OPEN ACCESS

10P Publishing Classical and Quantum Gravity

Class. Quantum Grav. 42 (2025) 015007 (24pp) https://doi.org/10.1088/1361-6382/ad942d

Realistic binary neutron star initial data
with Elliptica

1,2,%

Alireza Rashti and Andrew Noe'*

! Institute for Gravitation & the Cosmos, The Pennsylvania State University,
University Park, PA 16802, United States of America

2 Department of Physics, The Pennsylvania State University, University Park, PA
16802, United States of America

E-mail: numerical.relativity @ gmail.com

Received 19 July 2024; revised 3 November 2024

Accepted for publication 18 November 2024 @
Published 12 December 2024

CrossMark
Abstract

This work introduces the E11iptica pseudo-spectral code for generating ini-
tial data of binary neutron star systems. Building upon the recent E1liptica
code update, we can now construct initial data using not only piecewise poly-
tropic equations of state, but also tabulated equations of state for these binary
systems. Furthermore, the code allows us to endow neutron stars within the
binary system with spins. These spins can have a magnitude close to the mass
shedding limit and can point in any direction.
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1. Introduction

Binary neutron star (BNS) systems are very common in our Universe. Estimates suggest their
merger rate falls between 2502810 Gpc—3yr ~! [1]. The coalescence of these BNS systems
is a source of myriad phenomena such as, among others, ejecta [2, 3], accretion disk [4],
jets [5], r-process nucleosynthesis [6], and kilonova [7]. These phenomena are treasure trove of
information revealing aspects of physics at large scales, for instance, gravity in strong regimes
and physical constants of the Universe, as well as aspects of physics regarding small scales,
like, equation of state (EOS) in supranuclear dense matter and formation of heavy elements in
the periodic table.
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As such, current detectors such as LIGO [8], VIRGO [9], and KAGRA [10] and the next
generation ones like Cosmic Explorer [11], the Deci-hertz Interferometer Gravitational-wave
Observatory [12], Einstein Telescope [13], LIGO Voyager [14], the laser interferometer space
antenna [15], NEMO [16], and TianQin [17] are designed to look eagerly into sky and observe
the physical signals emitted from the coalescence of compact binaries.

To unlock the wealth of information encoded in gravitational waves and their electromag-
netic counterparts, accurate theoretical models are crucial. These models are essential for
understanding events like GW170817 [18], the short gamma-ray burst GRB170817A [19],
and the kilonova transient AT2017gfo [20]. However, finding analytical solution of the gov-
erning partial differential equations (PDEs), when BNS systems are coalescing, is not feasible
as the PDEs are in a highly non-linear regime where no approximation is applicable [21]. In
light of this, numerical relativity (NR) community have put significant efforts to solve these
equations numerically and hence make sense of the observations.

Simulation of compact binary system in NR often involves two steps. The first step is to
find the solution of Einstein—Euler PDEs on a hypersurface of the spacetime manifold, namely,
constructing constraint satisfying and self-consistent initial data (ID) that present the binary
system of interest at some time. ID codes such as, COCAL [22-24], E11iptica [25], FUKA [26],
LORENE [27-31], NRPyElliptic [32], SGRID [33-35], SpECTRE’s elliptic solver [36, 37],
Spells [38-41], TwoPunctures [42, 43], are developed and utilized for this step.

The next step is to use the ID and simulate the system’s evolution over time; hence we
can find the solution over the spacetime of interest. Dynamical evolution codes, for instance,
AthenaX [44, 45], BAM [46-48], BAMPS [49-51], Dendro-GR [52], Einstein Toolkit [53,
54], ExaHyPE [55] GR-Athena++ [56-58] GRaM-X [59, 60], GRChombo [61, 62], Nmesh [63],
NRPy+ [64], SACRA-MPI [65], Simflowny [66], SpEC [67, 68], SpECTRE [69, 70], and
SPHINCS_BSSN [71], among others, are made and employed for this step.

Previously, E11liptica [25] was limited to the construction of ID for black hole neutron
star (NS) binary systems. Additionally, the code was only supporting polytropic or piecewise
polytropic EOSs. In this work, we extend E1liptica’s infrastructure to construction ID for
BNS systems as well as supporting tabulated EOSs, for instance, the CompOSE tables [72—74].

To this aim, the Einstein—Euler equations are cast into coupled non-linear elliptic PDEs [34,
75, 76], and solved iteratively using Newton—Raphson method by the Schur domain decom-
position [25]. During the solve, the cubed spherical patches adapt to the surface of the NSs
thus separating matter and vacuum and preventing Gibbs phenomena in the spectral method.
To achieve the target values of interest such as momenta of the system, mass and center of
NSs, they are checked and adjusted during the solve. The EOSs are approximated by either
(piecewise) polytropic or tabulate ones.

The remainder of paper is organized as follows. In section 2 we explain the mathemat-
ical background and formalism we use for ID of BNS systems, in particular, Einstein—Euler
equations and EOS in E1liptica. Section 3 details the underling algorithms and numerical
techniques for construction of BNS’s ID. We present the implementation of tabulated EOS by
spline interpolant means and diagnostics in E11iptica. Additionally, we explain the iterative
procedure for finding the physical and constraint satisfying ID for BNS systems. In section 4,
we present various convergence tests and comparison against post Newtonian answers to show-
case the proof of concept for the new version the code. In section 5, we discuss the possible
improvements and future work.

Throughout the article, we use geometric units where G = 1 is the constant of gravity, c = 1
is the speed of light, and solar mass M, = 1. Additionally, following [77], we absorb the speed
of light ¢ in the definition of pressure and total energy density.
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2. Formalism

2.1. Einstein—Euler equations

To derive the equations that govern the gravity and matter on a spatial-like hypersurface ¥, of
a four-dimensional manifold M with a metric g,,,,, we first write the line element of M as

ds? = g dxtdx” = —a?dr* +; (dx' + B dr) (d + Bdr) . (1)

This specific form of the line element is particularly well-suited for the 3 + 1 formalism. It
provides a clear view of the key variables (fields): «, 3', and 7;;. Here, « is the lapse gauge
and indicates the way that a sequence of spatial slices, X;s, are combined to form the complete
spacetime manifold M. -y;; is the induced three-metric on each spatial hypersurface and can be
written as 7y, = guu + nun,, where n* is the normal vector on %;. B! is the shift vector. The
importance of this gauge, i.e. shift vector, is that it represents the coordinate frame being used
in each hypersurface. In this work, we take the shift vector as follows

(F —rem) - @)

v,

B =B+ 6iij]lyar\Is (’k - ’jéM) +
'BNS

Here, Qs is the orbital angular velocity of the BNS system, rky, is the position of the sys-
tem’s center of mass, rgns is the coordinate distance between the NS centers, v, is the radial
velocity of the inspiraling coordinate system, and ¢y is the Levi-Civita symbol. Equation (2)
proves numerically convenient when applying boundary condition (BC) for 3’ at the edge of
the computational grid where the position vector 7 has large values.

By definition the extrinsic curvature on Y, is K, = — %£,fy,“,, in which £, is the Lie deriv-
ative along the normal vector. We note that by construction K,,,,n* = 0, therefore, we can use
spatial indices to describe the extrinsic curvature. Next, by utilizing conformal decomposition,
we write

v =¥, A3)
. . 1 .
KV =AYV + glﬁ”. “4)

Here ¢ is the conformal factor, 7; the conformal three-metric, AV the traceless part of
KY. Moreover, since we are using the extended conformal thin sandwich (XCTS) formal-
ism [75, 76]

AY is decomposed as

AT = oy~ 104T (5)

N

A= (28) =75 (©)
where

0y

iy =, %)

T

(LB)" =D'F + DB = 27" D", ®)

a=°a, ©

and D is the covariant derivative compatible with ;.
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To complete the formulation we need to incorporate the source terms. We assume the fluid
in NSs are governed by ideal fluid, hence the stress energy tensor can be written as

Ty = (po + poe + P) uply + Pguu,
ZPOhM;Luu +Pguua (10)
where, pp is the rest mass density, € the specific internal energy, P the pressure, & the specific

enthalpy, and u* the four-velocity of the fluid. Additionally, for 3 4+ 1 decomposition purposes,
we project the stress energy tensor with respect to X, as follows

E=n,n,T", an
S =iy T, (12)
j ==, (13)

where, E is the measured energy by the Eulerian observer whose four-velocity is n*. S is the
trace of matter stress tensor, and ji is the momentum flux.

Unique answer to a linear elliptic equation with a source is guaranteed by the maxim-
um/minimum principle. This principle becomes important during solve of constraint equations
for high mass NSs (for further discussion see [78]). To maintain the maximum/minimum prin-
ciple, we rescale the stress energy projections as

E=1vy"°E, (14)
§=14°S, (15)
j =5 (16)

Finally, following XCTS formalism, we write Einstein’s equations in quasi equilibrium
condition

B 1 _ 1 1 [ _
D) — R — UK i AT+ 2my T E=0, a7

D* (ay’) — (ay’) [éR + 15—21/)41(2 + ;wSA,-inf}

+1° (0K — B*OkK) —2m &)’ (E+28) =0, (18)
2 |D (- (LB)" ) — D; L) - gwi)lk —l6rayi =0 (19)
"\ 2a "\ 2a 3 ’
with the BCs
lim ¢ =1, lim B)=0, lim ay) =1. (20)
r—0o0 r—00 r—0o0

Additionally, we pick the free data as

¥ij = 0y, (2D
K=0, (22)
it = 0. (23)

For hydrodynamic equations, following [34], we decompose the fluid into two parts: the
rotational part of the fluid and is represented by a cross product, and the irrotational part of
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the fluid that is represented by a velocity potential (see, e.g. [79]). In particular, the rotational
part, which represents the NS spin, reads

w = s (6 — 25, (24)

here, Q’&S is a free parameter to set the spin level, see section 4.3, and x]g denotes the NS
coordinate. The irrotational part is shown by the potential ¢(x,y,z) and obeys the following
equations [35].

%1#—477@3@ _ @w_“v”l“"c’)kqﬂr ZpZ 57 (91) (9j¢)

+(02%) (Do), [”OTW — ol (8 +€)| =0 25)

where, 0; denotes the spatial partial derivative with respect to Cartesian coordinate x’ and &' is
the Killing vector. Here, following the smoothing method in [35]

c(po) = po + €poc (pOC po) , (26)
Poc

in which, p. is the values of pg at the NS center, and € is a constant number—for which we
generally use 0.1. Since the fluid is enclosed inside the patches that cover the NS, we further
need to impose a BC on the NS surface as

D'¢Dipo +w'Dipy — hu’ (B + &) Dipo = (27

We note that since equations (25) and (27) only include derivatives of ¢, we can not uniquely
determine ¢. Hence, we further demand that the value of ¢ at the NS center is a constant
number—Iike 0.

2.2. Equation of state

In order to close the system of equations we need an EOS. Elliptica deploys specific
enthalpy, 4, to create a link between the macroscopic properties of the matter and the gravity.
As such, if we have a piecewise EOS we write

h—1—a\"
h) =K "| —
po( ) 2 < ni+ 1 ) ’

h—1—a\""'
P(h) =K " (“) :
n,—|—1

ai+ni(h— 1)

n+1 ’ (28)

e(h) =
where n; = ﬁ is the polytropic index and K;’s are specific to the given EOS; a;’s ensure the
continuity of EOS [77] and are set as

ap :O,
Kii ro-1 K |

i Ti—
i =a;— —_—0: ! . 29
ai=a 1+Fi_171,0, Fiflp, (29)

Similarly, for tabulated EOSs we represent po (h), P(h), and € (h) as spline interpolants
given discrete data points (pg,P,€,h). Although typically only the quantities (po,P,€) or

5
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(po, P, e) are provided in tables, where e is the total energy density, we may convert between
variables via the relations:

e=p(l+e),
P

h=14¢+—. (30)
£o

Having written thermodynamic variables in terms of specific enthalpy, we now write spe-
cific enthalpy in terms of the metric and fluid variables [34]

h= /12— (D6 +w) (D) +wi),
b + \/bz — 4a4 [(DL(,b +W5)Wi]2
- 202 ’

b= [(£+8)Di¢ — C]* +20* (Di§ +wi) w'. 31)

L2

3. Numerical method

3.1 Coordinate system

The computation grid is tiled by cubed spherical coordinate systems [80], except at the NS
centers, where we use simple Cartesian boxes to avoid coordinate singularities at r =0 [25,
35]. The relation between Cartesian coordinate, denoted by x' = (x,y,z), and cubed spherical
coordinate, X' = (X,Y,Z), is

X 72—
X(.x,y,Z):g, Y(X,yaz)zzaZ(X,)’vZ):im, (32)

Yout — ¥in
here, X and Y take value € [—1,1], and Z € [0, 1]. Additionally, r;, and r,y are defined

Fiy = M’ Fout = M. (33)
N ES o VST
where, the shape of the inner boundary of a patch along the radial direction is determined by
oin(X,Y) and its outer boundary by oou(X,Y). 0(X,Y) is related to Cartesian coordinates by
the equation o(X,Y) = y/x% + y2 + z2. Finally, we note that while equation (32) is written for
patches along the z-axis, one can generalize this along any other axes.
As the distance from NSs increases, we expect the fields fall as powers of 7~!. To account
for this behavior we use a new transformation for Z coordinate, denoted by Z, for the paches
covering large radii of the grid. The transformation reads

7= (1), (34)

Oout — Tin r

Here r = \/x? +y? + 22 and still Z € [0, 1].

Finally, E1liptica uses Chebyshev polynomials of the first kind for the basis of the
spectral expansion and deploys the extrema of Chebyshev polynomials for its collocation
points [25].

Figure 1 illustrates the patches covering the x—y plane of the computational grid used in
this work. It is worth noting that the sizes used for the grid and NS are reduced to illustrate the
complete computational grid. In practice, we set the outer boundary at a radius of 10° M.

6
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Figure 1. Grid patches for a BNS system. Left: shown is the x—y plane of the compu-
tational grid that is covered by different patches. To fully represent the grid, the other
boundary is set to a shorter length. For a production run, the outer boundary is set gen-
erally at a radius of 10° Mg, from to the center of grid. Right: a zoomed-in view of the
x—y plane focusing on the NS regions. A Cartesian box is used around each NS center to
avoid coordinate singularities. By using various o (X, Y) values, cubed spherical patches
can adapt to different shapes, effectively capturing the shape of the NS surface. This
allows for the treatment of matter and vacuum in separate patches.

3.2. Elliptic solver

Given an elliptic PDE, we linearize the equation to use the Newton—Raphson method (see [25]
for a complete description). Thus, the original elliptic PDE becomes a matrix equation, like
Ax =B, to be solved. Now the challenge is to solve this matrix equation efficiently. To this
aim, we use the Schur domain decomposition method [25, 81]. At the core of this method there
is a divide and conquer strategy; in this strategy, first the coupled equations are solved, and
then the system decomposes into independent (uncoupled) subsystems, amenable for parallel
solving. The Schur domain decomposition allows solving the full system using shared memory
multiprocessing in which each CPU core is assigned to solve a matrix equations at each patch
independently.

The Schur domain decomposition method arranges the Jacobian matrix in Newton—
Raphson method into two parts. The first part is associated with all uncoupled equations and
the second part comprises the coupled equations. These couplings between equations occur
due to the inter-BC at the interfaces of adjacent patches [25]. As such, the system of matrix
equations can be seen as two equations with two unknowns as follows

(25)(2)-()

where, the vector v denotes all the unknowns that are uncoupled, i.e. v comprises all unknowns
that stem from inner points of a patch and hence uncoupled from the other patches. The vector
w is the unknowns that are due to coupled equations, i.e. stem from inter-BC between adjacent
patches. By such an arrangement, if the unknown w is solved, then the equation of v can be
solved consequently.
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Algorithm 1. Schur complement domain decomposition method.

1: Solve BE' = E for E';

2: Solve Bf' = ffor f';

3: Compute g’ = g — Ff';
4: Compute S = (C— FE');
5: Solve Sw = g’ for w;

6: Compute v =f — E'w;

Therefore, we first solve for w, and then we use it to solve for v. Accordingly, inE1liptica,
we solve equation (35) like:

(C—FE")Ww=g—Ff, (36)

v=f —E'w, 37
where

E'=B7'E,

f=B"f (38)
As we can see equation (36) only involves the unknown w, and it can be summarized as

Sw=g’, (39)

where, S is called Schur complement matrix.

After solving equation (39) for w, we solve for v using equation (37) — hence we find the
solution of the whole system.

A summary of the Schur complement domain method to solve elliptic equations is shown
in algorithm 1. For a more in-depth discussion about implementation of Schur domain decom-
position and parallelization of matrix solver the reader may consult [25]. Finally, we use the
publicly available and open-source UMFPACK direct solver [82].

3.3. Diagnostics

In Elliptica we compute the baryon mass of each NS using [83]

Mp = / poa)®\/Adx, (40)
NS

in which # is the determinant of 7; and the integration is taken over the volume of the NS.
To measure the NS spins, we can use the flat space coordinate rotational Killing vector,
following [84], on the surface of NS:

$X:_(Z_ZC)§)7+(y_yC)§Z’
5}’:+(Z7ZC)8_:Y+(X7XC)5U

522_(}}_)’c)8_;c+(x_xc)5yu (41)

in which (xc, e, z¢) is the coordinate center of the NS and (9;); e {x,y,-} are the basis vectors asso-
ciated with the Cartesian coordinates. Accordingly, NS spin S;, for the i direction, is measured
on the surface of NS by

1

T 8 NS ((Z’)I skKjde’ (42)
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where, s* is the normal vector on the NS surface. The dimensionless spin is defined
S;
-

My

Xi = (43)

Additionally, following [35], we can first compute the angular momentum J;, the center Ré,
and linear momentum P; of the NS, and then calculate S; as follows
S; = J; — € RLP;. (44)

Since the chosen free data 7;; in equation (21) satisfies the quasi-isotropic gauge condi-
tion [83] and K in equation (22) meets the asymptotic maximal gauge condition [83], the
ADM linear momentums and angular momentums of the system are defined [83]

-\J
P g&hm ¢ e — Ki) (9[) skdA, 45)
00 1 : J
Ji = 87&114)1‘[100 4 (I(]k — K’y]k) <¢z> Sde7 (46)

here,
b= — (z—zem) By + (v — yom) I,
by = +(z—zem) Ox + (x — xem) I,

—

¢: = —(y = yom) Os + (x — xcwm) Oy, 7
Lastly, to calculate the total ADM mass of the system, we use [83]

Mapy = / [wSE+ % (A,»,-A"fw” — Ry — §K2w5)] VAdx. (48)
>

3.4. Tabulated equations of state

We can import tabulated EOSs from the CompOSE repository [72—74]. A general CompOSE table
is first restricted to T = 0. The baryon density 7, is converted to the rest mass density pg via
the neutron mass m,: py = m,np.

We numerically differentiate and interpolate the EOS table to generate a Hermite spline
representation of the functions pg (h), P (h), and € (h) (see section (appendix A)). In practice,
the logarithms of these quantities are actually used to generate the interpolants.

A number of slight modifications may be made to the EOS in preprocessing in order to make
it more amenable to interpolation. These modifications are necessary for both the physical
consistency of the EOS and to facilitate the convergence of the solution.

The first modification involves adjusting specific enthalpy at the NS surface for the EOS
tables in which the specific enthalpy falls below 1. To this aim, at the minimum pressure, which
we consider occurring at the beginning of the table, we scale all py points by the multiplicative
constant 7 = hy,;, corresponding to the lowest value of % in the table. Accordingly, # points are
scaled by the value n~!, i.e:

Po — 1MPo
e+P_>e+P:n71h. 49)
Po 1Po
This alteration can be carried through to dynamical evolution codes by e.g. using the same
EOS table or by scaling the rest-mass density, at the minimum pressure, by the same factor
used in the preprocessing step.

h =
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dpo
dh

1073 i

1000  1.025 1050 1.075  1.100
h

Figure 2. Comparison of changes with respect to the specific enthalpy (%) in the
rest mass density (po) near the NS surface for three EOSs: K96 (single polytrope),
SLy (piecewise polytrope), and SFHo (table). A lower specific enthalpy corresponds to
a point closer to the NS surface, with & = 1 defining the surface itself. pg is in geometric
unit and % is dimensionless.

In addition, several other features of tabular EOSs may pose problems for both interpolation
and the use of specific enthalpy as the independent thermodynamic variable. Among these
problems is the presence of a region near the surface of the NS where both S—Z and dd% diverge.
This region is common to many EOSs with a ‘crust’, including both tabular EOSs such as
SFHo [85] and piecewise polytropics [86]. While this region is unavoidable if we wish to
accurately represent the equation of state via specific enthalpy, see [87, 88], it also limits the
accuracy of the solution within the NS (see figure 3).

Another consideration is the spacing of the data points in the CompOSE table, which may
be highly irregular especially for tables generated as a piecewise combination of different
models. To re-grid the EOS, we numerically differentiate the table points using Fornberg’s
method, explained in section (appendix B), and generate a low-degree Hermite interpolant,
section (appendix A), which is sampled to produce new data points on an evenly-spaced grid.
This method decreases oscillations when the new data points are themselves interpolated.
Additionally, the interpolation of the EOS truncates the jumps in derivatives of the thermo-
dynamic variables, i.e. % and dd%, that as we mentioned before, in some tables are not well-
defined. This low-degree Hermite interpolant corresponds to approximating the derivatives as
finite at these points (since infinite values would be unphysical anyway).

Figure 2 shows the resultant tabulated SFHo EOS after re-griding using a low-degree
Hermite interpolant with comparison to EOSs of K96 and SLy. The K96 EOS is a single poly-
trope, corresponding to K =96.7 and I' = 2 [89]. SLy is an approximate piecewise polytrope
of tabulated SLy4, and therefore quantities such as % are not continuous in certain regions
corresponding to transitions between piecewise segments [90]. SFHo, here restricted to the
zero-temperature regime, shows similar discontinuities [85].

Examining the functions relevant to the ID generation, e.g. pp and e, we see that the single-
polytrope model is considerably simpler and more amenable to numerical solution than the
models with discontinuities. The difference is typically relevant to the surface of the NS (where
h=1), as shown in the nearly vertical profile of % in figure 2. The sharp changes in % with
the piecewise polytropic and tabular EOSs are not perfectly captured by the grid, and thus they
limit the convergence of the constraint violations (see section 4.1).

10
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There are several potential ways to improve the convergence properties of the code in this
area. For example, one could apply filtering to the spectral coefficients [91] of py or implement
aroutine to identify the location of discontinuities, thereby creating patches where the discon-
tinuity occurs at the boundary between those patches. Additionally, using spectral EOS [87,
88, 92], and imposing continuity at the piecewise polytrope EOS [86] have been shown to
enhance the continuity of the solutions. The implementation and comparison of these methods
are left for future work.

3.5. ID construction

Construction of ID often necessitates an iterative approach. This process involves progressively
refining the ID until a suitable solution is achieved. However, rapid or uncontrolled updates of
the fields from one step to the next, or lack of adjustments of NS masses or their centers can
lead to a divergent answer and code crashes. Another challenge is to find the NS surface after
each update, as the true surface is unknown a-priori, and then creating a new computational
grid with patch’s surfaces adapted to the new NS surface.

We deploy the following iterative procedure to construct ID of a BNS system. In particular,
we start from a coarse resolution grid and progressively refine the answer, while controlling
diagnostics, until the Hamiltonian and momentum constraints, equations (55) and (56), reach
a plateau. Then, we increase the resolution and repeat this iteration until we achieve the level
of desired accuracy.

Step 0: we superimpose two Tolman—Oppenheimer—Volko (TOV) star solutions as the ini-
tial guess of the fields {1, a1y, B'}. To initialize the ¢ fields for each NS we use the approxim-
ation ¢ = —Qpyq(YNs — yem)x.

Step 1: We solve the elliptic equations iteratively in this specific order: first equation (25)
for the matter field, and then equations (17)—(19) for the metric fields. This approach has been
found to enhance the solution’s stability, particularly when solving the matter field first. The
order of solving the metric fields themselves, however, appears to be less critical. Moreover,
during each iteration step, we focus on solving a single elliptic equation while keeping the
other fields fixed. In essence, the fixed fields act as source terms influencing the equation being
solved. Finally, within the Newton—Raphson iterative method, we perform only one update
step per field, and then incorporating the newly solved value into the source terms for the next
equation. In the following = denotes a field from the set {¢, v, a1), B'}.

Step 2: as mentioned earlier, iterative solvers are often sensitive to prompt changes; code
crashes can happen if a sudden update take place in the system. As such, we update the field
solutions that are obtained from Step I in a relaxed fashion. To this aim, we use = = A=y +
(1 — X\)Eq14, in which Zq4 denotes the solution before entering Step I and =, is the solution
after exiting that step. A denotes the weight of update. We generally use A =0.2. This choice
of A value is proven to work for all experiments we have done.

Step 3: after updating all = fields, we see the baryon mass of each NS deviates, often by a
few percents, from the target value. Additionally, for spinning NSs, since at Step 0 we used
TOV solution, and then we added the spin vector to the NS, it is not surprising to observe the
baryon mass is different from the prescribed target value. Moreover, the starting resolution is
often coarse, and again the baryon mass may change as we go to a higher resolution. If we
do not account for these changes, the baryon mass deviates even further at later iterations and
may lead to a code crash. To adjust the baryon mass, we note that py = po(%), and as shown
in equation (31) the specific enthalpy depends on a constant C, i.e. h = h(C), which implies
po = po(C). Therefore by using a root finder, we find the value of C in equation (40) such that
the baryon mass remains the same as the target value.

1
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Step 4: since at Step 0 we began with a rough approximation of the solution, the linear ADM
momentums are initially not zero. Furthermore, for asymmetric masses or spinning systems,
we do not know in advance where is the exact position of the system center of mass—as
one needs to consider the full general relativity effect to find it. Therefore, we iteratively find

the system center of mass 7oy, by demanding the ADM momentum in each direction to be
[P

Mapm <
10—, hence we keep zem = 0, as the original value. However, often the initial value of ADM

momenta in x or y direction is ~107>Mapm. Therefore, we adjust xcy and ycy as follows

zero. The ADM momentum in z-direction proves consistently to be small, generally,

o0
y
XCM,new = XCM,o0ld + )\QZ Y7
BNS{“ADM
P
YCM,new = YCM,o0ld — Aigz . (50)
BNSMADM

Here, ) is generally chosen 0.2. It is worth noting that Kj; is a function of 3’, while 3 through
equation (2) is a function of .. Therefore, by adjusting the r&,, we influence K;;—and hence
all other fields as they are coupled to another—and we can derive P7° to zero iteratively.

Step 5: we update the stress energy tensor, in particular, we update the specific enthalpy for
each NS in a relaxed fashion as i = Mipeyw, + (1 — A)hoia; A is usually set to 0.5. Then, we use
the new value of specific enthalpy to update po(h), e(h), and P(h).

Step 6: finding the orbital angular velocity, (2, for a quasi-circular orbit demands full
solution of general relativity. Since we start with a Newtonian approximation for this value we
need to refine it. Following [93], so called the force balance method, we first compute 0; InT'
at each NS center, where I' computed as

auo |:1 - (Bl +£l + %’0) aDzl}lq;() - (avf;lz;)z]

I'= . 51
\/1 —(B+E+ %) (Bi+&+ %) &
Then, we use a root finder to find 24 such that
2 i i w' Wi
Silnla®—(f+e+ (5,-+5,~+ ) 428, InT =0, (52)
huO hud

where, 0; = %. Since in our setup the NS centers sit on y-axis, we compute equation (52)

along this axis. We find €2}, 4 for each NS centers and update it accordingly.

Step 7: at this point the specific enthalpy profile and hence NS surface are changed. We need
to find the new location of NS surface for adjusting cubed spherical patches that are covering
the NSs — so we can separate matter and vacuum into different patches. Since some parts of
the NS may need to extend to the patches that are currently covering vacuum, we extrapolate
h into these patches, so the root finder can find where & = 1. To this aim we use the following
formula to extrapolate specific enthalpy to the vacuum

1(r) = <a+ b) exp (—c()r> , (53)
r ro

here, r denotes the coordinate distance from the NS center, and ¢ is a constant (typically 0.01).
We find the values of a, and b by demanding C' continuity across the NS surface. Additionally,
we use the same equation (53) to extrapolate ¢ field outside the NS. This step is required when
the NS surface is expanded, and we want to interpolate ¢ from the current grid to a new grid.

Step 8: we identify the center of each NS by locating the coordinate where the specific
enthalpy reaches its maximum value. After multiple updates to the matter fields in previous

12



Class. Quantum Grav. 42 (2025) 015007 A Rashti and A Noe

steps, the NS centers can exhibit slight drifts from their initial positions. These drifts can accu-
mulate over time, potentially leading to code crashes. To address this issue, we employ a cor-
rective measure that adjusts the specific enthalpy function as follows

Bnew (F) = hoia (F) — (F = 7o) - Vo (75) (54)

where, ry denotes the coordinate of NS center. This adjustment ensures that the maximum value
of the specific enthalpy remains at the same location, effectively preventing the NS centers
from drifting significantly.

Step 9: we find the profile of oo, (X,Y) that is necessary for equation (33) to have patch
surfaces fitting the NS surface. To this end, for a given angular 6 and ¢ in spherical coordinate,
we use a root finder for r to solve h(r,0,¢$) — 1 =0 and hence finding the new NS surface.
Here, r is the coordinate distance from the NS center.

Step 10: if the NS surfaces are changed or if the resolution increases at the next iteration,
we create a new grid. To ensure a smooth transition, we use spectral interpolation techniques
to transfer data from the previous grid onto the new one.

Step 11: we monitor the Hamiltonian and momentum constraints, equations (55) and (56).
We restart from Step I unless the constraints reach their truncation error and are level off. In
this case, when the constraints reach a plateau, we stop the iterative process if there is no higher
resolution demanded; otherwise we go to the next resolution and start from Step 1.

4. Results

4.1 Convergence test

Since E1lipticais a pseudo-spectral code, the first expectation of the code is spectral conver-
gence feature. As such, we calculate the Hamiltonian and momentum constraints, respectively,
using

H:=R—K;K'+ K>~ 167E (55)

M' :=D; (K’ —~'K) — 8rj'. (56)

For the convergence test, we generate ID for two symmetric BNS systems: one with poly-
tropic K96 EOS and the other with tabulated SFHo EOS. In these systems, the NSs have baryon
mass 1.4 with no spin, and their separation is S0M,.

Figure 3 shows the L,-norm of the Hamiltonian and momentum constraints as a function
of grid resolution (focusing on the final iteration at each resolution) for the two systems. In
figures 3(a) and (b)), the convergence test emphasizes on the NS. We observe the constraint
violations decrease exponentially for smooth matter field, i.e. K96 EOS. For the SFHo EOS,
initially for low resolutions the constraints converge exponentially but for higher resolutions
the constraints level off. This behavior is expected; when the grid resolution is coarse the true
discontinuities of EOS variables are not seen by the spectral expansion. For fine resolutions all
features of EOS variables emerge and while spectral convergence try to resolve these features,
but it is not successful. Hence, we see constraints are soon level off and do not decrease as we
increase the resolution. We note that, for the tabular EOS (SFHo), the convergence is limited
due to the sharp features of % near the surface of the NS (see figure 2). Indeed, the overall
magnitude of the constraint violations is higher and the rate of convergence is not exponential
with the tabular EOS (in contrast to the simple polytrope). Nonetheless, the profile of the
convergence tests still suggest convergence up to a limit at high resolutions.

13
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Figure 3. The L,-norm of the Hamiltonian and momentum constraint violations for the
BNS system with the K96 EOS (single polytrope) and the SFHo EOS (table). The con-
straint violations at each point are summed over all points in the specified regions. The
regions not including a tabular EOS show exponential convergence, while regions with
such an EOS reach a limit at high resolutions.

Ensuring spectral convergence of the code for regions that fields are smooth, we calculate

L,-norm of constraints at immediate neighboring regions of NSs, where there is no matter
fields. Figures 3(c) and (d) demonstrates they convergence spectrally.
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Figure 4. Analytic post-Newtonian (PN) curve versus NR curve. The values of E}, for
given Qfyg are compared for post-Newtonian method and NR method. For binaries
with a large separation post-Newtonian and NR values are matching. For BNS of a close
separation there is a slight deviation from post-Newtonian prediction as the system is not
fully in quasi-circular status. Here, 1 = Moy Moy /Mo and the binary has a symmetric
baryon mass of 1.4 for each NS and uses tabulated SLy4 EOS.

Finally, the overall converge of the constraints, calculated over all regions, are shown in
figures 3(e) and (f); while both systems exhibit convergence as the resolution increases, the
rate of convergence for BNS with SFHo EOS is smaller than K96 EOS.

4.2. Post-Newtonian test

We calculate the binding energy E}, of a symmetric non-spinning BNS system with NS baryon
mass 1.4 and tabulated SLy4 EOS for varied separations of NSs. Here Ey, = Mapm — Moo and
Moo = Mgy + M3y ; We use equation (48) to calculate Mapy and M%zv are the correspond-
ing gravitational mass of NSs in isolation—found by a TOV solver.

To determine ) for a specific separation, we employ an iterative approach based on the
force balance method described in equation (52). To validate the accuracy of the generated ID
against the expected analytical values for significant separations, particularly when the BNS
system exhibits quasi-circular motion, we calculate the binding energy E}, corresponding to
the given () utilizing a post-Newtonian formula , the 4 post-Newtonian order approxima-
tion, outlined in [94], section 7.4. Specifically, to compute the post-Newtonian values of Ej,
we need the reduced mass p = Mkoy M35y /Moo, the symmetric mass v = 1/Mo, and the
dimensionless orbital velocity x*/2 = Q% Moo

Figure 4 illustrates the binding energy of the BNS system across different separations com-
pared to the post-Newtonian data points. In cases of binaries with significant separations, meet-
ing the quasi-circular motion criteria, we observe that the post-Newtonian and NR values align.
However, for smaller separations, the NR values of E}, are marginally higher.

4.3. Spin

We generate ID for different QY g, in equation (24), values pertaining to one of the NS in the
BNS system, where each NS has a baryon mass of 1.4, and they are separated by 30M,. In
this scenario, we utilize the K96 EOS. The maximum dimensionless spin achievable is ~0.56,
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Figure 5. The relation between ()¢ and x is depicted by the solid line for a symmetric
mass BNS system with a baryonic mass of 1.4 and a separation of 30M. The dashed
line shows the corresponding values of x, for an isolated spinning NS for the same
values of baryonic mass and EOS. We find an excellent agreement between spin values
of the isolated N'S and the BNS system. Initially, x exhibits a linear growth pattern with
Qs but as Qg is raised beyond a certain point, x; starts to increase non-linearly.

which corresponds to the mass shedding limit of a single NS as discussed in [95]. By increasing
the 254 beyond 0.02, the spinning N'S becomes too oblate that the NS surface finding routine
fails (Step 9 in section 3.5).

Additionally, to compare the spin values in a BNS system with those of an isolated spin-
ning NS, we create ID for isolated NS with the same values of baryon mass, EOS, and {2
values (except the largest value *). The resulting spin values are shown in figure 5, where we
find excellent agreement between spin value of the isolated NS and the BNS system.

Figure 5 shows the relation between 25 in equation (24) and x; in equation (43). There is
a linear relation between (25 and x for low values of {)5. However, as 234 increases, the
relationship transitions into a nonlinear pattern, causing Y to rise more steeply.

Moreover, figure 5 can be utilized as an approximate reference to determine the appropriate
value of ()} corresponding to a desired spin level.

4.4. Outer boundary radius

We aim to study the effect of the outer boundary radius of the grid, where equation (20) is
imposed, on the convergence behavior of the constraints and the binding energy of the system.
To this end, we construct four ID sets for a symmetric non-spinning BNS system with NS
baryon mass 1.4 and the tabulated SLy4 EOS each featuring a different outer boundary radius.
In particular, the chosen outer boundary radii are 5 x 10*Mg, 1 x 10°Mg, 5 x 10° Mg, and
1 x 10°M.

We find that setting the outer boundary radius larger than 10® M, can lead to code failures
due to issues with the patch finder routine in the code. This routine is essential for establish-
ing the inter-BC [25] between adjacent patches, as it identifies neighboring patches for each
patch. Consequently, additional code support would be necessary if a larger outer boundary

3 To create ID for Qs = 0.02, the NS surface finding routine fails, hence we can not report the corresponding spin
value.
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Figure 6. Shown is the L,-norm of Hamiltonian (H) and momentum (M’) constraint
violations for a symmetric BNS system with the tabulated SLy4 EOS and the outer
boundary radius of 5 x 10° M. The constraints are calculated for an arbitrary patch
that covers large-radius regions of the grid, where the flat spacetime BCs, equation (20),
are imposed on its outermost boundary. Other patches within these large-radius regions
display a similar convergence pattern.

is required. However, a grid with an outer boundary at 10° M, is already few orders of mag-
nitude larger than the typical grids used in evolution simulations, such as those in [57, 96,
97]. Therefore, this size is sufficiently large for the ID to be interpolated onto the grid of an
evolution code.

Figure 6 illustrates the convergence test of the Hamiltonian and momentum constraints
focusing on one of the patches that cover the large-radius regions of the grid, i.e, reaching
the outer boundary of the grid. We observe a clear spectral convergence for all constraints.
This convergence behavior remains quantitatively unchanged across all other patches in these
large-radius regions as well as across all other ID sets with different outer boundary radii.
Furthermore, the convergence behavior for all regions, NS exterior regions, and NS interior
regions are consistent with the findings for the SFHo EOS, and discussed in section 4.1.

Additionally, in figure 7, we plot the absolute value of the relative difference in binding
energy as a function of the outer boundary radius. We define AEy, = Ey, — Ey, in which Ej, rep-
resents the binding energy of the BNS system with the largest outer boundary radius, namely,
10° M. We observe that the relative difference in binding energy exhibits converging behavior
with respect to the Ey, benchmark. Presuming that the largest radius provides the most accurate
binding energy (E}), we find the relative difference between the binding energies at smallest
outer boundary radius and the largest one is ~0.3%. Furthermore, the relative difference in
binding energies between 5 x 103 M, and 1 x 10° M, radii is ~0.04%.

These results suggest that we can construct constraint satisfying and self-consistent ID for
different values of the outer boundary radius of the grid.

5. Summary

In this work we have presented a significant upgrade to the Elliptica infrastructure.
Previously limited to black hole-NS system and (piecewise) polytropic EOS for NSs,
Elliptica can now construct ID for spinning BNS systems, incorporating realistic tabulated
EOSs for the NS matter.
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Figure 7. Relative difference in binding energy as a function of outer boundary radius.
We define AE, = Ej, — Ej, in which E}, represents the binding energy of the BNS system
with the largest outer boundary radius, i.e. 10°Mg.

To incorporate tabular EOSs, we have developed a number of techniques centered around
interpolation that allow convergence in the resulting solution while remaining as true as pos-
sible to the underlying microphysics. While the convergence of the solution is negatively
affected by the complexity of the EOS, we maintain convergence up to a limit imposed by
the surface features.

In this work, we selected tabulated SLy4 and SFHo EOSs from the CompOSE tables. Since
these EOSs are generic among available cold NS EOS tables, our numerical methods remain
still applicable to many such EOSs. Additionally, our conclusions regarding convergence, for
example, are relevant because the limiting factors on accuracy are common across these fam-
ilies of EOSs.

We have validated our code through convergence tests and comparisons with established
analytical results, particularly in the post-Newtonian regime. Additionally, by setting the outer
boundary radius at different values, we study the convergence of the constraints and the binding
energy of the system. We observe that the constraints exhibit spectral convergence in patches
covering the large-radius regions of the grid. Furthermore, we find that choosing an outer
boundary radius in the range of (10°,10%) Mg, results in an uncertainty bound of less than
~0.2% in the binding energy of the BNS system. These tests demonstrate the code’s accuracy
and robustness.

For smooth EOS, such as polytropic models, we achieve spectral convergence, indicating an
optimal error reduction rate with increasing resolution. However, for EOS tables with discon-
tinuities, spectral convergence is diminished. At high resolutions, we observe a convergence
plateau inside NS, though global convergence is still ensured. This behavior is expected for
discontinuous functions.

While we have not studied our ID in the context of an evolution simulation in this work,
it is important to assess the quality of the ID after its interpolation onto the grid of an evol-
ution code. In particular, the propagation of constraint violations and the oscillation of the
rest mass density at the center of each NS are important diagnostics to be studied. Moreover,
since different ID codes employ different numerical parameters and algorithms to solve ID
equations, it is important to examine the effects of these differences on the resultant gravit-
ational waves. Specifically, from the point of view of the next generation detectors such as
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Cosmic Explorer [11], we need to study the mismatch between two gravitational wave signals
emitted from the evolution of a BNS system started from the same ID but using two different
ID codes. These topics are left for future work.

While some first steps have been taken to construct self-consistent ID for magnetized NSs
by solving the Einstein—Euler—Maxwell equations assuming ideal magnetohydrodynamic [98,
99], there are no ID with self-consistent magnetic field for binary systems. As such, a partic-
ularly interesting area for future development lies in constructing self-consistent ID for BNS
systems that contain magnetic fields. This capability would be specially valuable for study-
ing systems containing pulsars or magnetars, where these fields play a significant role in the
dynamics.
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Appendix A. Interpolation of the equation of state

To generate a suitable interpolant of a tabular EOS, we first approximate %, %, and % by
finite-difference methods on the CompOSE data using Fornberg’s algorithm [100], explained
in appendix B, for unevenly-spaced grids. Having the derivatives, we then generate a spline
interpolant composed of Hermite polynomials. The procedure for e.g. the pressure p (h) is:
Step 0: we are given data points (p;, h;) monotonically increasing in 4.
Step I: for each point j, we take the set of N points X; = {hj_%v, coshy, 7hj+%} centered
around h;. We shift the indices when needed for points near the boundaries hg and &;

‘max *

i N
Step 2: at each point, approximate g—’h’ = E/:r_z] v 0% ,Dv» With the coefficients § calcu-
h; 772 ’

lated by Fornberg’s algorithm applied over the set X; obtained in Step 1.

dp(h;)
dh >

Step 3: having p; and its derivative
(according to [101]) of desired order.
The same procedure is applied to obtain splines for e (h), po (h), and € (). Derivatives of
these functions are thereafter approximated by analytical derivatives of the spline interpolant.

we generate the interpolating Hermite polynomial

4 https://github.com/rashti-alireza/Elliptica.


https://github.com/rashti-alireza/Elliptica
https://github.com/rashti-alireza/Elliptica

Class. Quantum Grav. 42 (2025) 015007 A Rashti and A Noe

Algorithm 2. Simplification of Fornberg’s finite difference algorithm, adapted from [100].

1:68’0201 =1
2:forn=1,...,Ndo

3: 6221

4: forv=0,....n—1do

5: C3 = Xn — Xu

6: ) =cCr-C3

7: if n=0,1 then

8: g}u—o

9: end if

10: o, = (o )5,, Ly

11: 6é,u = Cl (( Xn )51!1—1711 75}(')1—],1/)
12: end for

130 60, = (hj—Xu—1)Op_1 s

14: 5}1,n:f(6n 1,n— 1+(hj_'x"—1)5rll—l,n—l)
15: Cl =C

16: end for

Appendix B. Application of Fornberg’s finite difference method

Step 2 of section (appendix A) entails finding derivatives such as i—i, which EOS tables do not
provide. We evaluate these derivatives numerically using finite difference methods on the data
points (p;, ;). Since the data points are typically unevenly spaced, we use Fornberg’s finite

difference algorithm to generate finite difference coefficients that approximate L ( 2 at each
point [100]. Specifically, the algorithm calculates the weights dy ,, such that
+5
dhm ~ Y P, (B.1)
v j——

where N is the number of points used (and determines the order of the finite difference approx-
imation).

While Fornberg’s algorithm can provide derivatives of arbitrarily high orders (given enough
data points), we are only interested in the first derivative. In addition, we do not need the finite
difference coefficients for all orders, so we simplify the algorithm slightly. Then given a subset
X; centered around 4;, from Step I of appendix A, we find the finite difference weights using
algorithm 2 (where ¢, ¢, and c¢3 are introduced just to simplify the notation, and x; is the kth
element of X;).
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