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À mon épouse, Camille

“Most technological advances in our life now come from serendipitous discoveries.
That is a contraction of rocket technology and computer technology and atomic clock technology.”

-Serge Haroche



Sommaire

L’ingénierie des systèmes hybrides met à profit des avantages combinés de systèmes

quantiques distincts. Cette approche est maintenant reconnue comme étant primordiale

pour les technologies quantiques. Cette thèse explore et réalise des dispositifs quantiques

hybrides basés sur différents systèmes de spins et circuits supraconducteurs. Dans un

premier temps, une approche permettant d’effectuer l’ingénierie du couplage entre un spin

électronique et un résonateur est proposée. Cette approche a récemment été utilisée par la

communauté pour démontrer le couplage cohérent entre un spin unique et un résonateur

supraconducteur. De plus, la mise en évidence de la présence d’un couplage longitudinal

promet d’offrir une nouvelle méthode de lecture non destructive pour les qubits de spins.

Une nouvelle méthode de magnétométrie est également développée afin de déterminer les

propriétés magnétiques des micro-aimants requis pour le couplage spin-résonateur. Par la

suite, une plate-forme expérimentale développée pour les dispositifs hybrides est réalisée.

La préservation d’un fort facteur de qualité de résonateurs supraconducteurs en présence

d’un champ magnétique externe de plus de 3 T est ainsi démontrée. Cette plate-forme a de

plus permis l’observation d’un nouveau mécanisme de couplage entre un ensemble de spins

paramagnétiques et un résonateur supraconducteur. Ce couplage permet une méthode

de lecture analogue à la lecture longitudinale et possède ainsi des applications pour la

détection de la résonance de spin électronique. Finalement, un système hybride composé

d’un qubit supraconducteur et d’une sphère de grenat de fer et d’yttrium est présenté. Ce

système hybride a permis d’observer, pour la toute première fois, les quanta des excitations

collectives de spins dans un ferro-aimant de taille macroscopique. Les résultats présentés

dans cette thèse démontrent le potentiel des systèmes quantiques hybrides pour offrir de

nouvelles fonctionnalités pour les technologies quantiques.

Mots-clés : dispositifs hybrides, qubit de spin, qubit supraconducteur, résonateur supra-

conducteur, micro-aimant, magnonique quantique, couplage longitudinal.
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Introduction

Les technologies quantiques promettent de révolutionner plusieurs domaines par

l’utilisation de dispositifs conçus pour tirer profit de certains effets quantiques. Ces effets

permettent d’accéder à de nouvelles fonctionnalités allant au-delà de ce qui est possible

classiquement. Par exemple, le développement de nouveaux médicaments par la simu-

lation de molécules complexes sera probablement l’une des applications principales du

calcul quantique à l’aide d’un ordinateur quantique [1, 2, 3]. Comme l’illustre bien le très

récent résumé du calendrier de lancement de l’initiative européenne sur les technologies

quantiques [4], la communication quantique et les senseurs quantiques sont des domaines

d’activités complémentaires au calcul et à la simulation quantique. Ainsi, cette thèse porte

sur l’interface entre différentes technologies quantiques dans le but d’accéder à de nouvelles

fonctionnalités utiles pour le traitement quantique de l’information et, potentiellement,

pour les senseurs quantiques.

Technologies pour le calcul quantique

Différentes technologies sont actuellement considérées pour le calcul quantique. En

analogie avec le calcul classique, la plupart des approches considèrent l’utilisation de bits

quantiques, ou qubits, comme unité de base du traitement quantique de l’information [5].

Des différentes architectures actuellement considérées, les qubits basés sur les circuits

supraconducteurs [6, 7] et les spins [8] sont actuellement à l’avant-plan de la réalisation

d’un processeur quantique à l’état solide.
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Résonateurs supraconducteurs

1 mm

Qubits

supraconducteurs

Figure 1 – Circuits supraconducteurs.
Exemple du processeur quantique utilisé à la référence [12] pour la simulation des niveaux d’énergies
d’une molécule. Le processeur contient six qubits supraconducteurs et huit résonateurs supracon-
ducteurs. Six de ces résonateurs supraconducteurs sont connectés au monde extérieur afin de lire
l’état du qubit. Les deux autres résonateurs, indiqués en bleu, permettent de mettre en interaction
les qubits distants.

Circuits supraconducteurs

Les circuits supraconducteurs utilisent l’effet Josephson pour obtenir un élément de

circuit électrique non linéaire et non dissipatif [7]. La combinaison de jonctions Josephson,

de condensateurs et d’inductances permet de réaliser des circuits dans lesquels un qubit

peut être encodé [6, 7]. L’architecture d’électrodynamique quantique en circuit combine

ces qubits supraconducteurs à des cavités supraconductrices en circuit pour manipuler et

lire l’information quantique encodée dans les circuits supraconducteurs [9, 10]. De plus, la

cavité permet de mettre en interaction des qubits supraconducteurs distants de plusieurs

millimètres [9, 11]. Cette approche hautement versatile est celle actuellement poursuivie par

plusieurs compagnies comme IBM [12], Google [13] et Rigetti Computing [14]. Notamment,

IBM a récemment démontré la possibilité de simuler efficacement les niveaux d’énergies

d’une molécule sur un processeur supraconducteur contenant six qubits [12].

Malgré les progrès fulgurants des dernières années, les circuits supraconducteurs pos-

sèdent tout de même certaines contraintes. Par exemple, les processeurs supraconducteurs

sont opérés dans un environnement à une température de seulement quelques dixièmes

de degrés au-dessus du zéro absolu. En effet, la présence d’excitations thermiques dans les

circuits supraconducteurs opérant dans le domaine micro-ondes affecte significativement

l’information quantique encodée [15]. Ainsi, des processeurs supraconducteurs séparés

par un environnement à la température de la pièce ne peuvent pas être interconnectés di-

rectement. Cette situation est toutefois requise dans le contexte d’un ordinateur quantique
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Spins uniques Chaîne linéaire de boîtes quantiques

Figure 2 – Qubits de spin.
Exemple d’une chaîne linéaire de neuf boîtes quantiques tiré de la référence [22]. Un électron unique
peut être piégé dans chacune des boîtes, permettant d’utiliser le spin comme qubit.

distribué [16]. Les photons infrarouges dans des fibres optiques offrent une façon naturelle

d’interconnecter deux processeurs quantiques [16]. Par contre, puisque ces photons dé-

truisent la supraconductivité des supraconducteurs conventionnels, ceux-ci ne peuvent pas

interagir directement avec les circuits supraconducteurs. Il est alors nécessaire d’interfacer

les circuits supraconducteurs avec un système auxiliaire pour effectuer la transduction

bidirectionnelle entre les photons des domaines micro-ondes et optique pour la réalisation

d’un ordinateur quantique distribué basé sur les circuits supraconducteurs.

Systèmes de spin

Les qubits basés sur les spins suivent principalement deux approches distinctes propo-

sées en 1998. L’approche proposée par Bruce Kane utilise des défauts atomiques dans un

semi-conducteur pour piéger des électrons uniques sur les impuretés [17]. L’interaction

entre le spin de cet électron et le spin du noyau atomique de l’impureté permet d’utiliser les

spins nucléaires comme qubits et les spins électroniques comme ressource auxiliaire [17, 18].

Une seconde approche, proposée par Daniel Loss et David DiVincenzo, utilise des disposi-

tifs nanoélectroniques, nommés boîtes quantiques, pour isoler des électrons uniques [19]. Le

spin de l’électron, pouvant être initialisé, manipulé et lu par différentes techniques, est alors

utilisé comme qubit de spin [20, 18]. Notamment, les opérations élémentaires nécessaires

au calcul quantique ont récemment été implémentées dans ce même dispositif [21], et ce,

dans une architecture extensible en une dimension [22]. Une proposition récente indique

qu’une telle approche permet, en principe, d’effectuer des calculs quantiques tolérant aux

erreurs [23].
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Malgré ces progrès récents, les qubits basés sur les spins sont en général moins avancés

que ceux basés sur les circuits supraconducteurs. Les qubits de spin possèdent par contre

certains avantages par rapport aux circuits supraconducteurs qui pourraient être détermi-

nants dans la réalisation d’un ordinateur quantique et qui sont résumés à la référence [24].

Un premier atout vient du temps de conservation de l’information quantique dans ce type

de qubit. Ce temps caractéristique, nommé temps de cohérence, peut atteindre plusieurs

heures [25]. Bien que ce temps soit généralement plus faible lorsque les spins sont intégrés

dans un dispositif, il est tout de même possible d’atteindre des temps de cohérence de

plusieurs millisecondes [26], ce qui est significativement plus élevé que dans les qubits

supraconducteurs pour lesquels le temps de cohérence est actuellement limité à quelques

dizaines de microsecondes [12]. Cette borne supérieure du temps de cohérence beaucoup

plus élevée dans les systèmes de spin peut mener à un taux d’erreur pour les opérations

quantiques plus faible, et ainsi réduire significativement les coûts supplémentaires en

ressources requis pour effectuer un calcul quantique tolérant aux erreurs [27]. Un second

atout important a trait à la compatibilité de certaines architectures de qubits de spin à

l’électronique classique actuelle [24]. Cette compatibilité permet en principe de co-intégrer

l’électronique classique nécessaire au contrôle et à la lecture des qubits directement à l’in-

térieur du processeur quantique. Cette fonctionnalité permet ainsi de grandement réduire

la complexité de l’interconnexion entre le processeur quantique et l’électronique classique

de contrôle et ainsi promet de grandement aider l’extensibilité des architectures de qubits

basés sur les spins.

Ces avantages potentiels pour les qubits de spin par rapport aux circuits supraconduc-

teurs sont par contre actuellement contrebalancés par certains problèmes. Notamment,

l’interaction entre les différents qubits de spin est actuellement limitée à seulement une cen-

taine de nanomètres, limitant ainsi fortement le développement d’une approche modulaire

où différents modules contenant chacun un certain nombre de qubits sont interconnectés

sur un processeur [28]. De plus, la méthode de lecture actuellement privilégiée pour les

qubits de spin est destructive [21], complexifiant grandement l’opération de protocoles de

correction d’erreurs [27].
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Dispositifs hybrides pour les technologies quantiques

Certaines des contraintes et limites mentionnées précédemment peuvent potentiel-

lement être résolues par l’intégration de plusieurs technologies complémentaires. En ef-

fet, l’ingénierie de dispositifs hybrides qui utilisent les avantages de différents systèmes

quantiques est maintenant reconnue comme étant primordiale pour les technologies quan-

tiques [29, 30, 31]. Dans cette thèse, les circuits supraconducteurs sont utilisés pour accéder

à de nouvelles fonctionnalités pour différents systèmes de spins.

Dans un premier temps, une extension de l’architecture de l’électrodynamique quan-

tique en circuit pour les qubits basés sur les spins permettrait d’offrir à cette technologie

plusieurs outils développés pour les circuits supraconducteurs. Par exemple, le couplage

fort entre plusieurs qubits de spins et un résonateur supraconducteur permettrait en prin-

cipe de contrôler l’interaction entre des spins distants de plusieurs millimètres en utilisant

le résonateur comme bus quantique. De plus, l’interaction entre le spin et le résonateur

ouvre la voie à plusieurs méthodes de lecture potentiellement non destructives développées

pour les qubits supraconducteurs. Dans une telle architecture hybride, le résonateur offre

ainsi de nouvelles fonctionnalités pour les qubits de spin. Par contre, le couplage direct

entre le spin d’un électron unique et un résonateur supraconducteur est trop faible pour

atteindre le régime de couplage cohérent. Il est alors nécessaire d’effectuer l’ingénierie du

couplage spin-résonateur permettant d’atteindre un régime de couplage cohérent.

La réalisation de dispositifs hybrides composés de systèmes de spins et de résonateurs

supraconducteurs nécessite la possibilité d’appliquer un champ magnétique externe sur le

résonateur. Ces conditions expérimentales sont drastiquement différentes de celles utilisées

pour les circuits supraconducteurs en électrodynamique quantique en circuit et requiert

ainsi certaines adaptations. Une fois ces adaptations effectuées, l’interaction collective entre

un ensemble de spins et un résonateur supraconducteur peut être étudiée [32, 33]. Un tel

système permet, par exemple, de repousser les limites de la sensibilité de la résonance

paramagnétique électronique en appliquant des méthodes empruntées au domaine des

circuits supraconducteurs [34, 35, 36]. Des opportunités sont ainsi présentes dans ces

systèmes hybrides pour développer de nouvelles méthodes de caractérisation pour les

systèmes de spins.

Finalement, un dispositif hybride permettant le transfert d’information quantique entre

les qubits supraconducteurs et les photons optiques permettrait de réunir les meilleurs

candidats des qubits dits fixes et volants. L’utilisation des modes collectifs de spin dans
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un matériel ferromagnétique, interagissant avec les photons des domaines micro-onde et

optique, a récemment été proposée pour cette tâche [37, 38, 39, 40]. La démonstration du

couplage fort entre un qubit supraconducteur et les quanta d’excitation des modes collectifs,

appelés magnons, représente un pas important dans cette direction [41, 38]. Le transfert de

l’information quantique entre le qubit et un état non classique de magnons est une étape

essentielle pour la transduction quantique dans cette architecture hybride. L’encodage

de l’état quantique arbitraire d’un qubit supraconducteur dans une superposition d’états

cohérents de magnons, aussi appelée état chat de Schrödinger, peut en principe être effectué

à l’aide d’un protocole développé pour les circuits supraconducteurs [42, 43]. Ce protocole

nécessite par contre une interaction dispersive forte entre le qubit et les magnons [44].

Plan de la thèse et impacts des travaux

Cette thèse porte sur l’étude de dispositifs quantiques hybrides basés sur des circuits

supraconducteurs et trois types de systèmes de spins, soit (i) les spins uniques dans les

boîtes quantiques, (ii) les ensembles de spins paramagnétiques et (iii) les ensembles de spins

ferromagnétiques. La figure 3 illustre schématiquement le plan des différents chapitres de

la thèse. Ces chapitres peuvent être regroupés sous trois thèmes, portant sur chacune des

problématiques nommées précédemment.

Ingénierie d’un couplage spin-résonateur effectif

Le chapitre 1 introduit les mécanismes permettant de coupler les différents systèmes

de spins considérés dans cette thèse à un résonateur ou à une cavité micro-ondes. Notam-

ment, une approche permettant d’effectuer l’ingénierie d’un couplage effectif entre un

spin unique dans une double boîte quantique et un résonateur est présentée. Ce travail a

mené à une publication dans l’édition spéciale Focus on Quantum Information Processing de

Nanotechnology [45]. De plus, cette approche a permis la démonstration expérimentale d’un

couplage cohérent entre un spin unique et un résonateur [46, 47]. Une nouvelle méthode

de lecture non destructive pour les spins uniques est également proposée. La réalisation

de ce couplage spin-résonateur nécessite la présence d’un champ magnétique inhomogène

créé, par exemple, par des aimants de tailles micrométriques. Le chapitre 2 présente ainsi

une nouvelle méthode de caractérisation de systèmes magnétiques sous le micromètre

permettant de déterminer les propriétés et les conditions d’opération des micro-aimants.
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Annexe B

Figure 3 – Illustration schématique du plan de la thèse.

Ce travail a mené à une publication dans Applied Physics Letters [48]. Ainsi, ces résultats

suggèrent que la réalisation d’une architecture d’électrodynamique quantique en circuit

avec les qubits de spins est possible. La réalisation d’une telle architecture permettrait

potentiellement de coupler des qubits de spins distants et d’offrir une méthode de lecture

non destructive.

Résonateurs supraconducteurs pour les dispositifs hybrides

Le chapitre 3 présente la caractérisation de résonateurs supraconducteurs compatibles

avec l’application d’un champ magnétique externe nécessaire pour les qubits de spin et les

micro-aimants, et ce, sans affecter de façon significative les propriétés des résonateurs. De

plus, le développement des résonateurs supraconducteurs à haute inductance cinétique est

utilisé au chapitre 4 pour obtenir des résultats préliminaires sur une nouvelle méthode de

caractérisation pour les ensembles de spins paramagnétiques. Cette méthode de lecture

est particulièrement intéressante pour la caractérisation de systèmes de spins à des tempé-

ratures cryogéniques pour les mémoires quantiques, les transducteurs quantiques et les

qubits de spins basés sur des impuretés dans les semi-conducteurs.
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Régime dispersif fort en magnonique quantique

Le chapitre 5 présente des résultats démontrant la possibilité d’utiliser un qubit supra-

conducteur pour accéder aux états quantiques d’un ensemble de spins ferromagnétique

en magnonique quantique. Ce travail a mené à une publication dans Science Advances [49].

Le chapitre 6 utilise cette fonctionnalité pour effectuer des mesures tomographiques réso-

lues temporellement de l’état d’un ensemble de spins ferromagnétique. Ces mesures sont

utilisées pour observer la relaxation des magnons et mettre en évidence la présence d’un

bain de systèmes à deux niveaux affectant significativement la cohérence des magnons.

La possibilité d’atteindre le régime dispersif fort est un ingrédient clé pour l’encodage de

l’information quantique d’un qubit supraconducteur à un état quantique de magnon, une

étape essentielle à la transduction quantique basée sur l’architecture de la magnonique

quantique.

Remarques générales

À moins d’indications contraires, les barres d’erreurs et les incertitudes mentionnées

dans cette thèse correspondent à un intervalle de confiance de 95%, soit deux écarts types.

Lorsque c’est possible, les identifiants des dispositifs et des fichiers de données brutes

sont indiqués dans les figures présentant les résultats expérimentaux. Par contre, pour ne

pas nuire à la visibilité de la figure, ces informations sont indiquées en très petits caractères.



Chapitre 1

Mécanismes de couplage spin-photon

Ce chapitre introduit les mécanismes pouvant mener au couplage entre un système de

spin et les photons d’un résonateur. Ces concepts sont présentés afin d’appuyer les obser-

vations expérimentales et proposer différentes avenues de recherche pour les dispositifs

hybrides basés sur les spins. Dans une première section, le couplage dipolaire magnétique

de différents systèmes de spin, passant du spin unique à l’ensemble de spins ferromagné-

tique, est brièvement discuté. Une deuxième section porte sur l’ingénierie d’un couplage

entre un spin unique et un résonateur par l’intermédiaire d’un dipôle électrique et d’un

champ magnétique inhomogène. La troisième section présente une étude approfondie sur

la possibilité d’effectuer l’ingénierie du champ magnétique inhomogène à l’aide d’aimants

de tailles micrométriques. Finalement, la section 1.4 présente l’utilisation d’un couplage

longitudinal entre le spin et le résonateur pour la lecture quantique non destructive d’un

qubit de spin.

Les résultats présentés aux sections 1.2 et 1.3 sont publiés dans Nanotechnology [45]

et sont le fruit d’une collaboration avec Félix Beaudoin et William A. Coish de McGill

University. Les résultats de la section 1.4 sont le fruit d’une collaboration avec Félix Beaudoin

lors d’un court séjour à l’Institut quantique de l’Université de Sherbrooke. Notamment, les

résultats numériques de la figure 1.19 ont été obtenus par Félix Beaudoin.

9
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1.1 Couplage dipolaire magnétique

Un spin, qui est un dipôle magnétique, se couple naturellement à la composante magné-

tique du champ micro-ondes d’un résonateur. Cette première section explore la nature et la

force du couplage dipolaire magnétique entre un résonateur et différents systèmes de spin :

(i) spin unique, (ii) ensemble de spins paramagnétique et (iii) modes magnétostatiques

d’un ensemble de spins ferromagnétique.

Le couplage dipolaire magnétique est particulièrement intéressant pour les ensembles

de spins paramagnétiques et ferromagnétiques puisque qu’il permet d’atteindre expé-

rimentalement le régime de couplage fort. Par contre, dans la plupart des architectures,

le couplage dipolaire magnétique est insuffisant pour atteindre ce régime entre un spin

unique et un résonateur. La prochaine section présente une stratégie alternative, où un spin

unique est couplé à un dipôle électrique. En combinaison avec le couplage dipolaire élec-

trique, cette architecture résulte en un couplage spin-photon effectif qui permet d’atteindre

expérimentalement le régime de couplage fort.

1.1.1 Couplage entre un spin unique et un résonateur

Hamiltonien du système

L’hamiltonien d’un résonateur qui possède un seul mode de fréquence angulaire ωr est

donné par

Ĥr = ~ωrâ
†â, (1.1)

où les opérateurs â† et â sont, respectivement, les opérateurs de création et d’annihilation

d’un photon micro-ondes dans le mode du résonateur (annexe A). L’hamiltonien d’un spin

dans un champ magnétique externe B0 est, en général, donné par

Ĥs = g∗µBB0 · Ŝ+ Ĥ′
s, (1.2)

où g∗ est le facteur de Landé, µB est le magnéton de Bohr et Ŝ est l’opérateur de spin [50]. Le

terme Ĥ′
s de l’hamiltonien permet de tenir compte, par exemple, de l’interaction hyperfine

du spin avec des spins nucléaires et de la séparation de champs nuls (zero field splitting).

Il est possible de diagonaliser l’hamiltonien de l’équation (1.2) afin d’obtenir les énergies
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propres Ei associées aux états propres |i = g, e, f, . . .〉. En ne considérant que les deux états

de plus basse énergie, soit l’état fondamental |g〉 et le premier état excité |e〉, il est possible de

se restreindre au sous-espace à deux dimensions en considérant Ŝ → σ̂/2 et en définissant

la fréquence angulaire de Larmor par ωs ≡ (Ee − Eg) /~, où σ̂ sont les matrices de Pauli.

Considérant de plus que le champ externe est parallèle à l’axe de quantification z, soit

B0 = [0, 0, B0], l’hamiltonien du spin s’écrit comme

Ĥs/~ =
1

2
ωsσ̂z. (1.3)

Cet hamiltonien correspond à celui d’un spin 1/2 effectif où la fréquence angulaire de

Larmor est donnée par ωs = (Ee − Eg) /~ et diffère de ωs = g∗µBB0/~ pour Ĥ′
s 6= 0. De plus,

en prenant compte de Ĥ′
s dans l’hamiltonien de l’équation (1.2), il est possible de décrire le

couplage d’un spin unique quelconque à un résonateur, en autant qu’il soit possible de se

restreindre au sous-espace à deux dimensions défini par les états de plus basses énergies

|g〉 et |e〉. Cette approximation est particulièrement justifiée si ωs ∼ ωr.

Hamiltonien de l’interaction spin-résonateur

L’interaction dipolaire magnétique entre le spin et le résonateur est en général décrit

par l’hamiltonien

Ĥint = g∗µBB̂1(r) · Ŝ, (1.4)

où B̂1(r) = δB(r)
(
â† + â

)
est le champ magnétique micro-ondes du résonateur à la po-

sition r du spin et où δB(r) sont les fluctuations du vide du champ micro-ondes à cette

position [50]. Puisqu’on ne considère qu’un seul spin ici, la dépendance de l’interaction sur

la position r du spin dans le résonateur est implicite à partir d’ici.

En se restreignant aux deux états de plus basses énergies, il est possible de réécrire

l’hamiltonien sous la forme

Ĥint/~ = gz
(
â† + â

)
σ̂z +

(
gx

(
â† + â

)
σ̂− + h.c.

)
, (1.5)

où le premier et le deuxième termes décrivent l’interaction longitudinale et transverse de

coefficients gz et gx respectivement et h.c. dénote le conjugué hermitien. Les opérateurs

d’échelles σ̂± sont données par σ̂− = |g〉〈e| et σ̂+ = |e〉〈g|. Les coefficients des couplages
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Spin Résonateur

a) b)

Spin

Résonateur

Figure 1.1 – Schéma de l’interaction dipolaire magnétique entre un spin et un résonateur.
a) Schéma d’un spin unique, d’hamiltonien Ĥs, couplé à un résonateur micro-ondes de type co-
planaire, d’hamiltonien Ĥr, par interaction dipolaire magnétique, décrit par l’hamiltonien Ĥint.
L’amplitude du champ magnétique micro-ondes B̂1 du mode fondamental du résonateur est égale-
ment représentée. b) Illustration schématique d’un spin 1/2 piégé sur un défaut d’un cristal sur
lequel un résonateur supraconducteur de type coplanaire de fréquence angulaire ωr et d’impédance
Z0 avec un conducteur central de largeur w est fabriqué. Un champ magnétique externe B0 est
appliqué selon l’axe de quantification z. Le champ magnétique micro-ondes B̂1 est principalement
parallèle à l’axe x pour un spin unique situé sous le conducteur central. À partir des paramètres
réalistes w = 10 µm, Z0 = 50 Ω, g∗ = 2 et ωr/2π = 6 GHz à l’équation (1.12), un coefficient de
couplage gx/2π ≈ 30 Hz est estimé à partir de l’équation (1.9).

longitudinal et transverse sont respectivement donnés par

~gz =
1

2
g∗µBδB ·

[

〈e|Ŝ|e〉 − 〈g|Ŝ|g〉
]

, (1.6)

~gx =
1

2
g∗µBδB · 〈g|Ŝ|e〉. (1.7)

Ainsi, malgré que seuls les deux états de plus basses énergies soient considérés, l’expression

des coefficients de couplage tiennent compte de la nature exacte du spin via l’opérateur Ŝ.

En effet, pour Ĥ′
s 6= 0, les opérateurs de spin Ŝ ne correspondent pas aux matrices de Pauli

σ̂, puisque ces dernières sont dans la base diagonalisant Ĥs. Pour un spin libre (Ĥ′
s = 0,

Ŝ → σ̂/2), les coefficients de couplage se simplifient à

~gz =
1

2
g∗µBδBz, (1.8)

~gx =
1

4
g∗µB (δBx + iδBy) . (1.9)

Il est possible de simplifier davantage l’hamiltonien de l’équation (1.5) en appliquant

l’approximation séculaire résultant en

Ĥint/~ ≈ gxâ
†σ̂− + h.c. (1.10)
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L’approximation séculaire revient essentiellement à éliminer les termes qui ne conservent

pas le nombre d’excitations dans le système, tel que âσ̂− par exemple. Cette approximation

est valide lorsque le spin et le résonateur sont presque résonants, soit ωs ∼ ωr, et que les

coefficients de couplage sont beaucoup plus faibles que les fréquences angulaires de chaque

sous-système, soit gx,z ≪ ωs,r. Il est alors possible de voir que le couplage longitudinal

disparait sous l’approximation séculaire. À la section 1.2, le couplage longitudinal entre

un spin unique et un résonateur est réintroduit et la section 1.4 porte sur une application

potentielle de ce couplage.

Hamiltonien total

À partir des résultats précédents, l’hamiltonien total du système composé d’un spin

unique en interaction dipolaire magnétique avec un résonateur à un mode est donné par

Ĥ/~ = ωrâ
†â+

1

2
ωsσ̂z +

(
gxâ

†σ̂− + h.c.
)
. (1.11)

Cet hamiltonien est connu sous le nom d’hamiltonien de Jaynes-Cummings décrivant le

couplage transverse d’un qubit avec un résonateur [51, 52, 9]. Les outils développés en

électrodynamique quantique en cavité et en circuit peuvent ainsi être utilisés pour décrire

la dynamique d’un spin unique couplé à un résonateur.

Coefficient de couplage transverse

Afin d’estimer le coefficient de couplage transverse gx, il est utile de considérer un

exemple précis pour le système de spin et le résonateur. Le coefficient de couplage trans-

verse gx est proportionnel aux fluctuations du vide du champ magnétique micro-ondes

du résonateur δB et dépend ainsi fortement de l’architecture considérée. Par exemple, un

résonateur supraconducteur en circuit de type coplanaire permet d’augmenter δB signifi-

cativement par rapport à un résonateur tridimensionnelle [9]. Le coefficient de couplage

transverse gx d’un spin 1/2 couplé à un résonateur supraconducteur de type coplanaire de

fréquence angulaire ωr est donné par l’équation (1.9) avec [53]

δBx =
1

4

µ0

w

√

h

Z0

ωr, δBy = 0, (1.12)

où µ0 est la perméabilité du vide, w est la largeur du conducteur central du résonateur

et Z0 est l’impédance du résonateur. Avec les paramètres spécifiés à la figure 1.1 b), un
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couplage gx/2π ≈ 30 Hz est attendu. Une valeur similaire du coefficient de couplage a été

démontré expérimentalement aux références [34, 54] par exemple. Par contre, malgré que

le taux de décohérence γs de certains systèmes de spin peut être inférieur à ce coefficient

de couplage [55, 56, 57], celui-ci est beaucoup plus faible que le taux κr auquel les photons

micro-ondes quittent le résonateur supraconducteur [58, 59]. Il est ainsi difficilement envi-

sageable d’atteindre le régime de couplage fort entre un spin unique et un résonateur, où

le coefficient de couplage gx est supérieur à γs et κr.

Les références [60], [53] et [50] étudient l’augmentation des fluctuations du vide du

champ magnétique micro-ondes d’un résonateur supraconducteur. Pour ce faire, une

constriction nanométrique est fabriquée près du spin unique, en augmentant δBx de l’équa-

tion (1.12) par la diminution de la largeur w du conducteur central, ce qui résulte en un

coefficient de couplage de quelques kHz. Malgré cette augmentation du couplage, le cou-

plage dipolaire magnétique fort entre un spin unique et un résonateur reste à ce jour un

défi de taille. Alors que les deux prochaines sections présentent deux approches similaires

permettant d’atteindre expérimentalement le régime de couplage fort entre un système de

spin et un résonateur, la section 1.2 présente une approche permettant d’atteindre expéri-

mentalement ce régime pour un spin unique en allant au-delà du couplage direct avec le

résonateur par interaction dipolaire magnétique.

1.1.2 Couplage entre un ensemble de spins paramagnétique et un réso-

nateur

Généralisation de l’hamiltonien de l’interaction

Considérons maintenant le couplage dipolaire magnétique d’un ensemble parama-

gnétique de N spins avec un résonateur. En généralisant l’équation (1.2), l’hamiltonien de

l’ensemble de spins est décrit par

Ĥs = g∗µB

N∑

i=1

B0 · Ŝi + Ĥ′
s =

1

2
~ωs

N∑

i=1

σ̂(i)
z . (1.13)

où Ŝi est l’opérateur du spin i. La dernière égalité provient de l’approximation à deux

niveaux pour chaque spin présentée précédemment. Puisque que le champ magnétique

externe B0 est considéré uniforme sur l’ensemble des spins, la fréquence angulaire de

Larmor ωs est la même pour tous les spins. Aucune interaction directe entre les spins n’est

ici considérée, contrairement au cas d’un ensemble de spins ferromagnétique.
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Résonateur
b)

Ensemble de spin
paramagnétique

a)

Figure 1.2 – Interaction dipolaire entre un ensemble de spin paramagnétique et un résonateur.
a) Schéma d’un ensemble de spins paramagnétique, d’hamiltonien Ĥs, couplé à un résonateur
micro-ondes de type coplanaire, d’hamiltonien Ĥr, par interaction dipolaire magnétique, décrit par
l’hamiltonien Ĥint. b) Illustration schématique d’un ensemble de spins paramagnétique piégé sur
les défauts d’un cristal sur lequel un résonateur supraconducteur de type coplanaire de fréquence
angulaire ωr et d’impédance Z0 avec un conducteur central de largeur w est fabriqué. Un champ
magnétique externe B0 est appliqué selon l’axe de quantification z et le champ magnétique micro-
ondes B1 est principalement parallèle à l’axe x pour les spins situés sous le conducteur central. À
partir des paramètres réalistes w = 10 µm, Z0 = 50 Ω, g∗ = 2, ωr/2π = 6 GHz à l’équation (1.12), un
coefficient de couplage gx/2π ≈ 30 MHz est estimé à partir de l’équation (1.20) pour un ensemble
de 1012 spins.

L’hamiltonien de l’interaction dipolaire magnétique de l’équation (1.4) entre un spin

unique et un résonateur est généralisé à

Ĥint = g∗µB

N∑

i=1

B̂1(ri) · Ŝi = â†
N∑

i=1

~g(i)x σ̂
−
i + h.c., (1.14)

où

~g(i)x =
1

2
g∗µBδB(ri) · i〈g|Ŝi|e〉i (1.15)

est le coefficient de couplage transverse du spin i au mode de le résonateur. La dernière

égalité est obtenue en utilisant l’approximation séculaire afin d’éliminer les termes qui ne

conservent pas le nombre d’excitation dans le système.

Transformation vers un oscillateur harmonique

Le couplage d’un ensemble de spins au même mode d’un résonateur permet de for-

mer des modes collectifs de spin. En effet, l’opérateur d’annihilation collectif ĉ est défini
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comme [61, 62]

ĉ ≡ 1√
N

N∑

i=1

(

g
(i)
x

gx

)

σ̂−i , (1.16)

où le coefficient de couplage transverse moyen est donné par

gx =

√
√
√
√

∑N
i=1

∣
∣
∣g

(i)
x

∣
∣
∣

2

N
. (1.17)

L’hamiltonien de l’ensemble de spins peut ainsi se réécrire simplement par

Ĥs/~ = ωsĉ
†ĉ, (1.18)

en omettant un terme constant N/2. De plus, l’hamiltonien de l’équation (1.14) se simplifie

à

Ĥint/~ = gx
√
N

(
â†ĉ+ h.c.

)
. (1.19)

Le passage de l’hamiltonien de l’équation (1.14) à celui de l’équation (1.19) n’est qu’une

simple réécriture, sans approximation supplémentaire. L’hamiltonien de l’équation (1.18)

semble maintenant correspondre à celui de deux oscillateurs harmoniques couplés avec

un coefficient de couplage de l’ensemble

gx = gx
√
N, (1.20)

ce qui correspond à une augmentation du couplage transverse par un facteur
√
N . Afin

de vérifier si les opérateurs ĉ et ĉ† correspondent bien, respectivement, aux opérateurs

d’annihilation et de création d’un oscillateur harmonique, la relation de commutation [ĉ, ĉ†]

est évaluée selon

[ĉ, ĉ†] = − 1

N

N∑

i=1

σ̂(i)
z . (1.21)

Ainsi, pour un ensemble de spins fortement polarisé dans son état fondamental, c’est-à-dire

lorsque σ̂(i)
z → −1, on retrouve

[ĉ, ĉ†] = 1 +O
(

1

N

)

, (1.22)
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soit la relation de commutation des opérateurs d’échelles d’un oscillateur harmonique.

Modes collectifs

Ainsi, l’hamiltonien d’un ensemble de N spins en interaction dipolaire magnétique

avec un résonateur est donné par

Ĥ/~ = ωrâ
†â+ ωsĉ

†ĉ+ gx
√
N

(
â†ĉ+ h.c.

)
, (1.23)

ce qui correspond à deux oscillateurs harmoniques couplés. Ainsi, le couplage d’un en-

semble de N systèmes à deux niveaux à un même mode d’un résonateur crée un système

harmonique effectif malgré que chaque système à deux niveaux soit infiniment anharmo-

nique. Bien que la nature harmonique de l’ensemble de spins soit problématique pour le

calcul quantique, il est tout de même possible d’encoder de l’information quantique dans

cet ensemble à l’aide, par exemple, de gradients spatiaux du champ externe B0 [61]. Alors

que l’état fondamental du système de spin correspond à l’état fondamental |g〉 = |g〉⊗N , le

premier état excité correspond à, pour g(i)x ≡ gx,

|e〉 = ĉ†|g〉 = 1√
N

(|e, g, . . . , g〉+ |g, e, . . . , g〉+ . . .+ |g, g, . . . , e〉) , (1.24)

ce qui correspond à une excitation délocalisée dans tout l’ensemble de spins. Cet état est

aussi connu sous le nom de l’état |W 〉 [63].

Régime de couplage fort et applications

Le coefficient de couplage transverse d’un ensemble de spins paramagnétique à un

résonateur est donné de façon générale par les équations (1.15), (1.17) et (1.20). En considé-

rant un ensemble de spins distribués uniformément avec une densité ρ dans un cristal, tel

qu’illustré à la figure 1.2 b), il est possible de prendre la limite continue des équations (1.15)

et (1.20) selon

~gx =

√
∫

V

drρ |~gx(r)|2 =
1

2
g∗µB

√
ρ

[∫

V

dr

∣
∣
∣δB(r) · 〈g|Ŝ|e〉

∣
∣
∣

2
]1/2

, (1.25)

où l’indice V dénote l’intégrale sur le volume V du cristal. Le couplage de l’ensemble

dépend ainsi du recouvrement entre le cristal et le champ magnétique micro-ondes de le

résonateur B̂1(r) = δB(r)
(
â† + â

)
et de l’orientation relative entre ce champ micro-ondes

et l’axe de quantification z des spins [32].
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Le coefficient de couplage transverse gx/2π ∼ 30 Hz d’un spin 1/2 unique à un résona-

teur supraconducteur de type coplanaire estimé précédemment permet d’estimer qu’un

ensemble de N = 1012 spins possède un coefficient de couplage collectif gx/2π ∼ 30 MHz.

Un tel coefficient de couplage permet en principe d’atteindre le régime de couplage fort. En

effet, un couplage fort entre un ensemble de spins paramagnétique et un résonateur a été

démontré en 2010 aux références [32] et [33]. Ces deux expériences ont utilisé un ensemble

de spins piégés dans des défauts atomiques d’un diamant, soit les centres azote-lacune

(centres NV) et les centres azote (centres P1) respectivement. Des recherches subséquentes

ont permis d’observer le couplage fort dans plusieurs matériaux hôtes et plusieurs défauts

atomiques [32, 33, 64, 65, 66, 67, 68, 69, 70, 71, 72], ainsi que dans différentes architectures de

cavités tridimensionnelles [73, 74, 75, 76]. Un couplage fort entre un ensemble de spins pa-

ramagnétique et un qubit supraconducteur a de même été démontré dans deux approches

différentes aux références [77, 78].

Le couplage fort d’un ensemble de spins paramagnétique à un résonateur promet

plusieurs applications pour les mémoires quantiques dans le domaine micro-onde [79,

80, 81, 82, 83, 84, 31] et la transduction de l’information quantique entre les domaines

micro-onde et optique [85, 86].

1.1.3 Couplage entre un ensemble de spins ferromagnétique et un réso-

nateur

Hamiltonien d’un ensemble de spins ferromagnétique

On considère ici un ensemble de spins ferromagnétique. L’hamiltonien d’un tel en-

semble dans un champ magnétique B0 est décrit par [38]

Ĥs = g∗µB

N∑

i=1

B0 · Ŝi − 2J
∑

〈i,j〉

Ŝi · Ŝj, (1.26)

où J est le coefficient de l’interaction d’échange. Le premier terme représente l’énergie

Zeeman alors que le second représente l’interaction d’échange entre les plus proches voisins.

La somme du deuxième terme est ainsi effectuée sur les paires de spins voisins. Avec J > 0,

l’état fondamental du système correspond à l’état ferromagnétique où tous les spins sont

alignés avec le champ externe B0 (Fig. 1.3 a).
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État fondamentalÉtat fondamentala)

Onde de spinc)

d)

Mode de Kittele)

État excitéb)

Figure 1.3 – Excitations dans un ensemble de spins ferromagnétique.
a) État fondamental d’une chaîne de spin 1/2 dans un champ magnétique B0. L’état fondamental
correspond à l’état où tous les spins sont orientés selon le champ externe. b) En présence d’une
interaction d’échange J entre les spins voisins, l’excitation d’un spin de la chaîne augmente l’énergie
de l’état par g∗µB |B0|+ 2J . c) Partage du renversement d’un seul spin parmi tous les spins de la
chaîne, formant ainsi une onde de spin. d) État fondamental d’un ensemble de spins ferromagnétique
dans un ferro-aimant sphérique. e) Mode de Kittel dans une sphère ferromagnétique, correspondant
au mode magnétostatique où tous les spins précessent en phase.

Modes magnétostatiques et magnons

Alors que l’état fondamental d’un ensemble de spins ferromagnétique est identique

à celui de l’ensemble de spins paramagnétique, la présence de l’interaction d’échange J

modifie la nature des excitations. Afin de visualiser ces excitations, il est utile de considérer

une chaîne unidimensionnelle de spin telle qu’illustrée à la figure 1.3 a). Dans ce cas,

l’énergie nécessaire pour exciter un seul spin est donnée par g∗µBB0 + 2J , soit la somme

de l’énergie Zeeman et de l’interaction d’échange J avec les deux spins voisins (Fig. 1.3 b).

Or, il est possible de partager le renversement du spin unique sur la chaîne entière, ce qui

résulte en un changement équivalent du moment magnétique mais pour une excitation de

plus basse énergie [87]. Tel qu’illustré à la figure 1.3 c), les excitations d’un ensemble de

spins ferromagnétique forment ainsi des ondes de spin dans des modes magnétostatiques

dont les quanta d’excitation sont nommés magnons [87].

Afin de décrire les modes collectifs de l’ensemble de spins (1.26), il est utile de considérer

la transformation de Holstein-Primakoff pour un spin 1/2 définie par

σ̂−i =
1

2

(

1− ĉ†i ĉi

)1/2

ĉi, (1.27)

où ĉi et ĉ†i sont les opérateurs d’annihilation et de création du spin i [88, 38]. Ces opérateurs

bosoniques, qui sont définis à chaque site, sont reliés aux opérateurs d’ondes de spin par
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une transformée de Fourier

ĉi =
1√
N

∑

k

eik·ri ĉk, (1.28)

où k est le vecteur de l’onde de spin. Les opérateurs ĉk et ĉ†
k

correspondent à l’annihilation

et à la création d’un magnon dans une onde plane de vecteur d’onde k [38]. En substituant

les équation (1.27) et (1.28) dans l’hamiltonien de l’équation (1.26), on obtient

Ĥs(k) =
∑

k

~ωm(k)ĉ
†
k
ĉk, (1.29)

avec la relation de dispersion

~ωm(k) = g∗µBB0 + Ja20 |k|2 (1.30)

pour un réseau cubique avec un pas de réseau a0 [38]. Comme l’indique le deuxième terme,

l’interaction d’échange J lève la dégénérescence entre les différentes excitations de spin.

Cette situation est différente de celle de l’ensemble de spins paramagnétique.

Les différents modes magnétostatiques d’une sphère ferromagnétique ont été détermi-

nés à la référence [89]. Comme illustré à la figure 1.3 e), le mode où les spins précessent

uniformément, soit k → 0, est appelé le mode de Kittel. La relation de dispersion de l’équa-

tion (1.30) se simplifie à ~ωm(k = 0) = g∗µBB0 pour ce mode, soit l’énergie d’un spin 1/2

dans un champ magnétique B0. Ainsi, l’énergie d’un magnon dans le mode de Kittel est

égale à l’énergie d’un spin 1/2 dans le même champ magnétique B0. Par contre, l’hamilto-

nien du mode de Kittel décrit un oscillateur harmonique, contrairement à l’hamiltonien

d’un spin 1/2 de l’équation (1.3). En effet,

Ĥs(k = 0)/~ ≡ Ĥm/~ = ωmĉ
†ĉ (1.31)

où ĉk=0 ≡ ĉ et ĉ†
k=0 ≡ ĉ† sont les opérateurs d’annihilation et de création d’un magnon dans

le mode de Kittel.
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Hamiltonien de l’interaction

L’hamiltonien du couplage dipolaire magnétique d’un ensemble de spins ferromagné-

tique à une cavité micro-ondes est donné par

Ĥint = g∗µB

(
â† + â

)
N∑

i=1

δB(ri) · Ŝi, (1.32)

soit le même hamiltonien que pour un ensemble de spins paramagnétique. En rempla-

çant les opérateurs de spin Ŝi par les opérateurs des magnons dans les différents modes

magnétostatiques selon

Ŝi =
1

2

∑

n

sn(ri)
(
ĉ†n + ĉn

)
, (1.33)

l’hamiltonien de couplage devient

Ĥint =
1

2
g∗µB

(
â† + â

)
N∑

i=1

∑

n

sn(ri) · δB(ri)
(
ĉ†n + ĉn

)
. (1.34)

La fonction sn(ri) décrit l’amplitude et la phase du mode magnétostatique du spin à la

position ri [38]. En remplaçant la somme sur les spins par une intégrale sur le volume V de

l’ensemble de spins ferromagnétique et en effectuant l’approximation séculaire, on obtient

Ĥint =
1

2
g∗µB

∑

n

∫

V

dr sn(r) · δB(r)
(
â†ĉn + h.c.

)
. (1.35)

Si les fluctuations du vide du champ magnétique micro-ondes δB(r) de la cavité sont uni-

formes sur l’ensemble de spins et qu’on considère une sphère ferromagnétique, l’intégrale

de l’équation (1.35) est non nulle seulement pour le mode uniforme, soit le mode de Kittel.

De plus, si on considère que δB est perpendiculaire au champ externe B0, l’hamiltonien

de l’équation (1.35) se simplifie à

Ĥint =
1

2
g∗µB |δB|

√
N

(
â†ĉ+ h.c.

)
. (1.36)

Cet hamiltonien correspond à deux oscillateurs harmonique couplés avec un coefficient de

couplage collectif

~gm−r =
1

2
g∗µB |δB|

√
N. (1.37)
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Le coefficient de couplage est ainsi augmenté d’un facteur
√
N par rapport au couplage

dipolaire magnétique d’un spin unique. L’hamiltonien total du système composé d’une

sphère ferromagnétique et d’une cavité est ainsi donné par

Ĥ/~ = ωrâ
†â+ ωmĉ

†ĉ+ gm−r
(
â†ĉ+ h.c.

)
. (1.38)

Cet hamiltonien est identique à celui de l’équation (1.23) pour un ensemble de spins para-

magnétique. Par contre, l’interaction d’échange dans l’ensemble de spins ferromagnétique

offre une rigidité aux modes magnétostatiques, un avantage potentiel pour la conversion

entre les photons des domaines micro-ondes et optique [41, 38].

Régime de couplage fort

Alors qu’un ensemble de spins paramagnétique possède une densité entre 1016 et

1018 spins/cm3, les matériaux ferromagnétiques possèdent une densité de l’ordre de 1021

spins/cm3 [90]. Cette forte densité de spin a permis d’atteindre un coefficient de couplage

collectif de plus de 450 MHz avec un résonateur supraconducteur de type coplanaire [91].

Par contre, l’anisotropie du champ magnétique micro-ondes intrinsèque aux architectures

planaires ne permet pas de limiter l’interaction au mode uniforme. Un champ magnétique

micro-ondes uniforme sur des dimensions millimétriques est par contre possible dans une

cavité tridimensionnelle [38]. Ainsi, l’utilisation de cavités tridimensionnelles a permis

d’atteindre le régime de couplage fort entre le mode uniforme, ou mode de Kittel, et un

résonateur micro-ondes [90]. Ce couplage a été utilisé, par exemple, pour coupler différentes

sphères ferromagnétiques par l’entremise de leurs interactions individuelles avec une

cavité [92, 93].

Ces démonstrations de couplage fort ont été effectuées dans un isolant ferrimagnétique

nommé le grenat de fer et d’yttrium (YIG). Dans ce matériau, l’absence d’électrons de

conduction permet de minimiser les pertes de magnons dans les différents modes magné-

tostatiques [87]. Il est alors possible d’obtenir des largeurs de raie de l’ordre de 1 MHz

dans le régime quantique, où la température T est telle que l’énergie thermique kBT est

beaucoup plus faible que l’énergie ~ωm nécessaire pour exciter un magnon dans le mode de

Kittel [90]. L’utilisation du YIG pour la conversion bidirectionnelle de photons micro-ondes

et optiques a été explorée dans plusieurs expériences récentes [39, 37, 94, 40]. Combinées au

couplage fort entre les magnons et un qubit supraconducteur démontré à la référence [41],

ces démonstrations ouvrent la voie à la transduction de l’information quantique entre les

qubits supraconducteurs et les photons optiques.
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1.2 Ingénierie d’un couplage spin-résonateur effectif

Cette section présente une stratégie alternative au couplage dipolaire magnétique où

un spin unique est couplé à un dipôle électrique qui, à son tour, est couplé à la composante

électrique du champ micro-ondes d’un résonateur, résultant en un couplage spin-photon

effectif pouvant atteindre le régime de couplage fort [95, 96].

Une première sous-section présente les bases théoriques d’une double boîte quantique,

dispositif utilisé afin de fournir le dipôle électrique. La deuxième sous-section présente

le couplage dipolaire électrique entre une double boîte quantique et un résonateur supra-

conducteur de type coplanaire. À la troisième sous-section, l’ingénierie d’un couplage

entre un spin unique et le degré de liberté orbital de la double boîte quantique par la

présence d’un champ magnétique inhomogène est présentée. Finalement, la quatrième

sous-section présente la façon dont un couplage effectif entre un spin et un résonateur est

médié par le degré orbital de la double boîte quantique. Très récemment, cette approche a

permis d’atteindre un régime de couplage fort entre un spin unique dans une double boîte

quantique en silicium et un résonateur supraconducteur [46, 47].

1.2.1 Modèle de la double boîte quantique

Une double boîte quantique définie dans un gaz d’électrons bidimensionnel est un

dispositif mésoscopique permettant, par exemple, d’isoler un électron unique [97, 20]. Le

dipôle électrique du degré de liberté orbital de l’électron peut ainsi être contrôlé électri-

quement, réalisant par le fait même une molécule artificielle [98]. On considère ici une

double boîte quantique définie dans une hétérostructure de GaAs/AlGaAs. Par contre, le

cadre théorique présenté dans ce chapitre s’applique aussi pour les architectures de boîtes

quantiques en silicium tant que le degré de liberté de vallée peut être négligé [18].

Potentiel de confinement

La figure 1.4 a) présente une disposition de grilles électrostatiques qui permet de

définir une double boîte quantique dans un gaz d’électrons bidimensionnel. Le potentiel

V (ρ) ≡ V (X ≡ 0, Y, Z) au niveau du gaz d’électron (X = 0) est simulé à l’aide du logiciel

nextnano [99] à partir d’une configuration réaliste des différentes tensions appliquées sur

les grilles électrostatiques. Le potentiel résultant est présenté à la figure 1.4 a). Il est ainsi

possible de voir que la double boîte quantique est composée de deux boîtes couplées entre
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elles et couplées à deux réservoirs de charge qui permettent d’ajuster le nombre d’électrons

dans chacune des boîtes [97].

La figure 1.4 b) présente le potentiel V (Z) ≡ V (0, 0, Z) de la figure 1.4 a) le long de

l’axe Z de la double boîte quantique à Y = 0. Le potentiel simulé est ajusté à un potentiel

quartique décrit par

V (Z) =
m∗ω2

0

2

[
1

4a2
(
Z2 − a2

)2
]

− ε
Z

a
, (1.39)

où m∗ = 0.067me est la masse effective des électrons dans le GaAs, ~ω0 l’énergie de confine-

ment, 2a la distance entre les boîtes quantiques et ε le désaccord en énergie entre les deux

boîtes quantiques [100]. Comme l’indique la figure 1.4 b), le potentiel quartique permet

de décrire le potentiel le long de l’axe Z. De plus, il est possible de voir que l’application

d’une tension sur une grille électrostatique au-dessus d’une des boîtes quantiques permet

de changer le désaccord ε sans affecter significativement le potentiel de confinement et la

distance entre les boîtes quantiques.

En négligeant le couplage des boîtes quantiques aux réservoirs, il est de plus possible

de décrire le potentiel selon l’axe Y par un potentiel quadratique d’énergie de confinement

~ω0. Le potentiel au niveau du gaz d’électrons V (ρ) est ainsi décrit par [100]

V (ρ) =
m∗ω2

0

2

[
1

4a2
(
Z2 − a2

)2
+ Y 2

]

− ε
Z

a
. (1.40)

Dans ce modèle, le couplage tunnel Ω entre les boîtes quantiques dépend ainsi de l’énergie

de confinement, ~ω0, et de la distance entre les boîtes quantiques, 2a. À défaut d’être moins

réalistes, d’autres modèles du potentiel de confinement d’une double boîte quantique

permettent d’ajuster presque indépendamment la distance entre les boîtes et le couplage

tunnel [101].

Équation de Schrödinger

Afin d’estimer le couplage tunnel Ω de la double boîte quantique décrit par l’équa-

tion (1.40), l’équation de Schrödinger est résolue dans le plan de la double boîte quantique

selon

Ĥφ(ρ) = Eφ(ρ), (1.41)
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Figure 1.4 – Potentiel d’une double boîte quantique.
a) Schéma des grilles électrostatiques à la surface de l’hétérostructure àX ≡ dv = 100 nm permettant
de créer une double boîte quantique au niveau du gaz d’électrons à X = 0. Les deux boîtes
quantiques sont couplées entres elles et couplées individuellement à un réservoir de charge. Le
potentiel au gaz d’électrons, V (ρ) = V (0, Y, Z), est simulé à l’aide de nextnano à partir d’une
configuration réaliste des tensions de grilles. b) Potentiel V (Z) le long de l’axe de la double boîte
quantique pour une tension V = 0 (mauve) et V = −10 mV (rouge) sur la grille électrostatique
identifiée en bleu en a). La régression du potentiel simulé au potentiel quartique de l’équation (1.39)
permet de déterminer ~ω0 = 0.77 meV, 2a = 200 nm et ε = 0 pour V = 0 et ~ω0 = 0.74 meV,
2a = 194 nm et ε = 188 µeV pour V = −10 mV.

où φ(ρ) est la fonction d’onde associée à l’énergie E. L’hamiltonien Ĥ d’un électron unique

piégé dans une double boîte quantique est simplement donné par

H = T + V (ρ) = − ~
2

2m∗
∇2 + V (ρ), (1.42)

où T est l’énergie cinétique et ∇2 est l’opérateur laplacien. Puisque le potentiel de l’équa-

tion (1.40) peut être écrit comme V (ρ) = V (Y ) + V (Z), il est possible de résoudre deux

équations de Schrödinger à une dimension où la fonction d’onde bidimensionnelle φ(ρ)

est simplement donnée par le produit des fonctions d’onde unidimensionnelles ϕ(Y )ψ(Z).

Pour l’équation de Schrödinger en Z, on a ainsi

(

− ~
2

2m∗

d2

dZ2
+ V (Z)

)

ψ(Z) = Eψ(Z), (1.43)

où V (Z) est le potentiel quartique de l’équation (1.39).

Résolution numérique

Afin de résoudre l’équation (1.43), une méthode de résolution numérique décrite à

la référence [102] est utilisée. La fonction d’onde ψ(Z) est calculée à différents points
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Zi = {Z1, Z2, . . . , ZN} du domaine selon

ψ (Zi+1) =

[
2m∗

~2
(δZ)2 [V (Zi)− E] + 2

]

ψ (Zi)− ψ (Zi−1) , (1.44)

où δZ ≡ Zi+1 − Zi. Une barrière de potentiel infini est considérée aux limites Z1 et ZN du

domaine tel que ψ(Z1) = 0 et ψ(ZN) = 0. Dans le cas présent, on considère Z1 = −3a et

ZN = +3a, où 2a est la distance entre les boîtes quantiques. L’équation (1.44) est calculée

pour i+ 1 = {3, . . . , N} à partir des conditions initiales ψ(Z1) ≡ 0 et ψ(Z2) ≡ 1 1. La valeur

de la fonction d’onde à ZN , ψ(ZN), est calculée en fonction de l’énergie E. Les valeurs de

l’énergie E pour lesquelles la condition limite ψ(ZN) = 0 est respectée correspondent aux

valeurs propres de l’hamiltonien H.

Les figures 1.5 a) et b) présentent les valeurs de −log
(
|ψ(ZN)|2

)
calculées à partir de

l’équation (1.44) en fonction du désaccord ε. Ainsi, lorsque ψ(ZN) croise zéro, la quantité

−log
(
|ψ(ZN)|2

)
diverge, ce qui permet d’identifier visuellement les énergies propres E(ε).

L’état fondamental et le premier état excité du degré de liberté orbital de la double boîte

quantique sont respectivement les états symétrique |−〉 et antisymétrique |+〉 d’énergies

E±(ε) (Fig. 1.5 a). Comme l’indique la figure 1.5 b), cette situation n’est valide que lorsque

le désaccord ε est beaucoup plus faible que l’énergie de confinement ~ω0.

Les figures 1.5 c) à e) présentent les fonctions d’onde φ−(ρ) de l’état fondamental

|−〉 pour différentes valeur du désaccord ε. À désaccord nul (ε = 0, figure 1.5 d), l’état

fondamental correspond à l’électron délocalisé sur les deux boîtes quantiques dans une

superposition symétrique des états localisés sur les boîtes de gauche et de droite, |L〉 et |R〉,
respectivement. Ces états localisés sont obtenus, respectivement, à un désaccord ε≪ −Ω

(Fig. 1.5 c) et ε≫ Ω (Fig. 1.5 e).

Couplage tunnel

Le couplage tunnel Ω entre les états localisés est défini comme

Ω = E+(ε = 0)− E−(ε = 0). (1.45)

La figure 1.6 a) présente le couplage tunnel obtenu pour différentes distances 2a entre les

boîtes quantiques. L’augmentation quasi exponentielle du couplage tunnel par la réduction

de la distance entre les boîtes permet de modifier Ω de près de trois ordres de grandeur en

1. La valeur ψ(Z2) est arbitrairement fixée à 1 afin d’éviter la solution triviale ψ(Z) = 0. Après avoir
identifié les énergies propres, les fonctions d’onde sont normalisées selon 1 = δZ

∑
N

i=1 |ψ(Zi)|2 /N .
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Figure 1.5 – Niveaux d’énergie et fonction d’onde d’un électron dans une double boîte quan-
tique.
a) Condition frontière ψ(ZN ) calculé à partir de l’équation (1.44) en fonction du désaccord ε et de

l’énergie E. La quantité −log
(

|ψ(ZN )|2
)

est utilisée afin de permettre l’identification visuelle des

énergies propres correspondant à ψ(ZN ) = 0. L’état fondamental |−〉 et le premier état excité |+〉
correspondent respectivement aux superpositions symétrique et antisymétrique des états localisés
dans la boîte de gauche (|L〉, bleu) et de droite (|R〉, rouge). Le couplage tunnel Ω correspond à la
différence entre les énergies E+ et E− à désaccord nul (ε = 0). Les énergies propres E± calculées à
partir de l’équation (1.50) sont également présentées par des lignes pleines. b) Condition frontière
ψ(ZN ) calculé à partir de l’équation (1.44) en fonction du désaccord ε et de l’énergie E sur des
intervalles plus grands qu’en a), permettant de voir les niveaux d’énergie des états au-delà des
états |±〉. L’encadré noir indique les intervalles de ε et E utilisés en a). c) à e) Fonctions d’onde
φ−(ρ) de l’état fondamental |−〉 normalisées par leur maximum pour un désaccord c) ε = −200 µeV,
d) ε = 0 µeV et e) ε = +200 µeV, correspondant approximativement aux états |L〉, (|L〉+ |R〉)/2 et
|R〉, respectivement. Les points noirs indiquent les positions Z = ±a des deux boîtes quantiques.
Pour toutes ces figures, ~ω0 = 1.25 meV et 2a = 150 nm, ce qui résulte en un couplage tunnel
Ω/h = 19.1 GHz.
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Figure 1.6 – Couplage tunnel pour un potentiel quartique.
a) Couplage tunnel Ω en fonction de la distance 2a entre les boîtes quantiques. Le couplage tunnel
est déterminé à partir de l’équation (1.45) à l’aide des énergies propres E±(ε) obtenues en résolvant
numériquement l’équation (1.44) pour ψ(ZN ) = 0. b) Recouvrement |〈L|R〉| entre les états localisés
|L〉 et |R〉 en fonction du couplage tunnel Ω. La ligne pointillée indique un recouvrement de 1%.
c) Différence ∆E− entre l’énergie de l’état fondamental |−〉 obtenu numériquement et l’énergie
calculée à partir de l’équation (1.50) en fonction du recouvrement |〈L|R〉| entre les états localisés.
Pour toutes ces figures, les cercles noirs et gris correspondent aux résultats obtenus pour une énergie
de confinement ~ω0 de 1.25 meV et 1.5 meV, respectivement.

diminuant seulement de moitié la distance entre les boîtes quantiques. Plus particulière-

ment, un couplage tunnel Ω/h d’environ 10 GHz est possible pour une distance entre les

boîtes quantiques 2a ≈ 160 nm.

Le recouvrement entre les états localisés |L〉 et |R〉 est numériquement calculé selon

|〈L|R〉| ≈ δZ

N

N∑

i=1

ψ∗L(Zi)ψR(Zi), (1.46)

où les fonctions d’onde ψL,R des états localisés sont estimées à ψ−(ε = −1 meV) et ψ−(ε =

+1 meV), respectivement. La figure 1.6 b) montre que le recouvrement |〈L|R〉| est approxi-

mativement proportionnel au couplage tunnel Ω. Par exemple, pour un couplage tunnel de

10 GHz, le recouvrement est de l’ordre de 1%.
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a) b)
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Figure 1.7 – Hamiltonien en seconde quantification d’une double boîte quantique.
a) L’hamiltonien en seconde quantification d’une double boîte quantique Ĥd de l’équation (1.47) est
écrit dans la base des états localisés {|L〉, |R〉}, considérant ainsi que le recouvrement |〈L|R〉| est nul.
b) Schéma des niveaux d’énergies de l’état fondamental |−〉 et de l’état excité |+〉 de Ĥd en fonction
du désaccord ε. À désaccord nul (ε = 0), la séparation en énergie entre les niveaux est donnée par
le couplage tunnel Ω. En général, la séparation est donnée par ǫd =

√
Ω2 + ε2. Pour ε ≪ −Ω et

ε≫ Ω, l’état fondamental correspond aux états localisés |L〉 et |R〉, respectivement. c) Interprétation
géométrique de l’angle de mélange θ défini par tan θ = Ω/ε.

Hamiltonien effectif de la double boîte quantique

L’hamiltonien du degré de liberté orbital dans le sous-espace {|L〉, |R〉} prend la forme

Ĥd =
1

2
(ετ̂z + Ωτ̂x) , (1.47)

où τ̂ sont les matrices de Pauli dans la base des états localisés {|L〉, |R〉}, soit

τ̂z = |L〉〈L| − |R〉〈R|, (1.48)

τ̂x = |L〉〈R|+ |R〉〈L|. (1.49)

Dans ce modèle effectif à deux niveaux, on ne considère ainsi que les deux états de plus

basse énergie du modèle en première quantification présenté plus haut. Cet hamiltonien

décrit un qubit de charge dans sa réalisation expérimentale la plus simple [103, 104, 105].

L’hamiltonien de l’équation (1.47) peut être diagonalisé afin d’obtenir les énergies

propres

E± = ±1

2

√
Ω2 + ε2 ≡ ±1

2
ǫd (1.50)
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et les états propres |d = {+,−}〉

|+〉 = +cos
θ

2
|L〉+ sin

θ

2
|R〉, (1.51)

|−〉 = − sin
θ

2
|L〉+ cos

θ

2
|R〉, (1.52)

où tan θ = Ω/ε. Une interprétation géométrique de l’angle de mélange θ est présentée à la

figure 1.7 c). On note que

sin θ =
Ω√

Ω2 + ε2
, cos θ =

ε√
Ω2 + ε2

. (1.53)

L’hamiltonien diagonalisé s’écrit alors comme

Ĥd =
1

2
ǫdδ̂z, (1.54)

où les matrices de Pauli δ̂ dans la base {|+〉, |−〉} qui diagonalise l’hamiltonien de la double

boîte quantique sont reliées aux matrices de Pauli τ̂ par

δ̂z = +cos θτ̂z + sin θτ̂x, (1.55)

δ̂x = − sin θτ̂z + cos θτ̂x. (1.56)

La figure 1.5 a) présente les énergies propres données par l’équation (1.50) pour le

désaccord ε dans le potentiel quartique de l’équation (1.39) et le couplage tunnel obtenu à

partir de l’équation (1.45). La figure 1.6 c) montre que la différence ∆E− entre les énergies

propres obtenues numériquement et celle du modèle effectif est majoritairement due au

recouvrement |〈L|R〉| non nul entre les états localisés |L〉 et |R〉. L’origine de la différence

∆E− finie pour |〈L|R〉| → 0 est inconnue.

1.2.2 Couplage entre une double boîte quantique et un résonateur su-

praconducteur

L’hamiltonien effectif décrivant le degré de liberté orbital d’un électron piégé dans

une double boîte quantique a été obtenu précédemment. Le couplage dipolaire électrique

entre le degré de liberté orbital de la double boîte quantique et les photons micro-ondes

d’un résonateur supraconducteur de type coplanaire est considéré ici, comme l’illustre la

figure 1.8 a).
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Double boîte quantique

Figure 1.8 – Couplage dipolaire électrique entre une double boîte quantique et un résonateur.
a) Une double boîte quantique, décrit par l’hamiltonien Ĥd de l’équation (1.47), est couplée à un
résonateur supraconducteur, décrit par l’hamiltonien Ĥr de l’équation (1.1), par une interaction
dipolaire électrique, décrit par l’hamiltonien Ĥd−r

int de l’équation (1.58). b) Une grille électrostatique
affectant la boîte quantique de droite et possédant un bras de levier α est connectée au conducteur
central du résonateur à un ventre du champ électrique. L’amplitude δV des fluctuations du vide de
la tension du résonateur, schématisée par les flèches noires, applique un désaccord effectif sur la
double boîte quantique, résultant en un couplage dipolaire électrique.

Hamiltonien de l’interaction

Afin de coupler la charge de la double boîte quantique au résonateur, le conducteur

central du résonateur est connecté à une grille électrostatique affectant davantage une des

boîtes quantiques. Sans perte de généralité, on considère ici que la boîte quantique de

droite est couplée au résonateur. Le champ électrique micro-ondes V̂1 = δV (â† + â) du

résonateur crée un désaccord effectif ε̂ dans la double boîte quantique donné par

ε̂ = eαδV
(
â† + â

)
, (1.57)

où δV est l’amplitude des fluctuations de tensions du vide du résonateur et α, le bras de

levier de la grille électrostatique connectée au conducteur central [106, 107]. L’hamiltonien

du couplage dipolaire électrique entre la double boîte quantique et le résonateur est alors

donné par [106, 107]

Ĥd−r
int = ε̂|R〉〈R| = ~gd−r

(
â† + â

)
(1− τ̂z) , (1.58)

avec |R〉〈R| = (1− τ̂z) /2 selon l’équation (1.49). Le coefficient du couplage gd−r est alors

donné par

~gd−r =
1

2
eαδV. (1.59)

Dans la base |d = {+,−}〉 diagonalisant l’hamiltonien de la double boîte quantique,
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l’hamiltonien de l’équation (1.58) devient

Ĥd−r
int /~ = gd−r

(
â† + â

) (

1− cos θδ̂z + sin θδ̂x

)

. (1.60)

Dans l’approximation séculaire, le couplage dipolaire électrique résulte ainsi en un couplage

transverse entre le résonateur et le degré de liberté orbital de la double boîte quantique.

Lorsque l’électron est délocalisé dans les deux boîtes quantiques (ε = 0), l’angle de mélange

θ = π/2 et le couplage transverse est maximal. Le couplage dipolaire électrique peut alors

être contrôlé électriquement à l’aide du désaccord ε et du couplage tunnel Ω.

Coefficient de couplage

L’amplitude δV des fluctuations du vide de la tension du mode fondamental d’un

résonateur supraconducteur de type coplanaire de fréquence angulaire ωr et d’impédance

Z0 est donnée par

δV = ~ωr

√

2Z0/h. (1.61)

Par exemple, avec un bras de levier α ≈ 0.2, un résonateur d’impédance Z0 = 50 Ω et

fréquence ωr/2π = 6 GHz, un couplage gd−r/2π = 38 MHz est attendu. Un tel coefficient

de couplage a été observé expérimentalement dans plusieurs expériences, et ce, dans

différentes architectures de double boîtes quantiques depuis 2012 [107, 108, 109, 110, 111,

112, 113, 114].

En raison du taux de déphasage élevé du degré de liberté de charge, le régime de

couplage fort n’a été atteint que très récemment et ce en utilisant deux stratégies diffé-

rentes [115, 116]. Dans une première expérience, une largeur de raie γd/2π = 2.6 MHz du

degré de liberté orbital dans une double boîte quantique en silicium a permis d’atteindre le

régime de couplage fort avec un coefficient de couplage gd−r/2π = 6.7 MHz [115]. L’origine

de cette très faible largeur de raie pour un qubit de charge est inconnue. Dans une seconde

expérience, une impédance du résonateur plus élevée a été utilisée (Z0 = 1.8 kΩ, par rapport

au 50 Ω habituellement utilisée) afin d’augmenter l’amplitude δV des fluctuations du vide

de la tension par un facteur
√
Z0 (équation (1.61)). Un couplage fort entre ce résonateur

et le degré de charge d’une double boîte quantique en GaAs a alors été observé [116]

(gd−r/2π = 155 MHz avec γd/2π = 40 MHz).

Par ailleurs, comme discuté précédemment, bien que le régime de couplage fort entre le

degré de liberté de charge d’une double boîte quantique et un résonateur est une réalisation
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importante, un tel couplage n’est pas nécessaire afin d’obtenir un couplage fort entre un

spin unique et un résonateur.

1.2.3 Couplage spin-charge dans une double boîte quantique

Afin d’obtenir un couplage entre les degrés de liberté de charge et de spin d’un électron

unique dans une double boîte quantique, on considère la présence d’un champ magnétique

inhomogène statique. Comme il est discuté à la prochaine section, un tel champ magnétique

peut être généré par un aimant de taille micrométrique près de la double boîte quantique.

Hamiltonien de l’interaction

On considère un spin S = 1/2 libre dans un champ magnétique inhomogène B (ρ)

décrit par l’hamiltonien Zeeman

Ĥ′
s =

1

2
g∗µBB (ρ) · σ̂, (1.62)

où σ̂ = 2Ŝ sont les matrices de Pauli dans la base |s = {↑, ↓}〉. On réécrit le champ

magnétique inhomogène comme

B (ρ) = IB (ρ) I = BL|L〉〈L|+BR|R〉〈R|, (1.63)

où I = |L〉〈L|+ |R〉〈R| est l’identité dans la base localisée {|L〉, |R〉} et

BL,R ≡ 〈L,R|B (ρ) |L,R〉 =
∫

dρ |φL,R (ρ)|2 B (ρ) , (1.64)

où φL,R (ρ) = 〈ρ|L,R〉 est la fonction d’onde de l’état fondamental du degré de liberté de

charge localisé dans les boîtes quantiques de gauche et de droite, respectivement. L’hamil-

tonien de l’équation (1.62) se réécrit alors comme

Ĥ′
s =

1

2
g∗µB (BL|L〉〈L|+BR|R〉〈R|) · σ̂. (1.65)

On définit ensuite le champs magnétique moyen et la différence de champ magnétique

selon

B ≡ (BL +BR) /2, ∆B ≡ BL −BR, (1.66)
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ce qui permet de réécrire l’hamiltonien précédent comme

Ĥ′
s =

1

2
g∗µB

([

B+
∆B

2

]

|L〉〈L|+
[

B− ∆B

2

]

|R〉〈R|
)

· σ̂, (1.67)

=
1

2
g∗µB

(

B (|L〉〈L|+ |R〉〈R|) + 1

2
∆B (|L〉〈L| − |R〉〈R|)

)

· σ̂, (1.68)

=
1

2
g∗µBBσ̂z +

1

4
g∗µB∆B · σ̂ τ̂z, (1.69)

où l’axe z défini l’axe de quantification du spin avec B · σ̂ ≡ Bσ̂z. Ainsi, le système de

coordonnées [x, y, z] est défini tel que z est l’axe de quantification du spin à ε = 0, c’est-à-dire

lorsque le champ magnétique ressenti par l’électron correspond au champ moyen B. Il est

important de noter qu’en général le système de coordonnées [X, Y, Z] du dispositif introduit

précédemment et le système de coordonnées [x, y, x], défini par l’axe de quantification du

spin, peuvent différer en présence d’un champ magnétique local. Le premier terme de

l’équation précédente décrit l’effet Zeeman d’un spin 1/2 libre selon l’hamiltonien

Ĥs =
1

2
g∗µBBσ̂z =

1

2
~ωsσ̂z, (1.70)

où ωs ≡ g∗µBB/~ est la fréquence angulaire de Larmor. Le deuxième terme, donné par

Ĥd−s
int =

1

4
g∗µB∆B · σ̂ τ̂z, (1.71)

décrit le couplage entre les degrés de libertés de spin et charge de l’électron unique dans la

double boîte quantique.

Couplage transverse et longitudinal

Sans perte de généralité, on considère que le champ magnétique B(ρ) se trouve dans

le plan x− z de façon à réécrire l’hamiltonien de l’équation (1.71) sous la forme

Ĥd−s
int =

1

4
g∗µB (∆Bxσ̂x +∆Bzσ̂z) τ̂z. (1.72)

Le couplage entre le spin et la charge peut ainsi être transverse (σ̂x) ou longitudinal (σ̂z)

selon la configuration des différences de champs magnétiques transverse (∆Bx) et longitu-

dinal (∆Bz). Les figures 1.9 a) à c) illustrent la direction du champ magnétique effectif pour

les états localisés |L〉 et |R〉 pour une différence de champ magnétique transverse et longi-

tudinale, ainsi qu’un exemple de configuration où des différences de champ magnétique

transverse et longitudinale sont présentes. On définit alors les coefficients de couplage
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LongitudinalTransversea) b) Transverse et longitudinalc)

Figure 1.9 – Configurations des différences de champs magnétiques pour le couplage spin-
charge.
Configurations des différences de champ magnétique ∆B ≡ BL−BR pour le couplage spin-charge.
La différence de champ magnétique peut être a) transverse, b) longitudinale ou c) transverse et
longitudinale. Le système de coordonnées [x, y, z] est défini tel que z est l’axe de quantification du
spin à ε = 0 et ∆B est dans le plan x− z.

spin-charge transverse et longitudinal selon

~gxd−s ≡
1

4
g∗µB∆B

x, ~gzd−s ≡
1

4
g∗µB∆B

z. (1.73)

L’hamiltonien précédent devient alors

Ĥd−s
int /~ =

(
gxd−sσ̂x + gzd−sσ̂z

)
τ̂z. (1.74)

La section 1.3 présente en détail la simulation des différences de champs magnétiques ∆Bx

et ∆Bz créés par des micro-aimants fabriqués près d’une double boîte quantique.

Dans la base {|+〉, |−〉} diagonalisant l’hamiltonien de la double boîte quantique, l’ha-

miltonien de l’équation (1.74) devient

Ĥd−s
int /~ =

(
gxd−sσ̂x + gzd−sσ̂z

) (

cos θδ̂z − sin θδ̂x

)

. (1.75)

Ainsi, tout comme le couplage dipolaire électrique, le couplage spin-charge peut être

contrôlé électriquement à l’aide du désaccord ε et du couplage tunnel Ω.

Coefficients des couplages

Selon l’équation (1.73), les coefficients des couplages transverse et longitudinal entre

les degrés de liberté orbital et de spin de l’électron sont proportionnels au facteur de Landé

g∗ et aux différences de champ magnétique ∆Bx,y. La section 1.3 porte sur l’estimation des

valeurs de ∆Bx,y pour deux architectures particulières de micro-aimants permettant de

réaliser un champ magnétique inhomogène B(ρ). En prenant les valeurs réalistes ∆Bx,y =

0.18 T obtenues à la section 1.3 et g∗ = 0.44 pour le GaAs, on obtient gx,zd−s/2π = 277MHz, soit
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une valeur beaucoup plus élevée que le couplage dipolaire électrique gd−r/2π = 38 MHz

estimée précédemment.

1.2.4 Couplage spin-résonateur effectif

Les deux sous-sections précédentes ont permis de présenter le couplage dipolaire

électrique entre le degré de liberté orbital d’un électron dans une double boîte quantique

et un résonateur supraconducteur, ainsi que le couplage entre les degrés de libertés orbital

et de spin de l’électron du à la présence d’un champ magnétique inhomogène. Ici, ces deux

couplages sont combinés afin d’obtenir un couplage effectif entre le spin de l’électron et un

résonateur [95, 96].

Hamiltonien total

À partir des résultats précédents, l’hamiltonien total du système hybride composé

d’une double boîte quantique couplée à un résonateur supraconducteur et au spin de

l’électron par un champ magnétique inhomogène est donné, dans la base des états localisés,

par

Ĥ = Ĥs + Ĥd + Ĥr + Ĥd−s
int + Ĥd−r

int ,

=
1

2
~ωsσ̂z +

1

2
(ετ̂z + Ωτ̂x) + ~ωrâ

†â (1.76)

+ ~
(
gzd−sσ̂z + gxd−sσ̂x

)
τ̂z + ~gd−r

(
â† + â

)
(1− τ̂z) .

Comme il discuté plus haut, le degré de liberté orbital de l’électron de la double boîte

quantique se couple aux fluctuations de tension du résonateur ainsi qu’au spin de l’électron.

Les fluctuations de tension du résonateur affectent ainsi le spin via le degré de liberté

orbital, résultant en un couplage effectif entre le spin et le résonateur.

L’état du système total peut être décrit dans la base |sdn〉, où |s = {↑, ↓}〉 sont les états du

spin, |d = {+,−}〉 sont les états propres du degré de liberté orbital et |n = {0, 1, 2, · · · }〉 sont

les états de Fock du résonateur. La figure 1.10 présente un schéma des quatre états du sous-

espace {|sdn〉} composé de l’état fondamental | ↓ −0〉 et des états excités correspondant

à une excitation unique du spin (| ↑ −0〉), de la double boîte quantique (| ↓ +0〉) et du

résonateur (| ↓ −1〉). Le couplage dipolaire électrique, décrit par l’hamiltonien Ĥd−r
int de

l’équation (1.58), lie les états | ↓ +0〉 et | ↓ −1〉 par l’échange d’une excitation entre le
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Figure 1.10 – Schéma des interactions entre le spin, la double boîte quantique et le résonateur.
Le diagramme d’énergie des quatre états du sous-espace {|sdn〉} composé de l’état fondamental
| ↓ −0〉 et des états excités correspondant à une excitation unique du spin (| ↑ −0〉), de la double
boîte quantique (| ↓ +0〉) et du résonateur (| ↓ −1〉) est représenté.

degré de liberté orbital de la double boîte quantique et le résonateur. Les couplages spin-

charge transverse et longitudinal, décrits par l’hamiltonien Ĥd−s
int de l’équation (1.74), lient,

respectivement, les états | ↓ +0〉 et | ↑ −0〉 et les états | ↓ +0〉 et | ↓ −0〉. Ainsi, alors que le

couplage spin-charge transverse décrit l’échange d’une excitation entre le degré de liberté

orbital de la double boîte quantique et le spin, le couplage spin-charge longitudinal décrit

l’excitation du degré de liberté orbital de la double boîte quantique selon l’état |s = {↑, ↓}〉
du spin.

Hamiltonien effectif

Dans la base diagonalisant l’hamiltonien du degré de liberté orbital Ĥd, l’hamiltonien

complet du système s’écrit comme

Ĥ = Ĥ0 + V̂ , (1.77)
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où Ĥ0 et V̂ sont respectivement la partie diagonale et hors-diagonale de l’hamiltonien total.

Selon les résultats précédents, les parties diagonale et hors-diagonale sont données par

Ĥ0 =
1

2
g∗µBBσ̂z +

1

2
ǫdδ̂z + ~ωrâ

†â+ ~gzd−s cos θσ̂z δ̂z, (1.78)

V̂ =− ~gzd−s sin θσ̂z δ̂x + ~gxd−sσ̂x

(

cos θδ̂z − sin θδ̂x

)

(1.79)

+ ~gd−r

(

1− cos θδ̂z + sin θδ̂x

) (
â† + â

)
.

Une transformation de Schrieffer-Wolff eŜĤe−Ŝ est appliquée sur l’hamiltonien total Ĥ
de l’équation (1.77) afin d’éliminer les termes hors-diagonaux V̂ à l’ordre dominant, où

Ŝ est l’opérateur anti-unitaire donné à la référence [45]. Comme l’illustre la figure 1.10,

on considère que l’énergie ǫd du degré de liberté orbital est plus élevée que l’énergie

Zeeman ~ωs du spin et que l’énergie ~ωr d’un photon dans le résonateur. L’hamiltonien

résultant de la transformation de Schrieffer-Wolff est ainsi projeté sur le sous-espace où

le degré de liberté orbital habillé par les interactions est dans l’état fondamental, soit le

sous-espace {|s− n〉′} =
{

e−Ŝ|s− n〉
}

. En négligeant des termes proportionnels à l’identité

et des termes contre-rotatifs à l’aide de l’approximation séculaire, l’hamiltonien effectif de

l’interaction spin-résonateur est donné par

Ĥs−r/~ =
1

2
ω′sσ̂z + ω′râ

†â+ gxs−r
(
â†σ̂− + âσ̂+

)
+ gzs−r

(
â† + â

)
σ̂z, (1.80)

où ω′s = ωs + χs − χ′s et ω′r = ωr − χr sont respectivement les fréquences angulaires du spin

et du résonateur renormalisées par les décalages χs, χ′s et χr donnés à la référence [45]. Les

termes d’ordres supérieurs de l’hamiltonien de l’équation (1.80) peuvent être négligés si

∣
∣4~gzd−s

∣
∣ ≪ ǫd,

∣
∣4~gxd−s

∣
∣ ≪ |ǫd ± ~ωs| , |2~gd−r| ≪ |ǫd ± ~ωr| . (1.81)

Couplages transverse et longitudinal entre le spin et le résonateur

L’hamiltonien effectif de l’équation (1.80) possède un couplage spin-résonateur trans-

verse ∝
(
â†σ̂− + âσ̂+

)
qui permet le transfert d’une excitation entre le spin et un photon

micro-ondes. En plus du couplage transverse, un couplage spin-résonateur longitudinal

∝
(
â† + â

)
σ̂z est aussi présent. Malgré que le couplage longitudinal disparaisse sous l’ap-

proximation séculaire, ce couplage peut être réactivé par la modulation paramétrique

du coefficient du couplage longitudinal [117]. La section 1.4 présente une application

potentielle du couplage longitudinal pour la lecture non destructive de l’état d’un spin
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unique.

Les coefficients des couplages transverse et longitudinal sont respectivement donnés

par

~gxs−r = ~
2gd−rg

x
d−s

Ω2

ǫd

(

1

ǫ2d − (~ωs)
2 +

1

ǫ2d − (~ωr)
2

)

, (1.82)

~gzs−r = ~
2gd−rg

z
d−s

Ω2

ǫd

(

1

ǫ2d
+

1

ǫ2d − (~ωr)
2

)

. (1.83)

Contrairement au coefficient de couplage transverse, le coefficient de couplage longitudi-

nal ne dépend pas directement de la fréquence angulaire ωs du spin. Ainsi, le couplage

longitudinal ne dépend pas du désaccord en énergie entre le spin et le degré de liberté de

charge, offrant ainsi une flexibilité pour le champ magnétique B qui définit la fréquence

angulaire ωs = g∗µBB/~ du spin. Cette particularité du couplage longitudinal est discuté à

la section 1.4 pour la lecture longitudinale du spin.

Contrôle électrique des couplages spin-résonateur

Les coefficients des couplages transverse et longitudinal dépendent tous deux de l’éner-

gie ǫd =
√
Ω2 + ε2 du degré de liberté orbital de la double boîte quantique. Puisque le

couplage tunnel Ω et le désaccord ε peuvent être contrôlés par les tensions appliquées

sur les grilles électrostatiques de la double boîte quantique, les coefficients des couplages

peuvent être contrôlés électriquement. Notamment, les couplages spin-résonateur sont

maximaux lorsque l’électron est délocalisé sur les deux boîtes quantiques à ε = 0. De plus,

on considère le cas où Ω > ~ωs,r afin que l’énergie ǫd d’une excitation de la charge de la

double boîte quantique soit plus grande que ~ωs,r pour toutes valeurs du désaccord ε.

La figure 1.11 a) présente les coefficients des couplages transverse et longitudinal en

fonction du couplage tunnel Ω à désaccord nul (ε = 0) pour ωs = ωr, c’est-à-dire pour

une configuration où le spin est en résonance avec le résonateur. Lorsque les trois sous-

systèmes sont en résonance à Ω = ~ωs,r, les coefficients des couplage divergent puisque,

selon l’équation (1.81), le modèle effectif n’est pas valide dans ce régime. Avec les pa-

ramètres réalistes mentionnés précédemment, un coefficient de couplage transverse et

longitudinal de quelques MHz est possible. Par exemple, pour Ω/h = 3ωs,r/2π = 18 GHz,

valeur pour laquelle les conditions de l’équation (1.81) sont largement respectées, on obtient

gxs−r/2π = 1.29 MHz et gzs−r/2π = 1.22 MHz pour les coefficients des couplages transverse

et longitudinal, respectivement.
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Figure 1.11 – Coefficients des couplages spin-résonateur.
a) Coefficients des couplages spin-résonateur transverse (gxs−r/2π, ligne bleue) et longitudinal
(gzs−r/2π, ligne verte) en fonction du couplage tunnel Ω de la double boîte quantique pour un
désaccord ε = 0. Pour la configuration où les trois sous-systèmes sont en résonance à Ω/h = ωs,r/2π
(ligne pleine verticale noire), les coefficients des couplage calculés à l’aide des équations (1.82) et
(1.83) divergent. Pour un couplage tunnelΩ/h = 3ωs,r/2π = 18 GHz (ligne pointillée verticale noire),
les coefficients des couplage transverse et longitudinal sont, respectivement, gxs−r/2π = 1.29 MHz et
gzs−r/2π = 1.22 MHz. b) Coefficients des couplages spin-résonateur transverse (gxs−r/2π, ligne poin-
tillée bleue) et longitudinal (gzs−r/2π, ligne pleine verte) en fonction du désaccord ε de la double boîte
quantique pour un couplage tunnel Ω/h = 3ωs,r/2π = 18 GHz. Les fonctions d’onde représentatives
des états localisés |L〉 et |R〉 et de l’état délocalisé |−〉 à ε = 0 (ligne pointillée verticale noire) sont
également montrées. Pour les deux figures, les fréquences de Larmor ωs/2π et du résonateur ωr/2π
sont fixées à 6 GHz. Le bras de levier de la grille couplant la double boîte quantique au résonateur
est fixé à α = 0.2. Finalement, l’impédance du résonateur est fixée à Z0 = 50 Ω. Ces paramètres
résultent en un coefficient de couplage dipolaire électrique entre la double boîte quantique et le
résonateur gd−r/2π = 37 MHz. Les différences de champs magnétiques transverse et longitudinale
sont fixées à ∆Bx,z = 0.18 T, résultant en des coefficients des couplages spin-charge transverse et
longitudinal gx,zd−s/2π = 277 MHz.
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La figure 1.11 b) présente la dépendance des coefficients de couplage au désaccord

ε pour une boîte quantique avec un couplage tunnel Ω/h = 3ωs,r/2π = 18 GHz. Comme

discuté précédemment, les couplages sont maximaux à désaccord nul et diminuent lorsque

le désaccord est augmenté selon 1/ε3 (équations (1.82) et (1.83)). Par exemple, pour un

désaccord raisonnable de ε = ±1 meV, les coefficients des couplages transverse et longitu-

dinal diminuent jusqu’à moins de 0.5 kHz, correspondant à un rapport on/off supérieur à

103. Le désaccord fournit ainsi un excellent paramètre de contrôle pour allumer et éteindre

les couplages, une fonctionnalité particulièrement intéressante pour le transfert d’état

quantique entre un spin unique et un résonateur.

1.3 Micro-aimants pour les couplages spin-résonateur

Le mécanisme de couplage spin-résonateur effectif présenté à la section précédente

est basé sur la présence d’un champ magnétique inhomogène près d’une double boîte

quantique dans laquelle un électron unique est piégé. Cette section porte sur l’étude

théorique détaillée du champ magnétique inhomogène créé par des aimants de taille

micrométrique, nommés micro-aimants.

Une première sous-section présente les simulations magnétostatiques utilisées dans

le calcul du champ magnétique inhomogène créé par deux géométries de micro-aimants

pertinentes pour les couplages spin-résonateur. Une deuxième section porte sur l’évaluation

du champ magnétique effectif ressenti par le spin de l’électron de la double boîte quantique.

Ceci permet d’évaluer, par exemple, les composantes transverse et longitudinale de la

différence de champ magnétique. Une troisième et dernière sous-section utilise ces résultats

afin de calculer les coefficients des couplages transverse et longitudinal entre le spin de

l’électron et les photons micro-ondes du résonateur pour un dispositif réaliste dans une

hétérostructure de GaAs/AlGaAs.

1.3.1 Simulations magnétostatiques
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Champ magnétique inhomogène

On considère qu’un champ magnétique externe B0 magnétise un micro-aimant possé-

dant une magnétisation uniforme M. Quoique de façon générale M(B0), lorsque le champ

magnétique externe B0 > B
sat
0 , la magnétisation est maximale et parallèle au champ ma-

gnétique externe. Le champ magnétique externe de saturation, Bsat
0 dépend, entre autres,

du matériel ferromagnétique, de l’orientation du champ magnétique par rapport au micro-

aimant et de la géométrie du micro-aimant. Ces sujets sont discutés au prochain chapitre.

Dans cette section, on considère que le micro-aimant est magnétisé à saturation.

On considère que le champ magnétique externe B0 suit l’axe Z. Le micro-aimant crée

localement un champ magnétique inhomogène BM (r). Le champ magnétique total dans le

plan du gaz d’électrons défini par le vecteur ρ = [X = 0, Y, Z] est ainsi donné par

B (ρ) = B0 +BM (ρ) ≡ B0Z+BM (ρ) . (1.84)

La relation entre l’axe Z du champ magnétique externe et l’axe z de quantification du spin

est discuté à la prochaine sous-section.

Géométries des micro-aimants

Les figures 1.12 a) et b) présentent deux géométries réalistes de micro-aimants per-

mettant de créer le champ magnétique BM (ρ). La géométrie #1 est composée de deux

micro-aimants rectangulaires d’une largeur w et d’une épaisseur t à la position verticale

X = dv par rapport au gaz d’électrons. Les deux micro-aimants sont séparés d’une distance

dM. Les micro-aimants peuvent être considérés semi-infinis si leur longueur est beaucoup

plus grande que la longueur caractéristique du système, soit la distance 2a ≈ 150 nm entre

les deux boîtes quantiques. Comme discuté au chapitre 2, bien que la longueur des micro-

aimants n’est pas un paramètre important dans les simulations du champ magnétique

inhomogène BM (ρ), celle-ci est déterminante pour les propriétés de magnétisation M(B0)

de ces micro-aimants.

La géométrie #2 est composée d’un seul micro-aimant ayant la forme d’un cône tronqué

avec un rayon rmax à la base et un rayon rmin au sommet. La considération rmax > rmin

permet de tenir compte de la forme du micro-aimant obtenue expérimentalement lors de la

fabrication [48]. Tout comme la première géométrie, le micro-aimant possède une épaisseur

t et est à la position verticale X = dv.

La géométrie #1 permet notamment d’obtenir un champ magnétique de saturation
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Figure 1.12 – Géométrie et champ magnétique des micro-aimants.
a) Géométrie #1, composée de deux micro-aimants rectangulaires de largeur w et d’épaisseur t
espacés d’une distance dM selon l’axe Z. Le centre de l’espacement à la base des micro-aimants est
positionné à [X,Y, Z] = [dv, 0, dh] (cercle blanc) par rapport au centre de la double boîte quantique
à l’origine du système de coordonnées (cercle noir). b) Géométrie #2, composée d’un micro-aimant
ayant la forme d’un cône tronqué avec un rayon rmax à la base et un rayon rmin au sommet et une
épaisseur t. Le centre de la base du micro-aimant est positionné à [X,Y, Z] = [dv, 0, dh] (cercle
blanc) par rapport au centre de la double boîte quantique à l’origine du système de coordonnées
(cercle noir). Pour les deux géométries, un champ magnétique externe B0 = B0Z magnétise à
saturation les micro-aimants avec une magnétisation M =MZ. c) à f) Composantes transverse et
longitudinale au champ magnétique externe B0 du champ magnétique du micro-aimant BM (ρ),
BX

M (ρ) et BZ
M (ρ) respectivement, pour les deux géométries de micro-aimants présentées en a) et b).

Les lignes pointillées horizontales et verticales indiquent l’origine du micro-aimant dans le plan
ρ. Pour les deux géométries, µ0M = 1.93 T et dv = 130 nm. Pour la géométrie #1, dM = 300 nm,
w = 400 nm et t = 150 nm. Pour la géométrie #2, rmax = 220 nm, rmin = 150 nm et t = 300 nm.
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Bsat
0 plus faible que la géométrie #2 (chapitre 2). Par contre, la géométrie #2 est plus com-

pacte. Cette propriété peut être mise à profit dans une architecture où chaque double

boîte quantique possède un micro-aimant. Dans ce cas, l’ingénierie du champ magné-

tique inhomogène BM(ρ) peut être effectuée individuellement pour chaque double boîte

quantique.

Simulations

La librairie de simulations magnétostatiques Radia est utilisée afin de calculer le champ

magnétique inhomogène BM (ρ) 2. Pour ce faire, on considère une magnétisation µ0 |M| ≡
µ0M = 1.93 T, correspondant à la magnétisation de micro-aimants composés d’un alliage

de fer et de cobalt (FeCo) [118, 48]. De plus, on fixe dv = 130 nm, soit 30 nm au-dessus de la

surface de l’hétérostructure de GaAs/AlGaAs contenant le gaz d’électrons. Cette distance

supplémentaire de 30 nm permet de tenir compte de l’épaisseur des grilles électrostatiques

qui définissent la double boîte quantique. Bien qu’il soit possible de tenir compte de la

topographie des grilles avec dv(ρ), la distance verticale est considérée constante ici.

Les figures 1.12 c) et d) présentent respectivement les composantes BX
M(ρ) et BZ

M(ρ)

du champ magnétique inhomogène pour la géométrie composée de deux micro-aimants

rectangulaires (géométrie #1). Les figures 1.12 e) et f) présentent les figures correspon-

dantes pour la géométrie composée d’un micro-aimant unique (géométrie #2). Malgré la

différence significative entre les deux géométries, l’amplitude et la distribution spatiale

des champs magnétiques sont très similaires. En effet, les amplitudes maximales des com-

posantes transverse et longitudinales par rapport au champ magnétique externe atteignent

respectivement 0.148 T et 0.160 T pour la géométrie #1 et 0.172 T et 0.164 T pour la géo-

métrie #2. La différence majeure entre les deux géométries provient du signe des champs

magnétiques. En effet, alors que le champ magnétique au centre de l’espacement entre

les deux micro-aimants de la géométrie #1 est parallèle au champ magnétique externe,

le champ magnétique sous le centre de l’aimant de la géométrie #2 est antiparallèle. Une

conséquence directe de cette différence est que le champ magnétique externe et celui des

micro-aimants s’additionnent (se soustraient) dans le cas de la géométrie #1 (#2). Ainsi,

le champ magnétique externe B0 nécessaire pour atteindre une fréquence de Larmor ωs

donnée est différent pour les deux géométries.

2. La librairie de simulation Radia est disponible à http ://www.esrf.eu/.
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1.3.2 Champ magnétique effectif

Cette sous-section porte sur l’évaluation du champ magnétique ressenti par un électron

piégé dans une double boîte quantique à proximité des micro-aimants considérés à la

sous-section précédente.

Le champ magnétique ressenti par un électron dans un des états propres |d = {+,−}〉
du degré de liberté orbital de la double boîte quantique est donné par

B± =

∫

dρ B (ρ) |φ± (ρ)|2 = B0Z+

∫

dρBM (ρ) |φ± (ρ)|2 , (1.85)

où φ± (ρ) sont les fonctions d’ondes du degré de liberté orbital évaluées numériquement

(sous-section 1.2.1). Ainsi, le champ magnétique effectif B± dépend du couplage tunnel

Ω et du désaccord ε de la double boîte quantique par l’entremise des fonctions d’ondes

φ± (ρ). La suite de la sous-section se concentre sur le champ magnétique B− ressenti par

un électron dans l’état fondamental |−〉 du degré de liberté orbital.

Champ magnétique moyen et axe de quantification

Comme discuté à la section précédente, l’axe de quantification z du spin est défini par le

champ moyen B ≡ Bz. Sachant qu’à ε = 0 l’état fondamental correspond à la superposition

symétrique des états localisés |L〉 et |R〉, le champ magnétique moyen est évalué selon

B ≡ (BL +BR) /2 = B−(ε = 0). (1.86)

Comme l’illustre la figure 1.13 a), et considérant que les plans X − Z et x− z coïncident,

l’axe de quantification z et l’axe Z du champ magnétique externe diffèrent par un angle ϕ0,

tel que

tanϕ0 =
BX
− (ε = 0)

BZ
−(ε = 0)

. (1.87)

Cet angle dépend ainsi de l’amplitude B0 du champ magnétique externe et du champ

inhomogène BM (ρ). De plus, la différence de champ magnétique ∆B est évaluée selon

∆B ≡ BL −BR ≈ B−(ε = −εmax)−B−(ε = +εmax), (1.88)
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où εmax ≫ Ω est la valeur maximale du désaccord ε pour laquelle les fonctions d’ondes

φ± (ρ) sont obtenues numériquement. Le champ magnétique effectif B− permet ainsi de

déterminer le champ magnétique moyen B et la différence de champ magnétique ∆B.

Composantes transverse et longitudinale du champ magnétique effectif

Comme l’illustre la figure 1.13 b), les composantes du champ effectif B−(ε) transverse

et longitudinale à l’axe de quantification z sont respectivement obtenues par

Bx
−(ε) = |B−(ε)| sin (ϕ(ε)− ϕ0) , (1.89)

Bz
−(ε) = |B−(ε)| cos (ϕ(ε)− ϕ0) , (1.90)

où l’angle ϕ(ε) est donné par

tanϕ(ε) =
BX
− (ε)

BZ
−(ε)

, (1.91)

tel que ϕ(ε = 0) ≡ ϕ0.

Afin d’évaluer B− à l’aide de l’équation (1.85), il est nécessaire de définir la position des

micro-aimants par rapport à la double boîte quantique. Comme l’illustre les figures 1.12 a)

et b), cette position est décrite par la distance horizontale dh entre le centre des deux boîtes

quantiques à [X, Y, Z] ≡ [0, 0, 0] et un point de référence propre aux deux géométries de

micro-aimants. Pour la géométrie #1, la position dh ≡ 0 correspond au centre de l’espace-

ment entre les deux micro-aimants. Pour la géométrie #2, la position dh ≡ 0 correspond au

centre de la base du micro-aimant. Ainsi, pour les deux géométries, la configuration dh = 0

correspond à un point de symétrie naturel du système.

Les figures 1.13 c) et e) présentent respectivement les composantes du champ magné-

tique effectif B− transverse (Bx
−) et longitudinale (Bz

−) à l’axe de quantification z en fonction

du désaccord ε pour les deux géométries de micro-aimants. Pour ces figures, la configura-

tion symétrique (dh = 0) des micro-aimants est utilisée, ce qui résulte en une valeur nulle

pour ∆Bz par symétrie. Les figures 1.13 d) et f) présentent les même quantités pour une

configuration asymétrique où dm = a = 75 nm, ce qui correspond à un couplage tunnel

Ω/h = 19.1GHz (Fig. 1.6). Pour cette configuration asymétrique, les composantes transverse

et longitudinale de la différence de champ magnétique sont toutes deux significatives.
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Figure 1.13 – Champs magnétiques effectifs créé par les micro-aimants.
a) Rotation de l’axe de quantification z par rapport à l’axe du champ magnétique externe Z par un
angle ϕ0 déterminé à l’aide des composantes transverse et longitudinale du champ magnétique
effectif B−(ε = 0) d’un électron dans l’état fondamental du degré de liberté orbital à désaccord nul.
b) Les composantes transverse et longitudinale à l’axe de quantification z d’un champ magnétique
effectif B−(ε) sont évaluées à l’aide de l’angle ϕ(ǫ) entre le champ magnétique effectif et le champ
externe. c) et d) Composante transverse Bx

− en fonction du désaccord ε pour la géométrie #1 (lignes
pleines bleues) et la géométrie #2 (lignes pointillées bleues) pour une configuration c) symétrique
(dh = 0) et d) asymétrique (dh = a = 75 nm). e) et f) Composante longitudinale Bz

− et amplitude
du champ effectif |B−| en fonction du désaccord ε pour la géométrie #1 (lignes pleines vertes et
noires, respectivement) et la géométrie #2 (lignes pointillées vertes et noires, respectivement) pour
une configuration e) symétrique (dh = 0) et f) asymétrique (dh = a = 75 nm). L’amplitude du
champ moyen, B = |B−(ε = 0)|, est également indiquée en f). Pour les figures d) et f), les valeurs
de ∆Bx,z sont données par la différence des valeurs de Bx,z

− (ε = −εmax) et Bx,z
− (ε = +εmax) (lignes

horizontales en trait mixte), où εmax = 200 µeV. Pour ces simulations, la distance entre les deux
boîtes quantiques est fixée à 2a = 150 nm, ce qui correspond à un couplage tunnel Ω/h = 19.1 GHz
pour une énergie de confinement ~ω0 = 1.25 meV. Finalement, l’amplitude du champ magnétique
externe B0 est fixée à 0.6 T.
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Fréquence de Larmor

L’amplitude du champ magnétique externe est fixée à B0 = 0.6 T aux figures 1.13 c) à f).

Par contre, tel que discuté plus tôt, l’amplitude |B−(ε)| du champ magnétique ressenti par

l’électron est très différente pour les deux géométries. Par exemple, pour la configuration

symétrique, le champ magnétique moyen B = |B−(ε = 0)| est 0.742 T et 0.449 T pour les

géométries #1 et #2, respectivement. Considérant le facteur de Landé g∗ = 0.44 du GaAs,

ceci résulte en une différence de fréquence de Larmor de 1.8 GHz entre les deux géométries

pour un même champ magnétique externe.

Lorsqu’on considère une configuration symétrique et un désaccord nul, la fréquence

de Larmor ωs(ε) = g∗µB |B−(ε)| /~ est insensible au premier ordre aux fluctuations δε du

désaccord par la présence d’un extremum à ε = 0. Bien que la différence du champ magné-

tique longitudinal ∆Bz soit nulle pour la configuration symétrique, il existe néanmoins

une différence dans l’amplitude du champ effectif lorsque l’électron est délocalisé à ε = 0 et

localisé à |ε| ≫ Ω. À la figure 1.13 e), ceci résulte en une différence de fréquence de Larmor

de 25 MHz et 315 MHz pour les géométries #1 et #2, respectivement. Avec une largeur

de raie pour le spin beaucoup plus faible que ces différences, une excitation globale sur

plusieurs doubles boîtes quantiques peut ainsi être utilisée afin de manipuler le spin de

l’électron de façon sélective selon sa position dans la double boîte quantique, et ce, tout en

ayant une insensibilité au bruit de charge au premier ordre avec ∆Bz = 0 [119].

Différences des composantes transverse et longitudinale à l’axe de quantification

À l’aide de l’équation (1.88), les composantes transverse et longitudinale de la différence

∆B du champ magnétique effectif sont évaluées. Les figures 1.14 a) et b) présentent ∆Bx

et ∆Bz pour les deux géométries de micro-aimants en fonction de la position horizontale

dh des micro-aimants relative à la double boîte quantique. La configuration symétrique à

dh = 0 mène à une valeur maximale pour ∆Bx et ∆Bz = 0, ce qui résulte en un couplage

spin-résonateur purement transverse. Pour cette configuration, les valeurs de ∆Bx sont de

−0.192 T et +0.181 T pour les géométries #1 et #2, respectivement, ce qui est compatible

avec les valeurs utilisées précédemment. Les valeurs maximales de ∆Bz sont quant à elles

de ±0.145 T et ∓160 T pour dh = ±164 nm et dh = ±160 nm, respectivement.

De plus, il existe deux positions dh pour lesquels la composante transverse ∆Bx de-

vient nulle pour une valeur presque maximale de ∆Bz. À ces positions, le couplage spin-

résonateur est ainsi purement longitudinal, une caractéristique utilisée à la section 1.4

pour la lecture longitudinale du spin. Il est alors possible de choisir entre un couplage
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Figure 1.14 – Différences des composantes transverse et longitudinale.
Différences ∆Bx (lignes bleues) et ∆Bz (lignes vertes) des composantes transverse et longitudinale
à l’axe de quantification z de la différence de champ magnétique ∆B pour a) la géométrie #1 (lignes
pleines) et b) la géométrie #2 (lignes pointillées) en fonction de la position horizontale relative
dh entre les micro-aimants et la double boîte quantique. Les configurations symétrique dh = 0 et
asymétrique dh = a = 75 nm sont respectivement indiquées par une ligne pointillée et une ligne en
trait mixte. Pour cette figure, εmax = 1 meV. Les autres paramètres sont les mêmes qu’à la figure 1.13.

spin-résonateur parfaitement transverse ou parfaitement longitudinal simplement en chan-

geant la position des micro-aimants par rapport à la double boîte quantique. Malgré que

la position des micro-aimants ne peut être modifiée in situ, la double boîte quantique

peut en principe être déplacée par rapport aux micro-aimants à l’aide, par exemple, d’une

chaîne linéaire de boîtes quantiques [120, 22]. Finalement, une configuration asymétrique

quelconque, par exemple à dh = ±a, résulte en un couplage spin-résonateur transverse et

longitudinal.

Résonance dipolaire électrique de spin

Selon les équations (1.86) et (1.88), il est suffisant d’évaluer le champ magnétique

effectif B−(ε) à ε = 0 et ε = ±εmax pour calculer le champ magnétique moyen B et la

différence de champ magnétique ∆B. Le cadre théorique développé dans ce chapitre,

permettant l’évaluation de la dépendance du champ effectif en fonction du désaccord ε

(Fig. 1.13), permet ainsi d’évaluer la variation du champ magnétique transverse à l’axe de

quantification résultant d’une variation du désaccord ∆ε autour d’un point d’équilibre ε

quelconque. Cette quantité est directement liée à la fréquence de Rabi de la manipulation

d’un qubit de spin par résonance dipolaire électrique de spin possible grâce à la présence
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d’un champ magnétique inhomogène [121, 122, 123]. Cette méthode de manipulation est

celle actuellement privilégiée pour le contrôle cohérent d’un qubit de spin encodé dans le

degré de liberté de spin d’un électron unique dans une boîte quantique [124, 21].

1.3.3 Coefficient du couplage spin-résonateur transverse

À partir des composantes transverse et longitudinale de la différence de champ ma-

gnétique évaluées précédemment, il est possible d’évaluer les coefficients de couplage

spin-résonateur pour un dispositif en considérant une architecture précise pour les micro-

aimants. On se concentre ici sur le couplage transverse en utilisant la configuration symé-

trique dh = 0 pour les deux géométries de micro-aimants, ce qui résulte en ∆Bz = 0. De

plus, on fixe la résonance entre le spin et le résonateur à ωs,r/2π = 3 GHz afin d’effectuer

un transfert d’état quantique entre le spin et le résonateur. L’amplitude B0 du champ ma-

gnétique nécessaire pour obtenir une fréquence de Larmor ωs/2π = 3 GHz estB0 = 0.345 T

et B0 = 0.638 T pour les géométries #1 et #2, respectivement. Sachant que généralement les

pertes du résonateur dépendent de l’amplitude du champ magnétique externe (chapitre 3),

la géométrie #1 peut procurer un avantage significatif par rapport à la géométrie #2 puisque

l’erreur est directement proportionnelle aux pertes [45].

La figure 1.15 a) présente l’amplitude du coefficient du couplage spin-résonateur

transverse,
∣
∣gxs−r

∣
∣ /2π, en fonction du couplage tunnel Ω à désaccord nul pour la géométrie

#1. Le coefficient du couplage est calculé à l’aide de l’équation (1.82) pour une valeur

constante ∆Bx = −0.192 T déterminée précédemment. Par contre, la dépendance de

∆Bx au couplage tunnel Ω est également prise en compte à l’aide de ∆Bx(Ω) obtenue

numériquement. En effet, puisque le couplage tunnel Ω varie en fonction de la distance 2a

entre les boîtes quantiques dans le modèle du potentiel quartique, ∆Bx diminue lorsque le

couplage tunnel est augmenté par l’entremise d’une diminution de la distance entre les

boîtes quantiques 3.

La figure 1.15 b) présente le coefficient du couplage spin-résonateur transverse pour

les deux géométries de micro-aimants et pour un couplage tunnel Ω/h = 3ωs,r/2π = 9 GHz

et Ω/h = 19.1 GHz. À désaccord nul, on obtient respectivement pour ces deux couplages

tunnels gxs−r/2π = −1.38 MHz et gxs−r/2π = −0.56 MHz pour la géométrie #1 et gxs−r/2π =

3. En général, l’amplitude du champ magnétique externe B0 nécessaire pour satisfaire la condition de
résonance entre le spin et le résonateur dépend du couplage tunnel Ω. La différence de champ transverse ∆Bx

dépend ainsi du couplage tunnel via B0, puisque, en général, ∆Bx(B0). Or, pour la configuration symétrique
dh = 0, ∆Bx est indépendant de l’amplitude du champ magnétique externe B0.
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Figure 1.15 – Coefficient de couplage spin-résonateur transverse.
a) Amplitude du coefficient de couplage spin-résonateur transverse

∣
∣gxs−r

∣
∣ /2π en fonction du cou-

plage tunnel Ω pour la géométrie #1 des micro-aimants et une différence de champ magnétique
transverse ∆Bx = −0.192 T fixe (ligne pleine bleue foncée) et dépendant du couplage tunnel (cercles
bleus foncés). L’encart présente ∆Bx en fonction de Ω. Les cercles bleus et rouges indiquent respec-
tivement les couplages tunnels Ω/h = 19.1 GHz et Ω/h = 3ωs,r/2π = 9 GHz. Le couplage tunnel
Ω/h = ωs,r/2π = 3 GHz pour lequel tous les sous-systèmes sont résonants est indiqué par une ligne
verticale pointillée. b) Coefficient de couplage spin-résonateur transverse gxs−r/2π en fonction du
désaccord ε pour les géométries #1 (lignes pleines) et #2 (lignes pleines) pour un couplage tunnel
Ω/h = 19.1 GHz (lignes bleues) et Ω/h = 3ωs,r/2π = 9 GHz (lignes rouges). Les autres paramètres
sont les mêmes qu’à la figure 1.11.
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+1.30 MHz et gxs−r/2π = +0.56 MHz pour la géométrie #2. Ainsi, mis à part la différence

de signe, les deux géométries de micro-aimants permettent d’obtenir un coefficient de

couplage spin-résonateur transverse de l’ordre du MHz pour un dispositif hybride réaliste

basé sur une double boîte quantique dans une hétérostructure de GaAs/AlGaAs.

Transfert d’états

Une application du couplage transverse entre le spin et le résonateur est le transfert

de l’état quantique entre les deux systèmes. La fidélité d’un tel transfert est évaluée à la

référence [45] en tenant compte des processus de relaxation et de déphasage introduits

par les couplages spin-charge transverse et longitudinal nécessaires au couplage spin-

résonateur. En considérant des paramètres réalistes tel que présentés dans ce chapitre pour

une architecture en GaAs, un transfert d’état avec une fidélité de plus de 90% est possible.

La fidélité devrait être significativement meilleure dans le silicium en raison de l’absence

du couplage piézoélectrique entre le degré de liberté orbital et les phonons par lequel

la relaxation du spin est augmentée en présence d’une différence de champ magnétique

transverse ∆Bx [45].

Démonstration expérimentale du couplage transverse fort

Rappelons que le cadre théorique présenté dans ce chapitre s’applique aussi pour les

architectures de boîtes quantiques en silicium, en autant que le degré de liberté de vallée

puisse être négligé [18]. D’un côté, un facteur de Landé g∗ ≈ 2 cinq fois plus élevé dans le

silicium que dans le GaAs augmente les coefficients des couplages spin-résonateur par le

même facteur. D’un autre côté, la masse effective des électrons m∗ ≈ 1.06 plus élevée dans

le silicium par rapport à celle du GaAs résulte en des boîtes quantiques plus rapprochées

pour une même valeur du couplage tunnel Ω, réduisant ainsi a priori les différences de

champs magnétiques ∆Bx,z. Par contre, en tenant compte de l’hétérostructure utilisée

pour définir les boîtes quantiques, il est possible que les différences de champs soient plus

grandes. En effet, par exemple, la distance verticale entre les micro-aimants et les boîtes

quantiques peut être plus faible que dans une hétérostructure de GaAs. Un coefficient de

couplage transverse de plusieurs MHz semble ainsi possible dans une architecture basée

sur le silicium.

En effet, deux expériences distinctes très récentes ont démontrées le couplage fort

entre un spin unique dans une double boîte quantique en silicium et un résonateur su-

praconducteur à l’aide de la méthode présentée ici [46, 47]. Dans les deux expériences,
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deux micro-aimants rectangulaires en cobalt sont utilisés pour générer une différence

∆Bx de champ magnétique transverse entre les deux boîtes quantiques, ce qui corres-

pond à la géométrie #1 présentée dans cette section. Un coefficient de couplage transverse

gxs−r/2π ≈ 10 MHz est démontré, ce qui est en accord avec le modèle présenté à la section 1.2.

De plus, le contrôle électrique du coefficient de couplage transverse par le couplage tunnel

Ω et le désaccord ε est également démontré. Cette démonstration indique que la réalisation

du couplage longitudinal pour la lecture non destructive de l’état du spin proposée à la

prochaine section est à portée de la main.

1.4 Lecture du spin électronique par la modulation paramé-

trique du couplage longitudinal

Cette section présente une application potentielle du couplage longitudinal entre un

spin unique dans une double boîte quantique et un résonateur.

1.4.1 Principe de la lecture longitudinale

Le couplage longitudinal entre un spin unique dans une double boîte quantique et un

résonateur est décrit par l’hamiltonien

Ĥz
s−r/~ = gzs−r

(
â† + â

)
σ̂z. (1.92)

De façon général, l’hamiltonien de l’équation (1.92) décrit une interaction entre un qubit et

un oscillateur harmonique où l’interaction est diagonale dans la base du qubit [125, 126,

127, 117]. La référence [117] propose notamment d’utiliser cette interaction afin d’effectuer

une lecture non destructive de l’état du qubit à l’aide d’une mesure du résonateur. En effet,

l’hamiltonien de l’équation (1.92) décrit l’hamiltonien idéal pour une mesure ; l’opérateur

σ̂z décrivant l’état du système à mesurer, soit le qubit, est couplé à l’observable
(
â† + â

)

d’un système auxiliaire, soit le résonateur. Puisque l’interaction est diagonale dans la base

du qubit, cette mesure projective est une mesure quantique non destructive [117].

Afin de montrer explicitement comment l’hamiltonien de l’équation (1.92) permet

d’effectuer une mesure de l’état du spin, l’opérateur décrivant l’évolution temporelle du

système en présence du couplage longitudinal est considéré. En considérant le cas spécifique
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du couplage longitudinal entre un spin unique et un résonateur, cet opérateur d’évolution

Û(t) est donné par

Û(t) = eiĤ
z
s−rt/~ = eig

z
s−r(â†+â)σ̂zt. (1.93)

En comparant cet opérateur d’évolution avec l’opérateur de déplacement D̂(α) = eαâ
†−α∗â

d’un oscillateur harmonique (annexe A), l’opérateur d’évolution peut s’exprimer comme

Û(t) = eα̂(t)â
†−α̂∗(t)â = D̂(α̂(t)), (1.94)

où l’amplitude complexe du déplacement est maintenant un opérateur dans la base du

spin donné par

α̂(t) = igzs−rσ̂zt. (1.95)

Ainsi, l’évolution de l’état fondamental | ↓, 0〉 du système spin-résonateur est donnée par

Û(t)| ↓, 0〉 = D̂(α̂(t))| ↓, 0〉 = | ↓,−α(t)〉, (1.96)

où

α(t) ≡ igzs−rt. (1.97)

Si le spin est plutôt dans l’état excité | ↑〉, l’évolution est donnée par

Û(t)| ↑, 0〉 = D̂(α̂)| ↑, 0〉 = | ↑,+α(t)〉. (1.98)

Ainsi, l’évolution du système spin-résonateur en présence d’un couplage longitudinal crée

un déplacement dans l’espace des phases de l’état du résonateur dont la phase dépend de

l’état du spin. Une mesure de la phase du signal sortant du résonateur résulte ainsi en une

mesure quantique non destructive de l’état du spin.

Un ingrédient essentiel est par contre manquant dans l’approche présentée. En effet,

l’état du résonateur évolue de l’état du vide jusqu’à un état cohérent | ± igzs−rt〉 contenant

en moyenne nr =
∣
∣±igzs−rt

∣
∣
2
=

(
gzs−rt

)2
photons, et ce, sans que le spin change d’état. Ainsi,

l’énergie du système n’est pas conservée. Afin de démontrer comment résoudre cette

problématique, l’hamiltonien du couplage longitudinal est exprimé dans un référentiel
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tournant à l’aide de la transformation unitaire

Û0(t) = eiĤ
0
s−rt/~ = eiω

′
sσ̂zt/2eiω

′
râ

†ât, (1.99)

où Ĥ0
s−r est la partie diagonale de l’hamiltonien effectif de l’équation (1.80) décrivant le

système spin-résonateur, soit

Ĥ0
s−r/~ =

1

2
ω′sσ̂z + ω′râ

†â. (1.100)

Dans ce référentiel tournant, l’hamiltonien du couplage longitudinal est ainsi donné par

Ĥ′z
s−r = Û †0(t)Ĥz

s−rÛ0(t) = ~gzs−r

(

â†eiω
′
rt + âe−iω

′
rt
)

σ̂z. (1.101)

Ainsi, pour gzs−r ≪ ω′r, l’hamiltonien du couplage longitudinal disparait à la suite de l’ap-

proximation séculaire [117]. Il est par contre possible de réactiver l’interaction longitudinale

en modulant le coefficient du couplage longitudinal gzs−r. En effet, avec une modulation

temporelle de gzs−r d’une amplitude ∆gzs−r autour d’une valeur d’équilibre gzs−r décrit par

gzs−r(t) = gzs−r +∆gzs−r cos(ω
′
rt), (1.102)

l’hamiltonien du couplage longitudinal dans le référentiel tournant de l’équation (1.101)

devient

Ĥ′z
s−r/~ =

1

2
∆gzs−r

(
â† + â

)
σ̂z (1.103)

à la suite de l’approximation séculaire. La modulation paramétrique du coefficient de cou-

plage fournit ainsi l’énergie nécessaire au système afin de réactiver le couplage longitudinal.

Le coefficient du couplage longitudinal passe ainsi de gzs−r pour le cas statique à ∆gzs−r/2 en

présence de la modulation.

La figure 1.16 présente l’état stationnaire du résonateur dans l’espace des phases

en présence de la modulation paramétrique du couplage longitudinal et d’un taux de

relaxation des photons dans le résonateur donné par κr. Dans l’état stationnaire, l’état

cohérent |αss
s 〉 dans le résonateur selon l’état du spin |s = {↑, ↓}〉 est donné par [117]

|αss
↑,↓〉 = | ± i∆gzs−r/κr〉. (1.104)

Le rapport ∆gzs−r/κr est ainsi une figure de mérite pour la lecture du spin basée sur le
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Figure 1.16 – États du résonateur en présence de la modulation du couplage longitudinal.
En présence de la modulation du couplage longitudinal d’une amplitude ∆gzs−r, l’état du vide
(cercle mauve) du résonateur est déplacé à | − i∆gzs−r/κr〉 lorsque le spin est dans l’état | ↓〉 (cercle
bleu) et |+ i∆gzs−r/κr〉 lorsque le spin est dans l’état | ↑〉.

couplage longitudinal avec un résonateur.

Le rapport signal sur bruit SNRz de la lecture longitudinale peut également être estimé.

On considère que le résonateur possède des pertes internes données par un coefficient κintr ,

un coefficient de couplage au port d’entrée κinr ≪ κintr et un coefficient de couplage au port

de sortie κoutr . Le résonateur possède ainsi une largeur de raie κr ≈ κintr + κoutr . Dans ce cas,

le signal Xz de la lecture longitudinale et le bruit Ξ sont respectivement données par

Xz = 2∆gzs−rτ
κoutr

κr
, Ξ =

√
2κrτ , (1.105)

où τ est la durée de la mesure [117, 128]. Le rapport signal sur bruit SNRz est alors donné

par

SNRz = Xz/Ξ =
√
2∆gzs−r

√
τ

(
κoutr

κ
3/2
r

)

. (1.106)

En présence de pertes internes du résonateur, le coefficient de couplage au port de sortie

κoutr possède une valeur optimale maximisant le rapport signal sur bruit donnée par

κout,optr = 2κintr . (1.107)

À cette valeur optimale du coefficient de couplage, le rapport signal sur bruit de la lecture
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longitudinale est donné par

SNRopt
z = 2

√

2

27
∆gzs−r

√
τ

κintr

. (1.108)

En l’absence de pertes internes, cette expression est modifiée avec κintr → κr et 2
√

2/27 →
2
√
2 [117].

1.4.2 Modulation paramétrique du couplage longitudinal

La discussion de la sous-section précédente sur la réalisation d’une mesure à l’aide

d’un couplage longitudinal n’est pas spécifique au couplage spin-résonateur [117]. Dans

cette sous-section, la modulation paramétrique du coefficient du couplage longitudinal

est considérée pour le cas spécifique du couplage entre le spin et le résonateur décrit à la

section 1.2.

Le coefficient du couplage longitudinal gzs−r entre le spin et le résonateur est décrit par

l’équation (1.83). Comme il est discuté plus tôt, les coefficients des couplages transverse et

longitudinal peuvent être contrôlés électriquement via le couplage tunnel Ω et le désaccord

ε de la double boîte quantique. On considère ici une modulation du désaccord d’une

amplitude ∆ε à une fréquence angulaire de modulation ωm autour d’un désaccord moyen

ε décrit par

ε(t) = ε+∆ε cos(ωmt). (1.109)

La figure 1.17 a) présente gzs−r/2π en fonction du désaccord ε pour un dispositif réaliste.

Puisque le coefficient de couplage ne varie pas de façon linéaire avec le désaccord, l’am-

plitude de la modulation du coefficient de couplage longitudinal ∆gzs−r à la fréquence

angulaire habillée du résonateur ω′r résultant de la modulation ε(t) est en général donnée

par

∆gzs−r = F
[
gzs−r(ε(t))

]
(ω′r), (1.110)

oùF dénote la transformée de Fourier. Notamment la symétrie de gzs−r(ε) pour un désaccord

moyen ε = 0 permet d’obtenir une amplitude de modulation du couplage longitudinal

significatif pour une fréquence de modulation ωm = ω′r/2. Ainsi, comme l’illustre la fi-

gure 1.17 a), le système spin-résonateur agit comme élément non linéaire permettant de
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doubler la fréquence de la modulation. Cette situation est expérimentalement intéressante

puisqu’il est alors possible de distinguer entre le signal micro-ondes sortant du résonateur à

2ωm = ω′r, contenant le signal de la lecture longitudinale, du signal à la fréquence angulaire

ωm provenant de la modulation.

La figure 1.17 b) présente l’amplitude de la modulation du couplage longitudinal ∆gzs−r
en fonction de l’amplitude de la modulation du désaccord ∆ε pour ε = 0 et ωm = ω′r/2.

Puisque le coefficient du couplage longitudinal n’est pas parfaitement quadratique en

fonction du désaccord ε, il existe une amplitude de modulation optimale∆εopt pour laquelle

∆gzs−r est maximale. La figure 1.18 a) présente l’amplitude de modulation optimale ∆εopt

obtenue pour différents couplage tunnel Ω de la double boîte quantique. L’amplitude de

modulation optimale est légèrement supérieure au couplage tunnel et est bornée entre

Ω et 2Ω. Notamment, la région Ω/h < ω′r/2π est a évitée dans ce contexte de modulation

paramétrique. En effet, dans ce cas, le degré de liberté orbital de la double boîte quantique

de fréquence ǫd/h =
√
Ω2 + ε2/h et le résonateur de fréquence ω′r/2π peuvent devenir en

résonance avec la modulation lorsque ∆ε/h ≥ ω′r/2π − Ω/h.

Afin d’éviter l’excitation du degré de liberté orbital, la modulation du désaccord ε

doit être adiabatique du point de vue de la double boîte quantique. Ainsi, l’amplitude de

modulation ∆ε doit être largement inférieure à l’amplitude de modulation caractéristique

d’une transition de Landau-Zener du degré de liberté orbital donnée par [129, 130]

∆εLZ =
2πΩ2

~ωm

. (1.111)

Comme l’illustre la figure 1.18 a), l’amplitude de modulation de Landau-Zener ∆εLZ est

largement supérieure à l’amplitude de modulation optimale ∆εopt pour Ω/h > ω′r/2π. De

plus, puisque ∆εLZ ∝ Ω2 et ∆εopt ∝ Ω, la modulation est de plus en plus adiabatique

lorsque le couplage tunnel est augmenté. Cette propriété justifie d’autant plus l’utilisation

d’un couplage tunnel dont la fréquence est supérieure à la fréquence du résonateur.

La figure 1.18 b) présente l’amplitude de la modulation du coefficient de couplage

longitudinal ∆gzs−r pour ∆ε = ∆εopt en fonction du couplage tunnel Ω pour un dispositif

réaliste. Une amplitude ∆gzs−r/2π ≈ 0.52 MHz est possible pour un couplage tunnel Ω/h =

12.3 GHz ≈ 2ω′r/2π. Comme il est discuté plus tôt, cette amplitude de modulation doit

être comparée à la largeur de raie κr/2π du résonateur. Il est montré au chapitre 3 que les

résonateurs fabriqués sur un substrat de GaAs possèdent des pertes internes κintr /2π ≈
0.6 MHz pour ω′r/2π = 6 GHz. Considérant un coefficient de couplage du port de sortie
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Figure 1.17 – Modulation paramétrique du couplage longitudinal via le désaccord.
a) Coefficient du couplage longitudinal gzs−r/2π en fonction du désaccord ε pour un couplage tunnel
Ω/h = 19.1 GHz (ligne bleue) et Ω/h = 12.3 GHz (ligne rouge). Une modulation du désaccord ε
autour de ε = 0 à la fréquence angulaire ωm crée une modulation du couplage longitudinal à une
fréquence angulaire 2ωm. b) Amplitude ∆gzs−r/2π de la modulation du couplage longitudinal en
fonction de l’amplitude∆ε de la modulation du désaccord pour un couplage tunnelΩ/h = 19.1GHz
(ligne bleue) et Ω/h = 12.3 GHz (ligne rouge). La valeur moyenne du désaccord est ε = 0 et la
fréquence angulaire de la modulation est ωm = ω′r/2. Pour une amplitude de modulation ∆εopt,
l’amplitude ∆gzs−r de la modulation du couplage longitudinal est maximale. Les amplitudes de
modulation correspondant aux différents couplages tunnels sont indiquées par les lignes verticales
pointillées. Pour ces simulations, la distance entre les deux boîtes quantiques est fixée à 2a = 150 nm
pour Ω/h = 19.1 GHz et 2a = 160 nm pour Ω/h = 12.3 GHz avec une énergie de confinement
~ω0 = 1.25 meV. La position horizontale dh = 211 nm des micro-aimants de la géométrie #1 est
ajustée de façon à obtenir un couplage purement longitudinal, soit ∆Bx = 0. De plus, µ0M = 1.93 T,
dv = 130 nm, dM = 300 nm, w = 400 nm et t = 150 nm. La différence de champ magnétique
longitudinale∆Bz = 0.124 T pourΩ/h = 19.1GHz et∆Bz = 0.130 T pourΩ/h = 12.3GHz pour un
champ magnétique externeB0 = 0.3 T, résultant en une fréquence de Larmor ωs/2π = 2.064 GHz et
ωs/2π = 2.072 GHz respectivement. Le bras de levier de la grille couplant la double boîte quantique
au résonateur est fixé à α = 0.2. L’impédance et la fréquence du résonateur sont Z0 = 50 Ω et
ωr/2π = 6 GHz respectivement.
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Figure 1.18 – Amplitude de la modulation paramétrique du couplage longitudinal.
a) Amplitude de modulation optimale ∆εopt en fonction du couplage tunnel Ω/h. Les lignes pleine
et en trait mixte noires indiquent respectivement ∆εopt = Ω et ∆εopt = 2Ω. La ligne pleine rouge
indique l’amplitude de modulation de Landau-Zener ∆εLZ. b) Amplitude de la modulation du
coefficient de couplage longitudinal ∆gzs−r pour ∆ε = ∆εopt en fonction du couplage tunnel Ω/h.
c) Rapport signal sur bruit optimal SNRopt

z calculé à l’aide de l’équation (1.108) en fonction du
temps de la mesure τ . Le coefficient des pertes internes du résonateur est fixé à κintr /2π = 0.6 MHz
et ∆gzs−r/2π = 0.29 MHz pour Ω/h = 19.1 GHz (ligne bleue) et ∆gzs−r/2π = 0.52 MHz pour
Ω/h = 12.3 GHz (ligne rouge). Pour ces figures, le couplage tunnel est modifié en variant la distance
entre les deux boîtes quantiques de 2a = 150 nm pour Ω/h = 19.1 GHz à 2a = 172 nm pour
Ω/h = 6.73 GHz. Cette variation résulte en une différence de champ magnétique longitudinale
∆Bz variant entre 0.124 T et 0.136 T sur cet intervalle de couplage tunnel. Finalement, la fréquence
de Larmor du spin varie entre ωs/2π = 2.064 GHz et ωs/2π = 2.082 GHz sur le même intervalle de
couplage tunnel. Les autres paramètres sont les mêmes qu’à la figure 1.17.
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optimal κoutr = 2κintr , on obtient alors un rapport ∆gs−r/κr ≈ 0.3. Cette figure de mérite peut

potentiellement être grandement améliorée dans une architecture basée sur le silicium, où

le coefficient de couplage longitudinal est plus élevée et les pertes internes des résonateurs

sont plus faibles [131].

La figure 1.18 c) présente le rapport signal sur bruit optimalSNRopt
z en fonction du temps

de la mesure τ pour les amplitudes de la modulation du couplage longitudinal déterminées

précédemment pour différents couplages tunnels et κintr /2π = 0.6 MHz (équation (1.108)).

Un rapport signal sur bruit supérieur à l’unité est possible pour un temps de mesure τ

supérieur à 3.8 µs et 1.2 µs pour un couplage tunnel Ω/h = 19.1 GHz et Ω/h = 12.3 GHz

respectivement.

Finalement, bien qu’une modulation du désaccord soit considérée, une modulation

du couplage tunnel peut également être utilisée. Dans ce cas, la réponse du système à la

modulation est majoritairement linéaire (figure 1.11 a).

1.4.3 Mesure spectroscopique à l’aide de la lecture longitudinale

Le rapport ∆gs−r/κr ≈ 0.3 prédit à la sous-section précédente pour une architecture

réaliste en GaAs n’est probablement pas suffisant afin de permettre une mesure de l’état

du spin en un seul coup avec une bonne fidélité. Dans cette sous-section, une mesure

spectroscopique permettant en principe d’effectuer une preuve de concept de la lecture

longitudinale est considérée. En effet, selon l’équation (1.108), il est possible de moyenner

le signal jusqu’à l’obtention du rapport signal sur bruit désiré dans une expérience où le

spin est piloté en continu.

Une modulation du désaccord ε combinant la modulation du couplage longitudinal et

une excitation de spectroscopie permettant de modifier la valeur moyenne 〈σ̂z〉 de l’état

du spin est considérée pour la mesure spectroscopique. Explicitement, la modulation du

désaccord est donnée par

ε(t) = ε+∆εm cos(ωmt) + ∆εsp cos(ωspt), (1.112)

où ∆εsp et ωsp sont respectivement l’amplitude et la fréquence angulaire de l’excitation

de spectroscopie. L’excitation de spectroscopie modifie l’état du spin par résonance de

spin dipolaire électrique permise par la présence d’une différence de champ magnétique

transverse ∆Bx entre les deux boîtes quantiques. En effet, comme l’illustre les figures 1.13 c)
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Figure 1.19 – Mesure spectroscopique à l’aide de la lecture longitudinale.
a) Valeur moyenne p↑ = 〈σ̂z〉 de l’état du spin en fonction du désaccord entre la fréquence de
spectroscopie ωsp/2π et la fréquence de Larmor du spin ωs/2π. b) Amplitude de la différence des
valeurs moyennes du champ sortant du résonateur à l’état stationnaire en présence et l’absence
de la modulation du couplage longitudinal |〈âsson〉 − 〈âssoff〉| en fonction de (ωsp − ωs)/2π. Pour ces
simulations, Ω/h = 8 GHz, ωr/2π = 4 GHz, ωs/2π = 3 GHz, α = 0.2,Z0 = 50 Ω, κoutr /2π = κr/2π =
2 MHz, gxd−s/2π = 25 MHz et gzd−s/2π = 250 MHz.

et d), une valeur de ∆Bx finie mène à une pente maximale de Bx
−(ε) à ε = 0. La situation

où ε = 0 est ainsi légèrement différente de la configuration habituellement considérée en

résonance de spin dipolaire électrique [132, 133, 121, 123]. En effet, pour ε = 0, l’électron

est déplacé entre les deux boîtes au lieu d’être déplacé autour d’une position moyenne

localisée dans une des boîtes. Comme l’illustre les figures 1.13 c) et d), cette stratégie

permet en théorie d’obtenir une fréquence de Rabi Ωsp beaucoup plus élevée pour une

même amplitude de l’excitation de spectroscopie. L’amplitude de spectroscopie ∆εsp doit

être largement inférieure à l’amplitude de modulation de Landau-Zener ∆εLZ afin que la

modulation soit adiabatique pour le degré de liberté orbital de la double boîte quantique

(équation (1.111)).

Les figures 1.19 a) et b) présentent des résultats très préliminaires de simulations

numériques effectuées à l’aide de Qutip sur le supercalculateur Mammouth [134, 135].

Le temps de calcul requis pour ces simulations n’a pas permis d’explorer l’espace des

paramètres. Les paramètres utilisés sont ainsi différents de ceux utilisés aux figures pré-

cédentes. La figure 1.19 a) présente la valeur moyenne p↑ = 〈σ̂z〉 de l’état du spin en

fonction de la fréquence de spectroscopie ωsp/2π autour de la fréquence de Larmor du spin

ωs/2π. Ce résultat est obtenu en résolvant numériquement l’équation maîtresse de Bloch-

Redfield [136] en considérant la modulation du désaccord décrit par l’équation (1.112)

directement dans l’hamiltonien total du système de l’équation (1.76). La figure 1.19 b) pré-

sente l’amplitude de la différence des valeurs moyennes du champ sortant du résonateur

à l’état stationnaire en présence et l’absence de la modulation du couplage longitudinal,
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soit |〈âsson〉 − 〈âssoff〉| = p↑
∣
∣αss
↑ − αss

↓

∣
∣, où p↑ est la valeur moyenne 〈σ̂z〉 de l’état du spin. La

correspondance entre les figures 1.19 a) et b) indique qu’il est possible d’effectuer une

mesure spectroscopique du spin à l’aide de la lecture longitudinale. Cette approche est

ainsi prometteuse afin de démonter une preuve de concept de la méthode de lecture

longitudinale.

1.5 Impacts des travaux

L’approche proposée pour le couplage entre un spin unique et un résonateur a initia-

lement été proposée à la référence [95] par l’utilisation d’un couplage spin-orbite et à la

référence [96] par l’utilisation d’un champ magnétique inhomogène. Les résultats de la sec-

tion 1.2 publiés à la référence [45], obtenus en collaboration avec Félix Beaudoin et William

A. Coish de McGill University, ont permis de grandement développer cette approche. Par

exemple, l’obtention de l’expression du coefficient de couplage transverse en fonction

des paramètres du système permet de prédire l’amplitude du couplage spin-résonateur

pour un dispositif réaliste. La validité de cette approche a été confirmée très récemment

par deux expériences dont les résultats sont en accord avec la théorie [46, 47]. De plus, la

présence d’un couplage longitudinal dans ce système a été mis en évidence de manière

théorique. Les expressions des coefficients des couplages transverse et longitudinal obtenus

permettent de mettre en évidence la possibilité de contrôler électriquement les couplages

spin-résonateur.

Une seconde contribution importante de ces travaux porte sur l’évaluation des champs

magnétiques effectifs en tenant compte des fonctions d’onde du degré de liberté orbi-

tal de la double boîte quantique (section 1.3). Cette approche permet de passer de la

géométrie considérée pour les micro-aimants aux champs magnétiques effectifs dont les

couplages spin-résonateur dépendent directement. Notamment, cette approche a permis

de démonter la possibilité d’obtenir un couplage spin-résonateur parfaitement transverse

ou parfaitement longitudinal pour une même géométrie de micro-aimants. De plus, comme

brièvement discuté à la section 1.3, l’obtention des champs magnétiques effectifs en fonction

des paramètres de la double boîte quantique permet de prédire, par exemple, la fréquence

de Rabi pouvant être obtenue pour la manipulation du spin par résonance de spin dipolaire

électrique [123].

Une dernière contribution a trait à la proposition d’utiliser le couplage longitudinal

entre le spin et le résonateur pour implémenter la lecture longitudinale, originalement
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proposée à la référence [117], pour un spin unique. La possibilité d’obtenir un couplage

spin-résonateur purement longitudinal par l’ingénierie d’un champ magnétique inhomo-

gène créé par des micro-aimants offre une avenue avantageuse pour implémenter cette

nouvelle méthode de lecture quantique non destructive. De plus, le doublage de fréquence

prédit pour la modulation paramétrique du couplage longitudinal à un point d’opération

symétrique du système promet d’offrir expérimentalement un avantage significatif.



Chapitre 2

Magnétométrie de micro-aimants pour le

couplage spin-résonateur

L’ingénierie d’un couplage entre un spin unique et un résonateur à l’aide d’un champ

magnétique inhomogène est présentée au premier chapitre. Le présent chapitre porte sur

l’étude expérimentale des propriétés magnétiques des micro-aimants utilisés pour le cou-

plage spin-résonateur. La première section présente la méthode expérimentale de la magné-

tométrie de Hall utilisée afin de déterminer les propriétés magnétiques des micro-aimants.

La deuxième section présente les résultats obtenus à l’aide de dispositifs conventionnels.

Après avoir identifié les limites de cette première approche, la troisième section présente

un nouveau type de dispositif qui permet de mesurer la magnétisation d’aimants de taille

nanométrique et de démontrer l’inhomogénéité du champ magnétique.

Les résultats présentés à la section 2.2 ont été obtenus dans le cadre d’un stage de

Laurent Bergeron à l’été 2014. De plus, les résultats présentés à la section 2.3 sont publiés

dans Applied Physics Letters [48].

65
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Source Drain

Figure 2.1 – Effet Hall dans une croix de Hall.
Un courant I circule entre la source et le drain d’une croix de Hall définie dans un gaz d’électrons
bidimensionnel. En présence d’un champ magnétique externe B0 perpendiculaire à la croix de
Hall, la force de Lorentz crée, à l’équilibre, une différence de potentiel VH ≡ V+ − V− entre les deux
autres contacts de la croix de Hall, ce qui correspond à la tension de Hall VH. Les carrés blancs
marqués d’un X représentent les contacts ohmiques au gaz d’électrons.

2.1 Magnétométrie de Hall

2.1.1 Effet Hall

Comme l’illustre la figure 2.1, on considère un dispositif à quatre terminaux défini

dans un gaz d’électrons bidimensionnel et ayant la forme d’une croix d’une largeur w.

Selon le système de coordonnées défini précédemment, la croix de Hall est dans le plan

ρ ≡ [0, Y, Z] et possède un bras selon l’axe Y centré à Z = 0 et un bras qui suit l’axe Z centré

à Y = 0. Un courant I circule dans le bras selon Z. En présence d’un champ magnétique

externe B0 ≡ BX
0 X perpendiculaire au gaz d’électrons, la force de Lorentz, proportionnelle

à I×B0 = IBX
0 Y, crée une différence de potentiel V+ − V− entre les deux contacts du bras

selon Y . Cette différence de potentiel est la tension de Hall VH et est donnée par

VH = −IB
X
0

en2D

, (2.1)

où n2D est la densité du gaz d’électrons bidimensionnel [87]. La résistance de Hall est

ainsi donnée par RH = VH/I et est directement proportionnelle à l’amplitude BX
0 du

champ magnétique perpendiculaire. Ainsi, à partir de l’amplitude et du signe du champ

magnétique B0, la pente de la résistance de Hall, donnée par dRH/dB0 = −1/en2D, permet

de déterminer le signe et la densité n2D des porteurs de charge. À partir de maintenant, on

néglige le signe négatif à l’équation (2.1) de façon à ce que la pente de RH en fonction de

BX
0 soit positive.
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2.1.2 Magnétométrie de micro-aimants utilisant l’effet Hall

L’effet Hall peut être utilisé afin de mesurer la courbe de magnétisation M(B0) de

micro-aimants en fonction du champ magnétique externe B0 [137, 138, 139, 140]. En effet,

la composante perpendiculaire à la croix de Hall du champ magnétique créé par le micro-

aimant produit une tension de Hall. Le champ magnétique effectif, obtenu par

BX = en2DRH, (2.2)

correspond alors approximativement au champ magnétique moyen dans le croisement

de la croix de Hall donné par BX = BX
0 + BX

M . La contribution BX
M du micro-aimant est

donnée par

BX
M =

1

A

∫

A

dρBX
M(ρ), (2.3)

où A = w2 correspond à l’aire du croisement de la croix de Hall [138]. Puisque ce champ

moyen est proportionnel à l’amplitude de la magnétisation M(B0), il est alors possible

d’obtenir la courbe de magnétisation du micro-aimant [137, 138, 139, 140].

Comme l’illustre la figure 2.2, un champ magnétique externe B0 = BZ
0 Z parallèle au

dispositif est appliqué. Le champ magnétique transverse moyen correspond alors directe-

ment au champ magnétique créé par le micro-aimant selon BX = BX
M [139]. La position

du micro-aimant par rapport à la croix de Hall est alors importante. En effet, pour un

micro-aimant centré sur le croix de Hall, la composante transverse du champ magnétique

des deux pôles s’annule par symétrie. En positionnant le micro-aimant de façon à ce qu’un

seul pôle soit dans le croisement de la croix de Hall, BX
M devient significatif (Fig. 2.3 a et

b) 1.

La figure 2.3 c) présente le champ magnétique transverse moyen en fonction de la taille

de la croix de Hall w pour deux distances dh selon l’axe Z entre le centre d’un micro-aimant

de la forme d’un cône tronqué (géométrie #2 de la figure 1.12) et le centre du croisement de

la croix de Hall. Pour une croix de Hall de taille w similaire à la taille du micro-aimant, la

position maximisant l’amplitude deBX
M correspond approximativement àw/2. Par exemple,

1. La géométrie la plus simple qui permet de réaliser la magnétométrie de Hall consiste a placer le micro-
aimant au centre du croisement de la croix de Hall [137, 138, 140]. En appliquant un champ magnétique
B0 = BX

0 X perpendiculaire à la croix de Hall, le champ magnétique transverse moyen est non nul, et ce,
pour toutes tailles finies de la croix de Hall tant qu’il existe une distance verticale entre la croix de Hall et le
centre du micro-aimant.
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Source Drain

Figure 2.2 – Magnétométrie de Hall.
Schéma d’une croix de Hall permettant d’effectuer la magnétométrie de Hall. Un champ magnétique
B0 parallèle au dispositif magnétise un micro-aimant placé à la position [dv, 0, dh] (cercle blanc)
par rapport au centre de la croix de Hall au niveau du gaz d’électrons (cercle noir). La composante
transverse du champ magnétique du micro-aimant, BX

M(ρ), produit une résistance de Hall RH

proportionnelle au champ magnétique transverse moyen, BX
M .

pour les paramètres du micro-aimant spécifiés à la figure 2.3, le champ moyen atteint près

de 46% de l’amplitude du champ maximal dans le gaz d’électrons pour w = 500 nm et un

micro-aimant de 440 nm. Ainsi, la taille de la croix de Hall doit être similaire à la taille du

micro-aimant puisque le champ magnétique moyen BX
M décroît comme 1/w2 lorsque w est

beaucoup plus grand que le micro-aimant.

2.1.3 Anomalies balistiques de l’effet Hall

Comme il est discuté précédemment, la taille w de la croix de Hall doit être comparable

à la taille du micro-aimant. Par contre, lorsque w est beaucoup plus faible que le libre

parcours moyen ℓe d’un électron, le transport est hautement balistique dans le croisement

de la croix de Hall. Le libre parcours moyen ℓe d’un électron dans un gaz d’électrons

bidimensionnel est donné par

ℓe =
µ~kF
e

, (2.4)

où µ est la mobilité du gaz d’électrons et kF =
√
2πn2D, le vecteur d’onde de Fermi dans

le gaz d’électrons [141]. Pour une densité n2D = 2.2 × 1011 cm−2 et une mobilité µ =

1.69× 106 cm2/Vs, le libre parcours moyen est d’environ 13 µm. Ainsi, le transport dans la

croix de Hall est hautement balistique pour w < 1 µm et ℓe > 10 µm.

En régime balistique, la géométrie exacte de la croix de Hall est importante. En effet,

comme l’illustre la figure 2.4, les limites de la croix de Hall altèrent grandement la trajectoire
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Figure 2.3 – Champ magnétique moyen obtenu par la magnétométrie de Hall.
a), b) Composante transverse BX

M(ρ) du champ magnétique créé par un micro-aimant (géométrie
#2, figure 1.12). La distance horizontale entre le centre du micro-aimant (cercle blanc) et le centre
de la croix de Hall (cercle noir) est a) dh = w/2 = 250 nm et b) dh = 100 nm, où w = 500 nm est
la largeur de la croix de Hall. La forme du micro-aimant à la surface du dispositif à X = dv est
représentée par un cercle gris. c) Champ magnétique transverse moyenBX

M en fonction de la largeur
w de la croix de Hall pour dh = 250 nm (cercles bleus) et dh = 100 nm (cercles rouges). Les valeurs
correspondant à 100% et 50% de l’amplitude maximale du champ BX

M(ρ) sont représentées par des
lignes horizontales pointillée et en trait mixte, respectivement. La ligne verticale pointillée indique
w = 500 nm. Pour ces figures, les paramètres du micro-aimant sont µ0M = 1.93 T, dv = 130 nm,
rmax = 220 nm, rmin = 150 nm et t = 300 nm.

des électrons. Quatre mécanismes de transport menant à des anomalies balistiques de

l’effet Hall sont alors présents [142]. Trois mécanismes sont présents lorsque l’amplitude

BX du champ magnétique transverse est beaucoup plus faible que le champ magnétique

critique. Le champ magnétique critique Bc correspond au rayon cyclotron égal à la largeur

w de la croix de Hall, soit

Bc =
~kF
ew

. (2.5)

Les figures 2.4 a) à c) illustrent, pour ces trois mécanismes, un exemple d’une trajectoire

d’un électron avant l’établissement de l’état d’équilibre [142]. Le mécanisme d’embrouillage

se produit lorsqu’un électron se dirige vers un contact quelconque à la suite de plusieurs

réflexions sur la frontière de la croix de Hall. Le mécanisme de collimation se produit

lorsqu’un électron se dirige dans le drain au lieu de se diriger vers le contact dicté par l’effet

Hall. Ces deux mécanismes mènent à l’effet Hall supprimé pour BX ≪ Bc. Le mécanisme de

rebond amène certains électrons à se diriger vers le contact opposé à celui dicté par l’effet

Hall, ce qui mène à un changement de signe de l’effet Hall, soit l’effet Hall négatif.

Un quatrième mécanisme se produit lorsque le champ magnétique transverse Bg ≪
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Embrouillagea) Collimationb) Rebondc) Guidaged)

E et Hall supprimé E et Hall négatif Dernier plateau de Hall

Figure 2.4 – Anomalies balistiques de l’effet Hall.
Illustrations des mécanismes causant les anomalies balistiques de l’effet Hall. Les mécanismes
a) d’embrouillage et b) de collimation causent la suppression de l’effet Hall pour BX ≪ Bc où le
champ magnétique critique Bc correspond au champ magnétique pour lequel le rayon cyclotron
est égal à la largeur w du canal de conduction. c) Le mécanisme de rebond cause l’effet Hall négatif
pour BX ≪ Bc. d) Le mécanisme de guidage cause l’anomalie du dernier plateau de Hall pour
Bg ≪ BX ≪ Bc, où le champ magnétique de guidage Bg correspond au champ magnétique pour
lequel le rayon cyclotron est égal au rayon minimal des coins de la croix de Hall, Rmin.

BX ≪ Bc, où le champ magnétique de guidage Bg est donné par

Bg =
~kF
eRmin

, (2.6)

où Rmin est le rayon minimal des coins de la croix de Hall. Afin d’observer ce phénomène,

il faut que Rmin ≫ w tel que Bg ≪ Bc. Comme l’illustre la figure 2.4 d), le mécanisme de

guidage mène à une tension de Hall indépendante du champ transverse BX , ce qui produit

le dernier plateau de Hall [142]. La résistance de Hall associée à ce plateau est la résistance

de contact Rc donnée par

Rc =
h

2e2
π

kFw
. (2.7)

Pour une croix de Hall d’une largeur w = 500 nm avec Rmin = 4w = 2 µm, le champ

magnétique critique et de guidage sont respectivement Bc ≈ 0.16 T et Bg ≈ 0.04 T. Puisque

le champ magnétique moyen dans la croix de Hall créé par un micro-aimant peut également

être de cet ordre de grandeur, les anomalies balistiques jouent un rôle important sur

la magnétométrie de Hall des micro-aimants. Par exemple, l’effet Hall supprimé rend le

magnétomètre insensible à un champ magnétique transverse beaucoup plus faible que le

champ magnétique critique.
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2.2 Magnétométrie avec des croix de Hall conventionnelles

Cette section porte sur la réalisation expérimentale de la magnétométrie de Hall de

micro-aimants à l’aide de dispositifs conventionnels où la croix de Hall est définie par la

gravure de l’hétérostructure dans laquelle un gaz d’électrons est présent. Cette première

itération expérimentale permet d’établir la méthode et les limites de cette approche.

2.2.1 Croix de Hall conventionnelles avec micro-aimants

Comme il est schématisé aux figures 2.5 a) et b), une hétérostructure de GaAs/AlGaAs

est gravée de façon à définir, dans le gaz d’électrons, trois croix de Hall en série d’une

largeur w entre 1 et 2 µm. Cette géométrie permet de mesurer simultanément la résistance

longitudinale RZZ et la résistance transverse RH = RZY . Le gaz d’électrons, présent à

dv = 100 nm sous la surface de l’hétérostructure, est connecté électriquement par des

contacts ohmiques permettant de faire circuler un courant I à travers la croix de Hall. Un

micro-aimant dans un alliage de fer et de cobalt (FeCo) est fabriqué sur chaque croix de

Hall. Finalement, la moitié des dispositifs possèdent une grille électrostatique recouvrant

les trois croix de Hall et les micro-aimants. Cette grille électrostatique permet de contrôler

la densité du gaz d’électrons et de protéger les micro-aimants de l’oxydation.

Une géométrie hybride entre les géométries #1 et #2 de micro-aimants présentées à la

section 1.3 est utilisée 2. Tel que schématisé à la figure 2.5 c), la géométrie #3 est composée

d’un micro-aimant rectangulaire (géométrie #1) et d’un micro-aimant de forme cylindrique

de rayon rmax = 200 nm (géométrie #2), réalisant ainsi un micro-aimant d’une longueur

totale L = {400, 600, 800, 2000} nm. La géométrie #2 est ainsi un cas spécial de la géométrie

#3 où L = 2rmax.

La figure 2.5 d) présente une image par microscopie électronique à balayage d’une

croix de Hall avec un micro-aimant. Puisqu’une technique de photolithographie est utilisée

afin de définir les croix de Hall, les coins de celles-ci sont arrondies avec un rayon minimal

Rmin ≈ 2 µm.

2. Historiquement, cette géométrie a été initialement considérée comme généralisation de la géométrie
#2 afin de réduire le facteur de démagnétisation. La symétrie de la géométrie #1 offre par contre un avantage
pour l’ingénierie du champ magnétique inhomogène et est ainsi considérée au chapitre 1.
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Figure 2.5 – Dispositifs de croix de Hall conventionnelles.
a) Schéma en coupe transversale de l’hétérostructure de GaAs/AlGaAs gravée afin de définir un
canal de conduction dans le gaz d’électrons à une distance dv = 100 nm de la surface. Un micro-
aimant est fabriqué directement à la surface de l’hétérostructure. Une grille électrostatique recouvre
l’hétérostructure et le micro-aimant. Une zone de déplétion d’une largeur ∆w présente près des
bords de l’hétérostructure gravée isole électriquement le gaz d’électrons et la grille électrostatique.
La largeur effective weff du canal de conduction est ainsi inférieure à la largeur physique w de
la croix de Hall. b) Schéma de trois croix de Hall en série, permettant de mesurer la résistance
longitudinale RZZ =

(
V+ − V ′+

)
/I et la résistance de Hall RH = RZY = (V+ − V−) /I . La longueur

du canal de conduction entre les croix de Hall les plus éloignées est ℓ = 40 µm. c) Géométrie #3 des
micro-aimants composée de deux demi-cylindres d’un rayon rmax et d’une épaisseur t séparés par
un micro-aimant rectangulaire d’une largeur 2rmax et d’une longueur L− 2rmax, tel que la longueur
totale du micro-aimant est L. Le cercle blanc représente le point de référence du micro-aimant.
d) Image par microscopie électronique à balayage montrant deux des trois croix de Hall en série.
La largeur w de la croix de Hall varie entre 1 et 2 µm et le rayon de courbure minimal Rmin aux
croisements est d’environ 2 µm. Sur ce dispositif, une grille électrostatique et des micro-aimants
d’un rayon rmax = 400 nm et d’une longueur L = 2 µ m sont présents. La ligne verticale pointillée
représente l’orientation de la coupe transversale présentée en a).
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Figure 2.6 – Montage expérimental pour la magnétométrie Hall.
a) Schéma simplifié du montage expérimental utilisé pour la mesure des croix de Hall. Le dispositif
est placé dans un cryostat à température variable entre 1.4 K et la température de la pièce. Un
amplificateur synchrone (Stanford Research Systems SR830) envoie un signal de sortie possédant
une fréquence f = 17.777 Hz et une amplitude V0 à une résistance de R = 1 MΩ, ce qui crée un
courant I ≈ V0/R entre les contacts ohmiques de la source et du drain. La tension de Hall VH est
mesurée par l’amplificateur synchrone en mode différentiel (A-B) et correspond à la composante
du signal démodulé en phase (X) avec la référence interne. Une tension continue Vg est appliquée à
la grille électrostatique à l’aide d’une unité mesure-source (Agilent E5281B). b) Photo d’un porte-
échantillon permettant de mesurer deux dispositifs dans une configuration où le champ magnétique
externe B0 est parallèle à la surface du dispositif, soit B0 ≡ BZ

0 Z.

2.2.2 Montage expérimental

La figure 2.6 a) présente un schéma simplifié du montage expérimental utilisé pour la

mesure du transport électrique des croix de Hall conventionnelles. Un cryostat à l’4He avec

une sonde à température variable est utilisé pour refroidir les dispositifs à une température

T entre 1.4 K et la température de la pièce. Des paires torsadées de fils en cuivre d’une

résistance moyenne de 14.5 Ω sont utilisés pour connecter électriquement le dispositif

aux instruments à température de la pièce. L’orientation du champ magnétique externe

B0 d’une amplitude maximale de 8 T est ajustée par l’orientation du dispositif sur la

sonde du cryostat. On se restreint à des mesures en champ magnétique perpendiculaire

(B0 ≡ BX
0 X) et parallèle (B0 ≡ BZ

0 Z). La figure 2.6 b) montre une photo d’un porte-

échantillon permettant de mesurer simultanément deux dispositifs en champ magnétique

parallèle.

Un amplificateur synchrone est utilisé pour faire circuler un courant I de basse fré-

quence entre la source et le drain de la croix de Hall. La tension de Hall VH correspond

à la différence entre les tensions V+ et V− en phase avec la référence de l’amplificateur

synchrone. Une tension Vg est appliquée sur la grille électrostatique à l’aide d’un unité
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source-mesure, permettant de confirmer l’absence d’une fuite de courant entre la grille et

le gaz d’électrons.

2.2.3 Caractérisation en champ magnétique perpendiculaire

Afin de caractériser les croix de Hall fabriquées, la résistance de Hall (RH = RZY ) et

la résistance longitudinale (RZZ) sont mesurées en champ magnétique perpendiculaire

(B0 ≡ BX
0 X) à une température T ≈ 1.5 K et pour un courant I = 97 nA. La figure 2.7 a)

présente les résultats de la mesure de RH et RZZ en fonction du champ magnétique externe

BX
0 pour un dispositif possédant une grille électrostatique.

Densité du gaz d’électrons

La résistance de Hall RH augmente linéairement avec BX
0 comme le prédit l’effet Hall

classique. Des déviations du comportement linéaire sont observées à fort champ magnétique

où l’effet Hall quantique se manifeste par la présence de plateaux aux résistances de Hall

RH = h/νe2, où ν est le facteur de remplissage [143]. Une régression linéaire de RH(B
X
0 )

permet de déterminer la densité n2D du gaz d’électrons et de calibrer le magnétométre de

Hall. La figure 2.7 b) présente la densité n2D en fonction de la tension de grille Vg. La densité

augmente approximativement de façon linéaire entre 1.90 et 4.97 × 1011 cm−2 pour une

tension de grille Vg variant de 0 à 0.75 V, respectivement. La densité à Vg = 0 est légèrement

différente de la densité n2D = 2.2×1011 cm−2 de référence de l’hétérostructure. Une tension

de grille Vg = 0.044 V est par contre suffisante pour retrouver la densité de référence.

Mobilité et largeur de la zone de déplétion

La résistance longitudinale RZZ possède un maximum local à champ magnétique nul,

une propriété caractéristique de la localisation faible [141]. À fort champ magnétique, les

oscillations de Shubnikov–de Haas sont également visibles. De plus, la résistance diminue

lorsque la tension de grille est augmentée. Cette diminution de la résistance est causée par

une augmentation de la densité n2D et de la mobilité µ du gaz d’électrons. La mobilité µ

est reliée à la résistance longitudinale à champ magnétique nul, RZZ(B
X
0 = 0), selon

µ =
ℓ

en2DweffRZZ(0)
, (2.8)
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Figure 2.7 – Résistance transverse et longitudinale.
a) Résistance de Hall RH = RZY (lignes pleines) et résistance longitudinale RZZ (lignes pointillées)
en fonction du champ magnétique perpendiculaire BX

0 pour Vg = 0 (lignes rouges) et Vg = 0.75 V
(lignes bleues). Les régressions linéaires de la résistance de Hall sont indiquées par des lignes
noires pointillées. b) Densité n2D (cercles) et mobilité µ (carrés et triangles) du gaz d’électrons
en fonction de la tension de grille Vg. La régression linéaire de la densité, indiquée par la ligne
pointillée, permet de déterminer la valeur de la pente à 3.9× 1011 cm−2/V. La mobilité minimale,
calculée avec weff = w = 2.0± 0.1 µm, est indiquée par les carrés. La mobilité maximale, obtenue en
ajustant weff = w− 2∆w tel que µ = 1.69× 106 cm2/Vs à Vg = 0.044 V, est indiquée par les triangles,
où ∆w = 0.64± 0.07 µm.
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où weff et ℓ sont respectivement la largeur effective et la longueur du canal de conduc-

tion [141]. La région de déplétion d’une largeur ∆w = (w − weff)/2 est causée par des états

de surfaces présents sur les bords de l’hétérostructure [144, 141]. La figure 2.7 b) présente la

borne minimale de la mobilité obtenue à l’aide de la largeur physique w = 2.0± 0.1 µm du

canal de conduction, ce qui correspond ainsi à la valeur maximale de weff . L’augmentation

de la mobilité avec l’augmentation de la densité est en accord avec une mobilité limitée par

la diffusion des électrons sur des impuretés ionisées [145, 141].

Une borne maximale sur la largeur ∆w de la région de déplétion est obtenue en dé-

terminant la largeur effective weff = w − 2∆w de façon à ce que la mobilité soit égale à la

mobilité de référence de l’hétérostructure. Dans ce cas, on obtient weff = 0.73± 0.04 µm et

ainsi ∆w = 0.64±0.07 µm. La mobilité calculée à partir de cette valeur deweff est également

présentée à la figure 2.7 b) et correspond à la borne supérieure de la mobilité. La valeur de

∆w obtenu est en accord avec ∆w = 0.5±0.2 µm obtenue à la référence [144]. Cette zone de

déplétion représente un obstacle majeur pour les applications où il est nécessaire d’induire

de la supraconductivité dans le gaz d’électrons en déposant un supraconducteur sur les cô-

tés de l’hétérostructure gravée [146]. Pour la magnétométrie de Hall, cette zone de déplétion

limite la taille minimale des croix de Hall pouvant être fabriqués à wmin ≈ 2∆w ≈ 1.3 µm.

Anomalies balistiques

Les déviations du comportement linéaire de la résistance de Hall RH sont mises en

évidence en définissant α comme la dérivée de RH en fonction du champ magnétique BX
0

normalisée par la pente moyenne 1/en2D obtenue par une régression linéaire, soit

α ≡ en2D
dRH

dB0

. (2.9)

Ainsi, par définition, la valeur moyenne de α est égale à l’unité. Les figures 2.8 a) et b)

présentent α pour les données de la figure 2.7. À fort champ magnétique, l’effet Hall

quantique se manifeste comme des oscillations entre α → 0 sur les plateaux et α > 1 entre

les plateaux. Les anomalies balistiques causent également des déviations par rapport àα = 1

pour BX
0 ≪ Bc, où le champ magnétique critique Bc est calculé à partir de l’équation (2.5)

en considérant n2D(Vg) de la figure 2.7 b) et w = weff = 0.73 µm. Le champ magnétique

critique varie entre 0.10 T à Vg = 0 et 0.16 T à Vg = 0.75 V. Les anomalies balistiques de la

figure 2.8 b) suivent le comportement prédit par la limite du champ magnétique critique,

ce qui indique que la largeur effective weff ne varie pas significativement en fonction de la

tension de grille.
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Figure 2.8 – Anomalies balistiques dans une croix de Hall conventionnelle.
a) Dérivée normalisée α de la résistance de Hall des données de la figure 2.7 a) en fonction du
champ magnétique BX

0 pour Vg = 0.75 V (ligne bleue pleine). Les déviations de α = 1 (ligne
horizontale noire pointillée) à fort champ magnétique correspondent à l’effet Hall quantique et
aux anomalies balistiques pour BX

0 sous le champ magnétique critique Bc (lignes verticales en trait
mixte). b) Dérivée normalisée α en fonction de BX

0 et de la tension de grille Vg. c) Résistance de Hall
RH normalisée par la résistance de contact Rc en fonction du champ magnétique BX

0 normalisé par
le champ magnétique critique Bc des données présentées en a). La régression linéaire de RH est
indiquée par une ligne pointillée. d) Pente normalisée α des données présentées en c) en fonction
de BX

0 /Bc. Pour toutes ces figures, les champs magnétiques critiques ±Bc et de guidage ±Bg sont
indiqués par les lignes en trait mixte et pleines, respectivement. En c) et d), les données obtenues en
diminuant et en augmentant le champ magnétique externe sont respectivement indiquées par les
lignes bleues et vertes.
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La figure 2.8 c) présente la résistance de HallRH normalisée par la résistance de contact

Rc de l’équation (2.7) en fonction du champ magnétique BX
0 normalisé par le champ

magnétique critique Bc pour Vg = 0.75 V (figure 2.7 a). Lorsque le champ transverse est

supérieur au champ magnétique de guidageBg = 0.042 T, calculé à partir de l’équation (2.6)

avec un rayon minimal effectifReff
min = Rmin+∆w = 2.64 µm, l’anomalie balistique du dernier

plateau de Hall se manifeste. Cette anomalie est particulièrement visible dans la dérivée

normalisée α de la figure 2.8 d), où α < 1 pour Bg < BX
0 < Bc.

Malgré la présence des anomalies balistiques, la réponse du magnétomètre de Hall est

relativement sensible à un champ transverse BX ≪ Bg avec α ≈ 0.92 à champ magnétique

nul. Par contre, puisque α varie rapidement autour deBX
0 = 0, la réponse du magnétomètre

n’est pas linéaire pour un champ transverse BX ∼ Bg.

2.2.4 Mesure de la courbe de magnétisation

La courbe de magnétisation BX
M(BZ

0 ) des micro-aimants fabriqués sur les croix de Hall

est obtenue en mesurant la résistance de Hall en champ magnétique parallèle (B0 = BZ
0 Z).

L’encart de la figure 2.9 a) présente la résistance de Hall obtenue par une telle mesure

pour un micro-aimant en FeCo d’une longueur L = 2 µ m sans grille électrostatique. Afin

d’obtenir le champ magnétique transverse moyen créé par le micro-aimant à partir de la

résistance de Hall RH(B
Z
0 ), quelques étapes sont nécessaires.

Premièrement, la présence d’un angle θ entre le champ magnétique externe B0 et l’axe

Z produit une pente résiduelle de la résistance de Hall donnée par BZ
0 sin θ/en2D. Une

régression linéaire des données à fort champ magnétique permet de déterminer la pente

résiduelle. Les données peuvent ainsi être corrigées en soustrayant la pente résiduelle. À

partir de la densité n2D déterminée par les mesures en champ perpendiculaire, on détermine

θ = 0.44◦ à la figure 2.9 a). Deuxièmement, la résistance de Hall présente un décalage

à champ magnétique nul causé par un faible désalignement entre les deux canaux de

conduction qui permettent de mesurer les tensions V+ et V−. Ce désalignement résulte en

une composante longitudinale dans la résistance de Hall. Cette résistance longitudinale est

corrigée en ajustant RH = 0 à BZ
0 = 0. Finalement, la densité déterminée précédemment

est utilisée pour convertir la résistance de Hall en un champ magnétique transverse moyen

à l’aide de l’équation (2.2). La figure 2.9 a) présente ainsi le champ magnétique transverse

moyen créé par le micro-aimant BX
M(BZ

0 ).

Le champ magnétique transverse moyen BX
M(BZ

0 ) présenté à la figure 2.9 a) possède
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Figure 2.9 – Magnétométrie avec une croix de Hall conventionnelle.
a) Champ magnétique transverse moyen BX

M(BZ
0 ) d’un micro-aimant en FeCo d’une longueur

L = 2 µ m sans grille électrostatique (micro-aimant #1) en fonction du champ magnétique parallèle
BZ

0 . Le champ magnétique transverse moyen à saturation est donné par BX
M . Les données obtenues

en balayant BZ
0 d’une valeur positive à négative (négative à positive) sont indiquées par des cercles

bleus (cercles verts). L’encart présente les données brutes de la résistance de Hall RH. La pente
résiduelle causée par un angle θ = 0.44◦ est indiquée par une ligne pleine. Hystérèse relative b) du
micro-aimant #1 (sans grille de déplétion) et c) du micro-aimant #2 (avec grille de déplétion). Malgré
un rapport sur bruit limité, le changement de la magnétisation de certains domaines magnétiques
est visible.

une hystérèse qui dépend de la direction à laquelle le champ magnétique BZ
0 est balayé. La

figure 2.9 b) présentent l’hystérèse relative rM de la courbe de magnétisation, définie par

rM ≡ 1

2

BX
M,←(B

Z
0 )− BX

M,→(B
Z
0 )

BX
M

, (2.10)

où BX
M,←(B

Z
0 )

(
BX

M,→(B
Z
0 )

)
est la valeur de BX

M(BZ
0 ) obtenue en balayant BZ

0 d’une valeur

positive à négative (négative à positive) et où BX
M est le champ magnétique transverse

moyen créé par le micro-aimant lorsque magnétisé à saturation. La figure 2.9 c) présente

l’hystérèse pour un micro-aimant nominalement identique mais en présence d’une grille

électrostatique. Pour ces deux micro-aimants, la rémanence, définie comme l’hystérèse

relative à BZ
0 = 0, atteint ∼ 10%. Ainsi, en l’absence d’un champ magnétique externe, le

micro-aimant produit tout de même ∼ 10% du champ magnétique inhomogène BM(ρ)

simulé à saturation à la section 1.3. De plus, l’hystérèse devient négligeable vers BZ
0 ≈ 0.2 T,

indiquant ainsi un champ magnétique de saturation de cette ordre. La similarité entre les

courbes d’hystérèse de ces deux micro-aimants nominalement identiques indique que la

protection du micro-aimant par la grille électrostatique n’influence pas significativement

ses propriétés magnétiques malgré la présence de fer dans la matériau ferromagnétique



80 2. Magnétométrie de micro-aimants pour le couplage spin-résonateur

utilisé dans le micro-aimant.

Le champ magnétique transverse moyen à saturation, BX
M , est par contre beaucoup

plus faible que prévu. En effet, pour les deux micro-aimants d’une longueur L = 2 µ m

présentés à la figure 2.9, BX
M n’atteint qu’environ 1 mT. De plus, aucun signal n’est détecté

pour les micro-aimants avec L = {400, 600, 800} nm. Ces deux observations s’expliquent

simplement par le fait que pour Rmin ≈ w, la région d’intégration effective de la croix

de Hall est plus beaucoup plus étendue que le croisement de la croix d’une aire A = w2.

Ainsi, pour un micro-aimant d’une longueur L ≪ Rmin ≈ 2 µm et pour un alignement

où dh = w/2, les deux pôles se trouvent dans la région d’intégration effective et le champ

magnétique moyen résultant en est grandement réduit. La magnétométrie de Hall réalisée à

l’aide de croix de Hall conventionnelles est tout de même possible en ajustant l’alignement

du micro-aimant en tenant compte de la présence des croix arrondies. Par contre, une

méthode alternative qui permettrait d’effectuer la magnétométrie de micro-aimants de

taille sous le micrométrique est souhaitable pour la génération de champs magnétiques

inhomogènes nécessaires aux couplages spin-résonateur présentés au chapitre 1.

2.3 Croix de Hall électrostatiques pour la magnétométrie

Cette section porte sur la réalisation expérimentale de la magnétométrie de micro-

aimants avec des croix de Hall définies électrostatiquement. Ces croix de Hall électrosta-

tiques permettent d’éviter certains problèmes rencontrées à la section précédente. De plus,

cette approche permet de mesurer directement l’inhomogénéité du champ magnétique créé

par les micro-aimants et de valider les simulations magnétostatiques utilisées à la section 1.3

afin d’évaluer les différences de champs magnétiques pour les couplages spin-résonateur.

2.3.1 Croix de Hall électrostatiques avec micro-aimants

Le concept d’une croix de Hall électrostatique est très simple : au lieu de graver l’hétéro-

structure pour définir une croix de Hall dans le gaz d’électrons, des grilles électrostatiques

sont utilisées pour former une croix de Hall effective. Cette approche est grandement

inspirée des boîtes quantiques latérales où des grilles permettent de définir des boîtes

quantiques dans un gaz d’électrons [147, 97, 20]. La nanofabrication de grilles électrosta-

tiques distancées de quelques dizaines de nanomètres avec une précision du même ordre
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Figure 2.10 – Croix de Hall électrostatiques.
Croix de Hall définie électrostatiquement en appliquant une tension Vg négative sur les grilles
électrostatiques fabriquées à la surface de l’hétérostructure, ce qui permet de dépeupler le gaz
d’électrons sous les grilles et ainsi de définir une croix de Hall effective. La largeur effective weff de
la croix de Hall varie approximativement de la distance entre les grilles à la tension de grille de
déplétion Vg,d jusqu’à zéro à la tension de grille de pincement Vg,p.

permet de réaliser des croix de Hall avec une largeur effective weff de quelques centaines

de nanomètres seulement [148, 149, 150]. Cette réduction de la taille des croix de Hall

permet en principe d’effectuer la magnétométrie de Hall de systèmes magnétiques de

tailles nanométriques.

La démonstration expérimentale de croix de Hall électrostatiques a été démontrée aux

références [148, 149, 150]. Par contre, la magnétométrie effectuée à l’aide de celles-ci n’a

pas été investiguée dans la littérature avant la publication des résultats de cette section [48].

La figure 2.10 illustre un dispositif qui produit une croix de Hall électrostatique avec un

micro-aimant près du croisement, permettant ainsi d’effectuer la magnétométrie de Hall

comme il est démontré plus loin. De plus, le contrôle électrostatique de la croix de Hall

permet de contrôler la région d’intégration du magnétomètre de Hall.

Description des dispositifs

Les figures 2.11 a) et b) présentent deux images de dispositifs qui réalisent la croix de

Hall électrostatique schématisée à la figure 2.10. Un premier type de dispositif (dispositifs A

et B) utilisent des grilles en aluminium auto-isolantes, qui empêchent le contact électrique

entre le micro-aimant métallique et les grilles. Les grilles sont séparées d’une distance de

w = 550 nm et les micro-aimants en FeCo possèdent la géométrie #2 avec rmax = 220 nm,

rmin = 150 nm et t = 300 nm. Un deuxième type de dispositifs (dispositifs C et D) utilisent

des grilles en titane et en or. Les grilles sont séparées d’une distance de w = 750 nm et

les micro-aimants en FeCo possèdent la géométrie #3 avec rmax = 220 nm, t = 300 nm et
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des ratios d’aspect L/2rmax = {1, 2, 5, 7, 9, 18}. Pour les deux types de dispositifs, les grilles

électrostatiques forment deux canaux de conduction d’une longueur de 16.6 µm, soit une

longueur comparable au libre parcours moyen ℓe dans le gaz d’électrons. Notamment, le

procédé de fabrication de ces dispositifs est exactement le même que celui utilisé pour

les boîtes quantiques latérales avec micro-aimants, permettant ainsi la co-intégration de

croix de Hall électrostatiques. Il est alors possible d’obtenir les propriétés magnétiques des

micro-aimants fabriqués en même temps que ceux intégrés aux boîtes quantiques.

La figure 2.11 c) présente, pour le dispositif A, une combinaison de la simulation

électrostatique effectuée avec nextnano [99] de la densité n2D(ρ) de la croix de Hall et de la

simulation magnétostatique effectuée avec Radia du champ magnétique BX
M(ρ) créé par

le micro-aimant magnétisé à saturation. La position relative entre le micro-aimant et la

croix de Hall est déterminée à partir de l’image obtenue par microscopie électronique à

balayage présentée à la figure 2.11 a). La figure 2.11 d) présente le profil de la densité du

gaz d’électrons le long de la diagonale Y = Z de la figure 2.11 c), ce qui permet de définir

la largeur effective weff de la croix de Hall comme la largeur à mi-hauteur du profil de la

densité. Par exemple, pour une tension de grille Vg = −0.6 V, on obtient weff = 480 nm.

La croix de Hall résultante possède un rayon de courbure minimale Rmin inférieur à weff ,

supprimant ainsi largement les anomalies balistiques causées par le mécanisme de guidage

requérant Rmin ≫ weff (sous-section 2.1.3).

Formation de la croix de Hall électrostatique

Afin de vérifier qu’il est possible de définir les deux canaux de conduction de la croix

de Hall, il est d’abord nécessaire de s’assurer qu’il est possible de les isoler du reste du

gaz d’électrons. La figure 2.12 présente, pour le dispositif B, la conductance G = I/VSD

mesurée entre différents contacts ohmiques à l’intérieur et à l’extérieur de la croix de Hall

en fonction de la tension Vg appliquée sur les quatre grilles électrostatiques, où VSD est

la tension appliquée entre les contacts ohmiques. Pour une tension de grille inférieure à

la tension de grille de déplétion Vg,d ≈ −0.55 V, le gaz d’électrons est dépeuplé sous les

grilles, isolant ainsi électriquement l’intérieur et l’extérieur de la croix de Hall.

La conductance entre les contacts ohmiques à l’intérieur de la croix de Hall est également

présentée à la figure 2.12. Dans ce cas, la conductance est non nulle pour une tension de grille

inférieure à la tension de déplétion Vg,d, et ce, jusqu’à la tension de pincement Vg,p ≈ −1.1 V.

Dans cet intervalle de tension, un canal unidimensionnel d’une longueur de 16.6 µm est

formé dans le gaz d’électrons. En effet, la conductance présente des plateaux de conductance
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Figure 2.11 – Dispositifs de croix de Hall électrostatiques.
a) Image par microscopie électronique à balayage du dispositif A. Les grilles électrostatiques en
aluminium sont séparées d’une distance w = 550 nm. Le micro-aimant en FeCo de géométrie #2
possède les dimensions rmax = 220 nm, rmin = 150 nm et t = 300 nm. Un courant I circule entre
les contacts ohmiques de la source et du drain. Deux autres contacts ohmiques à l’intérieur de
la croix de Hall sont utilisés pour mesurer la tension de Hall VH = V+ − V−. Le gaz d’électrons
à l’extérieur de la croix de Hall est mis à la terre par des contacts ohmiques représentés en gris.
b) Image par microscopie électronique à balayage du dispositif C. Les grilles électrostatiques en
titane et en or sont séparées d’une distance w = 750 nm. Le micro-aimant en FeCo de géométrie
#3 possède les dimensions rmax = 220 nm, t = 300 nm et L = 8 µm. c) Simulations électrostatique
de la croix de Hall et magnétostatique du micro-aimant du dispositif A. La densité électronique
n2D(ρ) est simulé pour une tension Vg = −0.6 V appliquée sur les grilles de la croix de Hall. Le
champ magnétique créé par le micro-aimant magnétisé à saturation, BX

M(ρ), est simulé à partir de
la position et les dimensions du micro-aimant déterminées à partir de l’image en a). Le champ
magnétique externe B0 suit l’axe Z, tel que M = MZ, où µ0M = 1.93 T. Les lignes pointillées
bleues et rouges indiquent respectivement les axes Z = Y et Z pour Y = −1.5 µm. d) Profil de la
densité relative n2D(ρ)/n2D(0) le long de l’axe Z = Y (cercles bleus). La largeur effective weff de la
croix de Hall est définie comme la largeur à mi-hauteur de ce profil de densité. À titre comparatif,
le profil de densité le long de l’axe Z pour Y = ±1.5 µm est également présenté (cercles rouges). La
différence entre la largeur à mi-hauteur de ces deux profils (480 et 344 nm, respectivement) permet
d’estimer le rayon de courbure Rmin ≈ 230 nm pour cette tension de grille.
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Figure 2.12 – Formation de la croix de Hall électrostatique.
Conductance G = I/VSD entre différents contacts ohmiques à l’intérieur (carrés blancs) et à l’exté-
rieur (carrés gris) de la croix de Hall du dispositif B, où VSD = 0.5 mV est la tension appliquée entre
les contacts ohmiques. Les schémas représentent les configurations utilisées pour les différentes
mesures. Une croix de Hall électrostatique est formée entre la tension de déplétion Vg,d et la tension
de pincement Vg,p. La conductance des canaux unidimensionnels de la croix de Hall est présentée
en encart en unité du quantum de conductance, 2e2/h.

à une fraction du quantum de conductance de 2e2/h, indiquant ainsi une transmission

inférieure à l’unité pour ce canal unidimensionnel d’une longueur légèrement supérieure

au libre parcours moyen ℓe [141]. Cette observation indique de plus que le transport dans le

croisement de la croix de Hall d’une longueur d’environ 500 nm est hautement balistique.

Ainsi, les croix de Hall électrostatiques sont utilisées pour une tension de grille Vg entre la

tension de grille de déplétion Vg,d, qui permet d’isoler l’intérieur de l’extérieur de la croix

de Hall, et la tension de grille de pincement Vg,p, qui permet supprimer transport dans la

croix de Hall. On s’attend ainsi à ce que la largeur effective weff de la croix de Hall varie

approximativement de la distance lithographique entre les grilles à Vg,d jusqu’à zéro à Vg,p.

2.3.2 Effet Hall en champ magnétique perpendiculaire

La formation des deux canaux de la croix de Hall électrostatique a été caractérisée

en mesurant leur conductance en fonction de la tension de grille. L’effet Hall en champ

magnétique perpendiculaire est utilisé dans cette sous-section pour confirmer la formation

d’une croix de Hall électrostatique par le croisement de ces deux canaux de conduction et

étudier l’effet des anomalies balistiques sur la sensibilité du magnétomètre. Le montage

expérimental utilisé pour caractériser les croix de Hall électrostatiques est identique à celui
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Figure 2.13 – Effet Hall dans une croix de Hall électrostatique.
a) Résistance de HallRH en fonction du champ magnétique externeBX

0 perpendiculaire à la croix de
Hall pour une tension de grille nulle (Vg = 0, ligne pleine rouge) et une tension de grille inférieure à
la tension de déplétion (Vg = −0.6 V, ligne pleine bleue). Les régressions linéaires sont indiquées par
les lignes noires pointillées. Le courant I est fixé à 100 nA. b) Densité électronique n2D en fonction
de la tension de grille Vg. Pour Vg = 0 (ligne verticale pointillée), la densité n2D = 2.23× 1011 cm−2

correspond approximativement à la densité de référence du gaz d’électrons de l’hétérostructure
(ligne horizontale pointillée). La régression linéaire, indiquée par la ligne noire pointillée, permet
de déterminer la pente à 0.62× 1011 cm−2/V, soit plus de six fois plus faible que pour une grille
au-dessus du gaz d’électrons (figure 2.7).

présenté à la sous-section 2.2.2. La température est encore une fois fixée à approximative-

ment 1.5 K. De plus, pour toutes les mesures présentées, la même tension de grille Vg est

appliquée sur les quatre grilles électrostatiques de la croix de Hall.

Effet Hall et densité électronique

La figure 2.13 a) présente, pour le dispositif D, la résistance de Hall RH en fonction du

champ magnétique externeBX
0 perpendiculaire à la croix de Hall pour une tension de grille

nulle (Vg = 0) et une tension de grille inférieure à la tension de déplétion (Vg = −0.6 V). La

configuration des contacts ohmiques au gaz d’électrons permet d’obtenir une résistance

purement transverse en l’absence d’une croix de Hall définie électrostatiquement. Dans

ce cas, la densité électronique n2D extraite de la régression linéaire correspond, comme

attendu, à celle du gaz d’électrons de l’hétérostructure. Comme l’illustre la figure 2.13 b),

la densité est réduite linéairement pour une tension de grille sous la tension de déplétion,

indiquant ainsi que l’effet Hall est mesuré dans une région du gaz d’électrons affectée par

les grilles électrostatiques. Notamment, la visibilité des plateaux de l’effet Hall quantique

correspondant à un facteur de remplissage ν impair est grandement réduite, ce qui indique
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Figure 2.14 – Anomalies balistiques dans une croix de Hall électrostatique.
a) Résistance de HallRH normalisée par la résistance de contactRc en fonction du champ magnétique
externe BX

0 normalisé par le champ magnétique critique Bc pour le dispositif B avec Vg = −0.75 V
et I = 97 nA. b) Dérivée normalisée α en fonction de BX

0 /Bc des données présentées en a). Pour ces
figures, les données obtenues en diminuant et en augmentant le champ magnétique externe sont
respectivement indiquées par les lignes bleues et vertes. De plus, la régression linéaire de RH est
indiquée par une ligne pointillée noire, qui correspond à α = 1. La ligne grise pointillée indique
une résistance de Hall nulle. Afin de calculer Rc = 0.79 kΩ et Bc = 0.11 T, la largeur effective weff

de la croix de Hall est considérée égale à la distance w = 550 nm entre les grilles.

une température électronique effective plus élevée dans la croix de Hall électrostatique

probablement causée par une densité de courant plus élevée [141].

Anomalies balistiques

Une indication supplémentaire de la création d’une croix de Hall électrostatique pour

Vg < Vg,d est la présence des anomalies balistiques. La figure 2.14 a) présente la résistance

de HallRH en fonction du champ magnétique externeBX
0 pour le dispositif B. La résistance

de Hall est normalisée par la résistance de contactRc donnée par l’équation (2.7). Le champ

magnétique externe est quant à lui normalisé par le champ magnétique critiqueBc = 0.11 T

donné par l’équation (2.5), en considérant une largeur effective weff de la croix de Hall

égale à la séparation entre les grilles électrostatiques w = 550 nm. La dérivée normalisée α

correspondante est présentée à la figure 2.14 b). Les anomalies balistiques de l’effet Hall

supprimé et de l’effet Hall négatif se manifestent, respectivement, par α → 0 et α < 0 pour

BX
0 /Bc ≪ 1. L’asymétrie des anomalies en fonction de la polarité du champ magnétique

indique la présence d’une asymétrie dans la croix de Hall affectant la trajectoire balistique

des électrons. Cette asymétrie peut être causée par un défaut dans les grilles électrostatiques

ou par des impuretés dans le gaz d’électrons.
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La conséquence de ces anomalies est importante. En effet, selon les figures 2.14 a) et

b), le magnétomètre est pratiquement insensible à un champ magnétique transverse dont

l’amplitude est inférieure à plusieurs dizaines de mT. Il est alors nécessaire de supprimer

ces anomalies. Une première solution revient à augmenter la température pour diminuer

la mobilité et le libre parcours moyen des électrons. Des mesures, non présentées par souci

de concision, montrent qu’une température de 100 K est nécessaire afin de supprimer les

anomalies balistiques. Avec une température de Curie au-dessus de 1000 K pour le fer

et le cobalt, une température de 100 K n’est pas trop élevée pour obtenir des propriétés

magnétiques des micro-aimants semblables aux propriétés à une température d’environ

10 mK. Par contre, une température de 100 K n’est pas compatible avec la co-intégration

des croix de Hall aux dispositifs de boîtes quantiques latérales requérant une température

de l’ordre de 1 K.

Une méthode de suppression des anomalies balistiques à basse température est présen-

tée à la figure 2.15. Les figures 2.15 a) et b) présentent respectivement la résistance de Hall

RH et la dérivée normalisée α en fonction du courant I injecté dans la croix de Hall. À faible

courant, les anomalies balistiques et l’effet Hall quantique sont tous deux présents. À un

courant intermédiaire d’environ 500 nA, l’effet Hall quantique est largement supprimé alors

que les anomalies balistiques sont toujours présentes. Pour un fort courant I = 5000 nA,

les anomalies balistiques sont également supprimées. Malgré ces changements importants,

la densité électronique n2D, déterminée à partir de la pente d’une régression linéaire de la

résistance de Hall, varie de moins de 3% en changeant le courant par plus de trois ordres

de grandeur.

Afin de quantifier la suppression de l’effet Hall quantique et des anomalies balistiques,

la figure 2.15 c) présente l’écart type relatif de α pour un intervalle de champ magnétique

BX
0 correspondant à l’effet Hall quantique et aux anomalies balistiques, en fonction de la

densité de courant J = I/w. L’effet hall quantique possède une densité de courant critique

d’environ 1 A/m, compatible avec la valeur obtenue à la référence [151]. Les anomalies

balistiques possèdent une densité de courant critique d’environ 10 A/m, soit dix fois plus

élevée que pour l’effet Hall quantique. Ceci démontre la nature bien distincte de ces deux

effets.

Une densité de courant d’environ 10 A/m est alors suffisante pour obtenir une réponse

linéaire du magnétomètre de Hall. La densité de courant pouvant être utilisée est par contre

limitée par une seconde anomalie provoquant un changement abrupte de la tension de

Hall mesurée survenant à une densité de courant de l’ordre de 10 A/m. Cette densité de
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Figure 2.15 – Suppression des anomalies balistiques à forte densité de courant.
a) Résistance de Hall RH et b) dérivée normalisée α en fonction du champ magnétique externe BX

0

pour le dispositif B avec Vg = −0.6 V. Le courant I dans la croix de Hall varie entre 4 nA (bleu)
à 5000 nA (rouge). Les lignes verticales en trait mixte indiquent le champ magnétique critique
±Bc = ±0.12 T. De plus, les régressions linéaires de RH sont indiquées par des lignes pointillées
noires alors que les lignes pointillées grises indiquent une résistance de Hall nulle. En b), les
données obtenues en diminuant et en augmentant le champ magnétique externe sont indiquées par
les lignes bleues à rouges et vertes, respectivement. c) Écart type relatif de la dérivée normalisée pour
1.0 T≤

∣
∣BX

0

∣
∣ ≤ 1.5 T (effet Hall quantique, carrés bleus à rouges), et −Bc ≤ BX

0 ≤ Bc (anomalies
balistiques, cercles bleus à rouges) en fonction de la densité de courant J = I/w calculée avec
w = 550 nm.
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courant critique dépend de la tension de grille Vg et du champ magnétique externe BX
0 .

L’origine de cette anomalie est actuellement inconnue. Pour la suite des mesures présentées

dans ce chapitre, le courant I est fixé de façon à supprimer les anomalies balistiques tout

en évitant l’anomalie à forte densité de courant.

2.3.3 Mesure de la courbe de magnétisation

Correction de la non-linéarité

Une forte densité de courant permet de grandement réduire l’amplitude des anomalies

balistiques ce qui permet d’obtenir un magnétomètre avec une réponse linéaire au champ

magnétique transverse. Par contre, comme l’illustre la figure 2.16 a), la dérivée normalisée α

varie tout de même de quelques pourcents en fonction du champ magnétique transverseBX
0 .

Il est possible de tenir compte de cette faible non-linéarité de la réponse du magnétomètre

en supposant que α dépend du champ magnétique transverse moyen BX
M(BZ

0 ) de la même

façon qu’elle dépend du champ magnétique externe, soit α(BX
0 ) = α(BX

M). Dans ce cas, le

champ magnétique transverse moyen créé par le micro-aimant est donné par

BX
M

(
BZ

0

)
=
en2DRH

(
BZ

0

)

α (BX
M)

. (2.11)

Cette équation transcendante est résolue numériquement par une méthode itérative. Le

champ magnétique transverse moyen BX
M,i à l’étape i est évalué à l’aide de l’équation (2.11)

avec α(BX
M,i−1). À partir de la condition initiale α(BX

M,0) = 1, le processus est répété jusqu’à

convergence.

La figure 2.16 b) présente le champ magnétique transverse moyen BX
M(BZ

0 ) créé par

le micro-aimant du dispositif B en fonction du champ magnétique externe parallèle BZ
0

et obtenu par la méthode itérative décrite précédemment. La figure 2.16 c) présente la

différence ∆BX
M(BZ

0 ) entre le champ transverse moyen obtenu par la méthode itérative et

celui obtenu en considérant α(0). Avec une correction de l’ordre de 1 mT pour un champ

moyen à saturationBX
M de l’ordre de 100 mT, une forte densité de courant est ainsi suffisante

pour obtenir un magnétomètre dont les corrections non linéaires ne sont que de l’ordre

de 1%. Ainsi, alors que la méthode itérative proposée permet de linéariser la réponse du

magnétomètre, celle-ci n’est pas nécessaire pour obtenir la courbe de magnétisation d’un

micro-aimant.
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Figure 2.16 – Correction des anomalies balistiques.
a) Dérivée normalisée α en fonction du champ magnétique perpendiculaire BX

0 pour le dispositif
B avec Vg = −0.6 V et I = 5000 nA. La ligne horizontale pointillée indique α = 1. b) Champ
magnétique transverse moyen BX

M en fonction du champ magnétique parallèle BZ
0 . À saturation,

le champ magnétique transverse moyen est donné par BX
M,sat. c) Différence ∆BX

M entre le champ
magnétique transverse moyen obtenu avec et sans corrections de la non-linéarité présentée en a).
Pour ces figures, les données obtenues en diminuant et en augmentant le champ magnétique externe
sont respectivement indiquées par les lignes bleues et vertes.

Courbes de magnétisation

Les figures 2.17 a) et b) présentent les courbes de magnétisation des micro-aimants

des dispositifs B et C. Comme mentionné plus tôt, le dispositif B possède un micro-aimant

de géométrie #2 d’un diamètre 2rmax = 440 nm pour une croix de Hall d’une largeur

nominale de 550 nm. Pour ce dispositif, le champ magnétique transverse moyen à saturation

BX
M = 95.4± 0.1 mT, ce qui correspond à un rapport signal sur bruit de plus de 1.6× 103

pour un temps d’intégration de 1 seconde à l’amplificateur synchrone. Ce rapport signal sur

bruit correspond à une sensitivité d’environ 60 µT/
√
Hz pour un micro-aimant possédant

un volume de seulement 0.03 µm3. La magnétométrie avec les croix de Hall électrostatiques

permet ainsi d’obtenir les propriétés de systèmes magnétiques de tailles nanométriques.

Finalement, l’encart de la figure 2.17 a) présente un agrandissement d’une portion de la

courbe de magnétisation permettant de voir le changement de magnétisation d’un domaine

magnétique du micro-aimant dont la courbe de magnétisation est largement déterminée

par l’anisotropie de forme.

Le dispositif C possède un micro-aimant de géométrie #3 avec un rapport d’aspect

L/2rmax = 18. Comme discuté plus loin, ce rapport d’aspect élevé crée un axe facile de

magnétisation, réduisant ainsi grandement le champ magnétique externe nécessaire afin
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Figure 2.17 – Courbes de magnétisation obtenues avec les croix de Hall électrostatiques.
a) Courbe de magnétisation BX

M(BZ
0 ) obtenue pour le dispositif B avec Vg = −0.6 V et I = 5000 nA.

Comme il est illustré, la géométrie du micro-aimant en FeCo correspond à la géométrie #2 avec
rmax = 220 nm, rmin = 150 nm, t = 300 nm et L/2rmax = 1. L’encart présente un agrandissement
d’une portion de la courbe de magnétisation délimitée par le rectangle pointillé. b) Courbe de
magnétisation BX

M(BZ
0 ) obtenue pour le dispositif C avec Vg = −0.6 V et I = 2000 nA. Comme il est

illustré, la géométrie du micro-aimant en FeCo correspond à la géométrie #3 avec rmax = 220 nm,
L = 8 µm, t = 300 nm et L/2rmax = 18. L’encart présente un agrandissement de la portion de la
courbe de magnétisation près de BZ

0 = 0 et délimitée par le rectangle pointillé. Pour ces figures, les
données obtenues en diminuant et en augmentant le champ magnétique externe sont respectivement
indiquées par les lignes bleues et vertes.
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de magnétiser le micro-aimant et la rémanence. De plus, la distance de 750 nm entre les

grilles pour le deuxième type de dispositifs résulte en un champ magnétique transverse à

saturation BX
M = 70.4± 0.6 mT inférieur à celui obtenu pour le premier type de dispositifs.

Anisotropie de forme

Comme il est discuté plus tôt, le deuxième type de dispositifs possède des micro-

aimants en FeCo de géométrie #3 avec différents ratios d’aspect L/2rmax variant entre 1 et

18. Les courbes de magnétisation des deux cas limites sont présentés aux figures 2.17 a) et

b). Les figures 2.18 a) et b) présentent respectivement les courbes de magnétisation et les

courbes d’hystérèse des micro-aimants pour différents ratios d’aspect L/2rmax. Comme il

est attendu, la création d’un axe facile de magnétisation par l’augmentation du rapport

d’aspect permet de diminuer le champ magnétique nécessaire pour magnétiser l’aimant et

augmenter la rémanence.

Afin de quantifier les propriétés magnétiques des micro-aimants de géométrie #3,

la figure 2.18 c) présente l’hystérèse maximale Max [rM] en fonction du rapport d’aspect

L/2rmax. Il est alors possible de voir que l’hystérèse maximale augmente linéairement avec

le rapport d’aspect. À partir d’une régression linéaire, il est possible de déterminer qu’un

rapport d’aspect supérieur à 40 est nécessaire pour atteindre la rémanence de 89% mesurée

pour un film mince de FeCo d’une épaisseur de 150 nm à l’aide d’un magnétomètre basé

sur un SQUID [118]. Une rémanence maximale de 39% est obtenue pour L/2rmax = 18. La

limite de la rémanence possible avec les micro-aimants en FeCo est actuellement inconnue.

L’anisotropie de forme est quantifiée par le facteur de démagnétisation DZ qui dépend

en général de l’orientation du champ magnétique externe par rapport au micro-aimant [153].

Par exemple, une sphère possède un facteur de démagnétisation de 1/3. Afin d’évaluer

ce facteur à partir des données présentées aux figures 2.18 a) et b), on évalue le champ

magnétique externe BZ
0 nécessaire pour changer la magnétisation du micro-aimant. Le

rapport de ce champ magnétique et de la magnétisation à saturation µ0M = 1.93 T du ma-

tériel ferromagnétique permet d’estimer le facteur de démagnétisationDZ . La figure 2.18 d)

montre que, comme il est attendu, plus le rapport d’aspect augmente, plus le facteur déma-

gnétisation diminue. Le facteur de démagnétisation est empiriquement ajustée à la loi de

puissance

DZ = DZ
1

(
L

2rmax

)−β

. (2.12)
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Figure 2.18 – Rémanence et facteur de démagnétisation des micro-aimants.
a) Courbes de magnétisation de micro-aimants en FeCo de géométrie #3 pour différents ratios
d’aspect L/2rmax entre 1 et 18. Les données obtenues en diminuant et en augmentant le champ
magnétique externe sont respectivement indiquées par les lignes bleues et vertes. b) Courbes
d’hystérèse rM obtenues à partir des données présentées en a). En a) et b), les différentes courbes sont
décalées verticalement par soucis de visibilité. Les lignes horizontales grises pointillées indiquent
la zéro de chaque courbe. c) Hystérèse maximale Max [rM] en fonction du rapport d’aspect L/2rmax

obtenue à partir des données présentées en b). La ligne pointillée indique une régression linéaire des
données, permettant de déterminer une pente de (2.1± 0.1)%. La ligne horizontale noire indique la
rémanence de 89% mesurée pour un film mince de FeCo d’une épaisseur t = 150 nm. d) Facteur de
démagnétisationDZ en fonction du rapport d’aspectL/2rmax obtenu à partir des données présentées
en b) (cercles bleus à rouges). Les facteurs de démagnétisation calculés à partir de l’expression
analytique de la référence [152] pour un micro-aimant rectangulaire sont également présentés
(carrés bleus à rouges). La ligne pointillée indique la régression des données à l’équation (2.12). La
ligne horizontale indique le facteur de démagnétisation DZ = 1/3 attendu pour une sphère.
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À partir de la régression, on obtient un facteur de démagnétisation pour un rapport d’aspect

unitaireDZ
1 = 0.33±0.03 et un exposant β = 1.3±0.2. La valeur deDZ

1 est en parfait accord

avec le facteur de démagnétisation d’une sphère DZ = 1/3. En effet, le micro-aimant avec

un rapport d’aspect unitaire, correspondant ainsi à la géométrie #2, possède une géométrie

près de celle d’une sphère.

Les facteurs de démagnétisation de micro-aimants rectangulaires ayant les même di-

mensions que les micro-aimants de géométrie #3, obtenus à partir de l’expression analytique

de la référence [152], sont également présentés à la figure 2.18 d). L’accord qualitatif entre les

données et ces résultats analytiques valide davantage les résultats obtenus. Ainsi, le champ

magnétique nécessaire pour magnétiser les micro-aimants est principalement déterminé

par l’anisotropie de forme. Comme il est démontré expérimentalement à la référence [154],

cette anisotropie de forme peut être utilisée afin de créer différentes configurations de

champs magnétiques inhomogènes BM(ρ) à partir de plusieurs micro-aimants de tailles

différentes. Finalement, malgré que le champ magnétique nécessaire pour magnétiser le

micro-aimant n’est qu’environ 0.02 T pour le micro-aimant ayant le rapport d’aspect le plus

élevé, la magnétisation n’est saturée que pour un champ magnétique d’environ 0.6 T.

2.3.4 Contrôle électrostatique de la croix de Hall

Les courbes de magnétisation présentées à la sous-section précédente démontrent la

possibilité d’utiliser les croix de Hall électrostatiques pour la magnétométrie de micro-

aimants de taille sous le micromètre avec un rapport signal sur bruit pouvant atteindre

plus de 103. Par contre, en fixant la tension de grille Vg, le contrôle électrostatique de la

croix de Hall n’a pas été explorée, et ces résultats peuvent, en principe, être obtenus à l’aide

des croix de Hall conventionnelles. Dans cette sous-section, le contrôle électrostatique de

la région d’intégration de la croix de Hall est utilisé afin d’obtenir des informations sur les

micro-aimants et les croix de Hall inaccessibles avec les croix de Hall conventionnelles.

La figure 2.19 a) présente, pour le dispositif B, la densité électronique n2D obtenue

à partir des mesures en champ magnétique perpendiculaire et la résistance de Hall à

saturation RH,sat obtenue à partir des mesures en champ magnétique parallèle. Comme

démontré plus tôt, la diminution de la tension de grille réduit la densité dans la croix de

Hall (figure 2.13), menant ainsi à une augmentation de la résistance de Hall à saturation.

Par contre, comme l’illustre la figure 2.3 c), en présence du champ magnétique inhomogène

BM(ρ) créé par le micro-aimant, le champ magnétique transverse moyen BX
M dépend aussi
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Figure 2.19 – Contrôle électrostatique de la région active de la croix de Hall.
a) Densité n2D (carrés bleus) et résistance de Hall à saturation RH (carrés rouges) en fonction de
la tension de grille Vg pour le dispositif B. b) Champ magnétique transverse moyen à saturation
BX

M en fonction de Vg pour les dispositifs A et B. c) Image par microscopie électronique à balayage
du dispositif B permettant de déterminer les dimensions du micro-aimant et la position relative
entre le centre du croisement de la croix de Hall (cercle noir) et le centre du micro-aimant (cercle
blanc). d) Champ magnétique transverse moyen à saturation BX

M en fonction de la largeur effective
weff de la croix de Hall calculé à partir des simulations magnétostatiques pour les dispositifs A et B.
e) Largeur effective weff en fonction de la tension de grille Vg pour les dispositifs A et B. Les lignes
pleines indiquent les régressions linéaires. La largeur effective déterminée à partir des simulations
électrostatiques est identifiée par une ligne pointillée noire.

de la taille de la région d’intégration de la croix de Hall selon l’équation (2.3). Ainsi, une

variation du champ magnétique transverse moyen en fonction de la tension de grille

démontre l’inhomogénéité du champ magnétique du micro-aimant ainsi qu’une variation

de la largeur effective weff de la croix de Hall.

La figure 2.19 b) présente, pour les dispositifs A et B, le champ magnétique transverse

moyen à saturationBX
M , calculé à partir de la densité électronique n2D ainsi que la résistance

de Hall à saturation RH en fonction de la tension de grille Vg. Le champ magnétique

transverse moyen augmente ainsi en diminuant la tension de grille, ce qui montre que

l’augmentation de RH à la figure 2.19 a) n’est pas complètement causée par une diminution

de n2D. Cette observation démontre que le champ magnétique créé par le micro-aimant est

inhomogène et que la tension de grille affecte la région d’intégration du magnétomètre de

Hall.
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Afin de vérifier que les résultats obtenus sont cohérents avec le champ magnétique

inhomogène BM(ρ) simulé avec Radia, le champ magnétique transverse moyen à saturation

BX
M est calculé à partir de l’équation (2.3) en fonction de la largeur effective weff de la croix

de Hall. Les dimensions du micro-aimant et la position relative entre le micro-aimant et

la croix de Hall sont déterminées à partir d’une image par microscopie électronique à

balayage du dispositif (figure 2.19 c). La figure 2.19 d) présente BX
M en fonction de weff pour

les dispositifs A et B.

La figure 2.19 e) combine les figures 2.19 b) et d) afin d’obtenir la largeur effective

weff de la croix de Hall en fonction de la tension de grille Vg pour les dispositifs A et B.

Une première observation est que la largeur effective weff est légèrement inférieure à la

distance w = 550 nm entre les grilles électrostatiques. Une seconde observation importante

est que les données des deux dispositifs coïncident. Ainsi, la différence entre les champs

magnétiques transverses moyens à saturation des deux dispositifs nominalement iden-

tiques à la figure 2.19 b) s’explique complètement par une différence dans l’alignement

du micro-aimant d’environ 40 nm selon les images par microscopie électronique à ba-

layage. Ceci démontre que les propriétés magnétiques des micro-aimants et les propriétés

électrostatiques des croix de Hall sont très reproductibles. De plus, le champ magnétique in-

homogène est utilisé afin d’évaluer la largeur effective de la croix de Hall avec une précision

nanométrique.

Finalement, la largeur de la croix de Hall évaluée à partir des simulations électrosta-

tiques de la figure 2.11 d) est également présentée à la figure 2.19 e). L’accord entre ces

simulations et la largeur effective weff obtenue à partir des données expérimentales et des si-

mulations magnétostatiques des micro-aimants démontre que ces simulations représentent

bien le champ magnétique créé par le micro-aimant. Ainsi, l’évaluation des différences

de champs magnétiques effectuée à la section 1.3 pour le couplage entre un spin unique

et un résonateur à partir des simulations magnétostatiques peut être considérée comme

quantitative.
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2.4 Impact des travaux

Un premier impact important des travaux présentés dans ce chapitre est la possibi-

lité d’effectuer la magnétométrie de dispositifs magnétiques de taille sous le micromètre

avec une grande précision. Cette méthode de magnétométrie de micro-aimants a permis

d’explorer les propriétés magnétiques de différentes géométries de micro-aimants. Ceci

a permis de déterminer les conditions d’opérations des dispositifs de boîtes quantiques

incorporant des micro-aimants. De plus, le développement de micro-aimants avec une forte

rémanence permet potentiellement de développer une architecture où un qubit de spin

est opéré en l’absence d’un champ magnétique externe en utilisant seulement le champ

magnétique local créé par le micro-aimant [154]. Cette démonstration est probablement

nécessaire à la co-intégration de qubits de spin et de qubits supraconducteurs dans un

même dispositif hybride [30].

Un deuxième impact provenant de la démonstration de la magnétométrie à l’aide de

croix de Hall électrostatiques provient de l’aspect pratique de cette approche. En effet, il est

possible de co-intégrer les croix de Hall aux dispositifs de boîtes quantiques sans aucunes

modifications sur les étapes de fabrications. En effet, les croix de Hall présentés dans cette

thèse ont été fabriqués sur la même puces que des dispositifs de boîtes quantiques. Cette

co-intégration permet d’obtenir les propriétés magnétiques des micro-aimants fabriqués

en même temps que ceux utilisés avec les dispositifs de boîtes quantiques. Ceci est perti-

nent, par exemple, pour des micro-aimant fabriqués dans des matériaux ferromagnétiques

comme le FeCo, où les propriétés magnétiques varient d’un dépôt à l’autre mais sont

très reproductibles pour un même dépôt. Il est alors possible de rapidement déterminer

la qualité des micro-aimants à l’aide des techniques expérimentales présentées dans ce

chapitre.

Un troisième impact de ces travaux porte sur le contrôle électrostatique des croix de Hall.

Ce contrôle électrostatique a permis de confirmer que les simulations magnétostatiques des

micro-aimants sont quantitatives tel que démontré à la référence [155]. Ainsi, les simulations

magnétostatiques peuvent être utilisés comme outil prédictif des champs magnétiques

inhomogènes utilisés pour effectuer l’ingénierie des couplages spin-résonateurs présentés

au premier chapitre.
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Chapitre 3

Résonateurs supraconducteurs pour les

dispositifs hybrides

Le couplage entre un spin unique et un résonateur supraconducteur requiert trois

composantes : une double boîte quantique pour piéger un électron unique et fournir

le dipôle électrique, un ou plusieurs micro-aimants pour créer un champ magnétique

inhomogène et un résonateur supraconducteur. Les deux premiers chapitres portent sur ces

deux premières composantes. Dans ce chapitre, la réalisation expérimentale de résonateurs

supraconducteurs compatibles avec les contraintes expérimentales données par les autres

composantes du système est considérée. Dans la première section, les aspects essentiels de

la théorie de la supraconductivité et des résonateurs supraconducteurs sont présentés. Dans

une deuxième section, les aspects expérimentaux, allant de la conception des résonateurs

aux montages expérimentaux utilisés pour les caractériser, sont discutés. La troisième

section présente différents résultats expérimentaux permettant de démonter, entre autres,

la réalisation de résonateurs supraconducteurs sur un substrat de GaAs dans un champ

magnétique externe de plus de 1 T avec une largeur de raie inférieure à 1 MHz.

99
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3.1 Éléments de théorie

3.1.1 Concepts de base de la supraconductivité

Un matériau supraconducteur possède une température critique Tc sous laquelle ce

dernier devient supraconducteur. La supraconductivité est caractérisée par l’absence de

résistance électrique et un diamagnétisme parfait, soit l’expulsion complète d’un champ

magnétique externe par effet Meissner [156]. Les matériaux supraconducteurs convention-

nels sont décrits par la théorie de Bardeen, Cooper et Schrieffer (théorie BCS) qui prédit,

entre autres, une bande interdite 2∆(0) à température nulle donnée par [157]

∆(0) = 1.764kBTc. (3.1)

Il existe deux types (I et II) de supraconducteurs selon le paramètre de Ginzburg-Landau

κ. Le paramètre κ correspond au rapport entre la longueur de pénétration λ d’un champ

magnétique dans le supraconducteur et la longueur de cohérence ξ d’une paire de Cooper,

soit κ = λ/ξ. Pour κ < 1/
√
2, le supraconducteur est de type I alors que pour κ > 1/

√
2, le

supraconducteur est de type II [156].

Un supraconducteur de type I possède un champ magnétique critique correspondant

au champ magnétique critique thermodynamique Bc donné par

Bc =
Φ0

2
√
2πλξ

, (3.2)

où Φ0 = h/2e est le quantum de flux [158]. Pour un champ magnétique B supérieur à Bc, la

supraconductivité est brisée dans le matériau. La figure 3.1 a) présente schématiquement le

diagramme de phase d’un supraconducteur de type I. Un exemple de supraconducteur de

type I est l’aluminium, avec une température critique Tc = 1.14 K et un champ magnétique

critique thermodynamique Bc = 10.5 mT [87].

Un supraconducteur de type II possède deux champs magnétiques critiques. Pour un

champ magnétique B inférieur au premier champ magnétique critique Bc1 donné par

Bc1 ≈ Bc ln(κ)/
√
2κ, (3.3)

le matériau est dans l’état supraconducteur [156]. Pour B supérieur à Bc1, mais inférieur à
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Figure 3.1 – Diagrammes de phase d’un supraconducteur de type I et II.
a) Représentation schématique du diagramme de phase d’un matériau supraconducteur de type I.
L’amplitude du champ magnétique critique thermodynamique Bc(T ) diminue en augmentant la
température T , avecBc(0) ≡ Bc etBc(Tc) ≡ 0. Pour une amplitude du champ magnétique externeB
inférieure (supérieure) àBc, le matériau est dans l’état supraconducteur (normal). b) Représentation
schématique du diagramme de phase d’un matériau supraconducteur de type II. L’amplitude des
champs magnétiques critiques inférieur Bc1(T ) et supérieur Bc2(T ) diminue en augmentant la
température T , avec Bc1,2(0) ≡ Bc1,2 et Bc1,2(Tc) ≡ 0. Pour une amplitude du champ magnétique
externe B inférieure (supérieure) à Bc1(2), le matériau est dans l’état supraconducteur (normal).
Pour Bc1 < B < Bc2, le matériau est dans l’état mixte. Le champ critique thermodynamique Bc

correspond approximativement à la moyenne géométrique des champs critiques Bc1 et Bc2 avec
Bc ≈

√
Bc1Bc2/ ln(κ).

un second champ magnétique critique Bc2 donné par

Bc2 =
√
2κBc, (3.4)

le matériau est dans un état mixte composé de paires de Cooper et de vortex d’Abrikosov.

Un vortex d’Abrikosov est composé d’un courant de paires de Cooper de taille ∼ λ autour

d’un cœur normal de taille ∼ ξ et possède un flux égal au quantum de flux Φ0 = h/2e [156].

PourB > Bc2, le matériau est dans l’état normal. La figure 3.1 b) présente schématiquement

le diagramme de phase d’un supraconducteur de type II. Un exemple de supraconducteur

de type II est le niobium, avec une température critique Tc = 9.5 K et un champ magnétique

critique thermodynamique Bc = 198 mT [87].

Généralement, pour un même matériau supraconducteur, les longueurs de pénétration

λ et de cohérence ξ pour une couche mince sont différentes que pour un échantillon massif

pur. En particulier,

λ = λL

√

1 +
ξ0
ℓe
,

1

ξ
=

1

ξ0
+

1

ℓe
(3.5)
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où ℓe est le libre parcours moyen dans l’état normal, λL est la longueur de pénétration de

London et ξ0 est la longueur de cohérence de Pippard [156]. Ainsi, lorsqu’on réduit le libre

parcours moyen ℓe en diminuant par exemple l’épaisseur t du film mince supraconducteur,

la longueur de pénétration λ augmente, alors que la longueur de cohérence ξ diminue. À

titre d’exemple, l’aluminium massif pur possède une longueur de London λL = 16 nm et

une longueur de cohérence ξ0 = 1600 nm, ce qui correspond ainsi à un supraconducteur

de type I avec κ = 0.01 ≪ 1/
√
2 1. Pour le niobium, λL = 39 nm et ξ0 = 38 nm, ce qui

correspond ainsi à un supraconducteur de type II avec κ = 1.03 > 1/
√
2 [87].

Les longueurs de pénétration λ et de cohérence ξ dépendent de la température. Plus

précisément, la longueur de pénétration λ(T ) dépend de la température T selon [156, 159]

λ(T ) = λ(0)

[
∆(0)

∆(T )
coth

(
∆(T )

2kBT

)]1/2

, (3.6)

où la bande interdite 2∆(T ) est donnée par [160]

∆(T ) = ∆(0) cos

[

π

2

(
T

Tc

)2
]1/2

. (3.7)

Cette dépendance en température de la longueur de pénétration est utilisée afin d’expliquer

le comportement en température de la fréquence des résonateurs supraconducteurs.

3.1.2 Résonateurs supraconducteurs de type guide d’ondes coplanaire

Les figures 3.2 a) et b) présentent schématiquement un résonateur supraconducteur

de type guide d’ondes coplanaire. Le résonateur est composé d’un film mince d’un maté-

riau supraconducteur d’une épaisseur t déposé sur un substrat diélectrique de constante

diélectrique ǫr et d’une épaisseur h. Le conducteur central d’une largeur w est séparé des

mises à la terre par un espace d’une largeur s. La longueur ℓr du guide d’ondes définie la

fréquence angulaire ωr du mode fondamental du résonateur qui correspond à la moitié

d’une longueur d’onde. Les conditions frontières d’un résonateur λ/2 sont telles que le

champ électrique est maximal aux extrémités du résonateur (figure 3.2 b). Comme discuté

plus loin, le résonateur est couplé de façon capacitive à deux guides d’ondes, ce qui permet

de connecter le résonateur aux instruments de mesure.

1. Selon les équations (3.5), l’aluminium devient un supraconducteur de type II pour ℓe < 100 nm.
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Figure 3.2 – Schéma d’un résonateur de type guide d’ondes coplanaire.
a) Schéma d’un résonateur de type guide d’ondes coplanaire. Un film mince d’un matériau supra-
conducteur d’une épaisseur t est déposé sur un substrat diélectrique d’épaisseur h et de constante
diélectrique relative ǫr. Un conducteur central d’une largeurw est séparé par un espace d’une largeur
s des mises à la terre. b) Schéma d’un résonateur de type guide d’ondes coplanaire d’une longueur
ℓr couplé de façon capacitive à un port d’entrée (bleu) et de sortie (rouge) avec un coefficient de
couplage donné par κinr et κoutr , respectivement. Les pertes internes du résonateur sont caractérisées
par un coefficient de pertes donné par κintr (vert). Le champ électrique du mode fondamental est
schématisé par les flèches noires.

Capacité et inductance

Pour un substrat diélectrique beaucoup plus épais que la taille caractéristique du

résonateur, soit h≫ w, la constante diélectrique effective ǫeff d’un guide d’ondes coplanaire

est donné par [161]

ǫeff =
ǫr + 1

2
. (3.8)

La capacité et l’inductance magnétique par unité de longueur C et Lm sont respectivement

données par [161, 162]

C = 4ǫ0ǫeff
K(k)

K(k′)
, Lm =

µ0

4

K(k′)

K(k)
, (3.9)

où ǫ0 et µ0 sont respectivement la permittivité électrique et la perméabilité magnétique du

vide et K(k) est l’intégrale elliptique complète de première espèce définie par

K(k) ≡
∫ 1

0

dx
[(
1− x2

) (
1− (kx)2

)]−1/2
, (3.10)

et où

k =
w

w + 2s
, k′ =

√
1− k2. (3.11)
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L’inductance possède, en plus de la composante magnétiqueLm, une composante provenant

de l’inductance cinétique. Celle-ci peut être significative pour un résonateur supraconduc-

teur. L’inductance cinétique par unité de longueur LK est donnée par [162]

LK = µ0
λ2

wt
g(w, s, t), (3.12)

où g(w, s, t) est un facteur géométrique de remplissage donné pour un guide d’ondes

coplanaire par

g(w, s, t) =
1

2k2K2(k)

[

ln

(
t

4(w + 2s)

){

− ln

(
t

4w

)

− k

}

+
2(w + s)

w + 2s
ln

(
s

w + s

)]

.

(3.13)

Ces deux composantes de l’inductance s’additionnent afin de donner l’inductance par

unité de longueur totale L = Lm + LK. L’inductance cinétique LK est la seule composante

qui dépend directement de l’épaisseur t et des propriétés du matériau supraconducteur

via la longueur de pénétration λ. Le rapport de l’inductance cinétique et de l’inductance

totale α ≡ LK/(Lm+LK) permet de quantifier, par exemple, la contribution de l’inductance

cinétique à la fréquence du résonateur.

Impédance caractéristique et fréquence angulaire

L’impédance caractéristique Z0 du résonateur est donnée par [163]

Z0 =

√

Lm + LK

C
. (3.14)

En négligeant l’inductance cinétique, l’impédance caractéristique est donnée par

Z0 =
1

4

√
µ0

ǫ0ǫeff

K(k′)

K(k)
. (3.15)

La fréquence angulaire ωr du mode fondamental d’un résonateur λ/2 est donnée par [163]

ωr =
π

ℓr
√

(Lm + LK)C
. (3.16)

Ainsi, par rapport à un oscillateur LC standard, la fréquence angulaire du résonateur λ/2

de type guide d’ondes coplanaire est d’un facteur π plus élevée pour une même capacité

totale ℓrC et inductance totale ℓrL. La fréquence angulaire des modes supérieurs d’indice n
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est donnée simplement par

ω(n)
r = nωr, (3.17)

avec ω(1)
r ≡ ωr.

Effet d’un champ magnétique transverse

La fréquence du résonateur dépend du champ magnétique transverse selon deux

mécanismes distincts [164, 165]. Premièrement, la présence de vortex d’Abrikosov augmente

localement l’inductance cinétique et réduit ainsi la fréquence du résonateur. Puisque les

vortex peuvent être piégés dans des défauts du film supraconducteur, la contribution à

l’inductance cinétique provenant des vortex possède généralement une forte hystérèse. Il

est de plus important de noter que les vortex peuvent pénétrer dans le résonateur lorsque

le champ magnétique est inférieur au champ magnétique critique inférieur Bc1 [166, 165].

Ainsi, Bc1 n’est pas le champ magnétique caractéristique de l’effet d’un champ magnétique

transverse sur un résonateur supraconducteur.

Un deuxième mécanisme qui influence la fréquence du résonateur provient de l’aug-

mentation de l’inductance cinétique causée par les courants de Meissner circulant dans le

film supraconducteur dans un champ magnétique transverse B0 = BX
0 X. Ce mécanisme

mène à une diminution quadratique de la fréquence angulaire du résonateur selon

ωr(B
X
0 ) = ωr(0)

(

1− α

(
BX

0

Bm

)2
)

, (3.18)

oùBm est un champ magnétique caractéristique qui ne dépend pas fortement de la tempéra-

ture [167, 168, 164] et qui dépend fortement de la géométrie du résonateur [166, 165]. Ainsi,

malgré que le champ critique supérieurBc2 d’un supraconducteur de type II augmente avec

la longueur de pénétration λ selon l’équation (3.4), la fréquence d’un résonateur fabriqué

d’un supraconducteur de longueur de pénétration plus grande est plus sensible à un champ

magnétique transverse.

Pertes externes et internes

Les pertes du résonateur sont caractérisées par une largeur de raie κr qui découle de

deux contributions. Une première contribution provient du couplage capacitif du résona-

teur aux guides d’ondes d’entrée (de sortie) caractérisé par un taux de couplage donné
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par

κin(out)r =
4Z2

0C
2
in(out)ω

3
r

π
, (3.19)

où Cin(out) est la capacité du condensateur d’entrée (de sortie) [169]. Cette contribution à

la largeur de raie du résonateur est donnée par κextr = κinr + κoutr . Puisque ces pertes se

dirigent vers les guides d’ondes coplanaires connectés aux instruments de mesure, elles

sont considérés comme externes au résonateur.

Une seconde contribution à la largeur de raie du résonateur provient des pertes internes

causées par différents mécanismes [163]. Pour un dispositif hybride qui permet de réaliser

un couplage spin-résonateur à une température T ≪ Tc, les deux contributions les plus

importances à ces pertes sont les pertes diélectriques et les pertes associées à la présence

de vortex. Les pertes diélectriques sont caractérisées par la tangente de l’angle de pertes

δ donnée par tan δ = ǫ′r/ǫr, où ǫ = ǫ0 (ǫr + iǫ′r) est la constante diélectrique complexe

du substrat diélectrique [163]. La contribution à la largeur de raie provenant des pertes

diélectriques est alors donnée par

κdr = tan δ ωr. (3.20)

Puisque le cœur d’un vortex d’Abrikosov est dans l’état normal, son déplacement

dans un résonateur fabriqué dans un matériau supraconducteur de type II cause de la

dissipation [170, 171]. Ces pertes contribuent ainsi à la largeur de raie et peuvent être

minimisées par l’ingénierie des résonateurs supraconducteur [172, 173, 174, 175, 165].

Les différents mécanismes de pertes internes s’additionnent selon

κintr = κdr + κvr + · · · , (3.21)

où · · · dénote d’autres sources de pertes. La largeur de raie totale du résonateur est alors

donnée par

κr = κextr + κintr = κinr + κoutr + κintr . (3.22)

Alors que les pertes externes sont nécessaires pour sonder le résonateur, les pertes internes

doivent être minimisées. Pour des pertes internes données par κintr , le résonateur est en

régime sous-couplé pour κextr < κintr ou sur-couplé pour κextr > κintr [59]. Le nombre moyen
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de photons nr dans le résonateur pour une puissance de sonde Pa au port d’entrée est

calculé à partir du coefficient de couplage du port d’entrée κinr et de la largeur de raie κr
selon

nr =
Pa

~ωr

κinr
(κr/2)2

. (3.23)

Cette expression peut être utilisée afin de calculer la puissance de sonde nécessaire pour

avoir en moyenne un seul photon dans le résonateur. Par exemple, pour un résonateur de

fréquence ωr/2π = 6 GHz avec une largeur de raie κr/2π = κinr /2π = 1 MHz, la puissance

de sonde équivalente à un photon en moyenne est de −142 dBm ou 6.2 aW.

Coefficients de transmission et de réflexion

Le coefficient de transmission t(ωa) entre les ports d’entrée et de sortie du résonateur

pour un signal de fréquence angulaire ωa est donné par

t(ωa) =

√

κinr κ
out
r

i (ωa − ωr)− κr/2
. (3.24)

Comme illustré à la figure 3.3 a), l’amplitude du coefficient de transmission |t(ωa)|2 est

alors décrite par une fonction lorentzienne d’amplitude positive avec |t(ωa)|2 → 0 pour

|ωa − ωr| ≫ κr. On observe qu’une mesure en transmission ne permet pas de déterminer

indépendamment les coefficients de couplage d’entrée et de sortie. Par ailleurs, le régime

sous-couplé avec κin,outr ≪ κintr permet de déterminer les pertes internes directement à partir

de la largeur de raie κr du résonateur.

Quant à lui, le coefficient de réflexion r(ωa) du port d’entrée (de sortie) du résonateur

sondé à la fréquence angulaire ωa est donné par

r(ωa) =
i (ωa − ωr)− (κintr − κ

in(out)
r + κ

out(in)
r )/2

i (ωa − ωr)− κr/2
. (3.25)

Comme illustré à la figure 3.3 b), l’amplitude du coefficient de réflexion |r(ωa)|2 est décrite

par une fonction lorentzienne d’amplitude négative avec |r(ωa)|2 → 1 pour |ωa − ωr| ≫ κr.

Notamment, du point de vue de la mesure, les pertes au port de sortie (d’entrée) sont

équivalentes aux pertes internes pour une mesure en réflexion du port d’entrée (de sortie),

puisque le signal sortant par ce port n’est pas mesuré.
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Figure 3.3 – Amplitude des coefficients de transmission et de réflexion.
a) Amplitude |t(ωa)|2 du coefficient de transmission en fonction de la fréquence de sonde ωa/2π.
L’amplitude est maximale lorsque la fréquence de sonde est résonante avec la fréquence du réso-
nateur ωr/2π (ligne verticale pointillée), ce qui correspond à une amplitude donnée par les pertes
d’insertion de Max[|t(ωa)|2] = 4κinr κ

out
r /κ2r (ligne horizontale pointillée). La largeur à mi-hauteur

correspond à la largeur de raie κr/2π du résonateur. b) Amplitude |r(ωa)|2 du coefficient de réflexion
du port d’entrée (de sortie) en fonction de la fréquence de sonde ωa/2π (ligne pleine rouge et rouge
foncé, respectivement). L’amplitude est minimale lorsque la fréquence de sonde est résonante avec
la fréquence du résonateur ωr/2π (ligne verticale pointillée), ce qui correspond à une amplitude don-
née par Min[|r(ωa)|2] = (κintr − κ

in(out)
r + κ

out(in)
r )2/κ2r (lignes horizontales pointillées rouge et rouge

foncé, respectivement). La largeur à mi-hauteur correspond à la largeur de raie κr/2π du résonateur.
Pour ces figures, ωr/2π = 6 GHz, κintr /2π = 0.5 MHz, κinr /2π = 0.5 MHz et κoutr /2π = 2 MHz.

3.2 Aspects expérimentaux

3.2.1 Conception et fabrication des résonateurs supraconducteurs

Comme discuté aux chapitres 1 et 2, un gaz d’électrons dans une hétérostructure de

GaAs/AlGaAs est utilisé pour définir une double boîte quantique. Les résonateurs su-

praconducteurs sont donc conçus et fabriqués de façon à ce qu’ils soient compatibles aux

dispositifs hybrides qui permettent le couplage spin-résonateur dans une hétérostructure

de GaAs/AlGaAs. En particulier, à des fins de caractérisation, les résonateurs sont fabri-

qués sur un substrat de GaAs non dopé pour reproduire l’environnement diélectrique des

dispositifs hybrides. De plus, afin de pouvoir appliquer un champ magnétique externe de

l’ordre de 1 T sur le résonateur, le niobium, un matériau supraconducteur de type II, est

utilisé.
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Figure 3.4 – Impédance et fréquence d’un résonateur de type guide d’ondes coplanaire.
a) Impédance caractéristique Z0, calculée en l’absence de l’inductance cinétique, d’un résonateur de
type guide d’ondes coplanaire fabriqué sur un susbtrat de GaAs (ligne bleue, ǫr = 12.9) et de Si (ligne
rouge, ǫr = 11.7) en fonction du rapport w/s entre la largeur w du conducteur central et l’espace
de largeur s avec les mises à la terre. L’encart présente un agrandissement autour de Z0 = 50 Ω
(ligne horizontale pointillée). b) Impédance caractéristique Z0 (lignes pointillées) et fréquence ωr/2π
(lignes pleines) du résonateur en fonction de la longueur de pénétration à température nulle λ(0)
d’un film mince supraconducteur d’épaisseur t = 20 nm (lignes bleues) et t = 200 nm (lignes
rouges) et de longueur ℓr = 6 mm. La largeur du conducteur central w et l’espace de largeur s
sont fixés à 10 µm et 6.8 µm respectivement afin d’obtenir Z0 = 50 Ω (ligne horizontale pointillée)
pour λ(0) = 0. La longueur de pénétration de London λL(0) = 39 nm du niobium massif pur est
indiquée par une ligne verticale pointillée.

Conception des résonateurs supraconducteurs

L’impédance caractéristique Z0 du résonateur est fixée à 50 Ω en ajustant le rapport

entre la largeurw du conducteur central et l’espace s avec les mises à la terre. La figure 3.4 a)

présente Z0 calculée selon l’équation (3.15) en fonction du rapport w/s en considérant la

constante diélectrique du GaAs et du Si. En l’absence de l’inductance cinétique, un rapport

w/s = 1.48 est nécessaire pour obtenir une impédance de 50 Ω pour un résonateur fabriqué

sur un substrat de GaAs. Le même rapport d’aspect résulte en une impédance d’environ

52 Ω sur un substrat de Si.

Bien que la valeur de 50 Ω est habituellement utilisée, il est possible d’utiliser une

impédance plus élevée pour augmenter l’amplitude δV des fluctuations du vide de la

tension du mode fondamental du résonateur selon l’équation (1.61) (voir les références [116,

46, 47], par exemple). Il est par contre nécessaire d’utiliser un rapport d’aspect w/s ≪ 1

pour obtenir un gain significatif sur δV ∝ √
Z0. Il est de plus possible d’augmenter Z0 en

réduisant l’épaisseur t du film mince pour augmenter le rapport λ/t (figure 3.4 b).
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La longueur ℓr du résonateur est ajustée pour obtenir la fréquence angulaire ωr désirée.

Selon les équations (3.12) et (3.16), la longueur de pénétration à température nulle λ(0) du

matériau supraconducteur affecte la fréquence du résonateur par l’entremise de l’induc-

tance cinétique. La figure 3.4 b) présente la fréquence du résonateur ωr/2π en fonction de

λ(0) pour deux épaisseurs t du film mince supraconducteur. Ainsi, il est possible d’obtenir

un résonateur de plus basse fréquence pour une même longueur ℓr en diminuant l’épais-

seur t par rapport à la longueur de pénétration λ(0). Par exemple, pour une longueur de

pénétration λ(0) = 100 nm, ωr/2π ≈ 6 GHz est possible pour ℓr = 6 mm avec t = 20 nm.

Pour t = 200 nm, une longueur du résonateur ℓr d’environ 9 mm est nécessaire pour obtenir

la même fréquence. Il est par contre important de noter que la longueur de pénétration

effective d’un film mince supraconducteur est augmentée par rapport à la valeur pour un

matériau massif pur [156, 176]. À la sous-section 3.3.2, la longueur de pénétration λ(T ) de

films minces de niobium est déterminée à partir de la dépendance en température de la

fréquence de résonateurs supraconducteurs.

Fabrication des résonateurs supraconducteurs en niobium sur GaAs

Un procédé de photolithographie est utilisé pour fabriquer les résonateurs supracon-

ducteurs en niobium sur un substrat de GaAs non dopé. Le niobium est déposé sur le

GaAs par évaporation par faisceau d’électrons à une pression entre 1× 10−9 et 5× 10−9 torr

et à un taux de 0.7 nm/sec. L’évaporation par faisceau d’électrons permet d’utiliser une

procédé de soulèvement dans une approche ascendante (bottom-up), où le niobium est

déposé seulement aux endroits nécessaires. Cette approche contraste avec une approche

descendante (top-down), où le niobium est déposé sur tout le substrat. Dans cette approche,

une gravure du niobium est ensuite utilisée pour définir le résonateur. L’utilisation d’une

approche ascendante est importante pour l’incorporation de résonateurs supraconduc-

teurs en niobium à des boîtes quantiques dans une hétérostrcuture de GaAs/AlGaAs. En

effet, la gravure du niobium n’étant pas sélective au GaAs, elle risque fortement d’endom-

mager le gaz d’électrons sous l’hétérostructure de GaAs/AlGaAs lors de la gravure du

niobium [177].

La figure 3.5 a) présente une photo au microscope optique d’un résonateur en niobium

fabriqué sur un substrat de GaAs. Le résonateur est couplé de façon capacitive aux guides

d’ondes des ports d’entrée et de sortie par des condensateurs de couplage (figure 3.5 b).
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Figure 3.5 – Photo d’un résonateur en niobium sur un substrat de GaAs.
a) Photo au microscope optique d’un résonateur de type guide d’ondes coplanaire en niobium
fabriqué sur un substrat de GaAs. Le résonateur est couplé de façon capacitive aux guides d’onde
coplanaires d’entrée et de sortie par deux condensateurs coplanaires. Deux micro-fils sont utilisés
pour sonder le transport électrique dans le film supraconducteur, ce qui permet, par exemple, de
déterminer le champ magnétique critique supérieur Bc2. b) Condensateur de couplage composé
d’un espace d’environ 3 µm entre le résonateur et le guide d’ondes coplanaire du port de sortie, ce
qui résulte en une capacité Cout ≈ 0.5 fF.

3.2.2 Porte-échantillon pour les dispositifs hybrides

Description du porte-échantillon et du boîtier de connexion

Les guides d’ondes d’entrée et de sortie couplés de façon capacitive au résonateur

sont connectés à un porte-échantillon permettant d’interfacer le résonateur aux lignes

micro-ondes d’un réfrigérateur à dilution, par exemple. Les figures 3.6 a) à c) présentent

le porte-échantillon conçu spécialement pour des dispositifs hybrides composés d’un

résonateur supraconducteur et de boîtes quantiques. Le porte-échantillon est constitué

d’un circuit imprimé sur un substrat de céramique sur lequel une couche de cuivre plaquée

avec de l’or permet de définir les différents chemins de conduction. Les six ports micro-

ondes sont constitués de guides d’ondes coplanaires d’impédance de 50 Ω 2. Les trente-huit

ports basses fréquences permettent d’appliquer, par exemple, des tensions continues sur les

grilles électrostatiques des boîtes quantiques. Le circuit imprimé est vissé sur une plaque de

cuivre sur laquelle le dispositif est collé. Le dispositif est connecté électriquement au porte-

échantillon par des micro-soudures aux différents ports micro-ondes et basses fréquences 3.

2. La conception du circuit imprimé a été réalisée en collaboration avec Toyofumi Ishikawa du groupe de
Yasunobu Nakamura à The University of Tokyo.

3. La plaque de cuivre et le circuit imprimé forment le porte-échantillon et ne peuvent pas être séparés
sans briser les micro-soudures. Si le dispositif n’est pas fonctionnel, le porte-échantillon peut être réutilisé en
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Figure 3.6 – Porte-échantillons pour les dispositifs hybrides.
a) Photo d’un porte-échantillon composé d’un circuit imprimé et d’une plaque de cuivre. Le circuit
imprimé est composé d’un substrat de céramique (Rogers Corporation TMM10i) d’une constante
diélectrique ǫr = 9.8 et d’une épaisseur de 0.38mm avec une couche de 17 µm de cuivre plaqué avec 4
à 5 µm d’or. Le placage en or est non magnétique. Des connecteurs de type SMP (Rosenberger 19S102-
40ML5, 0 à 40 GHz) sont soudés sur le circuit imprimé aux six ports micro-ondes du circuit imprimé.
Deux connecteurs (Sullins Connector Solutions SMH100-LPSE-S20-ST-BK) sont également soudés
aux deux sous-ensembles de dix-neuf ports basses fréquences. b) Photo d’un porte-échantillon
montrant un dispositif qui comporte un résonateur supraconducteur et deux micro-fils connectés
par micro-soudure aux différents ports micro-ondes et basses fréquences du circuit imprimé. Des
trous d’interconnexion présents dans le plan de mise à la terre du circuit imprimé assure une bonne
connectivité. c) Boîtier de connexion permettant de connecter les connecteurs de type SMP du circuit
imprimé (vue de dessous). Des adaptateurs de type SMP à SMA (Rosenberger 19K132-K00D3, 0 à
26.5 GHz) sont utilisés pour connecter facilement le boîtier de connexion au réfrigérateur à dilution,
par exemple (vue de dessus).

La mise à la terre du porte-échantillon, contenant plusieurs trou d’interconnexion afin

d’améliorer la connectivité, est connecté au plan de la mise à la terre du dispositif par de

multiples micro-soudures.

Un boîtier de connexion est utilisé pour se connecter aux connecteurs micro-ondes

de type SMP soudés sur le circuit imprimé (figure 3.6 c) et qui fonctionnent jusqu’à une

fréquence de 40 GHz. Les connecteurs micro-ondes à la sortie du boîtier de connexion

sont de type SMA et peuvent ainsi être connectés directement, par exemple, aux lignes

micro-ondes du réfrigérateur à dilution. Un couvercle se plaçant au-dessus du circuit

imprimé permet de réduire le volume de la cavité au-dessus du dispositif pour maximiser

la fréquence des modes de boîtier (figures 3.8 a) et b). De plus, ce couvercle permet de

réduire les tensions mécaniques sur les connecteurs de type SMP soudés sur le circuit

imprimé lors de la déconnexion du boîtier de connexion.

enlevant le dispositif non fonctionnel, une opération destructive dans la plupart des cas.
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Figure 3.7 – Caractérisation micro-ondes des porte-échantillons pour les dispositifs hybrides.
a) Amplitude |t(ωa)|2 du coefficient de transmission en fonction de la fréquence de sonde ωa/2π
de quatre porte-échantillons à la température de la pièce dont les ports d’entrée et de sortie sont
connectés par micro-soudure. b) Amplitude |t(ωa)|2 du coefficient de transmission en fonction de
la fréquence de sonde ωa/2π d’un guide d’ondes coplanaire en niobium à T = 1.5 K dans l’état
supraconducteur (ligne bleue, B = 0) et dans l’état normal (ligne rouge, B0 = 5 T). Le niobium
possède une épaisseur t = 63 nm et le guide d’ondes possède une longueur de 19.4 mm.

Caractérisation des portes-échantillons

Une première caractérisation des porte-échantillons consiste à mesurer l’amplitude

de la transmission lorsque les ports d’entrée et de sortie sont directement connectés par

micro-soudure. Dans un cas idéal, la transmission est unitaire. La figure 3.7 a) présente

l’amplitude de la transmission |t(ωa)|2 en fonction de la fréquence de sonde ωa/2π pour

quatre porte-échantillons à la température de la pièce. Les pertes, inférieures à 8 dB pour

une fréquence inférieure à 10 GHz, sont probablement limitées par l’impédance des micro-

soudures composés de fils en aluminium d’un rayon de 25 µm. De plus, les courbes de

transmission des porte-échantillons ne présentent aucune résonance, ce qui indique qu’ils

agissent en effet comme des guides d’ondes lorsque les ports d’entrée et de sortie sont

connectés. Plusieurs itérations de porte-échantillons ont été nécessaires pour obtenir cette

propriété.

La figure 3.7 b) présente la transmission d’un guide d’ondes coplanaire en niobium sur

un substrat de GaAs à une température T = 1.5 K. Le guide d’ondes coplanaire possède

une longueur de 19.4 mm et consiste essentiellement en un résonateur supraconducteur

pour lequel les condensateurs de couplage sont absents. Les ports d’entrée et de sortie sont

alors connectés et, tout comme dans la situation précédente, une transmission unitaire est

idéalement attendue. Lorsque le niobium est dans l’état supraconducteur, les pertes entre
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Figure 3.8 – Caractérisation micro-ondes des porte-échantillons pour les dispositifs hybrides.
a) Photo d’un porte-échantillon recouvert d’un couvercle en cuivre. b) Intérieur des couvercles #1 et
#2. c) Amplitude |t(ωa)|2 du coefficient de transmission en fonction de la fréquence de sonde ωa/2π
mesurée pour le même porte-échantillon à la température de la pièce avec les couvercles #1 (ligne
rouge) et #2 (ligne bleue).

les ports d’entrée et de sortie du boîtier de connexion sont inférieures à 6 dB pour une

fréquence inférieure à 10 GHz. De plus, l’absence de résonances parasites confirme que

le système constitué du boîtier de connexion, du porte-échantillon et du guide d’ondes

coplanaire supraconducteur agit, tel que prévu, comme un guide d’ondes. Il est de plus

possible de supprimer la supraconductivité du guide d’ondes coplanaire en appliquant

un champ magnétique externe B0 dont l’amplitude excède le champ magnétique critique

supérieurBc2 du film mince de niobium. Dans ce cas, la résistance élevée du film de niobium

dans l’état normal supprime fortement l’amplitude de la transmission d’environ 80 dB.

Une seconde caractérisation du porte-échantillon consiste à mesurer l’amplitude de la

transmission en l’absence d’un dispositif et de fils connectant les ports d’entrée et de sortie.

Dans un cas idéal, la transmission est nulle. Par contre, la présence de modes de boîtier peut

mener à une transmission non nulle aux fréquences de ces modes. Puisque le couvercle

définit essentiellement les modes de boîtier, sa géométrie peut avoir un impact majeur sur

la transmission du porte-échantillon en l’absence de connexion entre les différents ports.

La figure 3.8 c) présente l’amplitude du coefficient de transmission entre les ports d’entrée

et de sortie du boîtier de connexion en fonction de la fréquence de sonde ωa/2π pour deux

modèles de couvercle recouvrant le porte-échantillon.

Le couvercle #1 possède un maximum de transmission d’environ −35 dB autour de

6.8 GHz. Cette résonance est en bon accord avec la fréquence de résonance du mode
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transverse électrique TE101 estimée à 7.0 GHz à partir des dimensions internes du couvercle

(équation (5.2)). En comparaison, le couvercle #2 possède une transmission maximale de

seulement −75 dB jusqu’à 10 GHz. Ainsi, même si les dimensions internes maximales sont

les mêmes, le couvercle #2 est en contact direct avec le plan de la mise à la terre du circuit

imprimé partout où c’est possible, ce qui minimise l’excitation des modes de boîtier. De plus,

un espace de seulement 75 µm est présent entre le couvercle et les chemins d’amenée des

ports basses fréquences, ce qui limite grandement le mode de boîtier ayant une excitation

dans cette direction. Le passage du couvercle #1 au couvercle #2 a été la dernière étape

importante qui a permis de faire fonctionner les résonateurs supraconducteurs sur les

porte-échantillons pour les dispositifs hybrides.

3.2.3 Instruments et composantes pour la caractérisation de résonateurs

Caractérisation des résonateurs avec un analyseur de réseau

Un analyseur de réseau permet de mesurer les coefficients de transmission t(ωa) et de

réflexion r(ωa) en fonction de la fréquence angulaire de sonde ωa en régime continu. Ces

mesures en régime continu sont particulièrement utiles pour les mesures de spectroscopie.

Comme exemple, les figures 3.9 a) et b) présentent respectivement l’amplitude |t(ωa)|2 et la

phase Arg [t(ωa)] du coefficient de transmission d’un résonateur supraconducteur mesuré à

l’aide d’un analyseur de réseau. Les figures 3.9 c) et d) présentent, quant à elles, l’amplitude

|r(ωa)|2 et la phase Arg [r(ωa)] du coefficient de réflexion mesuré pour le même résonateur.

Circuit de démodulation pour la détection hétérodyne

Un circuit micro-ondes de démodulation permet d’obtenir un circuit plus versatile

que l’analyseur de réseau. En effet, un tel circuit permet, par exemple, d’aller au-delà des

mesures de spectroscopie en régime continu à l’aide de mesures résolues temporellement.

La figure 3.10 a) présente le circuit micro-ondes de démodulation implémenté comme

alternative à l’analyseur de réseau pour la caractérisation spectroscopique des résonateurs

et pour les mesures spectroscopiques du couplage spin-résonateur longitudinal proposées

à la section 1.4.

Un signal micro-ondes de fréquence angulaire ωa +∆ω provenant d’une source micro-

ondes est divisé en deux à l’aide d’un diviseur de puissance. Ces deux signaux sont utilisés

comme oscillateur local (LO) de deux mélangeurs micro-ondes. Le signal d’une seconde

source micro-ondes de fréquence angulaireωa est envoyé à un coupleur directionnel. Le port
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Figure 3.9 – Coefficients de transmission et de réflexion mesuré avec un analyseur de réseau.
Coefficients de transmission et de réflexion mesurés avec un analyseur de réseau (Agilent N5230C,
0.01 à 40 GHz). a) Amplitude normalisée |t(ωa)|2 / |t(ωa = ωr)|2 et b) phase Arg [t(ωa)] du coefficient
de transmission en fonction de la fréquence de sonde ωa/2π d’un résonateur supraconducteur.
Pour les figures a) et b), l’ajustement des données à l’équation (3.24) est indiqué par la ligne pleine.
c) Amplitude normalisée |r(ωa)|2 / |r(|ωa − ωr| ≫ κr)|2 et d) phase Arg [r(ωa)] du coefficient de
réflexion en fonction de la fréquence de sonde ωa/2π du même résonateur. Pour les figures c) et d),
l’ajustement des données à l’équation (3.25) est indiqué par la ligne pleine.
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Figure 3.10 – Circuit de démodulation pour la détection hétérodyne.
a) Circuit de démodulation pour la détection hétérodyne. Le signal d’une source micro-ondes
(Agilent N5183A, 100 kHz à 40 GHz) de fréquence angulaire ωa +∆ω est divisé en deux par un
diviseur de puissance −3 dB (Krytar 6005180, 0.5 à 18 GHz). Ces deux signaux sont envoyés aux
ports LO de deux mélangeurs (MITEQ DB0218LW2, 2 à 18 GHz). Le signal d’une seconde source
micro-ondes (Agilent N5230C, 0.01 à 40 GHz) de fréquence angulaire ωa est envoyé à un coupleur
directionnel 16 dB (Krytar 1850, 0.5 à 18.5 GHz). Le signal de sortie du coupleur directionnel est
envoyé au port RF du mélangeur #1. Le signal du port couplé du coupleur directionnel est envoyé à
un module d’atténuation variable (Analog devices HMC-C584 et HMC-C053, 0.1 à 20 GHz) et vers le
port d’entrée du dispositif. Le signal provenant du port de sortie du dispositif est envoyé vers le port
RF du mélangeur #2. Les signaux IF de fréquences angulaires ∆ω sont chacun envoyés à un filtre
passe-bas (Mini Circuits, VLFX-225, 0 à 225 MHz) et à un amplificateur de tension basses fréquences
(Stanford Research Systems SR560, 0 à 1 MHz). Les signaux IF des mélangeurs #1 et #2 corres-
pondent respectivement à la référence et au signal. b) Amplitude normalisée |t(ωa)|2 / |t(ωa = ωr)|2
et c) phase Arg [t(ωa)] du coefficient de transmission en fonction de la fréquence de sonde ωa/2π
d’un résonateur supraconducteur mesurées à l’aide de l’analyseur de réseau (carrés rouges) et du
circuit de démodulation (cercles bleus). L’amplitude est normalisée tel que |t(ωa = ωr)|2 = 1.
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de sortie du coupleur directionnel est connecté au port radio-fréquence (RF) du mélangeur

#1. Le signal sortant du port couplé du coupleur directionnel est envoyé au port d’entrée

du dispositif mesuré et représente donc l’excitation de sonde. Après avoir été transmis par

le dispositif mesuré, le signal micro-ondes du port de sortie du dispositif est envoyé au

port RF du mélangeur #2.

Les mélangeurs sont utilisés en mode conversion descendante afin de produire un

signal de fréquence intermédiaire (IF) d’une fréquence angulaire donnée par la différence

des fréquences angulaires de l’oscillateur local et de sonde, soit ωa +∆ω − ωa = ∆ω [178].

Les signaux IF des deux mélangeurs sont filtrés pour éliminer les composantes du signal à

d’autres fréquences angulaires. Le signal IF du mélangeur #1 sert de référence alors que

le signal IF du mélangeur #2 contient le signal permettant de déterminer, par exemple,

le coefficient de transmission du dispositif. Le circuit de démodulation réalise ainsi une

détection hétérodyne.

La puissance du signal de la source micro-ondes utilisée comme oscillateur local est

fixée par la puissance spécifiée par les mélangeurs. De plus, la puissance du signal de la

source micro-ondes utilisée pour l’excitation de sonde est idéalement fixée pour obtenir un

signal de référence d’une amplitude constante. Ainsi, pour varier la puissance micro-ondes

Pa utilisée pour sonder le dispositif, un module d’atténuation variable est placé entre le

coupleur directionnel et le port d’entrée du dispositif. Ce module d’atténuation variable est

composé d’un atténuateur variable digital de 5 bits et d’un atténuateur variable analogue.

La combinaison de ces deux atténuateurs permet d’obtenir une plage d’atténuation de

plus de 60 dB entre 0.1 et 20 GHz. L’atténuateur variable digital est contrôlé à l’aide d’une

tension de contrôle analogue fournie à un microcontrôleur. Le module d’atténuation peut

ainsi être contrôlé à l’aide de deux tensions de contrôle analogues.

Une première application du circuit de démodulation présentée consiste à effectuer la

spectroscopie en régime continu d’un résonateur supraconducteur. Pour ce faire, le signal

est envoyé à un amplificateur synchrone pour obtenir l’amplitude et la phase du signal par

rapport à la référence. Les figures 3.10 b) et c) présentent respectivement l’amplitude et

la phase du coefficient de transmission d’un résonateur supraconducteur obtenu à l’aide

de l’analyseur de réseau et du circuit de démodulation. L’accord entre les deux méthodes

indique que le circuit de démodulation fonctionne tel que prévu.

Bien que le circuit de démodulation présenté soit utilisé pour des mesures spectro-

scopiques en régime continu, l’utilisation d’une impulsion micro-ondes pour le signal de

sonde et d’un oscilloscope pour la mesure du signal démodulé permet d’effectuer des
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Figure 3.11 – Circuit de démodulation pour la détection hétérodyne.
a) Gain de l’amplificateur cryogénique (ligne bleue, Low Noise Factory LNF-LNC03-14A, 0.3 à
14 GHz) et de l’amplificateur à la température de la pièce (ligne rouge, Low Noise Factory LNF-
LNR1-15A, 1 à 15 GHz) à T = 293 K en fonction de la fréquence de sonde ωa/2π. Les amplificateurs
sont alimentés par une alimentation régulée en courant (Low Noise Factory PS-EU2) selon les
spécifications du manufacturier. b) Isolation (ligne bleue) et pertes d’insertion (ligne rouge) d’un
circulateur cryogénique (Pamtech CTH1184K18, 4 à 8 GHz) à T = 1.5 K en fonction de la fréquence
de sonde ωa/2π. La ligne horizontale pointillée indique l’isolation minimale de 18 dB spécifié par le
manufacturier pour la plage de fréquence entre 4 et 8 GHz (lignes pointillées verticales).

mesures résolues temporellement. De plus, ce circuit permet, avec quelques modifications,

d’effectuer une mesure spectroscopique d’un système non linéaire doublant la fréquence

de sonde (section 1.4).

Composantes micro-ondes

Afin de caractériser les résonateurs supraconducteurs à une puissance Pa ≈ −140 dBm

correspondant à un nombre moyen de photons près de l’unité, il est nécessaire d’amplifier

le signal transmis par les résonateurs. Pour ce faire, deux amplificateurs à faible bruit sont

utilisés. Un premier amplificateur cryogénique permet d’amplifier le signal d’environ 42 dB

avec une température équivalente de bruit d’environ 3 K à 6 GHz lorsque l’amplificateur

est à une température de 6 K. Un second amplificateur à température de la pièce permet

d’amplifier le signal d’environ 37 dB supplémentaire avec une température équivalente de

bruit d’environ 35 K à 6 GHz. La figure 3.11 a) présente la caractérisation du gain des deux

amplificateurs à la température de la pièce.

Afin d’éviter que le bruit émis par les amplificateurs affecte le dispositif, des circulateurs
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cryogéniques sont utilisés comme isolateurs entre les amplificateurs et le dispositif. En

effet, un circulateur peut être utilisé en tant qu’isolateur lorsqu’une terminaison 50 Ω est

connectée à l’un de ses trois ports. De plus, en séparant les signaux incident et réfléchi,

le circulateur permet de mesurer un résonateur en réflexion lorsqu’un amplificateur est

utilisé. La figure 3.11 b) présente la caractérisation d’un circulateur cryogénique à une

température de 1.5 K. L’isolation du circulateur est mesurée en comparant l’amplitude des

coefficients de transmission en propagation vers l’avant et vers l’arrière. Le circulateur

cryogénique fournit une isolation supérieure à 18 dB sur la plage entre 4 et 8 GHz, en accord

avec les spécifications du manufacturier. De plus, les pertes d’insertion sont obtenues en

comparant l’amplitude des coefficients de transmission en présence et en l’absence du

circulateur. Comme spécifié par le manufacturier, des pertes d’insertion inférieures à 0.4 dB

sont obtenues sur la plage d’opération du circulateur.

3.2.4 Montages expérimentaux pour la caractérisation des résonateurs

Cryostat à température variable

Une caractérisation préliminaire des résonateurs supraconducteurs peut être effectuée

dans un cryostat à température variable. Les figures 3.12 a) et b) présentent un exemple

du montage expérimental permettant de mesurer, à l’aide de l’analyseur de réseau, les

coefficients de transmission et de réflexion d’un résonateur supraconducteur en fonction de

la température T et d’un champ magnétique externe B0. Pour une mesure en transmission,

les ports d’entrée et de sortie du boîtier de connexion sont simplement connectés aux deux

lignes micro-ondes de la sonde du cryostat (figure 3.12 a). Les lignes micro-ondes ont

chacune une longueur d’environ 2 mètres et une atténuation d’environ 7 dB à 6 GHz et

fonctionnent jusqu’à une fréquence de 40 GHz. Pour une mesure en réflexion, un circulateur

cryogénique est utilisé pour séparer les signaux incident et réfléchi au port d’entrée (de

sortie) du résonateur (figure 3.12 b). Dans les deux cas, un amplificateur à faible bruit

peut être utilisé à température de la pièce pour amplifier le signal sortant du cryostat. Les

figures 3.9 présentent un exemple du spectre d’un résonateur mesuré en transmission et

en réflexion dans le cryostat à température variable à T ≈ 1.5 K. 4

4. Il est important de séparer spatialement le résonateur et le circulateur puisque ce dernier est magnétique.
Pour cette même raison, il faut éviter d’appliquer un champ magnétique externe sur les circulateurs.
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Figure 3.12 – Caractérisation des résonateurs dans un cryostat à température variable.
Montage expérimental pour la caractérisation des résonateurs supraconducteurs dans un cryostat à
une température T variable entre 1.4 K et la température de la pièce. Un analyseur de réseau est
utilisé pour mesurer les coefficients a) de transmission t(ωa) et b) de réflexion r(ωa) en fonction de
la fréquence angulaire ωa. Un amplificateur à faible bruit (Low Noise Factory LNF-LNR1-15A) peut
être utilisé à la température de la pièce pour amplifier le signal. En b), un circulateur cryogénique
(Pamtech CTH1184K18) est utilisé pour séparer les signaux incident et réfléchi au résonateur. Un
champ magnétique externe B0 d’une amplitude maximale de 8 T peut être appliqué.
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Réfrigérateur à dilution

Le fonctionnement du dispositif hybride proposé au premier chapitre pour le couplage

spin-résonateur requiert une température T de l’ordre de 10 mK pour minimiser les popu-

lations thermiques de photons micro-ondes dans le résonateur et d’excitations du degré

de liberté orbital de la double boîte quantique. À cette température, le nombre moyen de

photons thermiques occupant le mode d’un résonateur de fréquence angulaire ωr, donné

par la distribution de Bose-Einstein selon

nth
r =

1

e~ωr/kBT − 1
, (3.26)

est négligeable pour un résonateur d’une fréquence ωr/2π = 6 GHz. En comparaison,

pour la même fréquence, la population thermique est inférieure à 0.01 photons pour une

température allant jusqu’à 62 mK et est approximativement de cinq photons pour T = 1.5 K.

La figure 3.13 a) présente un exemple d’un montage expérimental permettant de

caractériser un résonateur supraconducteur à une température de base de 10 mK dans un

réfrigérateur à dilution. Un champ magnétique externe B0 peut être appliqué en plaçant

le boîtier de connexion au bout d’un doigt froid (figure 3.13 b). Le doigt froid permet de

centrer le dispositif par rapport au champ magnétique créé par un aimant supraconducteur

pouvant atteindre une amplitude maximale de 7 T.

Un analyseur de réseau ou un circuit de démodulation peuvent être utilisés pour

mesurer le coefficient de transmission du résonateur. Des atténuateurs peuvent être utilisés

à température de la pièce pour réduire la puissance de sonde Pa. Les lignes micro-ondes du

réfrigérateur à dilution sont atténuées à l’aide d’atténuateurs cryogéniques à chaque étage

du réfrigérateur. De plus, chaque ligne micro-ondes possède une atténuation d’environ

7 dB à 6 GHz. Deux circulateurs cryogéniques sont utilisés en tant qu’isolateurs pour

réduire de plus de 36 dB le bruit émis par l’amplificateur cryogénique. Par contre, puisque

l’isolation des circulateurs n’est significative que pour une fréquence entre 4 et 8 GHz, un

filtre passe-bande est aussi utilisé pour filtrer le bruit émis en dehors de cette plage de

fréquence. Les circulateurs et le filtre sont encrés thermiquement à l’étage de la chambre de

mélange dans la zone de compensation de l’aimant supraconducteur (figure 3.13 c). Il est

ainsi possible de ne pas atténuer la ligne micro-ondes de mesure entre les circulateurs et

l’amplificateur cryogénique encré thermiquement à l’étage à 4K (figures 3.13 d). Finalement,

l’amplificateur à température de la pièce est utilisé pour amplifier le signal sortant de la

ligne micro-ondes de signal du réfrigérateur.
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Figure 3.13 – Caractérisation des résonateurs dans un réfrigérateur à dilution.
a) Exemple du montage expérimental permettant la caractérisation de résonateurs supraconduc-
teurs dans un réfrigérateur à dilution. Un analyseur de réseau (Agilent N5230C) ou un circuit de
démodulation (figure 3.10) peuvent être utilisés pour mesurer le coefficient de transmission du
résonateur. Les lignes micro-ondes sont atténuées à l’aide d’atténuateurs cryogéniques (XMA) à
chaque étage du réfrigérateur. Deux circulateurs cryogéniques (Pamtech CTH1184K18) et un filtre
passe-bande (Mini Circuits VBFZ-6260-S+, 5.6 à 7.0 GHz) sont utilisés pour réduire le bruit émis par
l’amplificateur cryogénique (Low Noise Factory LNF-LNC03-14A) à l’étage à 4 K. L’amplificateur à
température de la pièce (Low Noise Factory LNF-LNR1-15A) est utilisé pour amplifier le signal
sortant du réfrigérateur à dilution. b) Photo d’un dispositif au bout du doigt froid. Les lignes
micro-ondes du réfrigérateur à dilution sont connectés aux ports d’entrée et de sortie du boîtier de
connexion. c) Photo des deux circulateurs et du filtre passe-bande encrés thermiquement à l’étage
de la chambre de mélange dans la zone de compensation de l’aimant supraconducteur. d) Photo
de l’amplificateur cryogénique sur la ligne de mesure encré thermiquement sur l’étage à 4 K du
réfrigérateur à dilution.
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3.3 Résultats expérimentaux

Cette section présente différents résultats expérimentaux portant sur la caractérisation

de résonateurs supraconducteurs adaptés à la réalisation expérimentale du couplage spin-

résonateur présenté au premier chapitre. Certains résultats de cette section ont été obtenus

par Laurent Bergeron sous ma supervision lors d’un stage de deux mois à l’hiver 2017.

3.3.1 Température critique et champ magnétique critique supérieur

Dans cette sous-section, la température critique Tc et le champ magnétique critique

supérieur Bc2 sont déterminés à l’aide de mesures en transport électrique en utilisant

les ports basses fréquences du porte-échantillon dans le cryostat à température variable.

Ces mesures permettent de sonder les propriétés en transport électrique d’un micro-fil

défini dans le même film de niobium qu’un résonateur supraconducteur (figure 3.5a) 5. La

différence de tension ∆V entre deux contacts du micro-fil est mesurée lorsqu’un courant I

entre 1 et 10 µA circule dans celui-ci, réalisant ainsi une mesure de la résistance R à quatre

pointes où R = ∆V/I .

La figure 3.14 a) présente la mesure de la résistance d’un film de niobium d’une

épaisseur t = 23 nm pour différentes températures T et en fonction de l’amplitudeB0 = |B0|
d’un champ magnétique appliqué, à environ 1◦ près, dans le plan du résonateur, soit

B0 ≈ B0Z. Comme prévu, la résistance est nulle dans l’état supraconducteur lorsque B0

est inférieur au champ magnétique critique supérieur Bc2(T ). Pour B0 > Bc2(T ), le film

de niobium passe à l’état normal et la résistance atteint une valeur finie. La figure 3.14 b)

présente la mesure de la température critique Tc à champ magnétique nul.

La figure 3.14 c) présente le diagramme de phase qui résulte de ces mesures pour trois

épaisseurs t du niobium. La dépendance en température du champ magnétique critique

supérieur Bc2 est empiriquement ajustée à

Bc2(T ) =
Bc2

1− (T/Tc)
η , (3.27)

où l’exposant η = 2dans la théorie BCS [156]. L’encart de la figure 3.14 c) présente l’exposant

η déterminé pour différentes épaisseurs t entre 23 nm et 63 nm. La figure 3.14 d) présente la

température critique Tc et le champ magnétique critique supérieur à température nulle Bc2

5. Il est de plus possible de sonder le résonateur et le transport électrique simultanément.
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Figure 3.14 – Propriétés des films minces de niobium déterminées en transport électrique.
a) RésistanceR en fonction de l’amplitude B0 = |B0| du champ magnétique externe avec B0 ≈ B0Z

pour différentes température T entre 3 K et 6.25 K pour un film de niobium d’une épaisseur t =
23 nm. Le champ magnétique critique supérieur Bc2(T ) est déterminé par le champ magnétique B0

pour lequel la résistance atteint dix écarts types de la résistance mesurée dans l’état supraconducteur.
b) Résistance R en fonction de la température T à champ magnétique nul pour le même film de
niobium qu’en a). La température critique Tc = 6.385 K, déterminée par la température T pour
lequel la résistance atteint dix écarts types de la résistance mesurée dans l’état supraconducteur,
délimite les états supraconducteur et normal du niobium. c) Diagramme de phase pour différentes
épaisseurs t du film de niobium. Les régressions des données à l’équation (3.27) sont indiquées par
des lignes pleines. L’encart présente l’exposant η obtenu de la régression en fonction de t. La ligne
horizontale pointillée indique la valeur η = 2 prédite par la théorie BCS. d) Température critique
Tc (cercles) et champ magnétique critique supérieur à température nulle Bc2 (carrés) en fonction
de l’épaisseur t du niobium. La ligne horizontale indique la valeur de la température critique du
niobium massif pur, Tc = 9.25 K.
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en fonction de l’épaisseur t du niobium. Ainsi, alors que Tc diminue en diminuant l’épais-

seur t, Bc2 augmente. Ces deux comportements peuvent s’expliquer par une diminution

du libre parcours moyen ℓe lorsque l’épaisseur t du niobium est réduite [179, 156, 176]. De

plus, il est possible de voir que la température critique semble tendre vers celle du niobium

massif.

Les mesures en transport électrique permettent ainsi de déterminer que la température

critique et le champ magnétique critique supérieur des films minces de niobium fabriqués

sont bien assez élevés. En effet, les dispositifs hybrides proposés au premier chapitre sont

opérés à une température T de l’ordre de 10 mK et à une amplitude de champ magnétique

B0 de l’ordre de 1 T.

3.3.2 Détermination de la longueur de pénétration

Comme discuté plus tôt, la longueur de pénétration λ est importante afin de déterminer

la contribution de l’inductance cinétique à l’inductance totale du résonateur. Dans cette sous-

section, la longueur de pénétration des films de niobium est déterminée par la dépendance

en température de la fréquence de résonance des résonateurs supraconducteurs. Ces

mesures sont effectuées dans le cryostat à température variable à l’aide de mesures en

transmission (figure 3.12 a).

La figure 3.15 a) présente la fréquence ωr/2π du résonateur en fonction de la tem-

pérature T pour différentes épaisseurs t de niobium entre 13 nm et 23 nm. On observe

tout d’abord que la fréquence des résonateurs varie grandement même si leur longueur

ℓr = 6 mm est identique. Ceci est une première indication de la contribution importante

de l’inductance cinétique à la fréquence des résonateurs. Afin de quantifier cet effet, la

dépendance en température de la fréquence angulaire du mode fondamental du résona-

teur, ωr(T ), est ajustée à l’équation (3.16) avec l’équation (3.12) pour l’inductance cinétique

LK et l’équation (3.6) pour la dépendance en température de la longueur de pénétration

λ(T ). À partir des dimensions w, s et ℓr du résonateur, les seuls paramètres libres de la

régression sont la température critique Tc et la longueur de pénétration à température nulle

λ(0). L’excellent accord entre les données et la régression indique que la diminution de la

fréquence du résonateur est très bien expliquée par une augmentation de la longueur de

pénétration du film de niobium.

La figure 3.15 b) montre qu’il existe une relation très forte entre Tc et λ(0) mesurées

pour les onze résonateurs caractérisés durant cette thèse. Ainsi, malgré que la température
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Figure 3.15 – Dépendance en température de la fréquence des résonateurs supraconducteurs.
a) Fréquence du résonateur ωr/2π en fonction de la température T pour un résonateur d’une
épaisseur t = 13 nm (cercles bleus), 18 nm (cercles verts) et 23 nm (cercles rouges). Les régressions
sont indiquées par les lignes pleines. Les lignes pointillées verticales et horizontales correspondent
respectivement à la température critique Tc et à la fréquence ωr(0)/2π du résonateur à température
nulle pour t = 23 nm. b) Longueur de pénétration à température nulle λ(0) en fonction de la
température critique Tc pour différentes épaisseurs t du niobium. Les valeurs Tc = 9.25 K et
λ(0) = 39 nm du niobium massif sont indiquées par une étoile mauve.

critique Tc d’un film de niobium d’une épaisseur t donnée puisse varier en fonction de la

qualité du film, par exemple via la pression lors de l’évaporation du niobium, la longueur

de pénétration λ(0) peut être directement estimée à partir de la température critique selon

la figure 3.15 b). De plus, les valeurs pour le niobium massif s’intègrent parfaitement au

comportement observé expérimentalement.

La figure 3.16 a) présente la longueur de pénétration à température nulle λ(0) en

fonction de l’épaisseur t pour le même ensemble de données qu’à la figure 3.15 b). Ces

données sont empiriquement ajustées à

λ(0) = λL(0) coth

(
t

λL(0)

)

, (3.28)

où λL(0) correspond à la température de London à température nulle [176]. La régression

des données de la figure 3.16 a) à l’aide de l’équation (3.28) permet de déterminer λL(0) =

46± 2 nm, très près de la valeur λL(0) = 39 nm pour le niobium massif pur [87]. Le bon

accord de la régression des données à l’équation (3.28) suppose une même qualité du film

de niobium. En effet, par exemple, le fait de pomper le système utilisé pour évaporer le

niobium pendant plus d’une nuit pour atteindre un vide de 2.4× 10−9 torr résulte en un
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Figure 3.16 – Longueur de pénétration en fonction de l’épaisseur du film de niobium.
a) Longueur de pénétration à température nulle λ(0) en fonction de l’épaisseur t pour onze résona-
teurs différents. La ligne pleine indique l’ajustement des données à l’équation (3.28), qui permet de
déterminer la longueur de pénétration de London à température nulle λL(0) = 46± 2 nm (ligne
horizontale pointillée). La flèche noir indique la diminution de la longueur de pénétration par
l’utilisation d’une pression plus faible dans le système utilisé pour évaporer le niobium. b) Fré-
quence à température nulle ωr(0)/2π de cinq résonateurs d’une longueur ℓr = 6 mm en fonction de
l’épaisseur t. La ligne pleine indique la fréquence calculée à l’aide de la description de la longueur
de pénétration en fonction de l’épaisseur de l’équation (3.28). La ligne horizontale pointillée indique
la fréquence ωr(0)/2π = 9.5 GHz du résonateur en l’absence de l’inductance cinétique, ce qui
correspond au cas où λ(0) → 0.

film d’une meilleure qualité et ainsi en une longueur de pénétration λ(0) plus faible selon

l’équation (3.5) (figure 3.16 a).

La figure 3.16 b) présente la fréquence de résonateurs d’une longueur ℓr = 6 mm, mais

possédant différentes épaisseurs t. Une réduction de l’épaisseur du niobium de 23 nm à

13 nm permet de réduire de moitié la fréquence du résonateur de 6.4 GHz à 3.2 GHz. Pour

une fréquence cible donnée, une film plus mince permet alors de réduire significativement

la longueur ℓr du résonateur. La possibilité de fabriquer des résonateurs plus compacts

est grandement utile pour la réalisation expérimentale de dispositifs hybrides incorporant

un résonateur supraconducteur et des boîtes quantiques. De plus, pour une longueur ℓr
donnée, la fréquence du résonateur peut être ajustée lors de la fabrication, une flexibilité

encore une fois très utile dans la fabrication de dispositifs hybrides complexes. Finalement,

la description de la longueur de pénétration en fonction de l’épaisseur t par l’équation (3.28)

permet de relativement bien prédire la fréquence d’un résonateur supraconducteur en

niobium à partir de sa longueur ℓr et de son épaisseur t.
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3.3.3 Couplage capacitif

Cette sous-section porte sur la détermination expérimentale du couplage capacitif des

résonateurs aux guides d’ondes coplanaires d’entrée et de sortie à l’aide de deux méthodes

différentes. Les figures 3.17 a) à c) présentent les photos des trois types de condensateurs

coplanaires utilisés pour obtenir différents coefficients de couplage.

Pour la première méthode, une mesure calibrée du coefficient de transmission t(ωa)

est utilisée. En effet, selon l’équation (3.24), l’amplitude du coefficient de transmission en

résonance est donnée par

|t(ωa = ωr)|2 =
κinr κ

out
r

(κr/2)2
≡ 4

(
κin,outr

κr

)2

, (3.29)

où κin,outr ≡
√

κinr κ
out
r est la moyenne géométrique des coefficients de couplage des ports

d’entrée et de sortie. Cette amplitude maximale correspond aux pertes d’insertion. Ainsi,

la détermination des pertes d’insertion et de la largeur de raie κr permet de déterminer le

coefficient de couplage moyen κin,outr selon

κin,outr =
1

2
κr |t(ωa = ωr)| . (3.30)

Pour un couplage symétrique aux ports d’entrée et de sortie, il est alors possible de déter-

miner κinr = κoutr
6.

Le montage expérimental présenté à la figure 3.12 a) est utilisé pour caractériser les

résonateurs en transmission. Une calibration du système permet de distinguer les pertes

d’insertion et, par exemple, les pertes dans les câbles. La figure 3.17 d) présente un exemple

d’une mesure calibrée du spectre d’un résonateur possédant les condensateurs #2 aux ports

d’entrée et de sortie. Les pertes d’insertion et la largeur de raie permettent de déterminer le

coefficient de couplage d’entrée et de sortie à κin,outr /2π = 0.21 MHz en assumant κinr = κoutr .

À l’aide de la fréquence du résonateur et de l’impédance caractéristique Z0 = 93 Ω estimée

avec l’équation (3.14), l’équation (3.19) permet de déterminer la capacité Cin,out = 1.9 fF

des condensateurs #2.

Pour la deuxième méthode, une mesure du coefficient de réflexion r(ωa) est utilisée.

6. Par symétrie, une mesure en transmission ne permet pas de distinguer les ports d’entrée et de sortie.
De plus, contrairement au coefficient de réflexion, le changement de phase du coefficient de transmission
t(ωa) est toujours égal à π peu importe le rapport entre les coefficients de couplage et les pertes internes. Ainsi,
la phase d’une mesure en transmission ne permet pas de déterminer le régime de couplage du résonateur.
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Figure 3.17 – Coefficients de couplage et capacités de différents condensateurs de couplage.
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tés d’une longueur de 58 µm séparés par environ 5 µm (condensateurs #2 et #3 respectivement).
Le conducteur central est élargi près des condensateurs #2 et #3 afin d’accommoder les doigts
interdigités. d) Amplitude du coefficient de transmission |t(ωa)|2 en fonction de la fréquence de
sonde ωa/2π pour un résonateur possédant les condensateurs #2 aux ports d’entrée et de sortie.
Les pertes d’insertion d’environ −22 dB et la largeur de raie κr/2π = 5.54 MHz permettent de
déterminer le coefficient de couplage moyen κin,outr /2π = 0.21 MHz. e) Amplitude du coefficient
de réflexion |r(ωa)|2 en fonction de la fréquence de sonde ωa/2π pour le même résonateur qu’en
d). Le coefficient de couplage du port d’entrée est déterminé à κinr /2π = 0.31 MHz. f) Capacité des
différents condensateurs déterminées par une mesure en transmission (cercles bleus) et en réflexion
(carrés rouges).
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Selon l’équation (3.25), l’amplitude du coefficient de réflexion en résonance est donnée,

pour le port d’entrée, par

|r(ωa = ωr)|2 =
(
κintr − κinr + κoutr

)2

κ2r
. (3.31)

Il existe ainsi deux solutions pour κinr selon le régime de couplage du résonateur, avec

κinr = κintr + κoutr − κr |r(ωa = ωr)| , régime sous-couplé, (3.32)

= κintr + κoutr + κr |r(ωa = ωr)| , régime sur-couplé. (3.33)

Le régime de couplage du résonateur est déterminé à partir du changement de la phase du

coefficient de réflexion. En effet, selon l’équation (3.25),

Arg [r(ωa − ωr ≫ κr)]− Arg [r(ωa − ωr ≪ −κr)] = 0, régime sous-couplé, (3.34)

= 2π, régime sur-couplé. (3.35)

Le montage expérimental présenté à la figure 3.12 b) est utilisé pour caractériser les

résonateurs en réflexion. La figure 3.17 e) présente un exemple d’une mesure en réflexion du

spectre du même résonateur qu’à la figure 3.17 d). Le changement de la phase, non montrée

par souci de concision, permet de déterminer que le résonateur est sous-couplé. Il est alors

possible de déterminer le coefficient de couplage du port d’entrée κinr /2π = 0.31 MHz à

l’aide de l’équation (3.32). De plus, à l’aide de la fréquence du résonateur et de l’impédance

caractéristique Z0 = 93 Ω, l’équation (3.19) permet de déterminer la capacité Cin,out = 2.3 fF

du condensateur #2 du port d’entrée.

La figure 3.17 f) présente les valeurs des capacités déterminées par ces deux méthodes

pour les différents condensateurs coplanaires. L’accord entre les capacités moyennes déter-

minées en transmission et les capacités déterminées en réflexion n’est pas excellent. Par

contre, une sous-estimation de l’atténuation totale du système d’environ 3.5 dB permet

de rendre compte de la sous-estimation des capacités déterminées en transmission par

rapport à celles déterminées en réflexion. Cette atténuation supplémentaire peut très bien

être expliquée par les pertes du porte-échantillon de quelques dB non incluses dans la cali-

bration (figure 3.7). Finalement, la détermination de la capacité des condensateurs permet

d’estimer les coefficients de couplage à l’aide de l’équation (3.19) pour un résonateur d’une

fréquence et d’une impédance arbitraires.



132 3. Résonateurs supraconducteurs pour les dispositifs hybrides

3.3.4 Pertes internes

Cette sous-section porte sur l’étude des différents mécanismes de pertes internes des

résonateurs supraconducteurs en niobium sur un substrat de GaAs. Il est à noter que les

pertes résistives liées à la présence de quasi-particules ne sont pas discutées puisque la

température à laquelle les expériences sont effectuées, soit 10 mK, est largement inférieure à

la température critique des films minces de niobium. De plus, les pertes liées à la présence

d’un champ magnétique externe sont discutées à la sous-section 3.3.6.

Pertes diélectriques

Selon l’équation (3.20), le coefficient des pertes diélectriques κdr est proportionnel à la

tangente de l’angle de pertes δ et à la fréquence angulaire ωr du résonateur. Afin d’étudier

les pertes diélectriques des résonateurs fabriqués sur un substrat de GaAs, la largeur de

raie des premiers modes de résonateurs largement sous-couplés est utilisée pour obtenir

une approximation de la dépendance des pertes internes en fonction de la fréquence.

La figure 3.18 a) présente la largeur de raieκ(n)r /2π du moden en fonction de la fréquence

ω
(n)
r /2π pour deux résonateurs nominalement identiques. Pour ces deux résonateurs, les

coefficients de couplage des ports d’entrée et de sortie sont inférieurs à environ 2 kHz pour

le mode fondamental n = 1. Ainsi, avec κr/2π ∼ 0.5 MHz, la largeur de raie est limitée

par les pertes internes et ainsi κr ≈ κintr . Une première observation est qu’il est possible

d’obtenir une largeur de raie inférieure à 0.6 MHz pour un résonateur à environ 6 GHz, ce

qui correspond ainsi à un facteur de qualité Q = ωr/κr supérieur à 104. Ces résultats sont

en accord avec ceux de la référence [180] et montre que le facteur de qualité des résonateurs

fabriqués sur un substrat de GaAs n’est pas limité à 102 ou 103 comme il est discuté à la

référence [111].

Une deuxième observation porte sur le comportement linéaire observé à la figure 3.18 a).

La largeur de raie κ(n)r est ainsi ajustée à

κ(n)r = tan δ ωr + κ(0)r , (3.36)

où κ
(0)
r représente des pertes internes indépendantes de la fréquence du résonateur. La

régression des données à l’équation (3.36) permet de déterminer l’amplitude des pertes

diélectriques à tan δ = (42± 3)× 10−6 et tan δ = (61± 9)× 10−6 pour les deux résonateurs.

Ainsi, l’augmentation de la fréquence du résonateur de 1 GHz augmente les pertes internes
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du résonateur d’environ 50 kHz. Par contre, la valeur de tan δ déterminée ne correspond

pas directement à la valeur de tan δ0 intrinsèque au GaAs. Ceci s’explique par le fait

qu’une partie significative du champ électrique du résonateur est dans le vide, diminuant

ainsi l’angle de pertes effectif [131]. La valeur de tan δ obtenue n’offre donc qu’une borne

supérieure à tan δ0 du GaAs. Cette borne supérieure permet tout de même de déterminer

que le GaAs est un meilleur diélectrique que, par exemple, l’oxyde de silicium obtenu par

une croissance thermique [131].

Malgré la différence significative entre les angles de pertes des deux résonateurs no-

minalement identiques, l’amplitude de la contribution aux pertes internes indépendantes

de la fréquence, κ(0)r /2π = (0.32± 0.02) MHz et (0.33± 0.08) MHz, est très similaire pour

les deux résonateurs. Ces pertes ont également été observées à la référence [180] par une

augmentation du facteur de qualité avec la fréquence du résonateur. L’origine de ces pertes

est actuellement inconnue. Il est par contre possible d’exclure les pertes résistives et les

pertes de couplage puisqu’elles sont respectivement proportionnelles à ω2
r et ω3

r [163]. La

piézoélectricité du GaAs, qui couple les photons micro-ondes aux phonons du GaAs, offre

une avenue possible pour l’explication de cette partie importante des pertes internes des

résonateurs fabriqués sur un substrat de GaAs [180, 111].

Finalement, les pertes diélectriques du GaAs pourraient être minimisées par la gravure

du substrat dans l’espace entre le conducteur central et la plan de le mise à la terre [181, 182].

Cette astuce permet de diminuer le recouvrement du champ électrique du résonateur avec

le substrat, ce qui diminue l’angle de pertes effectif δ. Il serait aussi intéressant de voir si

cette modification permet de diminuer la contribution indépendante de la fréquence κ(0)r .

Pertes liées au niobium

Comme il est discuté plus tôt, la diminution de l’épaisseur t du film mince de niobium

permet d’augmenter l’inductance cinétique du résonateur afin, par exemple, de réduire

sa longueur. Il est par contre important de vérifier que l’utilisation d’un film très mince

n’augmente pas significativement les pertes internes. La figure 3.18 b) présente les pertes

internes κintr de deux séries de résonateurs d’épaisseurs t différentes. Pour chaque série,

la longueur ℓr du résonateur est fixée. Pour un résonateur d’une longueur donnée, la

contribution des pertes diélectriques aux pertes internes diminue lorsque l’épaisseur du

film mince est réduite. En effet, l’augmentation de l’inductance cinétique résulte en une

diminution de la fréquence du résonateur. Par contre, à la figure 3.18 b), les pertes internes

κintr augmentent en diminuant l’épaisseur t du niobium. Par exemple, κintr /2π augmente
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Figure 3.18 – Pertes internes des résonateurs supraconducteurs en niobium sur GaAs.
a) Largeur de raie κ(n)r /2π en fonction de la fréquence ω(n)

r /2π du mode n = {1, 2, 3, 4}. Les deux
résonateurs supraconducteurs en niobium possèdent une épaisseur t = 63 nm et une longueur
ℓr = 18.7 mm. Les lignes pleines indiquent les régressions des données à l’équation (3.36). Ces
données sont obtenues à une température T = 1.5 K dans le cryostat à température variable
(figure 3.12 a). b) Pertes internes κintr /2π en fonction de l’épaisseur t du niobium pour deux séries
de résonateurs à T = 1.5 K (série #1, cercles bleus, ℓr = 18.7 mm, cryostat à température variable) et
T = 10 mK (série #2, carrés rouges, ℓr = 6 mm, réfrigérateur à dilution). L’augmentation des pertes
internes pour la série #2 par rapport à la série #1 provient des pertes diélectriques supplémentaires
causées par une fréquence du résonateur plus élevée. c) Largeur de raie κr/2π en fonction du nombre
moyen de photons nr dans le résonateur. Ces données sont obtenues à une température T = 10 mK
dans le réfrigérateur à dilution (figure 3.13 a). Le résonateur possède une épaisseur t = 18 nm et
une longueur ℓr = 6 mm.
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de 0.64 MHz à 0.69 MHz en réduisant l’épaisseur de 23 à 13 nm, soit une augmentation

d’environ 7%. Cette observation suggère une contribution du film de niobium aux pertes

internes actuellement de nature inconnue. L’amplitude de ces pertes reste par contre

faible par rapport aux pertes diélectriques κdr /2π d’environ 50 kHz par GHz et aux pertes

κ
(0)
r /2π ≈ 0.3 MHz.

Pertes internes pour un faible nombre moyen de photons

Le nombre moyen de photons nr dans un résonateur pour une expérience typique

en électrodynamique quantique en circuit est généralement de l’ordre de l’unité [9]. Par

exemple, dans l’expérience proposée à la section 1.4, le nombre moyen de photons émis

dans le résonateur par la modulation paramétrique du couplage longitudinal est de l’ordre

de nr ∼ |∆gz/κr|2 ∼ 1 [117]. Dans ce régime quantique, où le nombre de photons ther-

miques nth
r ≪ 1, les pertes internes des résonateurs supraconducteurs coplanaires peuvent

augmenter significativement en réduisant le nombre moyen de photons nr [183, 131, 182].

Cette augmentation est causée par la présence d’un bain de systèmes à deux niveaux en

résonance avec le résonateur, ce qui offre un nouveau mécanisme de relaxation pour les

photons micro-ondes. À haute température ou à haute puissance, ce bain de systèmes à

deux niveaux est saturé et ne participe ainsi plus aux pertes du résonateur.

Le régime quantique à faible nombre moyen de photons n’a pas été investigué de

façon élaborée durant cette thèse. La figure 3.18 c) présente des résultats préliminaires

sur la relation entre la largeur de raie κr/2π et le nombre moyen de photons nr pour

T = 10mK. Par contre, contrairement au montage présenté à la figure 3.13 a), les circulateurs

cryogéniques et l’amplificateur cryogénique n’étaient pas présents pour ces mesures, ce

qui limite grandement le rapport signal sur bruit. Malgré cette limitation, une diminution

des pertes internes est observée en diminuant nr. Ainsi, un autre mécanisme de relaxation

domine la dépendance en puissance des pertes internes et est potentiellement lié à la

piézoélectricité du GaAs. Finalement, une augmentation potentielle des pertes internes

pour un faible nombre moyen de photons à la figure 3.18 c) doit être confirmée par des

mesures effectuées à l’aide du montage expérimental présenté à la figure 3.13 a). Dans tout

les cas, les résonateurs supraconducteurs en niobium sur un substrat de GaAs montrent

une faible dépendance en puissance de sonde Pa et c’est pourquoi la puissance de sonde

n’est pas mentionnée explicitement aux figures précédentes et suivantes.
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Figure 3.19 – Bifurcation d’un résonateur supraconducteur non linéaire.
a) Amplitude normalisée du coefficient de transmission |t(ωa)|2 / |t(ωa = ωr)|2 en fonction de la
fréquence de sonde ωa/2π pour différents nombres moyens de photons nr par rapport au nombre
moyen de photons critique ncritr ≈ 5 × 108. La ligne pleine indique la régression des données à
l’équation (3.24). Ces données sont obtenues à une température T = 10 mK. Le résonateur possède
une épaisseur t = 13 nm et une longueur ℓr = 6 mm. b) Nombre moyen de photons critique ncritr

en fonction de l’épaisseur t du niobium mesurés à T = 10 mK (cercles bleus) et T = 1.5 K (carrés
rouges). Les flèches indiquent la diminution du ncritr par la diminution des pertes internes liées aux
pertes résistives causée par la diminution de la température de 1.5 K à 10 mK.

3.3.5 Effets non linéaires

La longueur de pénétration λ d’un supraconducteur dépend de la densité de cou-

rant [184]. Cette dépendance crée une non-linéarité de l’inductance cinétique qui offre

une riche classe de phénomènes non linéaires [185]. Cette sous-section porte sur l’étude

expérimentale de quelques uns de ces phénomènes dans les résonateurs supraconducteurs

en niobium.

La figure 3.19 a) présente le spectre d’un résonateur d’une épaisseur t = 13 nm à

T = 10 mK pour différents nombres moyens de photons nr près du nombre moyen de

photons critique ncrit
r . Pour nr > ncrit

r , la non-linéarité de l’inductance cinétique est suffisante

pour faire bifurquer le résonateur. Pour nr < ncrit
r , la non-linéarité se manifeste pas une

asymétrique dans le spectre du résonateur.

La figure 3.19 b) présente ncrit
r en fonction de l’épaisseur t du niobium obtenus pour

différents résonateurs. Une suppression quasi-exponentielle de ncrit
r est observée en di-

minuant l’épaisseur t. Par contre, même avec l’épaisseur la plus faible, soit t = 13 nm

(figure 3.19 a), le nombre moyen de photons critique reste très élevé, soit environ 5× 108,
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correspondant à une puissance de sonde Pa d’environ −50 dBm. La comparaison des ncrit
r

obtenus pour des mesures à T = 1.5 K et T = 10 mK permet de voir que la diminution des

pertes internes liées aux pertes résistives permet de diminuer significativement le nombre

moyen de photons critique. Finalement, puisque ncrit
r reste très élevé par rapport à l’unité, la

non-linéarité de l’inductance cinétique n’est pas un problème pour les expériences typiques

en électrodynamique quantique en circuit.

Amplification paramétrique

Une première application de la non-linéarité des résonateurs est l’amplification para-

métrique d’un signal [185]. Afin d’utiliser le résonateur comme amplificateur paramétrique,

une excitation micro-ondes de pompe de fréquence angulaire ωp et de puissance Pp est

ajoutée à l’excitation de sonde du résonateur . Expérimentalement, les deux excitations

sont combinées à température de la pièce à l’aide d’un coupleur directionnel.

La figure 3.20 a) présente la mesure du spectre du résonateur en fonction de la fréquence

de la pompe ωp/2π près de la fréquence du résonateur pour une puissance de pompe

Pp = −41 dBm. L’amplitude du coefficient de réflexion |t(ωa)|2 est normalisée par son

amplitude en résonance en l’absence de la pompe (figure 3.20 b). Pour |ωr − ωp| ≫ κr, la

pompe n’a aucun effet. Lorsque la fréquence de la pompe est près de celle du résonateur,

la fréquence du résonateur diminue à cause de sa non-linéarité. Très près de la condition

où ωp = ωr, le spectre du résonateur est grandement affecté par la pompe (figure 3.20 b).

Notamment, l’amplitude du coefficient de transmission normalisée devient supérieure à

l’unité, ce qui montre la présence d’un processus d’amplification paramétrique dans les

résonateurs supraconducteurs en niobium.

Le gain G est défini comme le rapport de l’amplitude maximale du coefficient de

transmission en présence et en l’absence de la pompe, soit

G ≡ Max
[
|t(ωa, ωp)|2

]

Max
[
|t(ωa)|2

] . (3.37)

La figure 3.20 c) présente le gain G en fonction de la fréquence de pompe ωp/2π. Un gain

maximal d’environ 10.5 dB est atteint avec une bande-passante de 0.33 MHz. Ce gain doit

être comparé aux pertes d’insertion du résonateur d’environ 8.1 dB. Ainsi, bien que le

signal de sonde de fréquence angulaire ωa soit amplifié, le gain net n’est que d’environ

2.4 dB. Précédemment, il a été démontré qu’il est possible d’obtenir une amplification

paramétrique avec un gain net d’environ 22 dB dans un résonateur supraconducteur en
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Figure 3.20 – Amplification paramétrique dans un résonateur supraconducteur non linéaire.
a) Amplitude du coefficient de transmission |t(ωa)|2 en fonction de la fréquence de sonde ωa/2π
et de la fréquence de pompe ωp/2π pour une puissance de pompe Pp = −41 dBm. La ligne pleine
indique ωp/2π = ωa/2π. Ces données sont obtenues à une température T = 10 mK. Le résonateur
possède une épaisseur t = 18 nm et une longueur ℓr = 6 mm. b) Amplitude du coefficient de
transmission |t(ωa)|2 en fonction de la fréquence de sonde ωa/2π pour une fréquence de pompe
ωp/2π = 5.122 GHz (référence, cercles gris) et ωp/2π = 5.122 GHz (gain maximal, cercles bleus)
indiquée par les lignes verticales pointillées. En a) et en b), l’amplitude du coefficient de réflexion
est normalisée par son amplitude en résonance en l’absence de la pompe. c) Gain G en fonction de
la fréquence de pompe ωp/2π. Les pertes d’insertion d’environ 8.1 dB sont indiquées par la ligne
horizontale pointillée.

niobium [186]. Il est alors raisonnable de croire qu’une optimisation des coefficients de

couplage des ports d’entrée et de sortie du résonateur puisse mener à un gain net significatif

dans les résonateurs en niobium présentés dans cette thèse. Bien que la bande-passante soit

très limitée, la simplicité d’un tel amplificateur mérite une investigation plus approfondie.

Modulation de la fréquence

L’amplification observée est basée sur un processus de mélange paramétrique à trois

ondes où deux photons de la pompe de fréquence angulaire ωp sont convertis en un

photon de signal de fréquence angulaire ω− et en un photon image de fréquence angulaire

ω+ [184, 187, 186], soit

2ωp = ω− + ω+. (3.38)

Afin de vérifier la présence du processus de mélange paramétrique à trois ondes, la fi-

gure 3.21 a) présente la mesure du spectre du résonateur en fonction de la fréquence

de pompe ωp/2π pour une puissance de pompe de −18 dBm. Cette puissance de pompe

est 23 dB plus élevée que celle utilisée pour observer l’amplification paramétrique à la

figure 3.20 a).
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Figure 3.21 – Modulation de fréquence d’un résonateur supraconducteur.
a) Amplitude normalisée du coefficient de transmission |t(ωa)|2 / |t(ωa = ωr)|2 en fonction de la
fréquence de sonde ωa/2π et de la fréquence de pompe ωp/2π pour une puissance de pompe
Pp = −18 dBm. La ligne diagonale noire indique ωp/2π = ωa/2π. La ligne horizontale pointillée
blanche indique la fréquence du résonance ωr/2π en l’absence de la pompe. La ligne pleine blanche
indique la fréquence du résonateur ωr(ωp)/2π modifiée par la pompe et décalée de ωr/2π par
∆ωr/2π. La ligne pleine noire indique la fréquence de l’image ω+(ωp). Ces données sont obtenues
à une température T = 10 mK. Le résonateur possède une épaisseur t = 18 nm et une longueur
ℓr = 6 mm. b) Décalage maximal ∆ωmax

r /2π de la fréquence du résonateur en fonction de la
puissance de pompe Pp pour le même résonateur qu’en a). c) Amplitude normalisée du coefficient
de transmission |t(ωa)|2 / |t(ωa = ωr)|2 en fonction de la fréquence de sonde ωa/2π et du temps t
pour une modulation de la fréquence de pompe ωp(t)/2π donnée par l’équation (3.40). L’amplitude
et la fréquence de la modulation sont respectivement ∆ωp/2π = 5 MHz et ωm/2π = 0.1 Hz avec
une fréquence moyenne ω(0)

p /2π = 5.1209 GHz et une puissance Pp = −18 dBm. d) Fréquence du
résonateur ωr/2π en fonction du temps t extraite des données en c). La ligne pleine indique une
régression sinusoïdale des données. La fréquence du résonateur lorsque la modulation est éteinte
est indiquée par une ligne horizontale pointillée rouge. e) Largeur de raie κr/2π en fonction du
temps t lorsque la pompe est éteinte (cercles noirs), lorsque la pompe est allumée (cercles rouges) et
lorsque la modulation est allumée (cercles bleus).
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Le comportement observé à la figure 3.21 a) est drastiquement différent de celui de

la figure 3.20 a). En effet, à une certaine fréquence de pompe, la fréquence angulaire du

résonateur ωr change drastiquement d’un décalage angulaire donné par

∆ωr(ωp) ≡ ωr − ωr(ωp), (3.39)

où ωr et ωr(ωp) sont respectivement la fréquence angulaire du résonateur en présence et en

l’absence de la pompe. La figure 3.21 b) présente le décalage maximal ∆ωmax
r (ωp)/2π de la

fréquence du résonateur en fonction de la puissance de pompe Pp. Un décalage maximal de

15 MHz est observé pour une puissance de pompe de −18 dBm, correspondant à environ

1010 photons dans le résonateur.

L’interprétation physique du changement de la fréquence du résonateur par la pompe

est que le résonateur est alors habillé par la pompe par l’intermédiaire de la non-linéarité du

résonateur. La fréquence angulaire du résonateur habillée par la pompe ωr(ωp) est ajustée

à un modèle, non présenté par souci de concision, qui reproduit très bien le comportement

observé expérimentalement (figure 3.21 a). De plus, une deuxième résonance d’amplitude

plus faible apparaît à une fréquence angulaire ω+(ωp). Cette résonance correspond à l’image

issu du mélange paramétrique à trois ondes. En effet, la fréquence ω+(ωp) de cette résonance

respecte l’équation (3.38) du mélange paramétrique à trois ondes avec ω− = ωr [186].

Une application du contrôle de la fréquence du résonateur à l’aide de la fréquence

de la pompe est la modulation de ωr par une modulation de ωp. En effet, comme il est

illustré à la figure 3.21 a), sur une certaine plage de fréquence de pompe, la fréquence du

résonateur varie linéairement avec la fréquence de pompe. Afin de vérifier la possibilité

d’effectuer la modulation de la fréquence du résonateur, la fréquence de pompe est modulée

temporellement autour d’une fréquence angulaire moyenne ω(0)
p selon

ωp(t) = ω(0)
p +∆ωp sin (ωmt) , (3.40)

où ∆ωp et ωm sont respectivement l’amplitude et la fréquence angulaire de la modulation

de fréquence.

La figure 3.21 c) présente le spectre du résonateur mesuré en fonction du temps t alors

que la fréquence de pompe ωp(t) varie selon l’équation (3.40) pour ∆ωp/2π = 5 MHz et

ωm/2π = 0.1 Hz. La figure 3.21 d) présente la fréquence du résonateur ωr/2π en fonction

du temps extraite des données de la figure 3.21 c). Le bon accord des données avec une

régression sinusoïdale indique que pour cette amplitude de modulation, la réponse de la
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fréquence du résonateur est en effet linéaire avec la fréquence de la pompe. Finalement, la

figure 3.21 e) présente la largeur de raie κr/2π du résonateur en l’absence et en présence

de la pompe et de la modulation. Ainsi, alors que la présence de la pompe augmente la

largeur de raie de ∼ 1.1 MHz à ∼ 1.2 MHz, celle-ci n’est pas affectée par la modulation de

fréquence de la pompe.

Ainsi, la non-linéarité de l’inductance cinétique est utilisée pour effectuer la modulation

de la fréquence d’un résonateur supraconducteur en niobium avec un décalage maximal de

15 MHz. Cette modulation peut aussi être effectuée avec une fréquence de pompe près de

la fréquence du deuxième mode du résonateur. Dans ce cas, la modulation de la fréquence

du résonateur n’est pas accompagnée d’un processus de mélange paramétrique à trois

ondes et est simplement expliqué par la dépendance de l’inductance cinétique à la densité

de courant. Alternativement, lorsque le deuxième mode du résonateur est sondé avec une

fréquence de pompe près de la résonance du premier mode, un doublage de la fréquence

de pompe est observé. Cette riche gamme de phénomènes non linéaires dans un dispositif

extrêmement simple justifie probablement une investigation plus approfondie.

Peigne de fréquence

Un dernier phénomène observé grâce à la non-linéarité de l’inductance cinétique

est présenté à la figure 3.22 a). La mesure du spectre d’un résonateur en fonction de la

fréquence de pompe révèle l’apparition d’un peigne de fréquence autour de la fréquence

de pompe [188]. Le résonateur sur lequel les données ont été prises possède une épaisseur

t = 13 nm légèrement inférieure au résonateur précédent pour lequel l’amplification

paramétrique et la modulation de fréquence sont observées (t = 18 nm). Les différents pics

du peigne de fréquence apparaissent aux fréquences angulaires données par

ω±m = ωp ±m∆ω, (3.41)

oùm est l’indice du pic et le décalage ∆ω entre les différents pics dépend de la puissance de

pompe Pp. Pour le spectre présenté à la figure 3.22 a), ∆ω/2π ≈ 28 MHz avec une largeur

de raie d’environ 0.1 MHz.

L’amplitude relative des pics de fréquences angulaires ω−m et ω+
m varie avec la fréquence

de pompe. La figure 3.22 b) présente le spectre du résonateur en présence et en l’absence

du peigne de fréquence pour une fréquence de pompe qui maximise l’amplitude du pic

de fréquence angulaire ω+
1 . Un gain de 20 dB est observé par rapport au résonateur en
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Figure 3.22 – Peigne de fréquence dans un résonateur supraconducteur.
a) Amplitude normalisée du coefficient de transmission |t(ωa)|2 / |t(ωa = ωr)|2 en fonction de la
fréquence de sonde ωa/2π et de la fréquence de pompe ωp/2π pour une puissance de pompe
Pp = −27 dBm. La ligne diagonale noire indique ωp/2π = ωa/2π. La ligne horizontale pointillée
noire indique la fréquence du résonance ωr/2π en l’absence de la pompe. Ces données sont obtenues
à une température T = 10 mK. Le résonateur possède une épaisseur t = 13 nm et une longueur
ℓr = 6 mm. b) Amplitude normalisée du coefficient de transmission |t(ωa)|2 / |t(ωa = ωr)|2 en
fonction de la fréquence de sondeωa/2π pour une fréquence de pompeωp/2π = 3.16GHz (référence,
cercles gris) etωp/2π = 3.21491GHz (gain maximal, cercles rouges) indiquée par les lignes verticales
pointillées. En a) et en b), l’amplitude du coefficient de réflexion est normalisée par son amplitude
en résonance en l’absence de la pompe. De plus, les pics du peigne de fréquence aux fréquences
ω±m/2π sont indiqués. Finalement, les flèches indiquent ∆ω/2π = 28 MHz.
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l’absence de la pompe. Avec des pertes d’insertion de seulement 4 dB pour ce résonateur,

un gain net d’environ 16 dB est ainsi observé sur une bande-passante d’environ 0.1 MHz.

L’observation d’un peigne de fréquence sur plusieurs GHz d’un résonateur supracon-

ducteur à forte inductance cinétique est présentée à la référence [188]. Dans le cas présenté

ici, le nombre de pics du peigne de fréquence semble limité par la bande-passante du

résonateur. Une étude plus approfondie de ce phénomène est par contre nécessaire pour

explorer les limites et les applications d’un peigne de fréquence micro-ondes dans un

dispositif aussi simple qu’un résonateur supraconducteur en niobium.

3.3.6 Effets d’un champ magnétique externe

Comme discuté précédemment, un champ magnétique externe est nécessaire pour

magnétiser les micro-aimants et séparer les niveaux d’énergie du spin par l’effet Zeeman

dans le dispositif hybride présenté au premier chapitre. Cette sous-section présente l’impact

d’un champ magnétique sur les propriétés des résonateurs supraconducteurs en niobium

fabriqués sur un substrat de GaAs.

Afin d’éviter la formation de vortex, un champ magnétique parfaitement parallèle à la

surface du résonateur doit être appliqué, soit B0 = B0Z. Par contre, expérimentalement, il

existe toujours une composante transverse au champ magnétique appliqué au dispositif.

Ainsi, sans perte de généralité, on considère que le champ magnétique externe est dans le

plan X − Z du résonateur avec un angle θ0 entre l’axe du champ externe B0 et l’axe Z du

résonateur. Le champ magnétique dans le système de coordonnées du résonateur est alors

simplement donné par

B0 = B0 sin θ0X+B0 cos θ0Z. (3.42)

Ainsi, l’application d’un champ magnétique d’amplitude B0 = |B0| résulte en un champ

magnétique transverse d’une amplitude BX
0 = B0 sin θ0.

Détection de vortex uniques

Les résultats d’une première investigation expérimentale des propriétés des résonateurs

supraconducteurs dans un champ magnétique externe sont présentés à la figure 3.23 a).

Le spectre du résonateur est mesuré en fonction de l’amplitude B0 du champ magnétique

dans le cryostat à température variable à T = 1.5 K (figure 3.12). La présence d’un champ
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magnétique transverse causé par un angle θ0 non nul se manifeste par une changement de la

fréquence du résonateur dû à l’effet Meissner non linéaire (équation (3.18)) et à la présence

de vortex. La figure 3.23 b) présente la fréquence d’un résonateur en fonction de B0 pour

différents angles θ0 modifiés par l’ajout de rondelles métalliques entre le porte-échantillon

et la sonde du cryostat à température variable. L’ajout de ces rondelles modifie l’angle par

environ 1◦.

Une première observation est que l’angle θ0 est significatif. En effet, il est possible

de diminuer grandement le changement de la fréquence du résonateur par l’ajout de ces

rondelles (figure 3.23 b). Puisque l’angle θ0 varie probablement d’un dispositif à l’autre,

ceci démontre qu’il n’est pas possible de déterminer directement la sensibilité à un champ

magnétique externe dans cette configuration. Une seconde bobine supraconductrice per-

mettant de compenser le champ magnétique transverse serait ainsi un ajout intéressant au

montage expérimental dans le cryostat à température variable.

Une seconde observation concerne les sauts abrupts de la fréquence du résonateur à la

figure 3.23 b). Ces changements discrets superposés à la variation continue de la fréquence

du résonateur due à l’effet Meissner non linéaire sont associés à la pénétration de vortex

d’Abrikosov uniques dans le résonateur supraconducteur [171]. De plus, la pénétration d’un

ou plusieurs vortex durant la mesure du spectre du résonateur résulte en une augmentation

artificielle de la largeur de raie κr/2π déterminée par la régression du spectre du résonateur.

Cet effet est responsable des fortes déviations de κr/2π à la figure 3.23 c).

Finalement, la figure 3.23 d) présente un agrandissement de la fréquence et de la largeur

de raie du résonateur qui permet de montrer que les sauts discrets de la fréquence du

résonateur causés par la pénétration de vortex uniques s’accompagnent de sauts discrets

de la largeur de raie κr/2π à la figure 3.23 c). L’augmentation de la largeur de raie d’une

dizaine de kHz indique que les pertes internes liées à la présence de seulement quelques

vortex sont négligeables par rapport aux pertes diélectriques liées au GaAs.

Caractérisation à fort champ magnétique

Une seconde investigation expérimentale est effectuée dans le réfrigérateur à dilution à

T = 10 mK (figure 3.13). Les mesures de spectroscopie du résonateur sont effectuées à l’aide

du circuit de démodulation (figure 3.10). Les figures 3.24 a) et b) présentent respectivement

la fréquence et la largeur de raie d’un résonateur en fonction deB0 pour deux configurations

de l’angle entre le champ magnétique externe et le plan du résonateur. Dans une première

configuration, un angle θ0 nominalement nul permet d’observer la résonateur jusqu’à un



145
(G

H
z)

F
ré

q
u
en

ce
 d

e 
so

n
d
e

0 0.02 0.04 0.06 0.08 0.1

2.94

2.935

2.93

2.925

2.92

1

0.8

0.4

0

0.6

0.2

a)

(G
H

z)
0 0.02 0.04 0.06 0.08 0.1

2.92

2.925

2.93

2.935

2.94

b)

J638C C2 VNA2017-02-02_006, _008, _014

J638C C2 VNA2017-02-02_014

(M
H

z)

Champ magnétique externe (T)
0 0.02 0.04 0.06 0.08 0.1

0.42

0.44

0.46

0.48

0.5

0.52

0.54

(G
H

z)

2.933

2.934

2.935

2.936

(M
H

z)

Champ magnétique externe (T)
0.08 0.085 0.09 0.095 0.1

0.44
0.442
0.444
0.446
0.448
0.45

20 kHz

c) d)

e)

J638C C2 VNA2017-02-02_006, _008, _014

J638C C2 VNA2017-02-02_008

J638C C2 VNA2017-02-02_008

Initial
Initial + 1 rondelle
Initial + 2 rondelles

Initial
Initial + 1 rondelle
Initial + 2 rondelles

Figure 3.23 – Détection de vortex uniques.
a) Amplitude normalisée du coefficient de transmission |t(ωa)|2 / |t(ωa = ωr)|2 en fonction de la
fréquence de sonde ωa/2π et du champ magnétique externe B0. Ces données sont obtenues à
une température T = 1.5 K. Le résonateur possède une épaisseur t = 63 nm et une longueur
ℓr = 18.7 mm. b) Fréquence du résonateur ωr/2π en fonction de B0 pour trois configurations
différentes de l’angle θ0 entre le champ magnétique externe et le plan du résonateur. L’angle θ0
original (cercles noirs) est modifié à l’aide d’une rondelle métallique (cercles rouges) et de deux
rondelles métallique (cercles bleus). c) Largeur de raie κr/2π en fonction de B0 pour les mêmes
configurations de l’angle θ0 qu’en b). d) et e) Agrandissement de la région entre B0 = 0.08 T et 0.1 T
pour d) la fréquence ωr/2π et e) la largeur de raie κr/2π du résonateur pour la configuration où
l’angle θ0 est le plus faible (cercles bleus). Les lignes verticales pointillées indiquent la pénétration
de vortex uniques dans le résonateur supraconducteur.
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Figure 3.24 – Caractérisation des résonateurs à fort champ magnétique.
a) Fréquence du résonateur ωr/2π en fonction de B0 pour deux configurations différentes de l’angle
θ0 entre le champ magnétique externe et le plan du résonateur. L’angle θ0 original (cercles bleus)
est modifié à l’aide d’une pièce en cuivre par ±2◦ (cercles rouges). Les lignes pleines indiquent
les régressions des données à l’équation (3.18). Les données pour B0 > 3 T sont exclues de la
régression. b) Largeur de raie κr/2π en fonction de B0 pour les même configurations de l’angle
θ0 qu’en a). L’encart présente le spectre du résonateur à champ magnétique nul (B0 = 0) et à fort
champ magnétique (B0 = 2.5 T). Puisque le circuit de démodulation est utilisé pour ces mesures,
|t(ωa)|2 est donnée en unités de V2. Le résonateur possède une épaisseur t = 23 nm et une longueur
ℓr = 6 mm.

champ magnétique de B0 = 4 T. Notamment, la largeur de raie est inférieure à 1 MHz pour

B0 ≤ 3 T. Ceci démontre qu’il est possible d’opérer les résonateurs en niobium à un champ

magnétique de plusieurs T.

Dans une deuxième configuration, un angle de 2◦ est ajouté à l’angle initial θ0 à l’aide

d’une pièce en cuivre entre le doigt froid et le porte-échantillon. Ne connaissant pas a priori

le signe de l’angle θ0, l’angle pour cette deuxième configuration est ainsi θ0 ± 2◦. L’ajout

de cet angle supplémentaire affecte grandement le changement de la fréquence et de la

largeur de raie en fonction du champ magnétique externe (figures 3.24 a) et b). En effet, une

largeur de raie κr/2π = 1 MHz est atteinte à un champ magnétique externe de seulement

64 mT.

Afin de quantifier l’angle θ0, la fréquence du résonateur en fonction du champ ma-

gnétique externe est ajustée à l’équation (3.18) avec BX
0 = B0 sin θ0 et un rapport entre

l’inductance cinétique et l’inductance total α = 0.55 pour ce résonateur. Par contre, puisque

le champ magnétique caractéristique Bm n’est pas connu a priori et que la régression ne

permet pas de distinguer l’angle θ0 de Bm, θ0 est inclus dans un champ magnétique carac-
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téristique effectif Bm(θ0) donné par

Bm(θ0) =
Bm

sin θ0
, (3.43)

avec Bm(±π/2) = Bm. La régression des données de la figure 3.24 a) permet de déterminer

Bm(θ0) = 9.65±0.06 T etBm(θ0±2◦) = 0.402±0.008 T. Assumant que le champ magnétique

caractéristique Bm est le même dans les deux cas, il est possible de déterminer l’angle θ0 à

θ0 = ±0.087± 0.003◦, ou θ0 = ±0.080± 0.002◦, (3.44)

selon que l’angle supplémentaire de 2◦ compense partiellement ou non l’angle θ0. Une

troisième mesure est nécessaire pour distinguer ces deux solutions. Dans tous les cas, ces

résultats démontrent qu’un angle résiduel θ0 inférieur à 0.1◦ est nécessaire pour que les

pertes internes dues au champ magnétique externe soient négligeables par rapport aux

pertes diélectriques pour un champ magnétique de l’ordre de 1 T.

Finalement, à partir des deux solutions de l’angle θ0 déterminées et du champ magné-

tique caractéristique effectif observé, il est possible de déterminer l’amplitude du champ

magnétique caractéristique Bm à

|Bm| = 14.7± 0.6 mT, ou |Bm| = 13.5± 0.4 mT. (3.45)

Ce résultat indique que les résonateurs sont très sensibles à un champ magnétique trans-

verse. Une étude plus approfondie de la valeur du champ magnétique caractéristique pour

différents résonateurs est définitivement une avenue de recherche intéressante [165]. Une

application de la sensibilité du résonateur à un champ magnétique transverse est discutée

au prochain chapitre.

Reconfiguration des vortex à basse température

Pour conclure l’étude des propriétés des résonateurs dans un champ magnétique ex-

terne, les figures 3.25 a) et b) présentent une méthode utilisée pour reconfigurer les vortex

à basse température. En effet, à la suite de la pénétration de vortex par l’application d’un

champ magnétique externe, ceux-ci peuvent rester piégés dans le film mince supraconduc-

teur lorsque le champ magnétique externe est retiré. Cet effet est visible aux figures 3.25 a)

et b), où la fréquence et la largeur de raie du résonateur sont significativement différentes

à champ magnétique nul à la suite de l’application d’un champ magnétique maximal

Bmax
0 = 0.5 T et 1 T.
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Figure 3.25 – Reconfiguration des vortex à basse température
Amplitude du coefficient de transmission |t(ωa)|2 en fonction de la fréquence de sonde ωa/2π
à B0 = 0 à la suite de l’application d’un champ magnétique maximal de a) Bmax

0 = 0.5 T et
b) Bmax

0 = 1 T avant (cercles rouges) et après (cercles bleus) la reconfiguration des vortex à l’aide
d’une excitation à la fréquence du résonateur avec une puissance Pp = −5 dBm. Le spectre du
résonateur de référence, mesuré avant l’application d’un champ magnétique, est également présenté
(cercles noirs). Les lignes pleines présentent les régressions des spectres à l’équation (3.24). Puisque
le circuit de démodulation est utilisé pour ces mesures, l’amplitude de coefficient de transmission
|t(ωa)|2 est donnée en unités de V2. Le résonateur possède une épaisseur t = 18 nm et une longueur
ℓr = 6 mm.
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Il est possible d’expulser les vortex piégés en augmentant la température du résonateur

au-dessus de la température critique Tc. Par contre, pour une Tc de plusieurs K, cette

opération est très longue dans un réfrigérateur à dilution. De plus, puisque le résonateur

n’est pas connecté de façon galvanique au monde extérieur, il n’est pas possible d’y faire

circuler un courant d’une densité supérieure à la densité de courant critique. Il est par

contre possible d’injecter une excitation micro-ondes à la fréquence du résonateur et dont

la puissance Pp est telle que la densité de courant critique dans le résonateur est atteinte.

Cette approche est utilisée aux figures 3.25 a) et b) pour reconfigurer les vortex tout en

demeurant à basse température dans un réfrigérateur à dilution.

L’efficacité de cette approche n’est malheureusement pas parfaite. En effet, puisque

la densité de courant est maximale dans le conducteur central du résonateur, les vortex

expulsés sont ceux piégés dans le conducteur central alors que ceux dans le plan de la

mise à la terre sont toujours présents. Il est tout de même possible d’estimer l’efficacité

du processus en comparant la fréquence et la largeur de raie du résonateur avant qu’il

n’y ait des vortex et après la reconfiguration. Par exemple, à la suite de l’application d’un

champ magnétiqueBmax
0 = 1 T, la largeur de raie du résonateur est augmentée de 0.86 MHz

à 3.12 MHz. À la suite de la reconfiguration de vortex, une largeur de raie de 1.57 MHz

est obtenue, correspondant ainsi à une efficacité de 69%. Pour Bmax
0 = 0.5 T, on trouve un

résultat similaire avec une efficacité de 71%.

3.4 Impacts des travaux

Un premier impact des travaux présentés dans ce chapitre est la mise en place d’une

plateforme expérimentale pour les dispositifs hybrides composés de boîtes quantiques et

les résonateurs supraconducteurs. Cette plateforme servira de base pour les travaux expé-

rimentaux futurs sur le couplage entre un qubit de spin dans une double boîte quantique

et un résonateur supraconducteur.

Un deuxième impact important concerne la démonstration expérimentale et la compré-

hension théorique des résonateurs à forte inductance cinétique. L’utilisation de l’inductance

cinétique pour réaliser un résonateur supraconducteur plus compact permet de satisfaire

certaines contraintes spatiales imposées par l’incorporation des multiples grilles électrosta-

tiques nécessaires à la formation d’une double boîte quantique sur une hétérostructure

de GaAs/AlGaAs coûtant approximativement 100$ par 1 cm2. De plus, la réalisation de
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résonateurs à forte inductance cinétique est essentielle pour le magnétomètre basé sur un

résonateur supraconducteur présenté au chapitre 4.

Un troisième impact a trait à l’étude préliminaire des mécanismes de pertes internes

dans les résonateurs fabriqués sur un substrat de GaAs. Ces résultats sont extrêmement

importants pour établir les limitations d’une architecture basée sur le GaAs pour le couplage

entre un qubit de spin et un résonateur supraconducteur. À l’heure actuelle, les pertes reliées

au substrat de GaAs sont importantes, mais assez faibles pour permettre la démonstration

de preuves de concepts dans cette architecture. De plus, les résultats obtenus sont en accord

avec les quelques résultats de la littérature [180].

Un autre impact important de ces travaux est la démonstration expérimentale de l’opé-

ration de résonateurs supraconducteurs dans un champ magnétique de l’ordre de 1 T,

suffisant pour les expériences avec les qubits de spin. Cette démonstration réduit gran-

dement les contraintes sur l’amplitude du champ magnétique. Ceci permet, par exemple,

d’étudier le couplage spin-résonateur longitudinal sur une large plage de champ magné-

tique pour étudier les mécanismes de relaxation de spin crées par le couplage entre les

degrés de liberté de spin et de charge.



Chapitre 4

Spectroscopie de transitions de spins avec

un résonateur supraconducteur

Les résonateurs supraconducteurs présentés au chapitre précédent préservent une

largeur de raie inférieure à 1 MHz sous l’application d’un champ magnétique externe consi-

dérable. Ce chapitre présente l’utilisation de ces résonateurs pour observer le couplage

avec un ensemble de spins paramagnétique composé de centres azote-lacune (centres NV).

Une première section présente d’abord certains éléments de théorie sur le régime dispersif

du couplage transverse entre un résonateur et un ensemble de spins. De plus, un modèle

suggérant la présence d’un couplage spin-résonateur longitudinal effectif provenant de

la sensibilité de la fréquence du résonateur au champ magnétique perpendiculaire est

également présenté. Une deuxième section discute des aspects expérimentaux de l’expé-

rience. Une troisième section présente les résultats expérimentaux sur l’observation du

couplage transverse collectif entre les centres NV et le résonateur, ainsi que les signatures

de la présence d’un couplage longitudinal.

La plupart des résultats présentés ce chapitre ont été obtenus dans le cadre d’un stage

de Gregory Brookes à l’été 2017 et est le fruit d’une étroite collaboration avec David Roy-

Guay de l’Institut quantique et Jérôme Bourassa de l’Institut quantique et du Cégep de

Granby.
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4.1 Éléments de théorie

Dans cette section, la théorie du couplage transverse dans le régime dispersif est d’abord

présentée pour un ensemble de spins paramagnétique quelconque. La présence d’un

couplage spin-résonateur longitudinal est ensuite discutée. Par la suite, le cas spécifique

des centres NV dans le diamant est discuté.

4.1.1 Régime dispersif du couplage transverse

Généralisation de la théorie sur le couplage transverse

Une généralisation de la théorie sur le couplage transverse entre un ensemble de spins

paramagnétique et un résonateur présenté au chapitre 1 est considérée pour tenir compte

des 2S + 1 transitions pour des spins S = {1/2, 1, 3/2, . . .}. Pour ce faire, l’équation (1.13)

est modifiée selon

Ĥs = g∗µB

N∑

i=1

B0 · Ŝi + Ĥ′
s =

N∑

i=1

2S+1∑

j=1

ωj|j〉i〈j|. (4.1)

Le cas à deux niveaux présenté au chapitre 1 est retrouvé en tronquant la somme sur j de

2S + 1 à 2 à l’équation précédente avec σ̂z = |e〉〈e| − |g〉〈g|, ωs = ωe − ωg et en négligeant

un terme proportionnel à l’identité. L’hamiltonien de l’interaction dipolaire magnétique

entre l’ensemble de spins et le résonateur est donné par l’équation (1.14), soit

Ĥx
int = g∗µB

N∑

i=1

(
â† + â

)
δB(ri) · Ŝi. (4.2)

Tout comme au chapitre 1, il est possible d’exprimer cette interaction en terme des opéra-

teurs d’échelle collectifs ĉ et ĉ†. Une généralisation de l’opérateur d’annihilation pour la

transition entre les états |j〉i et |j′〉i du spin i est donnée par

ĉj,j′ =
1√
N

N∑

i=1

(

g
(i)
x,j,j′

gx,j,j′

)

|j〉i〈j′|, (4.3)
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où le coefficient de couplage g(i)x,j,j′ de la transition |j〉i ↔ |j′〉i du spin i au résonateur est

donné par

~g
(i)
x,j,j′ = g∗µBδB(ri) · i〈j|Ŝi|j′〉i, (4.4)

alors que le couplage moyen est donné par

gx,j,j′ =
1√
N

[
N∑

i=1

∣
∣
∣g

(i)
x,j,j′

∣
∣
∣

2
]1/2

. (4.5)

En remplaçant les opérateurs d’échelles collectifs dans l’hamiltonien du système de spin

de l’équation (4.1), on obtient

Ĥs =
2S+1∑

j=1

ωj ĉ
†
j,j ĉj,j, (4.6)

soit l’hamiltonien de 2S + 1 oscillateurs harmoniques de fréquences angulaires ωj . De

plus, l’hamiltonien de l’interaction transverse de l’équation (4.2) devient, à la suite de

l’approximation séculaire, l’hamiltonien de Tavis-Cummings généralisé donné par

Ĥx
int/~ ≈

2S∑

j=1

2S+1∑

j′=j+1

(
gx,j,j′ â

†ĉj,j′ + h.c.
)
, (4.7)

où gx,j,j′ ≡ gx,j,j′
√
N est le coefficient de couplage transverse collectif entre le résonateur et

la transition de spins |j〉 ↔ |j′〉 [61, 62].

Régime dispersif

Lorsque le désaccord entre la transition de spins |j〉 ↔ |j′〉 et le résonateur est beaucoup

plus grand que l’amplitude du coefficent de couplage collectif gx,j,j′ , soit

|(ωj′ − ωj)− ωr| ≫ gx,j,j′ , (4.8)

l’interaction transverse est dans le régime dispersif. Dans ce régime, l’échange d’énergie

entre les spins et le résonateur est supprimée par le désaccord en énergie. Par contre, un

décalage du résonateur dépendant de l’état des spins peut être utilisé pour lire le système

de spins [65, 68, 76]. Dans ce régime dispersif, un hamiltonien peut en principe être obtenu

en tenant compte de toutes les transitions de spins. Par contre, seulement les transitions
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|j〉 ↔ |j′〉 où j′ = j ± 1 sont considérées ici. Dans ce cas, l’hamiltonien Ĥ = Ĥs + Ĥr + Ĥx
int

de l’interaction est approximé par l’hamiltonien dispersif Ĥd
int donné par [189]

Ĥd
int/~ ≈

2S+1∑

j=1

χj ĉ
†
j,j ĉj,j â

†â. (4.9)

Le régime dispersif du couplage transverse collectif mène à un décalage de la fréquence

du résonateur donné par

χj =
g2x,j−1,j
∆j−1,r

− g2x,j+1,j

∆j,r

, (4.10)

où ∆j,r = ωj,j+1−ωr est le désaccord entre la transition |j〉 ↔ |j+1〉 de fréquence angulaire

ωj,j+1 = ωj+1 − ωj et le résonateur de fréquence angulaire ωr. Le décalage de la fréquence

du résonateur induit par une transition de spins |j〉 ↔ |j + 1〉 est ainsi donné par χj,j+1 =

χj+1−χj . Par exemple, pour |j = 1〉 ≡ |g〉, |j+1〉 ≡ |e〉 et |j+2〉 ≡ |f〉, le décalage dispersif

χ1,2 ≡ χge est donné par

χge =
2g2x,ge
∆ge

−
g2x,ef
∆ef

. (4.11)

Comme il est discuté à l’annexe B, ce décalage dispersif est analogue à celui observé pour

un qubit supraconducteur de type transmon [190, 191].

4.1.2 Couplage longitudinal

Comme discuté au chapitre 3, la fréquence du résonateur supraconducteur est sensible

au champ magnétique perpendiculaire. On montre maintenant que la dépendance de la

fréquence du résonateur à un champ magnétique perpendiculaire mène à un couplage

longitudinal effectif entre chaque spin de l’ensemble de spins paramagnétique et le réso-

nateur. L’utilisation de ce couplage longitudinal pour la lecture d’un ensemble de spin

paramagnétique est ensuite discutée.

Tout comme aux chapitres précédents, le système de coordonnées [X, Y, Z] est considéré,

où ρ = [0, Y, Z] correspond au plan du résonateur supraconducteur (figure 4.1 a). Sans

perte de généralité, un champ magnétique externe B0 =
[
BX

0 , 0, B
Z
0

]
avec un angle θ0 par

rapport au plan du résonateur est considéré dans cette sous-section, soit BX
0 = |B0| sin θ0

et BZ
0 = |B0| cos θ0.
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Décalage de la fréquence du résonateur

On considère un changement ∆BX du champ magnétique perpendiculaire par rapport

à la composante perpendiculaire du champ magnétique externe BX
0 . Ce changement du

champ magnétique perpendiculaire mène à un décalage de la fréquence angulaire du

résonateur donné par

∆ωr(B
X
0 ,∆B

X) = ωr(B
X
0 +∆BX)− ωr(B

X
0 ). (4.12)

Comme l’indique l’équation (3.18), la fréquence angulaire du résonateur dépend de façon

quadratique de l’amplitude BX du champ magnétique perpendiculaire au résonateur par

l’effet Meissner non linéaire selon

ωr(B
X) = ωr(0)

(

1− α

(
BX

Bm

)2
)

, (4.13)

où α est le rapport entre l’inductance cinétique et l’inductance totale et Bm est un champ

magnétique caractéristique [164, 165]. Ainsi, pour ∆BX ≪ BX
0 , le décalage ∆ωr de la

fréquence angulaire du résonateur résultant du changement ∆BX du champ magnétique

perpendiculaire est donné par

∆ωr

(
BX

0 ,∆B
X
)
≈ β

(
BX

0

)
∆BX , (4.14)

où

β
(
BX

0

)
= −2αωr(0)

(
BX

0

B2
m

)

. (4.15)

La figure 4.1 b) présente le décalage ∆ωr de la fréquence du résonateur résultant d’un chan-

gement du champ magnétique perpendiculaire ∆BX en fonction du champ magnétique

caractéristique Bm. Pour un rapport α → 1, un décalage ∆ωr/2π supérieur à 1 kHz par

changement de 1 µT du champ magnétique perpendiculaire est possible pour BX
0 = 1 mT

et Bm < 100 mT. En comparaison, pour un rapport α ∼ 10−2 − 10−1, correspondant à un

résonateur en aluminium [163], un décalage entre 10 à 100 Hz est attendu par changement

de 1 µT du champ magnétique perpendiculaire pour les mêmes paramètres. Il est ainsi

important de noter que puisque ∆ωr est directement proportionnel à α, le décalage de

la fréquence du résonateur est maximisé pour un résonateur supraconducteur à haute

inductance cinétique. Par contre, puisque α → 1 lorsque LK ≫ Lm, il existe probablement

une valeur optimale de l’inductance cinétique. La présence de vortex de Abrikosov peut
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Figure 4.1 – Principe du couplage spin-résonateur longitudinal.
a) Schéma d’un résonateur supraconducteur en présence d’un champ magnétique externe B0 =
[
BX

0 , 0, B
Z
0

]
avec un angle θ0 par rapport au plan du résonateur, soit BX

0 = |B0| sin θ0 et BZ
0 =

|B0| cos θ0. Un spin libre avec Ĥ′s = 0 possède un axe de quantification z colinéaire avec le champ
magnétique externe. Dans ce cas, la valeur moyenne de l’opérateur de spin 〈Ŝi〉j du spin i dans
l’état |j〉 possède une composante 〈ŜX

i 〉j = |〈Ŝi〉j | sin θ0 perpendiculaire au plan du résonateur.
b) Décalage ∆ωr/2π de la fréquence d’un résonateur de fréquence ωr(0)/2π = 6 GHz en fonction
du champ magnétique caractéristique Bm calculé à partir de l’équation (4.14) pour un champ ma-
gnétique perpendiculaire externe BX

0 = 1 mT, un changement ∆BX = 1 µT du champ magnétique
perpendiculaire et différentes valeurs du rapport α ≡ LK/(LK + Lm) entre l’inductance cinétique
et l’inductance total du résonateur.

être tenue en compte simplement en généralisant β
(
BX

0

)
selon

β
(
BX

0

)
=

dωr

dBX

∣
∣
∣
∣
BX=BX

0

, (4.16)

soit la pente de la fréquence angulaire du résonateur autour du champ magnétique per-

pendiculaire BX
0 . Cette dépendance de la fréquence du résonateur au champ magnétique

perpendiculaire peut être considérée dans l’hamiltonien du résonateur de l’équation (1.1)

selon

Ĥ′
r/~ =

[
ωr(B

X
0 ) + ∆ωr

(
BX

0 ,∆B
X
)]
â†â. (4.17)

Champ magnétique effectif

L’hamiltonien de l’équation (4.17) mène naturellement à un couplage longitudinal

entre chaque spin et le résonateur. En effet, la magnétisation effective de l’ensemble de
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spins est donnée par la somme des moments dipolaires magnétiques g∗µBŜi, soit

M̂ = −
N∑

i=1

g∗µBŜi, (4.18)

où Ŝi est l’opérateur de spin pour le spin i. Si tous les spins sont dans le même état, cette

magnétisation effective est uniforme sur tout l’ensemble de spins. Le système de spins

applique ainsi un champ magnétique sur le résonateur donné par

∆B̂ = µ0ηM̂, (4.19)

où η est une constante de proportionnalité qui décrit le champ magnétique ∆B̂ colinéaire

avec la magnétisation effective M̂ et µ0 est la perméabilité du vide. En considérant que

∆B̂ est uniforme et colinéaire avec M̂, les effets de bords sont négligés. La constante

de proportionnalité η dépend, par exemple, de la distance entre l’ensemble de spins et la

surface du résonateur. Cette constante peut ainsi être simulée à l’aide d’outils de simulations

magnétostatiques tel que Radia. La composante perpendiculaire du champ magnétique

appliqué par l’ensemble de spins au résonateur est ainsi donnée par

∆B̂X = −g∗µBµ0η
N∑

i=1

Ŝi · eX , (4.20)

où eX est le vecteur unitaire de l’axe X , perpendiculaire au plan du résonateur ρ.

Hamiltonien du couplage longitudinal

Le champ magnétique effectif perpendiculaire de l’équation (4.20) peut être remplacé

dans l’hamiltonien modifié du résonateur de l’équation (4.17). On obtient alors

Ĥ′
r = Ĥr + Ĥz

int, (4.21)

où

Ĥr/~ = ωr(B
X
0 )â†â. (4.22)
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L’hamiltonien du couplage longitudinal est alors donné par

Ĥz
int/~ =

2S+1∑

j=1

N∑

i=1

g
(i)
z,j|j〉i〈j|â†â. (4.23)

Le coefficient du couplage longitudinal entre l’état |j〉 du spin i et le résonateur est donné

par

g
(i)
z,j = −g∗µBµ0ηβ(B

X
0 )〈ŜX

i 〉j, (4.24)

où 〈Ŝi〉j = i〈j|Ŝi|j〉i est la valeur moyenne de l’opérateur de spin Ŝi du spin i dans l’état

|j〉 et 〈Ŝi〉j · eX = 〈ŜX
i 〉j est sa composante perpendiculaire au résonateur. En utilisant

l’expression de β(BX
0 ) obtenu à l’équation (4.15), le coefficient de couplage longitudinal

est donné par

g
(i)
z,j = 2g∗µBµ0ηαωr(0)

(
BX

0

B2
m

)

〈ŜX
i 〉j. (4.25)

Ainsi, comme illustré à la figure 4.1 a), le couplage longitudinal est non nul si la projection

de la valeur moyenne de l’opérateur de spin sur l’axe perpendiculaire X est non nul. Par

exemple, pour un système de spins libres avec Ĥ′
s = 0 tel que l’axe de quantification z est

donné par le champ magnétique externe B0 =
[
BX

0 , 0, B
Z
0

]
, on a

〈ŜX
i 〉j ∝ ez · eX = sin θ0 = BX

0 / |B0| . (4.26)

Dans l’hamiltonien transformé du résonateur de l’équation (4.21), des termes de couplages

transverses proportionnels à |j〉i〈j′|â†â peuvent être négligés sous l’approximation séculaire

pour |ωj,j′ − ωr| ≫ g
(i)
z,j .

L’hamiltonien total d’un ensemble de spins en interaction dipolaire magnétique avec

un résonateur supraconducteur dans le régime dispersif et en considérant la dépendance

de la fréquence du résonateur au champ magnétique perpendiculaire est alors donné par

Ĥ/~ ≈
2S+1∑

j=1

ωj ĉ
†
j,j ĉj,j + ωr(B

X
0 )â†â+

2S+1∑

j=1

χj ĉ
†
j,j ĉj,j â

†â+
2S+1∑

j=1

N∑

i=1

g
(i)
z,j|j〉i〈j|â†â. (4.27)

Contrairement au couplage transverse, le couplage longitudinal n’est pas exprimé en terme

des opérateurs d’échelle collectifs ĉj,j′ et ĉ†j,j′ . En effet, ceux-ci dépendent du rapport entre
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le coefficient de couplage transverse entre le résonateur et la transition |j〉 ↔ |j′〉 du spin i,

g
(i)
x,j,j′ et le coefficient de couplage transverse moyen gx,j,j′ .

Lecture non destructive de l’état des spins

Le couplage longitudinal entre les spins et le résonateur décrit par l’hamiltonien Ĥz
int

de l’équation (4.23) permet d’effectuer une lecture non destructive de l’état des spins à

partir d’une mesure de la fréquence du résonateur. En effet, l’hamiltonien de cet interac-

tion commute avec l’hamiltonien du système de spins décrit par l’équation (4.1). De plus,

contrairement au couplage spin-résonateur longitudinal présenté au chapitre 1, l’hamilto-

nien de l’interaction présentée ici commute aussi avec l’hamiltonien du résonateur. Ainsi,

une lecture non destructive de l’état du résonateur à l’aide d’une mesure de la fréquence de

Larmor d’un spin unique est en principe possible. De plus, contrairement au couplage lon-

gitudinal spin-résonateur présenté au chapitre 1, la modulation paramétrique du couplage

longitudinal n’est pas nécessaire dans le cas présent.

Les hamiltoniens des interactions dispersive et longitudinale entre le système de spins

et le résonateur sont tous les deux diagonaux aux hamiltoniens des deux sous-systèmes.

De plus, le régime de validité, déterminé par |ωj,j′ − ωr| ≫ g
(i)
x,j,j′ , g

(i)
z,j respectivement, est

similaire pour g(i)x,j,j′ ∼ g
(i)
z,j . Par contre, contrairement au décalage dispersif χj , le coefficient

du couplage longitudinal g(i)z,j ne dépend pas explicitement du désaccord ωj,j′ − ωr entre la

transition de spins |j〉 ↔ |j′〉 et le résonateur. Ainsi, la lecture de l’état du système de spins

à l’aide du couplage longitudinal peut, en principe, être effectuée sur une plage de champ

magnétique externe beaucoup plus élevée que la lecture basée sur l’interaction dispersive.

Pour un champ magnétique externe donné, il est de plus possible de sonder différentes

transitions de spins. Cette fonctionnalité contraste drastiquement avec la résonance para-

magnétique électronique pour laquelle une transition de spins est en résonance avec un

résonateur ou une cavité, limitant ainsi grandement l’étude des propriétés du système de

spins en fonction, par exemple, du champ magnétique externe.

4.1.3 Centres NV dans le diamant

Dans cette sous-section, on considère le cas spécifique d’un ensemble de centres azote-

lacune dans le diamant comme ensemble de spins paramagnétique. Les centres NV sont des

défauts colorés dans le diamant composés d’une impureté d’azote voisine à une lacune [192].

L’état fondamental d’un centre NV unique forme un système de spins avec S = 1 décrit
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par l’hamiltonien [193, 32]

Ĥ(n)
NV = g∗µBB0 · Ŝ+ ~DŜ2

zn + ~E
(
S2
xn

− S2
yn

)
. (4.28)

Le premier terme de l’hamiltonien décrit simplement l’effet Zeeman. Le second terme

décrit une séparation à champs nuls (zero-field splitting) qui lève la dégénérescence entre

les états de spins |ms = 0〉 et |ms = ±1〉 à champ magnétique nul avec un coefficient

D/2π ∼ 2.87 GHz. Le troisième terme de l’équation (4.28) décrit quant à lui une séparation

supplémentaire causée par une déformation du cristal et lève la dégénérescence entre les

états de spins |ms = ±1〉 à champ magnétique nul avec un coefficient E/2π ∼ 5 MHz. Les

opérateurs Ŝ =
(

Ŝxn
, Ŝyn , Ŝzn

)

pour un spin S = 1 sont explicitement données par

Ŝxn
=

1√
2










0 1 0

1 0 1

0 1 0










, Ŝyn =
1√
2i










0 1 0

−1 0 1

0 −1 0










, Ŝzn =










1 0 0

0 0 0

0 0 −1










. (4.29)

Ici, le système de coordonnées [xn, yn, zn] qui définit l’axe de quantification du centre NV à

champ magnétique nul correspond aux quatre orientations cristallographiques possibles

données par [111], [111], [111], [111] avec n = {A,B,C,D}. La figure 4.2 a) illustre un centre

NV possédant l’orientation [111] dans la cellule unitaire du réseau cristallin du diamant.

Transitions de spins

L’hamiltonien de l’équation (4.28) peut être diagonalisé pour un champ magnétique

externe B0 arbitraire. Un premier cas intéressant est lorsque le champ magnétique externe

est aligné selon l’axe du centre NV d’une des quatre orientations possibles. Comme l’illustre

la figure 4.2 a), l’hamiltonien de l’équation (4.28) est dans ce cas diagonal dans la base

du centre NV (en négligeant le décalage causé par les contraintes) et les états propres

|j〉 = | {g, e, f}〉 correspondent ainsi respectivement aux états de spin |ms = {0,−1,+1}〉
pour un champ magnétiqueB0 inférieur à environ 100mT 1. Un deuxième cas intéressant est

lorsque le champ magnétique externe est aligné selon l’axe Z. Dans ce cas, les composantes

du champ magnétique externe dans la base des centres NV possèdent des amplitudes égales

et les états propres ωj sont alors dégénérées pour les quatre orientations. La présence des

angles θ0 autour de l’axe Y et ϕ0 autour de l’axeX entre le système de coordonnées [X, Y, Z]

1. Pour une amplitude plus élevée du champ magnétique, les niveaux |ms = 0〉 et |ms = 1〉 se croisent et
l’état fondamental (excité) devient alors l’état |ms = −1〉 (|ms = 0〉).
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Figure 4.2 – Système de spins : centres NV dans le diamant.
a) Représentation schématique d’un centre NV dans la cellule unité du réseau cristallin du diamant.
Le centre NV possède une des quatre orientations possibles, identifiées de A à D, correspondant
aux quatre positions possibles de l’impureté d’azote (N) adjacente à la lacune (V). Dans ce cas,
un centre NV orienté selon l’axe cristallin [111] est représenté. Le champ magnétique externe B0

possède des angles θ0 etϕ0 par rapport à l’axeZ. Le schéma de la cellule unité du réseau cristallin du
diamant provient de la référence [194]. b) Fréquences ω(n)

j /2π des états propres |j〉 = | {g, e, f}〉 d’un
centre NV en fonction de l’amplitude B0 = |B0| du champ magnétique externe. Les lignes grises
correspondent au cas d’un champ magnétique externe aligné selon l’axe du centre NV. Les états
propres correspondent ainsi aux états de spin |ms = 0〉 (ligne pleine), |ms = −1〉 (ligne pointillée)
et |ms = 1〉 (ligne en trait mixte) pour B0 inférieur à environ 100 mT. c) Fréquences ω(n)

j,j′/2π des
transitions de spins |j〉 ↔ |j′〉 d’un centre NV en fonction de l’amplitude B0 du champ magnétique
externe. En b) et c), les lignes colorées correspondent au cas d’un champ magnétique externe
possédant des angles θ0 = 0.5◦ et ϕ0 = −1.5◦ par rapport à l’axe Z pour les quatre orientations
possibles des centres NV identifiées par n = {A,B,C,D}. Les coefficients de la séparation à champs
nuls D/2π et reliée à la déformation du cristal E/2π sont respectivement donnés par 2.87 GHz et
4.7 MHz.
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et le champ magnétique externe lève la dégénérescence entre les quatre orientations. En

effet, comme l’illustre la figure 4.2 b), les fréquences ω(n)
j /2π des états propres obtenus à

partir de l’hamiltonien de l’équation (4.28) avec |j〉 = | {g, e, f}〉 sont légèrement différentes

pour les quatre orientations. Finalement, la figure 4.2 b) présente la fréquence ω(n)
j,j′/2π des

trois transitions de spins des centres NV en fonction du champ magnétique B0.

Valeur moyenne de l’opérateur de spin

La figure 4.3 a) présente la composante perpendiculaire de l’opérateur de spin Ŝn d’un

centre NV avec une orientation n = {A,B,C,D} dans l’état fondamental |g〉 et l’état excité

|e〉, soit 〈ŜX
n 〉g et 〈ŜX

n 〉e respectivement 2. La présence de la séparation à champs nuls pour

les centres NV permet d’obtenir un angle effectif entre l’opérateur de spin Ŝn et l’axe X

significatif même pour une composante perpendiculaire du champ magnétique externe

nulle. À champ magnétique nul, 〈ŜX
n 〉g = 0 pour toutes les orientations puisque l’état

fondamental |g〉 correspond à l’état de spin |ms = 0〉. De plus, l’état excité |e〉 correspond

à l’état de spin |ms = −1〉 et la projection sur l’axe X donne ainsi 〈ŜX
n 〉e = ±1/

√
3. En

augmentant l’amplitudeB0 du champ magnétique externe, les états propres |j〉 = | {g, e, f}〉
ne correspondent plus aux états de spins |ms = {0,±1}〉. Notamment, pour un champ

magnétique supérieur à environ 100mT, les valeurs de 〈ŜX
n 〉g diminuent puisque l’opérateur

de spin Ŝn s’oriente selon l’axe du champ magnétique externe.

La figure 4.3 b) présente la différence 〈ŜX
n 〉ge ≡ 〈ŜX

n 〉e − 〈ŜX
n 〉g en fonction du champ

magnétique externe B0. Selon l’expression du coefficient de couplage longitudinal de

l’équation (4.25), cette quantité est directement proportionnelle au changement de la fré-

quence du résonateur à la suite de l’excitation de la transition |g〉 ↔ |e〉 de l’ensemble

de spins à partir de l’état fondamental |g〉. Ainsi, dans cette configuration, le décalage de

la fréquence du résonateur provenant de son couplage longitudinal avec les centres NV

possède un signe différent selon l’orientation du centre NV, fournissant ainsi une infor-

mation vectorielle. Ceci est drastiquement différent de la situation pour le décalage de la

fréquence du résonateur causée par son couplage transverse dans le régime dispersif. En

effet, selon l’équation (4.10), dans ce cas, le signe du décalage dépend seulement du signe

du désaccord ∆j,r.

2. On remplace ici l’indice du spin i par l’identification de l’orientation n = {A,B,C,D}.
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Figure 4.3 – Composante perpendiculaire de la valeur moyenne de l’opérateur de spin.
a) Composante perpendiculaire de la valeur moyenne de l’opérateur de spin d’un centre NV
dans l’état fondamental |g〉 et l’état excité |e〉, soit 〈ŜX

n 〉g (liges pleines) et 〈ŜX
n 〉e (lignes pointillées)

respectivement, en fonction de l’amplitude B0 du champ magnétique externe pour les orientations
n = {A,B,C,D}. b) Différences 〈ŜX

n 〉ge ≡ 〈ŜX
n 〉e − 〈ŜX

n 〉g en fonction de l’amplitude B0 du champ
magnétique externe. Pour ces figures, les lignes horizontales pointillées et en trait mixte indiquent
respectivement 0 et ±1/

√
3. De plus, θ0 = 0.5◦, ϕ0 = −1.5◦, D/2π = 2.87 GHz et E/2π = 4.7 MHz.

4.2 Aspects expérimentaux

4.2.1 Description du dispositif

Le résonateur utilisé dans l’expérience est fabriqué à partir d’un film mince de niobium

d’épaisseur d = 18 nm sur un substrat de GaAs non dopé (chapitre 3). Les largeurs du

conducteur central w et de l’espace avec les mises à la terre s sont nominalement 10 µm et

6.8 µm respectivement, correspondant à une impédance caractéristique Z = 93 Ω tenant

compte de l’inductance cinétique. À partir de la longueur ℓr = 6 mm et de la fréquence du

résonateur ωr/2π = 5.129 GHz extrapolée à température nulle, la longueur de pénétration

λ = 122 nm et le rapport α = 0.71 entre l’inductance cinétique et l’inductance totale sont

déterminés. Les ports d’entrée et de sortie du résonateur sont couplés de façon capacitive

aux guides d’ondes coplanaires avec un coefficient de couplage symétrique κin,outr /2π ≈
0.21 MHz. De plus, les pertes internes du résonateur de κintr /2π ≈ 0.43 MHz à champ

magnétique nul sont limitées par le substrat de GaAs, ce qui résulte en une largeur de raie

totale κr/2π = (κinr + κoutr + κintr )/2π ≈ 0.86 MHz.



164 4. Spectroscopie de transitions de spins avec un résonateur supraconducteur

La haute concentration de centres NV dans le diamant est obtenue en implantant un

diamant cru par dépôt chimique en phase vapeur et contenant initialement moins de 1 ppm

d’impuretés d’azote et une densité de centres NV ρ ≈ 2× 1013 cm−3 [195]. À la suite d’une

implémentation aux protons à une énergie de 10 MeV et une dose de 4× 1016 ions/cm2, un

recuit thermique du diamant à 800◦C pendant deux heures et 1000◦C pendant deux heures

sous une atmosphère d’argon est effectué. Ce recuit permet aux lacunes de migrer vers

les impuretés d’azote et ainsi former des centres NV additionnels. À partir de mesures

en photoluminescence, l’implantation et le recuit thermique permettent d’augmenter la

densité de centres NV par un facteur d’environ 103, soit ρ ≈ 2× 1016 cm−3.

Finalement, comme l’illustre la figure 4.4 a), le diamant est fixé à la surface du résonateur

avec de la graisse pour travaux sous vide. Le diamant est placé au centre du résonateur

pour maximiser le couplage transverse entre les centres NV et le résonateur. En effet, la

composante magnétique du mode fondamental du résonateur possède un ventre au centre

du résonateur. Comme l’illustre la figure 4.4 c), la présence du diamant et de la graisse

diminue la fréquence du résonateur de ωr/2π ≈ 5.115 GHz à 4.984 GHz. Cette diminution

de la fréquence du résonateur s’explique par une augmentation de la constante diélectrique

effective ǫeff . De plus, les pertes internes augmentent de κr/2π = 0.86 MHz à 0.97 MHz,

soit une augmentation des pertes internes d’environ 25%.

4.2.2 Montage expérimental

Le résonateur est fixé à un réfrigérateur à dilution avec une température de base d’en-

viron T = 10 mK. La figure 4.4 b) présente un schéma simplifié du montage expérimental

utilisé pour les mesures présentées à la prochaine section. Un analyseur de réseau est utilisé

pour mesurer le coefficient de transmission t(ωa) à la fréquence angulaire de sonde ωa

et avec une puissance Pa. Une excitation de spectroscopie de fréquence angulaire ωsp et

d’une puissance Psp provenant d’une source micro-ondes est combinée à l’excitation de

sonde à l’étage de la chambre de mélange du réfrigérateur à dilution à l’aide d’un coupleur

directionnel. L’atténuation des excitations de sonde et de spectroscopie entre les sources

micro-ondes et le port d’entrée du résonateur sont estimées respectivement à environ 97 dB

et 21 dB pour une fréquence de 5 GHz. Un amplificateur cryogénique et à température de

la pièce sont utilisés pour amplifier le signal de sonde par environ 80 dB.
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Figure 4.4 – Montage expérimental.
a) Photo du diamant placé à la surface du résonateur supraconducteur en niobium. La photolumi-
nescence rouge des centres NV sous une excitation optique à l’aide d’un laser vert est également
montrée. b) Schéma simplifié du montage expérimental du résonateur dans un réfrigérateur à
dilution. Un analyseur de réseau est utilisé pour mesurer le coefficient de transmission t(ωa) à la
fréquence angulaire de spectroscopie ωa. Une excitation de spectroscopie de fréquence angulaire
ωsp provenant d’une source micro-ondes est combinée à l’excitation de sonde à l’étage de la chambre
de mélange du réfrigérateur à dilution à l’aide d’un coupleur directionnel 16 dB. Le signal du port
de sortie du résonateur est amplifié par environ 80 dB par un amplificateur cryogénique et un
amplificateur à température de la pièce. Le bruit des amplificateurs est isolé du résonateur par deux
circulateurs cryogéniques et un filtre passe-bande. Le champ magnétique externe B0 possède des
angles ϕ0 autour de l’axeX et θ0 autour de l’axe Y (non indiqué) par rapport à l’axe Z du résonateur.
Les schémas du diamant et du résonateur sont à l’échelle et représentent la position nominale
du diamant par rapport au résonateur. c) Amplitude normalisée du coefficient de transmission
|t(ωa)|2 / |t(ωa = ωr)|2 en fonction de la fréquence de sonde ωa/2π pour le résonateur utilisé dans
l’expérience en l’absence (cercles gris) et en présence (cercles bleus) du diamant. Les lignes pleines
noires indiquent la régression des données.
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4.3 Résultats expérimentaux

Cette section présente des résultats expérimentaux sur l’étude du couplage entre

un ensemble de spins paramagnétique composé de centres NV dans le diamant et un

résonateur supraconducteur à haute inductance cinétique. Une calibration du décalage

de la fréquence du résonateur en fonction du champ magnétique perpendiculaire est

d’abord présentée. Par la suite, l’observation du couplage transverse entre les différentes

transitions de spins des centres NV et le résonateur est présentée. Finalement, des mesures

spectroscopiques dans le régime dispersif offrent des indications de la présence d’un

couplage longitudinal entre les spins et le résonateur.

4.3.1 Calibration du décalage de la fréquence du résonateur

Afin de calibrer le décalage de la fréquence du résonateur en fonction du champ

magnétique perpendiculaire, le résonateur est caractérisé dans un champ magnétique

perpendiculaire, soit B0 = BX
0 X, correspondant ainsi à θ0 = 90◦. La figure 4.5 a) présente la

fréquence du résonateurωr/2π en fonction deBX
0 . De plus, la figure 4.5 b) présente le spectre

du résonateur pour BX
0 = 0 et 0.5 mT. Comme discuté plus tôt, le décalage du résonateur

est causé par l’effet Meissner non linéaire et la présence de vortex de Abrikosov dans le film

supraconducteur de niobium [165]. En effet, la forte hystérèse de la fréquence du résonateur

en fonction du champ magnétique perpendiculaire à la figure 4.5 a) indique la présence

de vortex dans le résonateur. À la figure 4.5 b), le décalage de la fréquence du résonateur

atteint environ 23 MHz pour un champ magnétique perpendiculaire BX
0 = 0.5 mT, ce qui

correspond à un décalage beaucoup plus grand que la largeur de raie κr/2π ≈ 1 MHz du

résonateur.

Dans cette configuration, où le plan du résonateur est perpendiculaire au champ ma-

gnétique créé par la bobine supraconductrice du réfrigérateur à dilution, la fréquence du

résonateur est sensible aux fluctuations du champ magnétique de l’environnement. En effet,

les barres d’erreurs à la figure 4.5 a) sont proportionnelles à l’écart type de la fréquence

du résonateur obtenus par 500 mesures consécutives du spectre du résonateur avec une

résolution temporelle d’environ 1 s. Comme il est attendu, les fluctuations de la fréquence

du résonateur sont plus grandes lorsque la pente β(BX
0 ) de ωr(B

X
0 ) est plus élevée 3. Ceci

3. Des mesures subséquentes indiquent qu’une partie importante des fluctuations observées proviennent
de fluctuations du courant de la source d’alimentation de la bobine supraconductrice.
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Figure 4.5 – Calibration du décalage de la fréquence du résonateur.
a) Fréquence du résonateur ωr/2π en fonction du champ magnétique perpendiculaire BX

0 . Comme
l’indique les flèches, les données obtenues en diminuant et en augmentant le champ magnétique
sont respectivement indiquées par des cercles bleus et rouges. Les barres d’erreurs correspondent à
deux écarts types de la fréquence du résonateur mesurée à un champ magnétique fixe 500 fois avec
une résolution temporelle d’environ 1 s. La ligne noire pleine indique la régression des données
à l’équation (4.13) en ajoutant un décalage du zéro du champ magnétique perpendiculaire de
∆BX

0 = −0.12 mT (ligne verticale noire pointillée). b) Amplitude normalisée du coefficient de
transmission |t(ωa)|2 / |t(ωa = ωr)|2 en fonction de la fréquence de sonde ωa/2π pour un champ
magnétique perpendiculaire BX

0 = 0 (cercles bleus) et 0.5 mT (cercles rouges). Les lignes noires
pleines indiquent la régression des spectres. Il est intéressant de noter que dans cette configuration
du champ magnétique externe, la largeur de raie du résonateur est augmentée par les fluctuations
du champ magnétique de l’environnement durant la durée de la mesure du spectre d’environ 1 s.
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est une indication supplémentaire que le résonateur supraconducteur à haute inductance

cinétique est hautement sensible au champ magnétique perpendiculaire.

Les données de la fréquence du résonateur en fonction du champ magnétique perpen-

diculaire de la figure 4.5 a) sont ajustées à l’équation (4.13) afin de déterminer le champ

magnétique caractéristique Bm. L’impact de la présence des vortex sur la régression de

ωr(B
X
0 ) est limité en ajustant les données sur un aller-retour en champ magnétique. Le

champ magnétique caractéristique est ainsi déterminé à

Bm = 7.9± 0.8 mT. (4.30)

Cette valeur est inférieure à la valeur d’environ 14 mT déterminée au chapitre 3 pour un

résonateur avec une épaisseur d = 23 nm. Selon les équations (4.15) et (4.14), un décalage

∆ωr/2π = 0.9 kHz est ainsi attendu pour un changement ∆BX = 1 µT du champ magné-

tique perpendiculaire pour BX
0 = 1 mT et les paramètres déterminés pour ce résonateur.

Sachant qu’il est possible d’estimer la fréquence du résonateur avec une précision de 1 kHz

en ∼ 1.3 s pour une puissance de sonde Pa = −87 dBm≈ 2 pW, la sensibilité du résonateur

au champ magnétique perpendiculaire est d’environ 13 nT/
√
Hz pour BX

0 = 1 mT. Cette

estimation est très grossière et une étude beaucoup plus approfondie est nécessaire afin

d’estimer correctement la sensibilité. Malgré que celle-ci est très loin de l’état de l’art pour

la magnétométrie [196], l’attrait de l’étude du couplage longitudinal entre un système de

spins et un résonateur va bien au-delà d’une haute sensitivité pour la magnétométrie.

4.3.2 Couplage transverse entre les centres NV et le résonateur

Le couplage transverse collectif entre l’ensemble de spins paramagnétique composé de

centres NV et le résonateur est sondé par la mesure du spectre du résonateur en fonction

du champ magnétique externe B0. En effet, lorsque qu’une transition de spins |j〉 ↔ |j′〉
(de fréquence angulaire ω(n)

j,j′ pour les centres NV avec l’orientation n = {A,B,C,D}) est

en résonance avec le résonateur (de fréquence angulaire ωr), le couplage transverse mène

à une hybridation entre les excitations collectives des centres NV et le résonateur [32,

33]. Les résultats de cette sous-section sont obtenus pour un champ magnétique externe

principalement selon l’axe Z avec un angle θ0 autour de l’axe Y et un angle ϕ0 autour de

l’axe X (figure 4.2 a).

Les figures 4.6 a) et b) présentent les mesures du spectre du résonateur en fonction du

champ magnétique B0 près de la résonance avec la transition de spins |g〉 ↔ |e〉 et |g〉 ↔
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|f〉, respectivement. Malgré que les résonances soient clairement visibles, un croisement

évité n’est pas observé puisque les coefficients de couplage transverse collectif g(n)x,j,j′ sont

inférieurs à la largeur de raie des transitions de spins γ(n)j,j′ augmentée par un élargissement

inhomogène. Ainsi, le système est dans le régime de couplage faible et dans la limite où

la largeur de raie des spins est beaucoup plus élevée que la largeur de raie du résonateur.

Comme l’illustre les figures 4.6 c) et d), dans ce régime, l’hybridation entre le système de

spins et le résonateur augmente la largeur de raie du résonateur. Ce régime permet ainsi

d’effectuer la résonance paramagnétique électronique continue à très faible puissance [64].

Régression

Comme le montre la figure 4.6 a), la présence des angles θ0 etϕ0 permet de spectralement

distinguer les transitions de spins |g〉 ↔ |e〉 pour les quatre orientations n = {A,B,C,D}.

Une analyse détaillée des données pour ces transitions de spins est ainsi effectuée. Le

coefficient de transmission du résonateur en présence d’une interaction transverse avec les

transitions |g〉 ↔ |e〉 pour les quatre orientations n est décrit par [90]

t(ωa) =

√

κinr κ
out
r

i(ωa − ωr)− κr/2 +
∑D

n=A

∣

∣

∣
g
(n)
x,ge

∣

∣

∣

2

i
(

ωa−ω
(n)
ge

)

−γ
(n)
ge /2

, (4.31)

Cette expression est valide dans les régimes de couplage fort et faible et peut ainsi être

utilisée afin de déterminer les coefficients de couplage g(n)x,ge et les largeurs de raie γ(n)ge . Par

contre, puisque la fréquence du résonateur varie en fonction du champ magnétique externe,

et ce, même en l’absence de l’interaction avec les centres NV, il est difficile d’effectuer une

régression des données de la figure 4.6 a) à l’équation (4.31). De façon alternative, il est

possible de définir une largeur de raie effective κeffr obtenue en remplaçant ωa par ωr à

l’équation (4.31), soit [64]

κeffr = κr +
D∑

n=A

γ(n)ge






∣
∣
∣g

(n)
x,ge

∣
∣
∣

2

i
(

ωr − ω
(n)
ge

)

− γ
(n)
ge /2




 . (4.32)

Cette expression n’est valide que dans la limite du couplage faible et dans la limite où

γ
(n)
ge ≫ κr. La figure 4.6 c) présente la régression des données de la largeur de raie effective

κeffr du résonateur en fonction du champ magnétique externe B0.

Le tableau 4.1 présente les valeurs des différents paramètres extraits de la régression
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Figure 4.6 – Couplage transverse entre les transitions de spins et le résonateur.
Amplitude normalisée du coefficient de transmission |t(ωa)|2 / |t(ωa = ωr)|2 en fonction de la fré-
quence de sonde ωa/2π et du champ magnétique B0 près de la résonance entre le résonateur et
la transition de spins a) |g〉 ↔ |e〉 et b) |g〉 ↔ |f〉. Les sauts abrupts de la fréquence du résonateur
correspondent à la pénétration de vortex dans le résonateur. Largeur de raie effective κeffr /2π du
résonateur en fonction du champ magnétique B0 près de la résonance entre le résonateur et la
transition de spins c) |g〉 ↔ |e〉 et d) |g〉 ↔ |f〉. En c), la ligne pleine indique la régression des données
à l’équation (4.32) en considérant une largeur de raie du résonateur κr augmentant linéairement
avecB0 (ligne grise pointillée). En d), l’encart présente un agrandissement des données près du croi-
sement entre le résonateur et la transition de spins |g〉 ↔ |f〉 des centres NV en interaction hyperfine
avec le spin nucléaire d’atomes de 13C. En a) et c), les lignes pleines indiquent les fréquences ω(n)

ge /2π
de la transition de spins |g〉 ↔ |e〉 pour un centre NV d’orientation n obtenues numériquement
à partir de l’hamiltonien de l’équation (4.28) pour les paramètres suivants : D/2π = 2.87 GHz,
E/2π = 4.7 MHz, ∆B0 = 1.71 mT, θ0 = 0.48◦ et ϕ0 = −1.46◦. Pour ce choix de signes des angles,
les orientations n = {A,B,C,D} correspondent respectivement aux orientations cristallines [111],
[111], [111] et [111].
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n ω
(n)
ge /2π (GHz) B

(n)
0,ge (mT) B

(n)
0,ge (mT) γ

(n)
ge /2π (MHz) g

(n)
x,ge/2π (MHz) C

(n)
ge

Expérience Régression

A 4.97867 158.370± 0.002 158.375 14.2± 0.3 2.27± 0.02 0.27

B 4.97856 159.972± 0.002 159.992 15.1± 0.3 2.32± 0.02 0.26

C 4.97823 163.422± 0.002 163.425 13.6± 0.3 2.22± 0.02 0.27

D 4.97823 165.162± 0.002 165.157 14.8± 0.3 2.32± 0.02 0.27

Table 4.1 – Paramètres extraits de la régression des croisements.
Fréquence de la transition |g〉 ↔ |e〉 des centres NV avec une orientation n = {A,B,C,D} à
un champ magnétique externe B(n)

0,ge déterminés expérimentalement et par une régression. Les

valeurs de la largeur de raie γ(n)ge /2π, du coefficient de couplage g(n)x,ge/2π et de la coopérativité C(n)
ge

déterminées par la régression des données présentées à la figure 4.6 c) à l’équation (4.32) sont
également présentées.

présentée à la figure 4.6 b). Les coefficients g(n)x,ge/2π du couplage transverse pour les dif-

férentes orientations varient entre 2.22 et 2.32 MHz. Selon l’équation (1.15), la différence

entre les coefficients de couplage pour les différentes orientations peut s’expliquer par une

différence de l’orientation du champ magnétique micro-ondes B1 par rapport à l’opérateur

de spin Ŝn pour les centres NV d’orientation n. Une modélisation du champ magnétique

micro-ondes anisotrope B1(r) permet d’estimer la densité ρ de centres NV dans le diamant

à partir des coefficients de couplage et de l’équation (1.25) [32]. Cette analyse n’a par contre

pas été effectuée.

Les largeurs de raie γ(n)ge /2π varient entre 13.6 et 15.1 MHz pour les différentes orien-

tations des centres NV. L’interaction transverse entre la transition de spins |g〉 ↔ |e〉 des

centres NV et le résonateur est ainsi dans le régime de couplage faible, avec

|g(n)x,ge| < Max
[
κr, γ

(n)
ge

]
. (4.33)

De plus, la coopérativité C(n)
ge , donnée par

C(n)
ge =

∣
∣
∣g

(n)
x,ge

∣
∣
∣

2

κrγ
(n)
ge

, (4.34)

n’atteint qu’environ 0.27 [32, 33]. Ainsi, le système hybride est aussi dans le régime de

faible coopérativité défini par C(n)
ge ≪ 1.
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Finalement, malgré la présence des angles θ0 et ϕ0, les différentes orientations n des

centres NV ne sont pas résolues pour la transition |g〉 ↔ |f〉 (figure 4.6 c). Il est ainsi

difficile d’extraire les coefficients de couplage et les largeurs de raie pour cette transition.

La figure 4.6 d) montre qu’il est tout de même possible de détecter la présence de centres

NV en interaction hyperfine avec le spin nucléaire d’un atome de 13C avec une abondance

naturelle d’environ 1% [197, 198, 199]. Avec un spin nucléaire I = 1/2, deux résonances

satellites sont ainsi présentes, correspondant aux états de spin nucléaires |mI = ±1/2〉. En

effet, puisque les spins nucléaires ne sont pas polarisés, et ce, même à une température

T = 10 mK, les deux états sont approximativement équiprobables. La constante hyperfine

A/2π = 130 MHz est déterminée à partir de la séparation en champ magnétique entre la

résonance principale et les résonances satellites et la fréquence angulaire ω(n)
gf (B0) obtenue

à partir de l’hamiltonien de l’équation (4.28). Cette valeur est en excellent accord avec la

valeur de A/2π = 130 MHz des références [65, 199].

Détermination des angles

Les valeurs des champs magnétiques B(n)
0,ge pour lesquels les transitions de spins |g〉 ↔

|e〉 sont en résonance avec le résonateur sont utilisées pour déterminer les différents pa-

ramètres de l’hamiltonien des centres NV de l’équation (4.28). Ces valeurs de B(n)
0,ge sont

présentées au tableau 4.1. Explicitement, les paramètres de la régression sont la séparation

à champs nulsD/2π, la séparation causée par les déformationsE/2π, le décalage du champ

magnétique ∆B0 et les angles θ0 et ϕ0 (figure 4.2 a). La régression est effectuée en minimi-

sant la somme des carrés des différences entre les valeurs obtenues expérimentalement et

celles obtenus à partir de la résolution numérique de l’hamiltonien de l’équation (4.28). Il

est alors possible de voir qu’il est difficile de déterminer indépendamment les paramètres

D/2π, E/2π et ∆B0. En fixant les valeurs de D/2π et E/2π à des valeurs raisonnables de

2.87GHz et 4.7MHz respectivement, un décalage du champ magnétique∆B0 = 1.71mT est

déterminé [32]. Ce décalage du champ magnétique est probablement causé par la présence

de vortex dans le résonateur supraconducteur qui affecte les centres NV [200].

Puisque les angles θ0 et ϕ0 déterminent la séparation en champ magnétique entre

les différentes transitions, ceux-ci dépendent très faiblement du choix des paramètres

D/2π, E/2π et ∆B0. Il est alors possible de déterminer θ0 = ±0.48◦ et ϕ0 = ±1.46◦. En

effet, le signe des deux angles n’est pas déterminé par la régression de ces données. Ainsi,

quatre des 4! = 24 permutations de la correspondance entre les orientations n et les axes

cristallins sont équivalentes. Par exemple, pour θ0 = 0.48◦ et ϕ0 = −1.46◦, les orientations

n = {A,B,C,D} correspondent respectivement aux orientations cristallines [111], [111], [111]
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et [111]. Finalement, le tableau 4.1 présente les valeurs deB(n)
0,ge obtenues pour ces paramètres.

L’erreur relative entre les valeurs déterminées expérimentalement et la régression est de

l’ordre de 100 ppm.

4.3.3 Spectroscopie de transitions de spins

Cette sous-section explore le régime dispersif de l’interaction transverse entre les

différentes transitions de spins des centres NV et le résonateur. Comme il est discuté plus

tôt, dans ce régime, l’échange de quanta d’excitations entre les spins et le résonateur est

supprimée par la présence d’un désaccord |∆j,r| beaucoup plus grand que le coefficient

de couplage collectif gx,j,j′ . De plus, ce régime permet d’observer un potentiel couplage

longitudinal entre les spins et le résonateur.

Principe de la mesure

L’interaction transverse entre les spins et le résonateur est utilisée afin de piloter une

transition de spins |g〉 ↔ |e(f)〉 à l’aide d’une excitation de spectroscopie de fréquence

angulaire ωsp et de puissance Psp. Comme l’illustre la figure 4.4 b), cette excitation est

envoyée au port d’entrée du résonateur. Lorsque la fréquence angulaire ωsp est près de

la fréquence de la transition de spins |g〉 ↔ |e(f)〉 de fréquence angulaire ω(n)
ge(f), soit

|ω(n)
ge(f)−ωp| ≪ γ

(n)
ge(f), la population de l’état excité |e(f)〉 des centres NV avec une orientation

n est modifiée.

La possibilité d’effectuer la spectroscopie des transitions de spins avec un résonateur

supraconducteur est ainsi explorée en préparant une population finie d’un des états excités

de spins |e(f)〉 des centres NV à l’aide d’une excitation de spectroscopie ωsp résonante

avec la transition de spins |g〉 ↔ |e(f)〉. Comme l’illustre la figure 4.7, au temps t = 0, la

fréquence angulaire de l’excitation de spectroscopie est modifiée à une valeur ω0
sp choisie

de façon à ne pas être en résonance avec le résonateur et les différentes transitions de

spins. Cette méthode de mesure est utilisée afin d’éliminer les effets thermiques reliés à

l’extinction de l’excitation de spectroscopie. Le spectre du résonateur est mesuré à l’aide de

l’excitation de sonde de fréquence angulaire ωa et de puissance Pa en fonction du temps t

afin de déterminer la dépendance temporelle ωr(t) de la fréquence angulaire du résonateur.

Durant cette évolution libre, la population des états excités des centres NV décroit avec

un temps caractéristique T1 correspondant au temps de relaxation. Dans les centres NV, le

temps de relaxation peut atteindre plusieurs heures à une température T = 10 mK [76].
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Dans l’architecture planaire utilisée ici, l’inhomogénéité du couplage transverse entre les

spins et le résonateur occasionne un effet de diffusion de spins, ce qui limite le temps de

relaxation à environ 102 secondes [65, 76]. Cette échelle de temps permet tout de même

d’observer la relaxation des spins en direct.

Spectre de la transition de spins |g〉 ↔ |e〉

Le changement δωr(t) de la fréquence angulaire du résonateur est défini par

δωr(t) ≡ ωr(t)− ωg
r , (4.35)

où ωg
r est la fréquence du résonateur lorsque tout les spins sont dans l’état fondamental |g〉.

La figure 4.7 a) présente le dépendance temporelle du décalage δωr(t) mesurée pendant

environ 250 s avec une résolution temporelle de ∼ 1.25 s pour les transitions de spins

|g〉 ↔ |e〉 correspondant aux quatre orientations n des centres NV. Le décalage de la

fréquence du résonateur est ajusté à une décroissance exponentielle décrite par

δωr(t) = ∆ωre
−t/T1 , (4.36)

afin de déterminer le temps de relaxation T1 et l’amplitude ∆ωr du changement de la

fréquence angulaire du résonateur. Par exemple, à la figure 4.7 a), un temps de relaxation

T1 = 80± 5 s et une amplitude ∆ωr/2π = −59± 1 kHz sont déterminés pour une excitation

de spectroscopie en résonance avec la transition de spins |g〉 ↔ |e〉 de l’orientation n = B.

Le tableau 4.2 présentent les valeurs des paramètres déterminées pour les différentes

orientations. À titre de comparaison, le signal mesuré lorsque l’excitation de spectroscopie

n’est pas résonante avec une transition de spins est également présenté à la figure 4.7 a).

Il est important de noter qu’une trace temporelle est obtenue à partir d’une seule mesure

et n’est pas une reconstitution de plusieurs répétitions pour différents temps d’évolution

libre t. En effet, la moyenne sur plusieurs répétitions est fournit par le fait que plusieurs

centres NV sont mesurés simultanément. De plus, si la lecture est non destructive, le temps

de relaxation observé n’est pas perturbé par la mesure [65].

La figure 4.7 b) présente l’amplitude ∆ωr du changement de la fréquence angulaire

du résonateur en fonction de la fréquence ωsp de l’excitation de spectroscopie près des

transitions de spins |g〉 ↔ |e〉 des centres NV à un champ magnétique externe B0 = 150 mT.

Une première observation porte sur l’obtention d’un signal de base très près de zéro.
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Figure 4.7 – Spectre de la transition de spin |g〉 ↔ |e〉.
a) Changement δωr(t)/2π de la fréquence du résonateur en fonction du temps t pour une excitation
de spectroscopie résonante avec la transitions de spins |g〉 ↔ |e〉des centres NV avec l’orientationn =
A (cercles bleus), B (cercles rouges), C (cercles verts), D (cercles mauves) et pour ωsp = ω0

sp (cercles
gris). Les lignes pleines indiquent la régression des données à l’équation (4.36). Par souci de clarté,
les données pour les orientationsA etC sont décalées verticalement par 40 kHz. L’amplitude∆ωr/2π
du décalage est indiqué pour l’orientation B. b) Amplitude ∆ωr du changement de la fréquence du
résonateur en fonction de la fréquence ωsp/2π de l’excitation de spectroscopie près des transitions
de spins |g〉 ↔ |e〉 des centres NV. Les lignes verticales indiquent les fréquences des différentes
transitions de spins. Les flèches représentent la polarité attendue du changement de la fréquence
du résonateur résultant du couplage longitudinal entre les centres NV et le résonateur (figure 4.3 b).
L’encart présente schématiquement la séquence de fréquences angulaires de spectroscopie utilisée
pour ces mesures. Pour ces figures, le champ magnétique est fixé à B0 = 150 mT et les puissances
de sonde et de spectroscopie sont respectivement Pa = −87 dBm et Psp = −31 dBm. La fréquence
de spectroscopie de référence est fixée à ω0

sp/2π = 4.51 GHz.
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n ω
(n)
ge /2π (GHz) ∆ωr/2π (kHz) T1 (s)

A 4.749 −28± 3 170± 30

B 4.705 −59± 1 80± 5

C 4.626 −15± 3 180± 60

D 4.579 −25± 1 72± 7

Table 4.2 – Paramètres extraits de la régression des décroissances exponentielles.
Fréquence ω(n)

ge /2π, amplitude ∆ωr/2π et temps de relaxation T1 extraits des décroissances expo-
nentielles δωr(t) présentées à la figure 4.7 a) pour les transitions |g〉 ↔ |e〉 des centres NV avec
l’orientation n = {A,B,C,D} et un champ magnétique externe B0 = 150 mT.

En effet, durant les ∼ 21 heures nécessaires pour acquérir ce spectre 4, la fréquence du

résonateur peut varier significativement, par exemple, par la pénétration de vortex dans le

film supraconducteur de niobium. L’utilisation de l’amplitude ∆ωr du changement de la

fréquence angulaire du résonateur permet d’éliminer la majeur partie de ces fluctuations

puisque chaque mesure possède sa propre référence 5.

Une deuxième observation porte sur l’augmentation non monotonique de l’amplitude

∆ωr du signal lorsque le désaccord entre les transitions de spins et le résonateur est réduit

de 385 MHz à 215 MHz. Cette observation contraste fortement avec l’augmentation mono-

tonique attendue selon l’équation (4.11) pour un signal provenant purement du couplage

transverse dans le régime dispersif. En effet, les coefficients g(n)x,ge du couplage transverse

de la transition |g〉 ↔ |e〉 pour les différentes orientations n diffèrent par moins de 5%

(tableau 4.1). La différence entre les amplitudes ∆ωr pour les différentes orientations peut

potentiellement s’expliquer par la présence d’un couplage longitudinal entre les centres

NV et le résonateur. En effet, comme l’indique la figure 4.3 b), la polarité du changement

de la fréquence du résonateur, proportionnel à 〈ŜX
n 〉ge, est inversée entre les orientations

(A,C) et (B,D). Ainsi, puisque les constantes reliant 〈ŜX
n 〉ge au coefficient de couplage

longitudinal g(n)z,g(e) selon l’équation (4.25) sont positives, les amplitudes plus faibles pour les

orientations (A,C) par rapport aux orientations (B,D) peut s’expliquer qualitativement par

la combinaison d’une lecture dispersive et longitudinale. Ceci est une forte indication de la

présence d’un couplage longitudinal entre les spins et le résonateur. Un modèle permettant

4. Le spectre est acquis avec une résolution de 1 MHz sur 300 MHz. Pour chaque valeur de ωsp, la
fréquence du résonateur est mesurée pendant environ 250 s afin que les populations des états excités aient
relaxés. La durée de la mesure du spectre est ainsi donnée par 301× 250 s ≈ 21 h.

5. Par exemple, la pénétration d’un vortex durant la mesure de δωr(t) pour une fréquence angulaire de
spectroscopie ωsp affecte le résultat pour cette valeur de ωsp, mais n’affecte pas les mesures subséquentes.
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d’effectuer une régression pour vérifier quantitativement l’accord entre les données et la

théorie présentée précédemment est en cours de développement.

Effets des puissances de sonde et de spectroscopie

Les figures 4.8 a) et b) présentent l’amplitude ∆ωr/2π du changement de la fréquence

du résonateur et le temps de relaxation T1 en fonction de la puissance de sonde Pa entre

−107 dBm et −87 dBm, correspondant à un nombre moyen de photons nr entre 5 × 102

et 5 × 104, respectivement. L’amplitude ∆ωr et le temps de relaxation T1 ne varient pas

significativement sur cet intervalle de puissance de sonde. Cette observation est en accord

avec un processus de lecture non destructive des spins [65]. La non-linéarité du résonateur

limite le nombre moyen de photons de sonde à ncrit
r ≈ 109 pour ce résonateur (chapitre 3).

Les figures 4.8 c) et e) présentent l’amplitude ∆ωr/2π du changement de la fréquence

du résonateur en fonction de la puissance de spectroscopie Psp. Comme il est attendu,

l’amplitude du signal augmente avec la puissance de spectroscopie puisque la popula-

tion des spins dans l’état excité |e〉 augmente. Les données sont ajustées à un modèle où

l’amplitude ∆ωr/2π augmente linéairement avec la puissance jusqu’à une puissance de

saturation P sat
sp qui correspond à une population de l’état excité |e〉 des centres NV saturée

à 1/2. Explicitement, les données sont ajustées à

∆ωr(Psp) = ∆ωmax
r

(

Psp/P
sat
sp

1 +
(
Psp/P sat

sp

)

)

, (4.37)

où ∆ωmax
r /2π correspond à l’amplitude maximale du changement de la fréquence du

résonateur pour Psp ≫ P sat
sp . La puissance de saturation ne varie pas de façon significative

entre les différentes orientations, indiquant qu’il est possible de comparer les amplitudes à

une puissance de spectroscopie donnée. Pour une puissance de spectroscopie supérieure à

−25 dBm, la décroissance de l’amplitude ∆ωr/2π est probablement due à une augmentation

de la largeur de raie de la transition de spins causée par un déphasage induit par la

mesure [201, 44]. Une mesure du spectre des transitions de spins en fonction de la puissance

de spectroscopie est nécessaire afin de valider cette hypothèse. L’augmentation linéaire du

décalage du résonateur en fonction de la puissance de spectroscopie est compatible avec

une lecture des spins par l’interaction transverse dans le régime dispersif et l’interaction

longitudinale. En effet, ces deux couplages sont directement proportionnels à l’opérateur

de spins |j〉i〈j| (équations (4.27)).

Les figure 4.8 d) et f) présentent le temps de relaxation T1 en fonction de la puissance
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Figure 4.8 – Effets des puissances de sonde et de spectroscopie.
a) Amplitude ∆ωr/2π du changement de la fréquence du résonateur et b) temps de relaxation
T1 en fonction de la puissance de sonde Pa pour les centres NV avec l’orientation n = B et une
puissance de spectroscopie Psp = −31 dBm. c) Amplitude ∆ωr/2π et d) temps de relaxation T1
en fonction de la puissance de spectroscopie Psp pour les centres NV avec l’orientation n = A
(cercles bleus), B (cercles rouges), C (cercles verts) et D (cercles mauves) et une puissance de sonde
Pa = −87 dBm. Il est important de noter que l’intervalle des données en d) est différent de celui en c).
e) Amplitude ∆ωr/2π et f) temps de relaxation T1 en fonction de la puissance de spectroscopie Psp

pour les centres NV avec l’orientation B (cercles rouges) et une puissance de sonde Pa = −87 dBm.
En c) et e), les lignes pleines noires indiquent la régression des données à l’équation (4.37). En c), les
données pour Psp > −25 dBm sont exclues de la régression. En c), d), e) et f), les lignes horizontale
et verticale pointillées sont des guides visuels. Pour toutes ces figures, le champ magnétique externe
B0 = 150 mT.
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de spectroscopie Psp. On observe que le temps de relaxation T1 diminue en augmentant la

puissance de spectroscopie. Par exemple, pour l’orientation n = B, le temps de relaxation

décroît de T1 = 70±4 s à 53±3 s pour une augmentation de la puissance de spectroscopie de

−31 dBm à −18 dBm. L’origine de la décroissance du temps de relaxation est actuellement

inconnue. De plus, le temps de relaxation des orientations (A,C) est significativement

plus long que pour les orientations (B,D). L’origine de cette différence dans le temps de

relaxation des deux classes de centres NV est également inconnue à l’heure actuelle.

Spectre de la transition de spins |g〉 ↔ |f〉

Afin d’appuyer l’hypothèse de la présence d’un couplage longitudinal entre les centres

NV et le résonateur supraconducteur, le spectre de la transition de spins |g〉 ↔ |f〉 est

également mesurée. Les figures 4.9 a) et b) présentent les spectres de cette transition de

spins pour des champs magnétiques externes B0 de 90 mT et 150 mT respectivement. Les

fréquences ω(n)
gf /2π des transitions de spins des quatre orientations n sont approximati-

vement de 6.045 GHz et 9.070 GHz pour ces champs magnétiques, correspondant à des

désaccords ∆gf,r/2π avec le résonateur de 1.07 GHz et 4.11 GHz respectivement. Malgré

ce très fort désaccord, l’amplitude ∆ωr/2π du changement de la fréquence du résonateur

atteint −37 kHz et −96 kHz pour B0 = 90 mT et 150 mT respectivement. Ainsi, l’ampli-

tude du signal est plus élevée à 150 mT qu’à 90 mT, et ce, malgré que le désaccord soit

significativement plus élevé.

Une augmentation du décalage du résonateur en augmentant le désaccord est une forte

indication de la présence d’une interaction longitudinale entre les centres NV et le résona-

teur. En effet, alors que le décalage dispersif décroit comme 1/ |∆ge,r|, le changement de la

fréquence du résonateur provenant du couplage longitudinal ne dépend pas explicitement

du désaccord. De plus, selon le modèle présenté précédemment en l’absence de vortex,

le décalage du résonateur provenant du couplage longitudinal augmente linéairement

avec le champ magnétique perpendiculaire BX
0 . Dans la configuration présente, ce champ

magnétique perpendiculaire est fourni par la présence d’un angle θ0 entre le plan du réso-

nateur et le champ magnétique externe, avec BX
0 = B0 sin θ0. Des mesures du décalage du

résonateur en fonction de B0, non montré par souci de concision, permettent de déterminer

θ0 = ±0.22 ± 0.03◦ selon la procédure présentée au chapitre 3 et les mesures présentées

à la figure 4.5 6. L’amplitude du champ magnétique perpendiculaire ∆BX peut ainsi être

6. Cette valeur est légèrement différente de la valeur de θ0 = ±0.48◦ déterminée précédemment à partir
des centres NV. La présence d’une différence d’angle est possible puisque le diamant est fixé à la surface du
résonateur par de la graisse.
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Figure 4.9 – Spectre de la transition de spins |g〉 ↔ |f〉.
Amplitude ∆ωr/2π du changement de la fréquence du résonateur en fonction de la fréquence
ωsp/2π de l’excitation de spectroscopie près des transitions de spins |g〉 ↔ |f〉 des centres NV pour
un champ magnétique externe B0 de a) 90 mT et b) 150 mT. c) Amplitude non calibrée ∆ω′r/2π
du changement de la fréquence du résonateur en fonction de ωsp/2π et B0 près des transitions de
spins |g〉 ↔ |f〉 des centres NV. Les transitions de spins de centres NV en interaction hyperfine
avec le spin nucléaire I = 1/2 du 13C sont également visibles. De plus, les croisements entre les
transitions |g〉 ↔ |e〉 et le résonateur apparaissent comme des lignes verticales et indépendantes de
la fréquence de spectroscopie.

estimée à 0.35 mT et 0.58 mT pour B0 = 90 mT et 150 mT respectivement. Encore une

fois, l’augmentation de l’amplitude du changement de la fréquence du résonateur pour

un champ magnétique plus élevé peut s’expliquer qualitativement par la présence d’un

couplage longitudinal. Le couplage transverse dans le régime dispersif ne permet pas

d’expliquer cette augmentation, et ce, même qualitativement 7.

Finalement, la figure 4.9 c) présente une mesure non calibrée de l’amplitude du change-

ment de la fréquence du résonateur en fonction de ωsp et du champ magnétique externe B0.

Pour cette mesure, l’amplitude ∆ω′r du changement de la fréquence angulaire du résonateur

est définie comme ∆ω′r(ωsp, B0) ≡ ωr(ωsp, B0)−ωr(ω
0
sp, B0), où ω0

sp/2π = 9.15 GHz. Ainsi, au

lieu de mesurer la fréquence du résonateur en fonction du temps afin de déterminer δωr(t)

et ∆ωr pour chaque valeur de ωsp et B0, le spectre du résonateur est simplement mesuré

en fonction de ces paramètres. Ce type de mesure est ainsi beaucoup plus rapide mais

n’est pas quantitatif puisque les états excités du système de spins n’ont pas nécessairement

relaxés entre chaque mesures. La figure 4.9 c) montre qu’il est tout de même possible

de distinguer très clairement la dépendance en champ magnétique de la fréquence des

7. Il est par contre difficile de vérifier quantitativement l’amplitude du décalage dispersif attendue puisque
le modèle présenté précédemment n’inclut pas la transition |g〉 ↔ |f〉.
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transitions de spin |g〉 ↔ |f〉 des centres NV. De plus, les transitions de spins de centres

NV en interaction hyperfine avec le spin nucléaire I = 1/2 du 13C sont également visibles.

Pour la mesure présentée à la figure 4.9 b), l’amplitude du décalage du résonateur observée

ne peut s’expliquer simplement par l’interaction transverse entre les spins et le résonateur

dans le régime dispersif. Cette dernière mesure, à défaut d’être quantitative, offre un aperçu

de la force potentielle du couplage longitudinal pour la caractérisation de systèmes de

spins.

4.4 Impacts des travaux

Un premier impact des travaux présentés dans ce chapitre est la mise en place d’un

modèle prédisant la présence d’un couplage longitudinal entre un ensemble de spins

paramagnétique et un résonateur supraconducteur à haute inductance cinétique. Malgré

que certains aspects de ce modèle doivent être raffinés, la mise en évidence d’une relation

entre la sensibilité d’un résonateur supraconducteur au champ magnétique perpendiculaire

et un couplage longitudinal permettant d’effectuer une lecture quantique non destructive

de l’état des spins pourrait avoir un impact majeur.

Un deuxième impact a trait à l’utilisation des résonateurs supraconducteurs développés

au chapitre 3 pour les systèmes quantiques hybrides à fort champ magnétique. Tout que

le démontre les premières expériences sur le sujet [33, 32], l’observation de l’interaction

transverse entre un ensemble de spins paramagnétique composé de centres NV et un

résonateur dans un fort champ magnétique ouvre la porte à l’étude de différents systèmes

de spins à l’aide de résonateurs supraconducteurs. Par exemple, des résultats préliminaires,

non présentés, indiquent la possibilité de détecter la résonance de spin dans des impuretés

de manganèse dans des points quantiques colloïdaux déposés sur le résonateur [202].

Finalement, les résultats préliminaires sur l’observation potentielle d’un couplage

longitudinal entre les centres NV et le résonateur à haute inductance cinétique constituent

un impact important des travaux présentés. Bien que l’accord entre les données et le modèle

établit ne soient pas quantitatif à l’heure actuelle, la possibilité d’effectuer la spectroscopie

des transitions de spins à très fort désaccord suggère fortement la présence d’un mécanisme

de lecture au-delà de ce qui peut être expliqué par le régime dispersif du couplage transverse.

Cette méthode de caractérisation de systèmes de spins offre potentiellement une toute

nouvelle technologie quantique issue des systèmes quantiques hybrides entre les systèmes
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de spins et les circuits supraconducteurs et fait actuellement l’objet d’une déclaration

d’invention.



Chapitre 5

Observation des états de Fock de magnons

Ce chapitre présente des résultats clés dans la mise en place de la magnonique quan-

tique en tant que technologie prometteuse pour la transduction quantique. Une première

section permet d’introduire les éléments théoriques et expérimentaux clés de la magno-

nique quantique. Dans la deuxième section, les résultats expérimentaux démontrant le

couplage fort entre les magnons dans un isolant ferromagnétique et les photons d’une

cavité micro-ondes sont présentés. Par la suite, la théorie de la spectroscopie par une me-

sure dispersive d’un qubit supraconducteur par une cavité micro-ondes est présentée à la

section 5.3. Cette méthode spectroscopique est utilisée afin de démontrer le couplage fort

entre un mode magnétostatique de l’isolant ferromagnétique et un qubit supraconducteur.

La section 5.4 présente les résultats et l’analyse de la démonstration du régime dispersif fort

en magnonique quantique par l’observation des quanta d’excitations collectifs de spin dans

un ferroaimant de taille millimétrique. Finalement, la section 5.5 présente l’observation de

la non-linéarité des magnons induite par l’anharmonicité du qubit supraconducteur de

type transmon.

La majorité des résultats de ce chapitre sont publiés dans Science Advances [49] et ont

été obtenus lors d’un stage à l’été 2015 dans le laboratoire du Prof. Yasunobu Nakamura à

The University of Tokyo.
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5.1 Magnonique quantique

L’ingénierie des interactions entre les photons et les quanta des excitations dans des

systèmes atomiques et à l’état solide est central aux développement des technologies

quantiques. L’électrodynamique quantique en cavité et en circuit ont permis la réalisation

de plusieurs expériences de pensées en optique quantique [52, 203, 204], en plus d’offrir

une plate-forme prometteuse pour le calcul quantique [205, 10, 5, 206]. Les idées de ces

domaines ont été transposées avec succès à d’autres architectures tel que les systèmes

d’opto-mécanique en cavité [207]. Dans ces systèmes, les phonons de modes mécaniques

interagissent avec les photons des domaines micro-ondes et optique, offrant ainsi une

plate-forme intéressante pour la transduction d’information quantique entre les systèmes

ne fonctionnant que dans le domaine micro-ondes, tel les qubits supraconducteurs, et les

photons dans les fibres optiques pour la réalisation d’un ordinateur quantique distribué [207,

16, 208, 209].

Récemment, une nouvelle approche permettant la conversion bidirectionnelle entre les

photons micro-ondes et optique, utilisant leur interaction mutuelle avec les modes d’excita-

tions collectifs de spin dans des isolants ferromagnétiques, a été explorée [39, 37, 94, 40].

Combiné à la démonstration du couplage fort entre les magnons de ces modes magnéto-

statiques et un qubit supraconducteur [41, 38], cette approche de la magnonique quantique

permet, en principe, d’effectuer la transduction bidirectionnelle de l’information quantique

d’un processeur quantique supraconducteur à des photons optiques. Un ingrédient néces-

saire à l’utilisation de cette architecture pour la transduction quantique est la possibilité

d’encoder un état arbitraire du qubit dans un état quantique de magnons. Une approche,

adaptée de l’électrodynamique quantique en circuit, permet en principe d’effectuer cet

encodage en utilisant une interaction dispersive forte entre le qubit et les magnons d’un

mode magnétostatique[42, 43].

Cette première section vise à introduire le système hybride permettant de réaliser le

couplage fort entre les magnons d’un ferroaimant et un qubit supraconducteur et l’ob-

servation des états de Fock pour les magnons à l’aide de la spectroscopie du qubit. Une

première sous-section décrit conceptuellement le système. Une seconde sous-section in-

troduit l’hamiltonien du système hybride qui est à la base de la description théorique du

système dans les prochaines sections. Le montage expérimental utilisé dans les expériences

de ce chapitre est ensuite brièvement introduit à la sous-section 5.1.3.
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5.1.1 Description du système hybride

La maille élémentaire du système hybride permettant de réaliser l’architecture de la

magnonique quantique est composée de trois éléments [41, 38], tel que présenté schémati-

quement à la figure 5.1 a). L’élément central est une cavité micro-ondes tridimensionnelles

utilisée comme coupleur entre les autres éléments du système. De plus, la cavité micro-

ondes constitue la seule composante du système connectée directement au monde extérieur

par un port micro-ondes couplé électriquement aux différents modes de la cavité. Seuls les

modes transverses électriques TE10p sont considérés puisque, comme on le verra plus loin,

seuls ceux-ci sont nécessaires afin de décrire la dynamique du système hybride.

Deuxièmement, une sphère de grenat de fer et d’yttrium (YIG) aimantée à saturation

par un champ magnétique externeB0 est utilisée comme ferro-aimant (Fig. 5.1 b). La sphère

de YIG est placée près du ventre du champ magnétique de la cavité micro-ondes (Fig. 5.1 c),

maximisant le couplage dipolaire magnétique entre les magnons de la sphère et les photons

de la cavité. De plus, puisque le champ micro-ondes est uniforme à travers toute la sphère,

le mode magnéto-statique uniforme, ou mode de Kittel, est celui le plus fortement couplé à

la cavité [90, 38].

Finalement, un qubit supraconducteur de type transmon composé d’une jonction

Josephson et d’un condensateur (Fig. 5.1 b) est placé au ventre du champ électrique de

la cavité (Fig. 5.1 c). Tout comme en électrodynamique quantique en circuit, le couplage

entre le qubit et la cavité est ainsi un couplage dipolaire électrique [9, 10]. En plus d’être

l’élément ciblé par la transduction quantique, le qubit permettra d’accéder à des propriétés

inédites du ferro-aimant comme on le verra à la section 5.4.

5.1.2 Hamiltonien du système

L’hamiltonien du système hybride composé d’une cavité micro-ondes, d’un qubit

supraconducteur de type transmon et d’une sphère de YIG où on considère seulement le
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Figure 5.1 – Système hybride en magnonique quantique.
a) Illustration schématique d’une sphère de grenat de fer et d’yttrium (YIG) et d’un qubit supracon-
ducteur de type transmon dans une cavité micro-ondes tridimensionnelle. Un champ magnétique
externe B0 est appliqué sur la sphère afin de la magnétiser à saturation. Le mode magnéto-statique
pour lequel les spins de la sphère précesse uniformément est nommé mode de Kittel. b) Photos mon-
trant une sphère de YIG et un qubit supraconducteur similaires à ceux utilisés dans les expériences.
La sphère de YIG possède un diamètre de 0.5 mm et est collé sur un tige en oxyde d’aluminium afin
de la fixé à un ventre du champ magnétique de la cavité micro-ondes. Le qubit supraconducteur
de type transmon est composé d’une jonction Josephson et de deux îlots formant le condensateur
du transmon. Les photos sont adaptés des références [41] et [38]. c) La sphère de YIG et le qubit
supraconducteur sont placés près des ventres des champs magnétique et électrique du mode TE102

de la cavité afin de maximiser les couplages dipolaires magnétiques et électriques, respectivement.
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mode de Kittel est donné par [38]

Ĥ/~ =
∞∑

p=1

ωbare
10p â

†
pâp

︸ ︷︷ ︸

modes de la cavité

+
(
ωbare
q − αbare/2

)
b̂†b̂+

(
αbare/2

) (

b̂†b̂
)2

︸ ︷︷ ︸

transmon

+ ωbare
m ĉ†ĉ

︸ ︷︷ ︸

mode de Kittel

(5.1)

+
∞∑

p=1

gq,10p

(

â†pb̂+ âpb̂
†
)

︸ ︷︷ ︸

couplage dipolaire électrique

+
∞∑

p=1

gm,10p

(
â†pĉ+ âpĉ

†
)

︸ ︷︷ ︸

couplage dipolaire magnétique

,

où ωbare
10p est la fréquence angulaire du mode TE10p de la cavité, ωbare

q ≡ ωge et ωef sont,

respectivement, les fréquences angulaires des transitions |g〉 ↔ |e〉 et |e〉 ↔ |f〉 du transmon,

αbare ≡ ωef − ωge < 0 est l’anharmonicité du transmon et ωbare
m = gµBB0/~ est la fréquence

angulaire des magnons du mode de Kittel. Les forces des couplages entre les modes TE10p

et le transmon et le mode de Kittel sont respectivement données par gq,10p et gm,10p. Dans

l’équation (5.1), â†p (âp), b̂
† (b̂) et ĉ† (ĉ) sont les opérateurs de création (d’annihilation) d’un

photon dans le mode TE10p, d’une excitation du transmon et d’un magnon dans le mode

de Kittel, respectivement.

Dans cet hamiltonien, les modes TE10p de la cavité sont considérés puisque, de par

les dimensions de la cavité spécifiées à la sous-section 5.1.3, seuls ces modes ont une

fréquence angulaire comparable à celle du transmon et des magnons dans le mode de

Kittel. De plus, le transmon est considéré comme un oscillateur anharmonique afin de

tenir en compte la présence de la transition |e〉 ↔ |f〉, permettant ainsi de décrire le régime

chevauchant (straddling regime) de l’interaction dispersive entre le qubit et le mode de

Kittel [190]. Finalement, toutes les fréquences angulaires de l’hamiltonien de l’équation (5.1)

sont celles sans interactions (bare) et ne correspondent ainsi pas, par exemple, aux fréquences

angulaires mesurées expérimentalement.

À partir de l’hamiltonien du système et de la valeur des différents paramètres, il est

possible de diagonaliser l’hamiltonien afin de déterminer les paramètres effectifs du sys-

tème, tel que le couplage entre le transmon et le mode de Kittel médié par leurs interactions

respectives avec les modes de la cavité (annexe C).

5.1.3 Montage expérimental
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Composantes du système hybride

La cavité micro-ondes est fabriquée d’une pièce de cuivre sans oxygène. Le conducteur

central d’un connecteur de type SMA est inséré dans la cavité afin de mesurer le coefficient

de réflexion r(ω) de la cavité. La longueur et la position du conducteur central dans la

cavité détermine le couplage du port aux différents modes. La fréquence angulaire des

modes transverses électriques TEmnp est donnée par

ωbare
mnp =

π√
ǫ0µ0

√
(m

a

)2

+
(n

b

)2

+
(p

c

)2

, (5.2)

où ǫ0 et µ0 sont, respectivement, la permittivité et la perméabilité du vide et a, b et c sont les

dimensions de la cavité rectangulaire. La figure 5.2 présente la fréquence des modes TEmnp

calculée à partir de l’équation 5.2 et des dimensions de la cavité (a = 24 mm, b = 3 mm et

c = 53 mm).

Bien que le mode de plus basse fréquence, le mode TE101, possède une fréquence

d’environ 7 GHz, pas moins de 48 autres modes possèdent une fréquence inférieure à

40 GHz. En comparaison, un résonateur supraconducteur de type coplanaire de même

fréquence n’aurait que cinq modes de fréquences inférieures à 40 GHz (chapitre 3). Bien

que la nature multimode de la cavité micro-ondes peut être un avantage comme on le

verra à la section 5.3, ceci rend la description théorique du système plus complexe puisque

plusieurs modes contribuent significativement aux interactions entre le qubit et le mode

de Kittel. Comme on le verra plus loin, la considération des modes TE10p avec p = 1 à

4 est par contre suffisante pour obtenir un accord entre les forces de couplages obtenus

théoriquement et expérimentalement de l’ordre de 10 %.

Tel qu’illustré schématiquement à la figure 5.3, deux aimants permanents en néodyme

en forme de disques d’un diamètre de 10 mm et d’une épaisseur de 1 mm sont placés aux

extrémités d’une culasse en fer et distancés de 4 mm. Les aimants produisent un champ

magnétique statique Ba ≈ 0.29 T. De plus, le champ magnétique externe peut être modifié

in situ par un courant I dans une bobine supraconductrice de 104 tours autour de la culasse.

Le facteur de conversion α entre le courant I et le champ magnétique B0 est d’environ

1.7 mT/mA. Une sphère de YIG collée à une tige d’oxyde d’aluminium selon l’axe cristallin

〈110〉 est monté dans la cavité micro-ondes au centre de l’espace entre les aimants. Le

champ magnétique appliqué est parallèle à l’axe cristallin 〈100〉 de la sphère de YIG.

Un qubit supraconducteur de type transmon, constitué d’une seule jonction Josephson

en Al/Al2O3/Al et de deux contacts en aluminium formant le condensateur du transmon,
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Figure 5.2 – Fréquences des modes de la cavité.
Fréquences des modes TEmnp calculés à partir de l’équation (5.2) et des dimensions de la cavité
(a = 24 mm, b = 3 mm et c = 53 mm). Les fréquences des modes TE10p avec p = {1, 2, 3} obtenus
expérimentalement sont également présentées, montrant un bon accord avec les fréquences prédites
à partir des dimensions nominales de la cavité.

est fabriqué sur un substrat de silicium et est placé à l’intérieur de la cavité micro-ondes

près d’un ventre du champ électrique du mode TE102 (Fig. 5.1). Le qubit et la sphère

de YIG sont séparés horizontalement par une distance de 35 mm. Un écran magnétique

double composé d’aluminium et de fer couvre la moitié la cavité afin de protéger le qubit

supraconducteur du champ magnétique parasite des aimants permanents, de la culasse et

de la bobine. En effet, un champ magnétique de l’ordre du 1 µT a été démontré comme

étant suffisant pour affecter significativement le temps de relaxation et de cohérence d’un

qubit supraconducteur [210].

Montage expérimental

La figure 5.3 présente le schéma détaillé du montage expérimental utilisé pour les

mesures présentées dans ce chapitre. Le coefficient de réflexion r(ωa) de la cavité micro-

ondes est mesurée à l’aide d’un analyseur de réseau à une fréquence angulaire ωa et à

une puissance Pa. La spectroscopie du qubit est effectuée en combinant à l’excitation de

l’analyseur de réseau une excitation d’une source micro-ondes de fréquence angulaire

ωsp et de puissance Psp. L’excitation des magnons dans le mode de Kittel est effectuée

en combinant aux deux excitations précédentes une troisième excitation micro-ondes de

fréquence angulaire ωp et de puissance Pp. Tel qu’illustré à la figure 5.3, ces excitations

sont combinées à l’aide de deux coupleurs directionnels à température pièce avant d’être

envoyées dans la ligne de contrôle d’un réfrigérateur à dilution à une température de base

de 10 mK.
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Le signal réfléchi sur le port de la cavité est dirigé par un circulateur cryogénique vers

la ligne de mesure du réfrigérateur à dilution. Deux circulateurs supplémentaires sont

utilisés comme isolateurs en terminant à 50 Ω un des ports du circulateur. Le signal est

ensuite amplifié par un amplificateur cryogénique et un amplificateur à température pièce

avant d’être envoyé à l’analyseur de réseau afin de déterminer le coefficient de réflexion

r(ωa) à la fréquence angulaire ωa. Finalement, la bobine supraconductrice est alimentée

par une source de courant fournissant un courant I via des câbles supraconducteurs sous

l’étage à 4 K afin de minimiser la dissipation thermique.

Les puissances micro-ondes Pa, Psp et Pp sont calibrés en considérant comme point

de référence le port de la cavité micro-ondes (Fig. 5.3). Prenant en compte l’atténuation

nominale des câbles à l’extérieur et à l’intérieur du réfrigérateur à dilution, l’atténuation

entre les sources micro-ondes et le port de la cavité est approximativement de 81 dB, 122 dB

et 121 dB pour les excitations de sonde de la cavité, de spectroscopie du qubit et de pompe

du mode de Kittel, respectivement.

5.2 Couplage fort entre les photons micro-ondes et les ma-

gnons

Cette section porte sur l’étude du couplage entre les photons micro-ondes du mode

TE102 de la cavité et les magnons du mode de Kittel. Une première sous-section présente

la spectroscopie des modes TE102 et TE103, permettant de déterminer les pertes internes

et par couplage au port de la cavité de ces modes. Une deuxième sous-section présente la

mesure du croisement évité entre le mode TE102 et le mode de Kittel. Une analyse détaillée

permet d’extraire de ces données la largeur de raie des magnons, un paramètre critique

pour la démonstration du couplage dispersif fort entre le mode de Kittel et le transmon.

5.2.1 Spectroscopie des modes de la cavité

Le spectre du mode TE10p mesuré en réflexion est décrit par le coefficient de réflexion

r(ωa) = A

(
i (ωa − ω10p)− (κint10p − κin10p)/2

i (ωa − ω10p)− κ10p/2

)

, (5.3)
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Figure 5.3 – Montage expérimental.
La cavité micro-ondes est mesurée à l’aide d’un analyseur de réseau (Agilent E5071C). Les excitations
générées par des sources micro-ondes (Agilent E8247C) sont combinées à l’excitation de sonde de
l’analyseur de réseau par des coupleurs directionnels de −20 dB (Krytar 120420) et introduites dans
la ligne de contrôle d’un réfrigérateur à dilution. Le signal réfléchi à la cavité est amplifié par des
amplificateurs à 4 K (Caltech CRYO4-12) et à température pièce (MITEQ AFS4-08001200-09-10P-
4). L’atténuation de la ligne de contrôle est d’environ 59 dB à 10 GHz en incluant les pertes des
câbles coaxiaux (phosphore-bronze, Coax Corp. SC-119/50-PBC- PBC) et des connecteurs. Le bruit
thermique de l’environnement à température pièce et des amplificateurs de la ligne de mesure est
atténué par plus de 60 dB par un circulateur (Quinstar XTE0812KCS), deux isolateurs (Quinstar
XTE0812KCS and XTE0812KC) et un filtre passe-bas d’une fréquence de coupure de 12 GHz (RLC
F-30-12.4-R). Un câble coaxial supraconducteur en NbTi est utilisé pour la ligne de mesure entre les
deux isolateurs. Finalement, une source de courant (Yokogawa GS200) est utilisée afin de fournir le
courant I à la bobine par des câbles en cuivre (orange) et en NbTi (bleu pâle).
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où ω10p est la fréquence angulaire, κint10p sont les pertes internes, κin10p sont les pertes par

couplage au port de la cavité et κ10p = κint10p + κin10p sont les pertes totales. La constante de

normalisation A dépend de la balance entre l’atténuation et l’amplification entre les deux

ports de l’analyseur de réseau. Les données expérimentales sont ainsi normalisées afin

qu’au point de référence définit à la figure 5.3, le coefficient de réflexion r(ωa) ≡ 1 lorsque

|ω − ω10p| ≫ κ10p.

Les figures 5.4 a) et b) présentent les mesures expérimentales du spectre des modes

TE102 et TE103, respectivement. Afin de minimiser l’effet du mode de Kittel, la fréquence de

celui-ci est fixée à ∼ 7.6 GHz à l’aide d’un courant I = −10 mA. Puisque la présence du

qubit dans son état fondamental |g〉 affecte la fréquence des modes, les fréquences angulaires

ω10p sont identifiées par ωg
10p. À partir de la régression des données à l’équation (5.3), les

paramètres ωg
10p, κ

int
10p, κ

in
10p et κ10p sont extraits (tableau C.2). Les pertes par couplage à un

second port non utilisé de la cavité sont incluses dans les pertes internes puisqu’une mesure

en réflexion ne permet pas de distinguer entre les pertes internes et les pertes de couplage

à d’autres ports de la cavité.

Les paramètres obtenues par la régression permettent d’estimer le nombre moyen de

photons ng
10p présent dans mode TE10p lorsque sondé à une puissance Pa selon

ng
10p =

Pa

~ωg
10p

κin10p
(κ10p/2)2

. (5.4)

À partir de la puissance à l’analyseur de réseau et de l’atténuation entre celui-ci et le port

de la cavité, il est possible d’estimer le nombre moyen de photons utilisé pour mesurer

les spectres des figures 5.4 a) et b) à ng
102 = 0.034 et ng

103 = 0.021, respectivement. Puisque

ng
10p ≪ 1, le système hybride est majoritairement dans son état fondamental lors de la

mesure.

5.2.2 Couplage entre un mode de la cavité et le mode de Kittel

L’hamiltonien décrivant l’interaction entre le mode de Kittel et le mode TE102 de la

cavité est donné en projetant l’hamiltonien de l’équation (5.1) dans l’état fondamental |g〉
du transmon et dans l’état du vide des autres modes de la cavité, soit

Ĥm,102/~ = ωg
102â

†
2â2 + ωg

mĉ
†ĉ+ gm,102

(

â†2ĉ+ â2ĉ
†
)

. (5.5)
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Figure 5.4 – Spectres des modes de la cavité.
Spectre des modes a) TE102 et b) TE103 mesurés en réflexion avec le qubit dans l’état fondamental. Le
courant de la bobine est fixé à I = −10 mA, correspondant à ωbare

m /2π ∼ 7.6 GHz. Les données sont
ajustées à l’équation (5.3) afin d’extraire les fréquences (lignes pointillées verticales) et les pertes
des deux modes. La puissance à l’analyseur de réseau est de -65 dBm, correspondant à un nombre
moyen de photons de 0.034 et 0.021 pour les modes TE102 et TE103, respectivement.

Dans cet hamiltonien, la présence du couplage dipolaire électrique du transmon aux diffé-

rents modes de la cavité renormalise les fréquences angulaires du mode de Kittel et du

mode TE102 à ωg
m et ωg

102, respectivement. L’hamiltonien (5.5) décrit ainsi simplement deux

oscillateurs harmoniques couplés.

Afin de sonder l’interaction entre le mode de Kittel et le mode TE102 de la cavité micro-

ondes, le spectre r(ωa) est mesurée en fonction du courant I de la bobine, modifiant ainsi

linéairement la fréquence angulaire du mode de Kittel sans interaction, ωbare
m , selon

ωbare
m ≈ g∗µB (Ba + αI) /~, (5.6)

où g∗ = 2, Ba ≈ 0.29 T et α ≈ 1.7 mT/mA.

En présence d’un couplage fort, une hybridation entre le mode de Kittel et le mode de

la cavité est attendue, résultant en un croisement évité. Les données sur le croisement évité

entre le mode TE102 et le mode de Kittel sont présentées à la figure 5.5 a). La figure 5.5 b)

montre la fréquence du mode TE102 en présence de l’interaction avec le mode de Kittel et

avec le qubit dans l’état fondamental, ωg
102(I), extraite des données de la figure 5.5 a). La
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fréquence angulaire de la cavité ωg
102(I) est théoriquement donnée par

ωg
102(I) = p1I + p2 − sgn (I − I0)

√

(p1I − p3)
2 + p24, (5.7)

où les paramètres de la régression p1 à p4 sont reliés aux paramètres physiques par

ωbare′

102 = p2 + p3,

ωbare′

m (I) = 2p1I + p2 − p3,

|gm,102| = p4,

ωbare′

m (I0) ≡ ωbare′

102 .

Dans les équations précédentes, ωbare′

102 est le fréquence angulaire du mode TE102 sans

l’interaction avec le mode de Kittel, ωbare′

m est la fréquence angulaire du mode de Kittel sans

l’interaction avec le mode TE102, gm,102 est la force du couplage entre le mode TE102 et le

mode de Kittel et I0 est le courant correspondant au croisement, soit ωbare′

m = ωbare′

102 . Cette

régression permet de déterminer la fréquence du mode TE102 sans l’interaction avec le

mode de Kittel, ωbare′

102 /2π = 8.45632 GHz.

Près du croisement évité, le spectre de la cavité r(ωa) est modifié par rapport à l’équa-

tion (5.3) et prend la forme

r (ωa) =
i(ωa − ωbare′

102 )− (κint102 − κin102)/2 +
|gm,102|

2

i(ωa−ωbare′
m (I))−γm/2

i(ωa − ωbare′

102 )− κ102/2 +
|gm,102|

2

i(ωa−ωbare′
m (I))−γm/2

, (5.8)

où γm est la largeur de raie des magnons dans le mode de Kittel [90]. Les valeurs de κint102,

κin102 et κ102 = κint102+κ
in
102 sont fixées aux valeurs déterminées par la mesure du spectre avec le

mode de Kittel éloigné du croisement évité (Fig. 5.4). La fréquence angulaire du mode TE102

en l’absence de l’interaction avec le mode de Kittel, ωbare′

102 , est fixée à la valeur déterminée

par l’ajustement de ωg
102(I) à l’équation (5.7). Les paramètres ajustés sont ainsi γm, gm,102 et

ωbare′

m . Alors que la largueur de raie du mode de Kittel γm et la force de couplage gm,102 sont

indépendantes du courant I , celui-ci modifie la fréquence angulaire des magnons ωbare′

m (I)

selon l’équation (5.6). Ainsi, alors que γm et gm,102 sont ajustés sur l’ensemble des données,

ωbare′

m est ajustée pour chaque valeur de courant I .

La figure 5.5 c) montre les spectres près du croisement évité à I0 ≈ 5.5 mA ajustés à

l’équation (5.8). On trouve alors gm−c/2π = 22.5± 0.1 MHz et γm/2π = 1.3± 0.3 MHz, où

les barres d’erreur correspondent à un intervalle de confiance de 95% et sont déterminés
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Figure 5.5 – Couplage entre le mode TE102 et le mode de Kittel.
a) Partie réelle du coefficient de réflexion r(ωa) mesuré en fonction de la fréquence angulaire de
sonde ωa et du courant I de la bobine. Le croisement évité indique le couplage fort entre le mode
TE102 et le mode de Kittel. b) Régression de la fréquence du mode TE102 en présence de l’interaction
avec le mode de Kittel et avec le qubit supraconducteur dans son état fondamental, ωg

c (I)/2π, à
l’équation (5.7). c) Régression du spectre du mode TE102 hybridé avec le mode de Kittel pour
différents courant près du croisement évité (I = 5 à 6 mA). Les spectres individuels sont décalés
verticalement de Re(r) = 1. d) Spectre du mode TE102 hybridé avec le mode de Kittel calculé à partir
de l’équation (5.8) avec gm−c/2π = 22.5 MHz et γm/2π = 1.3 MHz. Pour a), b) et d), les fréquences
du mode TE102 et du mode de Kittel sans leur interaction mutuelle, ωbare′

102 et ωbare′
m , sont montrés à

l’aide de lignes horizontales et diagonales, respectivement.

par une méthode d’autoamorçage (bootstrapping). Le spectre complet calculé à partir de

l’équation (5.8) et des paramètres déterminés des régressions précédentes est montré à la

figure 5.5 d).

Puisque la force du couplage entre le mode TE102 de la cavité et le mode de Kittel

(gm−c/2π = 22.5 MHz) est beaucoup plus élevée que la largeur de raie du mode TE102

(κ102/2π = 2.05 MHz) et du mode de Kittel (γm/2π = 1.3 MHz), le couplage entre les

photons de ce mode de la cavité et les magnons du mode de Kittel sont dans le régime

de couplage fort [91, 90, 211, 92, 93]. Comme discuté à la prochaine section, ce couplage

fort est un ingrédient essentiel dans l’obtention d’un couplage fort entre les magnons et le
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qubit supraconducteur.

5.3 Couplage fort entre les magnons et un qubit supracon-

ducteur

Cette section porte sur la démonstration du couplage fort entre le mode de Kittel et le

qubit supraconducteur de type transmon du système hybride présenté à la première section.

Dans une première sous-section, la théorie nécessaire à la compréhension du mécanisme

de la mesure dispersive utilisée pour effectuer la spectroscopie du qubit est présentée.

Par la suite, une étude détaillée de la mesure du spectre du qubit, appuyée par la théorie

établie à la sous-section précédente, permet d’extraire plusieurs paramètres du système

hybride qui sont utilisés à la prochaine section. Finalement, à la sous-section 5.3.3, la mesure

du croisement évité entre le mode de Kittel et le qubit est présentée, démontrant ainsi

l’hybridation de ces deux systèmes séparés par une distance macroscopique de plusieurs

centimètres.

5.3.1 Théorie de la spectroscopie du qubit par une mesure dispersive

Idée de base

Lorsque le désaccord en énergie entre le qubit et un mode de la cavité est beaucoup

plus grand que la force de leur interaction gq−c, c’est-à-dire lorsque
∣
∣ωbare

q − ωbare
c

∣
∣ ≫ gq−c,

l’échange d’excitations entre les deux systèmes est largement supprimé. Il est alors possible

de réécrire l’hamiltonien de Jaynes-Cummings comme

Ĥdispersif/~ =
1

2

(
ωbare
q + χq−c

)
σ̂z

︸ ︷︷ ︸

qubit

+ωbare
c â†â

︸ ︷︷ ︸

cavité

+ χq−cσ̂zâ
†â

︸ ︷︷ ︸

interaction dispersive

, (5.9)

où le terme d’interaction est effectivement remplacé par le terme d’interaction disper-

sive (Annexe B). Dans l’hamiltonien de l’équation précédente, ωbare
q est la fréquence angu-

laire de la transition |g〉 ↔ |e〉 du qubit sans interaction, χq−c est la force de l’interaction

dispersive et ωbare
c est la fréquence angulaire de la cavité sans interaction. Dans l’équa-

tion (5.9), σ̂z = |e〉〈e| − |g〉〈g| et â† (â) est l’opérateur de création (annihilation) d’un photon

dans la cavité.
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Figure 5.6 – Mesure dispersive.
a) Schéma du spectre de la cavité lorsque le qubit est dans l’état fondamental |g〉 (bleu) et l’état
excité |e〉 (rouge). L’interaction dispersive modifie la fréquence angulaire de la cavité de ωbare

c à
ω
g(e)
c = ωbare

c ± χq−c. La mesure dispersive consiste à sonder la cavité à une fréquence de sonde tel
qu’un changement de l’état du qubit résulte en un changement du signal mesuré. b) Schéma du
spectre du qubit lorsque la cavité est dans l’état de Fock |nc = {0, 1, 2, 3}〉. L’interaction dispersive
modifie la fréquence angulaire du qubit de ωbare

q à ω(nc)
q = ωbare

q + 2χq−c(nc +
1
2).

Puisque le terme dispersif de l’équation (5.9) commute avec le reste de l’hamiltonien,

les états propres du qubit et de la cavité restent inchangés. Par contre, tel qu’illustré à

la figure (5.6), un réarrangement du terme de l’interaction dispersive dans la fréquence

angulaire du qubit ou de la cavité résulte en une fréquence angulaire d’un système dépen-

dante de l’état de l’autre système. Ainsi la fréquence angulaire de la cavité est donnée par

ωbare
c − χq−c si le qubit est dans l’état fondamental |g〉 et ωbare

c + χq−c si le qubit est dans

l’état excité |e〉. De la même façon, la fréquence angulaire du qubit est ωbare
q + 2χq−c(nc +

1
2
)

selon l’état de Fock |nc〉 de la cavité.

Cet effet est à la base de la mesure dispersive d’un qubit supraconducteur [9, 212],

méthode utilisée pour effectuer la spectroscopie du qubit à la prochaine sous-section. De

plus, en régime dispersif fort, c’est-à-dire lorsque le décalage dispersif est supérieur à la

largeur de raie du qubit et de la cavité, il est possible d’observer dans le spectre du qubit

les états de Fock de photons [213]. À la prochaine section, ce principe est utilisé afin de

démontrer la possibilité d’atteindre le régime dispersif fort en magnonique quantique par

l’observation des états de Fock de magnons dans le spectre du qubit.
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Description détaillée

Afin de décrire la spectroscopie d’un qubit supraconducteur par la mesure dispersive,

il est nécessaire d’ajouter à l’hamiltonien de l’équation (5.9) les termes de pilotage de la

cavité (excitation de sonde) et du qubit (excitation de spectroscopie). Afin d’éliminer la

dépendance temporelle explicite de l’hamiltonien, on passe dans un référentiel tournant

aux fréquences angulaires de sonde ωa et de spectroscopie ωsp. L’hamiltonien est ainsi

donné par

Ĥdispersif/~ =
1

2
∆spσ̂z + (∆a + χq−c) â

†â+ χq−cσ̂zâ
†â+ Ωsp

(
σ̂− + σ̂+

)
+ Ωa

(
â+ â†

)
,

(5.10)

où ∆sp = ωq − ωsp est le désaccord de spectroscopie, ωq = ωbare
q + χq−c est la fréquence du

qubit avec la cavité dans l’état du vide, ∆a = ωg
c − ωa est le désaccord de sonde, ωg(e)

c =

ωbare
c ± χq−c est la fréquence angulaire de la cavité avec le qubit dans l’état fondamental

(excité), Ωsp est la force de l’excitation de spectroscopie (fréquence de Rabi) et Ωa est la force

de l’excitation de sonde.

Le spectre d’absorption du qubit est défini par

S(ωsp) =
1

2π

∫ ∞

−∞

dt eiωspt〈σ̂−(t)σ̂+(0)〉ss, (5.11)

où la valeur moyenne est prise à l’état stationnaire. À partir de l’hamiltonien de l’équa-

tion (5.10), Gambetta et al.on obtenu une expression analytique pour le spectre du qubit [44]

S(ωsp) =
∞∑

nc=0

1

π

1

nc!
Re




(−Ac)

nceAc

γ
(nc)
q − i

(

ωsp − ω̃
(nc)
q

)



 ≡
∞∑

nc=0

Snc(ωsp), (5.12)
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où

ω(nc)
q = ωq + λc + 2χq−cnc, (5.13)

ω̃(nc)
q = ω(n)

q + nc∆a, (5.14)

γ(nc)
q = γq + κc (nc +Dss

c ) , (5.15)

Ac = Dss
c

(
κc/2− i (2χq−c +∆a)

κc/2 + i (2χq−c +∆a)

)

, (5.16)

λc = χq−c(n
g
c + ne

c −Dss
c ), (5.17)

Dss
c =

2(ng
c + ne

c)χ
2
q−c

(κc/2)2 + χ2
q−c + (χq−c +∆a)2

, (5.18)

ng
c =

Ω2
a

(κc/2)2 +∆2
a

, (5.19)

ne
c =

Ω2
a

(κc/2)2 + (∆a + 2χq−c)2
. (5.20)

Dans les équations précédentes, ω(n)
q et γ(n)q sont respectivement la fréquence angulaire

et la largeur de raie du qubit avec la cavité dans l’état de Fock |nc〉, γq est la largeur de

raie du qubit avec la cavité dans l’état du vide et κc est la largeur de raie de la cavité. La

distinguabilité dans l’état stationnaire, Dss
c , est définie comme étant la séparation entre les

états cohérents |αss
g,e〉 créés dans la cavité par l’excitation de sonde lorsque le qubit est dans

l’état fondamental |g〉 et excité |e〉, soit

Dss
c =

∣
∣αss

e − αss
g

∣
∣
2
. (5.21)

Le dernier terme de l’équation (5.15) montre que plus les états cohérents |αss
g,e〉 sont distin-

guables, plus le déphase induit par la mesure augmente la largeur de raie du qubit γ(n)q [44].

Finalement, la population de la cavité avec le qubit dans l’état fondamental (excité) est

donnée par ng(e)
c = |αss

g(e)|2 = 〈n̂Π̂g(e)
q 〉, où Π̂

g(e)
q = |g(e)〉〈g(e)| est le projecteur dans l’état

fondamental (excité) du qubit.

Pour χq−c ≫ κc et ∆a = 0, la distinguabilité dans l’état stationnaire est simplement

donnée par Dss
c = ng

c + ne
c, alors que Ac → −Dss

c et λc → 0. Dans ce cas, les composantes du

spectre du qubit avec nc photons, Snc(ωsp), sont décrits par une fonction lorentzienne. Le

spectre du qubit, S(ωsp), est ainsi bien décrit par une somme de fonctions lorentziennes

de fréquences angulaires ω(nc)
q et de largeurs de raie γ(nc)

q avec un poids spectral décrit

par une distribution de Poisson de moyenne Dss
c [44]. Par contre, pour χq−c ∼ κc, Ac

devient complexe, résultant en une fonction non-lorentzienne pour Snc(ωsp), pouvant même
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atteindre des valeurs négatives (Fig. 5.7). Par contre, l’intégral du spectre S(ωsp) et de ses

composantes Snc(ωsp) est positive dans tous les cas.

Les fréquences angulaires ω̃(nc)
q apparaissant dans le spectre de l’équation (5.12) sont

décalées de la fréquence du qubit ωq avec la cavité dans l’état du vide par trois contributions

distinctes, soit

ω̃(nc)
q − ωq = λc + 2χq−cnc + nc∆a. (5.22)

Premièrement, la fréquence angulaire du qubit ω̃(0)
q = ω

(0)
q est décalée de ωq par l’effet Stark

dynamique d’une fréquence angulaire λc. Deuxièmement, le décalage 2χq−cnc, illustré à

la figure 5.6 b), provient de la version discrète de l’effet Stark dynamique. Tel que discuté

plus tôt, cet effet permet l’observation des états de Fock de photons d’une cavité micro-

ondes [213] et de magnons dans le mode de Kittel d’un ferroaimant (section 5.4). Finalement,

les fréquences angulaires ω̃(nc)
q apparaissant dans le spectre de l’équation (5.12) sont décalées

d’une fréquence angulaire nc∆a. Ce décalage apparent des fréquences angulaires provient

d’un processus virtuel impliquant l’absorption de nc excitations de sonde à ωa = ωg
c −∆a et

d’une excitation de spectroscopie à ωsp = ω
(nc)
q + nc∆a afin d’exciter le qubit et nc photons

de la cavité, de sorte que ncωa + ωsp = ncω
g
c + ω

(nc)
q [44].

Puisque l’hamiltonien du mode de Kittel est identique à celui d’une cavité micro-

ondes, la théorie présentée dans cette sous-section est adaptée à la prochaine section afin

d’expliquer en détails l’observation des états de Fock de magnons.

5.3.2 Spectroscopie du qubit supraconducteur par une mesure disper-

sive

Un changement de l’état du qubit induit par l’excitation de spectroscopie modifie, via

l’interaction dispersive, la fréquence de la cavité, résultant en un changement du coefficient

de réflexion r(ωa). La spectroscopie du qubit est ainsi effectuée en mesurant le changement

∆r(ωa) du coefficient de réflexion en fonction de la fréquence angulaire de spectroscopie

ωsp. Alors que l’interaction entre le qubit et le mode de Kittel est principalement médié par

le mode TE102, on utilise l’interaction dispersive du qubit avec le mode TE103 pour la mesure

du qubit. Ce choix permet d’éviter le déphasage induit par les fluctuations du nombre de

photons dans le mode TE102 [38]. La fréquence angulaire de sonde ωa est fixée à la fréquence

du mode TE103 lorsque le qubit est dans l’état fondamental, ωg
103/2π = 10.44916 GHz
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(Fig. 5.4 b), de façon à ce que ∆a = ωg
103 − ωa = 0. La puissance de sonde Pa est fixée à

9.2 aW pour cette mesure et toutes les mesures présentées dans le reste de ce chapitre,

correspondant à un nombre moyen de photon ng
103 = 0.078 (section 5.2). De plus, chaque

mesure du changement du coefficient de réflexion Re(∆r) est acquis avec une bande

passante de 1 Hz à l’analyseur de réseau et moyenné neuf fois. Finalement, pour toutes les

mesures présentées dans cette section, la fréquence angulaire du mode de Kittel est fixée à

≈ 7.95 GHz à l’aide d’un courant I = −5.02 mA sur la bobine.

Les figures 5.7 a) et b) montrent le spectre du qubit mesuré à deux puissances de

spectroscopie Psp différentes. L’asymétrie dans le spectre est causée par la présence de

photons dans le mode TE103. À partir de la théorie établie à la sous-section précédente, il

est possible de prendre en compte cette occupation finie du mode TE103. Pour ce faire, le

spectre mesuré, Re(∆r)(ωsp), est ajusté à

Re(∆r)(ωsp) = A
10∑

n103=0

Sn103(ωsp) + Re(∆r)off , (5.23)

où A est un facteur de proportionnalité entre le spectre théorique S(ωsp) de l’équation (5.12)

et celui obtenu expérimentalement, et Re(∆r)off est un décalage du spectre. L’espace des

états de Fock est tronqué à n103 = 10, ce qui est justifié puisque ng
103 ≪ 1. La largeur de raie

du mode TE103 est fixée à la valeur déterminée précédemment (Fig. 5.4 b). Les paramètres

de l’ajustement sont ainsi la fréquence angulaire du qubit avec le mode TE103 dans l’état du

vide, ωq, la largeur de raie du qubit augmentée par l’excitation de spectroscopie, γq(Psp),

la force de l’interaction dispersive entre le qubit et le mode TE103, χq,103, la population

du mode avec le qubit dans l’état fondamental, ng
103, le facteur de proportionnalité, A, et,

finalement, le décalage Re(∆r)off .

Les figures 5.7 a) et b) montrent que l’asymétrie dans le spectre du qubit est très bien

reproduite par la régression. La fréquence du qubit avec zéro photon dans le mode TE103

est déterminée à ω(n103=0)
q /2π = 7.99156 GHz. La figure 5.7 c) présente la largeur de raie du

qubit γq(Psp) extraite de la régression du spectre. L’augmentation de la largeur de raie avec

la puissance de spectroscopie est ajustée à

γq(Psp) =
√

ηPsp + γq(0)2, (5.24)

où η ≡ (2Ωsp)
2/Psp relie la puissance de spectroscopie Psp à la fréquence angulaire de Rabi

Ωsp et γq(0) est la largeur de raie intrinsèque du qubit [201]. La fréquence angulaire de Rabi

Ωsp qui apparaît dans l’hamiltonien de l’équation (5.10) peut ainsi être estimée à partir de
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Figure 5.7 – Spectroscopie du qubit supraconducteur.
Spectre du qubit mesuré à des puissances de spectroscopiePsp de a) 19 aW et b) 190 aW. La régression
des données à l’équation (5.23) est montrée par une ligne noir. Les régions bleue et orange montre
les composantes Sn103(ωsp) du spectre du qubit correspondant à zéro et un photon dans le mode
TE103, respectivement. L’asymétrie du spectre est très bien reproduite par le modèle. c) Largeurs
de raie du qubit γq(Psp) (cercles) et γ(n103=0)

q (Psp) (carrés) de l’équation (5.15) en fonction de la
puissance de spectroscopie Psp. Les lignes oranges pleine et pointillée montrent les régressions à
l’équation (5.24), indiquant, respectivement, γq(0)/2π = 0.25 MHz (ligne horizontale noire pleine)
et γ(n103=0)

q (0)/2π = 0.57 MHz (ligne horizontale noire pointillée). d) Population du mode TE103 en
fonction de la puissance de spectroscopie Psp. La ligne horizontale montre la population ngp = 0.078
calculée à partir de l’équation (5.4).
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l’augmentation de la largeur de raie selon

Ωsp =
1

2

√

γq(Psp)2 − γq(0)2. (5.25)

À partir de l’ajustement de γq(Psp) à l’équation (5.24), il est possible d’extraire la largeur

de raie intrinsèque du qubit, γq(0)/2π = 0.25+0.07
−0.10 MHz. Afin d’obtenir cette valeur, on

restreint la valeur minimale de γq(Psp) dans l’ajustement tel que la largeur intrinsèque du

qubit respecte la limite du temps de relaxation T1 donnée par

min [γq(0)] =
2

max [T ∗2 ]
=

1

T1
, (5.26)

où T ∗2 est le temps de déphasage du qubit etT1 = 0.63±0.07 µs est déterminé par une mesure

résolue temporellement (chapitre 6). Cette largeur de raie diffère de la largeur de raie de

la composante du spectre correspondant à zéro photon dans le mode TE103 et augmentée

par le déphasage induit par la mesure causé par la population finie de photons dans le

mode TE103, γ
(n103=0)
q (0)/2π = (γq(0)+κ103D

ss
103)/2π = 0.57± 0.02 MHz. La différence entre

γq(0) et γ(n103=0)
q (0) peut s’expliquer par une population dans le mode TE103 de 0.20+0.20

−0.09

photons, significativement plus élevée que la population de 0.078± 0.004 photons calculée

précédemment à partir de la puissance de l’excitation de sonde. Cette population résiduelle

de 0.12+0.21
−0.10 photons devrait résulter en une largeur de raie de 0.44+0.54

−0.27 MHz, augmentée

de la largeur de raie intrinsèque du qubit même en l’absence des excitations de sonde et de

spectroscopie. Cette largeur de raie est comparable à la largeur de raie de 0.51± 0.04 MHz

calculée à partir de γq(0) = 2/T ∗2 et du temps de déphasage du qubit T ∗2 = 0.62± 0.04 µs,

déterminé à partir d’une mesure d’interférométrie de Ramsey (chapitre 6) [201]. Ainsi,

même si toutes les excitations micro-ondes sont éteintes lors de l’évolution libre de la

mesure de Ramsey, une population résiduelle dans le mode TE103 crée un déphasage induit

par la mesure, augmentant la largeur de raie du qubit de 0.25 à 0.51 MHz.

En considérant la population du mode TE103 dans l’analyse du spectre du qubit, il

est de plus possible d’extraire directement la fréquence angulaire du décalage dispersif

entre le qubit et le mode TE103, χq,103. À partir de la régression, on détermine χq,103/2π =

−0.8± 0.2 MHz, en excellent accord avec la valeur de −0.73 MHz calculée numériquement

à partir de l’hamiltonien de l’équation (5.1) et des paramètres spécifiés à l’annexe C.
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5.3.3 Couplage entre le mode de Kittel et le qubit

Tel qu’illustré à la figure 5.8 a), la combinaison du couplage dipolaire magnétique

entre le mode de Kittel et le mode TE10p de la cavité (section 5.2) et du couplage dipolaire

électrique du qubit avec le même mode (annexe C) crée un couplage effectif entre le mode

de Kittel et le qubit d’une force de couplage gq−m [41, 38]. En effet, lorsque le désaccord

entre le mode de Kittel et le qubit est beaucoup plus faible que les force de couplages gq,10p
et gm,10p, et lorsque le désaccord entre le mode TE10p de la cavité et le mode de Kittel et le

qubit est beaucoup plus grand que les forces de couplages gq,10p et gm,10p, il est possible

d’éliminer les modes de la cavité de l’hamiltonien complet du système (équation (5.1)) afin

d’obtenir l’hamiltonien effectif de l’interaction entre le mode de Kittel et le qubit, donné

par [38]

Ĥq−m/~ ≈ 1

2
ωqσ̂z + ωmĉ

†ĉ+ gq−m
(
σ̂−ĉ† + σ̂+ĉ

)
, (5.27)

où

gq−m ≈
∞∑

p=1

gq,10pgm,10p

ω10p − ωq

(5.28)

pour ωq ≈ ωm. Cette interaction entre le mode de Kittel et le qubit est interprétée comme

l’échange d’un quanta entre le mode de Kittel et le qubit par une excitation virtuelle d’un

photon dans le mode TE10p. Bien que les autres modes de la cavité contribuent aussi à

ce couplage, la proximité des fréquences du mode TE102 à ∼ 8.46 GHz et de la transition

|g〉 ↔ |e〉 du transmon à ∼ 7.99 GHz fait en sorte que l’interaction qubit-magnon est

principalement médiéw par ce mode.

Afin de vérifier que l’interaction entre le mode de Kittel et le qubit atteint le régime de

couplage fort, la spectroscopie du qubit est effectuée en fonction du courant I de la bobine

afin de mettre en résonance le mode de Kittel avec le qubit. La puissance de spectroscopie

est fixée à Psp = 190 aW. De plus, chaque mesure du changement du coefficient de réflexion

Re(∆r) est acquis avec une bande passante de 1 Hz à l’analyseur de réseau et moyenné

trois fois. La figure 5.8 b) présente le résultat de cette mesure.

La présence d’un croisement évité indique que le régime de couplage fort entre le

mode de Kittel et le qubit est atteint [41]. La force du couplage gq−m/2π = 7.79 MHz est

extraite de la séparation entre les deux pics du spectre mesuré lorsque le mode de Kittel et

le magnon sont en résonance à I = −4.25 mA (Fig. 5.8 c), correspondant à la séparation
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Figure 5.8 – Croisement évité entre le mode de Kittel et le qubit.
a) Diagramme d’énergie schématique des modes TE102 et TE103 de la cavité, du qubit et du mode
de Kittel, respectivement de fréquences angulaires ω102, ω103, ωq et ωm. Le qubit et le mode de
Kittel sont couplés au mode TE102 par couplages dipolaires électrique et magnétique avec une
force de couplage gq,102 et gm,102, respectivement. Le couplage effectif entre le qubit et le mode de
Kittel, d’une fréquence angulaire gq−m, mène à une hybridation caractérisée par une séparation de
Rabi d’une fréquence angulaire 2gq−m. Le spectre du qubit est mesuré en sondant le coefficient de
réflexion r(ωa) d’une excitation de sonde de fréquence angulaire ωa résonante avec le mode TE103

avec le qubit dans l’état fondamental, ωg
103, en fonction de la fréquence angulaire de l’excitation de

spectroscopie, ωsp. b) Spectre du qubit en fonction du courant I dans la bobine, changeant le champ
magnétique B0 à la sphère de YIG et changeant ainsi la fréquence angulaire des magnons dans le
mode de Kittel, ωg

m. L’observation d’un croisement évité démontre le couplage fort entre le qubit et
le mode de Kittel. Les lignes pointillés verticales indiquent I = −4.25 mA, où le qubit et le mode de
Kittel sont hybridés (Fig. 5.8 c), et I = −5.02 mA, où l’interaction qubit-magnon est dans le régime
dispersif (section 5.4). c) Séparation de Rabi de l’état du vide des magnons lorsque le qubit est en
résonance avec le mode de Kittel à I = −4.25 mA. À partir d’une régression, la force du couplage
entre le mode de Kittel et le qubit, gq−m/2π = 7.79 MHz, est extraite.
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de Rabi créé par l’état du vide des magnons. La force de l’interaction entre le mode de

Kittel et le qubit est en effet beaucoup plus grande que la largeur de raie des magnons,

γm/2π = 1.3 MHz (sous-section 5.2.2), et la largeur de raie du qubit, γq/2π = 1.74 MHz,

augmentée par l’excitation de spectroscopie (sous-section 5.3.2).

La force de couplage observée de gq−m/2π = 7.79 MHz est relativement près de la

valeur gq−m/2π = 6.67 MHz calculée à partir de l’hamiltonien de l’équation (5.1) et des

paramètres spécifiés à l’annexe C. La sous-estimation de la force de couplage obtenue

théoriquement de 17% peut potentiellement s’expliquer par le fait que seulement les quatre

premiers modes de la cavité sont considérés dans le calcul présenté en annexe. Une bonne

indication de la validité de cette hypothèse est qu’en ne considérant que les trois premiers

modes de la cavité, la valeur théorique diminue à 6.38 MHz, soit une augmentation de

l’erreur de 17% à 22%.

5.4 Régime dispersif fort en magnonique quantique

À la section précédente, il est démontré que l’interaction entre le mode de Kittel et le

qubit atteint le régime de couplage fort par l’observation d’un croisement évité lorsque les

deux systèmes sont résonants. Dans cette section, le régime où le désaccord en fréquence

entre les deux systèmes est beaucoup plus grand que la force du couplage est exploré.

Dans une première sous-section, l’hamiltonien effectif du système dans le régime dispersif

est présenté en analogie avec celui introduit à la section précédente pour décrire la spec-

troscopie du qubit par une mesure dispersive. Une seconde sous-section présente une

mesure permettant d’estimer la fréquence des magnons par l’observation de l’effet Stark

dynamique du qubit causé par les magnons dans le mode de Kittel. À la sous-section 5.4.3,

la possibilité d’atteindre le régime dispersif fort en magnonique quantique est démontré

par l’observation des états de Fock des magnons dans le mode de Kittel. Finalement, une

dernière sous-section présente la population et la distribution de probabilité extraites d’une

analyse détaillée des résultats.
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5.4.1 Théorie du régime dispersif en magnonique quantique

À partir de l’hamiltonien de l’équation (5.27) décrivant l’interaction effective entre le

mode de Kittel et le qubit, il est possible d’obtenir un hamiltonien du système qubit-magnon

dans le régime dispersif lorsque le désaccord entre chaque sous-système est beaucoup plus

grand que toutes les forces de couplages, soit

Ĥq−m/~ ≈ 1

2
∆spσ̂z + (∆p + χq−m) ĉ

†ĉ+ χq−mσ̂z ĉ
†ĉ+ Ωsp

(
σ̂− + σ̂+

)
+ Ωp

(
ĉ+ ĉ†

)
, (5.29)

où ∆sp = ωq − ωsp est le désaccord de spectroscopie, ∆p = ωg
m − ωp est le désaccord de

l’excitation du mode de Kittel, χq−m est la fréquence angulaire de l’interaction dispersive

entre le mode de Kittel et le qubit,Ωsp est la force de l’excitation de spectroscopie (fréquence

de Rabi) et Ωp est la force de l’excitation du mode de Kittel. Cet hamiltonien est en parfaite

analogie avec celui de l’équation (5.10) où le mode de la cavité est simplement remplacé

par le mode de Kittel puisque les deux systèmes sont des oscillateurs harmoniques. Il est

alors possible d’utiliser la théorie présentée à la sous-section 5.3.1 afin de décrire le spectre

du qubit mesuré lorsque l’excitation micro-ondes crée un état cohérent de magnon dans le

mode de Kittel.

La figure 5.9 a) présente schématiquement l’observation des états de Fock de magnons

dans le mode de Kittel par une mesure spectroscopique du qubit dans le régime dispersif.

Une excitation micro-ondes résonante avec la fréquence angulaire ωm ∝ B0 des magnons

crée un état cohérent de magnons dans le mode de Kittel. Par l’interaction dispersive

qubit-magnon de fréquence angulaire χq−m, le spectre du qubit acquiert plusieurs pics

correspondant à la transition du qubit avec le mode de Kittel dans l’état de Fock de magnons

|nm〉 si 2χq−m ≫ max [γq, γm], c’est-à-dire si la séparation en fréquence angulaire entre les

pics, 2χq−m, est beaucoup plus grande que la largeur de raie du qubit et du mode de Kittel,

respectivement γq et γm. Dans ce cas, comme il est démontré à la dernière sous-section de

cette section, le poids spectral de chacun des pics du spectre du qubit reflète la distribution

de probabilité de l’état cohérent de magnons créé dans le mode de Kittel par l’excitation

micro-ondes.

Comme l’illustre la figure 5.9 b), le régime chevauchant (straddling regime) correspond

au régime où la fréquence angulaire ωg
m des magnons avec le qubit dans l’état fondamental

est entre la fréquence angulaire ω(0)
q de la transition |g〉 ↔ |e〉 et la fréquence angulaire

ω
(0)
q + α de la transition |e〉 ↔ |f〉 du transmon avec le mode de Kittel dans l’état du vide,

où α < 0 est l’anharmonicité du transmon [190]. La figure 5.9 c) présente la fréquence
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Figure 5.9 – Régime dispersif en magnonique quantique.
a) Illustration schématique du système hybride dans le régime dispersif fort. Une excitation de
fréquence angulaire ωp est utilisée afin de créer un état cohérent de magnon dans le mode de
Kittel. Cette excitation possède un désaccord de fréquence angulaire ∆p = ωg

m − ωp par rapport
à la fréquence angulaire des magnons avec le qubit dans l’état fondamental, ωg

m. Dans le régime
dispersif fort, les états de Fock de magnons |nm〉, possédant une distribution de probabilité pnm ,
se manifestent dans le spectre du qubit par des pics aux fréquences angulaires ω(nm)

q séparés par
2χq−m+∆p et avec un poids spectral relié à pnm . b) Diagramme d’énergie schématique du qubit et du
mode de Kittel dans le régime dispersif, indiquant les transitions |g〉 ↔ |e〉 et |e〉 ↔ |f〉 du transmon
aux fréquences angulaires ω(nm)

q et ω(nm)
q + α, respectivement, où α(< 0) est l’anharmonicité du

transmon. Le régime chevauchant (straddling regime) correspond au régime où ω(0)
q +α < ωg

m < ω
(0)
q

(région en gris), où ω
g(e)
m est la fréquence angulaire du qubit avec le transmon dans l’état |g(e)〉.

c) Calcul de la fréquence angulaire du couplage dispersif entre le mode de Kittel et le qubit, χq−m,
en fonction de la fréquence angulaire des magnons avec le qubit dans l’état fondamental, ωg

m. Le
régime chevauchant (région en gris) est délimité par ω(0)

q /2π = 7.99156 GHz (ligne bleue pleine) et
(ω

(0)
q + α)/2π = 7.87136 GHz (ligne bleue pleine), où α/2π = −120.2 MHz.
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angulaire de l’interaction dispersive entre le mode de Kittel et le qubit, χq−m, calculée

numériquement à partir de l’hamiltonien de l’équation (5.1) et des paramètres présentés à

l’annexe C.

En négligeant les états supérieurs du transmon dans l’hamiltonien de l’équation (5.1),

la fréquence angulaire de l’interaction dispersive qubit-magnon est donné par χq−m =

g2q−m/(ω
bare
m − ωbare

q ). Par contre, comme le montre la figure 5.9 c), la régime chevauchant

permet d’obtenir une interaction dispersive χq−m beaucoup plus élevée [190]. Cet effet a été

utilisé en électrodynamique quantique en circuit afin d’obtenir des couplages dispersifs de

plus de 80MHz entre un qubit supraconducteur de flux et une cavité supraconductrice [191].

Par exemple, à la figure 5.9 c), le régime chevauchant permet d’augmenter χq−m/2π de

0.68 MHz à 1.17 MHz en plein centre du régime chevauchant. Comme on le verra à la

sous-section 5.4.3, cette augmentation en apparence marginale est cruciale afin d’atteindre

le régime dispersif fort en magnonique quantique puisque, tel que déterminé à la section 5.2,

la largeur de raie du mode de Kittel γm/2π est de 1.3 MHz.

5.4.2 Détermination de la fréquence des magnons

Afin d’atteindre le régime dispersif du système qubit-magnon, le courant I de la bobine

est fixé à −5.02 mA, correspondant à une fréquence des magnons inférieure à la fréquence

du qubit (Fig. 5.8). Afin de déterminer la fréquence angulaire des magnons dans le mode de

Kittel à cette valeur de courant, le spectre du qubit est mesuré en fonction de la fréquence

angulaire de l’excitation du mode de Kittel, ωp, en fixant la puissance de cette excitation à

7.9 fW. La puissance de spectroscopie est fixée à Psp = 190 aW. De plus, chaque mesure du

changement du coefficient de réflexion Re(∆r) est acquis avec une bande passante de 1 Hz

à l’analyseur de réseau. Le résultat de cette mesure est présenté à la figure 5.10 a).

Selon l’équation (5.22), lorsque l’excitation devient presque résonante avec le mode de

Kittel, c’est-à-dire lorsque ∆p = ωg
m − ωp ≪ γm, la fréquence angulaire du qubit subit un

décalage de Stark dynamique causé par la présence d’un état cohérent de magnons dans le

mode de Kittel donné par λm +2χq−mnm, où le premier et le deuxième termes représentent,

respectivement, les composantes discrète et continue du décalage de Stark dynamique.

Cette observation est une signature de l’interaction dispersive entre le qubit et les magnons,

similaire à l’interaction dispersive entre un qubit et les photons micro-ondes d’une cavité

en électrodynamique quantique en circuit [201, 44]. La valeur positive du décalage de

Stark dynamique indique que χq−m > 0, alors que la fréquence d’excitation produisant
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Figure 5.10 – Détermination de la fréquence des magnons.
a) Mesure du spectre du qubit Re (∆r) (ωsp) à un courant I = −5.02 mA en fonction de la fréquence
d’excitation du mode de Kittel, ωp/2π. La fréquence d’excitation produisant le décalage de Stark
dynamique le plus élevé par rapport à la fréquence du qubit, ωq/2π (ligne horizontale pointillée),
permet d’estimer la fréquence des magnons dans le mode Kittel avec le qubit dans l’état fondamental,
ωg
m/2π ≈ 7.95 GHz (ligne verticale pointillée). La signature correspondant à une transition à deux

photons impliquant les excitations de spectroscopie et du mode de Kittel et excitant le qubit et un
magnon est indiqué par une ligne diagonale pointillée, donnée par ωsp = ω

(nm=0)
q + 2χq−m +∆p et

calculée avec χq−m/2π = 1.5 MHz à ωg
m/2π = 7.95 GHz. b) Une excitation de fréquence angulaire

ωp est utilisée afin d’exciter les magnons dans le mode de Kittel avec un désaccord de fréquence
angulaire ∆p = ωg

m − ωp, résultant en des pics dans le spectre du qubit aux fréquences angulaires
ω̃
(nm)
q = ω

(nm)
q + nm∆p. L’espacement en fréquence angulaire entre les pics correspondant à des

états de Fock de magnon consécutifs est ainsi donné par 2χq−m +∆p.
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le décalage maximal à ∆p = 0 indique ωg
m/2π ≈ 7.95 GHz. Selon la figure 5.9 c), ces deux

observations sont consistantes avec le système hybride étant dans le régime chevauchant.

La signature d’une transition à deux photons est de plus visible à la figure 5.10 a). Cette

transition implique l’excitation de spectroscopie, de fréquence angulaire ωsp, et l’excitation

du mode de Kittel, de fréquence angulaire ωp, et excite le qubit et un magnon dans le

mode de Kittel, changeant ainsi l’état du système composé de |g, nm = 0〉 à |e, nm = 1〉.
Tel qu’illustré à la figure 5.10 b), cette transition apparaît à une fréquence angulaire de

spectroscopie donnée par

ωsp = ω(1)
q +∆p = ω(0)

q + λm(∆p) + 2χq−m +∆p. (5.30)

Ainsi, en négligeant la dépendance de la fréquence angulaire du décalage de Stark dy-

namique λm au désaccord de l’excitation du mode de Kittel ∆p, cette transition possède

une dépendance linéaire en ∆p et est montrée par une ligne diagonale à la figure 5.10 a).

L’observation de cette transition démontre la présence d’une interaction dispersive entre le

mode de Kittel et le qubit.

5.4.3 Observation des états de Fock de magnons

Dans cette sous-section, l’observation des états de Fock de magnons est démontrée

par l’étude détaillée du spectre du qubit lorsque le désaccord de l’excitation du mode de

Kittel est beaucoup plus faible que la largeur de raie des magnons, soit ∆p ≪ γm. Pour se

faire, le spectre du qubit est mesuré en fonction la puissance d’excitation Pp en fixant la

fréquence de l’excitation à ωp/2π = 7.95 GHz, près de la fréquence des magnons ωg
m/2π

pour I = −5.02 mA (Fig. 5.10 a). La puissance de l’excitation de spectroscopie est fixée

à Psp = 19 aW afin de réduire l’augmentation de la largeur de raie du qubit, γq(Psp). De

plus, chaque mesure du changement du coefficient de réflexion Re(∆r) est acquis avec une

bande passante de 1 Hz à l’analyseur de réseau et moyennée 50 fois.

Les figures 5.11 a) et b) présentent le résultat de ces mesures. En plus de se disperser

à une fréquence plus élevée, indiquant encore une fois χq−m > 0, le spectre du qubit est

modulé, indiquant la présence de plusieurs pics, chacun correspondant à un état de Fock

de magnons |nm〉 différent.

Afin d’effectuer un ajustement sur les spectres de la figure 5.11, le modèle analytique du

spectre d’un qubit en interaction dispersive avec une cavité, présenté à la sous-section 5.3.1,
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Figure 5.11 – Observation des états de Fock de magnons.
a) Spectres du qubit mesurés à différentes puissances d’excitation Pp à un courant I = −5.02 mA
et à une fréquence d’excitation du mode de Kittel ωp/2π = 7.95 GHz. Les lignes noires pleines
présentent les régressions des données au modèle du spectre d’un qubit en interaction dispersive
avec le mode de Kittel. Les régions colorés montrent les composantes du spectre correspondant à
différents états de Fock |n103〉 de photons du mode TE103 et différents états de Fock |nm〉 de magnons
du mode de Kittel. Les décalages verticaux sont indiqués par les lignes horizontales pointillées.
b) Spectres du qubit mesurés en fonction de la puissance d’excitation du mode de Kittel, Pp. Après
avoir soustrait un décalage dépendant de la puissance d’excitation, le spectre Re(∆r) est normalisé
à chaque puissance d’excitation par sa valeur maximale. c) Résultat de la régression des spectres
présentés en b) au modèle. Pour toutes ces figures, les lignes verticales pointillés indiquent les
fréquences des transitions |g〉 ↔ |e〉 du transmon correspondant aux quatre premiers états de Fock
de magnon, où la composante continue du décalage de Stark, donnée par λm/2π, est négligée par
simplicité.
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est adapté en remplaçant le mode de la cavité par le mode de Kittel. Explicitement, on

effectue les substitutions

nc, n
g,e
c , κc → nm, n

g,e
m , γm,

χq−c → χq−m,

Ac, λc, D
ss
c → Am, λm, D

ss
m

dans les équations (5.13) to (5.20). Afin de considérer le déplacement de Stark dynamique

du qubit créé par les photons dans le mode TE103, le remplacement

ωq → ω(n103=0)
q = ωq + λ103 (5.31)

est effectué, où la fréquence du qubit avec le mode TE103 dans l’état du vide, ω(n103=0)
q /2π =

7.99156 GHz, est déterminée de la régression présentée à la sous-section 5.3.2. La largeur

de raie du qubit avec le mode de Kittel dans l’état du vide est substitué à

γq → γ(n103=0)
q = γq + κ103D

ss
103, (5.32)

afin de considérer l’augmentation de la largeur de raie causée par le déphasage induit par

la mesure par les photons présents dans le mode TE103, avec γ(n103=0)
q /2π = 0.78 MHz pour

Psp = 19 aW (Fig. 5.7 c). Avec ces substitutions, le spectre du qubit est ajusté à

Re(∆r)(ωsp) = A
10∑

nm=0

Snm(ωsp) + Re(∆r)off , (5.33)

où,afin de tenir compte de l’asymétrie du spectre du qubit causée par l’interaction dispersive

entre le qubit et le mode TE103, la composante du spectre correspondant à l’état de Fock

|n103 = 1〉 du mode TE103 est considéré selon

Snm(ωsp) ≈ Snm,n103=0(ωsp) + B × Snm,n103=1(ωsp), (5.34)

dans l’équation (5.33). Le poids spectral relatif entre les composantes du spectre à un

photon et à zéro photon est donné par

B ≡ pn103=1

pn103=0

≈
∫

dωsp
Sn103=1(ωsp)

Sn103=0(ωsp)
.

À partir des mesures avec le mode de Kittel dans l’état du vide (Fig. 5.7 a), le poids spectre
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relatif B = 0.03 est déterminé et est supposé constant dans ce qui suit.

Les paramètres fixés dans l’ajustement du spectre du qubit sont la fréquence angulaire

et la largeur de raie du qubit, ω(n103=0)
q et γ(n103=0)

q respectivement, la largeur de raie des

magnons, γm, le poids spectral relatif, B, la fréquence angulaire de l’interaction dispersive

entre le qubit et le mode TE103, χq,103, et la largeur de raie du mode TE103, κ103.

Pour chaque puissance d’excitation du mode de Kittel Pp, les paramètres de la régres-

sion sont la fréquence angulaire de l’interaction dispersive entre le mode de Kittel et le

qubit, χq−m, la fréquence angulaire du désaccord entre l’excitation et les magnons, ∆p, la

population de magnon avec le qubit dans l’état fondamental, ng
m, le facteur de conversion,

A, et le décalage du spectre, Re(∆r)off .

Les données présentées aux figures 5.11 a) et b) sont ajustées à ce modèle. Les résultats

de cet ajustement sont présentés aux figures 5.11 a) et c). La figure 5.12 a) présente en

détails l’ajustement du spectre mesuré à une puissance d’excitation Pp = 3.1 fW, où chaque

composante du spectre correspondant aux états de Fock de magnon |nm = {0, 1, 2, 3}〉 est

mis en évidence. L’excellent accord entre les données et l’ajustement sur tout l’intervalle de

puissance d’excitation est une très bonne indication de la validité du modèle présenté.

Le désaccord entre les fréquences angulaires d’excitation et le mode de Kittel avec

le transmon dans l’état fondamental est déterminé à ∆p/2π = −0.38 MHz, beaucoup

plus faible que la largeur de raie du mode de Kittel, γm/2π = 1.3 MHz. À partir de cette

valeur, il est possible d’estimer la fréquence angulaire des magnons avec le transmon dans

l’état fondamental selon ωg
m/2π = (ωp + ∆p)/2π = 7.94962 GHz. De plus, le décalage de

Lamb (ωbare
m − ωg

m)/2π = 1.88 MHz est calculé à partir de l’hamiltonien de l’équation (5.1)

en utilisant les paramètres présentés à l’annexe C. Ceci indique alors une fréquence du

mode de Kittel sans interactions de ωbare
m /2π = 7.95150 GHz, à partir duquel le désaccord

entre les fréquences du qubit et du mode de Kittel sans interactions est calculé selon
∣
∣ωbare

q − ωbare
m

∣
∣ /2π = 89 MHz. La condition du régime dispersif,

∣
∣ωbare

q − ωbare
m

∣
∣ ≫ gq−m,

est ainsi respectée, avec un désaccord de 89 MHz beaucoup plus grand que la force du

couplage qubit-magnon déterminée précédemment, gq−m/2π = 7.79 MHz.

La figure 5.12 b) présente la séparation entre les pics du spectre du qubit correspondant à

des états de Fock de magnon consécutifs,2χq−m+∆p, en fonction de la puissance d’excitation

Pp. Tel qu’attendu, la séparation ne dépend pas de la puissance d’excitation à l’intérieur

des barres d’erreurs. La force de l’interaction dispersive entre le mode de Kittel et le qubit

obtenue de la régression, χq−m/2π = 1.5 ± 0.1 MHz, est en bon accord avec la valeur
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Figure 5.12 – Analyse détaillée du spectre du qubit dans le régime dispersif.
a) Spectre du qubit mesuré à une puissance d’excitation du mode de Kittel de Pp = 3.1 fW. La
ligne noire pleine présente la régression des données au modèle du spectre d’un qubit en interac-
tion dispersive avec le mode de Kittel. Les régions colorés montrent les composantes du spectre
correspondant à différents états de Fock |nm〉 de magnons du mode de Kittel avec le mode TE103

dans l’état de Fock |n103 = 0〉. Les composantes correspondant à l’état de Fock |n103 = 1〉 ne sont
pas clairement visibles et sont ainsi omises. Les composantes correspondant aux états de Fock
|nm = {1, 2, 3}〉 de magnons sont respectivement décalées verticalement de −0.01, −0.02 et −0.03 à
partir du décalage Re(∆r)off . Des valeurs négatives dans le spectre de la composante correspondant
à l’état de Fock |nm = 0〉 de magnons sont visibles pour ωsp/2π < 7.99 GHz. Les lignes verticales
pointillés indiquent les fréquences des transitions |g〉 ↔ |e〉 du transmon correspondant aux quatre
premiers états de Fock de magnon, où la composante continue du décalage de Stark, donnée par
λm/2π, est négligée par simplicité. b) Séparation en fréquence entre la transition |g〉 ↔ |e〉 du trans-
mon correspondant à des états de Fock de magnons consécutifs, (2χq−m+∆p)/2π, en fonction de la
puissance d’excitation du mode de Kittel Pp. À faible puissance, il est difficile de déterminer, à partir
de cette séparation, le décalage dispersif χq−m et le désaccord de l’excitation ∆p séparément. On né-
glige alors les données pour Pp < 0.9 fW afin d’estimer les valeurs moyennes et l’écart-type de χq−m

et ∆p. Par contre, à l’intérieur des barres d’erreurs, la séparation (2χq−m +∆p)/2π = 2.6± 0.3 MHz
est constante sur tout l’intervalle de puissance d’excitation.
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théorique de 1.27 MHz de la figure 5.9 c) pour ωg
m/2π = 7.94962 GHz. Le décalage dispersif

par magnon, 2χq−m/2π = 3.0 MHz, est ainsi beaucoup plus grand que les largeurs de

raie du qubit γq/2π = 0.78 MHz et du mode de Kittel γm/2π = 1.3 MHz, permettant

ainsi l’observation des états de Fock de magnons dans le spectre du qubit. Ceci est une

démonstration claire que le régime dispersif fort a été atteint en magnonique quantique.

5.4.4 Population et distribution de probabilité

Nombre moyen de magnons

Tel que discuté à la sous-section précédente, le nombre moyen de magnons dans le

mode de Kittel avec le transmon dans l’état fondamental, ng
m, est extrait de la régression

des spectres de la figure 5.11. La figure 5.13 a) présente la population ng
m du mode de

Kittel en fonction de la puissance d’excitation Pp. Tel qu’attendu pour un système linéaire,

le population du mode de Kittel augmente linéairement avec la puissance d’excitation.

La faible non-linéarité est discuté à la prochaine section. De plus, le nombre critique de

magnons au-delà duquel l’approximation dispersive n’est plus valide et donné par [9]

ncrit
m =

∣
∣ωbare

q − ωbare
m

∣
∣
2

4g2q−m
≈ 32, (5.35)

est beaucoup plus grand que la population maximale du mode de Kittel nm ∼ 1 observée

expérimentalement.

La figure 5.13 a) montre qu’à la puissance d’excitation la plus faible, Pp = 79 aW,

il est possible de résoudre 0.026 ± 0.012 magnons dans le mode de Kittel. Considérant

que la sphère de YIG contient approximativement 1.4× 1018 spins et qu’un magnon dans

le mode de Kittel possède un moment magnétique équivalent à un spin 1/2, il est ainsi

possible de résoudre un changement du moment magnétique du ferro-aimant équivalent

au renversement d’un seul spin parmi ∼ 5×1019 spins. Cette figure de mérite est par contre

trompeuse puisque le qubit n’est sensible qu’à la présence d’une excitation de spin dans

le mode de Kittel du ferro-aimant, et non directement au champ magnétique créé par le

ferro-aimant.

Une meilleure estimation de la sensibilité est calculée en considérant qu’il faut ∼
104 secondes pour acquérir un seul spectre du qubit de la figure 5.11, résultant en une

sensibilité d’environ 2.6 magnons/
√
Hz pour un rapport signal sur bruit près de l’unité.
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Figure 5.13 – Population et distribution de probabilité.
a) Nombre moyen de magnons dans le mode de Kittel avec le qubit dans l’état fondamental, ngm,
en fonction de la puissance d’excitation Pp. Les lignes noire pointillée et orange pleine montrent,
respectivement, les régressions à un modèle du mode de Kittel linéaire et non-linéaire. Encart :
déviations∆ngm de la régression au modèle linéaire, indiquant une non-linéarité de Kerr significative
dans le mode de Kittel. b) Distribution de probabilité pnm des quatre premiers états de Fock de
magnons en fonction de la puissance d’excitation Pp. Les distributions de Poisson, attendues pour
un système linéaire, sont montrées par les lignes pleines. Encart : distribution de probabilité pnm

pourPp = 3.1 fW. Les barres d’erreurs sont obtenues à l’aide des valeurs extrémales de pnm calculées
à l’intérieur de l’intervalle de confiance de 95% des paramètres ngm, χq−m et ∆p de l’ajustement.

Finalement, aucune population thermique n’est détectée dans le mode de Kittel à l’inté-

rieur des barres d’erreurs d’environ 0.01 magnons, indiquant une température magnonique

effective inférieure à ∼ 80 mK. Ceci démontre que le mode de Kittel est en effet dans l’état

du vide de magnons en l’absence d’une excitation (Pp = 0).

La régression linéaire de la population du mode de Kittel présentée à la figure 5.13 a)

indique que le nombre moyen de magnon augmente à un taux de 0.342± 0.008 magnons

par femtowatt de puissance d’excitation. Théoriquement, la population du mode de Kittel

est donnée par

ng
m =

Ω2
p

(γm/2)2 +∆2
p

. (5.36)

La force de l’excitation Ωp est donnée selon la théorie d’entrée-sortie par 1

Ωp =

√

Pp

~ωp

∑

p

√

κin10p




gm,10p

∆m,10p

+
gq−mgq,10p

∆q−m

√

∆2
m,10p + κ210p



 , (5.37)

1. Communication privée avec Yutaka Tabuchi.
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où ∆m,10p = ωbare
10p −ωbare

m , ∆q−m = ωbare
q −ωbare

m et ∆p = ωg
m−ωp. Pour un mode TE10p donné

de la cavité, le premier terme de l’équation (5.37) décrit l’excitation d’un magnon dans le

mode de Kittel par un photon virtuel dans le mode TE10p, alors que le deuxième terme

décrit l’excitation d’un magnon par une excitation virtuelle du qubit, à son tour excité par

une photon virtuel du mode TE10p. À partir des équations (5.36) et (5.37), la pente ng
m/Pp

de la population du mode de Kittel ng
m en fonction de la puissance d’excitation Pp est ainsi

donnée par

ng
m

Pp

=
1

~ωp

1

(γm/2)2 +∆2
p




∑

p

√

κin10p




gm,10p

∆m,10p

+
gq−mgq,10p

∆q−m

√

∆2
m,10p + κ210p









2

. (5.38)

En tronquant la somme sur les modes de la cavité à p = 3, on calcul ng
m/Pp = 0.16+0.12

−0.06 ma-

gnons par femtowatt à partir des paramètres présentés à l’annexe C. Les barres d’erreurs

correspondent aux valeurs extrémales calculées à partir de l’intervalle de confiance de 95%

pour κin102, κ
in
103, γm, et ∆p. La pente ng

m/Pp estimée théoriquement est ainsi plus faible que

celle mesurée expérimentalement par un facteur d’environ deux. Cette disparité provient

probablement d’une sous-estimation de Ωp puisque les canaux d’excitation des magnons

dans le mode de Kittel provent des modes supérieurs de la cavité ne sont pas considérés

en tronquant la somme de l’équation (5.38) aux trois premiers modes. Une erreur dans la

calibration de la puissance d’excitation à l’entrée de la cavité micro-ondes d’environ 3 dB

peut aussi expliquer cette disparité.

Distribution de probabilité

En plus du nombre moyen de magnons dans le mode de Kittel, il est possible d’estimer

la probabilité pnm que le mode de Kittel possède nm magnons par [44]

pnm =

∫

dωsp Snm(ωsp) /S(ωsp) , (5.39)

où S(ωsp) ≈
∑10

nm=0 Snm(ωsp) est le spectre du qubit dans le modèle analytique auquel les

données sont ajustées et Snm(ωsp) est la composante du spectre associée à l’état de Fock

de magnons |nm〉 donnée par l’équation (5.34). La figure 5.13 b) présente les distribu-

tions de probabilité des quatre premiers états de Fock de magnons obtenues à l’aide de

l’équation (5.39) et des spectres ajustés, présentés à la figure 5.11.

Tel que discuté à la référence [44], les distributions de probabilité de l’équation (5.39)
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Figure 5.14 – Déviations des distributions de probabilité.
Distributions de probabilité des états de Fock de magnons calculées à partir des équations (5.39)
(lignes pleines) et (5.40) (lignes pointillées) pour a) γm/2π = 0.1 MHz et ∆p = 0, b) γm/2π =
1.3 MHz et ∆p = 0, c) γm/2π = 0.1 MHz et ∆p/2π = −0.38 MHz et d) γm/2π = 1.3 MHz et
∆p/2π = −0.38 MHz. Les encarts montrent les déviations ∆pnm des distributions de probabilité
calculées à partir de l’équation (5.39) par rapport aux distributions de Poisson.

doivent être comparées aux distributions de Poisson de moyenne Dss
m, données par

pnm =
(Dss

m)
nm e−D

ss
m

nm!
. (5.40)

Les figures 5.14 a) à d) montrent la comparaison entre les distributions calculées à partir

des équations (5.39) et (5.40) avec les paramètres déterminées expérimentalement, mais

avec différentes valeurs de la largeur de raie du mode de Kittel, γm, et du désaccord de

l’excitation,∆p. Pour γm ≪ χq−m (γm/2π = 0.1 MHz, figures 5.14 a) et c), les distributions de

probabilité calculées à partir de l’équation (5.39) suivent les distribution de Poisson, même

pour un désaccord fini de ∆p/2π = −0.38 MHz. Ainsi, pour |2χq−m| ≫ γm, les distributions

de probabilité calculées à l’aide de l’équation (5.39) correspondent aux distributions de

Poisson attendues pour un oscillateur harmonique piloté par une excitation cohérente [44].



220 5. Observation des états de Fock de magnons

Par contre, pour γm ∼ χq−m (γm/2π = 1.3 MHz), figures 5.14 b) et d), des déviations

systématiques par rapport aux distributions de Poisson sont observées. Dans ce cas, malgré

que le système soit dans le régime dispersif fort avec |2χq−m| > max [γq, γm], le qubit ne

permet pas de sonder parfaitement la probabilité de distribution des magnons dans le mode

de Kittel. En effet, les distributions de probabilité pnm des quatre premiers états de Fock de

magnons, montrées à la figure 5.13 b), indiquent de faible déviations. Ceci est attendue

puisque la fréquence angulaire du décalage dispersif par magnon, 2χq−m/2π = 3.0 MHz, est

seulement légèrement supérieure à la largeur de raie du mode de Kittel, γm/2π = 1.3 MHz.

Néanmoins, la possibilité de sonder la distribution de probabilité des états de Fock de

magnons à partir du spectre du qubit offre un nouvel outil pour l’étude d’états quantiques

de magnons dans les modes magnéto-statiques de ferro-aimants.

5.5 Effet Kerr des magnons

Dans cette dernière section, l’augmentation non-linéaire du nombre moyen de ma-

gnons dans le mode de Kittel en fonction de la puissance d’excitation est expliquée par la

présence d’un effet Kerr dans le mode de Kittel, où la non-linéarité de Kerr provient de

l’anharmonicité du transmon. Dans une première sous-section, l’hamiltonien du mode de

Kittel en incluant l’effet Kerr est obtenu. Dans une deuxième section, un calcul numérique

de la population du mode de Kittel est utilisé afin d’extraire la force de l’effet Kerr des

magnons et est comparé à la valeur théorique.

5.5.1 Modèle de l’effet Kerr des magnons

L’effet Kerr des magnons est décrit par un terme quadratique dans l’hamiltonien, donné

par [214, 204]

Ĥm,K/~ = − (Km/2)
(
ĉ†ĉ

)2
, (5.41)

où Km est le coefficient de l’effet Kerr des magnons. À partir de l’hamiltonien complet du

système donné par l’équation (5.1) et des paramètres du système donnés à l’annexe C,Km est

calculé en fonction de la fréquence angulaire du mode de Kittel avec le transmon dans l’état

fondamental,ωg
m. La figure 5.15 présente le résultat de ce calcul. Pour ωg

m/2π = 7.94962 GHz

à I = −5.02 mA, on estime Km/2π = −0.12 MHz. Puisque ce coefficient est beaucoup



221

7.7 7.75 7.8 7.85 7.9 7.95 8 8.05 8.1
-0.5

-0.25

0

0.25

0.5

Fréquence des magnons (GHz)
(M

H
z)

Figure 5.15 – Coefficient de l’effet Kerr des magnons.
Calcul de la fréquence angulaire du coefficient de Kerr des magnons,Km, en fonction de la fréquence
angulaire des magnons avec le qubit dans l’état fondamental, ωg

m. Le régime chevauchant (région en
gris) est délimité par ω(0)

q /2π = 7.99156 GHz (ligne bleue pleine) et (ω(0)
q + α)/2π = 7.87136 GHz

(ligne bleue pleine), où α/2π = −120.2 MHz.

plus faible que la largeur de raie du mode de Kittel de 1.3 MHz, l’effet Kerr n’affecte pas

significativement la dynamique du mode de Kittel.

Afin de comprendre les conséquences de l’effet Kerr sur la population du mode de Kittel,

l’Hamiltonien de l’équation (5.41) est ajouté à l’hamiltonien du système qubit-magnon dans

le régime dispersif obtenu précédemment et donné par l’équation (5.29). L’hamiltonien

effectif est ainsi donné par

Ĥq−m/~ =
1

2
∆spσ̂z + (∆p + χq−m +Km/2) ĉ

†ĉ (5.42)

+ χq−mσ̂z ĉ
†ĉ− (Km/2)

(
ĉ†ĉ

)2

+ Ωsp

(
σ̂− + σ̂+

)
+ Ωp

(
ĉ+ ĉ†

)
.

Il est alors possible de voir que l’effet Kerr lève la dégénérescence des états de Fock de

magnons |nm〉. En effet, la fréquence angulaire de la transition entre les états de Fock |nm〉
et |nm + 1〉 est donnée par ωg

m −Kmnm.

L’hamiltonien du mode de Kittel non-linéaire piloté est obtenu en projetant l’hamil-

tonien de l’équation (5.42) au sous-espace σ̂z → −1, correspondant au qubit dans l’état

fondamental,

Ĥg
m/~ = (∆p +Km/2) ĉ

†ĉ− (Km/2)
(
ĉ†ĉ

)2
+ Ωp

(
ĉ+ ĉ†

)
. (5.43)

Cet hamiltonien est utilisé à la prochaine section afin de calculer numériquement la popu-

lation du mode de Kittel.
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5.5.2 Calcul numérique de la population du mode de Kittel

La librairie de simulation de systèmes quantiques ouverts Qutip [134, 135] est utilisée

afin de calculer la population du mode de Kittel à l’état stationnaire, ng
m, à partir de

ng
m = tr (ρ̂ssn̂m) = tr

(
ρ̂ssĉ

†ĉ
)
, (5.44)

où ρ̂ss =
∑∞

nm=0 pnm |nm〉〈nm| est la matrice densité du mode de Kittel dans l’état stationnaire

obtenue numériquement en résolvant l’équation maîtresse obtenue de l’hamiltonien de

l’équation (5.43) et considérant la relaxation des magnons à un taux γm/2π = 1.3 MHz.

Les figures 5.16 a) et b) présentent la population du mode de Kittel calculée en fonction

de la force de l’excitation, Ωp ∝
√
Pp, pour des désaccords de l’excitation ∆p = 0 et

∆p/2π = −0.38 MHz, respectivement.

À désaccord nul (∆p = 0) et pour un coefficient de Kerr |Km| > 0, la population ng
m

en fonction de Ω2
p ∝ Pp possède une courbure négative puisque l’excitation du mode de

Kittel devient moins efficace en augmentant la force de l’excitation (Fig. 5.16 a). En effet,

l’augmentation de la population du mode de Kittel augmente le désaccord effectif entre

l’excitation et le mode de Kittel via un changement de la fréquence du mode de Kittel. Par

contre, pour un faible désaccord de −0.38 MHz, la courbure est positive sur un certain

intervalle de ng
m et pour des coefficients Km < 0 (Fig. 5.16 b). En effet, dans ce cas, la

non-linéarité de Kerr compense le désaccord, rendant l’excitation du mode de Kittel plus

efficace lorsque la population augmente. Pour des valeurs de ng
m plus élevées, la courbure

de ng
m(Ω

2
p) redevient négative.

Les populations calculées numériquement ng
m(Ω

2
p) sont comparées aux données ex-

périmentales ng
m(Pp) de la figure 5.13 a). Les figures 5.16 c) et d) montrent le coefficient

de détermination R2 entre ng
m(Ω

2
p) et ng

m(Pp) pour différentes valeurs du coefficient de

Kerr Km et différentes constantes de proportionnalités entre Ω2
p and Pp. Pour le désaccord

∆p/2π = −0.38 MHz déterminé précédemment, la figure 5.16 d) montre que le coefficient

de Kerr maximisant R2 est donné par Km/2π = −0.20+0.05
−0.14 MHz. La figure 5.13 a) montre

le résultat de la régression, montrant un excellent accord de la courbure de ng
m(Pp). Les

barres d’erreurs correspondent aux valeurs extrémales obtenues à l’intérieur de l’intervalle

de confiance de 95% des paramètres γm et ∆p. Malgré que le coefficient de Kerr obtenu est

beaucoup plus faible que la largeur de raie du mode de Kittel, l’accord entre la valeur obte-

nue expérimentalement de Km/2π = −0.20+0.05
−0.14 MHz et la valeur obtenue théoriquement

de Km/2π = −0.12 MHz (Fig. 5.15) est excellent. La possibilité de résoudre l’effet Kerr des
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Figure 5.16 – Effet Kerr des magnons.
a), b) Calcul numérique de la population de magnons ngm du mode de Kittel dans l’état stationnaire
en fonction de la puissance d’excitation, proportionnelle à Ω2

p, pour différentes valeurs du coefficient
de Kerr Km et pour une largeur de raie γm/2π = 1.3 MHz. Le désaccord de l’excitation du mode
de Kittel est a) ∆p = 0 et b) ∆p/2π = −0.38 MHz. Les encarts montrent ngm sur un intervalle de
puissance d’excitation plus grand. c), d) Coefficient de détermination R2 entre ngm(Pp) (données,
figure 5.13 b) et ngm(Ω2

p) (simulations) en fonction deKm et de la constante de proportionnalité entre
Pp et Ω2

p. Le désaccord de l’excitation du mode de Kittel est c) ∆p = 0 et d) ∆p/2π = −0.38 MHz.
Les lignes pointillées verticales et horizontales montrent, respectivement, les valeurs de Km et
4π2Pp/Ω

2
p maximisant R2.
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Figure 5.17 – Effet de la nonlinéarité de Kerr sur la distribution de probabilité.
Distributions de probabilité des états de Fock de magnons calculées à partir de l’équation (5.45) et de
la matrice densité à l’état stationnaire ρ̂ss obtenue numériquement en résolvant l’équation maîtresse
dérivée de l’hamiltonien de l’équation (5.43) et considérant la relaxation des magnons à un taux
γm/2π = 1.3 MHz, pourKm/2π = −0.2 MHz (lignes pleines) etKm = 0 (lignes pointillées). L’encart
montre les déviations ∆pnm des distributions de probabilité calculées pour Km/2π = −0.2 MHz
par rapport aux distributions de Poisson (Km = 0).

magnons démontre une fois de plus la puissance de l’utilisation du qubit supraconducteur

en tant que sonde d’un état macroscopique dans un ensemble de spin ferromagnétique.

Puisque l’effet Kerr affecte le nombre moyen de magnons dans le mode de Kittel, il est

attendu que les distributions de probabilités soient également affectées. Les distributions

de probabilité sont évaluées à l’aide de l’expression

pnm = 〈nm|ρ̂ss|nm〉. (5.45)

La figure 5.17 montre les distributions de probabilité calculées numériquement pour le

coefficient de Kerr obtenu expérimentalement, Km/2π = −0.2 MHz, et pour un système

linéaire (Km = 0). Il est alors possible de voir que les déviations par rapport aux distributions

de Poisson dues à l’effet Kerr sont beaucoup plus faibles que celles causées par la valeur

finie de la largeur de raie du mode de Kittel (Fig. 5.14).

La comparaison des figures 5.9 c) et 5.15 montre qu’il est possible de contrôler le rapport

entre le décalage dispersif par magnon, 2χq−m, et le coefficient de l’effet Kerr des magnons,

Km, en changeant la fréquence angulaire des magnons dans le mode de Kittel, ωg
m. En

particulier, à ωg
m = ω

(0)
q + α, c’est-à-dire lorsque le mode de Kittel est résonant avec la

transition |e〉 ↔ |f〉 du transmon, le coefficient de l’effet Kerr |Km| /2π ≈ 0.7 kHz alors

que |χq−m| /2π ≈ 1.95 MHz. La possibilité d’atteindre un excellent contraste entre ces

deux coefficients, discutée à la référence [215], permet de minimiser, par exemple, les effets
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néfastes de l’effet Kerr sur l’encodage et le décodage d’un qubit supraconducteur dans un

oscillateur harmonique [42, 43].

5.6 Impacts des travaux

Un premier impact des travaux présentés dans ce chapitre porte sur l’étude du régime

dispersif en magnonique quantique. La démonstration du régime dispersif fort est démon-

trée par l’observation des états de Fock de magnons dans les mesures spectroscopiques du

qubit supraconducteur. Ces résultats sont très bien décrits par le modèle théorique établi à

la référence [44] pour l’électrodynamique quantique en circuit. Ces mesures permettent

ainsi d’observer, pour la première fois, les quanta d’excitations collectives de spins dans

un ferro-aimant de taille millimétrique et de confirmer qu’il est possible de préparer le

système dans l’état du vide de magnons.

La démonstration du régime dispersif fort en magnonique quantique ouvre la voie

à plusieurs expériences. Par exemple, au prochain chapitre, l’interaction dispersive entre

les magnons et le qubit supraconducteur est utilisée afin d’effectuer des mesures tomo-

graphiques d’états cohérents de magnons. Ces mesures permettent notamment de sonder

la relaxation des magnons dans le régime quantique. De plus, le régime dispersif fort

ouvre la voie à l’utilisation de différents protocoles pour encoder l’état quantique du qubit

supraconducteur dans un état non classique de magnons [42, 43], une étape importante

dans la transduction quantique entre les qubits supraconducteurs et les photons optiques

grâce à l’architecture de la magnonique quantique.
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Chapitre 6

Tomographie de l’état des magnons

Le régime dispersif fort en magnonique quantique a été démontrée au chapitre précé-

dent. L’interaction dispersive entre les magnons du mode de Kittel et le qubit a été utilisée

afin de sonder la population et les distributions de probabilité des magnons, permettant,

par exemple, d’observer une non-linéarité dans le mode de Kittel induite par le qubit. Ce

dernier chapitre porte sur une application supplémentaire du régime dispersif fort en

magnonique quantique, soit la mesure de la fonction de quasi-probabilité Q de Husimi de

l’état des magnons dans le mode de Kittel. Dans une première section, la manipulation

et la lecture résolues temporellement de l’état du qubit est présentée. Une méthode de

lecture à haute puissance est ensuite présentée dans une deuxième section, permettant

d’effectuer, entres autres, une mesure à un coup (single shot). La section 6.3 présente ensuite

le protocole utilisé pour la mesure de la fonction Q de Husimi de l’état des magnons. Les

mesures de la fonctionQ de l’état du vide et d’un état cohérent de magnons sont également

présentées. Finalement, la dernière section présente l’observation directe de la relaxation

des magnons à l’aide des mesures de la fonctionQ, indiquant notamment une décroissance

non exponentielle et la présence d’un mécanisme de déphasage pur dans le mode de Kittel.

Tout comme le chapitre précédent, les résultats de ce chapitre ont été obtenus lors d’un

stage à l’été 2015 dans le laboratoire du Prof. Yasunobu Nakamura à The University of

Tokyo. Ces résultats sont préliminaires et ne sont ainsi pas publiés à l’heure actuelle.
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6.1 Manipulation et lecture résolues temporellement de l’état

du qubit

Dans cette première section, la manipulation et la lecture résolues temporellement de

l’état du qubit sont présentées. Dans une première sous-section, le montage expérimental

permettant la modulation et la démodulation des impulsions de contrôle et de lecture est

présenté. La deuxième sous-section présente la manipulation cohérente du qubit, démon-

trée par l’observation des oscillations de Rabi. Finalement, la sous-section 6.1.3 présente la

mesure du temps de relaxation et de cohérence du qubit en utilisant le contrôle cohérent

démontré à la sous-section précédente.

6.1.1 Montage expérimental

La figure 6.1 présente un schéma simplifié du montage expérimental utilisé pour les

mesures résolues temporellement. Pour la manipulation de l’état du qubit, un mélangeur IQ

est utilisé pour effectuer la conversion ascendante des signaux de fréquence intermédiaire

générés par deux convertisseurs numérique-analogique jusqu’à la fréquence angulaire ωsp

à l’aide d’un oscillateur local de fréquence angulaire ωsp +∆ω, où ∆ω/2π ≤ 150 MHz est la

fréquence des signaux de fréquence intermédiaire. Le rapport des amplitudes et la phase

relative des signaux de fréquence intermédiaire sont ajustés afin de minimiser la bande

latérale supérieure à la fréquence angulaire ωsp + 2∆ω. De plus, la composante continue

des signaux de fréquence intermédiaire est ajustée afin de minimiser la fuite de l’oscillateur

local.

L’amplitude et la phase globale des signaux de fréquence intermédiaire permettent

de créer des signaux en phase et en quadrature d’amplitudes AX et AY pour effectuer

des rotations de l’état du qubit autour des axes X et Y de la sphère de Bloch. Puisque

l’amplitude et la fréquence angulaire ∆ω des signaux de fréquence intermédiaire peuvent

être modifiées rapidement, l’amplitude et la fréquence des signaux résultant du mélange

peuvent également être modifiées rapidement. Ceci permet d’effectuer le contrôle résolu

temporellement de l’état du qubit à l’aide des amplitudes de contrôle AX(t) et AY(t). Le

contrôle de l’état des magnons est également effectué à l’aide des amplitudes de contrôle

AX et AY puisque le désaccord entre la fréquence de la transition |g〉 ↔ |e〉 du transmon,

ω
(0)
q /2π ≈ 7.99 GHz, et la fréquence des magnons, ωg

m/2π ≈ 7.95 GHz, est inférieure à la

fréquence maximale de 150 MHz des convertisseurs numérique-analogique de contrôle.
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Figure 6.1 – Montage expérimental pour les mesures résolues temporellement.
Schéma simplifié du montage expérimental utilisé pour les mesures résolues temporellement.
Les atténuateurs, filtres et amplificateurs ne sont pas montrés. Deux mélangeurs IQ sont utilisés
pour effectuer la conversion ascendante des impulsions de contrôle et de lecture de fréquences
intermédiaires ∆ω/2π ≤ 150 MHz et ∆ω′/2π = 50 MHz générés par des convertisseurs numérique-
analogique jusqu’aux fréquences de contrôle et de lecture du qubit à l’aide de deux oscillateurs
locaux de fréquences angulaires ωsp +∆ω et ωa +∆ω′, respectivement. Deux atténuateurs variables
sont utilisés pour modifier l’amplitude des impulsions au-delà de l’intervalle permis par les conver-
tisseurs numérique-analogique. L’impulsion de lecture de fréquence angulaire ωa réfléchie sur
le dispositif hybride est démodulée à l’aide d’un mélangeur avec l’oscillateur local de lecture de
fréquence angulaire ωa +∆ω′, produisant un signal V (t) à une fréquence ∆ω′/2π = 50 MHz. Ce
signal de lecture est mesuré par un oscilloscope et les amplitudes des composantes en phase et en
quadrature, VI et VQ respectivement, sont obtenues numériquement.
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Comme l’illustre la figure 6.1, un montage similaire est utilisé pour créer les impulsions

de lecture d’amplitudes en phase AI et en quadrature AQ avec un oscillateur local de

fréquence angulaire ωa + ∆ω′, où ∆ω′/2π = 50 MHz est la fréquence des signaux de

fréquence intermédiaire générés par deux autres convertisseurs numérique-analogique.

Afin de modifier l’amplitude des impulsions de contrôle et de lecture au-delà du l’intervalle

fournit par les convertisseurs numérique-analogique, deux atténuateurs variables digitales

sont utilisés. Finalement, les impulsions de contrôle et de lecture sont combinées à l’aide

d’un coupleur directionnel avant d’être envoyées au port d’entrée du réfrigérateur à dilution.

Le montage expérimental à l’intérieur du réfrigérateur à dilution est le même qu’à la

figure 5.3.

L’impulsion de lecture de fréquence angulaire ωa réfléchie sur le dispositif hybride est

démodulée à l’aide d’un mélangeur avec l’oscillateur local de lecture de fréquence angulaire

ωa+∆ω′, produisant un signal V (t) à une fréquence ∆ω′/2π = 50 MHz. Ce signal de lecture

est mesuré par un oscilloscope avec une résolution temporelle de 0.8 ns. Les amplitudes des

composantes en phase et en quadrature du signal, VI et VQ respectivement, sont obtenues

en démodulant numériquement la trace temporelle V (t) obtenue à l’oscilloscope.

6.1.2 Oscillations de Rabi

La figure 6.2 a) présente le circuit quantique décrivant la manipulation de l’état du qubit.

À la suite d’une rotation d’un angle θ autour de l’axe X de la sphère de Bloch du qubit,

décrit par l’opérateur X̂θ = eiθσ̂x , l’état du qubit est lu à l’aide de son interaction dispersive

avec le mode TE103 de la cavité, tel que décrit à la section 5.3.1. Expérimentalement, tel

qu’illustré à la figure 6.2 b), le contrôle de l’état du qubit est effectué en envoyant une

impulsion de fréquence angulaire ωsp = ω
(0)
q modulé par une enveloppe gaussienne d’une

durée τ , décrit par l’amplitude de contrôle AX(t) donnée par

AX(t) = AX e
−t2/2σ2

cos (ωspt) , (6.1)

où la durée τ de l’impulsion correspond à la pleine largeur à mi-hauteur, τ = 2
√
2 ln 2σ. La

probabilité pe(τ) de trouvé le qubit dans l’état excité |e〉 après l’impulsion de durée τ est

alors décrit par

pe(τ) =
1

2

[

1− cos (Ωspτ) e
−τ/TR

2

]

, (6.2)
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où Ωsp = θ/τ ∝ AX est la fréquence de Rabi et TR
2 est le temps caractéristique de la

décroissance vers pe(τ) = 0.5 [216]. L’équation (6.2) décrit les oscillations de Rabi d’un

qubit piloté par une excitation résonante avec le qubit. Dans le cas d’une excitation non-

résonante avec un désaccord ∆sp = ω
(0)
q −ωsp entre la fréquence angulaire du qubit lorsque

le mode de Kittel est dans l’état fondamental, ω(0)
q , et la fréquence angulaire de l’impulsion,

ωsp, l’équation (6.2) est modifiée par

pe(τ) =
1

2

[

1−
(
Ωsp

Ω′sp

)2

cos
(
Ω′spτ

)
e−τ/T

R
2

]

, (6.3)

où Ω′sp ≡
√

Ω2
sp +∆2

sp est la fréquence de Rabi généralisée [216]. Cette dernière équation

décrit les chevrons de Rabi.

La figure 6.2 c) présente un exemple des composantes en phase (VI) et en quadrature (VQ)

du signal de démodulation obtenues pour différentes durées τ de l’impulsion et moyennées

5000 fois pour chaque valeur de τ . Afin de simplifier l’analyse, le signal [VI(τ), VQ(τ)] à

τ = 0, correspondant, a priori, au qubit dans l’état fondamental |g〉, est artificiellement

déplacé à l’origine du plan complexe, tel que
[
V g
I , V

g
Q

]
= [0, 0]. Par la suite, une rotation

dans le plan complexe est effectuée afin que le signal correspondant à pe > 0 soit selon

l’axe VI, c’est-à-dire en phase avec l’oscillateur local utilisé pour l’impulsion de lecture.

La figure 6.2 d) présente les données corrigées de la figure 6.2 c) en fonction de la durée

de l’impulsion, τ . À partir de l’équation (6.2), le signal VI(τ) est ajusté à

VI(τ) =
V e
I

2

[

1− cos (Ωspτ) e
−τ/TR

2

]

, (6.4)

où V e
I est le signal en phase correspondant au qubit dans l’état |e〉. La durée τ de l’impulsion

nécessaire pour préparer le qubit dans l’état |e〉, correspondant à une rotation d’un angle

θ = π, est donnée par tπ = π/Ωsp. Similairement, la durée nécessaire pour créer une

superposition de poids égal entre les états |g〉 et |e〉 est donnée par tπ/2 = π/2Ωsp. où V e
I

est le signal en phase correspondant au qubit dans l’état |e〉. La durée τ de l’impulsion

nécessaire pour préparer le qubit dans l’état |e〉, correspondant à une rotation d’un angle

θ = π, est donnée par tπ = π/Ωsp. Similairement, la durée nécessaire pour créer une

superposition de poids égal entre les états |g〉 et |e〉 est donnée par tπ/2 = π/2Ωsp.

La préparation du qubit dans l’état excité |e〉 est nécessaire aux expériences des sections

suivantes. La fréquence angulaire de Rabi Ωsp, déterminant la durée des impulsions π et

π/2, est ajustée afin de contrôler le contenu spectral des impulsions de contrôle AX(t). Tel
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Figure 6.2 – Oscillations de Rabi du qubit supraconducteur.
a) Circuit quantique pour l’observation des oscillations de Rabi du qubit. À la suite d’une rotation X̂θ

d’un angle θ autour de l’axe X de la sphére de Bloch du qubit initialement dans l’état fondamental
|g〉, l’état du qubit est lu à l’aide de son interaction dispersive avec le mode TE103 de la cavité.
b) Schéma des impulsions de manipulation et de lecture utilisées pour mesurer les oscillations
de Rabi du qubit. Une impulsion résonante avec le qubit à une fréquence ωsp/2π = 7.99155 GHz
et modulée par une enveloppe gaussienne de durée τ est appliquée sur le qubit. À la suite de
la manipulation, l’état du qubit est lu en envoyant une impulsion résonante avec le mode TE103

de la cavité lorsque le qubit est dans l’état fondamental (ωa/2π = 10.449 GHz). Une amplitude
constante est utilisée pour l’impulsion de lecture d’une durée de 400 ns. c) Composantes en phase
(VI) et en quadrature (VQ) du signal de lecture démodulé et moyenné sur 280 ns de l’impulsion
de lecture et sur 5000 répétitions pour chaque valeur de τ . Le signal original est déplacé et tourné
dans le plan complexe en définissant [VI(0), VQ(0)] = [0, 0] et puis en appliquant une rotation tel
que le signal soit en phase (ligne horizontale pointillée). d) Oscillations de Rabi du qubit indiquées
par l’oscillation du signal VI(τ) entre les valeurs correspondant au qubit dans l’état fondamental
(V g

I ≡ 0, ligne horizontale pleine bleue) et dans l’état excité (V e
I , ligne horizontale pleine rouge).

Après un temps caractéristique TR
2 = 94 ns, le signal tend vers V e

I /2 (ligne horizontale pointillée
noire). Pour l’amplitude d’excitation utilisée, la durée d’une impulsion π, calculée à partir de la
fréquence de Rabi Ωsp/2π = 34.2 MHz, est tπ = 14.6 ns (ligne verticale pointillée).
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que discuté à la section 6.3, ce contrôle est nécessaire afin d’effectuer des opérations du

qubit conditionnelles et inconditionnelles à l’état de magnons.

6.1.3 Temps de relaxation et de cohérence

À l’aide du contrôle cohérent du qubit démontré à la sous-section précédente par

l’observation des oscillations de Rabi, il est possible de mesurer le temps de relaxation et

de cohérence du qubit. En analogies aux figures 6.2 a) et b), les figures 6.3 a), b), d) et e)

présentent les circuits quantiques et les schémas des impulsions utilisées afin de déterminer

le temps de relaxation T1 et de cohérence T ∗2 du qubit.

Afin de mesurer le temps de relaxation, le qubit est préparé dans l’état excité |e〉 à l’aide

d’une impulsion π. L’état du qubit est ensuite lu après un temps d’évolution libre τ . Sous

l’effet de la relaxation, la probabilité de trouver le qubit dans l’état excité après un temps τ

est

pe(τ) = e−τ/T1 . (6.5)

Le signal VI(τ) est ainsi ajusté à

VI(τ) = V e
I e
−τ/T1 . (6.6)

La figure 6.3 c) présente un exemple d’une mesure de la relaxation du qubit. Le temps de

relaxation, déterminé par la régression des données à l’équation (6.6), est T1 = 690± 40 ns.

Afin de mesurer le temps de cohérence du qubit, l’interférométrie de Ramsey est

utilisée. Tel qu’illustré aux figures 6.3 d) et e), le qubit est initialement préparé dans une

superposition cohérente entre les états |g〉 et |e〉 à l’aide d’une impulsion π/2. Après une

évolution libre d’une durée τ , une seconde impulsion π/2 est appliquée, puis l’état du

qubit est lu. Dans un référentiel tournant avec le qubit et en l’absence de décohérence, la

combinaison des deux impulsions π/2 prépare le qubit dans l’état excité |e〉. En présence de

relaxation et de déphasage, la probabilité de trouver le qubit dans l’état excité à la fin de la

séquence décroît exponentiellement selon un temps caractéristique T ∗2 . De plus, en présence

d’un désaccord ∆sp = ω
(0)
q − ωsp, la probabilité pe(τ) oscille à une fréquence angulaire ∆sp.

Ainsi, la probabilité de trouver le qubit dans l’état excité après un temps τ est donnée par

pe(τ) =
1

2

[
1 + cos (∆spτ) e

−τ/T ∗
2
]
. (6.7)
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Figure 6.3 – Temps de relaxation et de cohérence du qubit supraconducteur.
a) Circuit quantique pour la mesure du temps de relaxation du qubit. Une rotation X̂π d’un angle π
autour de l’axeX est initialement appliquée. Après une évolution libre d’une durée τ , l’état du qubit
est lu. b) Schéma des impulsions de manipulation et de lecture utilisées pour la mesure du temps de
relaxation du qubit. Une impulsion π résonante avec le qubit à une fréquenceωsp/2π = 7.991552GHz
et d’une durée tπ = 14.8 ns est appliquée au qubit. À la suite d’une évolution libre de durée τ , l’état
du qubit est lu en envoyant une impulsion résonante avec le mode TE103 de la cavité lorsque le qubit
est dans l’état fondamental. c) Décroissance du signal VI(τ) de la valeur correspondant au qubit
dans l’état excité (V e

I , ligne pleine rouge) à celui correspondant à l’état fondamental (V g
I ≡ 0, ligne

pleine bleue) après un temps caractéristique T1 = 690 ± 40 ns, indiquant la relaxation du qubit.
d) Circuit quantique pour la mesure du temps de cohérence du qubit. Une rotation X̂π/2 d’un angle
π/2 autour de l’axe X est initialement appliquée. Après une évolution libre d’une durée τ , une
seconde rotation X̂π/2 est appliquée. Par la suite, l’état du qubit est lu. e) Schéma des impulsions de
manipulation et de lecture utilisées pour la mesure du temps de cohérence du qubit. Une impulsion
π/2 à une fréquence ωsp/2π = 7.996 GHz et d’une durée tπ/2 = 7.5 ns est appliquée sur le qubit. À
la suite d’une évolution libre d’une durée τ , une seconde impulsion π/2 est appliquée. Finalement,
l’état du qubit est lu en envoyant une impulsion résonante avec le mode TE103 de la cavité lorsque
le qubit est dans l’état fondamental. f) Décroissance et l’oscillation du signal VI(τ) de la valeur
correspondant au qubit dans l’état excité (V e

I , ligne pleine rouge) à V e
I /2 (ligne pointillée noire) après

un temps caractéristique T ∗2 = 540± 70 ns, indiquant la décohérence du qubit. La fréquence des
oscillations permet de déterminer |∆sp| /2π = 4.45 MHz. Pour les données en c) et f), le déplacement
et la rotation du signal dans le plan complexe sont les même qu’à la figure 6.2 c).
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Le signal VI(τ) est ainsi ajusté à

VI(τ) =
VI
2

[
1 + cos (∆spτ) e

−τ/T ∗
2
]
. (6.8)

La figure 6.3 f) présente un exemple d’une mesure du temps de cohérence du qubit

T ∗2 = 540± 70 ns déterminé par l’ajustement du signal VI(τ) à l’équation (6.8). Le temps

de cohérence du qubit de type transmon n’est ainsi pas limité par la relaxation puisque

T ∗2 < 2T1. Ceci indique ainsi la présence de déphasage pur à un taux 1/Tφ relié au temps

de cohérence selon

1

T ∗2
=

1

2T1
+

1

Tφ
. (6.9)

Le désaccord |∆sp| /2π = 4.45 MHz obtenu par l’ajustement du signal à l’équation (6.8)

permet de déterminer la fréquence angulaire ω(0)
q = ωsp +∆sp du qubit. En effet, sachant

le signe de ∆sp à l’aide d’une mesure à une fréquence ωsp distincte, il est possible de

déterminer la fréquence du qubit lorsque le mode de Kittel est dans l’état du vide,ω(0)
q /2π =

7.99156 ± 0.00004 GHz. Contrairement à la mesure spectroscopique présentée à la sous-

section 5.3.2, l’interférométrie de Ramsey permet de déterminer la fréquence du qubit en

évitant l’augmentation de la largeur de raie causée par l’excitation de spectroscopie [52].

6.2 Lecture à haute puissance de l’état du qubit

Le contrôle cohérent du qubit a été démontré à la section précédente en lisant l’état du

qubit à l’aide de son interaction dispersive entre le mode TE103 de la cavité. Cette section

présente une méthode de lecture alternative basée sur la bifurcation du mode TE103. Cette

méthode de mesure est celle utilisée dans les sections suivantes. Tel que présenté dans

une première sous-section, cette méthode de lecture est possible grâce à la non-linéarité

intrinsèque de l’interaction entre le qubit de type transmon et la cavité. L’implémentation

de cette méthode de lecture en magnonique quantique est présentée dans une deuxième

sous-section. Finalement, la possibilité de lire l’état du qubit en un coup (lecture single shot)

avec cette méthode est présentée à la sous-section 6.2.3.
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6.2.1 Principe de la lecture par à haute puissance

L’approximation dispersive présentée à la sous-section 5.3.1 permettant, par exemple,

d’expliquer la lecture dispersive du qubit n’est valide que lorsque le nombre moyen nc

de photons dans le mode de la cavité utilisée pour la mesure est inférieur au nombre

critique de photon ncrit =
(
ωbare
q − ωbare

c

)2
/4g2q−c [9]. Au-delà de ce régime, la non-linéarité

intrinsèque de l’hamiltonien de Jaynes-Cummings, ∝ √
nc, doit être considérée. Tel que

discuté plus bas, cette non-linéarité procure une méthode de lecture alternative à la lecture

dispersive précédemment discutée.

En considérant l’hamiltonien de Jaynes-Cummings généralisé de l’équation (B.11), il

est possible de calculer le nombre moyen de photon dans le mode de la cavité en fonction

de la fréquence angulaire de sonde, ωa, la force de l’excitation de sonde, Ωa ∝
√
Pa, et de

l’état |i = {g, e, f, . . .}〉 du transmon selon

ni
c (ωa,Ωa) =

Ω2
a

(
ωi
c

(
ni
c

)
− ωa

)2
+ (κc/2)

2
, (6.10)

où la fréquence angulaire du mode de la cavité, ωi
c

(
ni
c

)
, dépend du nombre moyen de

photons via la non-linéarité intrinsèque de l’interaction entre le qubit et la cavité [217].

Cette équation peut être résolue itérativement en calculant, à l’aide de l’hamiltonien de

l’équation (B.11), la fréquence angulaire du mode ωi
c (nc) avec le qubit dans l’état |i〉 et la

cavité dans l’état de Fock |nc〉 [217].

Tel que discuté aux références [217, 218], il est ainsi possible de montrer que la présence

des états |i = f, . . .〉 du transmon résulte en un nombre moyen de photon ni
c (ωa,Ωa)

significativement différents lorsque le qubit est dans l’état fondamental (|i = g〉) et l’état

excité (|i = e〉) pour ωa ∼ ωbare
c et une certaine puissance de sonde Pa ∝ Ω2

a correspondant

à un nombre de photon nc ≫ ncrit. Ainsi, en sondant la cavité dans ces conditions, il est

possible de lire l’état du qubit.

Alors qu’un élément non linéaire peut être ajouté à la cavité pour introduire la non-

linéarité nécessaire à la méthode de lecture par bifurcation (voir les références [219, 220], par

exemple), l’approche présentée ici utilise la non-linéarité intrinsèque de l’interaction entre

le qubit et la cavité et ne requiert ainsi aucun élément de circuit supplémentaire [217, 218].

Cette approche pour la lecture à haute puissance a été démontrée pour la première fois à

la référence [221] pour un transmon dans une architecture planaire de l’électrodynamique

quantique en circuit.
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6.2.2 Démonstration de la lecture à haute puissance

La figure 6.4 a) présente la mesure du spectre du mode TE103 de la cavité lorsque le

qubit est dans l’état fondamental en fonction de la puissance de sondePa. À faible puissance,

la fréquence angulaire du mode correspond à ωg
103 (Fig. 5.4 b). À plus haute puissance, une

bifurcation se produit à Pa ≈ −100 dBm, correspondant à ng
103 ∼ 800 photons dans le mode

de la cavité (équation (5.4)). À des puissances de sonde encore plus élevées, la fréquence

angulaire du mode correspond à la fréquence angulaire du mode TE103 sans interactions,

ωbare
103 . Ce type de mesure à haute puissance est utilisé afin de déterminer les fréquences des

modes de la cavité sans interactions. La mesure spectroscopique présentée à la figure 6.4 a)

démontre la non-linéarité du mode TE103 induite par l’interaction avec le qubit.

Afin de démontrer qu’il existe une fréquence et une puissance de lecture pour lesquelles

le nombre moyen de photon dépend de l’état du qubit, les figures 6.4 b) et c) présentent les

spectres du mode TE103 mesurés en fonction de l’amplitude AI ∝
√
Pa de l’impulsion de

lecture après avoir préparé le qubit dans l’état fondamental |g〉 et l’état excité |e〉, respective-

ment. La différence de l’amplitude du signal de démodulation |VIQ| entre ces deux mesures,

proportionnelle à la différence entre ng
103 et ne

103, montre qu’il existe une amplitude et une

fréquence de lecture maximisant le contraste du signal de démodulation entre les deux

états du qubit (Fig. 6.4 d). À l’amplitude de lecture AI optimale, la figure 6.4 e) montre que

la fréquence angulaire de lecture ωa optimisant le contraste est très près de la fréquence

angulaire du mode TE103 sans interactions, ωbare
103 . La fréquence de l’impulsion de lecture

est ainsi fixée à 10.44205 GHz pour les mesures basées sur la lecture à haute puissance.

La figure 6.5 a) présentent des oscillations de Rabi mesurées à l’aide de la lecture à haute

puissance pour différentes amplitudes de l’impulsion de contrôle AX. Ces mesures sont

analogues à celle présentée à la sous-section 6.1.2, obtenue à l’aide de la lecture dispersive.

À partir de la fréquence angulaire de Rabi Ωsp extrait des régressions des données de

la figure 6.5 a) à l’équation (6.4), la relation linéaire entre l’amplitude de contrôle AX et

Ωsp est vérifiée (Fig. 6.5 b). Tel que discuté à la prochaine section, ces oscillations de Rabi

relativement lentes par rapport au temps de cohérence T ∗2 sont pertinentes à la mesure de

la fonction Q de Husimi de l’état des magnons.
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Figure 6.4 – Lecture à haute puissance de l’état du qubit.
a) Spectre du mode TE103 de la cavité en fonction de la puissance de sondePa. La fréquence angulaire
du mode varie entre ωg

103/2π = 10.44916 GHz (ligne pointillée, figure 5.4 b) à basse puissance et
ωbare
103 /2π = 10.4415 GHz (ligne pleine) après la bifurcation à Pa ≈ −100 dBm. b), c) Amplitude du

signal de démodulation, |VIQ|, en fonction de la fréquence angulaire ωa et de l’amplitude AI de
l’impulsion de lecture, après avoir préparé le qubit dans b) l’état fondamental |g〉 et c) l’état excité |e〉.
d) Différence entre les amplitudes en b) et en c). e) Différence du signal de démodulation lorsque les
états |g〉 et |e〉 du qubit sont préparés en fonction de la fréquence angulaire de l’impulsion de lecture
ωa pour AI = 0.8. La ligne en trait mixte indique la fréquence de lecture optimisant le contraste,
ωa/2π = 10.44205 GHz. Pour les figures b) à e), les lignes pleines indiquent ωbare

103 /2π = 10.4415 GHz.
Pour les figures b) à d), les lignes en trait mixte indiquent l’amplitude de lectureAI = 0.8 maximisant
la différence entre les amplitudes des signaux.
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Figure 6.5 – Oscillations de Rabi mesurées à l’aide de la lecture par bifurcation.
a) Oscillations de Rabi mesurées à l’aide de la lecture à haute puissance pour différentes amplitudes
de l’impulsion de contrôle AX, résultant en des fréquences de Rabi Ωsp/2π variant de 0.42 (bleu)
à 3.34 MHz (rouge). L’amplitude du signal de démodulation, VI(τ), est décalé verticalement de
100 mV par souci de clarté. b) Fréquence de Rabi Ωsp/2π, extraits de la régression des données
montrées en a) à l’équation (6.4), en fonction de l’amplitude de l’impulsion AX. La ligne pleine
montre la régression linéaire des données. Les barres d’erreurs sont plus petites que la taille des
symboles.

6.2.3 Lecture à un coup

Pour toutes les mesures présentées à la sous-section précédente, le signal de démodula-

tion est moyenné sur 5000 répétitions. Cette sous-section porte sur la possibilité d’effectuer

une lecture à un coup avec la méthode de lecture à haute puissance, c’est-à-dire sur la

possibilité de lire l’état du qubit sans moyenner le signal de démodulation sur plusieurs

répétitions. La méthode de lecture à haute puissance a été utilisée à la référence [220] pour

démontrer la première lecture à un coup d’un qubit supraconducteur de type transmon.

La figure 6.6 a) présente le signal de démodulation [VI, VQ] de N = 300 répétitions de

la lecture du qubit après l’avoir préparé dans l’état fondamental |g〉 et l’état excité |e〉. Le

nombre de coups Ci(VI) par secteur de 20mV en VI est présenté à la figure 6.6 b). Considérant

que la préparation de l’état |i = {g, e}〉 peut résulter en l’état |j = {g, e}〉, le nombre de

coups par secteur, Ci(VI), est ajusté à

Ci(VI) =
∑

j=g,e

Ai,j exp

(

− (VI − V i
I )

2

2 (∆V i
I )

2

)

, (6.11)

où Ai,j est relié à la probabilité pi,j que le qubit soit dans l’état |j = {g, e}〉 après l’avoir
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préparé dans l’état |i = {g, e}〉, V i
I est le signal de démodulation correspondant au qubit

dans l’état |i = {g, e}〉 et ∆V i
I est la largeur de la distribution reliée au bruit du signal de

démodulation. Le résultat de la régression des données à l’équation (6.11) est présenté à la

figure 6.6 b).

Il est ensuite utile de définir Si(VI) comme l’intégrale du nombre de coups par secteur

Ci(VI) jusqu’au signal de démodulation en phase VI, normalisée par le nombre de répétitions

N , soit

Si(VI) =
1

N

∫ VI

−∞

dVI Ci(VI). (6.12)

La figure 6.6 c) présente Si(VI) obtenues à partir des données et des régressions de la

figure 6.6 b). Comme l’illustre la figure 6.6 c), les deux plateaux présents dans Si(VI) sont

reliées aux probabilité pi,j de trouver le qubit dans l’état |j = {g, e}〉 après l’avoir préparé

dans l’état |i = {g, e}〉 selon pi,g = Si(V
seuil
I ) et pi,e = 1− pi,g, où V seuil

I est le niveau de seuil

maximisant le contraste. Alors que pour une manipulation et une lecture parfait, pi,i = 1 et

pi,j 6=i = 0, les données de la figure 6.6 c) indiquent,

pg,g = 82.7%, pg,e = 17.3%, pe,g = 28.3%, pe,e = 71.7%.

La visibilité du signal de lecture entre les états |g〉 et |e〉 du qubit est évaluée selon

V(VI) ≡ |Se(VI)− Sg(VI)| . (6.13)

À la figure 6.6 d), la visibilité atteint un maximum de V(V seuil
I ) ≡ Vmax = |pe,i − pg,i| = 54.4%

au niveau de seuil optimal V seuil
I = 190 mV.

À partir des résultats présentés, il est difficile de distinguer une erreur de lecture d’une

erreur de préparation des états du qubit. En effet, la probabilité de trouvé le qubit dans l’état

excité alors qu’aucune manipulation n’est effectuée, pg,e, peut être causée, par exemple, par

une population thermique de photons dans la cavité [222]. De plus, la probabilité de trouver

le qubit dans l’état fondamental alors que l’état excité est préparé, pe,g, peut être causé,

par exemple, par une mauvaise calibration de l’impulsion π utilisée pour préparer l’état

excité. Un autre ensemble de données, non présentées par souci de concision, montre que la

visibilité est pratiquement indépendante du temps d’intégration du signal de démodulation.

En effet, une visibilité de 52% est possible avec un temps d’intégration de 0.8 ns, soit la

résolution temporelle du signal de démodulation. Ceci semble indiquer que la visibilité de

la lecture à haute puissance est principalement limitée par des erreurs de préparation, et
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Figure 6.6 – Mesure à un coup de l’état du qubit.
a) Signal de démodulation VIQ = [VI, VQ] après avoir préparé le qubit dans l’état fondamental |g〉
(bleu) et dans l’état excité |e〉 (rouge) pour N = 300 répétitions. La durée de l’impulsion de lecture
est de 400 ns et le signal est intégré sur 100 ns. Le signal correspondant au qubit dans l’état excité est
décalé verticalement par 200 mV par souci de clarté. b) Coups par secteur Ci des données montrées
en a). Les lignes pleines montrent l’ajustement des données à l’équation (6.11). Chaque secteur
possède une largeur de 20 mV. c) Coups par secteur intégrés et normalisés Si des données et des
régressions montrées en b). La probabilité pi,j de mesurer le qubit dans l’état |j = {g, e}〉 après
l’avoir préparé dans l’état |i = {g, e}〉 est donnée par pi,g = Si(V

seuil
I ) et pi,e = 1− pi,g. d) Visibilité

V ≡ |Se − Sg| en fonction du seuil VI. La visibilité atteint 54.4% au seuil optimal, V seuil
I = 190 mV.

Pour toutes les figures, V seuil
I est indiqué par une ligne verticale pointillée noire.
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non de lecture.

La méthode de lecture à haute puissance présentée dans cette section permet d’effectuer

en magnonique quantique une lecture à un coup de l’état du qubit supraconducteur de

type transmon avec une visibilité d’environ 54%. Cette visibilité est plus faible que celle

de 87% obtenue lors de la première démonstration expérimentale de cette méthode de

lecture [221], et est probablement limitée par des erreurs de préparation du qubit.

6.3 Mesure de la fonction de Husimi de l’état des magnons

La combinaison du contrôle cohérent, démontré à la première section, et de la lecture

à haute puissance, démontrée à la section précédente, est utilisée dans cette section pour

mesurer, pour la première fois, la fonction de quasi-probabilité Q de Husimi de l’état des

magnons dans le mode de Kittel. Le protocole utilisé pour mesurer la fonctionQ est d’abord

présenté dans une première sous-section. L’élément clé du protocole, la rotation du qubit

conditionnelle à l’état des magnons, est discuté dans une deuxième sous-section. La mesure

de la fonction Q de l’état du vide des magnons est ensuite présentée à la sous-section 6.3.3,

permettant d’établir la méthode de calibration utilisée. Finalement, à la sous-section 6.3.4,

la mesure de la fonction Q d’un état cohérent de magnons est présentée. Cette mesure est à

la base de la dernière section de ce chapitre.

6.3.1 Protocole de la mesure de la fonction de Husimi

Comme discuté à l’annexe A, la fonction de quasi-probabilité Q de Husimi d’un état

pur |Ψ〉 est proportionnelle au recouvrement de cet état avec l’état cohérent |α〉 selon

Q (α) ≡ 1

π
|〈α|Ψ〉|2 , (6.14)

où l’amplitude complexe α est relié à la population de magnons selon nm = |α|2. Le

protocole décrit dans cette sous-section permet de relier la fonction Q à la probabilité de

mesurer le qubit dans l’état excité, pe. Ce protocole est basé sur la référence [204], où des

états quantiques de la lumière sont observés en mesurant la fonction Q d’un état cohérent

de photons évoluant dans une cavité possédant un effet Kerr significatif.
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Le protocole de la mesure des fonctionsQ généralisées, définies à l’annexe A, est schéma-

tisé sous la forme d’un circuit quantique et d’une séquence d’impulsions aux figures 6.7 a)

et b), respectivement. Initialement, le mode de Kittel, le qubit et le mode TE103 de la cavité

sont dans leur état fondamental. À l’étape 1, un état cohérent |β〉 = D̂(β)|0〉 est créé dans

le mode de Kittel en appliquant une impulsion de fréquence angulaire correspondant à

la fréquence angulaire du mode de Kittel lorsque le qubit est dans l’état fondamental, ωg
m.

À l’étape 2, l’état cohérent de magnons |β〉 évolue librement durant un temps τ en l’état

|Ψ(τ)〉. L’évolution libre est décrite par l’opérateur d’évolution Û(τ) du mode de Kittel

en interaction dispersive avec le qubit. À l’étape 3, l’opérateur de déplacement D̂(−α) est

appliqué sur l’état |Ψ(τ)〉 du mode de Kittel, où l’amplitude complexe α est variée afin

de couvrir la région désirée dans l’espace des phases. Ainsi, si α = β, l’état du vide est

retrouvé dans le mode de Kittel en l’absence de relaxation. La calibration entre l’amplitude

des impulsions et l’amplitude des états cohérents est discutée à la sous-section 6.3.3.

À l’étape 4, une rotation d’un angle θ = π par rapport à l’axe X de la sphère de Bloch

du qubit est appliquée. L’interaction dispersive entre le mode de Kittel et le qubit rend

cette opération conditionnelle au nombre nm de magnons dans le mode de Kittel et est

ainsi notée X̂nm
π . Cette rotation est effectuée en appliquant sur le qubit une impulsion de

fréquence angulaire ω(nm)
q , c’est-à-dire en résonance avec la transition |g〉 ↔ |e〉 du qubit

avec le mode de Kittel dans l’état de Fock de magnons |nm〉. La prochaine sous-section

explore les contraintes expérimentales à la réalisation de cette rotation conditionnelle.

L’effet de la rotation conditionnelle X̂nm
π sur l’état du système après l’étape 3 est donnée par

X̂nm
π (|Ψ′(t)〉 ⊗ |g〉) = X̂nm

π





∞∑

n′
m=0

cn′
m
|n′m〉 ⊗ |g〉



 =
∞∑

n′
m=0

n′
m 6=nm

cn′
m
|n′m〉 ⊗ |g〉+ cnm |nm〉 ⊗ |e〉,

(6.15)

où l’état |Ψ′(t)〉 ≡ D̂(−α)|Ψ(τ)〉 est exprimé dans la base des états de Fock de magnons

(annexe A). L’état du mode de Kittel et du qubit sont alors enchevêtrés. En effet, la mesure

du qubit dans l’état excité projette l’état du mode de Kittel dans l’état de Fock de magnons

|nm〉. L’interaction dispersive entre le mode de Kittel et le qubit permet ainsi la création

non déterministe d’états de Fock de magnons à partir d’états cohérents classiques [52].

À l’étape 5, l’état du qubit est lu par la méthode de lecture à haute puissance présentée

à la section 6.2. Comme l’indique l’équation (6.15), la probabilité pe de mesurer le qubit

dans l’état excité est égale à la probabilité pnm de mesurer nm magnons dans l’état |Ψ′(t)〉
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Figure 6.7 – Mesure des fonctions Q généralisées.
a) Circuit quantique de la mesure des fonctions Q généralisées, Qnm(α). Le déplacement D̂(β) créé
un état cohérent |β〉 dans le mode de Kittel. Après une évolution libre d’une durée τ , le déplacement
de tomographie D̂(−α) est appliqué. La rotation du qubit X̂nm

π d’un angle θ = π autour de l’axe X
conditionnelle à l’état de Fock |nm〉 de magnons est ensuite appliquée. L’état du qubit est finalement
lu à l’aide de la lecture à haute puissance du mode TE103 de la cavité. b) Schéma des impulsions
utilisée pour mesurer les fonctions Q généralisées. Une impulsion gaussienne d’une durée de
200 ns et d’une amplitude complexe [AX, AY] variable est utilisée afin d’effectuer les opérations de
déplacements D̂(β) et D̂(−α). L’état du qubit est lu en envoyant une impulsion constante d’une durée
de 400 ns à la fréquence de lecture optimale de la lecture à haute puissance, ωa/2π = 10.44205 GHz.
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du mode de Kittel. Ainsi, on a que

pe = pnm = |cnm |2 = |〈nm|Ψ′(τ)〉|2 =
∣
∣
∣〈nm|D̂(−α)|Ψ(τ)〉

∣
∣
∣

2

= πQnm , (6.16)

selon la définition des fonctions Q généralisées de l’équation (A.16).

Les fonctions Q généralisées de l’état |Ψ〉 = Û(τ)|β〉 du mode de Kittel peuvent ainsi

être obtenues en mesurant la probabilité de trouver le qubit dans l’état excité après le

déplacement de tomographie D̂(−α) et la rotation conditionnelle X̂nm
π du qubit. La mesure

des fonctions Qnm généralisées permettent, par exemple, d’estimer la fonction de Wigner

W (α) [204]. À partir de la prochaine sous-section, le cas spécial nm = 0, permettant la

mesure de la fonction Qnm=0 ≡ Q, est considéré. Ainsi, la manipulation conditionnelle du

qubit est fixée à X̂nm=0
π = X̂0

π.

6.3.2 Rotation du qubit conditionnelle à l’état du vide des magnons

Tel que discuté à la sous-section précédente, l’opération X̂0
π du qubit doit être condi-

tionnelle à l’état du vide des magnons. Ainsi, la fréquence angulaire de l’impulsion π est

fixée à la fréquence angulaire du qubit lorsque le mode de Kittel est dans l’état du vide

|nm = 0〉, ωsp = ω
(0)
q . De plus, le contenu spectral de l’impulsion de contrôle AX(t), décrit

par l’équation (6.1), doit être minimisé aux fréquences angulaires du qubit lorsque le mode

de Kittel est dans l’état de Fock |nm > 0〉, ω(nm>0)
q . Le spectre SX(ω) de l’impulsion AX(t) est

donné par

SX(ω) = F [AX(t)] (ω), (6.17)

où F dénote la transformée de Fourier.

La figure 6.8 b) présente le spectre SX(ω) calculé à partir de l’équation (6.17) pour

l’impulsion AX(t) calculée à partir de l’équation (6.1) et montrée à la figure 6.8 a). Pour la

séparation en fréquence du qubit entre les états de Fock de magnons |nm = 1〉 et |nm = 0〉,
(ω

(1)
q − ω

(0)
q )/2π = 2.6 MHz déterminée précédemment (Fig. 5.12 b), le poids spectral de

l’impulsion SX(ω) peut être significatif à la fréquence angulaire ω = ω
(1)
q .

Afin de quantifier la possibilité d’effectuer la rotation du qubit conditionnelle à l’état

du vide des magnons, il est utile de définir la sélectivité S de l’impulsion de contrôle entre
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Figure 6.8 – Sélectivité de l’impulsion de contrôle.
a) Impulsion gaussienne AX(t) décrit par l’équation (6.1) et normalisée par son amplitude AX. La
durée et la fréquence de l’impulsion sont τ = 175 ns et ωsp/2π = 7.99156 GHz, respectivement.
b) Spectre SX(ω) de l’impulsion montrée en a), normalisée par son amplitude maximale SX(ωsp) à
la fréquence ωsp/2π = ω

(0)
q /2π = 7.99156 GHz (ligne bleue pleine). La fréquence du qubit lorsque

le mode de Kittel est dans l’état de Fock |nm = 1〉, ω(1)
q /2π = ω

(0)
q /2π + 2.6 MHz, est indiquée par

une ligne rouge pointillée. c) Sélectivité S(ωsp = ω
(0)
q , ω

(1)
q ) entre les deux premiers états de Fock de

magnons pour différentes durées tπ de l’impulsion π. La diminution de la probabilité de préparer
le qubit dans l’état excité à la suite de l’impulsion π, proportionnelle à exp

(
−tπ/TR

2

)
(ligne grise

pointillée), mène à une valeur optimale de S(ωsp, ω
(1)
q )exp

(
−tπ/TR

2

)
(ligne orange en trait mixte)

à ∼ 54% pour tπ = 334 ns et TR
2 = 660 ns (Fig. 6.5 a), AX = 0.5). Pour la durée tπ = 175 ns de

l’impulsion utilisée dans les mesures des prochaines sous-sections (ligne verticale noire pointillée),
cette probabilité est d’environ 36%.

les fréquences angulaires ωsp et ω comme

S(ωsp, ω) ≡ 1− SX(ω)

SX(ωsp)
. (6.18)

La figure 6.8 c) montre la sélectivité S calculée en fonction de la durée τ = tπ d’une

impulsion π de fréquence angulaire ω(0)
q . Tel qu’attendu, plus l’impulsion est longue, plus la

sélectivité est élevée. Par contre, tel que décrit par l’équation (6.2) pour τ = tπ, la probabilité

que le qubit soit dans l’état excité à la suite de l’impulsion π décroît exponentiellement selon

le temps caractéristique TR
2 . Ainsi, la probabilité de préparer le qubit dans l’état excité si et

seulement si le mode de Kittel est dans l’état du vide est proportionnelle au produit de la

sélectivité S(ωsp, ω
(1)
q ) et de exp

(
−tπ/TR

2

)
. Comme l’indique la figure 6.8 c), ce compromis

mène à une durée tπ de l’impulsion π maximisant la probabilité de réussite de la rotation

conditionnelle du qubit.
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Figure 6.9 – Mesure de la fonction Q de l’état du vide de magnons.
a) Différence ∆VI = V e

I − V g
I des signaux de démodulation obtenus avec (V e

I ) et sans (V g
I ) la

rotation conditionnelle X̂0
π pour β = 0 en fonction des amplitudes en phase (AX) et en quadrature

(AY) pour le déplacement de tomographie D̂(−α). b) Ajustement des données montrées en a)
à l’équation (6.20). Le facteur de proportionnalité λ = 0.81 est déterminé par la régression de
l’ensemble des données des figures 6.9 à 6.11. c) Données calibrées par l’ajustement présentées
en b). En b) et c), le point blanc indique [Re(β0), Im(β0)] = [0.27± 0.02,−0.22± 0.02] obtenu de la
régression.

6.3.3 Mesure de l’état du vide des magnons : calibration

Afin de démontrer la possibilité d’effectuer la rotation du qubit conditionnelle à l’état du

vide des magnons, une première expérience est effectuée où β = 0 et τ = 0 aux figures 6.7 a)

et b), correspondant ainsi à la mesure de la fonction Q de l’état du vide des magnons,

donnée, selon l’équation (6.14), par

Q(α) =
1

π
e−|α|

2

, (6.19)

soit une gaussienne centrée à α = 0 et d’écart type 1/
√
2.

Afin d’éliminer un potentiel effet du déplacement de tomographie D̂(−α) sur la pro-

babilité de mesurer le qubit dans l’état excité après la rotation X0
π, la différence ∆VI entre

les signaux de démodulation avec (V e
I ) et sans (V g

I ) la rotation X0
π du qubit est considérée.

La durée et la fréquence des impulsions de déplacement sont fixées à 200 ns et 7.95 GHz,

respectivement. Ainsi, un désaccord ∆p/2π = −0.38 MHz est présent entre la fréquence

de l’impulsion et la fréquence des magnons lorsque le qubit est dans l’état fondamental,

ωg
m/2π = 7.94962 GHz (sous-section 5.4.3). La durée de l’impulsion π est fixée à 175 ns,

correspondant à l’amplitude de contrôle AX = 0.5 de la figure 6.5. Pour cette mesure et les

mesures subséquentes, le signal est moyenné sur 200 ns de l’impulsion de lecture d’une

durée de 400 ns et sur 5000 répétitions.
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La figure 6.9 a) présente ∆VI pour différentes amplitudes de contrôle [AX, AY] dans le

plan complexe pour le déplacement de tomographie. Malgré la résolution limitée de la

mesure présentée, celle-ci est tout de même constituée de plus de 8 millions de répétitions

au total. Ces données sont ajustées à

∆VI (AX, AY) = Be−|λAX−Re(β)|2e−|λAY−Im(β)|2 , (6.20)

où B est le facteur de proportionnalité entre les données, ∆VI, et la fonction Q. De plus, λ

est le facteur de proportionnalité entre les amplitudes de contrôle [AX, AY] et l’amplitude

complexe β = [Re(β), Im(β)] de l’état cohérent dans le mode de Kittel. Ainsi, la comparaison

de l’écart-type de la gaussienne des données en fonction des amplitudes de contrôles

[AX, AY] et de l’écart-type de 1/
√
2 attendue pour un état cohérent est utilisée afin de

calibrer l’amplitude complexe de tomographie α = [Re(α), Im(α)] = [λAX, λAY]. Par contre,

puisque le signal ∆VI n’est pas calibré en terme de la probabilité pe que le qubit soit

dans l’état excité à la fin du protocole (équation (6.16)), l’amplitude du signal calibré est

simplement fixée à la valeur maximale de la fonction Q d’un état cohérent, soit 1/π. Les

paramètres de l’ajustement sont ainsi B, λ, Re(β) et Im(β).

La figure 6.9 b) montre l’ajustement des données de la figure 6.9 a) à l’équation (6.20),

alors que la figure 6.9 c) présente les données calibrées. Le facteur de proportionnalité λ

est déterminé en effectuant la régression sur l’ensemble des mesures de la fonction Q du

mode de Kittel des figures 6.9 à 6.11 et est déterminé à λ = 0.81. Ainsi, un déplacement

d’une amplitude AX = 1, par exemple, résulte en un déplacement de Re(β) = 0.81 dans

l’espace des phases, correspondant à l’excitation d’une population de nm = |β|2 = 0.66

magnons dans le mode de Kittel.

Malgré que pour les données de la figure 6.9 c) l’amplitude β du déplacement D̂(β)

soit fixée à 0 en n’envoyant aucune impulsion au mode de Kittel, l’ajustement permet de

déterminer

Re(β0) = 0.27± 0.02, Im(β0) = −0.22± 0.02. (6.21)

Ainsi, l’état correspondant a priori a l’état du vide des magnons correspond plutôt à un

état cohérent possédant nm = |β0|2 = 0.12 magnons. L’origine de cet état cohérent résiduel

n’est pas déterminée. Par contre, l’absence de ce déplacement résiduel des données spectro-

scopiques présentées au chapitre 5 indique qu’il s’agit d’un artéfact des mesures résolues

temporellement présentées dans ce chapitre. Ce déplacement est ainsi considéré comme

un décalage de l’origine de l’espace des phases dans les analyses suivantes.
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6.3.4 Mesure d’un état cohérent de magnons : opération de déplacement

La possibilité de mesurer la fonction Q de Husimi de l’état correspondant a priori à

l’état du vide de magnons a été démontrée grâce à la rotation du qubit conditionnelle à

l’état du vide du mode de Kittel. Dans cette sous-section, la mesure de la fonction Q de

Husimi d’un état cohérent de magnons est présentée.

La figure 6.10 c) présente les données calibrées de la fonction Q obtenue à l’aide du

protocole de la figure 6.7 pour des amplitudes [AX, AY] = [0.5, 0] pour le déplacement initial

D̂(β) et pour τ = 20 ns. Selon la calibration λ = 0.81 présentée à la sous-section précédente,

le déplacement D̂(β) devrait ainsi créer un état cohérent de magnons avec

Re(β) = 0.41, Im(β) = 0. (6.22)

Selon la régression des données de la figure 6.10 c), présentée à la figure 6.10 d), on

obtient

Re(β) = 0.69± 0.02, Im(β) = −0.27± 0.02. (6.23)

Or, en considérant le résultat obtenu pour l’état correspondant a priori à l’état du vide

des magnons présenté à la sous-section précédente et montré aux figures 6.10 a) et b), on

obtient

∆Re(β) = Re(β)− Re(β0) = 0.42± 0.03, ∆Im(β) = Im(β)− Im(β0) = −0.05± 0.03,

(6.24)

en excellent accord avec le résultat prédit à l’équation (6.22) à partir des amplitudes

[AX, AY] = [0.5, 0] utilisées pour cette mesure et de la calibration λ = 0.81. Ainsi, la calibra-

tion effectuée à partir de l’écart-type de la gaussienne des données brutes est conséquente

avec l’amplitude complexe β de l’opération de déplacement D̂(β). Alors que la présence

d’une population thermique de magnons résulterait en une augmentation de l’écart-type

de la fonction Q [52], l’accord avec le déplacement prévu et celui observé indique l’absence

d’un état thermique de magnons. Ce résultat est en accord avec l’absence d’une population

de magnons en l’absence d’une excitation cohérente (Fig. 5.13 a).
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Figure 6.10 – Mesure de la fonction Q d’un état cohérent de magnons.
a) Données et régression de la mesure de la fonction Q de l’état du vide de magnons, |β = 0〉,
tel que présentées aux figure 6.9 b) et c). b) Données et régression de la mesure de la fonc-
tion Q de l’état cohérent de magnon |β = 0.41〉 obtenues à partir d’une amplitude en phase
AX = 0.5 et pour un temps τ = 20 ns entre les deux impulsions de déplacement. Pour
ces figures, les cercles blancs et noirs indiquent [Re(β0), Im(β0)] = [0.27± 0.02,−0.22± 0.02] et
[Re(β), Im(β)] = [0.69± 0.02,−0.27± 0.02], respectivement. En b), la flèche entre les deux cercles
indique l’effet de l’opération de déplacement D̂(β = 0.41), résultant en [∆Re(β),∆Im(β)] =
[0.42± 0.03,−0.05± 0.03].
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Figure 6.11 – Mesure de la fonction Q d’un état cohérent de magnons en évolution libre.
Données et régressions de la mesure de la fonction Q de l’état cohérent de magnon |β = 0.41〉
obtenues à partir d’une amplitude en phase AX = 0.5 et pour une durée de l’évolution libre
a) τ = 20 ns, b) τ = 220 ns, c) τ = 420 ns et d) τ = 620 ns. Les cercles noirs indiquent β(τ) obtenues
de la régression. En d), la zone quadrillée blanc et gris dénote une zone de l’espace des phases où
les données sont absentes.

6.4 Relaxation des magnons dans le mode de Kittel

La mesure de la fonction de quasi-probabilité Q de Husimi de l’état du vide et d’un

état cohérent de magnons dans le mode de Kittel a été présentée à la section précédente.

Cette dernière section porte sur l’utilisation de la mesure de la fonction Q afin d’étudier la

relaxation des magnons dans le régime quantique. Pour ce faire, les données de l’évolution

de la fonction Q en fonction de la durée de l’évolution libre entre la création de l’état

cohérent de magnons et le déplacement de tomographie sont d’abord présentées. La dimi-

nution de la population de magnons en fonction de la durée de l’évolution libre est ensuite

analysée, permettant d’identifier un processus de relaxation menant à une décroissance

non-exponentielle. De plus, la présence d’un processus de déphasage pur des magnons est

identifiée.

Les figures 6.11 a) à d) présentent les données et les régressions de la fonction Q

obtenues pour |β = 0.41〉 et pour différentes durées de l’évolution libre τ . La figure 6.12 a)

présente la trajectoire de l’état cohérent |β(τ)〉 dans l’espace des phases [Re(β), Im(β)].

La trajectoire circulaire de l’état cohérent peut s’expliquer par la présence d’un faible
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désaccord ∆p entre la fréquence angulaire ωp de l’impulsion et la fréquence angulaire

ωg
m des magnons lorsque le qubit est dans l’état fondamental. En effet, dans le référentiel

tournant avec la fréquence angulaire de l’impulsion ωp, l’hamiltonien du mode de Kittel

avec le qubit dans l’état fondamental est donné par

Ĥg
m(t)/~ = ∆pĉ

†ĉ+ Ωp(t)
(
ĉ+ ĉ†

)
, (6.25)

tel que discuté au chapitre 5. Considérant que la force de pilotage Ωp(t) = 0 lors de

l’évolution libre, cet hamiltonien se simplifie à

Ĥg
m/~ = ∆pĉ

†ĉ. (6.26)

Dans ce cas, l’opérateur d’évolution libre Û(τ) est donné par

Û(τ) = eiĤ
g
mτ/~ = ei∆pτ ĉ†ĉ, (6.27)

c’est-à-dire une rotation de l’état cohérent dans l’espace des phases d’un angle θ = ∆pτ . En

effet, en utilisant la représentation de l’état cohérent |β〉 dans l’espace de Fock (annexe A),

on a, avec n̂m = ĉ†ĉ,

Û(τ)|β〉 = ei∆pτn̂me−|β|
2/2

∞∑

nm=0

βnm

√
nm!

|nm〉 = |βei∆pτ 〉. (6.28)

Le désaccord est déterminé à la sous-section 5.4.3 à ∆p/2π = −0.38 MHz. On s’attend ainsi

à une rotation de l’état cohérent dans le sens anti-horaire, tel qu’observé à la figure 6.12 a).

La figure 6.12 b) présente la population relative de magnons définie par

nm(τ) = |β(τ)− β0|2 , (6.29)

où l’amplitude complexe β0 est donnée à l’équation (6.21). Alors qu’une décroissance

exponentielle de la population est généralement observée, les données de la figure 6.12 b)

suggèrent fortement une décroissance décrit par une exponentielle compressée (η > 1),

donnée en général par exp(−(τ/T1)
η) (voir, par exemple, la référence [223]). Par exemple,η =

1 correspond à une fonction exponentielle et η = 2 correspond à une fonction gaussienne.

Le cas η 6= 1 est particulière intéressant puisqu’il indique la présence d’un processus

de relaxation non Markovien, c’est-à-dire où le temps de corrélation τc du bain créant

la relaxation est beaucoup plus grand que le temps caractéristique de la dynamique du
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Figure 6.12 – Évolution et relaxation d’un état cohérent de magnons.
a) Trajectoire de l’état cohérent |β(τ)〉 dans l’espace des phases déterminée par la régression des
données présentées à la figure 6.11. L’état cohérent |β0〉, correspondant a priori a l’état du vide des
magnons, est indiqué par un cercle gris. La ligne noire pleine indique la trajectoire calculée à partir
de l’équation (6.32). b) Décroissance de la population nm(τ) = |β(τ)− β0|2 en fonction de la durée
de l’évolution libre τ . La ligne noire pleine indique l’ajustement des données à l’équation (6.30) et
permet de déterminer le temps de relaxation des magnons à T1 = 350±90 ns. La ligne grise pointillée
indique une décroissance exponentielle avec un temps caractéristique Tmin

1 = 1/2γm = 60± 20 ns.

système (voir, par exemple, la référence [224]). La population relative de magnons est

ajustée empiriquement à une exponentielle compressée avec η = 2, soit

nm(τ) = nm(0)e
−(τ/T1)2 , (6.30)

où T1 est le temps de relaxation des magnons.

L’ajustement des données de la figure 6.12 b) à l’équation (6.30) indique

T1 = 350± 90 ns. (6.31)

En combinant la rotation de l’état cohérent décrit précédemment et la décroissance de la

population donnée par l’équation (6.30), il est possible de décrire la trajectoire de l’état

cohérent de magnons dans l’espace des phases par

β(τ) = β0 + [β(0)− β0] e
i∆pτe(−τ/T1)2/2. (6.32)

Tel qu’indiqué à la figure 6.12 a), la trajectoire prédite par l’équation (6.32) avec ∆p/2π =

−0.38 MHz est en très bon accord avec les mesures. L’effet Kerr des magnons est négligeable

dans l’évolution de l’état cohérent puisque le coefficient de Kerr (Km/2π = −0.20 MHz,



254 6. Tomographie de l’état des magnons

section 5.5) est beaucoup plus faible que la largeur de raie du mode de Kittel (γm/2π =

1.3 ± 0.3 MHz, sous-section 5.2.2). De plus, la population de magnons nm ≪ 1 dans les

mesures présentées (Fig. 6.12 b).

En l’absence de déphasage pur de temps caractéristique Tφ, le temps de relaxation est

donné par

Tmin
1 =

1

2γm
= 60± 20 ns, (6.33)

où γm/2π = 1.3 ± 0.3 MHz est la largeur de raie du mode de Kittel. La différence entre

cette valeur minimale du temps de relaxation et celle obtenue par l’ajustement des données

à l’équation (6.30) indique ainsi la présence d’un processus de déphasage pur pour les

magnons du mode de Kittel. En d’autres mots, à partir du taux de relaxation γ1 = 1/T1

observé et de

γm =
γ1
2

+ γφ, (6.34)

où γφ est le taux de déphasage pur des magnons, il est possible d’obtenir

γφ
2π

=
γm
2π

− 1

4πT1
= 1.3± 0.3 MHz− 1

4π (350± 90) ns
= 1.1± 0.4 MHz. (6.35)

Selon ce résultat, la majeure partie de la largeur de raie du mode de Kittel est due à un

processus de déphasage pur. Ce résultat, combiné à l’observation d’une décroissance

de la population des magnons décrit par une exponentielle comprimée de coefficient

η = 2, semble indiquer la présence d’un bain de systèmes à deux niveaux possédant un

temps de corrélation beaucoup plus grand que la dynamique interne du système. Une

première indication de la présence d’un tel bain a été présentée à la référence [90]. L’origine

microscopique de ce bain reste par contre une question ouverte.

6.5 Impacts des travaux

Un premier impact des travaux présentés dans ce chapitre porte sur l’utilisation du

régime dispersif fort en magnonique quantique, démontré au chapitre précédent, afin d’ef-

fectuer pour la première fois des mesures tomographiques d’états cohérents de magnons.

Ces mesures ont notamment permis de confirmer l’absence d’excitations thermiques de

magnons par l’observation d’une fonctionQ de Husimi dont l’écart type correspond à celui
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d’un état cohérent. Ce type de mesures tomographiques peut être utilisé afin d’observer

de potentiels états non classiques de magnons dans le ferro-aimant de taille millimétrique

créés, par exemple, grâce au couplage fort avec le qubit supraconducteur [204].

Un second impact important a trait à l’observation d’un processus de déphasage pur

limitant le temps de cohérence des magnons en magnonique quantique. De plus, la décrois-

sance non exponentielle semble indiquer la présence d’un bain de systèmes à deux niveaux

avec un long temps de corrélation. Bien que les résultats présentés soient préliminaires, la

présence d’un tel processus de déphasage pur justifie le développement de séquences de

découplage dynamique permettant de mitiger les effets du déphasage pur dans un système

harmonique, tel que le mode de Kittel dans un ferro-aimant. Ces avenues de recherche

sont très importantes pour l’avenir de la magnonique quantique.
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Conclusions et perspectives

Ingénierie d’un couplage spin-résonateur effectif

Le chapitre 1 a d’abord permis de présenter les bases théoriques sur le couplage di-

polaire magnétique entre différents systèmes de spins et un résonateur (section 1.1). Ces

résultats ont permis d’expliquer, par exemple, le couplage transverse observé au chapitre 4

entre les centres NV dans le diamant et un résonateur supraconducteur. De plus, le couplage

entre le mode de Kittel d’une sphère de YIG et les modes d’une cavité tridimensionnelle

observé au chapitre 5 a aussi été appuyée par ces bases théoriques. Une approche théo-

rique pour l’ingénierie d’un couplage effectif entre un spin unique dans une double boîte

quantique et un résonateur par l’intermédiaire d’un champ magnétique inhomogène a

également été présentée (section 1.2) [45]. Cette approche a été expérimentalement réalisée

aux références [46, 47] pour atteindre un régime de couplage fort entre un spin unique et

les photons micro-ondes d’un résonateur supraconducteur. De plus, la présence d’un cou-

plage longitudinal a été prédite. L’ingénierie du champ magnétique inhomogène par des

micro-aimants a ensuite été discutée (section 1.3). Ceci a permis d’estimer les coefficients

des couplages transverse et longitudinal pour un dispositif réaliste en GaAs à quelques

MHz. Finalement, une nouvelle méthode de lecture d’un spin électronique a été proposée

par l’utilisation d’une modulation paramétrique du couplage longitudinal (section 1.4).

Cette méthode promet de donner aux qubits de spins une méthode de lecture quantique

non destructive.

L’approche présentée au chapitre 1 nécessite la présence d’un champ magnétique in-

homogène. Pour ce faire, des aimants de taille micrométrique sont utilisés. Le chapitre 2

a introduit la magnétométrie à l’aide de l’effet Hall qui permet de caractériser les micro-

aimants fabriqués (section 2.1). Cette méthode a ensuite été appliquée pour l’étude des

257
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magnétomètres fabriqués à l’aide de croix de Hall conventionnelles (section 2.2). La com-

préhension des limites de ces magnétomètres conventionnels a permis de concevoir un

nouveau type de magnétomètre basé sur des croix de Hall définies de façon électrostatique

(section 2.3). L’étude détaillée de l’effet Hall dans ces croix a permis d’identifier et d’éliminer

différentes anomalies balistiques, ce qui a permis d’obtenir un magnétomètre sensible et

linéaire. La courbe de magnétisation de micro-aimants de tailles sous le micromètre avec

un rapport sur bruit supérieur à 103 a été obtenue [48]. Une étude préliminaire de l’impact

de la géométrie des micro-aimants sur leurs propriétés magnétiques a permis de mettre en

lumière la possibilité d’opérer les micro-aimants dans un faible champ magnétique externe.

Finalement, le contrôle électrostatique des croix de Hall a permis de démontrer que les

simulations magnétostatiques des micro-aimants peuvent être considérées quantitatives.

Perspectives

Les perspectives sur les résultats présentés dans le chapitre 1 sont principalement

théoriques. Premièrement, il serait intéressant de considérer explicitement une architecture

basée sur le silicium pour le couplage entre un spin unique et un résonateur. Notamment,

la présence de degrés de liberté de vallée doit être pris en compte lorsque la séparation des

vallées est comparable aux autres énergies du système. Deuxièmement, le développement

d’un modèle effectif analytique ou numérique de la mesure spectroscopique du qubit

de spin à l’aide de la lecture longitudinale permettrait d’explorer efficacement l’effet des

différents paramètres expérimentaux sans simuler la dynamique du système à partir de

l’hamiltonien complet. Finalement, le développement d’un modèle du rapport signal sur

bruit de la lecture longitudinale pour le cas spécifique d’un qubit de spin permettrait

d’optimiser le rapport signal sur bruit selon les paramètres du système.

Les perspectives expérimentales sur les travaux présentés dans le chapitre 2 sont

multiples. Premièrement, il serait intéressant de poursuivre l’utilisation de la méthode de

magnétométrie démontrée pour explorer les propriétés magnétiques de micro-aimants

de différents matériaux et géométries. Notamment, le développement de micro-aimants

pouvant fonctionner en l’absence d’un champ magnétique externe semble une avenue très

intéressante [154]. Deuxièmement, le contrôle électrostatique des croix de Hall pourrait être

utilisé pour cartographier le champ magnétique inhomogène des micro-aimants au-delà

de ce qui a été démontré dans cette thèse.
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Résonateurs supraconducteurs pour les dispositifs hybrides

Le chapitre 3 a d’abord permis d’introduire certains aspects théoriques sur la supra-

conductivité et les résonateurs supraconducteurs (section 3.1). Par la suite, les nombreux

aspects expérimentaux permettant de réaliser et de mesurer les résonateurs supraconduc-

teurs ont été présentés (section 3.2). Notamment, des portes-échantillons compatibles avec

les dispositifs hybrides proposés au chapitre 1 ont été développés. De plus, la base du

circuit de démodulation permettant d’effectuer les mesures spectroscopiques proposées à

la section 1.4 a été établie expérimentalement.

De multiples résultats expérimentaux sur la caractérisation des résonateurs supra-

conducteurs en niobium fabriqués sur un substrat de GaAs ont par la suite été présentés

(section 3.3). Une forte corrélation entre l’épaisseur, la température critique et la longueur

de pénétration du niobium a été mise en évidence, permettant de prédire la fréquence des

résonateurs fabriqués dans des films très minces de niobium. Les pertes internes des résona-

teurs en niobium sur un substrat de GaAs ont également été quantifiées à environ 0.6 MHz

à 6 GHz, correspondant à un facteur de qualité de 104. La non-linéarité de l’inductance

cinétique a ensuite été utilisée pour observer plusieurs phénomènes non linéaires, dont

l’amplification paramétrique, la modulation de la fréquence du résonateur et la formation

d’un peigne de fréquence. Finalement, l’opération en champ magnétique des résonateurs

fabriqués a été démontrée. Ces résultats ont permis de déterminer qu’un angle de moins

de 0.1◦ entre le champ magnétique externe et le plan du résonateur permet d’appliquer un

champ magnétique externe de plus de 3 T tout en gardant des pertes internes inférieures

à 1 MHz. Les résonateurs fabriqués sont ainsi compatibles avec l’application du champ

magnétique externe nécessaire pour les dispositifs hybrides proposés au chapitre 1.

Le chapitre 4 a d’abord permis de généraliser la théorie présentée au chapitre 1 sur le

couplage transverse entre un ensemble de spins paramagnétique et un résonateur en plus

de présenter le régime dispersif de ce couplage (section 4.1). De plus, un modèle prédisant

que la sensibilité au champ magnétique perpendiculaire de la fréquence d’un résonateur

supraconducteur mène à un couplage spin-résonateur longitudinal a été établit. Par la suite,

un dispositif hybride composé d’un diamant avec une forte densité de centres NV et d’un

résonateur supraconducteur à haute inductance cinétique a été présenté (section 4.2). Ce

dispositif a été utilisé afin d’observer le couplage transverse collectif entre deux transitions

de spins des centres NV et le résonateur (section 4.3). De plus, la sensibilité du résonateur

au champ magnétique perpendiculaire a été évaluée à environ 10 nT/
√
Hz. Par la suite, des
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mesures spectroscopiques des différentes transitions de spins des centres NV ont permis

de révéler la présence d’un signal même lorsque le désaccord avec le résonateur est très

élevé. Un accord qualitatif a été trouvé entre ces résultats et le couplage longitudinal prédit.

Perspectives

Les résultats présentés dans le chapitre 3 offrent plusieurs perspectives. Premièrement,

il serait intéressant de poursuivre l’étude des pertes internes des résonateurs fabriqués sur

un substrat de GaAs en déterminant, par exemple, l’origine des pertes internes d’environ

0.3 MHz indépendantes de la fréquence. De plus, la gravure de tranchées profondes entre

le conducteur central et le plan de la mise à la terre pourrait être utilisée pour réduire les

pertes diélectriques actuellement d’environ 0.3 MHz à 6 GHz. Deuxièmement, il serait

intéressant d’étudier les limites de l’utilisation de l’inductance cinétique pour la fabrication

de résonateurs compacts. De plus, cela permettrait d’étudier plus en détails les différents

phénomènes non linéaires observés. Notamment, l’utilisation d’un amplificateur paramé-

trique composé d’un simple résonateur supraconducteur en niobium, pouvant être en

principe identique au résonateur utilisé dans l’expérience proposée au chapitre 1, pourrait

être intéressante pour amplifier le signal de la lecture longitudinale. Pour ce faire, il serait

nécessaire de caractériser le bruit ajouté par l’amplification paramétrique.

De plus, il est à noter que la démonstration la démonstration expérimentale de la lecture

d’un spin unique par la modulation paramétrique du couplage longitudinal proposée à la

section 1.4 a été tentée durant les derniers mois de cette thèse. En effet, comme l’indique les

figures 6.13 a) et b), des dispositifs hybrides incorporant un résonateur en niobium, deux

doubles boîtes quantiques dans une hétérostructure en GaAl/AlGaAs et des micro-aimants

en FeCo ont été fabriqués. Malheureusement, à la suite de nombreux problèmes survenus

au cours de deux rondes de fabrication, les dispositifs n’étaient pas fonctionnels. Malgré

ces problèmes, il a tout de même été possible de conclure que le design des dispositifs est

à l’origine du non-fonctionnement des résonateurs de ces dispositifs 1. Des simulations

micro-ondes sont donc nécessaires pour améliorer l’intégration des multiples grilles élec-

trostatiques au résonateur et évaluer l’impact, par exemple, du couplage capacitif entre

le résonateur et le gaz d’électrons mis à la terre par des contacts ohmiques résistifs. La

réalisation expérimentale de la lecture longitudinale est sans aucun doute la perspective la

1. Il est important de noter que les résonateurs sont fonctionnels lorsqu’ils sont fabriqués sur un substrat
de GaAs et lorsque les grilles électrostatiques qui permettent de définir les doubles boîtes quantiques sont
absentes.
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8 mm

Résonateur

500 nm

Double boîte
quantique

Micro-aimants

a) b)

Figure 6.13 – Première itération des dispositifs hybrides.
a) Image au microscope électronique à balayage montrant les grilles électrostatiques d’une double
boîte quantique et deux micro-aimants en FeCo (géométrie #1). L’alignement des micro-aimants
par rapport à la double boîte quantique est ajusté pour ce dispositif afin de réaliser un couplage
spin-résonateur purement transverse (dh = 0). Le désalignement observé indique l’ordre de gran-
deur de l’erreur d’alignement typique d’environ 40 nm. b) Image au microscope optique d’un
dispositif hybride incorporant un résonateur en niobium, deux doubles boîtes quantiques dans une
hétérostructure de GaAs/AlGaAs et des micro-aimants en FeCo. Le dispositif complet possède une
longueur de 8 mm.

plus importante des travaux de cette thèse.

Finalement, les résultats préliminaires présentés au chapitre 4 offrent plusieurs perspec-

tives. Tout d’abord, la présence du couplage longitudinal doit être confirmée. Pour ce faire,

des mesures dans un montage expérimental avec un aimant supraconducteur vectoriel

permettrait de confirmer l’augmentation du changement de la fréquence du résonateur

provenant du couplage longitudinal en augmentant seulement le champ magnétique per-

pendiculaire BX
0 . Ces mesures sont actuellement en cours. Une fois que la présence du

couplage longitudinal est confirmée, une amélioration du modèle théorique pourrait per-

mettre d’optimiser les paramètres du résonateur et les conditions d’opérations du dispositif

hybride afin de maximiser le signal [165]. À court terme, il serait possible de grandement

améliorer le système en utilisant un résonateur sur un meilleur substrat diélectrique que

le GaAs afin de minimiser les pertes internes, actuellement limitées à environ 0.6 MHz à

6 GHz. D’un point de vue technologique, il serait aussi intéressant d’explorer la possibilité

d’opérer le dispositif hybride à une température de 4 K en utilisant des supraconducteurs

avec une température critique plus élevée, comme le NbTiN, par exemple [182, 175].
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Régime dispersif fort en magnonique quantique

Le chapitre 5 a d’abord permis d’introduire l’architecture de la magnonique quantique

(section 5.1). Le couplage fort entre les magnons et un des modes de la cavité micro-ondes

a été démontrée (section 5.2). Par la suite, le régime de couplage fort entre le qubit su-

praconducteur de type transmon et les magnons a été démontré par l’observation d’un

croisement évité dans le spectre du qubit (section 5.3). Le régime dispersif a ensuite été

exploré (section 5.4). Le régime dispersif fort a été démontré par l’observation des états

de Fock de magnons dans le spectre du qubit permettant de sonder, pour la première fois,

les quanta d’excitations d’un mode collectif de spin dans un ferro-aimant de taille milli-

métrique [49]. Cette démonstration a permis de mettre en évidence la force des systèmes

quantiques hybrides pour offrir de nouvelles fonctionnalités. Finalement, une étude dé-

taillée des résultats obtenus a permis de révéler la présence d’une faible non-linéarité dans

le mode magnétostatique créée par la non-linéarité du qubit supraconducteur (section 5.5).

Le chapitre 6 a d’abord permis de démontrer la manipulation résolue temporellement

de l’état du qubit supraconducteur à l’aide d’une mesure dispersive (section 6.1). Par la suite,

la lecture à haute puissance de l’état du qubit a été utilisée pour démontrer la possibilité

d’effectuer une lecture à un coup en magnonique quantique (section 6.2). Le régime dispersif

fort entre le qubit et les magnons, démontré au chapitre précédent, a ensuite été utilisé pour

mesurer la fonction Q de Husimi des magnons (section 6.3). Ces mesures tomographiques

ont permis d’observer la création d’un état cohérent de magnons dans la sphère de YIG.

À partir de ces mesures tomographiques, la relaxation d’un état cohérent de magnons a

ensuite été observée (section 6.4). Ces mesures ont permis de révéler un temps de relaxation

T1 = 350 ns significativement plus long que ce qui est attendu à partir de la largeur de raie

du mode de Kittel. Ces résultats permettent ainsi de mettre en évidence un processus de

déphasage pur des magnons dans le régime quantique. Finalement, l’observation d’une

relaxation non exponentielle des magnons a permis d’émettre l’hypothèse de la présence

d’un bain de systèmes à deux niveaux avec un temps de corrélation beaucoup plus long

que la dynamique du système.

Perspectives

La démonstration du régime dispersif fort en magnonique quantique offre plusieurs

perspectives. Premièrement, il serait intéressant d’optimiser le ratio entre le décalage dis-
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persif qubit-magnon et le coefficient de l’effet Kerr des magnons en modifiant la fréquence

des magnons. Selon des résultats numériques obtenus pour le système actuel et une propo-

sition récente en électrodynamique quantique en circuit, cette optimisation est possible

en plaçant le mode de Kittel en résonance avec la transition |e〉 ↔ |f〉 du transmon [215].

Deuxièmement, une étude plus approfondie de la relaxation des magnons à l’aide des

mesures tomographiques présentées serait grandement intéressante. Ces mesures pour-

raient être améliorées, par exemple, en augmentant la force du couplage entre le mode

de Kittel et les différents modes de la cavité. La confirmation de la présence d’un bain

de systèmes à deux niveaux créant un processus de déphasage pur des magnons dans le

régime quantique pourrait justifiée le développement de séquences de découplage dyna-

mique adaptées aux oscillateurs harmoniques. Troisièmement, l’utilisation de l’interaction

dispersive forte pour la création et l’observation d’états quantiques de magnons demeure

une perspective des plus intéressante. Pour y arriver, il serait intéressant d’explorer les

différents protocoles développés en électrodynamique quantique en cavité et en circuit.

Notamment, il a récemment été proposé d’utiliser une séquence de découplage dynamique

sur un qubit en résonance avec un oscillateur harmonique afin de créer un état chat dans

l’oscillateur harmonique [128]. Finalement, la possibilité d’encoder l’information quantique

d’un qubit supraconducteur dans un état chat de magnon à l’aide du protocole qcMAP

reste définitivement une perspective à explorer [42, 43]. Cet encodage représente une étape

clé en magnonique quantique pour la transduction de l’information quantique entre un

processeur basé sur les circuits supraconducteurs et des photons optiques.
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Annexe A

Oscillateur harmonique quantique

A.1 Oscillateur harmonique quantique et états de Fock

Un résonateur supportant un champ électromagnétique peut être décrit comme un

oscillateur harmonique quantique à une dimension. En termes des opérateurs â et â† satis-

faisant la relation de commutation
[
â, â†

]
= I, l’hamiltonien d’un oscillateur harmonique

quantique est donné par [52]

Ĥr = ~ω

(

â†â+
1

2

)

. (A.1)

Les états propres de l’oscillateur harmonique quantique sont les états de Fock |n〉, où n

correspond au nombre de photons dans le résonateur. L’opérateur nombre de photon, n̂ = â†â,

est l’opérateur dont la valeur propre est n, soit [52]

n̂|n〉 = â†â|n〉 = n|n〉. (A.2)

L’énergie de l’oscillateur harmonique quantique dans l’état |n〉 est alors donnée par

En = ~ω (n+ 1/2) . (A.3)

L’énergie de l’état |n = 0〉 est ainsi non nulle et vaut E0 = ~ω/2. Cette énergie correspond

aux fluctuations du vide. En redéfinissant le zéro d’énergie à ~ω/2, l’hamiltonien Ĥr d’un

265
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résonateur est donc

Ĥr/~ = ωrâ
†â, (A.4)

où ωr est la fréquence angulaire du résonateur.

L’effet des opérateurs d’échelle â† et â sur les états de Fock |n〉 est respectivement la

création et l’annihilation d’un photon selon [52]

â†|n〉 =
√
n+ 1|n+ 1〉, â|n〉 = √

n|n− 1〉. (A.5)

Ainsi, on nomme â† l’opérateur de création (â l’opérateur d’annihilation) puisqu’il crée

(annihile) un photon dans le résonateur. Il est donc possible de créer un état de Fock |n〉
en appliquant n fois l’opérateur de création â† sur l’état du vide |n = 0〉 = |0〉, soit |n〉 =
(
â†
)n |0〉/

√
n!. De plus, on ne peut détruire de photon du vide, et ainsi â|0〉 = 0. Les états

de Fock forment une base orthogonale (〈n|m〉 = δn,m) et normée (
∑∞

n=0 |n〉〈n| = I) à l’aide

de laquelle il est possible d’exprimer n’importe quel état |Ψ〉.

A.2 États cohérents

L’état d’un oscillateur quantique peut en général être décrit par une distribution d’am-

plitude complexe α et être représenté dans l’espace des phases [Re (β) , Im (β)]. Un état

cohérent |α〉 est défini à partir de l’opérateur de déplacement [52]

D̂(α) = eαâ
†−α∗â = e−|α|

2/2eαâ
†

e−α
∗â. (A.6)

L’opérateur de déplacement D̂(α) déplace dans l’espace des phases l’état du vide |α = 0〉
d’une amplitude complexe α, soit D̂(α)|0〉 = |α〉. L’application de l’opérateur de déplace-

ment D(α′) sur un état cohérent |α〉 produit un autre état cohérent selon

D̂(α′)|α〉 = D̂(α′)D̂(α)|0〉 = e(α
′α∗−α′∗α)/2|α′ + α〉. (A.7)

Ainsi, l’amplitude complexe des états cohérents est additif, comme le montre la figure A.1 (a).

En particulier, l’équation (A.7) implique que D̂†(α)|α〉 = D̂(−α)|α〉 = |0〉. En combinant ce

résultat avec D̂(α)âD̂(−α) = â− αI, il est possible de démontrer que [52]

â|α〉 = α|α〉, (A.8)
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Figure A.1 – Représentation dans l’espace des phases d’un état cohérent.
a) Représentation dans l’espace des phases de l’effet des opérateurs de déplacement D(α) et D(α′)
sur l’état du vide |0〉 et sur un état cohérent |α〉 respectivement. Distribution de probabilité pβ(n)
du nombre de photons dans un état cohérent |α〉 avec b) |α|2 = n̄ = 1 et c) |α|2 = n̄ = 4.

c’est-à-dire que l’état cohérent |α〉 est l’état propre de l’opérateur d’annihilation â avec la

valeur propre α. Le nombre moyen de photons n̄ dans l’état cohérent |α〉 est donc

n̄ = 〈α|n̂|α〉 = 〈α|â†â|α〉 = 〈α|α∗α|α〉 = |α|2 . (A.9)

A.2.1 Représentation des états cohérents dans la base des états de Fock

Les états cohérents peuvent être représentés dans la base des états de Fock selon [52]

|α〉 =
∞∑

n=0

cn|n〉 = e−|α|
2/2

∞∑

n=0

αn

√
n!
|n〉, (A.10)

où on vérifie facilement que |α = 0〉 = |n = 0〉 = |0〉. À partir de cette représentation, il est

possible d’évaluer entre autres la distribution de probabilité pn(α) d’avoir n photons dans

l’état cohérent |α〉, soit

pn(α) = |cn|2 = e−|α|
2 |α2n|
n!

=

(
|α|2

)n
e−|α|

2

n!
=
n̄ne−n̄

n!
, (A.11)

une distribution de Poisson. La figure A.1 b) et c) montre la distribution de probabilité pn(α)

pour deux états cohérents, ces dernières étant complètement différentes de celle d’un état

de Fock |m〉 où le nombre de photons est bien défini selon pn(m) = δnm.

Le recouvrement entre deux états cohérents |α〉 et |α′〉 est donné par la norme au carré
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du produit scalaire et vaut

|〈α|α′〉|2 = e−|α−α
′|2 > 0 (A.12)

pourα etα′ finis. Ainsi, le recouvrement entre deux états cohérents |α〉 et |α′〉 n’est jamais nul.

Par contre, puisque ce recouvrement diminue exponentiellement avec la distance |α− α′|
entre les états cohérents, il est possible d’approximer l’orthogonalité lorsque |α− α′|2 ≫ 1.

A.3 Distributions de quasi-probabilité

La fonction Q de Husimi et la fonction W de Wigner, présentées dans cette section,

sont deux distributions de quasi-probabilité pouvant représenter l’état quantique de la

lumière. Ces distributions, basées sur les états cohérents |β〉, ne sont pas des distributions

de probabilité puisque les états cohérents ne sont pas orthogonaux. Ces distributions

permettent tout de même de calculer les valeurs moyennes d’observables, tout comme une

distribution de probabilité classique [52].

A.3.1 Fonction de Husimi

La fonction Q|Ψ〉〈Ψ| (β) de Husimi est proportionnelle au recouvrement entre un état

cohérent |β〉 et un état pur arbitraire |Ψ〉 selon [52]

Q|Ψ〉〈Ψ| (β) ≡ 1

π
|〈β|Ψ〉|2 . (A.13)

Cette fonction est normée
(∫

d2β Q|Ψ〉〈Ψ| (β) = 1
)

et positive
(
0 ≤ Q|Ψ〉〈Ψ| (β) ≤ 1/π

)
. Par

contre, puisque les états cohérents ne sont pas orthogonaux, la fonction Q de Husimi n’est

pas une distribution de probabilité [52]. Pour un état cohérent |α〉, la fonction Q de Husimi

s’obtient facilement à partir des équations (A.12) et (A.13)

Q|α〉〈α| (β) =
1

π
|〈β|α〉|2 = 1

π
e−|β−α|

2

, (A.14)
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Figure A.2 – Fonctions de Husimi pour différents états d’un oscillateur harmonique.
Fonctions de Husimi Q (β) pour a) l’état du vide |0〉, b) l’état cohérent |α = 2eiπ/4〉 et c) l’état de
Fock |n = 5〉.

ce qui représente une fonction gaussienne centrée en β = α avec un écart-type de 1/
√
2.

Pour un état de Fock |n〉, on obtient

Q|n〉〈n| (β) =
1

π
e−|β|

2 |βn|2
n!

= Q|0〉〈0| (β)
|βn|2
n!

. (A.15)

En réécrivant l’équation (A.13) comme Q|Ψ〉〈Ψ| (β) = 1
π
|〈0|D(−β)|Ψ〉|2, il est possible de

généraliser la définition de la fonction Q de Husimi aux fonctions Qn selon [225, 226, 204]

Q|Ψ〉〈Ψ|n (β) ≡ 1

π
|〈n|D(−β)|Ψ〉|2 , (A.16)

et donc Q|Ψ〉〈Ψ|0 (β) = Q|Ψ〉〈Ψ| (β).

La figure A.2 montre la fonction Q|Ψ〉〈Ψ| (β) pour l’état du vide, un état cohérent et

un état de Fock. Dans cette représentation, l’étendue dans l’espace des phases d’un état

cohérent |α〉 représente la relation d’incertitude entre ses composantes réelle et imaginaire

et de façon équivalente entre son amplitude |β| = |α| =
√
n̄ et sa phase φ = arg(α). Pour un

état de Fock |n〉, l’amplitude |β| = √
n est bien défini alors que la phase φ est complètement

indéterminée. La relation d’incertitude entre n et φ se manifeste ainsi tant dans un état

cohérent que dans un état de Fock.

A.3.2 Fonction de Wigner

La fonction de Wigner d’un état pur |Ψ〉 peut s’écrire comme [52]

W |Ψ〉〈Ψ| (β) =
2

π
〈Ψ|D̂ (β) P̂D̂ (−β) |Ψ〉, (A.17)
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Figure A.3 – Fonctions de Wigner pour différents états d’un oscillateur harmonique.
Fonctions de Wigner W (β) pour a) l’état du vide |0〉, b) l’état cohérent |α = 2eiπ/4〉 et c) l’état de
Fock |n = 5〉.

où P̂ = eiπâ
†â est l’opérateur parité du nombre de photons, dont les états propres sont les

états de Fock

P̂|n〉 = eiπâ
†â|n〉 = eiπn|n〉 = (−1)n |n〉. (A.18)

Selon l’équation (A.17), la fonction de Wigner est la valeur moyenne de 2P̂/π dans l’état

D̂(−β)|Ψ〉. Ceci permet de mesurer la fonction de Wigner par une mesure de la parité de

l’état |Ψ〉 [52, 227]. La fonction W est normée tout comme la fonction Q, mais peut prendre

des valeurs négatives puisque
(
− 2

π
≤ W |Ψ〉〈Ψ| (β) ≤ 2

π

)
, ce qu’on peut démontrer facilement

avec les valeurs propres ±1 de l’opérateur parité P̂ . La fonction de Wigner pour un état

cohérent |α〉 est

W |α〉〈α| (β) =
2

π
e−2|β−α|

2

, (A.19)

soit une fonction gaussienne centrée en β = α, comme pour la fonction Q. Pour un état de

Fock |n〉, la fonction de Wigner est

W |n〉〈n| (β) =
2

π
(−1)n e−2|β|

2
n∑

m=0

(−1)m
n!

m!2(n−m)!

(
4 |β|2

)m
. (A.20)

La figure A.3 montre l’équivalent de la figure A.2, mais pour la fonction de Wigner. Dans

les deux représentations, un état cohérent |α〉 est représenté par une fonction gaussienne

centrée en β = α. Par contre, alors que la fonction Q d’un état de Fock |n〉 est un anneau

dont le maximum est à |β| = √
n, la fonction de Wigner équivalente possède n nœuds et

vaut (−1)n (2/π) à β = 0. La fonction de Wigner d’un état de Fock possède donc des valeurs

négatives, ce qui est une signature de l’aspect non classique des états de Fock [52].



271

A.4 États quantiques d’un oscillateur harmonique

Les états cohérents d’un oscillateur harmonique quantique sont équivalents aux états

d’un oscillateur classique, alors qu’un état quantique de la lumière ne possède pas d’équi-

valent classique. Une première approche pour construire un état quantique de la lumière

est de construire une superposition d’états cohérents. Ces états sont nommés chats de Schrö-

dinger puisqu’il s’agit d’états quantiques composés d’une superposition d’états classiques,

chacun composé de plusieurs particules [52].

On définit un état chat comme la superposition de deux états cohérents |α1〉 et |α2〉 [52]

|Ψchat〉 =
1√
N

(
eiθ1 |α1〉+ eiθ2 |α2〉

)
, (A.21)

où 1/
√
N ≃ 1/

√
2 pour |α1 − α2|2 ≫ 1 assure la normalisation, θ1,2 sont les phases de la

superposition et φ1,2 = arg (α1,2) sont les phases de chacun des états cohérents. Lorsque les

deux états cohérents sont d’amplitudes égales, mais de phases opposées (α1 = −α2 ≡ α),

on distingue deux cas particuliers où θ1 = 0 et θ2 = (0, π) que l’on note respectivement

|Ψ+
chat〉 et |Ψ−chat〉

|Ψ±chat〉 =
1√N±

(|α〉 ± | − α〉) , (A.22)

où N± = 2
(

1± e−2|α|
2
)

. La matrice densité de ces états chat est donnée par

ρ̂±chat =
∣
∣Ψ±chat〉〈Ψ±chat

∣
∣ =

1

N±

(|α〉〈α|+ |−α〉〈−α| ± [|α〉〈−α|+ |−α〉〈α|]) . (A.23)

Les deux premiers termes sont des termes diagonaux de la matrice densité et représentent

ainsi le mélange statistique des deux états cohérents. Les deux derniers termes sont des

termes hors-diagonale, et décrivent ainsi la cohérence de l’état chat. La fonctionQ de Husimi

et la fonction de Wigner pour l’état chat de l’équation (A.22) sont données par [52]

Q|Ψ±
chat〉〈Ψ

±
chat| (β) = 1

πN±

[

e−|β−α|
2

+ e−|β+α|2 ± 2e−|α|
2

e−|β|
2

cos (2αIm (β))
]

, (A.24)

W |Ψ±
chat〉〈Ψ

±
chat| (β) = 2

πN±

[

e−2|β−α|
2

+ e−2|β+α|2 ± 2e−2|β|
2

cos (4αIm (β))
]

, (A.25)

où α est considéré réel. La figure A.4 présente ces équations pour α = 2 ainsi que pour un

mélange statistique entre les états cohérents |α〉 et | − α〉. La cohérence de la superposition
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Figure A.4 – Distributions de quasi-probabilités d’un état chat.
a), b) Fonction de Husimi Q(β) et d), e) fonction de Wigner W (β) pour a), d) le mélange statistique
ρ̂mixte = (|α〉〈α|+ |−α〉〈−α|) /2 et b), e) l’état chat ρ̂+chat =

∣
∣Ψ+

chat〉〈Ψ+
chat

∣
∣. c), f) Différence de c) Q(β)

et f) W (β) entre l’état chat et l’état mixte pour β = Im (β).

se manifeste comme des franges d’interférence entre les états cohérents à β = Im (β).

Ces franges d’interférences, provenant du terme proportionnel à cos (αIm (β)) dans les

équations (A.24) et (A.25), sont absentes dans le cas d’un mélange statistique des même

états cohérents. L’amplitude des franges est réduite dans la fonction Q de Husimi d’un

facteur e−|α|
2

/2 ≈ 0.02 pour α = 2 comparativement à la fonction de Wigner. Ainsi, la

fonction de Wigner est plus apte à représenter un état quantique de la lumière puisque

que les amplitudes des valeurs négatives et des franges d’interférence, indicatives de la

nature quantique de l’état, sont indépendantes de la taille de l’état cohérent [52].



Annexe B

Qubits supraconducteurs et modèle de

Jaynes-Cummings

B.1 Qubits supraconducteurs

Dans cette section, les qubits supraconducteurs de type transmon sont introduits. Dans

une première sous-section, l’effet Josephson et la jonction Josephson sont présentés. Par

la suite, l’hamiltonien de la boîte de Cooper est introduit comme modèle pour les qubits

supraconducteurs basés sur la charge. Finalement, le régime transmon de la boîte de Cooper

est présenté en mettant l’accent sur le compromis entre la réduction de la dispersion de

charge et de l’anharmonicité.

B.1.1 Jonction Josephson

Une jonction Josephson est composée de deux supraconducteurs séparés par un isolant.

Lorsque l’isolant est mince, les paires de Cooper des deux supraconducteurs peuvent

traverser de façon cohérente la jonction par effet tunnel. Ce processus est caractérisé par

l’énergie Josephson EJ . Les deux relations de Josephson [228, 229]

I(t) = Ic sin

(
2π

Φ0

Φ(t)

)

, V (t) =
dΦ(t)

dt
, (B.1)

décrivent le courant I(t) et la tension V (t) à travers la jonction en termes de la différence

de phase supraconductrice Φ(t) entre les deux supraconducteurs. Le courant critique
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de la jonction est Ic et Φ0/2π = ~/2e est le quantum de flux. À partir des relations de

Josephson, il est possible de déterminer l’énergie de la jonctionE(t) = −EJ cosφ(t), oùEJ ≡
(Φ0/2π) Ic = ~Ic/2e est l’énergie Josephson et φ ≡ 2πΦ/Φ0 est la phase supraconductrice

adimensionnelle. L’hamiltonien décrivant le passage par effet tunnel de paires de Cooper

est ainsi donné par [230, 190]

ĤJ = −EJ cos φ̂, (B.2)

où φ̂ est l’opérateur de phase supraconducteur relié au courant tunnel à travers la jonction.

Comme le montre la figure B.1 a), une jonction Josephson possède une capacité parasite CJ

provenant du condensateur créé par les deux matériaux conducteurs séparés par le matériau

isolant.

B.1.2 Boîte de Cooper

On considère maintenant une boîte de Cooper dans laquelle une jonction Josephson est

couplée de façon capacitive à une grille électrostatique de capacité Cg et polarisée par une

tension Vg. Comme le montre la figure B.1 b), la région du circuit entre le condensateur de

la grille et la jonction Josephson, que l’on nomme l’île, n’est couplée que par l’effet tunnel

Josephson à un réservoir supraconducteur.

L’hamiltonien d’une boîte de Cooper est composé d’une partie caractérisant l’énergie

électrostatique nécessaire pour changer le nombre de paires de Cooper sur l’île. Cette

énergie est donnée par 4EC , où EC = e2/2CΣ est l’énergie de charge pour un seul électron

et CΣ = CJ + Cg est la capacité totale. L’application d’une tension de grille Vg induit un

nombre de paires de Cooper effectif ng = CgVg/2e sur l’île. La partie électrostatique de

l’hamiltonien d’une boîte de Cooper est ainsi donnée par [230]

Ĥel = 4EC (n̂− ng)
2 , (B.3)

où n̂ est l’opérateur nombre de paires de Cooper. Il est possible de diagonaliser cet hamil-

tonien dans la base des états de charge {|n〉} sachant que n̂|n〉 = n|n〉. On obtient alors

que les niveaux d’énergie sont donnés par E (n, ng) = 4EC (n− ng)
2, comme le montre la

figure B.1 c).

L’hamiltonien Josephson, introduit à la section précédente, peut être réécrit dans la
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Figure B.1 – Circuit, niveaux d’énergie et spectre d’un qubit supraconducteur.
a) Élément Josephson d’énergie Josephson EJ (rouge) et condensateur parasite de capacité CJ

(bleu) composant une jonction Josephson (mauve). b) Circuit d’une boîte de Cooper où une île
(orange) est couplée à un réservoir supraconducteur (or) via une jonction Josephson. c) Niveaux
d’énergie E (n, ng) en fonction de la charge de grille effective ng pour différents nombres de paires
de Cooper n. d) Spectre des niveaux d’énergie Em (ng) en présence d’une énergie Josephson EJ

non nulle. Les niveaux d’énergie sont obtenus en diagonalisant l’hamiltonien de l’équation (B.5)
pour nmax = 10.

base des états de charge {|n〉} [230, 9]

ĤJ =
EJ

2

∞∑

n=−∞

(|n〉〈n+ 1|+ |n+ 1〉〈n|) . (B.4)

Ainsi, l’hamiltonien complet décrivant une boîte de Cooper est donné par

Ĥq = Ĥel + ĤJ = 4EC(n̂− ng)
2 +

EJ

2

∞∑

n=−∞

(|n〉〈n+ 1|+ |n+ 1〉〈n|) . (B.5)

Il est possible de diagonaliser cette matrice, dont les éléments sont donnés par Ĥ(p,q)
q =

〈p|Ha|q〉, en tronquant l’espace des états de charge de n ∈ Z à n ∈ {±nmax}. La figure B.1 (d)

montre le spectre des niveaux d’énergie Em(ng) pour un ratio entre l’énergie Josephson et

l’énergie de charge EJ/EC = 1. L’effet Josephson crée un croisement évité aux points de

dégénérescence de charge à ng = k+1/2, où k ∈ Z. En balayant la charge de grille effective,

le nombre de paires de Cooper change sur l’île par effet Josephson afin que le système

demeure dans l’état fondamental.
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Figure B.2 – Spectre des niveaux d’énergie d’une boîte de Cooper.
Spectre des niveaux d’énergie Em (ng) d’une boîte de Cooper pour a) EJ/EC = 1 (qubit de charge),
b) EJ/EC = 5 et c) EJ/EC = 50 (régime transmon). La dispersion de charge ǫm du niveau m ainsi
que l’énergie des transitions Em,m+1 sont indiquées en b) et en c) respectivement.

B.1.3 Régime transmon

Dépendamment du ratioEJ/EC entre l’énergie de charge et l’énergie Josephson, l’hamil-

tonien de l’équation (B.5) permet de décrire différents régimes du qubit supraconducteur

basé sur la boîte de Cooper [190, 231, 7]. Le régime transmon correspond au cas où le

ratio EJ/EC ∼ 50. La figure B.2 montre le spectre des niveaux d’énergie pour différents

ratio EJ/EC . En augmentant EJ pour EC constante, le croisement évité aux points de

dégénérescence de charge s’agrandit. L’énergie de transition Ege ≡ Ee − Eg aux points de

dégénérescence, correspondant à l’énergie de transition du qubit, est donnée par Ege ≃ EJ

pour EJ/EC ≪ 4 et par

Ege ≃
√

8EJEC − EC (B.6)

pour EJ/EC ≫ 4. La figure B.3 a) montre la transition entre ces deux régimes, où l’énergie

de charge EC est réduite en gardant EJ = 10 GHz afin de varier le ratio EJ/EC .

La dispersion de charge du niveau m est définie comme la différence entre l’énergie

du niveau m au point de dégénérescence de charge ng = 1/2 et celle au point d’équi-

libre ng = 0, soit ǫm = Em(ng = 1/2)−Em(ng = 0). Comme le montre la figure B.3 b), cette

dispersion de charge diminue exponentiellement selon ǫm ∝ e−
√

8EJ/EC [190]. Ainsi, dans

le régime transmon, les niveaux d’énergie sont essentiellement indépendants de la charge

de grille effective ng (figure B.2 c). Le transmon est ainsi exponentiellement insensible aux

fluctuations de charge, le mécanisme de décohérence dominant pour les qubits de charge

supraconducteurs, où EJ/EC < 1 [190, 231].
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Figure B.3 – Régime transmon de la boîte de Cooper.
a) Énergie de la première transition Ege en fonction de l’énergie de charge EC pour une énergie
Josephson EJ = 10 GHz, correspondant ainsi à différents ratio EJ/EC . Les résultats des cas
limites EJ/EC ≪ 4 et EJ/EC ≫ 4 sont aussi montrés. b) Dispersion de charge ǫm relative à
Ege pour les quatre premiers niveaux ainsi que les solutions asymptotiques de la référence [190].
c) Anharmonicité relative entre les deux premières énergies de transition ainsi que la solution
asymptotique de la référence [190].

Comme la figure B.2 c) l’indique, le spectre des niveaux d’énergie dans le régime trans-

mon ressemble au spectre d’un oscillateur harmonique où les niveaux sont équidistants,

c’est-à-dire que Em,m+1 = Ege. Ceci pose un problème pour l’utilisation du transmon en

tant que qubit. En effet, la manipulation du transmon doit être sélective aux deux premiers

niveaux |g〉 et |e〉 afin de rester dans le sous-espace à deux niveaux du qubit [190]. Afin de

quantifier à quel point le spectre d’un transmon est harmonique, on définit l’anharmonicité

relative αr ≡ (Eef − Ege) /Ege, où les énergies des transitions sont évaluées au point de

dégénérescence de charge ng = 1/2. Selon cette définition, αr = 0 pour un oscillateur

harmonique. La figure B.3 c) montre l’anharmonicité relative du transmon calculée en

diagonalisant numériquement l’hamiltonien de l’équation (B.5). Pour EJ/EC ≪ 4, l’an-

harmonicité diminue rapidement en fonction du ratio EJ/EC . Par contre, après le point

où αr = 0 pour EJ/EC ≃ 9, l’anharmonicité diminue seulement selon la loi de puissance

αr ≃ − (8EJ/EC)
−1/2 [190, 231].

Ainsi, bien que dans le régime transmon la réduction de la dispersion de charge est

accompagnée par une réduction de l’anharmonicité, cette dernière reste assez élevée afin de

ne pas compromettre l’utilisation du transmon en tant que qubit [190]. En fait, la réduction

de la dispersion de charge permet d’augmenter significativement le temps de relaxation et

de cohérence du transmon par rapport au qubit supraconducteur de charge.
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B.2 Modèle de Jaynes-Cummings

Cette section porte sur l’interaction entre une cavité et un qubit supraconducteur.

L’hamiltonien du couplage dipolaire électrique entre une boîte de Cooper et un résonateur

coplanaire est premièrement obtenu. Par la suite, le modèle généralisé de Jaynes-Cummings

est présenté. Finalement, le régime dispersif du transmon est introduit.

B.2.1 Couplage dipolaire électrique

La force de l’interaction dipolaire électrique entre un atome et une cavité électroma-

gnétique est donnée par ~g = Ermsd, où Erms est l’amplitude rms du champ électrique dans

la cavité à la position de l’atome et d est le moment dipolaire de transition [52, 9]. Pour

le cas particulier du couplage entre une boîte de Cooper et un résonateur coplanaire, on

considère que la grille électrostatique de la boîte de Cooper est le conducteur central du

résonateur (figure B.4 a). Le résonateur applique ainsi sur la boîte de Cooper une tension

V̂ = V 0
rms

(
â+ â†

)
en plus de la tension de grille Vg [9, 163]. En remplaçant Vg par Vg + V̂

dans la partie électrostatique de l’hamiltonien de la boîte de Cooper, on obtient

Ĥ′
el = 4EC

[

(n̂− ng)
2 − Cg

e
n̂V̂ +

(
Cg

2e

)2

V̂
(

V̂ + 2Vg

)
]

. (B.7)

Le premier terme correspond simplement à l’hamiltonien Ĥel de l’équation (B.3). Le se-

cond terme, proportionnel à n̂V̂ , correspond à l’interaction entre la boîte de Cooper et le

résonateur. Le dernier terme représente quant à lui un faible décalage de la fréquence de

la cavité causé par la capacité de la boîte de Cooper. L’hamiltonien du couplage dipolaire

électrique entre la boîte de Cooper et le résonateur coplanaire est ainsi donné par

Ĥq−r = −2βeV 0
rmsn̂

(
â+ â†

)
, (B.8)

où β ≡ Cg/CΣ est le bras de levier de la grille. L’hamiltonien complet du système composé

d’une boîte de Cooper et d’un résonateur coplanaire est ainsi donné par [190]

Ĥ = Ĥq + Ĥr + Ĥq−r = 4EC (n̂− ng)
2 − EJ cos φ̂+ ~ωrâ

†â− 2βeV 0
rmsn̂

(
â+ â†

)
. (B.9)

Cet hamiltonien est valable pour tout ratio EJ/EC de la boîte de Cooper et décrit ainsi le

régime transmon, où EJ/EC ≃ 50 [190]. Dans le cas d’un transmon dans une cavité 3D, la
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Figure B.4 – Couplage dipolaire électrique d’un qubit supraconducteur.
a) Schéma d’une boîte de Cooper placée entre le conducteur central et la mise à la terre d’un
résonateur coplanaire. Les paires de Cooper peuvent se déplacer librement dans les réservoirs
supraconducteurs de la boîte de Cooper, créant ainsi un grand moment dipolaire d. b) Spectre
des niveaux d’énergie de l’hamiltonien de Jaynes-Cummings dans le cas résonant lorsque le qubit
est dans l’état fondamental (|g〉, bleu) et dans l’état excité (|e〉, rouge). Les états hybrides sont
représentés en mauve. c) Ratio de la force du couplage |gq−r| d’une boîte de Cooper et de celle du
qubit de charge supraconducteur g0q−r en fonction du ratio EJ/EC . L’approximation asymptotique

|gq−r| /g0q−r ≃ (EJ/2EC)
1/4 est aussi montrée.

force de l’interaction est plus naturellement décrite par d’autres paramètres que β et V 0
rms.

Par contre, l’hamiltonien de l’équation (B.9) permet aussi de décrire l’architecture 3D du

transmon [231]. Dans ce cas, la réduction de l’amplitude rms du champ électrique dans la

cavité est compensée par l’augmentation du dipôle électrique du transmon, résultant en

une force d’interaction similaire [232].

B.2.2 Hamiltonien de Jaynes-Cummings

Les états propres |ψm〉 d’énergie Em(ng) = ~ωm de l’hamiltonien de la boîte de Cooper

forment une base dans laquelle l’équation (B.9) devient l’hamiltonien de Jaynes-Cummings

généralisé

Ĥ/~ =
∞∑

m=0

ωm |ψm〉〈ψm|+ ωrâ
†â+

∞∑

(m,m′)=0

g
(m,m′)
q−r |ψm〉〈ψm′ |

(

â+ â†
)

, (B.10)

où ~g
(m,m′)
q−r ≡ 2βeV 0

rms〈ψm|n̂|ψm′〉 est l’énergie du couplage de la transition m↔ m′ avec le

résonateur [190]. En général, les états propres |ψm〉 sont composés de plusieurs états de

charge |n〉, ce qui empêche l’obtention d’une expression simple pour cet hamiltonien. Celui-

ci peut par contre se simplifier, en utilisant l’approximation séculaire ainsi que l’expression
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asymptotique de ~g
(m,m′)
q−r dans le régime transmon, par

Ĥ/~ ≃
∞∑

m=0

ωm |ψm〉〈ψm|+ ωrâ
†â+

(
∞∑

m=0

g
(m,m+1)
q−r |ψm〉〈ψm+1| â† + h.c.

)

, (B.11)

où h.c. dénote le conjugué hermitien [190]. L’approximation séculaire revient essentiel-

lement à négliger les termes qui ne conservent pas le nombre d’excitation m + n dans

le système, où m et n identifient respectivement le niveau du transmon et le nombre de

photons [52].

Afin de vérifier si on retrouve l’hamiltonien de Jaynes-Cummings à partir de l’équa-

tion (B.10), seuls les deux premiers niveaux m = 0 et m = 1 du transmon sont considérés.

Les états propres |g〉 ≡ |ψ0〉 et |e〉 ≡ |ψ1〉 peuvent s’exprimer dans l’espace de Hilbert à

deux dimensions comme |g〉 :=
(

0 1

)T

et |e〉 :=
(

1 0

)T

. On obtient alors

Ĥ/~ ≃ 1

2
ωqσ̂z + ωrâ

†â+ gq−c
(
â†σ̂− + âσ̂+

)
, (B.12)

où ωq = ωe−ωg est la fréquence du qubit, σ̂z = |e〉〈e|−|g〉〈g| est la matrice de Pauli σ̂z et σ̂± =

|g, e〉〈e, g| sont les opérateurs d’échelle du système à deux niveaux. Ce dernier hamiltonien

est l’hamiltonien de Jaynes-Cummings dans l’approximation séculaire [9, 52, 233]. La

figure B.4 b) présente le spectre des niveaux des systèmes couplés et découplés dans le cas

résonant ωq = ωr. Dans ce régime, l’interaction entre le qubit et la cavité se manifeste comme

une hybridation des niveaux pouvant s’écrire comme |g, n〉 et |e, n− 1〉 lorsque gq−c = 0.

Les niveaux hybrides sont séparés d’une fréquence angulaire 2gq−c
√
n, correspondant à la

fréquence angulaire de Rabi à n photons [9, 52, 10].

Force du couplage dans le régime transmon

Selon la définition donnée à la section précédente, l’énergie du couplage de la transi-

tion |g〉 ↔ |e〉 de la boîte de Cooper et du résonateur est donnée par

gq−r = 2g0q−r〈g|n̂|e〉 = 2g0q−r

∞∑

n=−∞

c∗gn c
e
nn, (B.13)

où les états propres de la boîte de Cooper sont exprimés dans la base des états de charge et

où ~g0q−r ≡ βeV 0
rms est l’énergie du couplage dans le régime du qubit de charge de la boîte de

Cooper [9]. Cette expression est valide pour tout ratioEJ/EC puisqu’aucune approximation
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n’a été effectuée jusqu’à maintenant. La figure B.4 c) montre le ratio entre |gq−r| et g0q−r
calculé à partir de l’équation (B.13) en obtenant numériquement les coefficients c(g,e)n . Pour

un ratio EJ/EC élevé, la force du couplage devient gq−r ≃ g0q−r (EJ/2EC)
1/4 [190]. Malgré

le fait que les niveaux d’énergie du transmon deviennent exponentiellement insensibles à

la partie continu de tension de grille Vg lorsque EJ/EC augmente, l’énergie du couplage

dipolaire électrique au résonateur, via la tension V̂ , augmente. Ainsi, la réduction de la

dispersion de charge, permettant l’augmentation des temps de relaxation et de cohérence du

transmon, n’est aucunement fait au détriment d’une réduction de la force du couplage [190].

B.2.3 Régime dispersif du transmon

Le régime dispersif correspond au régime où la fréquence angulaire∆m ≡ ωm,m′−ωr du

désaccord entre les fréquences angulaires des transitions ωm,m′ ≡ ωm′ − ωm du transmon et

du résonateur ωr est beaucoup plus grand que la fréquence angulaire de l’interaction g(m,m′)
q−r ,

c’est-à-dire ∆m ≫ g
(m,m′)
q−r . Dans ce cas, il est possible d’effectuer une transformation sur

l’hamiltonien de l’équation (B.10) en tenant compte des trois premiers niveauxm = (g, e, f)

du transmon [190]. En restreignant par la suite la dimension de l’espace de Hilbert aux

états |g〉 (m = 0) et |e〉 (m = 1), on obtient

Ĥq−r/~ ≈ 1

2
ω′qσ̂z + (ω′r + χq−cσ̂z) â

†â, (B.14)

où ω′q = ωq+χge
q−r et ω′r = ωr−χef

q−r/2 sont les fréquences angulaires du qubit et de la cavité

renormalisées par les décalages dispersifs χge
q−r etχef

q−r définis parχ(m,m′)
q−r ≡

(

g
(m,m′)
q−r

)2

/∆
(m)
q−r.

L’équation (B.14) est l’hamiltonien de Jaynes-Cummings dans le régime dispersif avec un

décalage dispersif χq−r = χge
q−r − χef

q−r/2 [9, 52, 163]. Selon l’équation (B.14), le qubit crée

ainsi un décalage ±χq−r de la fréquence angulaire du résonateur dépendamment de son

état. De plus, l’équation (B.14) peut se réécrire comme

Ĥ/~ ≈ 1

2

(
ω′q + 2χq−râ

†â
)
σ̂z + ω′râ

†â, (B.15)

simplement en regroupant les termes différemment. De ce point de vue, la cavité crée

un décalage 2χq−rn de la fréquence angulaire du qubit dépendamment du nombre de

photons n dans le résonateur. Comme le montre le spectre des niveaux d’énergie de la

figure B.5, l’interaction dispersive entre un qubit et un résonateur permet ainsi de mesurer

l’état du qubit [9, 212] et le nombre de photon dans le résonateur [213, 234], et ce de façon

non destructive [52]. De plus, des opérations conditionnelles à l’état d’un sous-système
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Figure B.5 – Régime dispersif du transmon.
Spectre des niveaux d’énergie d’un transmon couplé à une cavité dans le régime dispersif lorsque
le qubit est dans l’état fondamental (|g〉, bleu) et dans l’état excité (|e〉, rouge). Les niveaux d’énergie
avec (χq−r 6= 0) et sans (χq−r = 0) interaction sont respectivement indiqués par des lignes pleines et
pointillées.

peuvent être effectuées sur l’autre sous-système.



Annexe C

Paramètres du système hybride en

magnonique quantique

Les paramètres du système hybride décrit par l’hamiltonien de l’équation (5.1) sont

présentés à la table C.1. Les valeurs du coefficient du couplage entre le qubit et le mode

de Kittel, gq−m, du décalage dispersif entre le qubit et le mode TE103, χq,103, du décalage

dispersif entre le qubit et le mode de Kittel, χq−m, et du coefficient de l’effet Kerr du mode

de Kittel,Km, sont calculées à partir de ces paramètres et de l’hamiltonien de l’équation (5.1)

en tronquant la somme des modes TE10p à p = 4. Dans ce calcul, on considère les états

de Fock |n10p = {0, 1, 2}〉 des modes TE10p de la cavité, les états |i = {g, e, f}〉 du tranmon

et les états de Fock |nm = {0, 1, 2}〉 du mode de Kittel. Explicitement, l’hamiltonien de

l’équation (5.1) est diagonalisé et les paramètres sont évalués selon

χq,103 =
1

2
(ωe

103 − ωg
103) , (C.1)

χq−m =
1

2
(ωe

m − ωg
m) , (C.2)

Km = 2ωg
m,0→1 − ωg

m,0→2, (C.3)

où ωg(e)
103 est la fréquence angulaire du mode TE103 de la cavité avec le transmon dans l’état

fondamental (excité), ωg(e)
m est la fréquence angulaire du mode de Kittel avec le transmon

dans l’état fondamental (excité), et ωg
m,0→nm

est la fréquence angulaire de la transition

entre l’état du vide et l’état de Fock |nm〉 du mode de Kittel avec le transmon dans l’état

fondamental avec ωg
m ≡ ωg

m,0→1 tel que pour Km = 0, ωg
m,0→nm

= nmω
g
m. Le coefficient du

couplage entre le qubit et le mode de Kittel, gq−m, est simplement évalué par la moitié de la

séparation des niveaux d’énergie hybridés du qubit et du mode de Kittel.
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Paramètre Symbole Valeur (MHz)

Fréquence du mode TE101 ωbare
101 /2π [6994.0]

Fréquence du mode TE102 ωbare
102 /2π 8414.5

Fréquence du mode TE103 ωbare
103 /2π 10, 441.5

Fréquence du mode TE104 ωbare
104 /2π (12, 800)

Fréquence de la transition |g〉 ↔ |e〉 du transmon ωbare
q /2π 8040.6

Anharmonicité du transmon αbare/2π −137.2

Force du couplage, mode TE101 et transmon gq,101/2π [73]

Force du couplage, mode TE102 et transmon gq,102/2π 126.1

Force du couplage, mode TE103 et transmon gq,103/2π 135.4

Force du couplage, mode TE104 et transmon gq,104/2π (116)

Force du couplage, mode TE101 et mode de Kittel gm,101/2π (−13.6)

Force du couplage, mode TE102 et mode de Kittel gm,102/2π 22.5

Force du couplage, mode TE103 et mode de Kittel gm,103/2π (−20.3)

Force du couplage, mode TE104 et mode de Kittel gm,104/2π (14.0)

Table C.1 – Paramètres du système hybride en magnonique quantique.
Paramètres utilisés dans le calcul du coefficient de couplage qubit-magnon gq−m, du décalage
dispersif entre le qubit et le mode TE103 χq,103 = χq−p, du décalage dispersif entre le qubit et
le mode de Kittel χq−m et le coefficient de l’effet Kerr des magnons Km. Les paramètres entre
parenthèses sont estimés numériquement à partir de simulations électromagnétiques.
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Paramètre Symbole Valeur (MHz)

Pertes totales du mode TE101 κ101/2π [1.39]

Pertes internes du mode TE101 κint101/2π [1.26]

Pertes de couplage du mode TE101 κcpl101/2π [0.13]

Pertes totales du mode TE102 κ102/2π 2.08± 0.02

Pertes internes du mode TE102 κint102/2π 1.58± 0.02

Pertes de couplage du mode TE102 κin102/2π 0.51± 0.02

Pertes totales du mode TE103 κ103/2π 3.72± 0.03

Pertes internes du mode TE103 κint103/2π 2.45± 0.03

Pertes de couplage du mode TE103 κin103/2π 1.27± 0.03

Table C.2 – Pertes et largeurs de raie des modes de la cavité.
Les paramètres entre crochets n’ont pas été obtenus lors du même refroidissement du système
hybride que l’expérience présentée.
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