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Abstract
We review research on electron plasma waves and Landau damping in the quan-
tum regime. Quantum kinetic equations are also briefly reviewed. Particle trapping, 
harmonic fields, Volkov states in plasmas and other nonlinear effects are discussed. 
Furthermore, we show that quantum plasma models can be applied to classical plas-
mas. This includes photon Landau damping and quasiparticle turbulence, with a 
variety of applications from laser accelerators to space physics, and to particle con-
finement in magnetic fusion devices. Finally, the case of plasma behaviour in laser-
cooled atoms is discussed. We show that the concept of quantum Landau damping 
is relevant, not only to quantum plasmas, but also to many problems in classical 
plasmas, and to ultracold matter where plasma models can be applied.

1 � Historical perspective

The concept of plasma as a physical medium was introduced by Langmuir (Mott-
Smith 1971), although it was considered already in Ancient Greece as one of the 
fundamental states of matter, and called Fire. From the Ancient, we have also inher-
ited the ideia of quantizing our description of the physical world, by assigning a 
Pythagorean solid to each state of matter. Fire was represented by a Tetrahedron, 
“the smallest and the acutest” of these solids. Therefore, we can say without too 
much irony that the first quantum representation of a plasma was the Tetrahedron 
(see Plato, Timaeus, 55d–56c).

Coming back to more recent times, electron plasma oscillations, also called 
Langmuir waves, were first observed by Tonks and Langmuir (1929). Their fre-
quency � is nearly equal to the electron plasma frequency, �p , which is the char-
acteristic parameter of the medium. The concept of Landau damping of electron 
plasma waves was formulated in Landau (1946), and corresponds to the possible 
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occurrence of wave damping without the need for particle collisions or any other 
mechanism of dissipation. At first, this non-trivial and counter-intuitive concept 
was seen as a simple mathematical curiosity, with no obvious physical conse-
quences. It, nevertheless, stimulated a number of theoretical new concepts, 
such as the BGK modes, which are electrostatic undamped modes (Bernstein 
et al. 1957), and the van Kampen modes (Van Kampen 1955; Case 1959). Lan-
dau damping can be seen as the result of phase-mixing of a superposition of van 
Kampen modes. However, the suspicions on this non-collisional damping evapo-
rated almost completely when, in 1964, the first unequivocal experimental dem-
onstration was made by Malmberg and Wharton (1964), soon followed by others 
(Derfler and Simonen 1966).

The conceptual difficulty associated with this concept is that it carries no dis-
sipation, and therefore, it is able to conserve entropy. As a result, processes like 
the formation of wave revivals and echos become possible. Electron plasma waves 
excited at some position in plasma column, by an antenna immersed in the medium, 
will attenuate along propagation and eventually disappear. However, the informa-
tion associated with the wave is, nevertheless, retained by each individual particle, 
which keeps oscillating no longer in synchronism with the other particles. Due to 
these hidden particle oscillations, the wave can, under some conditions, be recreated 
at some other location. This revival of the disappeared oscillation is called a plasma 
wave echo. It can be excited by a second antenna located at some distance from the 
first one, or by a reflecting plasma boundary. This phenomenon was first predicted 
by Gould et al. (1967), and can be seen as a direct consequence of electron Landau 
damping. Thus, information on the vanished wave is conserved in the medium, and 
therefore, entropy.

In the process of Landau damping, there is a special class of electrons that play a 
dominant role. They are called resonant particles, those with a velocity nearly equal 
to the wave phase velocity, that exchange energy with the wave (Dawson 1961). As 
for the remaining particles, they provide the necessary background that supports the 
plasma oscillation and build up the collective field.

The original description of Landau damping was based on the linearized version 
of the Vlasov equation, the kinetic equation describing the behaviour of the medium. 
However, it was soon realized that nonlinear processes also play an important role, 
and lead to new phenomena, such as particle trapping in the wave potential (O’ Neil 
1965). As a result, the damping process will depend on the wave amplitude, with 
slow oscillations of the damping rate, at a new frequency (called bounce frequency), 
much smaller than the electron plasma frequency. Due to these nonlinear oscilla-
tions, upper and lower sidebands will appear in the wave spectrum, similar to those 
due to amplitude modulation. These effects were first observed experimentally in 
Wharton et  al. (1968). Asymptotically, the damping process will saturate and the 
wave frequency will be shifted. Nonlinear Landau damping has been studied in the-
ory and simulations by several authors along the years (Sugihara et al. 1981; Ras-
mussen and Thomsen 1983; Manfredi 1997; Yampolsky and Fisch 2009).

Even after the remarkable theoretical and experimental advances of the 60s, the 
concept of electron Landau damping never lost its fascination. And, in 2011, the 
nonlinear Vlasov problem was mathematically solved by Mouhot and Villani (2010).  
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The theoretical problem of Landau damping, in its classical formulation, seemed 
completely solved. In recent years, the problem shifted to quantum plasmas.

A quantum description of the plasma medium becomes necessary for large elec-
tron densities n and low temperatures T, when the inter-particle distance (sometimes 
also called the Wigner–Seitz radius), aWS becomes smaller than the de Broglie wave-
length of thermal electrons, �B ≥ aWS . This inter-particle distance is proportional 
to the cubic root of the electron plasma density n, according to aWS = (3∕4�n)1∕3 , 
while the electron de Broglie length behaves as the inverse of the electron thermal 
velocity vth , as �B = ℏ∕mevth . It then becomes obvious that the quantum plasma 
regime requires high densities and low electron temperatures, or n1∕3�B ≥ 1.

An alternative, but nearly equivalent, definition of the quantum plasma regime 
can be established with the help of the dimensionless parameter � = TF∕T  , which is 
the ratio between the Fermi temperature and the electron plasma temperature

We can see that � ∼ (n1∕3�B)
2 . In the famous (logT − log n) diagram, we can then 

define two regions, the classical plasma region, where 𝜒 < 1 , and the quantum 
plasma region, where � ≥ 1 . Excellent reviews on quantum plasmas have been pub-
lished along the years (Shukla and Eliasson 2011; Manfredi et  al. 2019; Melrose 
2020; Misra and Brodin 2022). In the present review, we focus on electron plasma 
waves, and somewhat deviate from the traditional definition of quantum plasmas. In 
particular, we show that the quantum plasma methods and the phenomenon of quan-
tum Landau damping is also relevant to the classical plasma regime of 𝜒 < 1 . This 
is due to the existence of quantum-like processes associated with photon Landau 
damping, which involve high phase-velocity plasma waves, and also to the quasipar-
ticle behaviour of classical turbulent plasmas. In that sense, the relevance of quan-
tum Landau damping and quantum trapping is nearly universal, and includes several 
areas of the so-called classical plasmas.

The first approaches to electron plasma waves and damping in quantum plas-
mas date from the early 60s of the last century (Klimontovich and Silin 1960; Pines 
and Schrieffer 1962). They were mainly motivated by solid state physics, and by 
the study of collective electron processes in metals. In more recent years, the inter-
est shifted from solid state to plasma physics oriented problems, such as intense 
laser–plasma interactions and astrophysical phenomena. Due to these historical 
origins, it is not surprising to see that the main theoretical approaches are based 
on density functional theory, typical of condensed matter, and on quantum kinet-
ics, closer to plasma kinetic theory. Although there is some debate on the mutual 
advantages of these two eventually competing approaches (Bonitz et al. 2019), there 
is still no clear demonstration of their theoretical equivalence. Here, we follow the 
quantum kinetic approach, which is more appropriate to describe wave propagation 
and time-dependent phenomena.

The theoretical methods used to describe quantum plasma processes, in the broad 
sense assumed here, are indicated in Fig. 1. A central role of these theoretical meth-
ods is played by the wave-kinetic equation, as shown in this figure. The wave-kinetic 
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equation describes the temporal evolution of the Wigner function (Wigner 1932) 
which replaces the classical particle distribution in the quantum regime. As it is well 
known, the Wigner function is in fact a quasidistribution, because it can take nega-
tive values, in contrast with its classical correspondent. This fact is not necessarily 
a drawback, because a negative value of the Wigner function helps to identify the 
quantum regimes. The wave-kinetic equation can be derived from the Schrödinger 
equation for the plasma electron population, following a procedure first proposed 
by Moyal (1949), and using appropriate statistical averages. It describes the evolu-
tion of the electron population in the presence of a mean-field (Haas 2011). In the 
simplest case, this mean-field corresponds to the electrostatic field of an electron 
plasma wave. In the quasiclassical limit, the wave-kinetic equation can be reduced to 
a Vlasov equation, to which we can eventually add the first-order quantum correc-
tions. Describing the mean field with the Poisson’s equation, we can then establish 
the quantum dispersion relation of electron plasma waves, and define the physical 
conditions for the occurrence of quantum Landau damping (Suh et al. 1991; Dali-
gault 2014; Brodin et al. 2015; Chatterjee and Misra 2016).

Similarly, we can derive a wave-kinetic equation for the electromagnetic radia-
tion in a completely classical plasma background, if we start from Maxwell’s equa-
tions and use the Wigner function for the electric field (Tsintsadze and Mendonça 
1998). Striking similarities between the electron gas and the photon gas in a plasma 
become evident, which include the existence of photon Landau damping (Bingham 
et al. 1997). This is exactly equivalent to the electron Landau damping. The quan-
tum nature of photon Landau damping is related to the fact that photons are electro-
magnetic waves, and, therefore, possess the same undulatory nature as the electrons 
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Fig. 1   Diagram of theoretical methods for collisionless quantum plasmas. On the left-hand side, we have 
the basic quantum plasma methods. On the left-hand side, we represent the processes in classical plas-
mas that can be described by quantum plasma methods, such as photon kinetics and quasiparticle turbu-
lence
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in the quantum regime. In both cases, emission and absorption of electron plasma 
wave quanta (sometimes called plasmons) by electrons and photons also involve the 
occurrence of a quantum recoil.

Pushing further these similarities between the behaviour of particles (electrons) 
and fields (photons), we can then establish the evolution equations of a turbulent 
plasma, based on the definition of appropriate Wigner functions. The resulting 
wave-kinetic equation for classical plasma turbulence, where the role of photons is 
replaced by plasma quasiparticles (for instance, driftons, for drift-wave turbulence), 
shows the existence of Landau damping and quasiparticle trapping similar to those 
of the electrons in a quantum plasma.

In a broader perspective, quantum Landau damping can be seen as a generic pro-
cess, with implications in many areas of physics, not just in plasmas, from the damp-
ing of giant resonances of atomic nuclei (Bertsch et  al. 1983; Fiolhais 1986), to 
damping of Bogolioubov oscillations in Bose–Einstein condensates (Pitaevskii and 
Stringari 1997; Giorgini 1998; Mendonça and Terças 2018). As a simple and natural 
extension of the quantum plasma model, we should mention the case of laser-cooled 
atomic clouds. This corresponds to a gas of neutral atoms, in the micro-Kelvin tem-
perature range, cooled by laser beams, where absorption and re-emission of photons 
(nearly resonant to a given atomic transition) produce an atomic effective charge 
(Walker et al. 1990; Pruvost et al. 2000). For this reason, the cold gas behaves col-
lectively as a plasma (Barré et al. 2019). Notice that the atoms stay in a neutral state 
and are not photoionized. Atom density oscillations (a kind of plasmons) can be 
excited in the gas, with a dispersion relation that strongly resemble that of plas-
mons in quantum plasmas (Mendonça et al. 2008). This includes damping of such 
oscillations by nearly resonant atoms, which is nothing but another form of Landau 
damping. Excitation of such oscillations in the nonlinear regime has been observed, 
leading to the formation of photon bubbles (Rodrigues et al. 2022; Giampaoli et al. 
2021), which are, indeed, trapped photon states predicted by the theory (Mendonça 
and Kaiser 2012). A short account of these effective plasma phenomena in laser-
cooled matter will also be given here.

2 � Quantum kinetic equations

We consider electrons in a quantum plasma, in the non-relativistic regime, and 
ignore the ions. We also ignore magnetic fields. If N is the number of electrons 
in the system, its quantum state can de described by a wavefunction �(r1, ...rN , t) , 
which satisfies the Schrödinger equation

where ∇j = �∕�rj , and V is the electrostatic potential. This description, which does 
not specify the ion background, is known in condensed matter physics as the jellium 
model (Mahan 2000; Dornheim et al. 2018). It simplifies further by assuming that 
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the electrons are weekly correlated. We can then replace the N-body wavefunction 
by a product of individual wavefunctions, such that

and assume that each individual wavefunction satisfies the single-particle 
Schrödinger equation

The potential V(r, t) is determined by Poisson’s equation, where all the N electron 
charges are considered. The use of this oversimplified description requires some 
comments. First, the decomposition (3) is only valid for weakly coupled plasmas, 
where particle collisions and two-particle correlations can be neglected. Weakly 
quantum coupled plasmas are characterized by a small value of the quantum cou-
pling parameter, ΓQ < 1 , which is defined as the ratio of the averaged potential 
energy between two particles, Upot , and the kinetic energy, TF , or more explicitly, by

For electrons in a metal, we have ΓQ ∼ 1 , and this formulation is only marginally 
valid. Furthermore, the N-body wavefunction has to satisfy the exclusion principle, 
and should be anti-symmetric with respect to changes between any two particles 
(Mahan 2000; Bonitz 1998). As a result, it should be represented by a linear com-
bination of N products of individual wavefunctions, and not just by one. Therefore, 
we need to impose some restrictions on the use of Eq. (3), namely that none of the 
above individual single-particle wavefunctions in this product should be identical. 
For a more detailed and rigorous analysis, see Haas (2011).

We can then define the Wigner function, W(r, v, t) , as the Fourier transform of 
the autocorrelation function of the single-electron wavefunction, according to

where v is the particle velocity. This definition allows us to represent the state of 
the quantum particles in a classical single-particle phase-space (r,mv) . However, 
instead of the classical case, where the state is represented by a dimensionless dot, 
here the quantum state of the particle is represented by a cloud of quasiprobability, 
dictated by the value of W. We say quasiprobability, because this value can be nega-
tive. We then follow the Wigner–Moyal procedure, which is described in detail in 
several reviews (Hillary et al. 1984; Tatarski 1983; Weinbub and Ferry 2018) and 
establish the evolution equation for the Wigner function. This is usually called the 
wave-kinetic equation, and takes the form

(3)�
(
r1, ...rN , t

)
= ΠN

j=1
�
(
rj, t

)
,

(4)iℏ
�

�t
�(r, t) =
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−
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]
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(6)W(r, v, t) = ∫ �(r − s∕2, t)�∗(r + s∕2, t) exp [−im(s ⋅ v)] ds,
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where the kernel K is defined as

where (−e) and m are the electron charge and mass, and V(r, t) is the potential. In 
standard quantum mechanics, this is just the external potential, describing the field 
applied to the quantum system. However, in plasma physics, V(r, t) is the mean-
field potential determined self-consistently by all the N electrons in the plasma, and 
determined by the Poisson’s equation

Here, it is assumed that the ions stay at rest with density n0 , and simply provide a 
background neutralising charge. It is useful to note that the electron wave-kinetic 
equation can also be written in another equivalent form as

where V(k, t) is the space Fourier transform of the plasma potential, and 
W± = W(v ± ℏ�∕2m) . This Fourier spectrum is associated with electrostatic oscil-
lations in the medium, with wavelengths � = 2�∕k . The classical approximation 
corresponds to the limit |k| ≪ |mv| , when the particle de Broglie wavelength is 
much smaller that the wavelength of plasma oscillations, and the electrons can be 
described as point particles, with no probability cloud. In this limit, we can use the 
expansion

Replacing this in Eq. (10), we are then reduced to the Vlasov equation, as expected

where F = −(e∕m)∇V  is the force acting on the electrons. The operator under brack-
ets is nothing but the total time derivative of W. In this limit, W tends to the classical 
probability distribution. In the general case, however, we need to retain all the terms 
in the expansion [see, for instance, Bonitz (1998)], and use

(7)iℏ
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This allows us to write the quantum kinetic equation (10) in the Vlasov-type form, 
as

where the force F in the Vlasov equation (14) is replaced by the operator

If we retain just the first-order quantum correction, we obtain the equation

The term with the third-order derivative is therefore the leading-order quantum cor-
rections, and the neglected quantum terms are of order ℏ4 . This is an interesting 
wave-kinetic equation, which has not been used very often. The Vlasov equation is 
recovered in the purely classical limit, when ℏ is taken equal to zero.

3 � Quantum Landau damping

Using the above description, we can derive the dispersion relation for electron plasma 
waves in a quantum plasma. For that purpose, we assume small perturbations around 
equilibrium, and assume that this equilibrium exists in the absence of the plasma poten-
tial, V0(r) = 0 , and is characterized by some distribution W0(v) , typically but not neces-
sarily the Fermi–Dirac distribution. Furthermore, we assume perturbations evolving in 
space and time with wavevector k and frequency � , such that

where (Ṽ , W̃) are the amplitudes. Following the standard perturbative procedure 
(Haas 2011), and using Eqs. (9) and (10), we arrive at the expression

where �
�
= ℏk∕2m . The main properties of this linear dispersion relation are well 

discussed in Eliasson and Shukla (2010). In the relevant case of a distribution in 
equilibrium at a temperature smaller than the Fermi temperature, and assuming that 
W0(v) is the Fermi–Dirac distribution, this reduces to

(14)
[
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where �p =
√
e2n0∕�0m is the electron plasma frequency, and �F = vF∕

√
3�p

 is the 
quantum Debye (or Fermi) length. We can see that, in comparison with the classical 
dispersion equation, there is an additional term proportional to ℏ2 . This additional 
term is similar to that given by a free-streaming of quantum particles, and its impor-
tance becomes dominant for short wavelengths, as illustrated in Fig. 2. On the other 
hand, the contribution of the poles in Eq. (18) leads to the electron Landau damping, 
as determined by the expression

where

is the parallel electron distribution, and v
⟂
 is the velocity perpendicular to the direc-

tion of propagation, k∕k . We can see that the wave damping is determined by the 
population difference between two parallel velocity states that are equidistant to the 
classical resonant velocity, v = �∕k . In condensed matter physics, quantum Landau 
damping is usually interpreted as a loss of wave energy due to the excitation of parti-
cle-hole pairs [see, for instance, Mahan (2000), Bonitz (1998)].

In the quasiclassical limit, we have vk ≪ (𝜔∕k) and the above difference becomes 
infinitesimal, the derivative �G0∕�v can be expanded, as shown in Eq. (11). We then 
recover the well-known expression of the classical electron Landau damping

(20)�L =
�m�3

p

2ℏk3

[
G0(v+) − G0(v−)

]
, v± =

�

k
± vk,

(21)G0(v) =
1

n0 ∫ W0(v⟂, v)dv⟂,

(22)�L =
��3

p

2k2

(
�G0

�v

)

v=�∕k

.

Fig. 2   Quantum dispersion relation of electron plasma waves, �2∕�2
p
 , as a function of k2�2

F
 , according 

to Eq. (19). The classical dispersion is also shown (dashed curve)
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For a quantum plasma in thermal equilibrium, the equilibrium distribution W0(v) 
should be a Fermi–Dirac distribution, as described by

where the temperature T is written in energy units, � ≡ �(T) is the chemical poten-
tial, and C is a normalization constant. We know that the chemical potential tends 
to the Fermi energy EF , when T tends to zero. For a discussion of quantum effects 
associated with the different Fermi velocity (or momentum) states, see Hunger et al. 
(2021). The normalization constant is such that the integral over the velocity space 
gives the equilibrium density n0 . This leads to

Integration of (23) over the perpendicular velocity then leads to the one-dimensional 
electron distribution

This is a bell-shaped function, represented in Fig. 3. The corresponding value of the 
Landau damping (24), in the quasiclassical limit, is given by

(23)W0(v) =
C

exp
[
(mv2∕2 − �)∕T

]
+ 1

,

(24)n0 = ∫ W0(v)dv , C = 2n0

(
m

2�ℏ

)3

.

(25)G0(v) = G00 ln
{
exp

[
−
(
mv2∕2 − �

)
∕T

]
+ 1

}
, G00 =

2�CT

n0m
.

(26)�L =
�2�3

p

n0k
3

�C
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[(
m�2∕2k2 − �

)
∕T

]
+ 1

,

Fig. 3   Landau damping in quantum plasmas: Normalized one-dimensional electron distribution, 
G0(v)∕G00 , as a function of v∕vF , for T = TF (red); and quasiclassical Landau damping, Eq. (26), in nor-
malized units (blue)
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and is also illustrated in the same figure. As we can see, for nearly zero temperatures, 
there is almost no damping at large phase velocities, 𝜔 ≫ kvF . Similarly, damping is 
also small and tends to zero for very small phase velocities, 𝜔 ≪ kvF . Therefore, 
in the quasiclassical limit, wave damping is only significant in the velocity region 
around vF . In contrast, in the quantum regime, wave damping can be relevant over a 
larger region, which increases with the value of the quantum jump appearing in Eq. 
(20), Δv = 2vk ≡ ℏk∕m . Such a velocity jump is known as the quantum recoil, and 
is associated with the emission or absorption of a quantum of electron plasma waves 
( a plasmon) with momentum ℏk . This effect is even more pronounced when we 
take into account multiple-plasmon processes, to be considered later.

The above description is only valid in the perturbative linear regime, when the wave 
amplitude is assumed infinitesimal. However, for finite wave amplitudes, corrections 
to the dispersion relation and to Landau damping, depending of the value of the wave 
amplitude, are expected to occur. As already known in classical theory, such correc-
tions are associated with deviations of the wave amplitude from a purely exponential 
decay determined by the value of �L , and the appearance of satellites in the wave spec-
trum. They are related to particle trapping, as discussed next.

4 � Nonlinear quantum regime

The nonlinear regime is associated with the influence of a finite wave amplitude on the 
wave dispersion. It is mainly due to particle trapping and to the occurrence of harmon-
ics. Particle trapping can easily be recognised in classical phase-space. In the wave ref-
erence frame moving with velocity v� = �∕k in the direction of propagation, the oscil-
lating potential creates a local nonlinear pendulum, where the region of trapped orbits 
is separated from the circulating orbits by a critical line, called the separatrix. For a 
wave propagating in the x-direction, the particle trajectories in the wave frame can be 
described by the Hamiltonian

where � = kx and �B is the bounce frequency, determined by

where Ṽ  is the wave amplitude and ñ is the corresponding density perturbation. We 
can see that this Hamiltonian is a constant of motion, h(𝜂, 𝜂̇) = h0 . A finite amplitude 
necessarily implies the existence of trapped and untrapped orbits, separated by the 
condition h0 = �2

B
 . This condition defines the separatrix, determined by Zaslavsky 

et al. (1991)

(27)h(𝜂, 𝜂̇) =
1

2
𝜂̇2 − 𝜔2

B
cos 𝜂,

(28)𝜔B =

√
e

m
k2Ṽ ≡ 𝜔p

√
ñ

n0
,

(29)𝜂̇ = ±2𝜔B cos(𝜂∕2) = ±
2𝜔B

cosh
(
𝜔Bt

) .
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This is a non-oscillating solution of the motion, of the soliton type. In contrast, 
for deeply trapped orbits, such that |h0| ≪ 𝜔2

B
 , we have oscillating trajectories, 

described by

These particle oscillations at the bounce frequency �B create modulations in the 
decay rate, and lead to the formation of sidebands at frequencies � ± �B , as first 
described by O’Neil O’ Neil (1965) in the classical formulation, and observed in the 
experiments (Wharton et al. 1968).

In a quantum plasma, the character of trapped oscillations significantly changes. 
First of all, we do not have single-particle trajectories represented by dots with zero 
dimension in phase-space (x, p). In contrast, the particles are represented clouds of 
probability, and the trapped particles are not absolutely confined, because they can 
move through the potential barrier by quantum tunneling. This changes the qualita-
tive features of the trapping zone. The bounce frequency is modified according to 
Daligault (2014), Brodin et al. (2015).

The behaviour of trapped particles in the quantum regimes is interesting and 
becomes quite complex. It has been explored mainly with numerical simulations. To 
understand its main qualitative features, it is useful to identify three characteristic 
times. Namely, the quantum transition time, �q , the particle bounce period, �B , and 
the damping time �L , as defined by

These quantities can be used to define a couple of important parameters, Rth and Rnl . 
The first one is the quantum trapping parameter, which is the ratio between the tran-
sition time and the bounce period

As we can see, this is identical to the ratio between the trapping potential and the 
ground energy level of trapped particles. We can then say that, for Rth < 1 , no 
trapped particles should exist, because no ground state can be defined inside the 
potential well. Another useful quantity is the nonlinear parameter Rnl , defined as

The nonlinear regime takes place for Rnl ≥ 1∕2 , when the particles have enough 
time to oscillate inside the trapped potential before the oscillations decay due to 
Landau damping. Furthermore, simulations show that bound oscillations can persist 

(30)𝜂̇ = a cos
(
𝜔Bt

)
, a =

(
𝜔2
B
− |h0|

)
.

(31)�B →

�B√
1 + kvk∕�L

.

(32)�q =
1

k ⋅ �
�

=
2m

ℏk2
, �B =

1

�B

, �L =
1

�L
.

(33)Rtr =
𝜏q

𝜏B
=

m𝜔B

�k2
=

2eṼ

�𝜔
.

(34)Rnl =
�2
L

�2
B

(
1 +

�q

�L

)
=

�2
B

�2
L

(
1 + k ⋅ �

�
∕�L

) .
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even in the absence of trapped particle states, when, simultaneously, we have Rth < 1 
and 𝜏B∕𝜏L < 1 , or equivalently 𝜏q < 𝜏2

B
𝜏L . These ghost trapped oscillations can be 

attributed to the cloud of probability associated with passing particles. In the space 
of parameters (Rth,Rnl) , six different regions have been identified (Brodin et  al. 
2015). Quantum trapping is illustrated in Fig. 4, where single-particle probabilities 
are described by the Schrödinger equation with a sinusoidal potential, similar to the 
classical one represented in Eq. (27). Two quantum trajectories are shown, for initial 
conditions inside and outside the classical separatrix. We can clearly observe the fast 
expansion of the electron wavepacket, as well as tunneling and ghost trapping. 

Another aspect of the nonlinear plasma response is related to the harmonic field, 
which is closely related to the nonlinear motion of the nearly resonant particles in the 
wave potential. These harmonic field components, with frequencies that are multiples 
of the wave frequency, cannot propagate independently in the medium, because they 
do not satisfy a proper dispersion relation. However, they are present nevertheless, and 
can influence wave propagation. More specifically, due to the presence of field har-
monics, multiple plasmon transitions become possible. The quantum recoil associated 
with Landau damping as described in Eq. (20) is replaced by multiple quantum jumps, 
between discrete values of the parallel velocity v, as determined by

This corresponds to the existence of multi-plasmon transitions, satisfying the 
momentum and energy conservation relations

(35)v� =
�

k
± �

ℏk

2m
, � = 1, 2, 3, ...

(36)ℏk1 ± nℏk = ℏk2 , ℏ�1 ± nℏ� = ℏ�2 ,

Fig. 4   Quantum probability |�(�, t)|2 as a function of time, for single electrons in a sinusoidal potential, 
as described by Schrödinger’s equation, with initially a trapped, and b untrapped, wavepacket. Visible 
in the figure are: (i) broadening of the initial single-particle wavepacket, (ii) tunneling out of the wave 
potential in the trapped case, and (iii) ghost trapping of parts of the wavepacket in the untrapped case
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where the new frequencies �j , and wavenumbers kj , satisfy the free-particle disper-
sion �j = ℏk2

j
∕2m , for j = 1, 2, 3, .. . To discuss these multi-plasmon processes, we 

can assume that the electric potential contains a second harmonic component, as

and that the quasidistribution contains a superposition of harmonics as

These new expressions replace Eq. (17). Using them in the perturbative analysis of 
the wave-kinetic and Poisson’s equations (7) and (9), it is then possible to generate 
a cascade of coupled equations for the different disturbed quantities, which can then 
be solved numerically (Brodin et  al. 2018). This then proves that transitions such 
as those represented in Fig. 5 seem to exist. However, it is difficult to give a simple 
analytical estimate of the relative importance of such transitions. 

On the other hand, this mechanism of multi-plasmon emission and absorption can 
be seen from the perspective of single-particle solutions. In particular, it is in quali-
tative agreement with the Volkov solutions that can be derived from single-electron 
states in a plasma wave (Mendonça and Serbeto 2011; Raicher and Eliezer 2013; Varró 
2014). These Volkov solutions have been originally established for relativistic quan-
tum plasmas, but they clearly show that single-electron states are compatible with the 
existence of multi-plasmon transition processes. To illustrate this statement, we use 
the Volkov solution of the Klein–Gordon equation, for an electron with momentum p 
in a plasma wave. As recently noted (Al-Naseri and Brodin 2023), the Klein–Gordon 
equation is reasonably accurate even for energetic quantum processes involving particle 
pair-creation, provided that the wave frequency is well below the Compton frequency. 
We have Mendonça and Serbeto (2011)

(37)V(r, t) = Ṽ1(t) exp (ik ⋅ r − i𝜔t) + Ṽ2(t) exp (2ik ⋅ r − 2i𝜔t),

(38)W(r, t) = W0 +

∞∑

𝜈=0

W̃0 exp [i𝜈(k ⋅ r − 𝜔t)).

(39)�(r, t) = �0e
i�0 exp [iS(�)] , �0 =

[
p ⋅ r − E(p)�

]
∕ℏ,

(a) (b)

Fig. 5   Multi-plasmon transitions in quantum Landau damping: a single plasmon transitions, for 
�∕k = vF ; b  two-plasmon transitions for �∕k = 2vF



1 3

Reviews of Modern Plasma Physics            (2023) 7:26 	 Page 15 of 30     26 

where E(p) is the particle energy, and � = t − (k ⋅ r∕�) is a temporal variable. The 
phase function S(�) is a periodic function of the wave amplitude, and can be Bessel 
expanded. In the non-relativistic quantum limit, which is the case considered here, 
this can be simply written as

where the quantity � ∼ eV∕(ℏ2k2∕2m) is the ratio between the potential and the 
recoil energy. A nonlinear perturbative expansion of the quantum kinetic equation 
(7), coupled with the Poisson equation (9), when we start from a Volkov equilibrium 
and not from a static equilibrium, can then lead to a a new expression of the Landau 
damping that takes the form

where F0 = 1 and F1 = � . This is in qualitative agreement with the numerical 
results obtained in reference Brodin et al. (2018), and confirms them on analytical 
grounds. This nonlinear form of Landau damping depends on the wave amplitude Ṽ  
through the value of � , and tends to the linear result in the limit � → 0 , as expected. 
A detailed derivation of this nonlinear quantum model can be found in Haas et al. 
(2023).

To complete this discussion, mention should be made to earlier work on harmonic 
generation (Bonitz et al. 1994), and to a more recent paper on nonlinear density pertur-
bations in warm dense matter (Dornheim et al. 2020). An additional comment should 
be made on electron collisions, which were ignored. A short discussion of collision 
effects, which could eventually obscure the collective quantum processes, can be found 
in Brodin et al. (2015).

5 � Photon Landau damping

We now show that the formalism of quantum plasmas can also describe the behaviour 
of photons in classical plasmas. This is particularly useful to study processes related 
with intense laser–plasma interactions, as those related with laser wakefield accelera-
tion. The case of quasiparticle turbulence will be discussed in the next section.

The first thing to notice is that, when we talk about photons, we mean electromag-
netic waves, which share their undulatory nature with the electrons in the quantum 
regime. The formal similarity starts with the definition of a Wigner function for the 
transverse electric field associated with the radiation spectrum, E(r, t) . It takes the form

This is a straightforward generalization of the original definition given by Eq. (6) 
to the case of a complex vectorial field. We write this new Wigner function as 

(40)�(r, t) = �0e
i�0

∑

�

J�(�)e
i��� ,

(41)�L =
�m�3

p

2ℏk3

∑

�=0,1

F�

[
G0(v�+) − G0(v�−)

]
, v�± =

�

k
± �vk ,

(42)N(r, k, t) = ∫ E(r − s∕2, t) ⋅ E∗(r + s∕2, t) exp (−is ⋅ k) ds.
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N(r,k, t) , to avoid confusion with the electron Wigner function defined before. This 
new quasidistribution is proportional to the photon occupation number, and there-
fore to the spectral intensity of the radiation field. It should also be noticed that the 
field is now described by a equation of propagation, which unlike the Schrödinger 
equation contains a second time derivative. This difference changes little to the 
Wigner–Moyal procedure (Tsintsadze and Mendonça 1998; Mendonça 2001), and 
leads to a wave-kinetic equation for the photon quasidistribution, that is formally 
identical to Eq. (7) previously discussed for electrons in a quantum plasma. It can be 
written as

with the new Kernel

In isotropic plasmas, the photon momentum k is related to the photon frequency � 
by the simple dispersion relation, �2 = k2c2 + �2

p
 . The quantity ñ(r, t) is the electron 

density perturbation, and n0 its equilibrium value. If the perturbation is due to elec-
tron plasma waves, the density ñ(r, t) is determined by a wave equation of the form

Here, Se =
√
3T∕m is the electron thermal velocity in a classical plasma. The right-

hand side of this equation describes the ponderomotive force, due to the inhomoge-
neities of the radiation intensity I(r, t) . This quantity is simply related to the photon 
number density defined above by an integral over the spectrum, as given by

It is then obvious that the ponderomotive force couples the two equations (43) and 
(45), describing the photon number density N and the electron density n. Perturba-
tions of these two quantities will therefore evolve together. To avoid misunderstand-
ings, we use the notation (�, k) for the electrostatic wave spectrum, and (��, ��) for 
the photon spectrum. If we assume that the perturbed quantities behave in space and 
time as exp(ik ⋅ r − i�t) , we can apply a perturbative approach to these equations 
and derive a dispersion relation for electron plasma waves in the presence of radia-
tion. It will take the following form:

where �e(�, k) is the usual electron susceptibility of a classical plasma, and �ph(�, k) 
is the photon susceptibility, which results from the presence of radiation. It becomes 
clear that the photons behave as an additional plasma population that also responds 

(43)iℏ
(
�

�t
+

p

m
⋅ ∇

)
N(r,k, t) =

�2
p

n0 ∫ K
(
�
� − k, r, t

)
N
(
r, ��, t

)
d��,

(44)K
(
�
� − k, r, t

)
= ∫

[
ñ(r + s∕2, t) − ñ(r − s∕2, t)

]
e−is⋅(�

�−k)ds.

(45)
(

𝜕2

𝜕t2
− S2

e
∇2

)
ñ + 𝜔2

p
ñ =

e2n0

2m2
∇2I(r, t) .

(46)I(r, t) = ∫ N(r,k, t) dk.

(47)1 + �e(�, k) + �ph(�, k) = 0,
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to the plasma perturbations. In explicit terms, we can use the fluid expression for the 
electron susceptibility, and write

where �D is the classical electron Debye length, while the photon susceptibility con-
tains quantum-like properties, and takes the form Mendonça and Serbeto (2006)

Here, N0(�
�) is the equilibrium photon number distribution, and �� = ���∕��� the 

photon group velocity. For a cold photon spectrum, which means a quasimono-
chromatic photon beam, such that spectral broadening can be neglected, we use 
N0(�

�) = (2�)3N0 �(�
� − �

�
�
) . The above dispersion relation becomes

Here, we have used the shifted group velocities ��
±
= ��(��

�
± k∕2) , and introduced 

an effective photon-plasmon coupling factor Ωph , such that

If we now consider the contribution of the poles in the integral of Eq. (49), we arrive 
at an expression of the photon Landau damping given by Mendonça and Serbeto 
(2006)

Here, we have introduced the parallel photon distribution, G0(p) = ∫ N0(p,�
�
⟂
) d��

⟂
 , 

where p is the photon momentum component parallel to the direction of propaga-
tion of the electron plasma wave, k∕k . The population difference appearing in this 
expression is the result of photon recoil, which occurs when a photon emits or 
absorbs a plasmon. This recoil is similar to that of the previous quantum Landau 
damping, but where plasmons are now emitted and absorbed by photons (not by 
electrons).

Although particle recoil effects are usually attributed to a quantum descrip-
tion, in the present context, they result from the undulatory nature of the pho-
tons, which indeed behave as quantum particles. No quantum field is included in 
the analysis, but the quantum nature of the scattering process directly emerges 
from the classical wave equations. The formal analogy with the quantum Landau 
damping defined by Eq. (20) is rather striking. It shows that photons that interact 
resonantly with an electron plasma wave lead to a quantum-like behaviour of a 

(48)�e(�, k) = −
�2
p

�2

(
1 + k2�2

D

)
,

(49)�ph(�, k) = −
e2k2

2m2

�2
p

�2 ∫
N0

(
�� − k∕2

)
− N0

(
�� + k∕2

)

(� − k ⋅ ��)

d��

(2�)3
.

(50)1 −
�2
p
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1 + k2S2

e
+

Ω2
ph(

� − k ⋅ �
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−
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(51)Ω2
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e2k2

2m2
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e2k
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,
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non-degenerate plasma, and introduce the same kind of dispersive quantum cor-
rections that we usually associate with a degenerate plasma. The only difference 
is that resonant coupling now occurs for large phase velocities �∕k ≃ c , and not 
for �∕k ≃ vF as previously.

In our discussion, it is also interesting to take the limit of geometric optics, which 
is valid when the photon wavelength is much smaller than the wavelength of the 
electron plasma wave, p ≫ k . This is particularly useful in laser–plasma experi-
ments, and in particular to laser wakefield acceleration (Bingham et al. 2004). In this 
case, we can expand the parallel photon distribution as

Replacing this in the expression for the quantum photon Landau damping, we can 
reduce Eq. (52) to

This result was first derived in Bingham et al. (1997), where the concept of photon 
Landau damping was introduced. The formal analogy with Eq. (22) is very strik-
ing. It shows that, under appropriate physical conditions, both electrons and photons 
interact resonantly with an electron plasma wave, and can be accelerated or deceler-
ated by them. Of course, the velocity regimes of electrons and photons are usually 
very different, and these processes are physically distinct. Electron Landau damping 
occurs for electron plasma waves with small phase velocities, of the order of the 
electron thermal velocity, or Fermi velocity in the quantum case. In contrast, photon 
Landau damping occurs for high phase velocities, approaching the velocity of light, 
as those excited by short laser pulses in a plasma, as described in the experiments by 
Murphy et al. (2006).

However, we could envisage physical situations where they occur at the same 
time. For that purpose, it is useful to consider the kinetic dispersion of electron 
plasma waves in the presence of radiation, with arbitrary phase velocity. Such waves 
will, therefore, exist in a plasma with three particle species: electrons, photons, and 
ions. Ignoring the ion motion, a more complete form of a quantum dispersion rela-
tion, where both electron and photon responses are included, takes the form Men-
donça and Serbeto (2016)

where the integrals J(k) and I(k) are defined as

(53)G0(p0 ± k∕2) ≃ G0(p0) ±
k

2

(
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)

p=p0

.

(54)�ph =
�
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e2k2

m2
�p

(
�G0

�p

)
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.
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2m2
J(k)
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(56)
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and represent the photon and electron dispersion effects. We clearly see the origin of 
the above discussed photon and electron Landau resonances. The first one is deter-
mined by the equality � = k ⋅ �� , when the phase velocity of the electron plasma 
wave equals the photon group velocity in the parallel direction. And the second one 
is determined by a similar condition � = k ⋅ v , when this phase velocity is equal to 
the electron parallel velocity. These two resonant conditions usually occur for differ-
ent values of phase velocity, the first for small values of k, when the �∕k approaches 
the velocity of light, and the other for high values of k, when �∕k is close to the 
electron thermal velocity. This is illustrated in Fig. 6, where the total Landau damp-
ing described by the above dispersion relation, for a photon beam with group veloc-
ity 10 times larger than the electron thermal velocity is represented in the classi-
cal limit. Notice that, because the photons are associated with a beam (e.g., a laser 
beam), we have positive and negative values of the damping rate, thus showing 
that a beam of photons in a plasma is unstable. This is usually known as a modula-
tional instability, abundantly described in the literature (Max et al. 1974; Shukla and 
Bharuthram 1987; Guerin et al. 1995; Sprangle et al. 1997).

Let us now briefly mention the possible occurrence of trapped photon states, in 
the same way as the trapped electron states discussed before. This is illustrated in 
Fig. 7, using photon ray-tracing equations, which are valid in the geometric optics 
approximation (Mendonça 2001). For deeply trapped photons, trajectories are 
reduced to linear oscillations at a frequency determined by

where ñ is the amplitude of a electron plasma wave with frequency � , and 
� = 1∕

√
1 − (�∕kc)2 the corresponding relativistic factor. This is similar to the 

bounce frequency of trapped electrons, given by Eq. (28), underlining the analogy 

(57)𝜔b =
𝜔p

𝛾

√
ñ

2(n0 − ñ)
,

Fig. 6   Photon Landau damping, �L (in red) and electron Landau damping (in blue), normalised to the 
electron plasma frequency, as a function of k�D , in the classical limit
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between electron and photon dynamical processes in a plasma. This analogy seems 
odd at first, because electrons are fermions, and photons are bosons. However, 
here, we are ignoring spin effects. Nevertheless, vortical trajectories occur in pho-
ton phase-space, showing that photons can also be trapped in a plasma wave (see 
Fig. 7). This leads to the formation of lower and upper sidebands of the laser beam 
spectrum, as shown in simulations and experiments (Trines et  al. 2009a). Photon 
trapping eventually contributes to the nonlinear saturation of modulational instabili-
ties of a laser beam.

6 � Quasiparticle turbulence

Another important generalization of the concept of quantum Landau damping can 
be made when we consider the theory of plasma turbulence, specially when we try 
to model strong turbulence. This is particularly important in the context of nuclear 
fusion research, when we try to understand particle and energy transport in magneti-
cally confined plasmas (Yoshizawa et al. 2003; Diamond et al. 2005; Horton 1999). 
But also when we try to understand phenomena observed in space and astrophysi-
cal plasmas, as illustrated below. Turbulence theory was dominated for a few dec-
ades by the so-called weak-turbulence theory, mainly developed in the 60s of the 
last century (Kadomtsev 1965; Sagdeev and Galeev 1969; Tsytovich 1977). In this 
theory, turbulence was described as an ensemble of weakly interacting waves and 
particles, where the waves satisfy a linear dispersion relation and can weakly inter-
act with other waves, and with the resonant particles.

A further step towards strong turbulence is made when turbulence is described as a 
gas of quasiparticles, which means, as additional plasma populations, which can then 

Fig. 7   Photon trapping in the plasma wave: a passing trajectory (in blue), b trapped trajectory (in red), 
and c separatrix (dashed curves). Notice that, when the plasma density is reduced by the plasma wave, 
the photon approaches cut off and the wavenumber k′ tends to zero. This explains the pronounced mini-
mum of the lower separatrix ]see Mendonça and Silva (1994), Mendonça (2001))]
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be perturbed by other larger wavelength waves. Now, instead of just waves and par-
ticles, we have waves, particles, and quasiparticles. These other waves, defined on a 
turbulent background, are no longer linear objects, because then have to satisfy a non-
linear dispersion relation. This is the case of electron plasma waves in a radiation back-
ground, as discussed in the previous paragraph. But now, we can assume an arbitrary 
large wavelength wave moving in a turbulent and eventually electrostatic background. 
Examples of this broader context will be given below.

An even further step can be considered, when even the background turbulent modes 
no longer satisfy a linear plasma dispersion. This is, for instance, the case of a gas of 
solitons and vortices, mainly discussed in the condensed matter context (Terças et al. 
2013; Pereira et  al. 2021). In plasma physics, highly sophisticated numerical codes 
(such as the gyrokinetic codes of magnetic fusion) are now predominantly used (Tronko 
et al. 2017), where the nonlinear dispersion is sometimes hidden in the simulations.

Let us focus on the case of Landau damping of a given wave in a turbulent plasma, 
assuming this as a basic physical process of wave–quasiparticle interaction. For this 
purpose, we consider a specific wave mode propagating in a plasma, where turbulence 
is described as a gas of quasiparticles, and is seen as an additional particle population 
(Mendonça et al. 2003; Trines et al. 2009b). Of particular interest is the case of zonal 
flows, which are large wavelength and very-low-frequency plasma perturbations, taking 
place in a sea of small-scale drift-wave turbulence (Smolyakov et al. 2000; Manfredi 
and Roach 2003; Lashmore-Davies et al. 2001; Trines et al. 2005). Another example is 
provided by lower hybrid modes propagating in a background of short-wavelength drift 
fluctuations, as those considered in lower hybrid current drive experiments in tokamaks 
(Karney and Fisch 1986; Bonoli et al. 2008; Decker et al. 2011).

Let us consider the kinetic description of turbulence and assume some short-scale 
modes, such as photons, or drift waves (driftons), depending on the context. Each short-
scale turbulent mode satisfies a dispersion relation of the type

This is valid in plasma equilibrium. However, it will stay approximately valid if the 
mode propagates in the presence of slow and large-scale perturbations, associated, 
for instance, with density perturbations �n , or to perturbations of the confining mag-
netic field �B0 . The turbulent mode will try to adapt to this slowly varying environ-
ment, and the mode amplitude, represented generically by A, will evolve according 
to the equation

Obviously, the quantity �D represents the perturbed dispersion function associated 
with such slow and large-scale perturbations, and can be represented typically as

Expanding this expression around the local dispersion relation (58), we get an evolu-
tion equation for the mode amplitude A, as Mendonça (2014)

(58)D(�, k) = 0.

(59)
[
D(� + i�∕�t, k − i∇) + �D

]
A = 0.

(60)�D =
�D

�n
�n +

�D

�B0

⋅ �B0 .
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where A can be a scalar or a vector, and the quantities �
�
 and U(r, t) are defined by

They represent the group velocity of the short-scale mode, and the effective poten-
tial created by the large-scale perturbations, respectively. From here, a wave-kinetic 
equation describing the evolution of an arbitrary spectrum of short-scale turbulence 
can be derived. For this purpose, we establish the autocorrelation function of these 
particular field modes, K(r, s, t) = A∗(r1, t) ⋅ A

∗(r2, t) , with r = (r1 + r2)∕2 , and 
s = (r1 − r2) , and define the Wigner function of the turbulent field as its space Fou-
rier transform

This quantity is a straightforward generalization of the Wigner functions defined 
above for quantum electrons, and for photons. In the present context, it can be seen 
as the probability distribution of the turbulent spectrum, which acts as an additional 
particle population of the plasma medium. The evolution of this new population of 
turbulent quasiparticles is then obtained with the help of the procedure used above 
for photons (actually, a similar kind of Moyal procedure). This leads to the following 
wave-kinetic equation:

where Wturb± = Wturb(k ± q∕2) , and U(q, t) is the space Fourier transform of the per-
turbation potential defined in Eq. (62). Notice the formal analogy with the previous 
wave-kinetic equations, describing the electron population in a quantum plasma, Eq. 
(7), and the photon spectrum in a classical plasma, Eq. (43). This analogy supports 
the claim that plasma turbulence can be described as a gas of quasiparticles.

We give a few examples of application of this generic description. First, we 
apply it to Alfvenic and to plasmon turbulence, where a spectrum of Alfvén 
waves, or alternatively electron plasma waves, evolves in a plasma perturbed 
by large-scale ion-sound waves. These two cases are relevant to anomalous ion 
heating (Mendonça and Shukla 2007), and to the modulational instability of a 
plasmon beam (Mendonça and Bingham 2002). Another important example is 
that of drift-wave turbulence in the presence of zonal flows. This is relevant to 
space physics, where isolated electric field spikes are observed by satellites mov-
ing across the Earth magnetopause (Trines et al. 2007). The same model can be 
applied to understand the anomalous transport and improved confinement modes 
in tokamaks, and to explain the observed existence of zonal flow spikes, moving 
radially towards the edge of the confining devices. Numerical simulations using 
the above wave-kinetic model suggest that a large number of driftons are trapped 

(61)
(
�

�t
+ �

�
⋅ ∇

)
A = iU(r, t)A ,

(62)�
�
= −

(�D∕�k)

(�D∕��)
, U(r, t) =

�D

(�D∕��)
.

(63)Wturb(r,k, t) = ∫ K(r, s, t) exp(−ik ⋅ s) ds.

(64)i
(
�

�t
+ �

�
⋅ ∇

)
Wturb = ∫ U(q, t)

[
Wturb− −Wturb+

]
eiq⋅r

dq

(2�)2
,
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by each zonal spike (Trines et al. 2007), thus confirming that quasiparticle trap-
ping is occurring (see Fig. 8 for an illustration). Furthermore, this process is simi-
lar to that of quantum electron trapping or photon trapping in electron plasma 
waves. Similarly, Landau damping of turbulent quasiparticles can also take place 
(Mendonça and Benkadda 2012).

As a final useful example of application of this approach to turbulence, we 
should mention the propagation of lower hybrid waves immersed in drift-wave 
turbulence (Mendonça et al. 2015; Horton et al. 2013). In this case, we use the 
dispersion relation of LH waves in the cold plasma limit, as

where (k∥, k⟂) are the parallel and the perpendicular wavevector components with 
respect to the static magnetic field B0 . The quantities Xj = �2

pj
∕�2 are the normal-

ized electron and ion ( j = e, j) plasma frequencies, and Ye = �ce∕� the normalized 
electron cyclotron frequency. As for the deviations to this local dispersion, they are 
due to density and magnetic field perturbations, and are determined by

Using these definitions, we can then establish the wave-kinetic equation (64) for 
LH waves, and study possible Landau damping and trapping processes, as above. 
More interestingly, if, instead of a single mode, we have a spectrum of large-scale 

(65)D(�, k) ≡ 1 − k2
⟂

(
1 +

Xe

Y2
e

− Xi

)
+ k2

∥
Xe = 0,

(66)�D = −k2
⟂

Xe

Y2
e

[(
1 −

k2
∥

k2
⟂

)
�ne

n0
−

2

B2
0

(B0 ⋅ �B)

]
.

Fig. 8   Formation of zonal flows in a plasma with drift-wave turbulence: local field and density spikes 
(in red) are observed in an inhomogeneous plasmas, in the presence of broad spectrum of driftons with 
radial wavenumber k

r
 (in blue). Numerical simulations using the wave-kinetic model suggest that a large 

number of driftons are trapped by each zonal spike [based on the simulations of Ref. Trines et al. (2007)]
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perturbations, we can derive a diffusion equation for the turbulent quasiparticles in 
momentum space, which takes the form Mendonça et al. (2015)

where the diffusion tensor is determined by

and (Ω, q) are the frequency and wavevector of these large-scale density perturba-
tions with amplitude �ne(q) . They are usually associated with drift-wave turbulence, 
and �2(�, k) is an auxiliary function depending on the dispersion properties of the 
LH waves. It is clear from the presence of delta functions in the above integral 
that the diffusion of LH waves across the spectrum is due to Landau resonances 
Ω = (�

�
⋅ q) , where the velocity of the LH quasiparticles in the direction of propa-

gation of �ne(q) is in resonance with the phase velocity of this perturbation. A con-
tinuous sequence of resonances leads to diffusion, in a way similar to that of the 
standard quasilinear diffusion, but now involving large- and short-scale wave mode 
interactions, which are wave–quasiparticle processes, and not the usual wave–parti-
cle processes of quasilinear theory (Davidson 1972).

7 � Landau damping in ultracold matter

Another interesting and unexpected extension of the quantum plasma theory 
is provided by ultracold matter. This is a consequence of the effective electric 
charge of laser-cooled atoms in the micro-Kelvin temperature range. One of the 
greatest achievements of the Physics of the latest decades of the last century was 
the discovery of laser-cooling techniques, that led to the famous experiments on 
Bose–Einstein condensation of dilute gases. In laser cooling, an interesting prop-
erty is that the gas of neutral atoms behaves as a “plasma”, due to the existence 
of an effective electric atomic charge. Under typical experimental conditions, this 
atomic charge is of the order of 10−5 times the electron charge e (Walker et  al. 
1990). This is a small but non-negligible value, which produces a repulsive force 
between nearby atoms and leads to the occurrence of Coulomb explosions (Pruv-
ost et al. 2000), collective oscillations (Mendonça et al. 2008), and bubble insta-
bilities (Giampaoli et al. 2021).

Here, we focus on the analogy of these atomic systems with a quantum plasma. In 
particular, it is possible to show that the density of the laser-cooled gas is described 
by a wave-kinetic equation formally identical to Eq. (10), where W(r, v, t) represents 
the atomic density. The potential acting on the atoms is now given by

(67)
[
𝜕

𝜕t
−

𝜕

𝜕k
⋅
̄̄D(k) ⋅

𝜕

𝜕k

]
Wturb = 0,

(68)̄̄D(k) = 𝜋𝛽2(𝜔, k)∫
||||
𝛿ne(q)

n0

||||

2
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dq
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(69)V(r) = VB(r) + Veff(r),
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where the first term VB(r) is the static confining potential of the atomic trap, and 
Veff describes the collective mean field of the atoms in presence of the cooling laser 
beams. It is determined by a Poisson’s equation of the form

Here, n = ∫ Wdv is the atom density, and Q is an important parameter related with 
the effective charge of the atoms. This quantity is proportional to the laser intensity 
I0 , and depends on two different quantities, �R and �L , which are the laser radia-
tion and laser absorption cross-sections (Pruvost et al. 2000; Mendonça et al. 2008). 
These two cross-sections relate to the emission and absorption of radiation by the 
atoms, and have similar although not identical values. These values depend on the 
detuning � between the frequency of the laser photons and the frequency of the 
atomic transition relevant to cooling. By changing � , we can change the coupling 
strength between atoms and radiation, and therefore the atomic charge. Under com-
mon experimental conditions, we have 𝜎R > 𝜎L , and thus a repulsive force between 
nearby atoms. Such a description allows to determine the equilibrium configurations 
(Terças and Mendonça 2013) and to establish the equation of state of the cold gas 
(Rodrigues et al. 2016). What is relevant for our discussion is the existence of inter-
nal oscillations that satisfy a kinetic dispersion relation of the form

where (�, k) are the frequency and wavevector of the oscillations, M is the mass of 
the atoms, and W0 is the equilibrium Wigner function of the gas. The real part of this 
dispersion relation takes the familiar form

The plasma frequency �p , and the thermal speed us , are now determined by

We have used the parallel velocity u, and the parallel distribution 
G(u) = ∫ W(u, v

⟂
)dv

⟂
 . At this point, two comments should be made. The first is 

that a quantity qeff =
√
�0Q can be defined as the effective charge of the atoms. The 

second is that, for frequencies such that �2 ∼ �2
p
 , a characteristic length �D = us∕�p 

can be defined, which is a correlation length playing a role similar to that of Debye 
length in a plasma. Only for an atomic cloud with size larger than �D can we expect 
the manifestation of collective plasma-like effects. Finally, the existence of a Landau 
resonance in the kinetic dispersion relation (71) shows that these modes can indeed 
be Landau damped. The corresponding damping rate is

(70)∇2Veff = −Qn , Q =
(
�R − �L

)
�L

I0

c
.

(71)1 −
Q

ℏk2 ∫
[
W0− −W0+
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p

(
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ℏ2k4

4M2
.
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where u0 = �∕k is the resonant velocity of the atoms. This demonstrates the strong 
analogy between the atomic system and a quantum plasma, and illustrates the uni-
versality of the quantum Landau damping concept.

Similarly, we could have explored the analogy of quantum plasmas with the 
Schrödinger–Newton (or Schrödinger–Poisson) model, that has been promoted 
in recent years as a simple approach to quantum gravity (Giulini and Grossardt 
2014; Penrose 1996; Diósi 1984). This model describes a variety of phenomena, 
such as a self-gravitating gas of quantum particles (e.g., atoms, molecules, or 
dusty particles), as well as quantum plasmas. A recent formulation in terms of the 
wave-kinetic theory explored here was proposed recently, and is able to establish 
new bridges between a quantum plasma and other physical systems (Mendonça 
2019).

8 � Conclusions

In this paper, we have reviewed the properties of electron plasma waves in the quan-
tum regime. In particular, we have focused our attention on quantum Landau damp-
ing, and on particle trapping. We have discussed, not only the main differences, but 
also the unexpected similarities between the classical and quantum plasma regimes. 
Striking differences exist between these two regimes. In particular, the Fermi veloc-
ity replaces the thermal velocity in the usual dispersion relation, and a new disper-
sion term proportional to ℏ2 appears in the quantum regime. The properties of elec-
tron trapping are also quite different, due to tunneling effects and to degeneracy. In 
particular, we can observe trapping oscillations in the quantum regime, even in the 
absence of trapped particles (Brodin et al. 2015), and the range of validity of the lin-
ear regime is larger for quantum plasmas (Daligault 2014).

We have also shown that the concepts of quantum Landau damping and quan-
tum trapping are able to describe phenomena in classical plasmas, when electron 
plasma waves propagate in the presence of a radiation spectrum, eventually asso-
ciated with laser beams. Striking similarities then emerge between the photon and 
quantum electron responses, in terms of wave dispersion and trapping. Furthermore, 
these concepts can also be extended to the theory of turbulence in classical plasmas  
(Mendonça and Hizanidis 2011), with applications in vast areas of knowledge 
including anomalous transport in magnetically confined plasmas and space physics. 
Finally, quantum Landau damping and quantum trapping can be shown to occur in 
other domains, such as ultracold matter, where neutral atoms acquire an effective 
electric charge due to their resonant interaction with laser-cooling beams, and the 
ultracold gas behaves like a quantum plasma.
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