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Abstract

We review research on electron plasma waves and Landau damping in the quan-
tum regime. Quantum kinetic equations are also briefly reviewed. Particle trapping,
harmonic fields, Volkov states in plasmas and other nonlinear effects are discussed.
Furthermore, we show that quantum plasma models can be applied to classical plas-
mas. This includes photon Landau damping and quasiparticle turbulence, with a
variety of applications from laser accelerators to space physics, and to particle con-
finement in magnetic fusion devices. Finally, the case of plasma behaviour in laser-
cooled atoms is discussed. We show that the concept of quantum Landau damping
is relevant, not only to quantum plasmas, but also to many problems in classical
plasmas, and to ultracold matter where plasma models can be applied.

1 Historical perspective

The concept of plasma as a physical medium was introduced by Langmuir (Mott-
Smith 1971), although it was considered already in Ancient Greece as one of the
fundamental states of matter, and called Fire. From the Ancient, we have also inher-
ited the ideia of quantizing our description of the physical world, by assigning a
Pythagorean solid to each state of matter. Fire was represented by a Tetrahedron,
“the smallest and the acutest” of these solids. Therefore, we can say without too
much irony that the first quantum representation of a plasma was the Tetrahedron
(see Plato, Timaeus, 55d-56c¢).

Coming back to more recent times, electron plasma oscillations, also called
Langmuir waves, were first observed by Tonks and Langmuir (1929). Their fre-
quency w is nearly equal to the electron plasma frequency, ®,, which is the char-
acteristic parameter of the medium. The concept of Landau damping of electron
plasma waves was formulated in Landau (1946), and corresponds to the possible
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occurrence of wave damping without the need for particle collisions or any other
mechanism of dissipation. At first, this non-trivial and counter-intuitive concept
was seen as a simple mathematical curiosity, with no obvious physical conse-
quences. It, nevertheless, stimulated a number of theoretical new concepts,
such as the BGK modes, which are electrostatic undamped modes (Bernstein
et al. 1957), and the van Kampen modes (Van Kampen 1955; Case 1959). Lan-
dau damping can be seen as the result of phase-mixing of a superposition of van
Kampen modes. However, the suspicions on this non-collisional damping evapo-
rated almost completely when, in 1964, the first unequivocal experimental dem-
onstration was made by Malmberg and Wharton (1964), soon followed by others
(Derfler and Simonen 1966).

The conceptual difficulty associated with this concept is that it carries no dis-
sipation, and therefore, it is able to conserve entropy. As a result, processes like
the formation of wave revivals and echos become possible. Electron plasma waves
excited at some position in plasma column, by an antenna immersed in the medium,
will attenuate along propagation and eventually disappear. However, the informa-
tion associated with the wave is, nevertheless, retained by each individual particle,
which keeps oscillating no longer in synchronism with the other particles. Due to
these hidden particle oscillations, the wave can, under some conditions, be recreated
at some other location. This revival of the disappeared oscillation is called a plasma
wave echo. It can be excited by a second antenna located at some distance from the
first one, or by a reflecting plasma boundary. This phenomenon was first predicted
by Gould et al. (1967), and can be seen as a direct consequence of electron Landau
damping. Thus, information on the vanished wave is conserved in the medium, and
therefore, entropy.

In the process of Landau damping, there is a special class of electrons that play a
dominant role. They are called resonant particles, those with a velocity nearly equal
to the wave phase velocity, that exchange energy with the wave (Dawson 1961). As
for the remaining particles, they provide the necessary background that supports the
plasma oscillation and build up the collective field.

The original description of Landau damping was based on the linearized version
of the Vlasov equation, the kinetic equation describing the behaviour of the medium.
However, it was soon realized that nonlinear processes also play an important role,
and lead to new phenomena, such as particle trapping in the wave potential (O’ Neil
1965). As a result, the damping process will depend on the wave amplitude, with
slow oscillations of the damping rate, at a new frequency (called bounce frequency),
much smaller than the electron plasma frequency. Due to these nonlinear oscilla-
tions, upper and lower sidebands will appear in the wave spectrum, similar to those
due to amplitude modulation. These effects were first observed experimentally in
Wharton et al. (1968). Asymptotically, the damping process will saturate and the
wave frequency will be shifted. Nonlinear Landau damping has been studied in the-
ory and simulations by several authors along the years (Sugihara et al. 1981; Ras-
mussen and Thomsen 1983; Manfredi 1997; Yampolsky and Fisch 2009).

Even after the remarkable theoretical and experimental advances of the 60s, the
concept of electron Landau damping never lost its fascination. And, in 2011, the
nonlinear Vlasov problem was mathematically solved by Mouhot and Villani (2010).
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The theoretical problem of Landau damping, in its classical formulation, seemed
completely solved. In recent years, the problem shifted to quantum plasmas.

A quantum description of the plasma medium becomes necessary for large elec-
tron densities n and low temperatures 7, when the inter-particle distance (sometimes
also called the Wigner—Seitz radius), ayg becomes smaller than the de Broglie wave-
length of thermal electrons, Ay > ayg. This inter-particle distance is proportional
to the cubic root of the electron plasma density n, according to ays = (3/4zn)'/3,
while the electron de Broglie length behaves as the inverse of the electron thermal
velocity vy, as Ag = f/m,v,. It then becomes obvious that the quantum plasma
regime requires high densities and low electron temperatures, or n'/3 1 > 1.

An alternative, but nearly equivalent, definition of the quantum plasma regime
can be established with the help of the dimensionless parameter y = Ty/T, which is
the ratio between the Fermi temperature and the electron plasma temperature

)’2
=t = 0B 3y (n)

We can see that y ~ (n'/315)?. In the famous (log 7 — log n) diagram, we can then
define two regions, the classical plasma region, where y < 1, and the quantum
plasma region, where y > 1. Excellent reviews on quantum plasmas have been pub-
lished along the years (Shukla and Eliasson 2011; Manfredi et al. 2019; Melrose
2020; Misra and Brodin 2022). In the present review, we focus on electron plasma
waves, and somewhat deviate from the traditional definition of quantum plasmas. In
particular, we show that the quantum plasma methods and the phenomenon of quan-
tum Landau damping is also relevant to the classical plasma regime of y < 1. This
is due to the existence of quantum-like processes associated with photon Landau
damping, which involve high phase-velocity plasma waves, and also to the quasipar-
ticle behaviour of classical turbulent plasmas. In that sense, the relevance of quan-
tum Landau damping and quantum trapping is nearly universal, and includes several
areas of the so-called classical plasmas.

The first approaches to electron plasma waves and damping in quantum plas-
mas date from the early 60s of the last century (Klimontovich and Silin 1960; Pines
and Schrieffer 1962). They were mainly motivated by solid state physics, and by
the study of collective electron processes in metals. In more recent years, the inter-
est shifted from solid state to plasma physics oriented problems, such as intense
laser—plasma interactions and astrophysical phenomena. Due to these historical
origins, it is not surprising to see that the main theoretical approaches are based
on density functional theory, typical of condensed matter, and on quantum kinet-
ics, closer to plasma kinetic theory. Although there is some debate on the mutual
advantages of these two eventually competing approaches (Bonitz et al. 2019), there
is still no clear demonstration of their theoretical equivalence. Here, we follow the
quantum kinetic approach, which is more appropriate to describe wave propagation
and time-dependent phenomena.

The theoretical methods used to describe quantum plasma processes, in the broad
sense assumed here, are indicated in Fig. 1. A central role of these theoretical meth-
ods is played by the wave-kinetic equation, as shown in this figure. The wave-kinetic
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Fig. 1 Diagram of theoretical methods for collisionless quantum plasmas. On the left-hand side, we have
the basic quantum plasma methods. On the left-hand side, we represent the processes in classical plas-
mas that can be described by quantum plasma methods, such as photon kinetics and quasiparticle turbu-
lence

equation describes the temporal evolution of the Wigner function (Wigner 1932)
which replaces the classical particle distribution in the quantum regime. As it is well
known, the Wigner function is in fact a quasidistribution, because it can take nega-
tive values, in contrast with its classical correspondent. This fact is not necessarily
a drawback, because a negative value of the Wigner function helps to identify the
quantum regimes. The wave-kinetic equation can be derived from the Schrodinger
equation for the plasma electron population, following a procedure first proposed
by Moyal (1949), and using appropriate statistical averages. It describes the evolu-
tion of the electron population in the presence of a mean-field (Haas 2011). In the
simplest case, this mean-field corresponds to the electrostatic field of an electron
plasma wave. In the quasiclassical limit, the wave-kinetic equation can be reduced to
a Vlasov equation, to which we can eventually add the first-order quantum correc-
tions. Describing the mean field with the Poisson’s equation, we can then establish
the quantum dispersion relation of electron plasma waves, and define the physical
conditions for the occurrence of quantum Landau damping (Suh et al. 1991; Dali-
gault 2014; Brodin et al. 2015; Chatterjee and Misra 2016).

Similarly, we can derive a wave-kinetic equation for the electromagnetic radia-
tion in a completely classical plasma background, if we start from Maxwell’s equa-
tions and use the Wigner function for the electric field (Tsintsadze and Mendonga
1998). Striking similarities between the electron gas and the photon gas in a plasma
become evident, which include the existence of photon Landau damping (Bingham
et al. 1997). This is exactly equivalent to the electron Landau damping. The quan-
tum nature of photon Landau damping is related to the fact that photons are electro-
magnetic waves, and, therefore, possess the same undulatory nature as the electrons
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in the quantum regime. In both cases, emission and absorption of electron plasma
wave quanta (sometimes called plasmons) by electrons and photons also involve the
occurrence of a quantum recoil.

Pushing further these similarities between the behaviour of particles (electrons)
and fields (photons), we can then establish the evolution equations of a turbulent
plasma, based on the definition of appropriate Wigner functions. The resulting
wave-kinetic equation for classical plasma turbulence, where the role of photons is
replaced by plasma quasiparticles (for instance, driftons, for drift-wave turbulence),
shows the existence of Landau damping and quasiparticle trapping similar to those
of the electrons in a quantum plasma.

In a broader perspective, quantum Landau damping can be seen as a generic pro-
cess, with implications in many areas of physics, not just in plasmas, from the damp-
ing of giant resonances of atomic nuclei (Bertsch et al. 1983; Fiolhais 1986), to
damping of Bogolioubov oscillations in Bose—Einstein condensates (Pitaevskii and
Stringari 1997; Giorgini 1998; Mendonga and Tercas 2018). As a simple and natural
extension of the quantum plasma model, we should mention the case of laser-cooled
atomic clouds. This corresponds to a gas of neutral atoms, in the micro-Kelvin tem-
perature range, cooled by laser beams, where absorption and re-emission of photons
(nearly resonant to a given atomic transition) produce an atomic effective charge
(Walker et al. 1990; Pruvost et al. 2000). For this reason, the cold gas behaves col-
lectively as a plasma (Barré et al. 2019). Notice that the atoms stay in a neutral state
and are not photoionized. Atom density oscillations (a kind of plasmons) can be
excited in the gas, with a dispersion relation that strongly resemble that of plas-
mons in quantum plasmas (Mendonga et al. 2008). This includes damping of such
oscillations by nearly resonant atoms, which is nothing but another form of Landau
damping. Excitation of such oscillations in the nonlinear regime has been observed,
leading to the formation of photon bubbles (Rodrigues et al. 2022; Giampaoli et al.
2021), which are, indeed, trapped photon states predicted by the theory (Mendonga
and Kaiser 2012). A short account of these effective plasma phenomena in laser-
cooled matter will also be given here.

2 Quantum kinetic equations

We consider electrons in a quantum plasma, in the non-relativistic regime, and
ignore the ions. We also ignore magnetic fields. If N is the number of electrons
in the system, its quantum state can de described by a wavefunction y(r,,...ry, 1),
which satisfies the Schrodinger equation

N
) L
Wiy =Hy, H=-—Y V2—cv,
ihw = Hy 2m; 2-e @)

where V; = d/dr;, and V is the electrostatic potential. This description, which does
not specify the ion background, is known in condensed matter physics as the jellium
model (Mahan 2000; Dornheim et al. 2018). It simplifies further by assuming that
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the electrons are weekly correlated. We can then replace the N-body wavefunction
by a product of individual wavefunctions, such that

w(rp,.ry.1) = ij\ilu/(rj, 1), 3)

and assume that each individual wavefunction satisfies the single-particle
Schrodinger equation

ind (r,1) = —h—ZVZ—eV(r O |w(r,1) 4
5V - D |w(r, 0. 4)

The potential V(r,t) is determined by Poisson’s equation, where all the N electron
charges are considered. The use of this oversimplified description requires some
comments. First, the decomposition (3) is only valid for weakly coupled plasmas,
where particle collisions and two-particle correlations can be neglected. Weakly
quantum coupled plasmas are characterized by a small value of the quantum cou-
pling parameter, I'y < 1, which is defined as the ratio of the averaged potential

energy between two particles, U, and the kinetic energy, T, or more explicitly, by

2 1/3
en, 2me?

T = .
7 Tk (32)2/3 eohzn(l)/3

)

For electrons in a metal, we have I'y ~ 1, and this formulation is only marginally
valid. Furthermore, the N-body wavefunction has to satisfy the exclusion principle,
and should be anti-symmetric with respect to changes between any two particles
(Mahan 2000; Bonitz 1998). As a result, it should be represented by a linear com-
bination of N products of individual wavefunctions, and not just by one. Therefore,
we need to impose some restrictions on the use of Eq. (3), namely that none of the
above individual single-particle wavefunctions in this product should be identical.
For a more detailed and rigorous analysis, see Haas (2011).

We can then define the Wigner function, W(r, v, ), as the Fourier transform of
the autocorrelation function of the single-electron wavefunction, according to

W(r,v,t) = / w(r—s/2,0)p*(r+s/2,t) exp[—im(s - v)] ds, 6)

where v is the particle velocity. This definition allows us to represent the state of
the quantum particles in a classical single-particle phase-space (r, mv). However,
instead of the classical case, where the state is represented by a dimensionless dot,
here the quantum state of the particle is represented by a cloud of quasiprobability,
dictated by the value of W. We say quasiprobability, because this value can be nega-
tive. We then follow the Wigner—Moyal procedure, which is described in detail in
several reviews (Hillary et al. 1984; Tatarski 1983; Weinbub and Ferry 2018) and
establish the evolution equation for the Wigner function. This is usually called the
wave-kinetic equation, and takes the form
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1h< 9 +v- V)W(r v, 1) —/ (V' =v,r, 1) W(r,v,1) dv, (7)

where the kernel K is defined as

K(V —v,r1) = / [V(r+5/2,0) = V(r —s/2.0)| exp [-ims - (V' —v)]ds,

®)
where (—e) and m are the electron charge and mass, and V(r, 1) is the potential. In
standard quantum mechanics, this is just the external potential, describing the field
applied to the quantum system. However, in plasma physics, V(r,?) is the mean-
field potential determined self-consistently by all the N electrons in the plasma, and
determined by the Poisson’s equation

e h)3

vy = £ [ / W(r, v, H)dv — no] . )
€o

Here, it is assumed that the ions stay at rest with density n,, and simply provide a
background neutralising charge. It is useful to note that the electron wave-kinetic
equation can also be written in another equivalent form as

ih(a%+v-V)W=—e/V(k,z)[W_—W Jexpik - 1) ==, (10

(2 )3’
where V(k,f) is the space Fourier transform of the plasma potential, and
W, = W(v + ik /2 m). This Fourier spectrum is associated with electrostatic oscil-
lations in the medium, with wavelengths A = 2z /k. The classical approximation
corresponds to the limit |k| < |mv|, when the particle de Broglie wavelength is
much smaller that the wavelength of plasma oscillations, and the electrons can be
described as point particles, with no probability cloud. In this limit, we can use the
expansion
k oW

W, =Wt— - —+ ..,
“2m  ov (b

Replacing this in Eq. (10), we are then reduced to the Vlasov equation, as expected
<§+v V+F- aa)W(rvt)_ (12)

where F = —(e/m)VV is the force acting on the electrons. The operator under brack-
ets is nothing but the total time derivative of W. In this limit, W tends to the classical
probability distribution. In the general case, however, we need to retain all the terms
in the expansion [see, for instance, Bonitz (1998)], and use

W, = W(v + hk/2m) = i l<+

nk o

om oy ) W, (13)
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This allows us to write the quantum kinetic equation (10) in the Vlasov-type form,
as

0 d
[E +v.v+R(v)-E]W(r,v,t)=O, (14)

where the force F in the Vlasov equation (14) is replaced by the operator

. 1 v\’ o
R(v) = - F.-9
) Z(2v+1)!< 4m2> oV (15)

v=0

If we retain just the first-order quantum correction, we obtain the equation

0 o e s, P
—+v-V+F - —+ VV.— |W(r,v,t) =0.
(at Y v 3w )N (10

The term with the third-order derivative is therefore the leading-order quantum cor-
rections, and the neglected quantum terms are of order 4*. This is an interesting
wave-kinetic equation, which has not been used very often. The Vlasov equation is
recovered in the purely classical limit, when 7 is taken equal to zero.

3 Quantum Landau damping

Using the above description, we can derive the dispersion relation for electron plasma
waves in a quantum plasma. For that purpose, we assume small perturbations around
equilibrium, and assume that this equilibrium exists in the absence of the plasma poten-
tial, V,(r) = 0, and is characterized by some distribution W;(v), typically but not neces-
sarily the Fermi—Dirac distribution. Furthermore, we assume perturbations evolving in
space and time with wavevector k and frequency w, such that

V(r,H) = Vexp(ik-r—iwt), W(r,t)=W,+ Wexp(ik-r—iot), (17)

where (V, W) are the amplitudes. Following the standard perturbative procedure
(Haas 2011), and using Egs. (9) and (10), we arrive at the expression

2 1 1
1+"’—/W - dv =0,
hk2e, o) lw—k- (v-v) w-k-(v+v) ' .

where v, = 7ik/2m. The main properties of this linear dispersion relation are well
discussed in Eliasson and Shukla (2010). In the relevant case of a distribution in
equilibrium at a temperature smaller than the Fermi temperature, and assuming that
W (v) is the Fermi—Dirac distribution, this reduces to

2kt

s 19)

o =@ (1+K4) +
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where @, = v/e?ny/eym is the electron plasma frequency, and Ap = Vg /\/gwp is the
quantum Debye (or Fermi) length. We can see that, in comparison with the classical
dispersion equation, there is an additional term proportional to 42. This additional
term is similar to that given by a free-streaming of quantum particles, and its impor-
tance becomes dominant for short wavelengths, as illustrated in Fig. 2. On the other
hand, the contribution of the poles in Eq. (18) leads to the electron Landau damping,
as determined by the expression

3

Tmw, ®
7= s [Gov) = Gotv)] v =T v (20)
where
Go(v) = nlo / Wo(v,,v)dv,, @1

is the parallel electron distribution, and v, is the velocity perpendicular to the direc-
tion of propagation, k/k. We can see that the wave damping is determined by the
population difference between two parallel velocity states that are equidistant to the
classical resonant velocity, v = w/k. In condensed matter physics, quantum Landau
damping is usually interpreted as a loss of wave energy due to the excitation of parti-
cle-hole pairs [see, for instance, Mahan (2000), Bonitz (1998)].

In the quasiclassical limit, we have v, < (w/k) and the above difference becomes
infinitesimal, the derivative 0G,/dv can be expanded, as shown in Eq. (11). We then
recover the well-known expression of the classical electron Landau damping

71'(03

0G,
—_r({=0
L= 2k? < ov )v:w/k. 22

w? w2 4o
35]
30f
25]
20[

15

1.0f

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Fig.2 Quantum dispersion relation of electron plasma waves, @/ a)]%, as a function of kzﬂlz:, according

to Eq. (19). The classical dispersion is also shown (dashed curve)

@ Springer



26 Page 10 of 30 Reviews of Modern Plasma Physics (2023) 7:26

For a quantum plasma in thermal equilibrium, the equilibrium distribution W,(v)
should be a Fermi—Dirac distribution, as described by
C

Wo(v) = ,
o) exp [((m?/2 — w)/T| +1

(23)

where the temperature T is written in energy units, 4 = u(T) is the chemical poten-
tial, and C is a normalization constant. We know that the chemical potential tends
to the Fermi energy E, when T tends to zero. For a discussion of quantum effects
associated with the different Fermi velocity (or momentum) states, see Hunger et al.
(2021). The normalization constant is such that the integral over the velocity space
gives the equilibrium density n,. This leads to

3
n =/W0(V)dv, C=2n0(2ﬂih) . (24)

Integration of (23) over the perpendicular velocity then leads to the one-dimensional
electron distribution

2xCT
ngm

Go(v) = Gy In {eXP [—(mv2/2 - ”)/T] + 1} » Goo = 25)

This is a bell-shaped function, represented in Fig. 3. The corresponding value of the
Landau damping (24), in the quasiclassical limit, is given by

23
BT nghd exp [(mw?/2k2 — ) /T + i
Go(v)
101 i
5
YL 00f
5
; v/vp
-1op / F ]
0.0 05 1.0 15 2.0 25 3.0

Fig.3 Landau damping in quantum plasmas: Normalized one-dimensional electron distribution,
Gy(v)/ Gy, as a function of v/vg, for T = Ty (red); and quasiclassical Landau damping, Eq. (26), in nor-
malized units (blue)
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and is also illustrated in the same figure. As we can see, for nearly zero temperatures,
there is almost no damping at large phase velocities, w >> kvg. Similarly, damping is
also small and tends to zero for very small phase velocities, @ < kvg. Therefore,
in the quasiclassical limit, wave damping is only significant in the velocity region
around vg. In contrast, in the quantum regime, wave damping can be relevant over a
larger region, which increases with the value of the quantum jump appearing in Eq.
(20), Av = 2v, = hk/m. Such a velocity jump is known as the quantum recoil, and
is associated with the emission or absorption of a quantum of electron plasma waves
( a plasmon) with momentum 7k. This effect is even more pronounced when we
take into account multiple-plasmon processes, to be considered later.

The above description is only valid in the perturbative linear regime, when the wave
amplitude is assumed infinitesimal. However, for finite wave amplitudes, corrections
to the dispersion relation and to Landau damping, depending of the value of the wave
amplitude, are expected to occur. As already known in classical theory, such correc-
tions are associated with deviations of the wave amplitude from a purely exponential
decay determined by the value of y; , and the appearance of satellites in the wave spec-
trum. They are related to particle trapping, as discussed next.

4 Nonlinear quantum regime

The nonlinear regime is associated with the influence of a finite wave amplitude on the
wave dispersion. It is mainly due to particle trapping and to the occurrence of harmon-
ics. Particle trapping can easily be recognised in classical phase-space. In the wave ref-
erence frame moving with velocity v, = w/k in the direction of propagation, the oscil-
lating potential creates a local nonlinear pendulum, where the region of trapped orbits
is separated from the circulating orbits by a critical line, called the separatrix. For a
wave propagating in the x-direction, the particle trajectories in the wave frame can be
described by the Hamiltonian

. 1.
h(n, 7)) = 5n2 — wy cosn, 27)

where n = kx and wy is the bounce frequency, determined by

e 5= il
wp = 4 /;kzv = o, n—o, (28)

where V is the wave amplitude and 7 is the corresponding density perturbation. We
can see that this Hamiltonian is a constant of motion, A(#, 77) = hy,. A finite amplitude
necessarily implies the existence of trapped and untrapped orbits, separated by the
condition A, = sz. This condition defines the separatrix, determined by Zaslavsky
etal. (1991)

. 2wy
= +2wgcos(/2) = +——. (29)
cosh (wgt)
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This is a non-oscillating solution of the motion, of the soliton type. In contrast,
for df:eply trapped orbits, such that |A,| < a)zB, we have oscillating trajectories,
described by

71 = acos (a)Bt) , a= (a)é — |h0|). (30)

These particle oscillations at the bounce frequency @y create modulations in the
decay rate, and lead to the formation of sidebands at frequencies @ + wy, as first
described by O’Neil O’ Neil (1965) in the classical formulation, and observed in the
experiments (Wharton et al. 1968).

In a quantum plasma, the character of trapped oscillations significantly changes.
First of all, we do not have single-particle trajectories represented by dots with zero
dimension in phase-space (x, p). In contrast, the particles are represented clouds of
probability, and the trapped particles are not absolutely confined, because they can
move through the potential barrier by quantum tunneling. This changes the qualita-
tive features of the trapping zone. The bounce frequency is modified according to
Daligault (2014), Brodin et al. (2015).

Wy

\/1+kvk/yL. (1)

The behaviour of trapped particles in the quantum regimes is interesting and
becomes quite complex. It has been explored mainly with numerical simulations. To
understand its main qualitative features, it is useful to identify three characteristic
times. Namely, the quantum transition time, Tgs the particle bounce period, g, and
the damping time 7 , as defined by

wg —

1 2m 1 1

N kv me BT ey T (32)

These quantities can be used to define a couple of important parameters, R, and R,;.
The first one is the quantum trapping parameter, which is the ratio between the tran-
sition time and the bounce period

Ty _ g 2eV

R - ==
" k2 ho (33)

As we can see, this is identical to the ratio between the trapping potential and the
ground energy level of trapped particles. We can then say that, for R, < 1, no
trapped particles should exist, because no ground state can be defined inside the

potential well. Another useful quantity is the nonlinear parameter R, defined as

2
T :
1+_q> =—B. (34)
< s ri(1+Kk-v/r)

The nonlinear regime takes place for R, > 1/2, when the particles have enough
time to oscillate inside the trapped potential before the oscillations decay due to
Landau damping. Furthermore, simulations show that bound oscillations can persist

R

nl

wﬁw | PT‘N
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(b)

0 5 10 15 20 25 30

Fig.4 Quantum probability |y (1, 7)|? as a function of time, for single electrons in a sinusoidal potential,
as described by Schrodinger’s equation, with initially a trapped, and b untrapped, wavepacket. Visible
in the figure are: (i) broadening of the initial single-particle wavepacket, (ii) tunneling out of the wave
potential in the trapped case, and (iii) ghost trapping of parts of the wavepacket in the untrapped case

even in the absence of trapped particle states, when, simultaneously, we have R, < 1
and 75 /71, < 1, or equivalently 7, < rérL. These ghost trapped oscillations can be
attributed to the cloud of probability associated with passing particles. In the space
of parameters (Ry, R;), six different regions have been identified (Brodin et al.
2015). Quantum trapping is illustrated in Fig. 4, where single-particle probabilities
are described by the Schrodinger equation with a sinusoidal potential, similar to the
classical one represented in Eq. (27). Two quantum trajectories are shown, for initial
conditions inside and outside the classical separatrix. We can clearly observe the fast
expansion of the electron wavepacket, as well as tunneling and ghost trapping.

Another aspect of the nonlinear plasma response is related to the harmonic field,
which is closely related to the nonlinear motion of the nearly resonant particles in the
wave potential. These harmonic field components, with frequencies that are multiples
of the wave frequency, cannot propagate independently in the medium, because they
do not satisfy a proper dispersion relation. However, they are present nevertheless, and
can influence wave propagation. More specifically, due to the presence of field har-
monics, multiple plasmon transitions become possible. The quantum recoil associated
with Landau damping as described in Eq. (20) is replaced by multiple quantum jumps,
between discrete values of the parallel velocity v, as determined by

o hk

n=2s s (35)

-+

This corresponds to the existence of multi-plasmon transitions, satisfying the
momentum and energy conservation relations

hk, + nhk = hk,, ho; +nho = ho,, (36)
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Fig.5 Multi-plasmon transitions in quantum Landau damping: a single plasmon transitions, for
w/k = vg; b two-plasmon transitions for w/k = 2vy

where the new frequencies w;, and wavenumbers k;, satisfy the free-particle disper-
sion @; = hka /2m, for j=1,2,3,... To discuss these multi-plasmon processes, we
can assume that the electric potential contains a second harmonic component, as

V(r,1) = V() exp (ik - T — icwt) + V,(t) exp (2ik - T — 2icwt), (37)

and that the quasidistribution contains a superposition of harmonics as

W(r, 1) = Wy + ). Wyexp [iv(k - T — o1)). (38)

v=0

These new expressions replace Eq. (17). Using them in the perturbative analysis of
the wave-kinetic and Poisson’s equations (7) and (9), it is then possible to generate
a cascade of coupled equations for the different disturbed quantities, which can then
be solved numerically (Brodin et al. 2018). This then proves that transitions such
as those represented in Fig. 5 seem to exist. However, it is difficult to give a simple
analytical estimate of the relative importance of such transitions.

On the other hand, this mechanism of multi-plasmon emission and absorption can
be seen from the perspective of single-particle solutions. In particular, it is in quali-
tative agreement with the Volkov solutions that can be derived from single-electron
states in a plasma wave (Mendonga and Serbeto 2011; Raicher and Eliezer 2013; Varr6
2014). These Volkov solutions have been originally established for relativistic quan-
tum plasmas, but they clearly show that single-electron states are compatible with the
existence of multi-plasmon transition processes. To illustrate this statement, we use
the Volkov solution of the Klein—Gordon equation, for an electron with momentum p
in a plasma wave. As recently noted (Al-Naseri and Brodin 2023), the Klein—Gordon
equation is reasonably accurate even for energetic quantum processes involving particle
pair-creation, provided that the wave frequency is well below the Compton frequency.
We have Mendonga and Serbeto (2011)

w(r, D) =y expiS(t)], @, = [p-r—EP)|/h, (39)
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where E(p) is the particle energy, and 7 = ¢ — (k- r/w) is a temporal variable. The
phase function S(z) is a periodic function of the wave amplitude, and can be Bessel
expanded. In the non-relativistic quantum limit, which is the case considered here,
this can be simply written as

ll/(l‘, I) — lIJOei(ﬂo Z Jv(é)eivwr’ (40)

where the quantity & ~ eV /(h?k?/2m) is the ratio between the potential and the
recoil energy. A nonlinear perturbative expansion of the quantum kinetic equation
(7), coupled with the Poisson equation (9), when we start from a Volkov equilibrium
and not from a static equilibrium, can then lead to a a new expression of the Landau
damping that takes the form

3
Tmaw
p

v, = 2 G = Gor ] vy = 2 2w @1)
0,1

20k 4

where F, =1 and F, =¢. This is in qualitative agreement with the numerical
results obtained in reference Brodin et al. (2018), and confirms them on analytical
grounds. This nonlinear form of Landau damping depends on the wave amplitude V
through the value of &, and tends to the linear result in the limit £ — 0, as expected.
A detailed derivation of this nonlinear quantum model can be found in Haas et al.
(2023).

To complete this discussion, mention should be made to earlier work on harmonic
generation (Bonitz et al. 1994), and to a more recent paper on nonlinear density pertur-
bations in warm dense matter (Dornheim et al. 2020). An additional comment should
be made on electron collisions, which were ignored. A short discussion of collision
effects, which could eventually obscure the collective quantum processes, can be found
in Brodin et al. (2015).

5 Photon Landau damping

We now show that the formalism of quantum plasmas can also describe the behaviour
of photons in classical plasmas. This is particularly useful to study processes related
with intense laser—plasma interactions, as those related with laser wakefield accelera-
tion. The case of quasiparticle turbulence will be discussed in the next section.

The first thing to notice is that, when we talk about photons, we mean electromag-
netic waves, which share their undulatory nature with the electrons in the quantum
regime. The formal similarity starts with the definition of a Wigner function for the
transverse electric field associated with the radiation spectrum, E(r, 7). It takes the form

N(r, Kk, 1) = / E(r—-s/2,t)- E*(r +s/2,1)exp (—is - k) ds. (42)

This is a straightforward generalization of the original definition given by Eq. (6)
to the case of a complex vectorial field. We write this new Wigner function as
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N(r, Kk, 1), to avoid confusion with the electron Wigner function defined before. This
new quasidistribution is proportional to the photon occupation number, and there-
fore to the spectral intensity of the radiation field. It should also be noticed that the
field is now described by a equation of propagation, which unlike the Schrodinger
equation contains a second time derivative. This difference changes little to the
Wigner—Moyal procedure (Tsintsadze and Mendonca 1998; Mendonc¢a 2001), and
leads to a wave-kinetic equation for the photon quasidistribution, that is formally
identical to Eq. (7) previously discussed for electrons in a quantum plasma. It can be
written as

(1)2

ih(% + 2. v vk = —p/K(k’ —kr)N(rK.)dk,  (43)
m

Ny

with the new Kernel
K(K' —k,r,1) = / [f(r +5/2,1) — a(r — 5/2, )] 7> K s, (44)

In isotropic plasmas, the photon momentum k is related to the photon frequency w
by the simple dispersion relation, w? = k>c? + a)lzj. The quantity 7(r, ) is the electron
density perturbation, and n its equilibrium value. If the perturbation is due to elec-
tron plasma waves, the density 7(r, ) is determined by a wave equation of the form

2 )
<‘)— - S%V2>ﬁ + 0’ = 292 (r, 1), (45)
m

Here, S, = /3T /m is the electron thermal velocity in a classical plasma. The right-
hand side of this equation describes the ponderomotive force, due to the inhomoge-
neities of the radiation intensity I(r, #). This quantity is simply related to the photon
number density defined above by an integral over the spectrum, as given by

I(r,n) = / N(r, Kk, 1) dk. (46)

It is then obvious that the ponderomotive force couples the two equations (43) and
(45), describing the photon number density N and the electron density n. Perturba-
tions of these two quantities will therefore evolve together. To avoid misunderstand-
ings, we use the notation (w, k) for the electrostatic wave spectrum, and (o', k") for
the photon spectrum. If we assume that the perturbed quantities behave in space and
time as exp(ik - r — iwt), we can apply a perturbative approach to these equations
and derive a dispersion relation for electron plasma waves in the presence of radia-
tion. It will take the following form:

1+ x.(0,K) + ypn(w, k) =0, 47)

where z,(w, k) is the usual electron susceptibility of a classical plasma, and y,;(w, k)
is the photon susceptibility, which results from the presence of radiation. It becomes
clear that the photons behave as an additional plasma population that also responds
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to the plasma perturbations. In explicit terms, we can use the fluid expression for the
electron susceptibility, and write

2
(0]
Ye(w.k) = —w—g(l +12A2), (48)

where A is the classical electron Debye length, while the photon susceptibility con-
tains quantum-like properties, and takes the form Mendonga and Serbeto (2006)

ok = L @, [ No(K —K/2) = No(K +K/2) ai/ )
Aol 2m? @? (w—-Kk-Vv) Qr)3’

Here, Ny(K’) is the equilibrium photon number distribution, and v/ = dk’ /dw’ the
photon group velocity. For a cold photon spectrum, which means a quasimono-
chromatic photon beam, such that spectral broadening can be neglected, we use
Ny(k') = 2x)*Ny 6(k' — k). The above dispersion relation becomes

w? Q?
ph

1— 2 |14+4%8%+ =0.
wl ok V) (@-kv) e

Here, we have used the shifted group velocities vﬁ_r =v/'(k! +k/2), and introduced

an effective photon-plasmon coupling factor €, such that
2,2
2 _ € k ' '
Q= Gy k- (V+ - V_)NO. (51)

If we now consider the contribution of the poles in the integral of Eq. (49), we arrive
at an expression of the photon Landau damping given by Mendong¢a and Serbeto
(2006)

71'62

mzzzgﬂ%@+wm—%@—wm, (52)

Here, we have introduced the parallel photon distribution, G,(p) = / No(p, K ) dK |,
where p is the photon momentum component parallel to the direction of propaga-
tion of the electron plasma wave, k/k. The population difference appearing in this
expression is the result of photon recoil, which occurs when a photon emits or
absorbs a plasmon. This recoil is similar to that of the previous quantum Landau
damping, but where plasmons are now emitted and absorbed by photons (not by
electrons).

Although particle recoil effects are usually attributed to a quantum descrip-
tion, in the present context, they result from the undulatory nature of the pho-
tons, which indeed behave as quantum particles. No quantum field is included in
the analysis, but the quantum nature of the scattering process directly emerges
from the classical wave equations. The formal analogy with the quantum Landau
damping defined by Eq. (20) is rather striking. It shows that photons that interact
resonantly with an electron plasma wave lead to a quantum-like behaviour of a
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non-degenerate plasma, and introduce the same kind of dispersive quantum cor-
rections that we usually associate with a degenerate plasma. The only difference
is that resonant coupling now occurs for large phase velocities w/k ~ ¢, and not
for w/k =~ v as previously.

In our discussion, it is also interesting to take the limit of geometric optics, which
is valid when the photon wavelength is much smaller than the wavelength of the
electron plasma wave, p > k. This is particularly useful in laser—plasma experi-
ments, and in particular to laser wakefield acceleration (Bingham et al. 2004). In this
case, we can expand the parallel photon distribution as

Gupo£k/D =Gy = 5(52) 53)
p P=Po

Replacing this in the expression for the quantum photon Landau damping, we can

reduce Eq. (52) to
= 50 () .
ph 8 m2 P op :po' 54

This result was first derived in Bingham et al. (1997), where the concept of photon
Landau damping was introduced. The formal analogy with Eq. (22) is very strik-
ing. It shows that, under appropriate physical conditions, both electrons and photons
interact resonantly with an electron plasma wave, and can be accelerated or deceler-
ated by them. Of course, the velocity regimes of electrons and photons are usually
very different, and these processes are physically distinct. Electron Landau damping
occurs for electron plasma waves with small phase velocities, of the order of the
electron thermal velocity, or Fermi velocity in the quantum case. In contrast, photon
Landau damping occurs for high phase velocities, approaching the velocity of light,
as those excited by short laser pulses in a plasma, as described in the experiments by
Murphy et al. (2006).

However, we could envisage physical situations where they occur at the same
time. For that purpose, it is useful to consider the kinetic dispersion of electron
plasma waves in the presence of radiation, with arbitrary phase velocity. Such waves
will, therefore, exist in a plasma with three particle species: electrons, photons, and
ions. Ignoring the ion motion, a more complete form of a quantum dispersion rela-
tion, where both electron and photon responses are included, takes the form Men-
donga and Serbeto (2016)

1 — &?
P

e’k? _
1+ ﬁJ(k)] I(k) =0, (55)

where the integrals J(k) and I(k) are defined as

1 NokD) = No(K)) - gi! Com [ Wolvl) = Wo(v,)
J(k)_/a7 (w-k-v) Qr)3° I(k)_ﬁ/ (w—-k-v)

dv,
(56)
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and represent the photon and electron dispersion effects. We clearly see the origin of
the above discussed photon and electron Landau resonances. The first one is deter-
mined by the equality w = Kk - v/, when the phase velocity of the electron plasma
wave equals the photon group velocity in the parallel direction. And the second one
is determined by a similar condition @ = Kk - v, when this phase velocity is equal to
the electron parallel velocity. These two resonant conditions usually occur for differ-
ent values of phase velocity, the first for small values of k, when the w/k approaches
the velocity of light, and the other for high values of k, when w/k is close to the
electron thermal velocity. This is illustrated in Fig. 6, where the total Landau damp-
ing described by the above dispersion relation, for a photon beam with group veloc-
ity 10 times larger than the electron thermal velocity is represented in the classi-
cal limit. Notice that, because the photons are associated with a beam (e.g., a laser
beam), we have positive and negative values of the damping rate, thus showing
that a beam of photons in a plasma is unstable. This is usually known as a modula-
tional instability, abundantly described in the literature (Max et al. 1974; Shukla and
Bharuthram 1987; Guerin et al. 1995; Sprangle et al. 1997).

Let us now briefly mention the possible occurrence of trapped photon states, in
the same way as the trapped electron states discussed before. This is illustrated in
Fig. 7, using photon ray-tracing equations, which are valid in the geometric optics
approximation (Mendonca 2001). For deeply trapped photons, trajectories are
reduced to linear oscillations at a frequency determined by

LR VT

where 7 is the amplitude of a electron plasma wave with frequency w, and
y = 1/4/1 = (w/kc)? the corresponding relativistic factor. This is similar to the
bounce frequency of trapped electrons, given by Eq. (28), underlining the analogy

-0.05

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Fig.6 Photon Landau damping, y; (in red) and electron Landau damping (in blue), normalised to the
electron plasma frequency, as a function of kA, in the classical limit
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Fig. 7 Photon trapping in the plasma wave: a passing trajectory (in blue), b trapped trajectory (in red),
and c separatrix (dashed curves). Notice that, when the plasma density is reduced by the plasma wave,
the photon approaches cut off and the wavenumber &’ tends to zero. This explains the pronounced mini-
mum of the lower separatrix Jsee Mendonga and Silva (1994), Mendonga (2001))]

between electron and photon dynamical processes in a plasma. This analogy seems
odd at first, because electrons are fermions, and photons are bosons. However,
here, we are ignoring spin effects. Nevertheless, vortical trajectories occur in pho-
ton phase-space, showing that photons can also be trapped in a plasma wave (see
Fig. 7). This leads to the formation of lower and upper sidebands of the laser beam
spectrum, as shown in simulations and experiments (Trines et al. 2009a). Photon
trapping eventually contributes to the nonlinear saturation of modulational instabili-
ties of a laser beam.

6 Quasiparticle turbulence

Another important generalization of the concept of quantum Landau damping can
be made when we consider the theory of plasma turbulence, specially when we try
to model strong turbulence. This is particularly important in the context of nuclear
fusion research, when we try to understand particle and energy transport in magneti-
cally confined plasmas (Yoshizawa et al. 2003; Diamond et al. 2005; Horton 1999).
But also when we try to understand phenomena observed in space and astrophysi-
cal plasmas, as illustrated below. Turbulence theory was dominated for a few dec-
ades by the so-called weak-turbulence theory, mainly developed in the 60s of the
last century (Kadomtsev 1965; Sagdeev and Galeev 1969; Tsytovich 1977). In this
theory, turbulence was described as an ensemble of weakly interacting waves and
particles, where the waves satisfy a linear dispersion relation and can weakly inter-
act with other waves, and with the resonant particles.

A further step towards strong turbulence is made when turbulence is described as a
gas of quasiparticles, which means, as additional plasma populations, which can then
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be perturbed by other larger wavelength waves. Now, instead of just waves and par-
ticles, we have waves, particles, and quasiparticles. These other waves, defined on a
turbulent background, are no longer linear objects, because then have to satisfy a non-
linear dispersion relation. This is the case of electron plasma waves in a radiation back-
ground, as discussed in the previous paragraph. But now, we can assume an arbitrary
large wavelength wave moving in a turbulent and eventually electrostatic background.
Examples of this broader context will be given below.

An even further step can be considered, when even the background turbulent modes
no longer satisfy a linear plasma dispersion. This is, for instance, the case of a gas of
solitons and vortices, mainly discussed in the condensed matter context (Tergas et al.
2013; Pereira et al. 2021). In plasma physics, highly sophisticated numerical codes
(such as the gyrokinetic codes of magnetic fusion) are now predominantly used (Tronko
et al. 2017), where the nonlinear dispersion is sometimes hidden in the simulations.

Let us focus on the case of Landau damping of a given wave in a turbulent plasma,
assuming this as a basic physical process of wave—quasiparticle interaction. For this
purpose, we consider a specific wave mode propagating in a plasma, where turbulence
is described as a gas of quasiparticles, and is seen as an additional particle population
(Mendonga et al. 2003; Trines et al. 2009b). Of particular interest is the case of zonal
flows, which are large wavelength and very-low-frequency plasma perturbations, taking
place in a sea of small-scale drift-wave turbulence (Smolyakov et al. 2000; Manfredi
and Roach 2003; Lashmore-Davies et al. 2001; Trines et al. 2005). Another example is
provided by lower hybrid modes propagating in a background of short-wavelength drift
fluctuations, as those considered in lower hybrid current drive experiments in tokamaks
(Karney and Fisch 1986; Bonoli et al. 2008; Decker et al. 2011).

Let us consider the kinetic description of turbulence and assume some short-scale
modes, such as photons, or drift waves (driftons), depending on the context. Each short-
scale turbulent mode satisfies a dispersion relation of the type

D(w,K) = 0. (58)

This is valid in plasma equilibrium. However, it will stay approximately valid if the
mode propagates in the presence of slow and large-scale perturbations, associated,
for instance, with density perturbations én, or to perturbations of the confining mag-
netic field 6B,,. The turbulent mode will try to adapt to this slowly varying environ-
ment, and the mode amplitude, represented generically by A, will evolve according
to the equation

[D(w +i0/ot,k — iV) + 6D|A = 0. (59)

Obviously, the quantity 6D represents the perturbed dispersion function associated
with such slow and large-scale perturbations, and can be represented typically as

oD, . oD
sD=Lsn+ 22 . 5B, .
on "t o, O (60)

Expanding this expression around the local dispersion relation (58), we get an evolu-
tion equation for the mode amplitude A, as Mendonga (2014)
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0 .
(0_t . V>A — UK, DA, 61)

where A can be a scalar or a vector, and the quantities vy and U(r, t) are defined by

(9D/0k) sD

v, = Ur,t) = W (62)

K™ (0D/ow)’
They represent the group velocity of the short-scale mode, and the effective poten-
tial created by the large-scale perturbations, respectively. From here, a wave-kinetic
equation describing the evolution of an arbitrary spectrum of short-scale turbulence
can be derived. For this purpose, we establish the autocorrelation function of these
particular field modes, K(r,s,t) = A*(r;,t) - A*(ry, 1), with r=(r; +1r,)/2, and
s = (r; —r,), and define the Wigner function of the turbulent field as its space Fou-
rier transform

W (r K. 1) = / K(r,s, 1) exp(~ik - s)ds. 63)

This quantity is a straightforward generalization of the Wigner functions defined
above for quantum electrons, and for photons. In the present context, it can be seen
as the probability distribution of the turbulent spectrum, which acts as an additional
particle population of the plasma medium. The evolution of this new population of
turbulent quasiparticles is then obtained with the help of the procedure used above
for photons (actually, a similar kind of Moyal procedure). This leads to the following
wave-kinetic equation:

dq
Qn)?’

(64)

(0 iq-
l(a‘ + V- V>‘/Vturb = / U(q’ [) [Wlurb— - Wlurb+]eqr

where W1, = WK = q/2), and U(q, 1) is the space Fourier transform of the per-
turbation potential defined in Eq. (62). Notice the formal analogy with the previous
wave-kinetic equations, describing the electron population in a quantum plasma, Eq.
(7), and the photon spectrum in a classical plasma, Eq. (43). This analogy supports
the claim that plasma turbulence can be described as a gas of quasiparticles.

We give a few examples of application of this generic description. First, we
apply it to Alfvenic and to plasmon turbulence, where a spectrum of Alfvén
waves, or alternatively electron plasma waves, evolves in a plasma perturbed
by large-scale ion-sound waves. These two cases are relevant to anomalous ion
heating (Mendong¢a and Shukla 2007), and to the modulational instability of a
plasmon beam (Mendon¢a and Bingham 2002). Another important example is
that of drift-wave turbulence in the presence of zonal flows. This is relevant to
space physics, where isolated electric field spikes are observed by satellites mov-
ing across the Earth magnetopause (Trines et al. 2007). The same model can be
applied to understand the anomalous transport and improved confinement modes
in tokamaks, and to explain the observed existence of zonal flow spikes, moving
radially towards the edge of the confining devices. Numerical simulations using
the above wave-kinetic model suggest that a large number of driftons are trapped

@ Springer



Reviews of Modern Plasma Physics (2023) 7:26 Page230f30 26

by each zonal spike (Trines et al. 2007), thus confirming that quasiparticle trap-
ping is occurring (see Fig. 8 for an illustration). Furthermore, this process is simi-
lar to that of quantum electron trapping or photon trapping in electron plasma
waves. Similarly, Landau damping of turbulent quasiparticles can also take place
(Mendonga and Benkadda 2012).

As a final useful example of application of this approach to turbulence, we
should mention the propagation of lower hybrid waves immersed in drift-wave
turbulence (Mendonga et al. 2015; Horton et al. 2013). In this case, we use the
dispersion relation of LH waves in the cold plasma limit, as

- 2 X, 2
D(w,k):l—kL<1+ﬁ—Xi>+k”Xe=0, (65)
where (k, k) are the parallel and the perpendicular wavevector components with
respect to the static magnetic field B,. The quantities X; = a)zj /@? are the normal-
ized electron and ion (j = e, j) plasma frequencies, and ¥, = w,, /@ the normalized
electron cyclotron frequency. As for the deviations to this local dispersion, they are
due to density and magnetic field perturbations, and are determined by

2
D= —i2 e | (1 2L )2
iy K] ng
e L

- é(Bo -6B)|. (66)
0

Using these definitions, we can then establish the wave-kinetic equation (64) for
LH waves, and study possible Landau damping and trapping processes, as above.
More interestingly, if, instead of a single mode, we have a spectrum of large-scale

n(r)
0.5F i
W(r)

0.0 [

—0.5; .
r
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Fig. 8 Formation of zonal flows in a plasma with drift-wave turbulence: local field and density spikes
(in red) are observed in an inhomogeneous plasmas, in the presence of broad spectrum of driftons with
radial wavenumber £, (in blue). Numerical simulations using the wave-kinetic model suggest that a large
number of driftons are trapped by each zonal spike [based on the simulations of Ref. Trines et al. (2007)]
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perturbations, we can derive a diffusion equation for the turbulent quasiparticles in
momentum space, which takes the form Mendonca et al. (2015)
0 0
2_ 2 Pk ] =0,
|5 = 5 D) = | W = (67)

where the diffusion tensor is determined by

D) = np>

qq 0Q—vg q) —= (68)

(2 )3’

and (€, q) are the frequency and wavevector of these large-scale density perturba-
tions with amplitude 6n,(q). They are usually associated with drift-wave turbulence,
and f?(w, k) is an auxiliary function depending on the dispersion properties of the
LH waves. It is clear from the presence of delta functions in the above integral
that the diffusion of LH waves across the spectrum is due to Landau resonances
Q = (v - q), where the velocity of the LH quasiparticles in the direction of propa-
gation of 6n,(q) is in resonance with the phase velocity of this perturbation. A con-
tinuous sequence of resonances leads to diffusion, in a way similar to that of the
standard quasilinear diffusion, but now involving large- and short-scale wave mode
interactions, which are wave—quasiparticle processes, and not the usual wave—parti-
cle processes of quasilinear theory (Davidson 1972).

7 Landau damping in ultracold matter

Another interesting and unexpected extension of the quantum plasma theory
is provided by ultracold matter. This is a consequence of the effective electric
charge of laser-cooled atoms in the micro-Kelvin temperature range. One of the
greatest achievements of the Physics of the latest decades of the last century was
the discovery of laser-cooling techniques, that led to the famous experiments on
Bose—Einstein condensation of dilute gases. In laser cooling, an interesting prop-
erty is that the gas of neutral atoms behaves as a “plasma”, due to the existence
of an effective electric atomic charge. Under typical experimental conditions, this
atomic charge is of the order of 107> times the electron charge e (Walker et al.
1990). This is a small but non-negligible value, which produces a repulsive force
between nearby atoms and leads to the occurrence of Coulomb explosions (Pruv-
ost et al. 2000), collective oscillations (Mendonga et al. 2008), and bubble insta-
bilities (Giampaoli et al. 2021).

Here, we focus on the analogy of these atomic systems with a quantum plasma. In
particular, it is possible to show that the density of the laser-cooled gas is described
by a wave-kinetic equation formally identical to Eq. (10), where W(r, v, f) represents
the atomic density. The potential acting on the atoms is now given by

V(r) = Vg(r) + Veg(r), (69)
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where the first term V(r) is the static confining potential of the atomic trap, and
V. describes the collective mean field of the atoms in presence of the cooling laser
beams. It is determined by a Poisson’s equation of the form

VVs=-0n, 0=(o —0')0'1—0 (70)

eff > RTOL)OL T

Here, n = / Wdyv is the atom density, and Q is an important parameter related with
the effective charge of the atoms. This quantity is proportional to the laser intensity
I,, and depends on two different quantities, oy and o7, which are the laser radia-
tion and laser absorption cross-sections (Pruvost et al. 2000; Mendonga et al. 2008).
These two cross-sections relate to the emission and absorption of radiation by the
atoms, and have similar although not identical values. These values depend on the
detuning 6 between the frequency of the laser photons and the frequency of the
atomic transition relevant to cooling. By changing 6, we can change the coupling
strength between atoms and radiation, and therefore the atomic charge. Under com-
mon experimental conditions, we have o > o1, and thus a repulsive force between
nearby atoms. Such a description allows to determine the equilibrium configurations
(Tercas and Mendonca 2013) and to establish the equation of state of the cold gas
(Rodrigues et al. 2016). What is relevant for our discussion is the existence of inter-
nal oscillations that satisfy a kinetic dispersion relation of the form

o [[Woo-Wo|]
-2 [ o 1)

where (w, k) are the frequency and wavevector of the oscillations, M is the mass of
the atoms, and W, is the equilibrium Wigner function of the gas. The real part of this
dispersion relation takes the familiar form

K2 2kt
2 _ 2 2
(O] —COP<1+EMS>+M. (72)

The plasma frequency w,,, and the thermal speed u, are now determined by

n,
w§= % ul = n_lo / Go(wu*du. (73)
We have used the parallel velocity u, and the parallel distribution
Gu) = / W(u,v,)dv,. At this point, two comments should be made. The first is

that a quantity g4 = \/eO_Q can be defined as the effective charge of the atoms. The
second is that, for frequencies such that w? ~ wé, a characteristic length 4, = u /o,
can be defined, which is a correlation length playing a role similar to that of Debye
length in a plasma. Only for an atomic cloud with size larger than A, can we expect
the manifestation of collective plasma-like effects. Finally, the existence of a Landau
resonance in the kinetic dispersion relation (71) shows that these modes can indeed
be Landau damped. The corresponding damping rate is
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= e

w,[Go(ug — hk/2M) — Go(uy + (ug + hk/2M )], (74)
where u, = w/k is the resonant velocity of the atoms. This demonstrates the strong
analogy between the atomic system and a quantum plasma, and illustrates the uni-
versality of the quantum Landau damping concept.

Similarly, we could have explored the analogy of quantum plasmas with the
Schrodinger—-Newton (or Schrodinger—Poisson) model, that has been promoted
in recent years as a simple approach to quantum gravity (Giulini and Grossardt
2014; Penrose 1996; Didsi 1984). This model describes a variety of phenomena,
such as a self-gravitating gas of quantum particles (e.g., atoms, molecules, or
dusty particles), as well as quantum plasmas. A recent formulation in terms of the
wave-kinetic theory explored here was proposed recently, and is able to establish
new bridges between a quantum plasma and other physical systems (Mendonga
2019).

8 Conclusions

In this paper, we have reviewed the properties of electron plasma waves in the quan-
tum regime. In particular, we have focused our attention on quantum Landau damp-
ing, and on particle trapping. We have discussed, not only the main differences, but
also the unexpected similarities between the classical and quantum plasma regimes.
Striking differences exist between these two regimes. In particular, the Fermi veloc-
ity replaces the thermal velocity in the usual dispersion relation, and a new disper-
sion term proportional to /2 appears in the quantum regime. The properties of elec-
tron trapping are also quite different, due to tunneling effects and to degeneracy. In
particular, we can observe trapping oscillations in the quantum regime, even in the
absence of trapped particles (Brodin et al. 2015), and the range of validity of the lin-
ear regime is larger for quantum plasmas (Daligault 2014).

We have also shown that the concepts of quantum Landau damping and quan-
tum trapping are able to describe phenomena in classical plasmas, when electron
plasma waves propagate in the presence of a radiation spectrum, eventually asso-
ciated with laser beams. Striking similarities then emerge between the photon and
quantum electron responses, in terms of wave dispersion and trapping. Furthermore,
these concepts can also be extended to the theory of turbulence in classical plasmas
(Mendonga and Hizanidis 2011), with applications in vast areas of knowledge
including anomalous transport in magnetically confined plasmas and space physics.
Finally, quantum Landau damping and quantum trapping can be shown to occur in
other domains, such as ultracold matter, where neutral atoms acquire an effective
electric charge due to their resonant interaction with laser-cooling beams, and the
ultracold gas behaves like a quantum plasma.
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