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We propose a new class of vector fields to construct a conserved charge in a general field
theory whose energy–momentum tensor is covariantly conserved. We show that there

always exists such a vector field in a given field theory even without global symmetry.

We also argue that the conserved current constructed from the (asymptotically) timelike
vector field can be identified with the entropy current of the system. As a piece of

evidence we show that the conserved charge defined therefrom satisfies the first law of

thermodynamics for an isotropic system with a suitable definition of temperature. We
apply our formulation to several gravitational systems such as the expanding universe,

Schwarzschild and Banãdos, Teitelboim and Zanelli (BTZ) black holes, and gravitational
plane waves. We confirm the conservation of the proposed entropy density under any

homogeneous and isotropic expansion of the universe, the precise reproduction of the

Bekenstein–Hawking entropy incorporating the first law of thermodynamics, and the
existence of gravitational plane wave carrying no charge, respectively. We also comment

on the energy conservation during gravitational collapse in simple models.
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1. Introduction

A central mystery in theory of gravity is that while it is governed by fundamental

physics laws, it contains black holes, which behave as thermodynamical objects.1,2

In particular entropy of a well-known black hole has been shown to be given by the

Bekenstein–Hawking formula3–5 (except some cases such as an extremal one6–8):

S = A/4GN , where A is the area of the horizon and GN is the Newton constant.

This suggests that information of a black hole such as charges and dynamical degrees

of freedom is localized at its surface rather than inside the horizon so as to behave

as a membrane-like object.9

There have been various techniques invented to compute entropy of various

types of black holes and to show their thermodynamic relations in and beyond the

Einstein gravity.10–13 (See also Refs. 14–18.) These approaches have been developed

basically regarding charges including entropy as quasi-local ones evaluated by a

surface integral, which enables one to evaluate a charge of black holes without

knowing a charge distribution inside the horizon.

In the previous work to holographically realize a black hole with quantum cor-

rection,19 the authors of this paper recognized that the quasi-local energy is not

sufficient for precise evaluation of the total energy when matter distributes nontriv-

ially in space–time. We reached a definition to evaluate a total charge of matter by

a volume integration of its charge distribution, and proposed a precise definition

available on a general curved space–time with Killing vector fields.20 This definition

was recognized in early time,21,22 though the validity thereof has not been con-

firmed by explicit computation. We confirmed that this reproduces known results

on mass and angular momentum for classic black holes, and that it gives an addi-

tional contribution to the known mass formula of any compact star obtained by

quasi-local energy.20 (See also Ref. 23.)

In this paper, we delve into the proposed definition of a matter charge and ask

whether it can be extended to the case of geometry without any Killing vector field.

We conclude that (i) a class of vector fields satisfying a particular partial differential

equation, which includes the Killing vector fields if they exist, can make the charge

conserved, (ii) there always exists such a vector field uniquely for a given initial

condition in any field theory with energy–momentum tensor covariantly conserved

and (iii) the conserved charge constructed from the particular vector field is nothing

but the entropy of the system. We present our argument to reach this conclusion

with application to several gravitational systems in what follows.

2. Charges on a General Space–Time

2.1. Conservation condition

Let us consider any field theory on a general curved space–time. We use Greek

letters µ, ν, . . . to label an arbitrary fixed coordinate system xµ, which run from 0 to

d−1 with d the dimension of the space–time. In the previous paper,20 we presented
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a precise definition of a charge of matter associated with any generic vector field

vµ as

Q[v](t) :=

∫
Σt

dd−1x
√
|g|T 0

νv
ν , (1)

where Tµν is the matter energy momentum tensor given in the system, Σt is a

hypersurface or a time slice at an arbitrarily fixed time x0 = t. For instance, if one

chooses a vector field as a generator of time translation and that of a space direc-

tion with suitable normalization, then the corresponding charges become energy

and momentum in that direction, respectively. Superiority of this definition is its

manifest general covariance.

It can be shown that the charge defined by (1) is conserved or time-independent

when vµ is a Killing vector field and the energy momentum tensor is covariantly

conserved.20–22 In this case the defined charge becomes a Noether charge corre-

sponding to global symmetry of the system. We emphasize that our proposal can

be applied not only to Einstein gravity but also to any other gravitational theories.

A question is whether a charge Q[v] conserves if v is other than a Killing vector

field. To answer this question we study the time evolution of the charge, which is

computed as20

dQ[v]

dt
=

∫
Σt

dd−1x
√
|g|Tµν∇µvν . (2)

Therefore, if a vector field satisfies the differential equation

Tµν∇µvν = 0, (3)

then it is sufficient for the charge Q[v] to conserve. In this sense, we refer to Eq. (3)

as the conservation condition for the vector v. In particular any Killing vector field

trivially satisfies the conservation condition. This gives our conclusion (i).

2.2. Intrinsic vector field

Since the conservation condition (3) is a first-order linear partial differential equa-

tion, we can convert it to ordinary differential equations by the method of charac-

teristics with a parameter τ . Therefore, for a given energy momentum tensor, there

always exists a general solution at least locally in τ , which is determined uniquely

once we fix an appropriate initial condition at τ = 0 on a hypersurface Σt0 includ-

ing a choice of a direction of the vector v.

To be more explicit, one can arbitrarily choose a reference vector field v̄µ(x)

which is defined in the entire space–time. A simple example is v̄µ(x) := dxµ(η)
dη where

η is a parameter to characterize the evolution of the hypersurface Σt. (Furthermore,

if we choose η to be the global time x0, the reference vector becomes v̄µ(x) = δµ0 .)

Then, we can look for the solution of the conservation condition in the form of

vµ(x) = c(x)v̄µ(x) where c(x) is a scalar function. Equation (3) reduces to

A0(x)∂0c(x) +
∑
µ6=0

Aµ(x)∂µc(x) +B(x)c(x) = 0, (4)
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where Aµ(x) := Tµν(x)v̄ν(x) and B(x) := Tµν(x)∂µv̄
ν(x) + Tµν(x)Γµνλv̄

λ(x). This

can be solved once c(x0,x) is given at some x0 unless A0(x) identically vanishes in

the entire space–time.a A choice of the initial condition depends on a physical setup

of the system. Indeed A0(x) = T 0
ν(x)v̄ν(x) 6= 0 is necessary to obtain a nontrivial

charge as Q[v] =
∫

Σt
dd−1x

√
|g|T 0

ν(x0,x)v̄ν(x0,x)c(x0,x).

Since the time direction must be chosen so that a component of the stress tensor

with time component does not vanish in any reasonable physical system, there

always exists a vector field to satisfy (3) proportional to a timelike vector field (or

an asymptotically timelike vector field in the presence of black holes). We refer to

this (asymptotically) timelike vector field as an intrinsic vector field and denote

it by ζ.b In this paper, we mainly consider a conserved charge associated with ζ,

except Sec. 4.4 where both conserved energy and momentum are treated.

The above argument establishes our conclusion (ii) that there always exists a

conserved quantity of the form (1) in any field theory on general curved space–time

even without any global symmetry. Thus, this conserved charge is different from a

Noether charge and must be very special and fundamental for the system. In the

following section, we give physical interpretation for this charge.

3. Entropy and Entropy Current

What is the physical meaning of the conserved charge Q[ζ] associated with the

intrinsic vector field? Our answer is entropy of the system,

S := Q[ζ] =

∫
dd−1x s0, (5)

where s0 is the time component of an entropy current density defined by

sµ =
√
|g|Tµνζν . (6)

One can easily show that this current density satisfies the ordinary continuity equa-

tion ∂µs
µ = 0, thanks to the conservation condition (3) and the covariant conser-

vation of the energy momentum tensor.

Let us give some remarks for this interpretation. The entropy is the most fun-

damental quantity and uniquely defined in a dynamical system, and therefore it is

physically reasonable that the entropy is related to the conserved charge Q[ζ], which

is also uniquely defined for a generic system without global symmetry. Since the

fundamental physics law is expected to be reversible, it is natural that the entropy

of the whole system including matter with gravitational interaction is conserved

in a fundamental theory such as general relativity. To the contrary, if the entropy

aIn the region where A0(x) = 0, one cannot determine the time evolution of c(x). However, since
the charge density is proportional to A0(x) one does not need to know the value of c(x).
bThe existence of such a vector field for a spherically symmetric gravitational system was pointed

out in Ref. 24. This vector field may be known as the Kodama vector. We have checked that the
Kodama vector satisfies the conservation condition (3).
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were not conserved, for example, in a general gravitational system, then it would

mean that there exists extra matter producing entropy via unknown interaction

(“fifth force”), which would be unreasonable. Further evidence will be presented in

following sections.

3.1. Analysis for geometry without horizon

Let us analyze our proposal in the case where the coordinate system allows a glob-

ally well-defined unit time evolution vector field, which we denote by nµ. In this

case tensors can be decomposed into the longitudinal and transverse components

with respect to this vector for each index. For example, the energy momentum ten-

sor is decomposed as

Tµν = ρnµnν + Pµν − nµJν − Jµnν , (7)

where ρ := nµT
µ
νn

ν , Pµν := ḡµαT
α
β ḡ
β
ν , Jν := nαT

α
β ḡ
β
ν , with ḡµν = δµν + nµnν ,

and the metric tensor is decomposed into the Arnowitt, Deser and Misner (ADM)

form as

ds2 = −N2(dx0)2 + ḡij(dx
i +N idx0)(dxj +N jdx0), (8)

where N,N i are called a lapse function and a shift vector, respectively. Note that

J0 = 0 and nµ = −Nδ0
µ.

From the covariant conservation, we have (∇µTµν)nν = 0, which boils down to

∂̌ρ+ ρK + PµνK
ν
µ + nν∇̌Jν − ∇̄µJµ = 0, (9)

where ∇̌ := nµ∇µ, ∇̄µ := ḡρµ∇ρ, Kν
µ := ∇̄µnν is the extrinsic curvature, and

K := Kµ
µ. Since the intrinsic vector field is defined to be proportional to a time

evolution vector field, we set ζµ = −βnµ, for which the conservation condition (3)

reduces to

ρ∂̌β − βPµνKν
µ + βJν∇̌nν − Jµ∂̄µβ = 0. (10)

Combining Eqs. (9) and (10) and taking a new coordinate η satisfying nµ = ∂xµ

∂η ,

we obtain

d(ρβ)

dη
+ ρβK − ∇̄µ(Jµβ) = 0. (11)

In the case with Jµ = 0, this can be easily solved as

β = β0
ρ0

ρ
exp

[
−
∫ η

η0

dηK

]
, (12)

where ρ0, β0 are initial values of ρ, β at η = η0, respectively.

The entropy current density becomes

s0 =
√
ḡρβ, si = −β

√
ḡ(ρN i +NJ i), (13)

where ḡ := det ḡij . Thus, the continuity equation becomes

∂0s
0 = ∂i(s

0N i +N
√
|ḡ|J iβ). (14)
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It would be amusing that the shift vector has a physical meaning of the flow veloc-

ity of the entropy density when J i = 0. Note that the entropy density is locally

conserved if J i = N i = 0.

3.2. The first law of thermodynamics

We now show that our entropy current density satisfies the first law of thermody-

namics in isotropic systems, so that the shift vector vanishes and the matter energy

momentum tensor is given by a perfect fluid, characterized by Pµν = P ḡµν and

Jµ = Jµ = 0 in (7), and thus K =
d log
√
|ḡ|

dη . In this situation, it follows from the

continuity equation (14) that the entropy density itself becomes time-independent.

Furthermore, since (10) in this case becomes

ρ
dβ

dη
=
βP

v

dv

dη
, (15)

we can show that s0 in (13) satisfies

ds0

dη
=
du

dη
β + u

dβ

dη
=

(
du

dη
+ P

dv

dη

)
β, (16)

where v :=
√
|ḡ| is a volume density, and u := ρv is the (internal) energy density

corresponding to the energy, a charge with the unit time evolution vector field as

E := Q[−n] =
∫
dd−1xu. This becomes exactly the first law of thermodynamics if

β is identified with the inverse temperature, which proves our conclusion (iii). Note

that the variation by η in Eq. (16) is realized by some dynamical process, which

must satisfy the equation of motion for the matter, as well as the Einstein equation

or its variant for gravity if the metric gµν is dynamical.

Our method determines both the entropy density s0 and the inverse temper-

ature β for the matter through the gravitational interaction with gµν . An overall

normalization for both is fixed as an initial condition for the intrinsic vector ζ in the

system, but a ration s0/β is free from such an ambiguity. Once the normalization

is given, the dependence of the temperature on space–time is completely controlled

by Eq. (3). This will be seen in Sec. 4.1.

3.3. Case for black hole geometry

Let us consider applying the above formulation to a black hole geometry, where the

existence of globally well-defined unit timelike vector field is not guaranteed. Then

the analysis done in Sec. 3.2 is not generally applicable, and we need to analyze

the system by setting the intrinsic vector field ζµ = −ζδµ0 , where ζ is a function

determined to satisfy the conservation condition (3).

It happens, however, that the matter energy momentum tensor in black hole

geometry vanishes except singularity at the origin.20 In such a case, the conservation

condition is solved by any time-independent ζ, and there is no further way to

determine it. In this paper, as a provisional prescription, we assume that the energy
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conservation law holds to satisfy 1
βds

0 = du+ Pdv as in the previous case, and we

determine ζ to satisfy the first law of thermodynamics with temperature given by

the Hawking temperature identical to the surface gravity normalized by 2π.4 We

expect that this assumption is in principle verified by setting up a gravitational

system such that a smooth geometry with matter gravitationally collapses into the

black hole and keeping track of charges during the process. We leave this to future

studies.

4. Applications

4.1. Friedmann–Lemâıtre–Robertson–Walker metric

Let us consider d-dimensional Friedmann–Lemâıtre–Robertson–Walker (FLRW)

metric, which is given by ds2 = −(dx0)2 + a2g̃ijdx
idxj , where a is the scale fac-

tor dependent only on time, and the Ricci tensor for g̃ is R̃ij = (d − 2)kg̃ij with

k = 1, 0,−1 corresponding to a (d − 1)-dimensional sphere, flat space, hyperbolic

space, respectively. This is a model of homogeneous and isotropic expanding uni-

verse in Einstein gravity with cosmological constant Λ. In particular, the shift vec-

tor vanishes and the energy momentum tensor is given by a perfect fluid, whose

density ρ and pressure P are determined by the Einstein or Friedmann equation

as ρ = 1
8πGN

( (d−1)(d−2)
2

k+ȧ2

a2 − Λ), P = 1
8πGN

((2− d){ äa + (d−3)
2

k+ȧ2

a2 }+ Λ), where

ḟ = ∂0f .

Since there is a unit time evolution vector field as nµ = −δµ0 and the system

is isotropic, this is a case studied in Sec. 3.2, where not only the entropy but also

the entropy density are conserved, and the first law of thermodynamics (16) holds.

The entropy density is computed as s0 = ad−1
√
g̃βρ, where β is calculated from

(12) as uβ = u0β0 = const with u = ρ
√
g̃ad−1, since K = ∂t log ad−1. Thus, in the

homogeneous and isotropic expanding universe, the energy density is proportional

to the temperature, which decreases during the expansion of the system in any

equation of state with nonzero pressure while temperature keeps constant in the case

of the pressureless dust, as evident from du = −Pdv. The entropy density satisfies

the thermodynamic relation (16). (See also Refs. 25, 26 and references therein.)

Note that s0 is constant even for the k = 1 (sphere) case, where the universe first

expands, reaches its maximum size, and then contracts.

4.2. Schwarzschild black hole

We next evaluate the entropy of the Schwarzschild black hole in d-dimensional

space–time with cosmological constant Λ. We employ the metric in the Eddington–

Finkelstein coordinate as ds2 = −(1 + u(r))(dx0)2 − 2udx0dr + (1 − u(r))dr2 +

r2g̃ijdx
idxj , where u(r) = −2Λr2/(d−2)(d−1)−rd−3

0 /rd−3 and r0 is a constant cor-

responding to the radius of horizon when Λ = 0. Note that the metric is nonsingular

even at u = ±1, and a constant t surface is always spacelike even inside the horizon
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for nonnegative Λ. (For negative Λ, a constant t surface is spacelike inside the hori-

zon but becomes timelike for large r satisfying u(r) > 1.) The energy defined by

(1) with a Killing vector vµ = −δµ0 for time translation reproduces the well-known

black hole mass M = Vd−2(d−2)rd−3
0 /(16πGN ), where Vd−2 :=

∫
dd−2x

√
det g̃ij ,

20

since

Tµ0 = −ρδµ0 , ρ :=
d− 2

16πGN

rd−3
0 δ(r)

rd−2
. (17)

This is the case discussed in Sec. 3.3 that the conservation condition is solved by

any time-independent intrinsic vector field because the energy momentum tensor

vanishes except r = 0 as seen from (17). In this situation, the intrinsic vector

field can be written as ζµ = −ζ(x)δµ0 , where ζ(x) is an arbitrary smooth function

of spacial coordinates x. Then the entropy current defined by (5) is computed as

sµ = ζ
√
gρδµ0 , where we can take a constant ζ = ζ(0) since ρ is proportional to

δ(r). Note that the entropy density is localized at the singularity. Then the entropy

given by (6) is evaluated as S = Mζ. As discussed in Sec. 3.3, we determine

ζ to satisfy the first law of thermodynamics TdS = dM identifying T with the

Hawking temperature T = (d − 3 − 2Λr2
H

(d−2) )/4πrH , where rH is the (outer) horizon

radius determined by u(rH) = −1.27 Plugging S = Mζ into the thermodynamic

relation reduces to a differential equation ζ+M dζ
dM = 1/T , whose general solution is

ζ = 1
M

∫
dM
T . Using dM =

(d−2)Vd−2r
d−4
H ((d−3)L2+(d−1)r2

H)

16πGNL2 drH , the integration can

be performed as ζ =
Vd−2r

d−2
H

4GNM
. Remark that we can fix the integration constant since

ζ → 0 when r0 → 0 or rH → 0, which cannot be fixed only by the thermodynamic

relation.28 This reproduces the known result of the black hole entropy computed by

Bekenstein–Hawking formula because the area of the horizon is given by Vd−2r
d−2
H .

4.3. BTZ black hole

Next application is to the BTZ black hole, whose metric is ds2 = −f(r)dt2 +

f(r)−1dr2 +r2(dφ−ω(r)dt)2, where f(r) = r2

L2 −mθ(r)+ J2

4r2 , ω = J
2r2 . It was shown

in Ref. 20 that the energy and the angular momentum defined by using (1) choosing

vµ = −δµ0 and vµ = δµφ reproduce the well-known result M = m
8GN

, Pφ = J
8GN

. The

matter energy momentum tensor was computed as

T 0
ν =

δ(r)

16πGNr
(−mδ0

ν + Jδφν ). (18)

As discussed in Sec. 3.3 and the case of the Schwarzschild black hole, the conser-

vation condition is solved by ζµ = −ζ(x)δµ0 , due to (18). This reduces the entropy

density to s0 = ζmδ(r)/16πGN , where ζ = ζ(0). Then the entropy is evaluated as

S = Mζ. As stated in Sec. 3.3 we determine the value of ζ to satisfy the thermo-

dynamic relation ∂S
∂M = 1/T with Pφ fixed. As in the case of Schwarzschild black

hole, this can be solved as ζ = 1
M

∫
dM
T . In the BTZ black hole, the Hawking tem-

perature is given by T =
r2
+−r

2
−

2πL2r+
with r2

± = mL2/2(1±
√

1− (J/mL)2).29 On the
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other hand, dM =
r2
+−r

2
−

r+4L2GN
dr+ with Pφ fixed. Employing these we can perform the

integration as ζ = 2πr+
4GNM

, where we fixed the integration constant by ζ → 0 when

r+ → 0. This reproduces the known result of the black hole entropy computed by

Bekenstein–Hawking formula since the horizon area is given by 2πr+. Then the

chemical potential for the angular momentum is computed as µφ = −T ∂S
∂Pφ

= r−
r+L

,

since ∂S
∂Pφ

= − 2πr−L
r2
+−r2

−
with the mass M fixed, which also matches the known

result.29,30 The first law of thermodynamics is given by TdS = dM − µφdPφ.

4.4. Exact gravitational plane wave

Our final example is the gravitational waves, called an exact plane wave solution

discussed in old literature.31 The metric is given by ds2 = e2Ω(u)(dx2 − dτ2) +

u2(e2β(u)dy2 + e−2β(u)dz2) with u = τ − x. From the Einstein equation, nonvan-

ishing energy momentum tensors are computed as T xx = T τ x = −T τ τ = −T xτ =
e−2Ω

4πu (2Ω′ − uβ′2) with a prime being a u-derivative. Since the generator of time

translation vµ0 = −δµτ and that of x-direction vµx = δµx satisfy the conservation con-

dition, energy and momentum in the x direction are conserved in this system. These

are computed from (1) as E = Px = V2

4π

∫
dxu(2Ω′ − uβ′2), where V2 =

∫
dy dz.

This implies that the energy and momentum vanish if 2Ω′−uβ′2 = 0, in which the

matter energy momentum tensor and the Ricci tensor vanish while the Riemann

curvature tensor does not when (uβ′′ + 2β′ − u2β′3)/u 6= 0. Thus, we observe that

there exists a gravitational plane wave which carries neither energy nor momentum,

though the Riemann curvature tensor does not vanish everywhere.

If we choose functions Ω, β as 2Ω′ − uβ′2 = C
u
θ(u+ε)−θ(u−ε)

2ε with positive con-

stants C and ε, we obtain E = Px = V2C
4π

∫ τ+ε

τ−ε dx
1
2ε = V2C

4π . The energy momentum

tensor is nonzero only on −ε < τ − x < ε, which propagates in the x space at the

speed of light in the ε→ 0 limit.

5. Discussion

In this paper, we have proposed a procedure to construct a conserved current in any

field theory with covariantly conserved energy momentum tensor and interpreted

it as the entropy current. Since any matter generates its energy momentum tensor,

which couples to gravitational field, the entropy carried by matter never escapes

from the censorship of universal gravitation. This may be a reason why we can find a

conserved current in a generic gravitational theory. (See also Refs. 32 and 33.) In the

applications to black holes, the entropy density is localized at the singularity, while

the entropy is still compatible with the Bekenstein–Hawking formula. A deeper

understanding of this “information map puzzle” is called for.

Although the presented formulation may look quite different from known con-

ventional approaches, we confirm that it has successfully reproduced known results

with a more unified standpoint. In Appendix A, we also analyze a few simple mod-

els for gravitational collapse in this formulation. An advantage may be in that
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the energy distribution may become meaningful or at least visualizable in such a

time-dependent system with event horizon emergent. We draw a picture of energy

flow during the gravitational collapses while the total energy is conserved.

Gravitational systems analyzed in this paper are restricted to isotropic and

homogeneous systems such as the FLRW model and a few classic black holes whose

matter distribute only at the singularity. In these systems, in order to solve the

conservation condition it is sufficient to choose the intrinsic vector field to be pro-

portional to the time evolution vector field. However in a more general system,

there needs to be more vector fields to characterize the system. In such a situation,

the intrinsic vector field must be expanded by all such vector fields in general. As

a result the simple thermodynamic relation for the entropy in Sec. 3.2 obtained in

this paper will be modified significantly. It would be very interesting to find out the

corresponding dynamical thermodynamic relation and the local inverse tempera-

ture in such a more general situation.

The application of the method developed in this paper is also open to any

effective field theory on a fixed background metric. This application may shed new

light to thermodynamics and hydrodynamics. (See also Ref. 34.)

While the entropy is always conserved in situations considered in this paper,

there are several ways to violate the conservation of the entropy: by changing the

boundary conditions of fields or by violating the covariant conservation of energy

momentum tensor. In the latter case, while the effect may be compensated by

finding a vector field v to satisfy∇µ(Tµνv
ν) = 0, the original conservation condition

may be suitable to investigate the second law of thermodynamic.

We leave these interesting issues to future studies.
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Appendix A. Local Energy Density in Gravitational Collapse

and Energy Conservation

In this appendix, simple gravitational collapses,35 extended to an arbitrary dimen-

sions with nonzero cosmological constant, are analyzed in terms of conserved charge

proposed in this paper, which turns out to be the total energy of the system in

these cases. We will see how energy distribution varies during the collapse while

the total energy is conserved even after a black hole formation.
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A.1. Thick light shells

We first consider a simple model of gravitational collapses for thick light shells,35

whose metric in the Eddington–Finkelstein coordinate is given by

gµνdx
µdxν = −(1 + u)dt2 − 2udtdr + (1− u)dr2 + r2ḡijdx

idxj , (A.1)

where ḡij is the d− 2 metric for a sphere,

u(r, t) = δu(r, t)− Λr2

(d− 2)(d− 1)
, δu(r, t) := −m(r, t)

rd−3
, (A.2)

m(r, t) = Mθ(r), Mθ(r)F ( t+r∆ ), 0 at t + r > ∆, 0 ≤ t + r ≤ ∆, t + r < ∆,

respectively, with a monotonically increasing function F (x) satisfying F (0) = 0 and

F (1) = 1. Thus, the energy momentum tensor is evaluated as

T tt =
(d− 2)

16πGN

(rd−3δu)r
rd−2

, T rr =
(d− 2)

16πGN

[
(rd−3δu)r
rd−2

− 2(δu)t
r

]
, (A.3)

T tr =
(d− 2)

16πGN

(δu)t
r

= −T rt, T ij =
δij

16πGN

[
(rd−3δ)rr
rd−3

− 2(rd−3δ)rt
rd−3

+ (δu)tt

]
,

(A.4)

and ζµ = −δµt satisfies Eq. (3) for the intrinsic vector. The corresponding charge

(energy) is conserved for all t as

E(t) = −
∫
dd−1x

√
|g|T tt =

(d− 2)Vd−2

16πGN
M, (A.5)

and Fig. A.1 (Left) show a distributions of local energy −
√
|g|T tt with F (x) =

3x2 − 2x3.

A.2. Zero pressure fluid (dust)

Zero pressure fluid is handled by the Painlevé–Gullstrand coordinate as35

gµνdx
µdxν = (ψ2 − 1)dt2 − 2ψdtdr + dr2 + r2ḡijdx

idxj , (A.6)

where ψ(r, t) = −
√
u(r, 1), −

√
u(r, λ) at t−∆+G(r,M) > 0, t−∆+G(r,M) ≤ 0,

u(r, λ) =
Mθ(r)λ

rd−3
+

2Λr2

(d− 2)(d− 1)
, G(r,M) =

∫ r

0

ds√
u(s, 1)

, (A.7)

and 0 ≤ λ ≤ ∆ is determined as a function of r, t by t−h(λ) +G(r,Mλ) = 0

through a given monotonically increasing function of h(λ) with h(0) = 0 and

h(1) = ∆.

As in the previous case, ζµ = −δµt becomes the intrinsic vector, whose corre-

sponding charge (energy) is conserved for all t. Figure A.1 (Right) shows a distribu-

tion of energy density, given by
√
|g| d−2

16πGN

(rd−3δψ2)r
rd−2 with δψ2 := ψ2 − 2Λr2

(d−2)(d−1)

for h(λ) = ∆λ and Λ = 0.
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Fig. A.1. Energy density during the gravitational collapse as a function of r and t. The black

hole formation at r = 0 starts at t = 0 and ends at t = 1. The δ function at the origin (r = 0)
for the black hole is approximated by the step function for visibility. (Left) Thick light shells

in the Eddington–Finkelstein coordinate. (Right) Zero pressure fluid in the Painlevé–Gullstrand
coordinate.

A.3. Matters with nonzero pressure

As a final example, let us consider a gravitational collapse of matter with nonzero

pressure, whose metric in the Vaidya coordinate is given by

gµνdx
µdxν = −f(r, v)dv2 + 2dvdr + r2ḡijdx

idxj , (A.8)

where f(r, v) = 1 + δf − 2Λr2

(d−2)(d−1) with f(r, v) = 1 + δf − 2Λr2

(d−2)(d−1) , and v = t+ r

with t in the Eddington–Finkelstein coordinate.35 The energy momentum tensor

becomes

T vv = T rr =
d− 2

16πGN

(rd−3δf)r
rd−2

, T rv = − d− 2

16πGN

(δf)v
r

,

T ij =
δij

16πGN

(rd−3δf)rr
rd−3

,

(A.9)

and T vr = 0, which describes matters with nonzero pressure (nonperfect fluid) as

well as the energy–momentum transfer due to T rv. Matters with nonzero pressure

indeed describes infalling massive matters, since v + r = t+ 2r = const represents

propagations slower than light. It is easy to see that ζµ = −δµv is the intrinsic

vector, so that the corresponding charge (energy) is conserved for all t.
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