 and 2 jet bins are
derived from data, the 3 and >4 jet bins are extrapolations of the 1 and 2 jet bins.

Number of jets 1 2 3 >4

W +jets tagged 20.7 £ 7.5 8.8 £ 2.6 1.0 £ 1.0 1.0 £ 0.5
(uv)

W+jets tagged 53 £ 6.5 1.7 £ 2.1 0.5£1.1 0.2 £0.3
(ev)

Table 7.10: Number of W4jet events in 2.9 pb~! of data for a given number of jets for
e+jets and p+jets channels after b-tagging has been applied. The 1, 3 and >4 jet bins
are predictions based off the observed 2 jet events.

In the electron channel the prediction in the 3-jet tagged bin is 4 £ 1 with 2 observed

in data. In the 4-jet tagged bin the predicted number of event is 4 + 1 and we observe
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5 events in data. With these low statistics and a 25% uncertainty on the prediction it
is hard to come to any firm conclusions, however there does not appear to be any large

discrepancies with the limited events available.

In the muon channel the prediction in the 3-jet tagged bin is 7 & 1 with 5 observed in
data. In the 4-jet tagged bin the predicted number of events is 6 + 1 and we observe 8
events in data. As with the electron channel, the number of events is low after b-tagging
has been applied in the muon channel and therefore there does not appear to be any

large discrepancies beyond the predicted number of events.

One area that should be further investigated is the contribution from other background
processes, such as Z+jets, single top-quark and diboson processes. However in both
pre-tagged and tagged samples QCD and W +jets are expected to account for &~ 95% of
all backgrounds for ¢t [75] and the already large statistical uncertainties the remaining

5% was not investigated for this analysis.

7.7 Determination of the cross-section

The cross-section for semileptonic ¢t production can be determined by counting all the
events that pass the final selection (Nys) and subtracting the number of estimated

background events (Npg), and is given by the equation:

Nobs - kag

ex LxBR’ (7.7)

O =

where £ is the integrated luminosity of the data sample, (2.9 pb~!), and BR is the
branching ratio of the selected semi-leptonic decays in the e/u final state, derived
from Monte Carlo simulation as 43.8% [58]. The efficiency ¢ includes the geometrical
acceptance, trigger efficiency and the event selection efficiency and is calculated from

tt Monte Carlo, giving a value of 3.2% for the combined (e + u)+jets channel. Included
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in the selection efficiency is the Xfmtch data over Monte Carlo scale factor (98.9% +

1%) calculated from data in Section

The measured values for the total ¢t cross-section derived from the electron and muon

channels, including all statistical and systematic uncertainties are shown in Table|7.11

Cross Section Statistical Systematic Luminosity

Channel [pb] Uncertainty Uncertainty Uncertainty
[pb] [pb] [pb]
e+jets 186 + 125 + 74 + 24
utjets 293 + 127 + 88 + 38
e or i +jets 245 + 90 + 60 + 32

Table 7.11: Estimated total tf cross section using the counting method, showing
separately the results derived from the e+jets, p+jets and the combined channels
separately.

The jet multiplicity distributions for the electron channel before and after b-tagging
are shown in Figures and respectively and shows agreement within measured

uncertainties to the predicted number of events in each jet bin.

The muon channel jet multiplicity distributions before and after b-tagging are shown in
Figures[7.6cand [7.6d]respectively. There is a deficiency is the number of observed events
compared to the prediction in the 1-jet bin, but in all other bins there is agreement

within the uncertainties.

The combination of the electron and muon channel jet multiplicity distributions is
shown in Figures and [7.61 Figure shows the distribution before b-tagging
and Figure shows the distribution after b-tagging. There is agreement in all jet
multiplicity bins within the measured uncertainties between the number of observed

and predicted events.

The data distributions were compared to the sum of all the expected contributions from
Monte Carlo simulations (¢f) and background estimations using data-driven techniques
for the selected lepton (e or u) pr, E"*** and the tagged soft muon pr from b-hadron

decay.
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Figure 7.6: Jet multiplicity distributions for pre-tag samples: electron channel (a),
muon channel (¢) and e/ combined channel (e). Tagged sample distributions for:
electron channel (b), muon channel (d) and e/u combined channel (f).
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The QCD and W+jets distributions were extrapolated from the tagged, W-+1jet
distributions and normalised to the data-driven estimates in the > 4-jet bin from Tables
and The W+1jet distributions are made up almost entirely of QCD multijet
and W+4jet contributions as shown in Tables and

Figures and show the lepton (e and p respectively) pr for all tagged events
with four or more jets with the contributions from ¢ Monte Carlo and data-driven
estimates on the QCD multijet and W+jets backgrounds. Figure shows the

combined e and p pr for all tagged events with four or more jets.

Figures and show the E%"'ss for the electron and muon channels for all tagged
events with four or more jets with the contributions from ¢ Monte Carlo and data-
driven estimates on the QCD multijet and W +jets background. Figure [7.8cshows the

combined EY”?“S for all tagged events with four or more jets.

The soft muon pr from the decay of the b-hadron decay is shown in Figure for
the electron channel and in Figure for the muon channel. Figure [7.9b] shows the

combination of the electron and muon channel soft muon pp.

7.8 Additional systematic uncertainties

The uncertainties that arise from the Monte Carlo simulation modelling of the lepton
trigger, reconstruction and selection efficiencies have been calculated using tag and
probe techniques on Z — ee and Z — pp events selected from the same data sample as
used for the t¢ analysis [80]. The electron trigger, reconstruction and identification
efficiencies in simulation were found to be in agreement with data to within the
+2.3% statistical uncertainties. For the muon reconstruction and identification, the
efficiencies measured in data are consistent with simulation within the +1.2% statistical
uncertainty. However there is still a few percent discrepancy in the trigger efficiency

that is accounted for by using efficiency scale factors in simulation.
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Figure 7.7: Distributions showing the lepton (e or u) pr after full selection criteria,
including b-jet tagging, in the electron (a), muon (b) and combining the two channels
(c) for events with four or more jets. The data are shown by the points with error
bars, compared to the sum of all expected contributions, taken from simulations (¢t)
or estimated using a data-driven technique (QCD multijet and W+jets). The hatched
area shows the uncertainty on the total expectation due to the uncertainty on the

expected contributions.
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sum of all expected contributions, taken from simulations (¢t) or estimated using a data-
driven technique (QCD multijet and W+jets). The hatched area shows the uncertainty
on the total expectation due to the uncertainty on the expected contributions.
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Figure 7.9: Distributions showing the soft muon pr after full selection criteria, including
b-jet tagging, in the electron (a), muon (b) and combining the two channels (c) for
events with four or more jets. The data are shown by the points with error bars,
compared to the sum of all expected contributions, taken from simulations (¢t) or
estimated using a data-driven technique (QCD multijet and W+jets). The hatched
area shows the uncertainty on the total expectation due to the uncertainty on the
expected contributions.
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The uncertainty on the lepton momentum scale and resolution in simulation was
measured using the reconstructed distributions of the Z mass. It was found that the
electron scale and resolution in simulation were consistent with data. The systematic
uncertainty on the electron momentum scale has been estimated as 3% and the
uncertainty on the momentum resolution as 50%. For muons, to correct for a few
percent discrepancy in the Z — pp mass distributions between data and simulations,
the simulated pr of muons was smeared at the analysis level to reproduce the Z peak
observed in data. The systematic uncertainty on this correction is at the 5%-9% percent

level [80].

The uncertainty on the jet energy scale and its resolution have been derived by
combining information from test-beam data, LHC collision data and simulation [74],
and varies in the range 6-10% as a function of jet pr and 7 for the jet energy scale and
data and simulation agree to within 14% for jet resolution [81]. The use of Z — ee
and Z — pp events for calculating the lepton trigger, reconstruction and selection
efficiencies can be seen in Figure the peak in the lepton pr spectrum for tt and
Z events is very similar. Care however should be taken when extrapolating these
calculations to high pr (< 100 GeV) as the tt lepton pr spectrum extends beyond the

Z sample at this point.

During the data taking periods used in this analysis the LHC instantaneous luminosity
varied by several orders of magnitude, reaching a peak of about 1 x 103tem=2s71. At
this luminosity on average two extra pp interactions are superimposed on each collision
event, this “pileup” background will produce additional activity in the detector,
affecting the isolation energy variables, jet reconstruction and more. Overall, taking
into account the average number of additional interactions in the data sample, the
impact of the “pileup” on the acceptance for tf events is at most 3.6% at the highest

luminosity [58], this is not included in the overall systematics.

Table lists in detail the sources of systematic uncertainty affecting the signal
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acceptance estimation. The total number of background events (Nyy,) is simply the
sum of all the contributions from the QCD and W +jets background processes studied

in the previous sections.

Relative uncertainty (Ao /o)[%] e+jets ptjets
lepton trigger, reconstruction and selection +3.1 +2.2/-2.3
jet energy scale +10.4 +9/-9.7
jet energy resolution +1 +1
jet reconstruction efficiency +0/-2.6 +0/-2.5
electron energy scale +1.8 +0.1
electron energy resolution +0.1 +0.1
muon momentum scale <0 +0.3
muon momentum resolution <0 +0.1
NLO generator(MC@QNLO vs POWHEG) +4.2 +5.7
Parton Shower generator (HERWIG vs PYTHIA) +1.1 +3.0
PDF’s +2.5 +2.4
QCD background +22.3 +2.9
W +jets background +2.2 +7.4
Neglected backgrounds +12.5 +25
b-tag correction factor +2 +8
Total +28.4/-28.6 | +29.8/-30.1

Table 7.12: Contributions to the uncertainty on the estimated ¢t signal acceptance ¢, for
electron and muon channels separately, expressed as a relative percentage uncertainty.

The b-tag correction factor uncertainty includes several assumptions regarding its
associated uncertainties that are detailed in [58] and cover correlations between

W + bb+jets, W + cc+jets and W + c+jets channels.

The systematic uncertainties for the electron and muon channels are considered not
to be correlated when combining the two channels uncertainties in quadrature, time
constraints meant that a study into potential correlations between the electron and

muon channel systematic uncertainties was not possible.

7.9 Summary

A measurement of the cross-section for ¢t production with the ATLAS detector at the

LHC with the first few months of pp collision data at /s = 7 TeV in the lepton plus jets
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channel has been carried out and presented. The first few months of data represent an
integrated luminosity of 2.9 pb~! in which we have found 13 events (5 in the electron
channel and 8 in the muon channel) of which 3.5 + 1.3 are estimated to have come

from Standard Model background processes.

The tt production cross-section measurement using the combined electron and muon

channels is:

o = 245 + 90(stat) £ 60(syst) £ 32(lum)pb (7.8)

where the first uncertainty is statistical, the second systematic and the third comes

from the uncertainty on the delivered integrated luminosity from the LHC.

7.10 Future Measurement

When this analysis was initially conceived in 2007 it was expected that the LHC
would have delivered in excess of 100 pb~! of integrated luminosity for analysis by
the submission of this thesis. However due to mechanical malfunctions of the LHC and
a reduction in LHC beam luminosity as a result, this has not been achieved. Currently
the main source of uncertainty in this measurement is statistical and still large fractions

of systematic uncertainties come from understanding a new detector in early operation.

Not only does this analysis not include the data collected in late 2010 (which amounts
to ~ 40 pb~!) but also with a large LHC run period in operation for 2011 the integrated
luminosity delivered by the LHC and recorded by the ATLAS detector will soon surpass
that of the Tevatron. This will allow for the most accurate measurement yet of the tt

production cross-section.
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Chapter 8

Conclusion

A measurement of the top-quark pair production cross section with soft muon b-tagging
at /s = 7 TeV with early data at the ATLAS detector has been carried out and presented

in detail in this thesis.

The work on the electron isolation in ¢t events and the resultant recommendation shown
in this thesis was adopted by the ATLAS top-quark working group for use in the first
top-quark pair production publication by the ATLAS collaboration [58]. The procedure
of correcting for electromagnetic energy around electrons in ¢t events has since been
built into the ATLAS software code and a corrected electron isolation energy is now

retrievable from data.

The X?n aten, efficiency measurement using muons from the decay of J/v in data has
been used in the final measurement of the top-quark pair production cross section
measurement. The monitoring of this efficiency in data will continue as more luminosity

from the LHC is delivered.

The final measurement of the top-quark pair production cross section with soft muon
b-tagging of 245+90(stat)+60(syst)£30(lum) pb is in agreement with the theoretical

cross section of 164.6 pb at approximate NNLO calculations and with the ATLAS
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measurement using displaced vertex tagging. With more data being delivered by
the LHC in 2011 the uncertainties on the cross section measurement will decrease
significantly and it is expected by the end of the year that the ATLAS detector will
have enough data to produce the most accurate measurement of the top-quark pair

production cross section ever.
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Appendix A

SCT SR1 Sectors and Shift

Monitoring

A.1 Introduction

As mentioned in Section the Semiconductor Tracker (SCT) is a sub-detector of
the ATLAS Inner Detector. The SCT works in tandem with the other elements of the
ID, such as the TRT and Pixel Tracker to provide a picture of particle collisions close to
the event interaction point. The SCT design and the silicon microstrip technology used
in its construction has seen use in major particle physics experiments over the past 8
years such as at LEP and within the detectors in operation at the Tevatron. Therefore
there is a wealth of knowledge and experience in the operation of such devices, however
the SCT within ATLAS will be exposed to 10-20 times the radiation fluences of those

in the past and has an area 50 times larger.

Due to the size, radiation exposure and cooling requirements there are a number of
challenges facing the day-to-day operation of the SCT within ATLAS. During my time
spent working at CERN from October 2007 through to July 2009 I experienced first

hand these and other issues. I took on the role of monitoring the SCT through shift
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work within the ATLAS control room and helped in the construction of a “mini”-SCT,
in the form of the SR1 Barrel and Endcap Sectors, that is used extensively in the

training of new SCT shift persons.

A.2 SCT SR1 Sectors

A.2.1 Purpose

In the run up to the initial start up of the LHC in 2008 it was noted that there was a lack
of required shift persons for the SCT and getting hands-on experience of the operation
and monitoring for shifters was difficult while experts still required time and access to
the detector for calibration. It was thus proposed early in 2008 that the spare modules
from the barrel and endcap sectors of the SCT would be used to build a “mini”’-SCT
that would mirror the shift experience of the full SCT detector to give newly trained

persons the experience and confidence to run the full detector by themselves.

A.2.2 Barrel and Endcap Sectors

The modules available to use consisted of 48 spare barrel modules and one quadrant
of an end cap disk 2 (33 modules). The barrel sector can be seen in Figure before
the cooling for the modules was attached and the sector closed off. The endcap sector
seen in Figure came almost pre-assembled from its previous test location but with

all power supply and signal fibre optic cables removed.

The planning and construction of the barrel sector began in mid-March 2008 and was
completed by mid-July. Work on adding the endcap sector to the “mini”-SCT began
in early November 2008 and was in operation by the end of December 2008. As a
non-expert my work was limited to the connecting, mapping and testing of the power

supply and fibre optic cables. Also as a fully trained up SCT shift person I helped test
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Figure A.1: The 48 barrel sector modules after being attached to the harness within
the SR1 building.

Figure A.2: The 33 end cap modules, (13 outer, 10 middle and 10 inner) attached to
the disk quadrant.
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the operation of the SR1 sector with experts and helped write the user guide for the

operation of the sector from a non-expert point of view.

A.3 SCT Monitoring

As a SCT shift person I undertook approximately one month of shifts in the ATLAS
control room and thus had an active role in identifying faults and problems with the
SCT during the initial operation during cosmic runs. A typical shift on the SCT
involved the monitoring of 4 different sub-systems, the Data Acquisition Software
(DAQ), the Detector Control System (DCS), the Data Quality Monitor (DQM) and

the Inner Detector Environmental Monitoring (IDE).

A.3.1 DCS and IDE monitoring

Shifts on the SCT involved being responsible for not only the monitoring of the
environmental conditions for the SCT but also for the Pixel detector. The details
of the evaporative cooling system used for the SCT and Pixel detectors can be found
in [82]. In summary the system uses the fluorocarbon C3Fg to cool the detectors
by transferring heat from the detectors to the C3Fg in a gaseous state and then the
fluorocarbon is cooled back to a liquid outside the detector using a series of compressors

and heat exchangers.

The main role while monitoring the cooling system was to take careful note of
temperatures, pressures and fluid level of the C3Fg at critical points in its cycle, such
as the inlet and outlet of the detectors and before and after the compressors. The
monitoring of the cooling was done both through the IDE and DCS software and our
control as a shifter was limited to turning the cooling loop on and off. Any further

actions required expert assistance.

The DCS part of the SCT could involve a lot of monitoring and action during particular
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times, such as during LHC beam injection periods. During beam injection of the LHC,
the SCT is put into a standby state where the chip voltages are lowered to a state
where should accidental beam collisions occur during beam injection and alignment,
the minimum amount of damage will be caused to the SCT. Once the LHC beam is
declared stable the voltages applied to the SCT modules are raised to operating levels
and in general during my time on shift on the SCT the behaviour of the detector was
very stable during runs. A view of the DCS software with ATLAS ready for collisions

is shown in Figure [A73]
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Figure A.3: Overview of the ATLAS detector monitoring control system, showing the
full detector ready for collisions.

A.3.2 Data Acquisition Software

The DAQ software is responsible for the calibration, configuration and control of the

SCT, although the vast majority of this functionality was not accessible for shifters.
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The role of the DAQ software during a shift was to ensure the correct configuration of
the SCT was loaded before a run. During run conditions the DAQ software was the

only means to try to recover modules that went “busy” for any number of reasons.

However, when not in run conditions the shifter could run scans and calibrations on
the SCT and I was at times asked by experts to preform certain scans to help diagnose
problems and calibrate the detector. An example of one of these scans is shown in
Figure[A4] which shows an overview of the DAQ software window on the left, with the
results of a strode delay scan on one module show to the right.
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Figure A.4: View of the SCT Data Acquisition Software (DAQ), showing the results of
a strode delay scan in progress.

A.3.3 Data Quality Monitor

The DQM software is used to look at the data coming out of the different sectors of the
SCT during a run. As the reliability of the various SCT sub-systems improved during
my time doing shifts, so did the importance of actively monitoring the quality of data
the SCT was producing during a run, instead of through the offline tools a few days
later. During my final few shifts I spent the vast majority of my time looking at the

output of the DQM software.
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The DQM allowed the monitoring of various aspects of the SCT such as:
e Module and layer noise occupancy;
e Module and layer error summary;
e Module and layer efficiency summary;
e SCT track residuals.

All of the above histograms were required to be checked on an hourly basis, with
any modules showing particular faults noted for the experts to look into further. An
example of a barrel layer residual is shown in Figure Although at the time there
were not any reference histograms to compare the live output against, a collection of

reference plots are now available for shifters to compare against.
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Figure A.5: Screenshot of the SCT Data Quality Monitor (DQM) showing the barrel
sector residuals during a run.
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Appendix B

Soft Muon Efficiency Tables

The results quoted here correspond to those discussed in Section and represent the
numbers arising from the methods described in Sections For data
the signal value represents the area returned after background subtraction in a 3o
window centred on the world-average J/¢ mass. The minimum and maximum signal
are calculated by varying the parametrized background slope and constant within their
uncertainties, see Figure [6.4] and repeating the signal measurement with these new
measurements. The signal returned by increasing the signal window to 50 is shown
alongside the 30 in brackets. Statistical uncertainties are calculated using Equation

6.4

For Monte Carlo there exists no background in the sample and therefore the only
systematic studied is the change in calculated efficiency in varying the signal window
width from 30 to 50. The statistical uncertainty calculation remains the same as for

data.
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B.0.4 Combined Muon Reconstruction Efficiencies From Data

Inner Detector Probe
pr bin [GeV] Signal Max Signal Min Signal
4-6 25232.1 (25935.8) | 25260.0 (25982.3) | 25204.2 (25889.3)
6-8 9170.7 (9529.8) 9182.2 (9548.9) 9159.2 (9510.7)
810 4507.4 (4535.3) | 4514.4 (4547.0) | 4500.3 (4523.5)
10+ 4568.1 (4535.2) 4568.1 (4557.0) 4555.0 (4513.4)
Total 41848.3 (43217.2) | 41974.6 (43427.7) | 41722.1 (43006.8)

Table B.1: Measured signal as a function of pr for a signal region of 30 (5¢) for inner

detector probes in data.

Muon Probe
pr bin [GeV] Signal Max Signal Min Signal
46 21854.2 (22481.3) | 21855.4 (22483.3) | 21852.9 (22479.2)
6-8 8818.4 (9061.7) 8818.8 (9062.4) 8818.0 (9061.0)
8-10 3747.7 (3800.1) | 3747.7 (3800.1) | 3747.7 (3800.2)
10+ 3604.9 (3716.6) | 3695.8 (3718.1) | 3694.1 (3715.1)
Total 37926.2 (39039.0) | 37927.7 (39041.5) | 37924.7 (39036.6)

Table B.2: Measured signal as a function of py for a signal region of 30 (50) for muon

probes in data.

pr bin [GeV] | Data Efficiency Stat. Unc. (%] Sys. Unc. [%]
%]
4-6 86.61 + 0.23 + 0.12
6-8 96.16 + 0.20 + 1.12
8-10 83.15 + 0.61 + 0.79
10+ 80.89 + 0.65 + 1.34
Total 90.63 + 0.15 + 0.43

Table B.3: Combined muon efficiency as a function of pp with statistical and systematic
uncertainties in data.
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Inner Detector Probe
1 bin Signal Max Signal Min Signal
(-3)—(-2) | 2093.2 (1926.4) 2118.2 (1967.9) 2068.3 (1884.8)
(-2)—(-1) | 9315.5 (10287.5) | 9334.9 (10319.9) 9296.1 (10255.2)
(-1)-0 | 11142.5 (12339.8) | 11154.8 (12360.4) | 11130.1 (12319.2)
0-1 11503.4 (11273.3) | 11515.8 (11294.0) | 11490.9 (11252.5)
1-2 9592.6 (9484.0) 9611.5 (9515.5) 9573.7 (9452.5)
2-3 1964.2 (2005.0) 1991.6 (2050.7) 1936.8 (1959.3)

Table B.4: Measured signal as a function of n for a signal region of 30 (50) for inner
detector probes in data.

Muon Probe

7 bin Signal Max Signal Min Signal
(-3)-(-2) | 2026.2 (1691.8) 2050.4 (1693.0) 2002.1 (1690.0)
(-2)—(-1) | 7760.1 (7920.5) 7761.2 (7922.4) 7758.9 (7918.5)
(-1)-0 9282.1 (9485.9) 9281.8 (9485.3) 9282.5 (9486.5)
0-1 9915.6 (10092.4) 9915.9 (10092.8) 9915.3 (10091.9)
1-2 8262.4 (8338.4) 8262.4 (8339.8) 8263.3 (8337.0)
2-3 1998.0 (1946.6) 1998.0 (1953.1) 1993.9 (1940.1)

Table B.5: Measured signal as a function of n for a signal region of 30 (50) for muon

probes in data.

Table B.6: Combined muon efficiency as a function of n with statistical and systematic

uncertainties in data.
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n bin Data Efficiency Stat. Unc. [%] Sys. Unc. [%]
(%]

3) (-2) 96.30 +0.39 T 9041
(-2)-(-1) 83.30 +0.42 + 7.58
(-1)-0 83.30 +0.39 + 772
0-1 86.20 + 0.35 + 3.86
1-2 86.13 + 0.38 + 2.08
2-3 101.72 + 0.30 + 4.77




Inner Detector Probe

¢ bin Signal Max Signal Min Signal
(-3.2)—(-2) | 8968.6 (8799.7) 8983.1 (8823.8) 8954.1 (8775.5)
(-2)—(-1) 6751.9 (7372.2) 6764.8 (7393.7) 6739.0 (7350.7)
(-1)-0 7592.6 (7772.2) 7605.6 (7794.0) 7579.5 (7750.5)
0-1 7911.5 (8155.6) 7925.0 (8178.1) 7898.0 (8133.1)
1-2 6991.7 (7335.6) 7005.3 (7358.2) 6978.2 (7313.0)
2-3.2 8081.3 (8674.4) 8095.0 (8697.3) 8067.6 (8651.6)

Table B.7: Measured signal as a function of ¢ for a signal region of 30 (50) for inner
detector probes in data.

Muon Probe

¢ bin Signal Max Signal Min Signal
(-3.2)—(-2) | 6782.2 (6894.7) 6783.1 (6896.1) 6781.4 (6893.3)
(-2)-(-1) 5376.1 (5553.2) 5376.5 (5553.8) 5375.8 (5552.6)
(-1)-0 6161.1 (6291.2) 6161.3 (6291.5) 6160.9 (6290.8)
0-1 6660.9 (6799.8) 6374.5 (6800.2) 6660.7 (6799.4)
1-2 6373.7 (6583.9) 6374.5 (6585.1) 6373.0 (6582.6)
2-3.2 7024.1 (7239.5) 7024.4 (7239.9) 7023.8 (7239.1)

Table B.8: Measured signal as a function of ¢ for a signal region of 3¢ (50) for muon
probes in data.

¢ bin Data Efficiency Stat. Unc. [%] Sys. Unc. [%]
(%]

3) (-2) 75.62 +0.52 +3.61
(-2)-(-1) 79.62 +0.55 + 5.40
(-1)-0 81.15 + 0.50 + 0.29
0-1 84.19 + 0.45 + 0.98
1-2 91.16 + 0.36 + 1.55
2-3 86.92 + 0.40 + 3.98

Table B.9: Combined muon efficiency as a function of ¢ with statistical and systematic
uncertainties in data.
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B.0.5 Combined Muon Reconstruction Efficiencies From Monte Carlo

Inner Detector Probe
pr bin [GeV] Signal 30 Signal 50
4-6 894986 914867
6-8 297390 304626
8-10 113693 116549
10+ 102446 103964
Total 1409076 1439767

Table B.10: Measured signal as a function of pr for a signal region of 30 (50) for inner
detector probes in Monte Carlo.

Muon Probe
pr bin [GeV] Signal 30 Signal 5o
4-6 775732 792033
6-8 282152 287914
8-10 107872 110044
10+ 96337 97460
Total 1262442 1287264

Table B.11: Measured signal as a function of pp for a signal region of 30 (50) for muon
probes in Monte Carlo.

pr bin [GeV] | Data Efficiency Stat. Unc. (%] Sys. Unc. [%]
%]
4-6 86.68 + 0.04 + 0.10
6-8 94.88 + 0.04 + 0.36
8-10 94.88 + 0.07 + 0.46
10+ 94.04 + 0.08 + 0.29
Total 89.59 + 0.03 + 0.19

Table B.12: Combined muon efficiency as a function of pp with statistical and
systematic uncertainties in Monte Carlo.
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Inner Detector Probe

in Signal 30 Signal 50
-2) 57032 57946
-1) 299784 302427
-1)-0 355171 358674
358429 361876
301645 304061
57171 58057

Table B.13: Measured signal as a function of 7 for a signal region of 30 (50) for inner
detector probes in Monte Carlo.

Muon Probe

71 bin Signal 30 Signal 50
(-3)-(-2) 57394 57742
(-2)—(-1) 273378 275909
(-1)-0 302931 305692
0-1 311390 314117
1-2 275637 277709
2-3 57479 57764

Table B.14: Measured signal as a function of 7 for a signal region of 30 (50) for muon
probes in Monte Carlo.

n bin Data Efficiency Stat. Unc. [%] Sys. Unc. [%]
(%]

3) (-2) 100.63 +0.03 +0.99
(-2)-(-1) 91.19 +0.05 +0.04
(-1)-0 85.29 + 0.06 £ 0.06
0-1 86.88 + 0.06 + 0.07
1-2 91.38 + 0.05 + 0.04
2-3 100.54 + 0.03 + 1.04

Table B.15: Combined muon efficiency as a function of n with statistical and systematic
uncertainties in Monte Carlo.
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Inner Detector Probe

¢ bin Signal 3o Signal 5o
(-3.2)—(-2) 251892 257380
(-2)—(-1) 217221 222123
(-1)-0 222681 227515
0-1 229311 234642
1-2 229675 234806
2-3.2 257900 263369

Table B.16: Measured signal as a function of ¢ for a signal region of 30 (50) for inner
detector probes in Monte Carlo.

Muon Probe

¢ bin Signal 30 Signal 5o
(-3.2)—(-2) 219986 224482
(-2)—(-1) 189608 193684
(-1)-0 198922 202837
0-1 212064 216362
1-2 211371 215451
2-3.2 230162 234493

Table B.17: Measured signal as a function of ¢ for a signal region of 30 (50) for muon
probes in Monte Carlo.

¢ bin Data Efficiency Stat. Unc. [%] Sys. Unc. [%]
(%]

3)(2) 87.33 +0.07 +0.12
(-2)(-1) 87.29 + 0.08 + 0.09
(-1)-0 89.33 +0.07 +0.18
0-1 92.48 + 0.06 + 0.27
1-2 92.03 + 0.06 + 0.27
2-3 89.24 + 0.06 + 0.21

Table B.18: Combined muon efficiency as a function of ¢ with statistical and systematic
uncertainties in Monte Carlo.
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Appendix C

Top-Quark Pair Production

Cross Section Data Distributions
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Figure C.1: Distribution of the pr of the electron for the events passing all pre b-jet
tagging event selection criteria in the electron channel (a) and after b-jet tagging (b)
for events with one or more jets.
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Figure C.2: Distribution of the pr of the muon for the events passing all pre b-jet
tagging event selection criteria in the muon channel (a) and after b-jet tagging (b) for
events with one or more jets.
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Figure C.3: Distribution of Er_,’f”ss for the events passing all pre b-jet tagging event
selection criteria in the electron channel (a), muon channel (b) and combining the two

channels (c) for events with one or more jets.
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Figure C.4: Distribution of Er}mss for the events passing all event selection criteria,
including b-jet tagging, in the electron channel (a), muon channel (b) and combining
the two channels (c) for events with one or more jets.

146



- e o TR .
Q L , [} L |
G} r = 1 + 1 0O o * +ets
et 600; IL 2.9pb pretag e+jets E ot 800E IL 2.9 pb pretag u+jets ]
o 1 3 700F E
% 500 — E F E
g «data | g 600 «data
4001 ¢ E 500 ¢ E
a 3 400F E
300i 4 ] = ¢ B
F ] 300( =
200 ¢ = Eo, 1
r . ] 200 0‘ -
C (3 4 E 1
100¢ * ] 100 ‘o 3
O:HH\‘.‘"‘""“-- : dosess Lo teeid G:HH\H."""’- : [
0 50 100 150 200 250 300 0 50 100 150 200 250 300
p, [GeV] p, [GeV]
(a) (b)
S S
8 r - 1 / u+jets 1
— = retag e —|
S 14007 J'L 2.9pb pretag e/ utjets
£1200F -
= r ]
11000/~ cdata 1
ro¢ ]
8001 -
600 * -
400 ¢ .
. * -
|- L) -
200 ‘.. ]
F .. ]
07\ I B l | evese | oo oo o
0 50 100 150 200 250 300

p, [GeV]
(c)

Figure C.5: Distribution of pp of the leading jet for the events passing all pre b-
jet tagging event selection criteria in the electron channel (a), muon channel (b) and
combining the two channels (c).
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Figure C.6: Distribution of pr of the leading jet for the events passing all event selection
criteria, including b-jet tagging, in the electron channel (a), muon channel (b) and
combining the two channels (c).
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Figure C.7: Distributions showing the W transverse mass for the events passing all pre
b-jet tagging event selection criteria in the electron channel (a), muon channel (b) and
combining the two channels (c) for events with one or more jets.
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Figure C.8: Distributions showing the W transverse mass after full selection criteria,
including b-jet tagging, in the electron (a), muon (b) and combining the two channels
(c) for events with one or more jets.
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