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We propose a new class of vector fields to construct a conserved charge in a general field
theory whose energy—-momentum tensor is covariantly conserved. We show that there
always exists such a vector field in a given field theory even without global symmetry.
We also argue that the conserved current constructed from the (asymptotically) timelike
vector field can be identified with the entropy current of the system. As a piece of
evidence we show that the conserved charge defined therefrom satisfies the first law of
thermodynamics for an isotropic system with a suitable definition of temperature. We
apply our formulation to several gravitational systems such as the expanding universe,
Schwarzschild and Banados, Teitelboim and Zanelli (BTZ) black holes, and gravitational
plane waves. We confirm the conservation of the proposed entropy density under any
homogeneous and isotropic expansion of the universe, the precise reproduction of the
Bekenstein—-Hawking entropy incorporating the first law of thermodynamics, and the
existence of gravitational plane wave carrying no charge, respectively. We also comment
on the energy conservation during gravitational collapse in simple models.
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1. Introduction

A central mystery in theory of gravity is that while it is governed by fundamental
physics laws, it contains black holes, which behave as thermodynamical objects.!2
In particular entropy of a well-known black hole has been shown to be given by the
Bekenstein-Hawking formula®® (except some cases such as an extremal onef %)
S = A/4Gy, where A is the area of the horizon and Gy is the Newton constant.

This suggests that information of a black hole such as charges and dynamical degrees

of freedom is localized at its surface rather than inside the horizon so as to behave
as a membrane-like object.’

There have been various techniques invented to compute entropy of various
types of black holes and to show their thermodynamic relations in and beyond the
Einstein gravity.!%"!3 (See also Refs. 14-18.) These approaches have been developed
basically regarding charges including entropy as quasi-local ones evaluated by a
surface integral, which enables one to evaluate a charge of black holes without
knowing a charge distribution inside the horizon.

In the previous work to holographically realize a black hole with quantum cor-
rection,'” the authors of this paper recognized that the quasi-local energy is not
sufficient for precise evaluation of the total energy when matter distributes nontriv-
ially in space—time. We reached a definition to evaluate a total charge of matter by
a volume integration of its charge distribution, and proposed a precise definition
available on a general curved space-time with Killing vector fields.2? This definition
was recognized in early time,?"22 though the validity thereof has not been con-
firmed by explicit computation. We confirmed that this reproduces known results
on mass and angular momentum for classic black holes, and that it gives an addi-
tional contribution to the known mass formula of any compact star obtained by
quasi-local energy.?% (See also Ref. 23.)

In this paper, we delve into the proposed definition of a matter charge and ask
whether it can be extended to the case of geometry without any Killing vector field.
We conclude that (i) a class of vector fields satisfying a particular partial differential
equation, which includes the Killing vector fields if they exist, can make the charge
conserved, (ii) there always exists such a vector field uniquely for a given initial
condition in any field theory with energy—momentum tensor covariantly conserved
and (iii) the conserved charge constructed from the particular vector field is nothing
but the entropy of the system. We present our argument to reach this conclusion
with application to several gravitational systems in what follows.

2. Charges on a General Space—Time
2.1. Conservation condition

Let us consider any field theory on a general curved space—time. We use Greek

letters u, v, . .. to label an arbitrary fixed coordinate system x*, which run from 0 to

20

d—1 with d the dimension of the space—time. In the previous paper,*® we presented
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a precise definition of a charge of matter associated with any generic vector field
vk as

QLul(t) = / 1z /g T, 0, 1)

where T*, is the matter energy momentum tensor given in the system, ¥; is a
hypersurface or a time slice at an arbitrarily fixed time z° = ¢. For instance, if one
chooses a vector field as a generator of time translation and that of a space direc-
tion with suitable normalization, then the corresponding charges become energy
and momentum in that direction, respectively. Superiority of this definition is its
manifest general covariance.

It can be shown that the charge defined by (1) is conserved or time-independent
when v* is a Killing vector field and the energy momentum tensor is covariantly
conserved.?922 In this case the defined charge becomes a Noether charge corre-
sponding to global symmetry of the system. We emphasize that our proposal can
be applied not only to Einstein gravity but also to any other gravitational theories.

A question is whether a charge Q[v] conserves if v is other than a Killing vector
field. To answer this question we study the time evolution of the charge, which is
computed as?®

d
QL] = / dd*1XMT”VV#vV. (2)
dt o,
Therefore, if a vector field satisfies the differential equation
T,V v" =0, (3)

then it is sufficient for the charge Q[v] to conserve. In this sense, we refer to Eq. (3)
as the conservation condition for the vector v. In particular any Killing vector field
trivially satisfies the conservation condition. This gives our conclusion (i).

2.2. Intrinsic vector field

Since the conservation condition (3) is a first-order linear partial differential equa-
tion, we can convert it to ordinary differential equations by the method of charac-
teristics with a parameter 7. Therefore, for a given energy momentum tensor, there
always exists a general solution at least locally in 7, which is determined uniquely
once we fix an appropriate initial condition at 7 = 0 on a hypersurface ¥, includ-
ing a choice of a direction of the vector v.

To be more explicit, one can arbitrarily choose a reference vector field o#(x)
which is defined in the entire space—time. A simple example is 7#(x) := %Tgn) where
7 is a parameter to characterize the evolution of the hypersurface X;. (Furthermore,
if we choose 7 to be the global time z°, the reference vector becomes v#(x) = 85.)
Then, we can look for the solution of the conservation condition in the form of

vk (x) = c(a:)@“(a:) where ¢(x) is a scalar function. Equation (3) reduces to

2)doc(x) + Y AM(x)0c(x) + B(z)c(z) =0, (4)
u#0
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where A¥(z) := TF,(2)v"(z) and B(z) := T*, (2)0,0" (x) + T", (z)I'%,v* (). This

0 x) is given at some x° unless A°(x) identically vanishes in

can be solved once c(x
the entire space—time.?* A choice of the initial condition depends on a physical setup
of the system. Indeed A°(z) = T°,(z)v” () # 0 is necessary to obtain a nontrivial
charge as Q[v] = [y, d¥1x /1|70, (2%, x)0" (2°, x)c(2°, x).

Since the time direction must be chosen so that a component of the stress tensor
with time component does not vanish in any reasonable physical system, there
always exists a vector field to satisfy (3) proportional to a timelike vector field (or
an asymptotically timelike vector field in the presence of black holes). We refer to
this (asymptotically) timelike vector field as an intrinsic vector field and denote
it by ¢.P In this paper, we mainly consider a conserved charge associated with ¢,
except Sec. 4.4 where both conserved energy and momentum are treated.

The above argument establishes our conclusion (ii) that there always exists a
conserved quantity of the form (1) in any field theory on general curved space—time
even without any global symmetry. Thus, this conserved charge is different from a
Noether charge and must be very special and fundamental for the system. In the
following section, we give physical interpretation for this charge.

3. Entropy and Entropy Current

What is the physical meaning of the conserved charge Q[(] associated with the
intrinsic vector field? Our answer is entropy of the system,

§:=Qld] = / @41 50, (5)

where 5" is the time component of an entropy current density defined by

st = /]g|T",C". (6)

One can easily show that this current density satisfies the ordinary continuity equa-
tion d,s" = 0, thanks to the conservation condition (3) and the covariant conser-
vation of the energy momentum tensor.

Let us give some remarks for this interpretation. The entropy is the most fun-
damental quantity and uniquely defined in a dynamical system, and therefore it is
physically reasonable that the entropy is related to the conserved charge Q[¢], which
is also uniquely defined for a generic system without global symmetry. Since the
fundamental physics law is expected to be reversible, it is natural that the entropy
of the whole system including matter with gravitational interaction is conserved
in a fundamental theory such as general relativity. To the contrary, if the entropy

2Tn the region where A%(z) = 0, one cannot determine the time evolution of ¢(z). However, since
the charge density is proportional to A°(z) one does not need to know the value of c(x).

PThe existence of such a vector field for a spherically symmetric gravitational system was pointed
out in Ref. 24. This vector field may be known as the Kodama vector. We have checked that the
Kodama vector satisfies the conservation condition (3).
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were not conserved, for example, in a general gravitational system, then it would
mean that there exists extra matter producing entropy via unknown interaction
(“fifth force”), which would be unreasonable. Further evidence will be presented in
following sections.

3.1. Analysis for geometry without horizon

Let us analyze our proposal in the case where the coordinate system allows a glob-
ally well-defined unit time evolution vector field, which we denote by n*. In this
case tensors can be decomposed into the longitudinal and transverse components
with respect to this vector for each index. For example, the energy momentum ten-
sor is decomposed as

T, = pn*n, + P*, —n"J, — J'n,, (7)

where p :=n,TH, n", P*, = g“aTaggﬂy, J, = naTaBg'Bw with g, = d¥ + n¥n,,
and the metric tensor is decomposed into the Arnowitt, Deser and Misner (ADM)
form as

ds® = —N?(dz°)? + g;;(da’ + N'da)(dz? + N7da?), (8)
where N, N* are called a lapse function and a shift vector, respectively. Note that

JO=0andn, = 7N62.
From the covariant conservation, we have (V,T%,)n” = 0, which boils down to

dp+ pK + P*,K¥,, +n"VJ, —V,J" =0, (9)

where V := n#V,, V, = §°,V,, K¥, := V,n" is the extrinsic curvature, and
K := K" ,. Since the intrinsic vector ﬁeld is defined to be proportional to a time
evolution vector field, we set (# = —Bn*, for which the conservation condition (3)
reduces to
pdB — BP*, K", + BJ,Vn" — J"0,B = 0. (10)
Combining Egs. (9) and (10) and taking a new coordinate n satisfying n* = %,
we obtain

((56) + pBK — ¥V, (J"B) = 0. (11)
In the case with J* = 0, this can be easily solved as
n
8= 6 exp [— / dnK], (12)
p o

where pg, Bo are initial values of p, 8 at n = g, respectively.
The entropy current density becomes

=VapB, ' =—BVa(pN' + N.J), (13)
where g := det g;;. Thus, the continuity equation becomes
00s° = 9;(s"N* + N+/|g|J*B). (14)
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It would be amusing that the shift vector has a physical meaning of the flow veloc-
ity of the entropy density when J? = 0. Note that the entropy density is locally
conserved if J* = N? = 0.

3.2. The first law of thermodynamaics

We now show that our entropy current density satisfies the first law of thermody-
namics in isotropic systems, so that the shift vector vanishes and the matter energy
momentum tensor is given by a perfect fluid, characterized by P*, = Pg", and

Ju = J0 =0in (7), and thus K = “5V1 1y this situation, it follows from the
continuity equation (14) that the entropy density itself becomes time-independent.
Furthermore, since (10) in this case becomes

dg  BPdv
p PR (15)
dn v dn
we can show that s® in (13) satisfies
ds®  du dg du dv
27 Z==4+P= 16
ar =’ (dn+ dn) o 16)

where v := \/@ is a volume density, and u := pv is the (internal) energy density
corresponding to the energy, a charge with the unit time evolution vector field as
E := Q[-n] = [ d? 1z u. This becomes exactly the first law of thermodynamics if
8 is identified with the inverse temperature, which proves our conclusion (iii). Note
that the variation by n in Eq. (16) is realized by some dynamical process, which
must satisfy the equation of motion for the matter, as well as the Einstein equation
or its variant for gravity if the metric g, is dynamical.

Our method determines both the entropy density s° and the inverse temper-
ature 8 for the matter through the gravitational interaction with g,,. An overall
normalization for both is fixed as an initial condition for the intrinsic vector ¢ in the
system, but a ration s°/8 is free from such an ambiguity. Once the normalization
is given, the dependence of the temperature on space-time is completely controlled
by Eq. (3). This will be seen in Sec. 4.1.

3.3. Case for black hole geometry

Let us consider applying the above formulation to a black hole geometry, where the
existence of globally well-defined unit timelike vector field is not guaranteed. Then
the analysis done in Sec. 3.2 is not generally applicable, and we need to analyze
the system by setting the intrinsic vector field ¢* = —(d}, where ¢ is a function
determined to satisfy the conservation condition (3).

It happens, however, that the matter energy momentum tensor in black hole
geometry vanishes except singularity at the origin.2? In such a case, the conservation
condition is solved by any time-independent (, and there is no further way to
determine it. In this paper, as a provisional prescription, we assume that the energy
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conservation law holds to satisfy %ds0 = du + Pdv as in the previous case, and we
determine ¢ to satisfy the first law of thermodynamics with temperature given by
the Hawking temperature identical to the surface gravity normalized by 27.* We
expect that this assumption is in principle verified by setting up a gravitational
system such that a smooth geometry with matter gravitationally collapses into the
black hole and keeping track of charges during the process. We leave this to future
studies.

4. Applications
4.1. Friedmann—Lemaitre—Robertson—Walker metric

Let us consider d-dimensional Friedmann-Lemaitre-Robertson-Walker (FLRW)
metric, which is given by ds? = —(dx?)? + azgijdxid:vj, where a is the scale fac-
tor dependent only on time, and the Ricci tensor for § is Rij = (d — 2)kg;; with
k = 1,0,—1 corresponding to a (d — 1)-dimensional sphere, flat space, hyperbolic
space, respectively. This is a model of homogeneous and isotropic expanding uni-
verse in Einstein gravity with cosmological constant A. In particular, the shift vec-
tor vanishes and the energy momentum tensor is given by a perfect fluid, whose

density p and pressure P are determined by the Einstein or Friedmann equation
— — .2 P — 12
as p = 1 ((d 1)2(d 2) kl—g _ A),P _ 1 ((2 _ d){% + (d23) ka_’f }+ A)7 where

K 8GN 8GN
I=0f.
Since there is a unit time evolution vector field as n* = —4§f and the system

is isotropic, this is a case studied in Sec. 3.2, where not only the entropy but also
the entropy density are conserved, and the first law of thermodynamics (16) holds.
The entropy density is computed as s* = a?~1,/gBp, where 3 is calculated from
(12) as uf = ugBy = const with u = p/ga?"!, since K = 9;loga®"'. Thus, in the
homogeneous and isotropic expanding universe, the energy density is proportional
to the temperature, which decreases during the expansion of the system in any
equation of state with nonzero pressure while temperature keeps constant in the case
of the pressureless dust, as evident from du = —Pdv. The entropy density satisfies
the thermodynamic relation (16). (See also Refs. 25,26 and references therein.)
Note that s° is constant even for the k = 1 (sphere) case, where the universe first
expands, reaches its maximum size, and then contracts.

4.2. Schwarzschild black hole

We next evaluate the entropy of the Schwarzschild black hole in d-dimensional
space—time with cosmological constant A. We employ the metric in the Eddington—
Finkelstein coordinate as ds* = —(1 + u(r))(dz®)? — 2udxdr + (1 — u(r))dr? +
2§, datda? | where u(r) = —2Ar2/(d—2)(d—1)—rd~3/r?=3 and ¢ is a constant cor-
responding to the radius of horizon when A = 0. Note that the metric is nonsingular
even at u = +1, and a constant ¢ surface is always spacelike even inside the horizon

2150201-7
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for nonnegative A. (For negative A, a constant ¢ surface is spacelike inside the hori-
zon but becomes timelike for large r satisfying u(r) > 1.) The energy defined by
(1) with a Killing vector v* = —¢} for time translation reproduces the well-known
black hole mass M = Vy_o(d—2)ra~3/(167G x), where V;_5 := [ d*~2z/det §;;,%°
since
d—2 r3735(r)
16’/TGN Tdfz '
This is the case discussed in Sec. 3.3 that the conservation condition is solved by
any time-independent intrinsic vector field because the energy momentum tensor

THy = —pdy, p:= (17)

vanishes except r = 0 as seen from (17). In this situation, the intrinsic vector
field can be written as (* = —((x)d}, where ((x) is an arbitrary smooth function
of spacial coordinates x. Then the entropy current defined by (5) is computed as
st = C\/Epég, where we can take a constant ¢ = ((0) since p is proportional to
d(r). Note that the entropy density is localized at the singularity. Then the entropy
given by (6) is evaluated as S = M(. As discussed in Sec. 3.3, we determine
¢ to satisfy the first law of thermodynamics T'dS = dM identifying T with the

2
Hawking temperature T' = (d — 3 — ?f_rg)) /4mry, where rg is the (outer) horizon

radius determined by u(rg) = —1.27 Plugging S = M( into the thermodynamic
relation reduces to a differential equation (+ M J3; dc = 1/T, whose general solution is

_ 7]@ Using dM = (d—2)Vy— 2TH167(T(3N3L)2L +(d D)

drg, the integration can

d—2
be performed as( = VZ&%. Remark that we can fix the integration constant since

¢ — 0 when ry — 0 or r — 0, which cannot be fixed only by the thermodynamic
relation.?® This reproduces the known result of the black hole entropy computed by
Bekenstein—Hawking formula because the area of the horizon is given by Vd,grffg

4.3. BTZ black hole

Next application is to the BTZ black hole whose metric is ds* = —f(r)dt* +
f(r)~tdr? +r%(dp—w(r)dt)?, where f(r) = 5 —ml(r)+ iI:Q,w = 525 It was shown
in Ref. 20 that the energy and the angular momentum defined by using (1 ) choosing
vt = —4y and v = J; reproduce the well-known result M = g~ Py = . The
matter energy momentum tensor was computed as

7°, = %(—mag + J59). (18)

As discussed in Sec. 3.3 and the case of the Schwarzschild black hole, the conser-
vation condition is solved by (* = —((x)d{/, due to (18). This reduces the entropy
density to s° = (md(r)/167G y, where ¢ = ((0). Then the entropy is evaluated as
S = MC(. As stated in Sec. 3.3 we determine the value of { to satisfy the thermo-
dynamic relation 22 = 1/T w1th Py fixed. As in the case of Schwarzschild black

S
hole, this can be solved as ¢ = & [ 4. In the BTZ black hole, the Hawking tem-

2
perature is given by T = mif with 72 = mL?/2(1 + /1 — (J/mL)?).2° On the

2150201-8
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2 .2
other hand, dM = T:Z“Liz%]vdhr with P, fixed. Employing these we can perform the
integration as ( = 4262\7,'7”, where we fixed the integration constant by ¢ — 0 when
r4+ — 0. This reproduces the known result of the black hole entropy computed by

Bekenstein-Hawking formula since the horizon area is given by 27r,. Then the

chemical potential for the angular momentum is computed as p4 = fT% = T:*L,
since % = —f;T T_*TQL with the mass M fixed, which also matches the known
7 —r2

result.?% 3% The first law of thermodynamics is given by TdS = dM — 11,dPy.

4.4. Fxact gravitational plane wave

Our final example is the gravitational waves, called an exact plane wave solution
discussed in old literature.>! The metric is given by ds? = e**(W(da? — dr?) +
u?(e2PWdy? + ¢=28(Wd22) with u = 7 — x. From the Einstein equation, nonvan-
ishing energy momentum tensors are computed as 7%, =717, = -T7, = -T%, =
‘34;2: (29 — ufB"?) with a prime being a u-derivative. Since the generator of time
translation vff = —d# and that of z-direction v = J¥ satisfy the conservation con-
dition, energy and momentum in the x direction are conserved in this system. These
are computed from (1) as E = P, = 12 [dzu(2Q’ — up?), where Vo = [ dydz.
This implies that the energy and momentum vanish if 2’ —u/3"? = 0, in which the

matter energy momentum tensor and the Ricci tensor vanish while the Riemann
curvature tensor does not when (uf” + 28" — u?3'3)/u # 0. Thus, we observe that
there exists a gravitational plane wave which carries neither energy nor momentum,
though the Riemann curvature tensor does not vanish everywhere.

If we choose functions 2, 8 as 20 — uB’? = %%ﬂ“*e)
stants C' and €, we obtain £ = P, = ‘ffﬂc :j: dx i = ‘ffﬂc The energy momentum

tensor is nonzero only on —e < 7 — x < €, which propagates in the = space at the
speed of light in the ¢ — 0 limit.

with positive con-

5. Discussion

In this paper, we have proposed a procedure to construct a conserved current in any
field theory with covariantly conserved energy momentum tensor and interpreted
it as the entropy current. Since any matter generates its energy momentum tensor,
which couples to gravitational field, the entropy carried by matter never escapes
from the censorship of universal gravitation. This may be a reason why we can find a
conserved current in a generic gravitational theory. (See also Refs. 32 and 33.) In the
applications to black holes, the entropy density is localized at the singularity, while
the entropy is still compatible with the Bekenstein—-Hawking formula. A deeper
understanding of this “information map puzzle” is called for.

Although the presented formulation may look quite different from known con-
ventional approaches, we confirm that it has successfully reproduced known results
with a more unified standpoint. In Appendix A, we also analyze a few simple mod-
els for gravitational collapse in this formulation. An advantage may be in that

2150201-9
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the energy distribution may become meaningful or at least visualizable in such a
time-dependent system with event horizon emergent. We draw a picture of energy
flow during the gravitational collapses while the total energy is conserved.

Gravitational systems analyzed in this paper are restricted to isotropic and
homogeneous systems such as the FLRW model and a few classic black holes whose
matter distribute only at the singularity. In these systems, in order to solve the
conservation condition it is sufficient to choose the intrinsic vector field to be pro-
portional to the time evolution vector field. However in a more general system,
there needs to be more vector fields to characterize the system. In such a situation,
the intrinsic vector field must be expanded by all such vector fields in general. As
a result the simple thermodynamic relation for the entropy in Sec. 3.2 obtained in
this paper will be modified significantly. It would be very interesting to find out the
corresponding dynamical thermodynamic relation and the local inverse tempera-
ture in such a more general situation.

The application of the method developed in this paper is also open to any
effective field theory on a fixed background metric. This application may shed new
light to thermodynamics and hydrodynamics. (See also Ref. 34.)

While the entropy is always conserved in situations considered in this paper,
there are several ways to violate the conservation of the entropy: by changing the
boundary conditions of fields or by violating the covariant conservation of energy
momentum tensor. In the latter case, while the effect may be compensated by
finding a vector field v to satisfy V,,(T*,v") = 0, the original conservation condition
may be suitable to investigate the second law of thermodynamic.

We leave these interesting issues to future studies.
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Appendix A. Local Energy Density in Gravitational Collapse
and Energy Conservation

In this appendix, simple gravitational collapses,®® extended to an arbitrary dimen-
sions with nonzero cosmological constant, are analyzed in terms of conserved charge
proposed in this paper, which turns out to be the total energy of the system in
these cases. We will see how energy distribution varies during the collapse while
the total energy is conserved even after a black hole formation.
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A.1. Thick light shells
We first consider a simple model of gravitational collapses for thick light shells,3?
whose metric in the Eddington—Finkelstein coordinate is given by

Gudr’dr” = —(1 +u)dt® — 2udtdr + (1 — u)dr® + r?g;;dz'dz? (A.1)
where g;; is the d — 2 metric for a sphere,
Ar? m(r,t)
—— du(r,t) = ——5F A2

@ @1 = (4.2)

m(r,t) = MO(r), MO(r)F(5), O at t+7r > A, 0 < t+7r < A t+71 < A,
respectively, with a monotonically increasing function F ( ) satisfying F'(0) = 0 and
F(1) = 1. Thus, the energy momentum tensor is evaluated as

u(r,t) = du(r,t) —

Tt (d—2) (ri=36u), . (d—2) [(ri=36u), ~ 2(6u)e (A.3)
YT 16nGy r2 0 T T T 16nGy | rd2 ro | '
¢ (d=2) (bu)r _ o i 6;' (r728)r . 2(r*6),
T = 167Gn T T Ty = 167Gy | 743 a3 (0u)et |,
(A.4)
and (* = —4!' satisfies Eq. (3) for the intrinsic vector. The corresponding charge
(energy) is conserved for all ¢ as
_ d—2)Vyq o
Et)=— [ad"! 7t = =Dy, A5
0 =~ [ e VidTt = (A.5)

and Fig. A.1 (Left) show a distributions of local energy —+/|g|T*: with F(z) =
3z% — 223,

A.2. Zero pressure fluid (dust)

Zero pressure fluid is handled by the Painlevé-Gullstrand coordinate as3®
Gudrtdz” = (Y* — 1)dt* — 2¢dtdr + dr® + r?g;;da’ da? (A.6)
where ¥(r,t) = —/u(r, 1), —/u(r,\) at t —A+G(r, M) > 0, t —A+G(r, M) <0,
MO(r)A 2A7r?

u(r,\) = (A.7)

ds
+ 9 G TaM :/ T
rd—3 (d—2)(d-1) ( ) 0o Vu(s,1)
and 0 < A < A is determined as a function of r,t by t —h(X)+G(r, MX) = 0
through a given monotonically increasing function of h(A) with h(0) = 0 and
h(1) = A.
As in the previous case, (¥ = —d}" becomes the intrinsic vector, whose corre-
sponding charge (energy) is conserved for all t. Figure A.1 (Right) shows a distribu-
. . . (ri=35¢2%), _ . L Ar2?
tion of energy density, given by \/[g]2 16WGN T2 with 692 = g% — (CI*QQ)W
for h(A) = AX and A = 0.
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Fig. A.1. Energy density during the gravitational collapse as a function of r and ¢. The black
hole formation at r = 0 starts at t = 0 and ends at ¢ = 1. The ¢ function at the origin (r = 0)
for the black hole is approximated by the step function for visibility. (Left) Thick light shells
in the Eddington—Finkelstein coordinate. (Right) Zero pressure fluid in the Painlevé-Gullstrand
coordinate.

A.3. Maitters with nonzero pressure

As a final example, let us consider a gravitational collapse of matter with nonzero
pressure, whose metric in the Vaidya coordinate is given by

gudatdz” = —f(r, v)dv® 4 2dvdr + rzgijdxidxj, (A.8)

where f(r,v) =1+0f — % with f(r,v) = 1+5f ((1221\# and v =t+r
with ¢ in the Eddington-Finkelstein coordinate.?® The energy momentum tensor

becomes

d—2 (ri=35f), o d—2 (5f),

167Gy rd—2 YT 16rGy 7
6 (%5 f)u

167TGN 'I‘d_?’ ’

TUU = TTT =
(A.9)

T =

and T, = 0, which describes matters with nonzero pressure (nonperfect fluid) as
well as the energy—momentum transfer due to 7",. Matters with nonzero pressure
indeed describes infalling massive matters, since v + r = t 4+ 2r = const represents
propagations slower than light. It is easy to see that (* = —d¥ is the intrinsic
vector, so that the corresponding charge (energy) is conserved for all .
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