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Analytical and numerical methods for studying astrophysical
objects

Abstract:

The main objective of this thesis is study the spectrum of rotating compact massive
objects using the linearized perturbation theory developed by Teukolsky.
To achieve this goal, we use the exact analytical solutions of the Teukolsky Angular
and Teukolsky Radial Equation, written in terms of confluent Heun functions.
Then we impose the appropriate boundary conditions directly on the solutions
of those differential equations. The advantages of this new approach is that by
working with the exact solutions, one has more control over the parameters of the
problem, compared with the various approximate methods.
Using the numerical realization of the confluent Heun functions in the software
package Maple, we obtain the quasi-normal modes spectrum of electromagnetic
and gravitational perturbations in the case of rotating and non-rotating black holes
(the gravitational case is studied only in the latter case). We are able to reproduce
the calculated trough other methods results, and additionally, we are able to study
for the first time the dependence of those numerical results on small changes in the
argument of the complex radial variable.
Furthermore, we study the spectrum of primary jets of rotating black holes. This is
achieved by imposing new, polynomial condition on the solutions of the Teukolsky
angular equation. The so-obtained spectrum is qualitatively different from the
quasi-normal spectrum. Using the polinomiality property of the confluent Heun
functions, we are able to obtain an analytical formula fitting the numerical results
for the two lowest modes with high precision.

Keywords: quasinormal modes, QNM, Schwarzschild metric, Kerr metric,
Regge-Wheeler equation, Teukolsky radial equation, Teukolsky angular equation,
Heun functions, primary jets, GRB
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Chapter 1

Introduction

1.1 GRB observations – the reality check for the theory

The formation of astrophysical jets is one of the frontiers in our understanding of
physics of compact massive objects. Collimated outflows are observed in many types
of objects: brown dwarfs, young stars, binary systems ([1]), neutron stars (NS) and
active-galactic nuclei (AGN) (for a brief review see [2]), and observational data
continue to surprise us with the universality of jet formation in the Universe (for
example according to [3], observations surprisingly hint for independence of AGN
jet-formation from the type of their host galaxy). Despite the differences in the
temporal and dimensional scales and the suggested emission mechanisms of the jets,
evidences imply that there is some kind of common process serving as an engine for
their formation. The true nature of this engine, however, remains elusive.

An example of the difficulties in front of models of such engine, can be seen in
gamma-ray burst (GRB) physics. GRBs are cosmic explosions whose jets are highly
collimated (θjet ∼ 2◦ − 5◦), highly variable in time (∼ seconds), extreme in their
energy output (∼ 1051 − 1056 erg) and appearing on different redshifts (currently,
up to zobs

max = 8.2) ([4], [5], [6]). Although there are already several hundred GRBs
observed by current missions and a lot of details are well studied, the theory of
GRBs remains incomplete.

Currently GRBs are divided into two classes – short and long – based on their
duration (with a limit T90 ≃ 2s). This temporal division seemed to correlate with
their origin and spectral characteristics, leading to the theory that short GRBs
are likely products of binary mergers of compact objects (black hole (BH) and
neutron star (NS) or NS and NS), while long GRBs are outcome of the collapse of
massive stars 1. This clear distinction, however, is questioned by observations of
bursts with common for the two classes properties (for latest observation of such
GRB: [7] suggesting the existence of an intermediate, third class of GRBs and by
statistical analysis suggesting that the two classes are not qualitatively different ([8],
[9] and [10]) – both evidences of common producing mechanism for the two classes.
Furthermore, the possibility to explain short GRBs by merger of binary systems
of BH-NS or NS-NS was recently refuted by the lack of detection of gravitational
waves in 22 cases of short GRBs ([11], [12]).

1The major evidence for the collapsar model, the connection of long GRBs with supernovae
(SN) was confirmed with the observations of GRB 980425/SN 1998bw and GRB060218/SN2006aj
– events that started as a GRB and then evolved spectrally into a SN. But the question remains
why not every long GRB is accompanied by SN.
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The dominating theoretical model in the GRB physics describing the evolution
of already formed jet is the ”fireball model“ introduced by [13]. In this model series
of shells of relativistic particles are accelerated by unknown massive object called
the ”central engine“. The observed lightcurve is produced by internal collisions of the
shells and by their propagation in the circumburst medium. This model, however,
doesn’t explain the process behind the formation of the shells or the collimation of
the jet.

The discrepancies between this model and the observational data were outlined
recently in [14], most important of them – the yet unexplained afterglow decay
plateaus (and the sharp decay of the light curve afterwards) and the discovered
by the mission SWIFT flares (additional sharp maximums superimposed over the
decaying afterglow lightcurve) observed in different epochs of the burst and with
different fluences (for detailed study of flares see [15]). Although both plateaus
and flares imply energy injections by the central engine, the flares that may ap-
pear up to 106s after the trigger with fluences sometimes comparable with that of
the prompt emission, question the very nature of this energy injections. Different
theories and simulations are being explored to explain these problems (for recent
studies see [16],[17], [18], [19]), but the obvious conclusion is that we still lack a clear
understanding of the central engine of GRB.

Theoretically, the most exploited models of central engines include a Kerr black
hole (KBH) in super-radiant mode([20], [21]) – the wave analogue of the Penrose
process or the Blandford-Znajek process ([22], [23]) based on electromagnetic ex-
traction of energy from KBH – the electromagnetic analogue of Penrose process.
Both processes have their strong and weak sides, but the main problem is that they
cannot provide enough energy for the GRB – the Penrose process seems to be not
efficient enough (it offers significant acceleration only for already relativistic mat-
ter), as shown long time ago by Wald ([24]). This problem is also discussed in [25],
who argue that the energy gap between a bound stable orbit around a KBH and an
orbit plunging into the ergo region is so big, ”energy extraction cannot be achieved
unless hydrodynamical forces or superstrong radiation reactions can accelerate frag-
ments to speed more than 0.5c during the infall“. As for the Blandford-Znajek
process which offers a good explanation of the collimation we observe, it requires
extremely intensive magnetic fields to accelerates the jets to the energies observed
in GRBs (theoretical estimations show that B ∼ 1015 ÷ 1016 G is needed for a jet
with E ≥ 1051 erg ). Even when the magnetic fields are sufficiently strong ( as in
[26] ), numerical simulations imply that the BZ process is not efficient enough ([27])
for the formation of the powerful jets seen in GRBs ( [28], Barkov, Komissarov: [29],
[30] , [31] , [32], [33] ).

Furthermore, the most speculated in the theory GRB engines include a rotating
black hole, but the observational data on GRBs do not provide definitive clarification
on this assumption for now. The main problem is that we cannot observe the central
engine directly. The usual techniques to study its strong gravitational field are not
applicable for the GRB case, because of the properties of their physical progenitors
and their highly non-trivial behavior:
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1) We are not able to observe the motion of objects in vicinity of the very central
engine of GRB.

2) Instead of quite phase after the hypothetical formation of the KBH, we observe
late time engine activity (flares) which is hardly compatible with the KBH model.

3) The visible jets are formed at distance of 20-100 event horizon radii ([34])
where one cannot distinguish the exterior fields of a Kerr black hole from the exterior
field of another rotating massive compact matter object solely by measuring the
parameters of the metric – M and a (for a detailed discussion see [35], [36]).

In this situation, the only way to find the true nature of the physical object
behind the central engine is to study the spectra of perturbations of the Kerr metric.
Different types of central engines are described trough different boundary conditions
and different boundary conditions generate different spectra specific for the object.
Thus finding appropriate spectra to fit our observations enables us to uncover the
true nature of the central engine. Similar method to discover the BH horizon was
proposed for the first time in [37], and studied more recently in [38], [39], [40], [41].
In present article we give a theoretical basis for application of the same idea for
studying the nature of central engine of GRBs based on the spectra of their jets.
([35]).

The study of the spectra of some types of perturbations of rotating black holes
has already serious theoretical and numerical basis, particularly concerning the
quasi-normal modes (QNM) of a black hole. The QNM case examines linearized
perturbations of a Kerr metric described by the Teukolsky angular and radial equa-
tions (TAE and TRE accordingly)2 with boundary condition as follows:

A. Boundary condition on the solutions to the TRE: only ingoing waves in the
horizon, only outgoing waves to radial infinity – the so called black hole boundary
condition (BHBC).

B. Regularity condition is usually imposed on the solutions to the TAE (see in
[42] and also in [43]).

The complex frequencies obtained in the case of QNM are the solutions of the
eigenvalue problem corresponding to these boundary conditions, they represent the
”ringing“ which governs the behavior of the black hole in late epochs and they depend
only on the two metric parameters (M and a). A major technical difficulty when
searching for QNM is that one solves connected problem with two complex spectral
parameters. This was first done by [44] and later developed trough the mechanism
of continued fractions by [45].

1.2 The ringing of the black holes

The study of the quasi-normal modes (QNMs) of a black hole (BH) has long history
([46, 47, 48, 25, 49, 42, 50, 51, 52, 53, 54, 55, 56, 37, 43, 45, 57, 58, 59, 60, 61, 62,
63, 64, 65, 66, 67, 68, 69, 70]). The case of electromagnetic (EM) perturbations,

2TAE and TRE will be discussed in more details in chapter ”Perturbation theory“
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however, has been often ignored because of their perceived irrelevance to the problem
of finding gravitational waves. The reasons behind this are that:

1. The expected luminosity of the gravitational output in the most often studied
process of BH binary merger is much bigger than the electromagnetic one ([71]).

2. The EM waves strongly interact with the surrounding medium. This may
lead to essential deviation of the observed spectrum from the one expected from the
no-hair theorem and it makes the object’s fingerprint harder to detect.

3. Most importantly, because of this interaction, the electromagnetic perturba-
tions are strongly absorbed by the interstellar medium, thus making the detection of
the signal almost impossible at the predicted low frequencies for the electromagnetic
QNMs.

On the other hand, the gravitational waves (GW) interact very weakly with
matter and thus they can be detected at big distances, without getting absorbed
or scattered, i.e. without obscuring the signature of the body that emitted them.
It is, therefore, reasonable to expect that the GW should be much better suited
for studying the central engine of astrophysical events, such as gamma-ray bursts
(GRBs), while the EM waves should be seriously influenced by its environment.

For now, however, there are no gravitational waves detected. Although both
LIGO and VIRGO detectors already work at design sensitivity, both detectors still
fail to “see“ gravitational waves ([72, 73, 74, 75, 76, 77, 78]). Particularly puzzling
is the lack of GW detection from short GRBs ( [79, 80]) whose progenitors are
expected to emit GWs in the range of sensitivity of the detectors.

The simplest explanation of those negative results may be a new mechanism
of generation of short GRBs which in good approximation preserves the spherical
symmetry of the process in the central engine and admits only significant dipole
radiation. As a result, no significant gravitational waves will be generated during
the short GRBs, since the gravitational waves have a quadrupole character. A
similar situation is observed in the long GRBs. Such a new hypothesis for short
GRBs is supported by the strong observational indications that both types of GRBs
may have the same nature and differ only in their time scales ([8, 10]). If so, we may
expect that most of the energy release from GRBs is in the form of electromagnetic
radiation.

A more traditional point of view is a physical process which yields both electro-
magnetic and gravitational radiation from GRBs. Actually, the ratio of the energy
release in the form of electromagnetic waves and in the form of gravitational waves is
still an open problem. Its solution strongly depends on the details of the hypothet-
ical mechanism of GRBs which is still far from being well established. For example,
the expected (but not yet observed) energy output in the case of GWs from a BH
merger is ∼ 1053erg, which coincides (up to a factor due to collimation) with the
observed electromagnetic energy output of GRBs.

While hopes are laid on the Advanced LIGO and Advanced VIRGO which should
start operating in the next years, this situation offers a good motivation for opti-
mizing the GW search strategy and understanding better the physics of the GW
sources. Particularly, this points to the advantages of studying the EM counterpart
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of the GW emission, which can help the localization of the source (improving on
the big error box of the GW detector) and also it may give additional clues to the
physics of the event ([81, 71]). Numerical simulations already explore the detectabil-
ity of the EM counterpart in different cases (for the case of supermassive black holes
mergers, for example, see [82, 83], for neutron stars mergers [81, 84]). The first
results of LIGO and VIRGO searches using such a multimessenger approach were
also published [85]. The idea behind those searches (for details, see [86, 85]) is to use
the GRBs as the EM counterparts of the GW, since the suspected GRB progenitors
(collapsars for long GRBs and binary system mergers of neutron stars and/or black
holes for the short GRBs) should emit GWs as well as EM and there is already a well
working mechanism for observing the extremely EM luminous GRBs. Although the
theoretical results from the multimessenger approach are still being analyzed, the
intensive activity in this field shows that the EM counterpart of the GW emission
can both facilitate and improve the information obtained from the GW observations.

The discrete spectrum of complex frequencies called QNMs describes only the
linearized perturbations of the metric. Hence, they cannot describe completely the
dynamics of the process during the early, highly intensive period of those events when
the linearized theory is not applicable. On the other hand, it is known from full
numerical simulations that it is the QNMs which dominate the late-time evolution of
the object response to perturbations [59]. Thus, from an observational point of view,
the QNM are important, since we may observe only the tails from the corresponding
events, being far from them. This conclusion is supported by the recent numerical
observation of two lowest gravitational modes of QNMs in the spectrum of the signal
obtained from the full 3d general relativistic head-on collision of non-spinning BH
(see [87], and for further information [88]). This result is not isolated – there are
number of works in which the QNMs approximate well the signal of full 3d general
relativistic simulations of mergers (for example [89, 90, 91, 92, 93] and also the
pioneer works discussed in [65]). This clearly implies that studying QNMs can
bring new insights to the physics in the processes which include strong-field regime.

Those numerical results also point to another possible use of the QNMs in as-
trophysical observations. The QNMs correspond to particular boundary conditions
characteristic for the object in question, and since in the case of BH the no-hair the-
orem states that they should depend only on the parameters of the metric (the mass
M and the rotation a for the case of Kerr BH), measuring those frequencies observa-
tionally can be used to test the nature of the object – a black hole or other compact
massive objects like super-spinars (naked singularities), neutron stars, black hole
mimickers etc. [94, 95, 40, 41, 96, 97]. It also can constrain additionally the no-hair
theorem which was recently put into question in the case of black holes formed as
a result from the collapse of rotating neutron stars [98]. An interesting possibility
is to find a way to use the damping times of the EM quasi-normal modes for com-
parison with observations. While the frequencies are subject to interaction with the
surrounding matter which can significantly change the spectra, their damping times
should be much less prone to deviation. A suggestion for such use can be found in
simulations of jet propagation, which imply that the short-scale variability of the
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light-curve should be due to the central engine and not to the interaction of the jet
with the surrounding medium (see [99] and reference therein).

One more important application of the QNM spectrum can be found in the study
of the central engines of the GRBs, whose extreme luminosity(∼ 1051 − 1053erg/s)
and peculiar time-variability cannot yet be fully explained in the frames of current
models. Even though numerical simulations proved to be capable of describing some
of the features of the GRBs light curves (for a recent review on GRBs, see [100]),
the biggest stumbling stone seems to be the lack of proper understanding of the
central engine of the GRBs.

Common ingredients of the existing GRB models include a compact massive
object (black hole or a milli-second magnetar) and extreme magnetic field (∼ 1015G

) which accelerate and collimate the matter via different processes. Although those
processes are still an open question for both theory and numerical simulations,
the very central engine can be studied approximately by the linearized EM (and
also GW if data is available) perturbations of the Kerr metric. When finding the
electromagnetic QNMs, one does not care for the origin of the perturbation, but
only for its spin and the parameters of the compact massive object. In the idealized
EM case, the perturbation is described by free EM waves in vacuum. While the
astrophysical black holes are thought to be not charged, they are immersed into
EM waves with different energy and origin. The black hole response to such EM
perturbations in linear approximation will be then the QNM spectrum defined by
the appropriate boundary conditions.

Studying the so obtained electromagnetic spectrum can give important insights
into the key parameters of the physics occurring during high-energy events as GRBs.
In particular, the electromagnetic QNMs are subject to resonant amplification (the
idea of the black hole bomb, [68, 70, 51]) and additionally, it is known from previous
evaluations of the spectrum, that they exhibit very low damping in the limit a→M .
For the moment, there are no observations of the rotations of the GRB progenitors,
but the theoretical expectations are that they should be highly rotating in order to
produce jets with such luminosity and collimation. Available observationally mea-
sured rotations of astrophysical compact massive objects show that there are many
cases of near extremal values thus studying the extremal limit could be relevant
to such objects. For example, recent evaluations of the spin parameter of astro-
physical black holes give for the spin parameter a = 0.63, 0.90 and a = 0.89, 0.99
for M = 1, 0.1M⊙ for Sw J1644+57 and Sw J2058+05 respectively (most probable
values, see [101]), and also a > 0.98 for GRS 1915+105 ([102]) and a = 0.989 for
MCG-6-30-15 ([103]).

Moreover, because of the relatively good coverage of the GRBs observations,
there is a great amount of data, in a wide energy range (from optical to GeV energies)
and from different epochs of the bursts which can be used to test the eventual
applicability of the QNM spectrum in the late-time epoch of the burst. It may be
hard to extract EM QNM spectra from the existing crude GRB spectra since the
basic EM QNM frequencies are very low (from a small part of Hz — for supermassive
BH to several kHz – for stellar mass BH) and the intensity of the higher EM QNM
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may be very low. To the best of our knowledge such attempts haven’t been made.
A new space mission, which will additionally help the EM observations in the radio
range – RadioAstron – will offer unprecedented resolution (up to 1µarcsec) in a wide
range of high frequencies (from 0.3GHz to 18-25GHz) accompanied by continuum,
polarized and spectral imaging (for details see RadioAstron website 3). One may
hope to use this new mission for a more detailed study of the spectra of EM radiation
from the compact objects but its sensitivity is also far from the area of the basic
EM QNMs.

Theoretical evaluations of the QNMs, however, are not simple. The linear per-
turbations of the rotating BHs are described by two second-order linear differential
equations: the Teukolsky radial equation (TRE) and the Teukolsky angular equa-
tion (TAE) on which specific boundary conditions should be imposed ([53, 43]).
Until recently, solving those equations analytically was considered impossible in
terms of known functions, so approximations with simpler wave functions were used
instead. The resulting system of spectral equations – a connected problem with
two complex spectral parameters: the frequency ω and the separation constant E
– has been solved using different methods ([65, 60, 63, 69]) with notably the most
often used being the method of the continued fraction. This method was adapted
by Leaver from the problem of the hydrogen molecule ion in quantum mechanics
[45, 57]. While being successful in obtaining the QNMs spectra, Leaver’s method
has the disadvantage of not being directly connected with the physics of the prob-
lem, thus making it harder to further explore the spectra – for example studying
its dependence on the choice of the branch cuts of the exact solutions of the radial
equation. In addition, one has some specific numerical problems in calculation of
particular modes, for example, in calculation of the 9th one in the gravitational case
[65, 60, 58].

The analytical solutions of the TRE and the TAE can be written in terms of the
confluent Heun function (for a ̸= M) as done for the first time in [62, 67, 104, 66].
Those functions are the unique local Frobenius solutions of the second-order linear
ordinary differential equation of the Fuchsian type [105, 106, 107, 108] with 2 regular
singularities (z = 0, 1) and one irregular (z = ∞) (for details see [67]) and in
the maple notation, they are denoted as: HeunC(α, β, γ, δ, η, z) (normalized to
HeunC(α, β, γ, δ, η, 0) = 1). While the theory of the Heun functions is still far from
being complete, they are implemented in the software package maple and despite
the problems in that numerical realization (see the discussion in [109]), the confluent
Heun function was used successfully in a number of works [62, 97, 109, 110]. The
advantage of using the analytical solutions is that one can impose the boundary
conditions on them directly (see [62, 97]), and thus be able to control all the details
of the physics of the problem.

3http://www.asc.rssi.ru/radioastron

http://www.asc.rssi.ru/radioastron
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1.3 Plan of the thesis

The goal of this thesis, is to study the spectrum of compact massive objects using
the methods of Teukolsky perturbation theory. In order to do that, we use a new
approach, namely we use the exact solutions of the differential equations governing
the linearized perturbations of the Schwarzschild and Kerr metrics, which are written
in terms of confluent Heun functions. Considering the properties of those functions,
one can impose different, interesting to the physics, boundary conditions directly on
the exact solutions. Such direct approach so far has been used only for the case of
QNMs of non-rotating BHs [62] and thus, it is important to check its applicability in
the case of EM perturbations of rotating black holes. The latter can be particularly
interesting considering the need of better understanding of the current astrophysical
observations.

To this end, the following physical situations need to be examined:

1. Gravitational perturbations of non-rotating black holes in the case of quasi-
normal boundary conditions.

2. Electromagnetic perturbations of rotating black holes in the cases of quasi-
normal boundary conditions.

3. Electromagnetic perturbations of rotating black holes in the cases of primary
jets boundary conditions.

Completing that program requires the extensive study of the observational data
from GRBs and other astrophysical jets, as well as their theoretical models; the
properties of the confluent Heun functions and their numerical realization in Maple;
also the already published results on QNMs of rotating and non-rotating BHs, as
well as the numerical methods used to obtain them.

From the problems stated above, the question of the EM spectrum of primary
jets is studied here for the first time. The other two problems have been extensively
analyzed using different, mostly approximate methods, but here, for the first time,
they were studied using the exact solutions of the differential equations in question.
This direct approach offers increased control over the branch cuts of the solutions
of the radial equations and the possibility to study their effect on the numerically
obtained spectrum.

Additionally, because the perturbations in the quasi-normal case are described
by a the two-dimensional transcendental system, which cannot be effectively solved
using standard root-finding algorithms, a new method for solving numerically two-
dimensional systems featuring the Heun functions needed to be developed. To do
so, various root-finding algorithms were reviewed and the new algorithm was tested
on both simple test problems and physical problems. Ultimately, it has been applied
to the case of gravitational perturbation s = −2 of the Schwarzschild metric and
also electromagnetic perturbation s = −1 of the Kerr metric.

Completing the formulated above program has further applications to physics:
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• It will test the applicability of the confluent Heun functions in real physical
problems by comparing the numerical results with other already established
but approximate methods.

• It also should expand further the understanding of the physics which can be
examined in linear approximation and also the limitations of the linear theory.

• The numerically obtained spectrum can then be compared with the observa-
tional data and trough it, to confirm or reject the nature of the central engine.





Chapter 2

The confluent Heun equation and
its solutions

The Heun functions appear with increasing frequency in modern physics. For ex-
ample, they arise in the Schrödinger equation with anharmonic potential, in water
molecule, in the Stark effect, in different quantum phenomena related with repulsion
and attraction of levels, in the theory of lunar motion, in gravitational physics of
scalar, spinor, electromagnetic and gravitational waves in Schwarzschild and Kerr
metric, in crystalline materials, in three-dimensional waves in atmosphere, in Bethe
anzatz systems, in Collogero-Moser-Sutherland systems, e.t.c., just to mention a
few. Because of the wide range of their applications ([111],[105])– from quantum
mechanics to astrophysics, from lattice systems to economics – they can be consid-
ered as the 21st century successors of the hypergeometric functions encountered in
relatively simpler physical problems of 20th century.

It is not hard to explain this situation. In natural sciences, in particular, in
physics we usually study the different phenomena starting from some equilibrium
state. Then we study small deviations from it in linear approximation, and at the
end, going far away from the equilibrium we are forced to take into account non-
linear phenomena. It is well known that to describe the wave processes (like those
in quantum mechanics), related with some linear phenomenon in classical physics
(like classical mechanics), we have to use hypergeometric functions. Therefore these
functions were well studied in 19th and 20thcenturies and today one can find the
corresponding codes in all good computer packages. According to the theorem by
Slavyanov [105], if we study nonlinear classical phenomena, described by elliptic
functions, or even by the solutions of any of Painlevé type equations, the corre-
sponding wave problems can be solved exactly in terms of the Heun functions. Since
the Painlevé equations can be considered as Hamilton ones for a very large class of
nonlinear classical problems, one can expect a fast increase in the applications of
the Heun functions in physics and other natural sciences of 21th century.

Their mathematical complexity, however, makes working with them a significant
challenge both analytically and numerically. The Heun functions are unique local
Frobenius solutions of a second-order linear ordinary differential equation of the
Fuchsian type [105, 106, 107, 108] which in the general case have 4 regular singular
points. Two or more of those regular singularities can coalesce into an irregular
singularity leading to differential equations of the confluent type and their solutions:
confluent Heun function, biconfluent Heun function, double confluent Heun function
and triconfluent Heun function. The Heun functions generalize the hypergeometric
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function (and also include the Lamé function, Mathieu function and the spheroidal
wave functions [105, 108]) and some of their uses can be found in [105] and also in
the more recent [112]. Clearly, the Heun functions will be encountered more and
more in modern physics, hence, there is a need of better understanding of those
functions and new, more adequate algorithms working with them.

Despite the growing number of articles which use equations from the Heun type
and their solutions, the theory of those functions is far from complete. There are
some analytical works on the Heun functions, but they were largely neglected until
recently. Some recent progress can be found in [104], but as a whole there are many
gaps in our knowledge of those functions. Particularly, the connection problem
for the Heun functions is not solved – one cannot connect two local solutions at
different singular points using known constant coefficients ([105]). Another example
of a serious gap in the general theory of the Heun functions is the absence of integral
representations analogous to the one for the hypergeometric functions.

Numerically, the only software package currently able to work with the Heun
functions is maple. Alternative ways for evaluations of those functions do not exist
(to the best of our knowledge) and there are no known projects aiming to change this
situation, an admittedly immense task by itself. This means that the use of the Heun
functions is limited to the routines hidden in the kernel of maple, which the user
cannot change or improve – a situation that makes understanding the numerical
problems or avoiding them adequately very difficult. On the positive side, those
routines were found by the team to work well enough in many cases (an example
of the match between theory and numerical results will be demonstrated in section
4.3). Yet, there are some peculiarities – there are values of the parameters where the
routines break down leading to infinities or to numerical errors. The situation with
the derivatives of the Heun functions in Maple is even worst – for some values they
simply do not work, for example outside the domain |z| < 1, where their precision
is much lower than that of the Heun function itself. Also, in some cases there are no
convenient power-series representations and then the Heun functions are evaluated
in maple using numerical integration. Therefore the procedure goes slowly in the
complex domain (compared to the hypergeometric function) which means that the
convergence of the root-finding algorithm is essential when one solves equations
including Heun’s functions.

Despite all the numerical set-backs, the Heun functions clearly offer many op-
portunities to modern physics. They occur in the problem of quasi-normal modes
(QNM) of rotating and non-rotating black holes, which is to some extent the grav-
ity analogue of the problem of the hydrogen atom. Finding the QNMs is critical to
understanding observational data from gravitational wave detectors and proving or
refuting the black holes existence. In this case, one has to solve a two-dimensional
connected spectral problem with two complex equations in each of which one encoun-
ters the confluent Heun functions. The solution of this system is highly non-trivial
and the root-finding algorithm we used is discussed in the Appendix: “Numerical
methods”.

In the current chapter, we introduce the confluent Heun functions and some
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of their most important properties, which have been used to obtain the numerical
results presented in this work.

2.1 The Confluent Heun Equation

Explicitly, the confluent Heun equation (CHE) is a second-order linear ordinary
differential equation of the Fuchsian type [105, 106, 107, 108] with 2 regular singu-
larities (z = 0, 1) and one irregular (z = ∞) (for details see [67]):

d2

dz2
H (z) +

(
α+

β+1
z

+
γ + 1
z−1

)
d

dz
H (z) +

(
µ

z
+

ν

z−1

)
H (z) = 0. (2.1)

Its unique local Frobenius solutions, regular in the vicinity of the regular singular
point z = 0 and normalized to be equal to 1 at this point (HeunC(α, β, γ, δ, η, 0) = 1)
are called the confluent Heun functions. For more details, see the monograph [105]
and some additional references in [35], [104].

With those functions, one can write the general solution of Eq. (2.1) in maple
notation, as:

H (z) = C1 HeunC (α, β, γ, δ, η, z) + C2 z
−βHeunC (α,−β, γ, δ, η, z) , (2.2)

where δ = µ+ ν − αβ+γ+2
2 and η = α(β+1)

2 − µ− β+γ+βγ
2 .

Using s-homotopic transformations (such that conserve the canonical form of
CHE), one can obtain 16 classes of exact local Frobenius type solutions in the form:

H = eσα
α±z±

2 z
σβ

β±
2

± z
σγ

γ±
2

∓ HeunC (σαα±, σββ±, σγγ±, δ±, η±, z±) , (2.3)

where σα, σβ, σδ = ±1, and the parameters change as: α+, β+, γ+, δ+, η+ →
α−, β−, γ−, δ−, η− for z+ → z− (more details can be found in [107, 108, 105, 67]).

2.2 Power-series expansion around the regular singular-
ities z = 0, 1

In the unit sphere |z| < 1, the so defined confluent Heun function is evaluated using
the power-series expansion:

y(z) =
∑
ν≥0

cνz
ν+ρ. (2.4)
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When plugged into the differential equation Eq. (2.1), this expansion gives the
following three-term recurrence ([108]):

ρ(ρ+ β) = 0

c1(ρ+ 1)(β + ρ+ 1) − c0(η +
β

2
+

1
2
(γ − α)(β + 1) + ρ(ρ+ 1 + β + γ − α)) = 0

cν+2C2 − cν+1C1 + cνC0 = 0, ν ≥ 0 (2.5)

where C2 = (ρ+ ν)(ρ+ ν + β), C0 = (ρ+ ν)α+ δ +
1
2
α(β + γ + 2)

C1 = η +
β

2
+

1
2
(γ − α)(β + 1) + (ρ+ ν + 1)(ρ+ ν + 2 + β + γ − α).

If β is not integer, then one denotes with HeunC(α, β, γ, η, z) the solution corre-
sponding to ρ = 0 and for which c0 = 1. For ρ = −β, one obtains another linearly
independent solution of the same equation, namely z−βHeunC(α,−β, γ, δ, η, z). Us-
ing those two solutions, one obtains the general solution of the CHE – Eq.(2.2).

This expansion can be used, however, only in the unit-circle |z| < 1. Outside of
this circle, there is no appropriate convergent series expansion and thus in Maple,
the confluent Heun functions are evaluated with numerical integration in the com-
plex z-plane, which additionally slows down their evaluation.

2.3 Asymptotics at z → ∞

Even though in our work, we will use the numerical realization of the confluent
Heun function in Maple, the asymptotics at infinity is important for imposing the
boundary conditions defining the physics of the problem.

Again following [108], one finds that the asymptotics is:

H1(α, β, γ, η, z) ∼ z−(β+γ+2
2

+ δ
α

)
∑
ν≥0

aν(α)
zν

(2.6)

H2(α, β, γ, η, z) ∼ z−(β+γ+2
2
− δ

α
)e−αz

∑
ν≥0

eν(α)
zν

(2.7)

in the domain −π − arg(α+ η) ≤ arg(z) ≤ π − arg(α− η).
The coefficients aν(α) and eν(α) are given by the recurrence:

a0 = 1,−αa1 +m(α)a0 = 0

− α(ν + 2)aν+2 + (m(α) + (ν + 1)
(
ν + 2 + α+

2δ
α

)
aν+1+(

β2

4
−
(
γ + 2

2
+
δ

α

)2

+ ν(ν + 1) − ν

(
2δ
α

+ γ + 1
))

aν = 0, ν ≥ 0

where eν(α) = aν(−α), ν ≥ 0 and m(α) = η − γ2

4 − β2

4 + α
2 (γ + 1) + δ

α( δ
α + 1 + α).

In this thesis, unless stated otherwise, we will use only the first term of this
power-series asymptotics (≈ 1).
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2.4 Polynomial solutions – δN and ∆N+1 conditions

For certain values of the parameters α, β, γ, δ, η, the confluent Heun function reduces
to a polynomial. Since this significantly simplifies the evaluation of the function and
also it imposes specific boundary conditions, corresponding to a physical situation
which may describe the astrophysical jets, this case is of particular importance to
our studies.

The polynomiality condition reads:

δ

α
+
β + γ

2
+N + 1 = 0,

∆N+1(µ) = 0. (2.8)

Here, the integer N ≥ 0 is the degree of the polynomial and ∆N+1(µ) is the three-
diagonal determinant specified in [35], [104]:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µ−q1 1(1+β) 0 . . . 0 0 0

Nα µ−q2+1α 2(2+β) . . . 0 0 0

0 (N−1)α µ−q3+2α . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . µ−qN−1 + (N−2)α (N−1)(N−1+β) 0

0 0 0 . . . 2α µ−qN +(N−1)α N(N+β)

0 0 0 . . . 0 1α µ−qN+1+Nα

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.9)

where qn = (n − 1)(n + β + γ) and the parameter µ comes from the self-adjoint
form of the Heun equation:

e−αzz−β(z − 1)−γ d

dz

(
eαzz1+β(z − 1)1+γ dH(z)

dz

)
+ α

(
δ

α
+

β + γ

2
+ 1

)
zH(z)=µH(z).

The first condition will be called δN -condition and it is equivalent to the equation
C0 = 0 (Eq. 2.5, for ρ = 0 and ν = N). The second condition is equivalent
to cν+1(α, β, γ, δ, η) = 0. Fulfilling both conditions, means that the power-series
expansion is being cut after its N th terms – all the terms with n > N are zero – and
thus one obtains a polynomial of a degree N . Note that the name “polynomial” here
is used in its wider meaning of solutions in the form of finite Taylor series expansion
multiplied by elementary functions [35].

Another form of the second polynomial condition ∆N+1(µ) = 0 can be found
in [104] and it reads (N + 1)!cN+1(α, β, γ, δN , η), where cN+1 are the terms in the
series expansion Eq. (2.4).

2.5 Derivatives of the confluent Heun function

The formulas for the series expansion and the asymptotics of the confluent Heun
function were obtained in the 70s and can be found in [107, 108, 105], along with
other properties. A significant leap in the theory of the confluent Heun functions
occurred recently, in the works by Fiziev [104]. One important novelty is the ana-
lytical relation obtained in [104] which allows the evaluation of the derivative of the
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confluent Heun function in some specific cases without relying on the problematic
in Maple numerical differentiation.

This formula can be used for parameters of the confluent Heun function obeying
the δN condition:

δ

α
+
β + γ

2
+N + 1 = 0

. According to [104], if one considers two unique solutions of the Heun’s differential
equation, which are regular at z = 0 and normalized to 1 at that point, then
those two solutions are the confluent Heun functions: HeunC(α, β, γ, δN , η, z) and
HeunC(α(N+1), β(N+1), γ(N+1), δN (N+1), η(N+1), z). For those two functions,
one has the novel relation:

dN+1

dzN+1
HeunC(α, β, γ, δN , η, z) = (N + 1)!vN+1(α, β, γ, δN , η)×

× HeunC(α(N + 1), β(N + 1), γ(N + 1), δN (N + 1), η(N + 1), z) (2.10)

Here, vN+1 is the (N+1)-th coefficient in the Taylor series expansion 2.4 and δN =
−α((β + γ)/2 + N + 1). We have also used the transformation {α, β, γ, δN , η} →
{α(n), β(n), γ(n), δN (n), η(n)} and α(n) = α, β(n) = β + n, γ(n) = γ + n, δ(n) =
δ + nα, η(n) = η + n

2 (n− α+ β + γ) for n = N + 1.
Clearly, this relation can be used only for certain specific values of the parameters

α, β, γ, δ, η and thus one cannot avoid the numerical evaluation of the derivative in
the general case. Still, since in some cases the functions we deal with fulfill those
conditions, it offers a valuable alternative way to evaluate the derivatives and to
control the error in the derivative of the confluent Heun function in Maple due to
numerical differentiation and integration.



Chapter 3

Equations of the perturbation
theory and their solutions

In this chapter, the differential equations describing the linear perturbations of ro-
tating and non-rotating black holes will be introduced. The boundary conditions
used to fix the physics of the problem will be discussed in the chapter “Numerical
results”.

3.1 Rotating black holes

A compact massive rotating body such as rotating black hole, is described by the
Kerr metric ([113]): exactly when the object is a black hole, and approximately –
for other objects. This approximation differs for different objects – for example,
it is known that the Kerr metric describes well slowly rotating neutron stars (to
second order of the angular moment). For rapidly rotating neutron stars, the two
metrics differ considerably at higher order in a (or J), since their multipole moments
differ [114]. For example in [115], it is demonstrated that for various equations of
state of slowly rotating stars, the quadrupole moment of the Kerr metric already
deviates from the metric of the star. According to [116], this happens for neutron
stars rotating with spin frequencies above 400Hz.

In terms of the lowest order multipole moments (M and J = aM), however,
the Kerr metric can describe any rotating compact massive body1 and thus it can
be used to study approximately various astrophysical objects. Furthermore, by
comparing the observationally measured quadrupole moment of such body with the
theoretically expected for a KBH (Q = −J2/M = −a2) along with M and J , one
can test the yet not-proved no-hair theorem for the KBH, which requires that the
only stationary, axisymmetric, asymptotically flat non-charged vacuum black hole
solution to the Einstein field equations – the Kerr metric is described completely by
two parameters – a and M.

1Here, we discuss the vacuum solution in the region outside the event horizon. The search for
interior Kerr solution with equation of state describing realistic source which can be connected
with the exterior Kerr solution is still ongoing. This, however, doesn’t affect the exterior solution
discussed above.
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3.1.1 The Kerr Metric

In Boyer-Lindquist coordinates, for c = G = 1 the Kerr metric is:

ds2 = (1 − 2Mr/Σ)dt2 + 4Mar sin2 (θ) /Σdtdϕ− (Σ/∆)dr2

− Σdθ2 − sin2(θ)
[
r2 + a2 + 2Ma2r sin(θ)/Σ

]
dϕ2 (3.1)

where ∆ = r2 − 2Mr + a2,Σ = r2 + a2 cos2 θ and r is the area radius. Here M
is the mass of the object and a is a rotational parameter, related with the angular
momentum of the object by a = J/M and the Kerr metric depends only on those two
parameters – a and M . The monopole moment of this metric is M , a is the dipole
moment and all the higher multipole moments are obtained troughMl+iJl = M(ia)l

(the real quantities are the mass moments, the imaginary: the current moments),
which is another definition of the no-hair theorem.

For a < M , the Kerr metric has two real horizons defined by r±=M ±
√
M2−a2

and in our studies, we focus on the outer region r > r+ which is linearly stable. This
definition holds for a < M (KBH). For the Kerr naked singularity (KNS) a > M

and r± are complex. When black hole boundary conditions are imposed, for a < M

the Kerr metric describes a rotating black hole. The extremal limit is reached when
a = M and in this case, r+ = r− = M . For a > M the Kerr black hole turns into a
KNS. In our work, we will discuss only jets from KBH or KNS.

The change of the metric due to the change of the parameter a can be seen
also in the change of the topology of ergosurfaces of the Kerr metric (Fig. 3.1).
The ergosurfaces are defined by gtt = −

(
1 − 2Mr

r2+a2 cos2(θ)

)
= 0 which gives the

stationary limit surface r±E , where r±E = M ±
√
M2 − a2 cos(θ)2. As seen on the

Fig. 3.1, for a from a < M to a > M we observe a clear transition form ergosphere
to ergotorus. The ergosphere marks the region where no test-object can stand still
(since in order to stand still one has to have gtt > 0) – it has to rotate with the KBH.
Note that r+E ≥ r+ ≥ r− ≥ r−E , which dictates the behavior of the time-variable in
those intervals: for ∆ < 0 and gtt < 0 the radial variable becomes time and the
time-variable becomes space-like. For ∆ > 0 and gtt < 0 (i.e. for r ∈ (r−, r−E) and
r ∈ (r+, r+E)), both r and t are space-variables and the only time variable comes

a) b) c)

Figure 3.1: A plot of the ergo surfaces for a) KBH: a < M , b) extremal case: a = M

and c) KNS: a > M . One can clearly see the ring singularity of the Kerr metric and
the change of topology due to the transition from ergospheres to ergo torus.
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from the term gtϕ which leads to the frame-dragging effect: time-like vectors must
have non-zero ϕ-component.

From mathematical point of view, it is more natural to work with a dimensionless
parameter b = M/a ∈ [0,∞). Obviously the point b = 1 is a bifurcation point.
When the bifurcation parameter increases from 0 to ∞, the ergo-torus (b ∈ (0, 1))
bifurcates at the point b = 1 to two ergo-spheres (b = (1,∞)). The point b = 0
corresponds to the ring singularity. At the point b = ∞ the outer ergosphere
transforms to Schwarzschild event horizon and the inner ergosphere degenerates to
the well-known singularity r = 0 of the Schwarzschild metric.

Another feature of the Kerr metric can be seen, following [117], if one con-
siders the 3D surfaces formed by fixing r = rc and leaving the other coordinates
unchanged.By setting in Eq. (3.1), dr → 0, r → r⋆, one obtains for the induced
metric:

ds23d = −dt2 + (r2c + a2 cos(θ)2)dθ2 + (r2c + a2) sin(θ)2dϕ2 +
2M
rc

(dt− a sin(θ)2dϕ)2

1 + a2 cos(θ)2/r2c )
.

(3.2)
Knowing the determinant of the full 4D metric − sin2(θ)(r2 + a2 cos2(θ))2, one can
obtain the determinant of the metric of the 3-surfaces: − sin2(θ)(r2c +a2 cos(θ)2)(r2c−
2Mrc + a2). Clearly, unlike the full determinant which remains always negative, in
this case, the determinant is negative for rc > r+ and rc < r−, indicating that the
3-surfaces are (2+1) dimensional. For rc ∈ (r−, r+), however, the determinant is
positive meaning that there is no dimension corresponding to time for those surfaces.
For rc = r− and rc = r+, the determinant is zero, meaning that the corresponding
matrix g3d

ij is singular for such r. Then, if one defines a 3-vector Li lying in the
3-surfaces r = r± (and defined only there), that vector will be null (since the scalar
product will be g3d

ij L
iLj = 0, because of the singular matrix). Then if one promotes

this vector to 4-dimensions: Li → Lα(Lt, 0, Lθ, Lϕ) in the (3+1)space time, for
r = r±, one will have gabL

aLb = 0 which indicates that there is a set of null curves
that remain forever on the 3-surfaces r = r±. The vector field Lα corresponds to
the photon “orbits” which never leave the two horizons – the light is trapped there.

3.1.2 Derivation of the Teukolsky Master Equation

The evolution of linear perturbations with different spin (| s |= 0, 1/2, 1, 3/2, 2) on
the background of a Kerr metric was pioneered by Teukolsky in the 70s and lead to
the famous Teukolsky Master Equation (TME) ([42]):

L =
[
(r2+a2)2

∆
−a2 sin2 θ

]
d2

dt2
+

4Mar

∆
d2

dtdϕ
+
[
a2

∆
− 1

sin2 θ

]
d2

dϕ2
−

∆−s d

dr

(
∆s+1 d

dr

)
− 1

sin(θ)
d

dθ

(
sin θ

d

dθ

)
−2s

[
a(r −M)

∆
− i cos θ

sin2 θ

]
d

dϕ
−

2s
[
M(r2−a2)

∆
−r−ia cos θ

]
d

dt
+
(
s2 cot2 θ − s

)
.

(3.3)
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This differential equation unifies all physically interesting perturbations
sΨ(t, r, θ, ϕ) written in terms Newman-Penrose (NP) scalars and it is able to de-
scribe completely multitude of physical phenomena ([49]). The most important
spins, in view of the current astrophysical observations are: s = ±1 describing
electromagnetic perturbations and s = ±2 describing gravitational perturbations2.

In the derivation of TME below we follow closely Teukolsky ([42, 50, 51]). The
Teukolsky Master Equation can be derived from the linearization of the Einstein
equations around a known stationary background solution – the Kerr metric (The
same procedure, however, has been successfully applied to the Schwarzschild metric
as well, rendering the Regge-Wheeler equation and the Zerilli equation). Using
the Newman-Penrose scalars, one projects the Einstein equations on convenient
tetrads. In the so obtained equations, one finds as variables some of the decoupled
components of the tensors of Weyl and Riemann (which coincide in the vacuum case
which we consider in this work) or the EM field tensor. It has been proved, however,
that those decoupled components describe all the nontrivial properties of the full
perturbed field ([118],[119]) .

The decoupled EM components are:

ϕ0 = Fµν l
µmν , ϕ1 =

1
2
Fµν(lµnν +m∗µmν), ϕ2 = Fµνm

µ∗nν , (3.4)

where l, n,m,m∗ are the tetrads discussed below and Fµν is the EM field tensor
characterized by the complex quantities ϕ0, ϕ1, ϕ2:

Fµν = 2[ϕ1(n[µlν] +m[µm
∗
ν]) + ϕ2(l[µmν] + ϕ0(m∗[µnν]] + c.c.

For the gravitational field one obtains:

ψ0 = −Cαβγδl
αmβlγmδ, ψ4 = −Cαβγδn

αm∗βnγm∗δ,

where Cαβγδ are the components of the Weyl tensor.
The method used to linearize the equations of the perturbation differs from the

standard one. Because of the complexity of the equations, here, one uses more
formal approach consisting of adding to the non-perturbed metric gµν a perturbed
part, i.e. gµν = gA

µν +hB
µν (where the indexes A and B correspond to the background

and perturbed part of the metric, respectively). This procedure is performed on all
the quantities in the equations and then the linear field equations are obtained by
keeping only the terms to first order in hB

µν .
The complicated algebra involved can be somewhat simplified by the use of

the Newman-Penrose formalism ([120]). In this formalism one introduces four null
vectors: n, l,m and m∗ (where n, l are real and m and m∗ – complex conjugated
one to the other). All the tensors are projected on the so-defined tetrad. The full
system of equation is a system of differential equations of first order connecting the
tetrads, the spin coefficients, the Weyl tensor and the scalar curvature. Then, one

2The sign of spin-weight parameter s is defined by the field quantities Ψ satisfying the equation
LΨ = 4πΣT for different values of the source term T. For more details, see [49].
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applies the formal linearization procedure on all the quantities described above and
ignores all the quantities of order higher than first with respect to the index B. The
detailed derivation of these equations can be found [42], here we only demonstrate
some of the steps needed to get to the TME.

The Einstein-Maxwell Equations on the NP tetrad
The derivation is valid for every vacuum metric of the type D (Petrov clas-

sification3). If one choses the vectors l and n of the non-perturbed tetrad along
the repeated principal null directions of the Weyl tensor, some of the background
quantities vanish (for notations4, see [120] ):

ψA
0 = ψA

1 = ψA
4 = κA = σA =νA = λA = 0 (3.5)

Then, one considers the following 3 non-vacuum NP equations ([42]):

(δ∗ − 4α+ π)ψ0 − (D − 4ρ− 2ε)ψ1 − 3κψ2 = (δ + π∗ − 2α∗ − 2β)Φ00 (3.6)

(∆ − 4γ + µ)ψ0 − (δ − 4τ − 2β)ψ1 − 3σψ2 = (3.7)

= (δ + 2π∗ − 2β)Φ01 − (D − 2ε− 2ε∗)Φ02 − λ∗Φ00 + 2σΦ11 − 2κΦ12 (3.8)

(D − ρ− ρ∗ − 3ε+ ε∗)σ − (δ − τ + π2 − α∗ − 3β)κ− ψ0 = 0 (3.9)

where:

Φ00 =−1
2
Rµν l

µlν =4πTµν l
µlν = 4πTll, Φ01 =−1

2
Rµν l

µmν =4πTlm, Φ02 =4πTmm

(3.10)
are the Ricci tensor terms given by the Einstein field equations for Rµν and Tµν –
the Ricci tensor and the stress-energy tensor, respectively. In vacuum, some of the
quantities vanish (ψA

o , ψ
A
1 , σ

A, κA and the ΦAs) and the next step is to expand all the
values in the two indexes (A and B) and to remove all the terms where the index A
repeats twice (since the background metric satisfies the field equations) and also all
the terms where the index B repeats twice (we linearize). Accounting also for all the
vanishing terms and that the background metric satisfies Dψ2 = 2ρψ2, δψ2 = 3τψ2,
one should eliminate ψB

1 from the first two equations. This is done by using the
commutation relation, which is true for any D-type metric ([120]):

[D−(p+1)ε+ε∗+qρ−ρ∗](δ−pβ+qτ)−[δ−(p+1)β−α∗+π∗+qτ ](D−pε+qρ) = 0,
(3.11)

where p, q are any two constants. Then if one multiplies with (D−3ε+ε∗−4ρ−ρ∗)
the equation obtained from Eq. (3.8) and with (δ+π∗−α∗− 3β− 4τ) the equation

3The Petrov classification describes the symmetries of the Weyl tensor on certain Lorentzian
manifold at each point of the space-time trough the eigenbivectors of the Weyl tensor [121]. The
eigenbivector is defined as CabcdF cd = λFab, where λ is the eigenvalue, F ab is the eigenbivector
and the Weyl tensor Cabcd is considered as the linear map: Hab = CabcdHcd. For metric of the
type D, there are two double principal null directions (two linearly independent eigenbivectors),
which means that the Weyl tensor is specified by only one complex scalar.

4D, ∆, δ, δ∗ are the tetrad vectors as differential operators and κ = Γmll, τ = Γmln, σ =

Γmlm, ρ = Γmlm∗ , π = Γnm∗l, ν = Γnm∗n, λ = Γnm∗m∗ , µ = Γnm∗m, ε + ε∗ = Γnll, ε − ε∗ =

Γmm∗l, γ + γ∗ = Γnln, γ − γ∗ = Γmm∗n, α∗ + β = Γnlm, β − α∗ = Γmm∗m
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obtained from Eq. (3.6) and one subtracts the one equation from the other, then
for p = 2, q = −4, one can eliminate σB and κB.

Thus the equation becomes:

[(D−3ε+ε∗−4ρ−ρ∗)(∆−4γ+µ)−(δ+π∗−α∗−3β−4τ)(δ∗−π−4α)−3ψ2]ψB
0 = 4πT0,

(3.12)
where all the indexes A are omitted and

T0 = (δ + π∗ − α∗ − 3β − 4τ)(D − 2ε− 2ρ∗)TB
lm − (δ + π∗ − 2α∗ − 2β)TB

ll +

+(D − 3ε+ ε∗ − 4ρ− ρ∗)[(δ + 2π∗ − 2β)TB
lm − (D − 2ε+ 2ε∗ − ρ∗)TB

mm.

This equation is separable for ψB
0 . The complete set of NP equations is invariant

under the change l ↔ n and m ↔ m∗, valid for the choice of n, l,m,m∗ used here.
Then one can derive the equations for ψB

4 , using this transformation on the last two
equations. One has:

[(∆+3γ−γ∗+4µ+µ∗)(D+4ε−ρ)−(δ∗−τ∗+β∗+3α+4π)(δ−τ+4β)−3ψ2]ψB
4 = 4πT4,

where

T4 = ∆ + 3γ − γ∗ + 4µ+ µ∗)[(δ∗ − 2τ ∗ +2α)Tnm∗ − (∆ + 2γ − 2γ∗ + µ∗)Tm∗m∗ ]+

+(δ∗ − τ∗ + β∗ + 3α+ 4π)[(∆ + 2γ + 2µ∗)Tnm∗ − (δ ∗ −τ ∗ +2β + 2α)Tnn].

Above is the decoupled equation for gravitational perturbations. Now we will
focus on the EM equations. They are particularly important considering the lack
of detection of gravitational waves and the rich EM data from different astrophys-
ical objects. The use of the linearized equations in those cases is discussed in the
next chapter. Here, we will outline the derivation of those equations. Because
the amplitude of the EM stress-energy tensor is of second order in the EM field, a
change in the background metric by EM perturbation is also of second order and it
can be ignored in the linearized Maxwell equations. Then one obtains a test-field
approximation of the interactions close to a rotating non-charged black hole.

In details, the NP equations in this case are (where Eqs. (3.5) still hold):

(D − 2ρ)ϕ1 − (δ∗ + π − 2α)ϕ0 = 2πJl (3.13)

(δ − 2τ)ϕ1 − (∆ + µ− 2γ)ϕ0 = 2πJm (3.14)

(D − ρ+ 2ε)ϕ2 − (δ∗ + 2π)ϕ1 = 2πJm∗ (3.15)

(δ − τ + 2β)ϕ2 − (∆ + 2µ)ϕ1 = 2πJn (3.16)

where Jµ is the 4-current density projected on the tetrads and the ϕ’s is a first order
test fields.

To reach the decoupled equations, one multiplies Eq. (3.13) with (δ − β − α∗ −
2τ + π∗) and Eq. (3.14) with (D− ε+ ε∗− 2ρ− ρ∗) and subtract them. Then from
the identity (3.11), for p = 0, q = −2 one can eliminate ϕ1:
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Next step in the derivations is to choose appropriate values for the parameters
so that one can separate the equation for ϕ0:

[(D−ε+ε∗−2ρ−ρ∗)(∆+µ−2γ) − (δ−β−α∗−2τ+π∗)(δ∗+π−2α)]ϕ0 = 2πJ0,

[(∆+γ−γ∗+2µ+µ∗)(D+2ε−ρ) − (δ∗−τ∗+β∗+α+2π)(δ−τ+2β)]ϕ2 = 2πJ2,

(3.17)

where

J0 = (δ − β − α∗ − 2τ + π∗)Jl − (D − ε+ ε∗ − 2ρ− ρ∗)Jm (3.18)

J2 = (∆ + γ − γ ∗ +2µ+ µ∗)Jm∗ − (δ ∗ +α+ β ∗ +2π − τ∗)Jn. (3.19)

Again, the equation for ϕ2 is obtained by interchanging l and n and m and m∗
in the equation for ϕ0 in Eq. (3.17).

The next step is to write those equations in special a coordinate system. One
uses the Boyer-Lindquist coordinates for c = G = 1 for which the Kerr metric is in
the form written above Eq. (3.1).

Every NP tetrad must satisfy the orthogonality conditions: l·n = 1,m·m∗ = −1,
with all other scalar products equal to zero. The orthogonal relations do not change
under the action of the 6-parameter group of the Lorenz transformations in every
point of the space-time. Then the metric is:

gµν = lµnν + nµlνmµm∗ν −m∗µmν , (3.20)

and

ηαβ =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 (3.21)

We choose the direction of l and n so that the equation Eq. (3.5) and this uses
4 degrees of freedom. Then following [122], cited in [42], one can use the other 2
degrees of freedom so one ensures that ε = 0. The components of the so obtained
tetrad (for t, r, θ, ϕ) are:

lµ = [(r2 + a2)/∆, 1, 0, a/∆],

nν = [r2 + a2,−∆, 0, a]/(2Σ),

mµ = [ia sin(θ), 0, 1,
i

sin(θ)
]/[

√
2(r + ia cos(θ)].

The non-zero spin-coefficients are:

ρ = −1/(r − ia cos(θ), β = −ρ∗ cot(θ)/2
√

2, π = iaρ2 sin(θ)/2
√

2,

τ = −iaρρ∗ sin(θ)/
√

2, µ = ρ2ρ∗∆/2, ν = µ+ ρρ∗(r −M)/2,

α = π − β∗, ψ2 = −Mρ3.

More details on the quantities in those equations can be found in [42].
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Using the Kerr metric and the fact that D = lµd/dxµ,∆ = nµd/dxµ and δ =
mµ/.dx

µ, the equations can be written as one Master equation, valid for scalar test-
fields (s=0), EM test-fields (s=1), neutrino test-fields (s = ±1

2) and gravitational
test-fields (s = ±2):

[

(
r2 − a2

)2
∆

− a2 (sin (θ))2]
d2

dt2
ψ + 4

Mar d2

dtdϕψ

∆
+ [

a2

∆
− (sin (θ))−2]

d2

dϕ2
ψ−

−∆−s ∂

∂r

(
∆ε+1 d

dr
ψ

)
−

∂
∂θ

(
sin (θ) d

dθψ
)

sin (θ)
− 2 s[

a (r −M)
∆

+
i cos (θ)
(sin (θ))2

]
d

dϕ
ψ−

−2 s[
M
(
r2 − a2

)
∆

− r − ia cos(θ)]
d

dt
ψ +

(
s2 (cot (θ))2 − s

)
ψ = 4πΣT.

s is the spin-weight, which can be positive or negative (or zero). For positive spin-
weights, the quantity in the TME can be χ0, ϕ0, or ψ0 (for s = 1/2, 1, 2 respectively).
For negative spin-weights, the quantities in TME are χ1, ϕ2, ψ4 each with a factor
ρ2s (s = −1/2,−1,−2). The source terms T also get modified with the same factor
and the same index. This difference in Ψ appear in order to separate the variables.
They are connected with the zero rotation used to obtain ε = 0. For other choices
of rotation, the factors will change, but the main equation will remain the same.
This equation is separable under the substitution

Ψ = ei(ωt+mϕ)S(θ)R(r)

(see below) and one can find S(θ) and R(r) – the angular and the radial parts of
the solutions.

The physical information that one can obtain can be seen from:

4π Tµ ν
scalar = Φ;µΦ;ν − 1/2 gµ νΦ;αΦ;α

4π Tµ ν
EM =

{
φ0φ

∗
0nµnν + 2φ1φ

∗
1[l(µnν) +m(µmν)] + φ2φ

∗
2lµlν−

4φ∗0φ1n(µmν) − 4φ∗1φ2l(µmν) + φ2φ
∗
0mµmν

}
+ c.c.,

where one can solve the TME with respect to Φ2 and to find Φ1 and Φ0 from the
equations (3.13–3.16), which are integrable Pfaffian equations for r and θ.

When there is a source term, one can use the eigenfunctions S(θ) to expand:

4πΣT =
∫
dω
∑
l,m

G(r)sS
m
l (θ)eimϕeiωt, (3.22)

ψ =
∫
dω
∑
l,m

R(r)sS
m
l (θ)eimϕeiωt, (3.23)

where R(r) will satisfy the radial equation (3.33) with G(r) as a source term on the
right-hand side.

If one solves the Teukolsky radial and angular equations, then in principle, it is
possible to evaluate the energy emitted from the KBH during those EM perturba-
tions:

d2

dtdΩ
EEM = lim

r→∞
r2T r

t = lim
r→∞

r2 (|ϕ2 |)2

2π
(3.24)
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For going to infinity waves, the components of the electromagnetic field satisfy:
Eθ̂ = Bϕ̂, Eϕ̂ = −Bθ̂, therefore from (3.4), one obtains ϕ2 ∼ Eθ̂ − iEϕ̂. Thus energy
will be proportional to the squares of the real and imaginary parts of ϕ2 with two
polarizations in direction of eθ̂ and eϕ̂ [42].

For gravitational waves, the equations are much more complicated, but in two
cases, the energy can be estimated – on infinity and on the horizon.

On infinity, the energy flux for outgoing waves with frequency ω is given by
([42]):

∂2

∂t∂ω
Eout = lim

r→∞

r2ω2[
(
hθθ

B
)2

+
(
hθ ϕ

B
)2

]
16π

= lim
r→∞

r2
(∣∣ψ4

B
∣∣)2

16π ω2
(3.25)

For incoming waves, the formula reads:

d2

dtdω
Ein = lim

r→∞

r2
(∣∣ψ0

B
∣∣)2

64π ω2
(3.26)

Before continuing with the solutions of the TRE and the TAE, it is important
to discuss the problems in front of the linearized theory. It is well known that the
strict meaning of the solutions, obtained by separation of the variables in TME has
not been rigorously justified mathematically ([67]). The frequencies ωn which are
solutions of TME are infinite set, but they do not form a complete set of solutions (for
more rigorous definition of the completeness, see [123]). This means that knowing
the frequencies is not enough to describe the complete behavior of the system (One
example of model of relativistic star with complete set of quasi-normal modes has
been given by Price and Husain in [124].). Additionally, those modes grow on
spacial infinity and they don’t lead to square integrable solutions. Despite these
mathematical “defects” of the QNMs, however, they have been proved to be useful
in physics. More precisely, they have been observed in the spectra obtained by
the full 3d general relativity simulations as discussed in the next chapter. Thus,
although there are still problems in front of the theory, the spectra obtained from
the linearized equations can give interesting physical information and is worth to be
researched.

3.1.3 Teukolsky Radial equation and Teukolsky Angular equation

The TME in Boyer-Lindquist coordinates is separable under the substitution:

Ψ = ei(ωt+mϕ)S(θ)R(r)

where m = 0,±1,±2 . . . for integer spins and ω = ωR + iωI is a complex frequency
(note that in this work we are using the Chandrasekhar notations in which the sign
of ω is opposite to the one Teukolsky used). This frequency and the parameter E are
the two complex constants of the separation. The stability condition requires ωI > 0
ensuring that the initial perturbation will damp with time. Making the separation,
we obtain the Teukolsky angular (TAE) and the Teukolsky radial (TRE) equations,
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which govern the angular and the radial evolutions of the perturbation accordingly.
Key property of those equations is the fact that they both can be solved in terms
of the confluent Heun function as first written by [35].

Explicitly, the TAE and the TRE are:[(
1−u2

)
Slm,u

]
,u

+
[
(aωu)2+2aωsu+sElm−s2 − (m+su)2

1−u2

]
Slm = 0, (3.27)

and

d2Rω,E,m

dr2
+ (1 + s)

(
1

r − r+
+

1
r − r−

)
dRω,E,m

dr
+

+

(
K2

(r − r+) (r − r−)
−is

(
1

r − r+
+

1
r − r−

)
K−λ−4 isωr

)
Rω,E,m

(r − r+)(r − r−)
= 0

(3.28)

where ∆ = r2 −Mr + a2 = (r − r−)(r − r+), K = ω(r2 + a2)−ma, λ = E − s(s+
1) − a2ω2 − 2amω and u = cos(θ).

In general, these equations are ordinary linear second-order differential equations
with 3 singularities, two of which regular, while r = ∞ is irregular singularity
obtained via confluence of two regular singular points. For the TRE, the regular
singularities r± are different if a ̸= M . In the bifurcation point, a = M , r+ = r− and
the TRE has another irregular singularity (r = M) instead of the two regular ones.
Hence this is the double confluent case. Note that the ring singularity r = 0, θ = π/2
is not a singularity of the TME and does not play any role in its solutions (easily
seen from Eq. (3.27) and Eq. (3.28)).

The two horizon r± are usually considered as coordinate singularities which can
be avoided under certain choice of coordinates. This comes from the fact that the
horizons are not singular points for the scalar invariants of the Riemann curvature
tensor, where only the ring singularity occurs. This perception, however, was ques-
tioned by the evaluation of some of the differential invariants of the Weyl tensor
required to fix completely the geometry. In the study by Fiziev in [67]), it is demon-
strated that both the Cauchy and the event horizon are found to be coordinate
independent geometrical objects, being at the same time singular points of the TRE
and having the same mathematical nature. This result indicates that for any choice
of coordinates, the number and the type of the singular points in the TRE do not
change in the considered physical domain.

When a ̸= M , these equations can be reduced to the confluent Heun equation
and they can be solved in terms of confluent Heun functions (for the electromagnetic
case s =−1, [35], [66], [67], [125, 126], [127]):

R1 (r) = C1 e
α z
2
(
r−r+

)β/2+1/2 (
r−r−

)γ/2+1/2 HeunC
(
α,β,γ,δ,η,−

r−r+

r+−r−

)
and

R2 (r) = C2 e
α z
2
(
r−r+

)−β/2+1/2 (
r−r−

)γ/2+1/2 HeunC
(
α,−β,γ,δ,η,−

r−r+

r+−r−

)
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for the case, r > r+, where:
α = −2 i

(
r+ − r−

)
ω, β = −2 i(ω (a2+r+

2)+am)

r+−r−
− 1,

γ =
2 i(ω (a2+r−

2)+am)

r+−r−
− 1, δ = −2i

(
r+ − r−

)
ω
(
1 − i

(
r− + r+

)
ω
)
,

η = 1
2

1

(r+−r−)2

[
4ω2r+

4+ 4
(
iω−2ω2r−

)
r+

3+
(
1−4aωm−2ω2a2−2E

)
×(

r+
2+r−

2
)
+4
(
iω r−−2iω r+ +E−ω2a2− 1

2

)
r− r+− 4a2 (m+ω a)2

]
For the angular function S(θ), we obtain for the solutions:

S±,s,m(θ) = eα z±(θ) (z±(θ))β/2 (z∓(θ))γ/2 HeunC (α, β, γ, δ, η, z±(θ))

where

α = ±4 aω, β = s∓m, γ =s±m, δ = ∓4 aωs, η =
m2 − s2

2
±2 aωs−(aω)2−E+s2,

z+(θ) = cos2
(
θ

2

)
, z−(θ) = sin2

(
θ

2

)
= 1 − z+(θ).

Note, the confluent Heun function depends on 5 parameters (here α, β, γ, δ and
η ), but those parameters differ for the TAE and the TRE!

In general, these are two linearly independent solutions of the TAE. They arise
from the properties of the Heun functions. A special attention is required in the
case s ∈ Z – when |s−m| ∈ Z and the second linearly independent solution includes
an integral of the confluent Heun function.

To fix the physical problem we want to study, we impose appropriate boundary
conditions on the TRE and the TAE. These boundary conditions yield the spectrum
– E and ω.

The spectrum of discrete frequencies ω that one obtains after imposing the
boundary conditions are the quasi-normal modes of the black hole – its late-time
ringing.

3.2 Non-rotating black holes

Although the focus of this work is on rotating black holes, the non-rotating case
offers a useful way to check the applicability of the method in terms of a simpler
problem, which was already studied extensively with other methods.

The linearized perturbations of the Schwarzschild metric are described by the
Regge-Wheeler equation (RWE) and the Zerilli equation (ZE) or by the Teukolsky
radial equation (TRE) in the limit a → 0. In this work, we will consider only the
spectrum obtained from the RWE and the TRE.

The angular equation for both cases is the solution of the Teukolsky angular
equation when there is no rotation (a = 0):

S(θ)=(cos(θ)−1)(cos(θ)+1)LegendreP(l, 2, cos(θ))=0 (3.29)

where θ ∈ [0, π] is the angle.
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With the standard substitution, Φ = R(r)ω,s,le
iωt, for M = 1/2, the RWE can

be written as [62]:

d2

dr2
R(r)ω,s,l + (ω2 − Vs,l)R(r)ω,s,l = 0, (3.30)

where one has the potential: Vs,l =
(
1 − 1

r

) ( l(l+1)
r2 + 1−s2

r3

)
. The RWE has 3 singu-

larities, two regular: the origin r = 0 and the BH horizon r = 1, and one irregular:
infinity r = ∞.

The solutions of this equation in terms of confluent Heun functions for the case
of gravitational perturbations (s = −2 and also M = 1/2) are [67]):

R(r) =C1r
γ/2+1(r − 1)β/2e

αz
2 HeunC(α, β, γ, δ, η, z)+

C2r
γ/2+1(r − 1)−β/2e

αz
2 HeunC(α,−β, γ, δ, η, z) (3.31)

where the values of the parameters α, β, γ, δ, η are ([67, 66]):

α = −2 iω, β = 2 iω, γ = 4,

δ = −2ω2, η = 4 − l − l2 + 2ω2,

z = 1 − r

Using the same standard substitution, Φ = R(r)eiωt, for M = 1/2, we find that
for the gravitational perturbations s = −2, when there is no rotation, the TRE
becomes:

(r − r+) (r − r−)
d2

dr2
R (r)+(1 − 2 r)

d

dr
R (r) +

+
(
ω2r4− 2iω r2 (2 r−r−−r+)

(r−r+) (r−r−)
+8 iω r−A

)
R (r)=0

Its solutions in terms of confluent Heun functions are:

R(r) =C1r
γ(r − 1)β/2+1e

αz
2 HeunC(α, β, γ, δ, η, z)+ (3.32)

C2r
γ(r − 1)−β/2+1e

αz
2 HeunC(α,−β, γ, δ, η, z) (3.33)

where the values of the parameters are:

α = −2 iω, β = −2 − 2 iω, γ = 2,

δ = −4iω − 2ω2, η = 2ω2 + 4iω −A,

z = 1 − r

and A = E−s(s+1) = l(l+1)−s(s+1) is the separation constant. Those parameters
were obtained by solving the Teukolsky radial equation and substituting a = 0 and
they are clearly different from those in the Regge-Wheeler case. Whether the two
spectral equations (the equations obtained after imposing the appropriate boundary
conditions) give the same spectrum, will be checked in the next chapter.
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Numerical Results

4.1 Quasi-normal modes of nonrotating black holes

The study of quasi-normal modes (QNMs) of a black hole (BH) has long history
[53, 43, 63, 37, 69, 60, 65]. The reason behind this interest is that the QNMs
offer a direct way of studying the key features of the physics of compact massive
objects, without the complications of the full 3D general relativistic simulations.
For example, by comparing the theoretically obtained gravitational QNMs with
the frequencies of the gravitational waves, one can confirm or refute the nature of
the central engines of many astrophysical objects, since those modes differ for the
different types of objects – black holes, superspinars (naked singularities), neutron
stars, black hole mimickers etc. [94, 95, 40, 41, 96, 97].

To find the QNMs, one needs to solve the second-order linear differential equa-
tions describing the linearized perturbations of the metric: the Regge-Wheeler
equation (RWE) and the Zerilli equation (ZE) for the Schwarzschild metric or the
Teukolsky radial equation (TRE) for the Kerr metric and to impose the appropriate
boundary conditions – the so-called black-hole boundary conditions (waves going
simultaneously into the horizon and into infinity)[53, 43]. Additionally, one requires
regularity condition for the angular part of the solutions. And then, one needs to
solve a connected problem with two complex spectral parameters – the frequency ω
and the separation constant E (E = l(l+ 1) – real for a nonrotating BH with l the
angular momentum of the perturbation) . This system was first solved by Chan-
drasekhar & Detweiler[53] and Teukolsky & Press [51] and later developed through
the method of continued fractions by Leaver [45]. For more recent results, see also
[65, 60, 63, 69].

Because of the complexity of the differential equations, until now, those equations
were solved either approximately or numerically meeting an essential difficulties [53].
The indirect approaches like continued fractions method have some limitations and
are not directly related with the physics of the problem. The RWE, the ZE and the
TRE, however, can be solved analytically in terms of confluent Heun functions as
done for the first time in [62, 67, 104, 66]. Imposing the boundary conditions on those
solutions directly (see [62, 97]) one obtains a system of spectral equations ((3.29)
and (4.1)) featuring the confluent Heun functions which can be solved numerically.

In this section, we present a new method for finding l and ω directly in the case
for gravitational perturbation s = −2 in a Schwarzschild metric, i.e. we solve the
RWE and the TRE analytically in terms of confluent Heun functions and we use
the two-dimensional generalization of the Müller method described in the Appendix:
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“Numerical Methods” to solve the system of two transcendental equations with two
complex variables. Then we use the epsilon-method to study the dependence of the
solutions and the spectrum with respect to small variations in the phase condition.
Additionally, with this method we demonstrate that the so-called algebraically spe-
cial mode n = 8 has a nonzero real part with precision of more than 6 digits. This
firmly refutes the hypothetical relation of this mode with the algebraically special
one.

4.1.1 General form of the equations

To find the QNMs one needs to solve a system of two transcendental spectral equa-
tions. One of them is the TAE for a = 0, Eq. (3.29). The results for the QNMs
should be independent of the choice of θ in the spectral conditions. In our numerical
experiments, we use θ = π − 10−7.

The general form of the radial equations is obtained from the solutions of the
RWE and the TRE written in terms of the confluent Heun functions (Eq. (3.31)
and Eq. (3.33)), on which the black hole boundary conditions have been imposed
[67]. Those boundary conditions coincide with the conditions for the rotating black
hole with a = 0, so they will be considered in detail in the next section. Here,
they simplify to the choice of local solution in terms of the Heun function (from the
boundary condition on the horizon). For the two cases in question, the solution R1

is valid for the RWE (Eq. (3.31)) and the solution R2 is the valid one for the TRE
(Eq. (3.33)).

Then, it remains to impose the following boundary condition on the space infinity
(for details see [97, 67] and the next section):

R = rp
∞HeunC(α, β, γ, δ, η, 1 − r∞) = 0, (4.1)

where HeunC is the confluent Heun functions as defined in maple and the param-
eters α, β, γ, δ, η and p are as follows:

1. For the solutions of the Regge-Wheeler Equation:

α = −2 iω, β = 2 iω, γ = 4, δ = −2ω2, η = 4 − l − l2 + 2ω2,

r∞ = 20 e−i(1/2 (1+ε)π+arg(ω)), p = 3

2. For the solutions of the Teukolsky Radial Equation:

α = −2 iω, β = 2 + 2 iω, γ = 2, δ = −4iω − 2ω2, η = 2ω2 + 4iω −A,

r∞ = 20 e−i(1/2 (1+ε)π+arg(ω)), p = 5

where A = l(l + 1) − s(s + 1) is the separation constant(s = −2). Here the
radial variable is chosen to be |r∞| = 20 which turns out to be large enough
to simulate numerically the actual infinity ([67, 66]). Also, here the parameter
β is chosen to reflect the local solution being used. ε is defined below.
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4.1.2 The epsilon-method for nonrotating black holes

For values of the parameters α, β, γ, δ, η of general type, the confluent Heun func-
tion HeunC(α, β, γ, δ, η, z) has branching points in the complex z-plane at the sin-
gular points z = 1 and z = ∞. In the maple package, as a branch cut is chosen the
semi-infinite interval (1,∞) on the real axis. The presence of the branch cut may
lead to the disappearance of some modes or their translation, since by changing the
phase of the complex variable r, we may make a transition to another sheet of the
multivalued function.

In this section, we begin introducing the epsilon-method, with which one can
control the sheet of the multivalued function. This is done using a small variation
(| ε |< 1) in the phase condition arg(r)+arg(ω)=−π/2 (defined by the direction of
steepest descent, see [62] or the next section). Because of the gaps in the analytical
theory of the confluent Heun functions, the only way to examine the effect of the
branch cuts on the spectrum is numerically. An additional problem is the lack of
documentation of the branch cuts in the numerical realization of the confluent Heun
function in Maple. A more detailed study on some of the branch cuts can be found
in the next section “Electromagnetic QNMs of rotating black holes”.

(a) ε = −0.1 (b) ε = −0.05

(c) ε = 0 (d) ε = 0.05

Figure 4.1: 3d plots of the function F2 = |R(ω, ε)RWE | in the complex interval ω =
0.32+1.4i..0.5+2.4i for ε = 0.05, 0,−0.05,−0.1 (the colors encode the phase of the
complex function F2.). The wall characteristic of the branching of the multivalued
function is moved by ε either to the left (ε < 0) or to the right (ε > 0)
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(a) ε = −0.05 (b) ε = 0

(c) ε = 0.05

Figure 4.2: 3d plots of the function F2 = |R(ω, ε)RWE | for ε = −0.05,ε = 0 and
ε = 0.05 in the same interval for the complex ω as in 4.1 scaled near the expected
roots. The different ε lead to different profiles of the roots

Here, we present an illustration of the way the branch cuts of the solutions of the
radial equation move for different values of ε. Such an illustration cannot be easily
obtained in the case of rotating black holes, where the radial function depends not
on one complex parameter (ω), but on two (ω,E). On Fig. 4.1, Fig. 4.2 and Fig.
4.3, we have plotted the function R(ω, ε) in the case of solutions of the TRE and
the RWE for different values of ε . From them, it is clear that the movement of the
branch cuts affects the radial function and its roots, something which requires more
serious study.

4.1.3 The numerical spectra

From the angular equation (3.29), it is clear that it can be solved explicitly without
solving the system (3.29) and (3.33) and the values of l are known: l = 2, 3, . . .. Here,
only the first value, l = 2, is used to find the QNMs with both radial equations.
One can then either solve only the radial equations or to solve the system [(3.29),
(3.33)] with the appropriate values of the parameters. If one solves the problem as a
two-dimensional system, for calculations with 15 digits of precision (and 32 software
floating-point digits), one obtains as expected l = 1.99(9) + 1 × 10−17i. In the so
obtained numerical value for l, the first different from 9 digit is the 17th.
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(a) ε = 0.05 (b) ε = 0

(c) ε = −0.05 (d) ε = −0.08

Figure 4.3: Plot of the level curves of the function F2 = |R(ω, ε)TRE | for ε =
0.05, 0,−0.05,−0.08 for ω = 0.32 + 1.4i..0.55 + 2.4i. The movement of the branch
cut due to the change of ε can be clearly seen.

The numerical results for the frequencies are summed in Table (4.1).
From the table, one can see that the frequencies from the two types of equations

coincide with at least 6 digits. A comparison between the RWE frequencies and
the ones published by Andersson ([58]), published in [128] shows that the difference
between the two results is smaller than 5 × 10−8 in most cases and is due to the
numerical reasons.

There are two important results from this study.
First, as seen from the table 4.1 for both the RWE and the TRE, the mode

number 8 has small but nonzero real part. According to Leaver’s evaluations this
mode should be equal to 0 + 3.998000i [45], with an exactly zero real part and
imaginary part 4i, if it is to correspond to the so-called algebraically special mode.

Algebraically special (AS) modes have a special place in the QNM studies [53].
The Andersson method is not applicable for them and these are excluded from his
consideration. Berti, Cardoso and Starinets ([65, 60]) make a review on the results
so far concerning these modes. Theoretically the 9th mode (n = 8) should be purely
imaginary with value 4i, if it indeed corresponds to the AS case. In our results, even
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n ω from the Regge-Wheeler Eq. ω from the Teukolsky Eq.
0 0.7473433688+0.1779246316i 0.7473433676+0.1779246260i
1 0.6934219937+0.5478297504i 0.6934219698+0.5478298839i
2 0.6021069092+0.9565539668i 0.6021069568+0.9565538786i
3 0.5030099245+1.4102964056i 0.5030097036+1.4102966442i
4 0.4150291600+1.8936897821i 0.4150291670+1.8936897747i
5 0.3385988052+2.3912161094i 0.3385987682+2.3912160831i
6 0.2665046794+2.8958212549i 0.2665047149+2.8958212406i
7 0.1856446653+3.4076823515i 0.1856446394+3.4076823843i
8 -0.0306490371+3.9968237195i -0.0306490242+3.9968236554i
9 0.1265269702+4.6052896060i 0.1265270059+4.6052895329i
10 0.15310679658+5.1216534769i 0.1531069231+5.1216532271i

Table 4.1: A list of the frequencies obtained for the QNMs of Schwarzschild black
hole using the Regge-Wheeler equation and the Teukolsky equation. The modes
with n < 5 are found for ε = 0, modes from n ≥ 5 – with ε = −0.3. The first 5
frequencies (n = 0− 4) were obtained also by Fiziev in [62] using exact solutions of
the RWE in the Heun functions

though purely imaginary modes do not pose a problem for the method, the real part
of 9th mode is distinctly not zero and it has at least 7 stable digits when changing ε
in the interval discussed below for both the RWE and the TRE. This clearly shows
that this mode does not agree with the hypothesis for the AS mode, which is to be
expected since the AS mode should correspond to different boundary conditions –
those of the so-called totally-transmission modes ([129]).

The second important result is the dependence of the frequencies ωn on ε. The
direction of steepest descent is supposed to be the optimal direction in which the
solutions satisfy the black hole boundary conditions on infinity in the first term
approximation for asymptotic series for the Heun functions.([62]). The validity of
steepest descent method in its simplest form for the radial equations (4.1) in both
cases under variations in this condition, however, is still an open problem studied
here for the first time.

Using the ε-method one can explore the intervals for ε in which each mode can be
found. The results for both the RWE and the TRE as expected coincide. Generally,
the intervals into which each mode can be found narrow down when increasing n.
While for the first 5 modes it is possible to find ωn = ±|ℜ(ωn)|+ℑ(ωn)i for positive
and negative values of ε in certain interval 1, for n > 4, (but n ̸= 8) the modes with
positive real part can be found only for negative values of ε and the dependence
becomes ωn(ε) = −sgn(ε)|ℜ(ωn)| + ℑ(ωn)i.

For n = 8, the mode has different behavior with respect to ε – for ε ∈
[−0.75,−0.1], one finds a mode with negative real part and vice versa: ωn=8 =
sgn(ε) 0.030649006 + 3.996823690i.

1The ranges where each mode is found depend on ε as follows: for n = 0: ε ∈ [∓0.8,±0.75],
for n = 1 : ε ∈ [∓0.8,±0.45], for n = 2 : ε ∈ [∓0.8,±0.25], for n = 3 : ε ∈ [∓0.8,±0.1], for
n = 4 : ε ∈ [∓0.8, 0], where the first sign corresponds to frequencies with a positive real part and
the second sign – to those with negative real parts. The imaginary parts for each mode n coincide.
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The so found relation ωn(ε) needs to be examined further. For the case n = 8,
similar to some extent behavior was mentioned also in [129, 130] (and discussed in
[60]), where it is suggested that there are two AS modes which are symmetrical to
the imaginary axis and which are related with the branch cut in the asymptotic of
the RWE potential when ω is purely imaginary. Using the ε-method applied on the
asymptotics of the confluent Heun functions, one can directly obtain the place of
the branch cut on the real axis as a function of ε and they can be easily visualized
plotting the solution R±. Therefore, the use of the confluent Heun functions and
the ε-method offers a direct way to examine the solutions and their properties in
relation to the branch cut in the complex r-plane, something that cannot be readily
done in the continued fraction method generally used to obtain the QNMs.

Further exploration of the dependence ℜ(ωn)(ε) (or ℑ(ωn)(ε)) in the intervals
mentioned above shows that for both the RWE and the TRE, it bears some resem-
blance to a periodic function with amplitude A and period L which change with
n in a nontrivial way (Fig.4.4 and Fig. 4.5). For n < 4, from the RWE and the
TRE one obtains ATRE ≈ 10−6 ≈ 103 × ARWE , LRWE ≈ LTRE ≈ 0.4 and those
values remain approximately constant with respect to n (n < 4). For n ≥ 4, the
dependence of A and L on n becomes more pronounced: the amplitudes and the
periods of the RWE increase with n until they reach ARWE ≈ 10−6, LWRE ≈ 0.6
for n = 10. For the TRE the amplitude and the period decrease to ATRE ≈ 10−8,
LTRE ≈ 0.05. For n = 8, the two periodic behaviors have approximately equal
amplitudes ≈ 10−7. Those results hint that although the so-obtained frequencies
are stable with at least 6 digits with respect to ε, there is also some finer dependence
the origin of which should be carefully investigated.

The visible change in the dependence of the QNMs on ε around n = 4 (see Fig.
4.4 and 4.5), is probably due to the fact that for the lower modes (n ≤ 4), the
branch cuts, ℑ(r) = 0, are far from the roots we are trying to find and changing ε
in any direction does not bring significantly closer the discontinuity. For the higher
modes, where the branch cuts are much closer to the roots, the modes can be found
only when ε pushes the discontinuity further from the mode, thus the symmetry
with respect to ε is broken.

4.1.4 Summary of the results

• The gravitational QNMs for a Schwarzschild BH obtained from the RWE and
the TRE were obtained, by solving the differential equations analytically in
terms of confluent Heun functions. The QNMs from the TRE for the case
s = −2 were calculated for the first time and were found to coincide with the
well-known QNMs from the RWE with precision of 6 digits.

• Trough a new method for studying the dependence of the QNM spectra on
the value of the complex radial variable, it was demonstrated that there is
nontrivial dependence on small variation in the phase condition.

• For the first time, the mode n = 8 was obtained directly from the spectral
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(a) (b)

(c) (d)

Figure 4.4: Complex plots of the scaled QNMs, ω, from the two equations in the
appropriate intervals for ε a)ωRWE

n for n = 0..3 b)ωTRE
n for n = 0..3 c) ωRWE

n for
n = 4..10 d)ωTRE

n for n = 4..10. Clearly while for n = 0..3 the QNMs from the two
equations give similar results, for n > 4, the variations in the frequencies from TRE
happen on a much smaller scale and appear chaotic

condition on the exact analytical solutions of the RWE and the TRE and was
found to have a nonzero real part with at least 6 digits of precision (with
respect to changes in ε). This proves that n = 8 is not an algebraically special
mode.
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(a) n=3 (b) n=8

(c) n=10

Figure 4.5: Plots of abs(ω)(ε), where the solid line corresponds to the TRE modes
and the dots – to the RWE modes for a) n=3, b) n=8, c) n=10. One can see the
evolution of the so-called amplitudes and periods in both cases, when n increases
from 3 to 10
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4.2 Electromagnetic quasi-normal modes of the Kerr
black hole

In this section we continue with the application of the new method for solving numer-
ically two-dimensional systems featuring the Heun functions (the two-dimensional
generalization of the Müller method described in [128]), this time in the considerably
more complicated system describing the EM perturbations of rotating black holes.
As we showed in the previous section, for the gravitational perturbation s = −2 of
the Schwarzschild metric ([109]), this method gives interesting results, some of which
repeat with high precision the results already published by other authors. Addition-
ally, we were able to refute the 9th mode as an algebraically special and showed
its properties are related to the branch cuts in the solution of the radial equation.
While the analysis of the potentials of the Regge-Wheeler equation (RWE) and the
Zerilli equation (ZE) hinted of the importance of the branch cut on the imaginary
axis for understanding this mode [129, 130], this result is directly obtainable from
the actual solutions of the RWE and ZE in terms of the confluent Heun functions.

With respect to the branch cuts, our study is particularly important, since it
cannot be done with the most often used continued fraction method, where the radial
variable does not explicitly enter the equations being solved and which cannot be
used for purely imaginary frequencies ([57], p.8). If one looks at the equations used
by this method in detail, it turns out that the angular equation [45] in the continued
fraction method coincides with the the three-term recurrence defining the confluent
Heun function, solution of the TAE, in the neighborhood of the two regular singular
points, u = −1, 1, where u = cos(θ) ([107] Eq. (1.9-1.10). The radial equation
in the continued fraction method, however, differs from the solution of the TRE
in terms of the confluent Heun functions. This is because in Leaver’s paper, the
series from which the continued fraction are obtained are developed for the powers
of r−r+

r−r−
(due to switching the places of the singular points, see [57], p.7), while

the asymptotic three-term recurrence of the confluent Heun function at infinity is
developed for 1

r−r−
. Note that in maple, for r > r+, the evaluation of the confluent

Heun functions at infinity is obtained by numerical integration from the second
singularity r = r+.

In this section, we continue the exploration of the application of the confluent
Heun functions by studying the QNMs of the Kerr BH. Our results show that using
the confluent Heun function, one can obtain the QNMs for a wide range of modes
and rotational parameters, and that there is very good agreement between some
of our results and those obtained within other methods. The use of the ε-method
made it possible, for the first time to study the dependence of the so obtained
frequencies on small deviations in the phase condition and it is shown how this
nontrivial dependence evolves with n and a. In this case, some of the modes are
independent of ε which should be expected since the frequencies should not depend
on the radial variable. Other modes, however, depend critically on the value of ε
and they can differ seriously from the already published results. Additionally, details
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how the modes change in the interval of validity of the steepest descent method are
presented.

4.2.1 The Teukolsky angular equations

In Chandrasekhar’s notation, the Teukolsky Master Equation ([51]), for |s| = 1 is
separable under the substitution Ψ = ei(ωt+mϕ)S(θ)R(r), where m = 0,±1,±2 for
integer spins and ω is the complex frequency. Because of the choice of this form of
Ψ, the sign of ω differs from the one Teukolsky used, and the stability condition,
guaranteeing that the perturbations will damp with time, reads ℑ(ω) > 0.

The TAE for EM perturbations (s = −1) has 16 classes of exact solutions S(θ) in
terms of the confluent Heun functions (for full details see [67]). To fix the spectrum
approximately, one requires an additional regularity condition for the angular part of
the perturbation, which means that if we choose one solution, S1(θ) regular around
the one pole of the sphere (θ = 0) and another, S2(θ), which is regular around the
other pole (θ = π), then in order to ensure a simultaneous regularity, the Wronskian
of the two solutions should become equal to zero, W [S1(θ), S2(θ)] = 0. This gives
us one of the equations for the two-dimensional system that needs to be solved to
obtain the QNMs of the Kerr BH.

In [67], there are four pairs of Wronskians, each pair being valid in a sector of
the plane {s,m}. Ideally, using any of them should lead to the same spectrum.
Numerically, the results obtained with the different Wronskians coincide within 11-
13 digits of precision. The Wronskians used to obtain the spectrum are:

W [S1, S2] =
HeunC′(α1, β1, γ1, δ1, η1, (cos (π/6))2)
HeunC(α1, β1, γ1, δ1, η1, (cos (π/6))2)

+

HeunC′(α2, β2, γ2, δ2, η2, (sin (π/6))2)
HeunC(α2, β2, γ2, δ2, η2, (sin (π/6))2)

+ p = 0 (4.2)

where the derivatives are with respect to z and the values of the parameters for the
two confluent Heun functions for each m are as follows:

For the case m = 0: α1 = 4 aω, β1 = 1,
γ1 = −1, δ1 = 4 aω, η1 = 1/2 − E − 2 aω − a2ω2 and
α2 = −4 aω, β2 = 1, γ2 = 1, δ2 = −4 aω, η2 =, 1/2 − E + 2 aω − a2ω2, p =
1

(sin(π/6))2

For the case m = 1: α1 = −4 aω, β1 = 2, γ1 = 0, δ1 = 4 aω, η1 = 1 − E − 2 aω −
a2ω2 and

α2 = −4 aω, β2 = 0, γ2 = 2, δ2 = −4 aω, , η2 = 1−E+2 aω−a2ω2 and p = −4 aω
For the case m=2: α1 = −4 aω, β1 = 3, γ1 = −1, δ1 = 4 aω, η1 = 5/2 − E −

2 aω − a2ω2 and
α2 = −4 aω, β2 = 1, γ2 = −3, δ2 = −4 aω, η2 = 5/2 − E + 2 aω − a2ω2 and

p = 8 − 4aω.
where we use θ = π/3 (the QNMs should be independent of the choice of θ in the
spectral conditions).



40 Chapter 4. Numerical Results

These Wronskians differ from those in [67], most notably by the presence of
the term p. The reason for this is that they were constructed using different two
solutions [S1(θ), S2(θ)] of the TAE (note that the sign convention in this paper
differs from the one in [67]), each of which still being regular on one of the poles.
That was done to improve the numerical convergence of the root-finding algorithm
and to avoid maple’s problems with the evaluation of the confluent Heun function
and its derivative for certain values of the parameters.

4.2.2 The Teukolsky radial equation

The TRE differential equation is of the confluent Heun type, with r = r± regular
singular points and r = ∞ – irregular one. As it was noted in [97], the point
r = 0, θ = π/2 is not a singularity for this equation and, therefore, it need not be
considered when imposing the boundary conditions. The solutions of the TRE for
r > r+, are :

R(r)=C1R1(r) + C2R2(r), for (4.3)

R1(r) = e
α z
2 (r−r+)

β+1
2 (r−r−)

γ+1
2 HeunC(α, β, γ, δ, η, z)

R2(r) = e
α z
2 (r−r+)

−β+1
2 (r−r−)

γ+1
2 HeunC(α,−β, γ, δ, η, z),

where z = − r−r+

r+−r−
and the parameters are:

α = −2 i
(
r+ − r−

)
ω, β = −2 i(ω (a2+r+

2)+am)

r+−r−
− 1,

γ =
2 i(ω (a2+r−

2)+am)

r+−r−
− 1,

δ = −2i
(
r+ − r−

)
ω
(
1 − i

(
r− + r+

)
ω
)
,

η = 1
2

1

(r+−r−)2 ×
[
4ω2r+

4+ 4
(
iω−2ω2r−

)
r+

3+
(
1−4aωm−2ω2a2−2E

)
×(

r+
2+r−

2
)
+4
(
iω r−−2iω r+ +E−ω2a2− 1

2

)
r− r+− 4a2 (m+ω a)2

]
.

Here we have followed maple’s internal rules when constructing the general
solution of the differential equation from the confluent Heun type. Accounting for
the symmetries of the confluent Heun function, the solutions (4.4) coincide with
those in [67] (for ω replaced with −ω). 2

The TRE has 3 singular points r−, r+,∞ and in order to fix the spectrum, one
needs to impose specific boundary conditions on two of those singularities (i.e. to
solve the central two-point connection problem [105]). Different boundary conditions
on different pairs of singular points will specify different physics of the problem. In
our case, we impose the black hole boundary conditions (BHBC) – waves going
simultaneously into the event horizon (r+) and into infinity – following the same
reasoning as in [97] where additional details can be found. Then, the BHBC read:

1. BHBC on the KBH event horizon r+.
2It is important to emphasize that the so obtained solutions cannot be used for extremal KBH

(a = M) since in this case the differential equation is of the double confluent type and its treatment
differs, so it is outside the scope of this work.
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For r → r+, from r(t) = r+ + e
−ℜ(ω)t+const
ℑ(n1,2) → r+, where n1,2 are the powers of

the factors (r− r+)n1,2 in R1,2, follows that for m = 0, the only valid solution
in the whole interval (−∞,∞) is R2, while for m ̸= 0, the solution R2 is valid
for frequencies for which ℜ(ω) ̸∈ (− ma

2Mr+
, 0). This means that the rotation

splits the area of validity of R2 into two and if this condition is not fulfilled,
then the spectrum corresponds to waves going out of the horizon – a white
hole. We won’t pursue the spectrum in the case of a white hole, but it is
important to keep in mind that the boundary conditions correspond to a BH,
only in the ranges of validity of each solution. In our numerical work we use
only R2 since the confluent Heun function in R1 is numerically unstable in
maple.

2. BHBC at infinity.

At r → ∞, the solution is a linear combination of an ingoing (R←) and an
outgoing (R→) wave: R = C←R← + C→R→, where C←, C→ are unknown
constants and R←, R→ are found using the asymptotics of the confluent Heun
function as defined in [105, 67].

To ensure only outgoing waves at infinity, one needs to have C← = 0.

To achieve this, first one finds the direction of steepest descent in the complex
plane Cr for which lim

r→∞
R→
R←

= r−4i ω M+2e−2iω r = 0 tends to zero most quickly:

sin(arg(ω)+arg(r))=−1. This gives us a relation r =| r | e3/2iπ−i arg(ω) ([62])
between ω and r which is exact only if one uses the first term of the asymptotic
series for the confluent Heun function (i.e. HeunC ∼ 1). More details about
this approximation can be found in the next section.

Then, it is enough to solve :

C←=r
2+i ω+2i m a+i ω

r+−r− HeunC(α,−β, γ, δ, η, z)=0, (4.4)

in order to completely specify the spectra {ωn,m, En,m}, with r =
110 e3/2iπ−i arg(ω) (we use |r| = 110 as the actual numerical infinity and
M = 1/2).

4.2.3 The epsilon-method

Equation (4.4) relies on the direction of steepest descent defined by the phase con-
dition arg(r)+arg(ω) = 3/2π. This approximate direction was chosen ignoring the
higher terms in the asymptotic expansion of the solution around the infinity point,
therefore, one can expect that the true path in the complex plane may not be a
straight line but a curve. In principle, the spectrum should not depend on this
curve, as long as r stays in the sector of the complex plane where lim

r→∞
R→
R←

= 0,
i.e. as long as π < arg(r)+arg(ω)< 2π, with only the convergence of the algorithm
being affected. Numerical exploration of that limit evaluated with the first 3 terms
in the asymptotic expansion of the appropriate confluent Heun functions for the
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modes ωn, n = 0..18 when there is no BH rotation (a = 0), and for some modes
when there is rotation, confirms that indeed the limit remains approximately zero
in the whole interval π + 0.1 < arg(r)+arg(ω)< 2π − 0.1.

The spectrum obtained numerically in this interval, however, depends in a non-
trivial way on this curve. The complications are partially due to the appearance of
branch cuts in the numerical realization of the confluent Heun functions in maple,
where as we mentioned, one of the branch cuts is fixed to be the semi-infinite interval
(1,∞) on the real axis. In the case of QNMs of nonrotating BHs [109, 110], it was
observed that when those branch cuts are found near a frequency (since the radial
variable, r depends on the frequency ω, the branch cuts appear also in the complex
ω-plane), they have serious effect on it, leading to the disappearance or translation
of certain modes. Here we continue the study of the effect of the branch cuts on the
spectra and we define the equation describing some of them.

Here introducing the parameter epsilon in the phase condition leads to:

arg(r)+arg(ω)=
3 + ε

2
π, for |ε |<1, (4.5)

which differs from the one used in the nonrotating case by the sign in front of ε.
Using the ε-method, one can change the location of the branch cut with respect to
the eventual roots of the system and this way try to minimize the effect of the jump
discontinuity of the radial function 3. Using ε, one can also explore the whole sector
π < arg(r)+arg(ω)< 2π , i.e. effectively moving r = |r|ei arg(r) in the complex plane
and this way test the numerical stability of the QNM spectrum with respect to the
position of the branch cuts of the radial function.

Using the parameter ε, the observed branch cuts in the realization of the con-
fluent Heun function in maple are as follows:

1. For r–real, one encounters one of the branch cuts of the confluent Heun
function. The equation of the line of this branch cut is: ℑ(ω)/ℜ(ω) =
tan(3/2π + επ/2) = − cot(επ/2). This line rotates when ε changes.

2. If ℑ(ω) = 0, then one encounters the branch cut of the argument-function.
In this case the branch cut is defined for ℜ(ω) = (−∞, 0). This branch cut,
however, affects the solutions only very close to a = M where the frequencies
can become almost real.

3. If ℜ(ω) = 0 and ℑ(ω) = 2n , n = 1, 2, 3.., then one can have ℑ(r) = 0 for
certain values of ε and thus reach the branch cut of the confluent Heun function
on the real axis. This condition can affect modes which are very near the
imaginary axis (for example, similar condition holds around the algebraically
special mode for a nonrotating BH).

4. Additional branch cuts may appear in the cases where ℑ(rk) = 0, for k–
noninteger or complex (where z = 1 − r). Those branch cuts depend on

3Here, the radial function refers to the solutions of the radial equation and not to the differential
equation itself.
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the numerical realization of the confluent Heun function in maple and the
equations of their lines can be obtained numerically from the values of the
function for each ε. For example, one such branch cut was observed for
ℑ(ω)/ℜ(ω) ≈ tan(1.419 + επ/2).

Although the study of the full effect from the movement of the branch cuts on
the EM spectrum of KBH, as it was done in the case of gravitational perturbations
of nonrotating black holes, is outside the scope of this work, some preliminary results
on the issue can be found in the Appendix.

4.2.4 Numerical algorithms

The spectral equations we need to solve to find the spectrum ωn,m(a) for M =
1/2 are Eqs.(4.2) and (4.4). This system represents a two-dimensional connected
problem of two complex variables – the frequency ω and the separation parameter
E – and in both of its equations one encounters the confluent Heun function and in
the case of the TAE – their derivatives.

A system like that cannot be easily solved by conventional methods like the
Newton method and the Broyden method, as outlined in [109] and [128], since they
do not work well with the confluent Heun function in maple. For this reason, our
team developed a new method, namely the two-dimensional Müller algorithm which
proved to be much better adapted to work with those functions. The details of the
algorithm can be found in [128, 109, 110], but for completeness, we will mention
only that it relies on the Müller method which is a quadratic generalization of the
secant method having better convergence than the latter. The new algorithm does
not need the evaluation of derivatives, thus avoiding one of the biggest problems
when using the confluent Heun function in maple. Clearly, in the system we solve
the angular spectral equation (Eq. (4.2)) includes derivatives, but in this case, they
remain in the domain |z| < 1, where they can be evaluated correctly (for most values
of the parameters) and with precision comparable to that of the radial function. It
is important to note that both ω,E are found directly from the spectral system
(Eqs. [(4.2) and (4.4)]) and with equal precision. 4 5

4.2.5 Numerical results for electromagnetic QNMs

While the evaluation of QNMs is not new to physics, the actual numbers published
for EM perturbations of KBH are scarce. Because of this, for comparison, we use

4The algorithm is realized in maple code and the numbers presented below are obtained using
maple 13 on the computer cluster Physon. The software floating point number is set to 64 (unless
stated otherwise), the precision of the algorithm – to 15 digits.

5An important precaution when working with the confluent Heun function in maple is that
its precision or over-all behavior may depend on different factors which are not always under
user’s control [109]. From our observations, it seems that one can trust around 11-12 digits of the
frequencies at the worst, usually around 13 digits. The points we present are the maximum we
could get out of maple, but future improvements in maple’s code may significantly expand the
area of application of the method and/or also its precision.
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the numbers published by Berti et al. [65, 94], the numerical data can be found
on http://www.phy.olemiss.edu/~berti/qnms.html. Those numbers were obtained
using the continued fraction method which is still considered as the most accurate
method for obtaining the QNMs from the KBH. The available control frequencies
are n = 0..6 for l = 1 and n = 0..3 for l = 2. Using those “control” numbers denoted
as ωB

n,m, E
B
n,m one can easily check the precision of the method.

The first 10 modes of the spectrum obtained using the new method in the in-
terval a = [0,M) can be found on http://tcpa.uni-sofia.bg/conf/research. In the
Appendix, one can find some of the QNMs for specific values of a.

4.2.5.1 Non-rotating BH

It is already well known that when there is no rotation (a = 0) the electromag-
netic QNMs come in pairs symmetrical to the imaginary axis ωn,m = ±|ℜ(ωn,m)|+
iℑ(ωn,m) (n = 0, 1.. numbering the mode). In this case the system reduces to one
equation – the radial function (4.4) (for E = l(l + 1), l = 1, 2..) solved here using
the one-dimensional Müller algorithm.

(a) l=1 (b) l=1,2

Figure 4.6: QNMs for a = 0, for m = 0, 1, 2. The red diamonds are obtained for
ε = 0, the green crosses – for ε = 0.05, the magenta diagonal crosses – for ε = 0.15.
With blue circles are the control frequencies ωB

n,m. Some points cannot be differed
because for them, the numbers for different ε coincide with precision higher than 10
digits. Clearly, for the higher modes, one obtains different spectra for different ε

The results can be seen on Fig. 4.6 a) and b), where we plotted the QNMs for
m = 0, 1, 2 and l = 1, l = 2. The behavior of the modes resembles the behavior of
the gravitational QNMs. A numerical comparison with the frequencies obtained by
Berti et al. shows that the average deviation is |ωB

n,m −ωn,m| ≈ 10−10 for the first 4
modes (n = 0..3, l = 1, 2). For modes with n > 3 (i.e. n = 4..6 for l = 1), however,
there is an unexpected deviation which starts for n = 4 from |ωB

4,m − ω4,m| ≈ 0.007
and grows to |ωB

6,m − ω6,m| ≈ 0.022 for the last available control mode.

http://www.phy.olemiss.edu/~berti/qnms.html
http://tcpa.uni-sofia.bg/conf/research
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To study this systematic deviation, we employed the ε-method to test the sta-
bility of those frequencies with respect to small deviations in the phase-condition.
The results for ε: 0,±0.05,±0.15 are plotted on Fig. 4.6 a) and b). From there one
can see that for n > 3 the best coincidence with the control frequencies ωB

n,m occurs
for ε = ±0.15, while for n < 3 the modes obtained for the different values of ε are
equal and coincide with ωB

n,m.
Similarly to the gravitational perturbation for nonrotating BH ([109]), the de-

pendence ω(ε) in the electromagnetic case is not a trivial one. Here, only the case
when there is no rotation (a = 0) allows studying in detail this dependence, since
when there is rotation finding the roots of the system in a whole interval for ε is
strongly limited by the computational cost of the algorithm. Exploring a = 0, how-
ever, allow us to gather important intuition on the behavior of the QNMs under
changes in ε.

A more detailed study on both this case and the case with rotation, can be found
in the Appendix .1.2.

The most important results from this study are:

1. Each mode ωm,n can be found in certain interval of ε: ∆ε
m,n = [εinn , ε

fin
n ] ⊆

(−0.8, 0.8). Outside this interval, this mode is not a root of the system.

2. The modes ωm,n with n<N (N depends on {m, l}), with high precision do
not depend on ε and both signs of their real parts are obtainable with any
sign of ε.

3. The modes with n≥N depend on the sign of ε as: ωm,n(ε) = sgn(ε)|ℜ(ωm,n)|+
iℑ(ωm,n) (i.e. frequencies with positive real parts can be obtained only with
positive epsilon)6.

4. The interval for ∆ε
m,n, where a mode ωm,n with certain sign of its real part

can be found, shortens with the increase of n.

5. Studying ωm,n(ε) for ε ∈ ∆ε
m,n shows that the effect due to ε can be very small

in certain ranges, but it is above the numerical error.

6. The dependence ωm,n(ε) in the whole interval (−0.8, 0.8) of applicability of
the method, can be of two types – 1) step-wise change of the values of the
frequency for ε crossing the left(right) end of the intervals ∆ε

m,n for frequencies
with positive(negative) real parts. This behavior has been observed also inside
the intervals ∆ε

m,n for some {m,n} 2) smooth transition for ε ∈ ∆ε
m,n (for the

whole interval or parts of it) where the frequency remains stable with at least
9 digits of precision.

6The change of the sign in front of ε compared to the non-rotating GW case (s = −2) comes
from the change of the sign in the phase condition
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4.2.5.2 Rotating KBH

The results presented here were obtained for a = [0..M) for 3 different values of
|ε| = 0, 0.05, 0.15 (where the positive ε are used for frequencies with positive real
part and vice versa, negative ε – for the frequencies with negative real parts).

The results can be seen on the figures below (Figs. 4.7-4.16).
When a ̸= 0, the symmetry with respect to the imaginary axis ω1,2

m,n(0) =
±|ℜ(ωm,n)| + iℑ(ωm,n) breaks down, but it is replaced by the symmetry:

{ℜ(ωj
m,n),ℑ(Ej

m,n),m} → {−ℜ(ωj
m,n),−ℑ(Ej

m,n),−m},

where j=1, 2 coincides with the upper index of ω1,2
m,n(0). Thus, to study the com-

plete behavior of the modes for a ∈ [0,M), it is enough to trace both symmetric
frequencies in the pair corresponding to each {m,n} for a = 0, for only m > 0 (the
index l here is omitted to simplify the notation, but everywhere in the text, if not
explicitly stated otherwise, we compare only frequencies with the same l.)

The parameter ε, for rotating BH, has an even more significant role than the
nonrotating case, since it does not merely translate modes with respect to each other,
but for some modes, the frequencies obtained for the 3 values of ε have different
behavior with respect to changes in the rotation. Some details can be found in the
Appendix (.1.3).

As in the case a = 0, one sees that for modes with n < N ,
ω0

m,n(a), ω0.05
m,n(a), ω0.15

m,n(a)7 coincide for equal {m,n} (Fig. 4.7), while when n ≥ N ,
the modes ωε

m,n obtained for different values of the parameter ε differ (Fig. 4.8).
N depends on m,n and generally it is for N = 2..4 when one of the modes
(ω0

m,n, ω
0.05
m,n , ω

0.15
m,n) splits up from the rest (Note, here we discuss mostly the frequen-

cies, but the separation parameters Em,n also depend on ε as the figures show.).
It is important to note that for m = 0, in the modes n ≥ 3, one observes loops.

An example can be seen on Fig. 4.9. Those loops appear in all the higher modes,
and their position depends on n. Because those loops require a finer structure of
the plot (i.e. smaller step), on the plots Fig. 4.10, Fig. 4.11 and Fig. 4.14, we will
plot only the points before the first loop observed in each curve. On Fig. 4.14 one
can see the points for l = 1, 2,m = 0, 1 plotted together.

From the radial boundary conditions it follows that only frequencies for which
ℜ(ω) ̸∈ (0,−m a

2Mr+
) correspond to black hole boundary conditions. Figure 4.15 a)

shows that the so obtained spectrum obeys this condition. A deviation from this
condition was observed in [97], where some of the frequencies describing primary jets
crossed the line defined by −m a

2Mr+
, thus corresponding to a white hole solution.

For the QNM spectrum, however, this is not the case and the spectrum corresponds
to perturbation of a black hole.

From the same figure one can see in the negative sector of the plot that the
real parts of the QNMs for increasing n seem to tend to the line −m a

2Mr+
, which

requires further investigation for n > 10. For the positive sector (i.e. the frequencies

7where ωm,n(ε) = ωε
m,n to avoid confusion with ωm,n(a)
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(a) ℜ(ω0,3)(a) (b) ℑ(ω0,3)(a)

(c) ℜ(E0,3)(a) (d) ℑ(E0,3)(a)

Figure 4.7: On the plots the real and imaginary parts of ω0,3(a) and E0,3(a) when
the rotation changes in the interval a = [0,M). Here, with red line are denoted the
points obtained for ε = 0, with blue crosses – those for ε = 0.05 and with green
diamonds – those for ε = 0.15. The modes obtained for the 3 values of ε coincide

with positive real parts) we were not able to trace the frequencies with high n near
a→M , thus we cannot confirm the relation ℜ(ω) = m for a→M observed in [59].

Finally, obtaining the modes in the limit a ≈ M could be of serious interest,
if one is to compare the EM QNMs with the spectra obtained from astrophysical
objects, but it is also technically challenging. This happens because for a = M

the TRE changes its type and near this limit the confluent Heun function becomes
numerically unstable since these functions are transforming to the double confluent
Heun ones. Because of this, the examination of the limit a→M for modes with high
n is impossible with current numerical realization of that function in maple. For the
lowest modes, however, the function is stable enough in the interval a ∈ [0.49, 0.4995]
and the results of the numerical experiment for m = 1 are plotted on Fig. 4.16.
As expected, for n = 0, for a > 0.91M the imaginary part of the frequency quickly
tends to zero, thus proving that for extremal objects, the perturbations damp very
slowly. For the other two modes, it also seems to tend to zero, although somewhat
slower than n = 0. In physical units, the difference between the 3 modes for a =
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(a) ℜ(ω0,4)(a) (b) ℑ(ω0,4)(a)

(c) ℜ(E0,4)(a) (d) ℑ(E0,4)(a)

Figure 4.8: The plots depict the real and imaginary parts of ω0,4(a) and E0,4(a) for
a = [0,M). With red lines are denoted the points obtained for ε = 0, with blue
crosses – those for ε = 0.05 and with green dashed lines – those for ε = 0.15. The
points obtained for the different values of ε differ

0.4995 is only 6Hz (ω1,1 ≈ 1.582kHz), but the damping times of the first mode is
approximately 4.86 times bigger than that of the third and is tdamp

1,1 ≈ 4.2ms for
KBH with mass M = 10M⊙. The frequencies in physical units, for some other
values of the rotational parameter, can be found in the tables 2 in the Appendix
.1.1.

While the analytical study of the extremal case is outside the scope of this work,
one can find such analytical treatment of the issue in [61, 64]. In both articles, one
deals with approximations of the exact solutions of the radial equation, obtained
under certain assumptions – be it through the continued fraction method in the limit
a→M ([61]) or through a particular case in which the solution of the radial equation
for a → M can be written in terms of confluent hypergeometric functions ([64]).
Both methods seem to describe well the numerical results, but further investigation
through the exact solutions written in terms of double confluent Heun functions and
their properties, is needed to properly understand this interesting from observational
point of view case.
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Figure 4.9: Example of the loops observed for m = 0. The figure shows the complex
plots of ω0,3(a) and ω0,4(a) for a = [0,M). The red lines are the points corresponding
to ε = 0, the green dashed line – those to ε = 0.15. For n = 3, the results for
ε = 0, 0.15 coincide and thus only the points for ε = 0 are plotted

Figure 4.10: Complex plots of ω0,n(a) and E0,n(a) for a = [0,M), l = 1, ε = 0,
n = 0..21

Figure 4.11: Complex plots of ω0,n(a) and E0,n(a) for a = [0,M), l = 2, ε = 0
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Figure 4.12: The plots show the real and the imaginary parts of ω1,n(a) and E1,n(a)
for a = [0,M) for the modes n = 6..20

Figure 4.13: Complex plots of ωm,n(a) and Em,n(a) for a = [0,M), n = 0..3. With
blue are the points with m = 0, with green – those with m = 1. The black solid
circle denotes a = 0

4.2.5.3 Algebraically special modes and branch cuts

The algebraically special (AS) modes are obtained from the condition that the
Starobinsky constant vanishes ([43]) and they correspond to the so called total
transmission modes (TTM) – modes moving only in one direction: to the right or to
the left. In the case of gravitational perturbations (s = −2) from nonrotating BH,
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Figure 4.14: Complex plot of ωm,n(a), Em,n(a) for a=[0,M), m=0,1, l=1,2, n=0..10

Figure 4.15: On the plots: with red lines – ℜ(ω1,n)(a) and ℑ(ω1,n)(a) for a = [0,M),
n = 0..10 and with blue dashed line −m a

2Mr+
for m = 1

since the 9th QNM coincides approximately with the theoretically expected purely
imaginary AS mode, there were speculations that the two modes coincide (see [59]
for a review, and also [129, 130]). A study of this mode in the case of gravitational
perturbations of KBH showed numerical peculiarities as the “doublet” emerging from
the “AS mode” for m > 0 (see [59]) and also unexplained “spurious” modes, blamed
to numerical inaccuracies.

For electromagnetic perturbations, the possibility of appearance of the alge-
braically special modes has not been discussed much, since in the limit a → 0, the
Starobinsky constant does not vanish for purely imaginary modes (in fact, for a = 0,
the Starobinsky constant does not depend on ω at all, see Eq. (60) [43] p.392) and
there appears to be no correlation between TTM and QNM modes [131]. There is,
however, one important parallel between the electromagnetic and the gravitational
case. For the nonrotating gravitational case, Maassen van den Brink [129, 130] found
that the peculiarities of the 9th mode are due to the branch cut in the asymptotics of
Regge-Wheeler potential, which the method of the continued fraction is not adapted
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Figure 4.16: On the plot ℜ(ω1,n)(a) and ℑ(ω1,n)(a) for a = [0.49, 0.4995] for the
modes n = 0, 1, 2, m = 1

to handle. This result was confirmed by the use of the ε-method for GW pertur-
bations of non-rotating BH where the AS character of the 9th mode was disproved.
Using the ε-method, one sees that this result is not limited to the gravitational case
and the branch cuts play an important role for the electromagnetic QNMs as well.

If one considers ε as a parameter controlling the location of the branch cut
with respect to certain QNM 8, using the equations of the branch cuts discussed in
section “The epsilon-method”, one can find how “close” a certain branch cut is in
the complex ω-plane for each mode. In the gravitational case [110], the supposed
AS mode is the one with the smallest real part and for it the value of ε for which
one observes the jump discontinuity is also very small. Therefore, one can expect
that for this mode, very small variations in the phase-condition can change the leaf
of the multivalued function and thus to lead to a different ω from the expected.

In the EM case, one can also find a mode with a very small real part – n = 11
with ℜ(ω0,11) = .0215 (evaluated for ε = 0.15), for which one encounters the jump
discontinuity very close to the imaginary axis at ε = 0.0024. In this case, one
observes particularly interesting dependence on ε – as showed on Fig. 4.6 a) – for
ε ≤ 0.05 the mode n = 11 separates the lower QNM branch from the upper branch
similarly to the way the so-called AS mode separates the QNM branches in the
gravitational case [60], but if one uses ε = 0.15 there is no such separation. Thus,
for ε = 0 one finds a similarity between the EM and the gravitational cases. This
similarity, however, is due to the appearance of branch cuts in the radial function in
both cases and not to some special properties of the mode in question (i.e. n = 11
for s = −1 and n = 8 for s = −2). This is because in the EM case, there is no
theoretical justification for n = 11 to be an AS mode. In fact when the real part of
that mode is very small (ε ≤ 0.05), its imaginary part deviates from the value of 6i
and vice versa – when the real part is not so small (ε = 0.15), the imaginary part
tends to 6i, see Fig. 4.6. Therefore, for all values of ε, this mode deviates from a
purely imaginary, integer number.

8Recall that r ∼ exp(i arg(ω)) and thus by changing ωm,n and ε, one changes the position in
the r-complex plane
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An important note is that usually when studying purely imaginary frequencies,
most methods do not work well, but in our case, there is no such problem, since
we have a way to control some of the discontinuities in the solution of the radial
function. If we are to continue the analogy with the gravitational case, studying
how the mode n = 11 evolves with the increase of the rotation shows that it does
no differ from the other modes. Although we didn’t search specifically for doublets
like the ones mentioned in [59], most of the modes with n > N can be considered
as doublets, since we obtain distinct curves in the complex ω−plane for different
ε. Furthermore, in certain ranges of ε we found two very close frequencies (i.e.
corresponding to the same n) as roots of the system for the same ε. The details for
one of those cases can be found in the Appendix, but this also resembles the doublet
found in the gravitational case, here found for n = 10.

Focusing on the other peculiarity observed in [59] – the so called “spurious”
modes the study of the frequencies in the interval ε = −0.9..0.9 for a = 0 showed
that indeed when varying ε one may observe a number of frequencies around a cer-
tain mode. While the definition of “spurious” is unclear, in the case a = 0, n = 2, for
example, one finds 3 frequencies (we omit here the separation constant which also dif-
fers): 0.3716378885+1.0257637188i, 0.3610740790+1.0392917852i, 0.3495471352+
1.0503751987i (corresponding to ε = −0.22,−0.21,−0.2, respectively), where the
precision in all cases is 15 digits. Such examples occur for all modes, with differ-
ent roots found stable in different intervals for ε. In some cases, one may consider
those results as dependence of the frequency on ε since the transition between those
roots appears to be smooth 9. In other cases, however, the transition appears to
be step-wise in the scale of variation of ε we studied. While there is no analytical
explanation for this behavior yet, it appears to be related to the branch cut in the
radial function which is moved by the parameter ε. Thus, even if the phenomena of
the “spurious” modes in [59] could indeed be blamed to numerical problems of the
algorithm used in that article ([59]), exploring the roots with the ε-method showed
that a similar result can be obtained also in the EM case using a very different
method. The reason for the observed peculiarities in the behavior of the spectrum
of QNMs, due to the variation of epsilon, may be the complex character of the used
analytical functions (the confluent Heun functions) in the vicinity of the irregular
singular point r = ∞ in the complex r-plane.

Considering all the numerical peculiarities demonstrated above, the use of the
ε-method poses a very serious question in front of the astrophysical application of
the spectra – if one is to compare the numerical results with some observational
frequencies, which ε should be trusted? In our numerical experiments, we were
able to obtain both the frequencies obtained with well-established methods with a
precision higher than 7 digits, and also other, significantly deviating from them fre-
quencies, which have qualitatively different behavior with respect to changes in the

9In the mentioned above case (n = 2) one observes such smooth transitions: for ε = −0.3..−0.25

one finds the root .3901344442+ .9754977543i which has 9 stable digits in this interval, which then
goes smoothly to the “official” mode .3495471352 + 1.0503751987i, stable in the widest interval –
ε = −0.2..0.7, through the numbers mentioned above for ε = −0.22,−0.21,−0.2
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rotation of the KBH. Both results are stable in different ranges for ε, thus requiring
new criteria for sifting out the physical modes based on better understanding of the
behavior of the radial function in the complex plane of the radial variable. Such
a study is outside the scope of the current work which aims to demonstrate the
dependence of the method for obtaining the frequencies with respect to changes in
the phase-condition and thus to provoke work in this area.

4.2.6 Summary of the results

From the recent developments in the field of gravitational waves detection it is clear
that finding the EM counterpart to those events can prove to be very useful. In
this case, it is needed to better understand the fundamental physics of quasi-normal
ringing. In this section again were demonstrated the advantages of the new approach
to finding the QNMs for the KBH based on directly solving the system obtained
by the analytical solutions of the TRE and TAE in terms of the confluent Heun
function. This approach is more traditional (i.e. imposing directly the corresponding
boundary conditions on the exact analytical solutions of the problem) and hence it
should allow better understanding of the peculiar properties of the EM QNMs and
the physics they imply.

It was shown that using this approach, one can reproduce the frequencies already
obtained by other authors, but without relying on approximate methods. Partic-
ularly important is the ability to impose the boundary condition directly on the
solutions of the differential equations. We require the standard regularity condition
on the TAE and we explore in detail the radial boundary condition (the BHBC).
Critical in it is the use of the direction of steepest descent, which secures the purely
outgoing wave at infinity. By using small deviations from this direction (and the
phase-condition it defines), we were able to move around the branch cut in the solu-
tions of the radial equation and thus to study its effect on the so obtained spectra.
While this movement had no significant effect for the lower modes n < 3, for the
higher modes it led to significant deviations from the already published results. This
behavior is persistent for the modes with m = 0, 1, 2 and l = 1, 2. This observation
raises the important question: What are the electromagnetic QNMs for which one
has to look in astrophysical data. Also interesting is that while the ε-method leads
to significant changes of the frequencies ωm,n, it affects much less the separation
parameter Em,n which here for the first time was obtained directly as a solution of
the two-dimensional system without any prior approximations for it.

Another general result is that the confluent Heun function proved to be an
effective tool for physical problems. Even though its maple realization still has
many flaws, its precision proved to be good enough to repeat the already published
results, and also studying the solutions, we were able to reveal new properties of the
numerical stability of the EM QNMs with respect to changes in the phase-condition.

An interesting question is the results obtained using this method for a > M or
the so called naked singularity regime. Preliminary results show that the method is
applicable in this case as well and the results will be published elsewhere.
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.1 Appendix: Electromagnetic QNMs

.1.1 Tables of the obtained QNMs

In the table 2 are presented some of the values obtained for the EM QNM, converted
to physical units using the relations:

ωphys = ℜ(ω)
c3

2πGM

τphys =
1

ℑ(ω)
GM

c3
.

Note that in those formulas a factor of 2 is missing because the EM QNMs were
obtained for MKBH = 1/2 and not for MKBH = 1. Then if M is the mass of the
object in physical units, M⊙ – the mass of the Sun (M⊙ = 1.98892 1030[kg]) and
G = 6.673 10−11[ m3

kg s2 ], c = 2.99792458 108[m/s], one obtains

ωphys ≈ 32310
M/M⊙

ℜ(ω)[Hz],

τphys ≈ 0.4925 10−5M/M⊙
ℑ(ω)

[s].

The frequencies and the damping times in the table are calculated for M =
10M⊙.

.1.2 The ε-method for a = 0

Let us denote the dependence ω(ε) as ωε
n (so that it differs from ωn(a)).

First, one can compare the frequencies obtained for ε = 0, 0.05, 0.15 for different
m:

for the case m = 0: |ω0
n − ω0.05

n | ≈ 10−10 for all n, but |ω0
n − ω0.15

n | ≈ 10−10 only
for modes with n < 4, and |ω0.05

n − ω0.15
n | ≈ 10−10 for n < 6.

for the case m = 1: |ω0
n − ω0.05

n | ≈ 10−10 and |ω0
n − ω0.15

n | ≈ 10−10 for n = 0..3
and n = 6..11, and |ω0.05

n − ω0.15
n | ≈ 10−12 for n < 12.

for the case m = 2: |ω0
n−ω0.05

n | ≈ 10−10 for n = 0..3 and n = 6..14, |ω0
n−ω0.15

n | ≈
10−10 for n < 4, and |ω0.05

n − ω0.15
n | ≈ 10−10 for n < 6.

The modes not enlisted above, such as ω0
n and ω0.15

n for n > 4, m = 1, show
significant deviation from the control results.

Clearly, the modes for different m demonstrate different properties with respect
to ε. Such dependence on m is unexpected, since in equation (4.3), m is always
coupled with a, so for a = 0, those frequencies should coincide. This indeed happens
with precision 10−12 for frequencies evaluated for the same ε. For ε ̸= 0, however,
deviation may occur because different signs of ε may lead to different roots. 10

10A peculiar case is the difference between m = 0 and m = 1, for ε = 0.15, where while most of
the modes coincide with at least 11 digits, the frequencies n = 6..11 show small deviation (≈ 0.1),
which is probably due to numerical instability in the subroutine evaluating the confluent Heun
function in maple.
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Moreover, one should not forget that the modes are obtained through numerical
algorithms with certain numerical zero. In this case, the factors in front of this
number (i.e. m) may influence the final results for the frequencies, even though
theoretically, one should expect the frequencies in the case a = 0 not to depend
on m. Another hint for this is that the modes obtained from the radial spectral
function for a = 0 ε = 0, 0.05, 0.15 coincide with those obtained from the spectral
system when a → 0 and that the points for a = 0 seem not to deviate from the
curves ωn,m(a).

Another important result concerns which sign of |ℜ(ωn)| can be obtained using
positive or negative ε. The study of two cases (m = ±1) for n = 0..19 shows that
while for lower modes n < N one can obtain both signs of |ℜ(ωn)| for any ε, for
higher modes: ωn(ε) = sgn(ε)|ℜ(ωn)| + iℑ(ωn) . It turns out that for n ≥ N , in
order to find modes with positive real parts, one should use ε > 0 and vice versa.
This result is also confirmed in the case a ̸= 0. Here N depends on m and ε and for
m = ±1, N=3 or N=5.

From the use of the ε-method for gravitational perturbations (s = −2) of non-
rotating BH, both in the RWE and in the TRE (a = 0), it is known that deviations
from the results obtained with the continued fraction method occur are due to the
branch cuts in the numerical realization of the confluent Heun function. The results
of a similar study of ωn(ε) for the electromagnetic QNMs, for a = 0, can be found
on Fig.17. The numerical data show that the change in ωn due to the variation of ε
occurs in the 11th digit of the real and imaginary parts of ωn, thus it is a very small
effect. This effect, however, is two orders of magnitude above the numerical error for
the confluent Heun function expected to have at least 13 stable digits. The depen-
dence ωn,m(ε) looks chaotic, but some kind of periodic behavior may be suspected.
If one approximates ωn,m(ε) with a periodic function, its amplitude decreases with
the increase of n (see Fig.17 a), where the results for n = 0..5 are plotted). This
seems to imply that the observed numerically effect becomes less pronounced for the
higher modes, even though one can expect an increase of the error of the numerical
integration in the complex plane with n. This line of reasoning, however, applies
only to the intervals where the dependence ωn(ε) is smooth (see the discussion on
page 12).

Additional details on ωn,m(ε) for n = 7 can be seen on Fig. 17 b). The observed
behavior is not isolated, but it repeats in all modes and all m and also when one
includes rotation (i.e. a > 0).

.1.3 The behavior of the modes for different ε for a > 0

Studying the modes n = 0..10 in the case of different {l,m, n} and different values
of ε one obtains the following results:

• The case m = 0, l = 1. For modes with n < 4, the results for the 3 values of
ε coincide and they can be seen on Fig. 18. Comparing with the control fre-
quencies, one obtains ∥ωn,0−ωB

n,0∥ < 10−10, ∥En,0−EB
n,0∥ < 10−10 confirming



.1. Appendix: Electromagnetic QNMs 59

(a) (b)

Figure 17: a) Dashed line: the decrease of the average deviation ∆11(ωn) = 5 ×
1011|ωε

0,n−ω
−0.12
0,n | with n for n = 0..5, m = 0. Here, to obtain the average deviation,

we have used the average value of ω0,n in the whole interval for ε subtracted by the
value of ω0,n at ε = −0.12, scaled with the factor of 5 × 1011. In the intervals of ε
considered here ωε

0,n has at least 9 stable digits. Solid line: the width of the intervals
in question. Both the deviation and the width of the intervals decrease with n.
b) The dependence of ℜ(ω0,n on ε in the interval ε = −0.28..0.18, for m = 0, n =
7, a = 0. The average deviation is 10−10

that in this case the two methods – the continued fraction and our method–
work comparably well.

For n ≥ 4, the frequencies obtained for different ε split up in a way that
ω0(a) = ω0.05(a), while ω0.15(a) differs from them (excluded from this “rule”
are ‘n = 4, 5 for which ω0(a) differs from the other two (Fig. 4.8). The
numerical comparison with the control results ωB

n,m, E
B
n,m show that they are

closer to the results obtained for ε = 0.15.

Modes with ℜ(ω0,n) < 0: as mentioned in the previous section, for modes with
n > 2 the choice of sign of ε becomes critical for the sign of the real part of the
frequency and so we used ε = 0,−0.05,−0.15. 11 The results are symmetrical
to those obtained for ℜ(ω0,n) > 0 with respect to the imaginary axis for ω0,n

and with respect to the real axis for E0,n (for ℜ(ω0,n) > 0, ℑ(E0,n) < 0 and
vice versa).

• The case m = 0, l = 2.

In this case, the modes obtained for ε = 0, 0.05, 0.15 do no split up until n = 7,
where ω0.05(a) = ω0.15(a), while ω0(a) differs. This behavior continues until

11Using positive ε in this case shows that for n = 3, the results for ε = 0 and ε = 0.05 split up
(ε = 0.15 can not be used at all), but it is for n = 6 where ε = 0.05 can no longer be used for
finding frequencies with negative real parts and only ε = 0 lead to the desired modes.
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n = 12, where it is ω0.15(a) that deviates from the other two. The results for
l = 2 can be seen on Fig. 4.11.

• The case m = 1, l = 1.

The modes obtained for the three values of ε coincide up to n < 4. For n = 4
(Fig. 19), the mode with ε = 0 differs. For n = 6, however, it is ε = 0.15 that
differs, while the other two coincide and this behavior continues for higher
modes. Note, here the deviation for different ε is much more significant than
the case m = 0 (Fig. 4.8).

Figure 18: Complex plots of ω0,n(a) and E0,n(a) in a = [0,M), l = 1 for the first 4
modes n = 0..3. The points obtained for ε = 0, 0.05, 0.15 coincide with more than
10 digits thus only ε = 0 is plotted. The black solid circle denotes a = 0

Figure 19: Complex plots of ω1,4(a) and E1,4(a) in a = [0,M), l = 1, for ε = 0 (red
diamonds), ε = 0.05(blue crosses) and ε = 0.15 (green line). There is dramatical
difference in the points obtained for the different values of ε

These results show that the peculiarities observed when there is no rotation are
inherited by the modes for a > 0. Studying the dependence of ωm,n(ε) for each mode
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Figure 20: Complex plot of the modes ω1,n(a) in a = [0,M) for m = 1, l = 1, n =
0..9. On the plot are the points obtained for two values of ε: ε = 0 with red lines
and ε = 0.15 with green crosses. The red dashed line corresponds to the branch
cut with equation ℑ(ω)/ℜ(ω) ≈ tan(1.419 + επ/2) for ε = 0. One can see that the
modes with different ε coincide before reaching the branch cut (i.e. for n ≤ 3), and
then, the ε = 0 points begin to differ

for a certain interval of ε is computationally expensive, so we did it only for the case
n = 10, a = 0.01. The results from the specific interval ε = 0.0785..0.088 can be seen
on Fig. 21. Besides the characteristic dependence ω(ε), here, for the first time one
finds two pairs of points [ωn, En] as roots for the same ε (for ε ∈ [0.07862..0.088034]),
namely:

[0.0680207667 + 5.1463791539i, 2.0021361645 + 0.0514150701i],

[0.1419210235 + 5.0686957246i, 2.0028302584 + 0.0505980908i].

Such unexpected result has yet to be explained, considering the big difference
between the two frequencies. In any case it points to a behavior which must be
studied more carefully in order to better understand the numerical dependence of
the EM QNMs with respect to the branch cuts in the radial function.

Figure 21: The dependence of ∆(ω1,10) on ε for ε = 0.0785..0.088, a = 0.01.
The solid line denotes the real part, the dotted line – the imaginary part and
∆(ω1,10)(ε) = ωε

1,10 − ω0.0785
1,10 . The dependence E1,10(ε) is similar
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4.3 The Spectrum of Electromagnetic Jets from Kerr
Black Holes and Naked Singularities in the Teukol-
sky Perturbation Theory

In this section we give a theoretical basis for application of the idea of studying the
nature of the central engine of GRBs, AGN, etc., based on the spectra of their jets
([35]). Here we examine the jet spectra of the KBH and the KNS supposing that
the gravitational field of the central engine is described exactly by the Kerr metric.

In series of articles ([125], [126],[97]), we presented a very simple model inspired
by the properties of GRBs, that aims to show the strength of purely gravitational
effects in the formation of jets. Our toy model is based on linearized electromagnetic
(spin-one) perturbations of the Kerr black holes with original boundary conditions.
While we keep the BHBC imposed on TRE, we drop the regularity condition on
TAE choosing to work with specific singular solutions of TAE instead. To achieve
this, we impose a polynomial condition on the solutions of TAE. This new angular
condition reflects a change in the physical problem at hand which now describes a jet
(angular singularity) on one of the poles of the black hole. It is easy to impose the
polynomial condition using the properties of the confluent Heun functions, which
enter in the exact analytical solutions of the Teukolsky equations (for more on the
use of confluent Heun functions in Teukolsky equation see: [35], [66] and [67]). Here,
we focus on the | s |= 1 case (electromagnetic perturbations) which seems to be most
relevant for the GRB theory.

We study in detail the complex spectra of frequencies and their dependence over
the rotational parameter of the Kerr metric, a. The parameter a in our calculations
varies from a = 0 to a = M and then from a = M to a >> M . The case a ∈ (0, 1)
corresponds to normally spinning Kerr spacetime, and the case a ∈ (1,∞) – to
overspinning Kerr spacetime.

Much like in flat spacetime, we can consider given physical problems in Kerr
spacetime with different M and a. Imposing BHBC for 0 < a < M we obtain
the well studied case of KBH. Under proper boundary conditions which have to be
specified for a ∈ (M,∞) we obtain different physical problem related with Kerr
naked singularity (KNS). The case a = M under BHBC corresponds to extremal
KBH. This case is beyond the scope of the present work.

In our numerical study of jet spectra, there is a special frequency (n = 0), which
has a real part that coincides with the critical frequency of superradiance in the
QNM case. In our case, this frequency, however, is complex, and its imaginary part
is of the same order of amplitude as the real part, yielding an exponential damping
of the superradiance-like emission in jets, created by KBH or KNS. We track the
nontrivial change of this critical superradiance-like frequency with the change of
a. It is shown that the analytical formula (4.18) (found in [67]) fits the numerical
results for the two lowest modes, n = 0,m = 0,±1,±2, N = 0, 1 with high precision
in the whole range of a.

Our main result is the qualitative change of the behavior of the jet frequencies
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under the transition from KBH to KNS. Moreover, we discover for the first time that
the stability condition in our jet spectra (positive imaginary part ensuring damping
of the perturbations with time) remains fulfilled even in the KNS regime (a > M).
This happens even though, the imaginary part of those frequencies tends to zero
for a → M – after this critical point, when increasing a, the imaginary part of the
frequencies stay positive and grows until it reaches constant value for a >> M .

As for the other frequencies, they are possibly an infinite set as in the QNM case.
They differ from the QNM frequencies due to the different condition imposed on
TAE. The dependence of those frequencies of a is also presented for the first time.
The results are being discussed in comparison with the QNM case.

4.3.1 A toy model of central engine

For the solutions of the TAE, we use the new requirement that the confluent Heun
functions should be polynomial. The polynomiality condition reads (see (2.8)):

δ

α
+
β + γ

2
+N + 1 = 0,

∆N+1(µ) = 0.

and it is proven to yield collimated singular solutions ([35]). Here, the integer N ≥ 0
is the degree of the polynomial and ∆N+1(µ) is the three-diagonal determinant (2.9).
The degree of the polynomial N depends on the considered class of the solutions
of the TAE (recall that one obtain 16 classes of solutions of the TAE, [67]) and in
general, it depends on s and m. In our case, N = 0, 1 with N = 0 obtained for some
of the solutions for m = 0. Then from ∆N+1 = 0 it follows that the power series
would be cut after its N + 1th term i.e after the first or the second term.

Therefore, from the properties of TAE, the polynomial requirement for the an-
gular solutions fixes the following relation between E and ω:

s=−1E
±
m(ω)=−(aω)2 − 2 aωm±2

√
(aω)2+aωm. (4.6)

This simple exact relation demonstrates the technical advantage of the poly-
nomial requirement – instead of working with a complicated connected system of
spectral equations (as in the QNM case), we have to solve only one spectral equa-
tion for the variable ω. Thus we drastically simplify the calculations and we obtain
interesting from physical point of view new results.

Examining this simple form of the relation E(ω) and using the polynomial so-
lutions, we plotted S(θ) which controls the angular behavior of the solution and
we were able to obtain different type of collimated outflows, generated by electro-
magnetic perturbations of Kerr metric for arbitrary ω ([125], for example, see fig.
(4.22)). In the present work, we are studying numerically the spectrum of ω, defined
by KBH and KNS jet conditions.

It is important to emphasis that in the case of the angular equation, we work
with the singular solutions of the differential equation. The question of the physics
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Figure 4.22: Collimated outflows obtained by plotting the solutions of the angular
equation for certain values of ω. Here on the horizontal axes are the Cartesian
coordinates x and y, on the vertical – the real part of the angular solution

behind the use of such singularity is answered in [67] who argues that by looking for a
solution in a specific factorized form Ψ = ei(ωt+mϕ)S(θ)R(r), the function we obtain
in general isn’t the physical quantity sΨ(t, r, θ, ϕ). Instead it defines a factorized
kernel (sKE,ω,m(t, r, θ, ϕ) ∼ ei(ωt+mϕ)

sSE,ω,m(θ)sRE,ω,m(r)) of the general integral
representation for the physical solutions of the TME:

sΨ(t, r, θ, ϕ)=
∞∑

m=−∞

1
2π

∫
dω

∫
dE sAω,E,m sKE,ω,m(t, r, θ, ϕ). (4.7)

This form of the mathematical representation of the physical solution is written
as the most general superposition of all particular solutions of TME and it assumes
summation over all admissible values of E and ω. If one wants to work only with the
solutions corresponding to certain boundary conditions, then one has to account for
the specific admissible form of the spectra of E and ω in those cases – for example
if we have obtained a discrete spectra for ω, this leads to the use of singular kernel
proportional to

∑
n δ(ω−ωn), where δ is the Dirac function. This reduces the integral

over ω to a summation over ωn. Similarly for solutions with definite total angular
momentum, we have E = l(l+ 1) and the integral over E is replaced by summation
over l–integer (or half integer), because of singular factor

∑
l δ(E − l(l + 1)) in Eq.

(4.7).
From Eq. (4.7) it becomes clear that the singular solutions of the angular equa-

tion do not cause physical difficulties, only if we are able to find appropriate ampli-
tudes sAω,E,m that will make the physical solution sΨ(t, r, θ, ϕ) regular. It is clear
that this formula justifies the use of singular solutions of TAE (for s = −1 the
singularity is on one of the poles of the sphere, for s = 1 – on the another one).

The problem of finding amplitudes turning the singular kernel into a regular
physical solution is not a simple one. Here, we will give one example, obtained for
the case s = 1/2 by Fiziev ([67]), for which such amplitude has been found for the
so-called double polynomial solutions (i.e. both the solutions of the TRE and the
TAE satisfy the polynomial conditions). While this example proves that in principle
it is possible to find such amplitudes, it is important to note that for the double
polynomial solutions, the spectra is not discrete but continuous and thus, this is
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qualitatively different problem from the one we consider.
The case s=1/2 For the double polynomial solutions, the degree of the poly-

nomial is N = 0 and both confluent Heun functions in the solutions of the
TAE and the TRE are then equal to constant=1 with separation constant E =
−a2ω2 + 2aωm− 1/4. Then the integration over E in the kernel (4.7) gives:

1
2
Kω,E,m(t, r, θ, φ) = δ

(
E + a2ω2 − 2maω + 1/4

)
∆−

1
2 eiωT Wm

√
sin θ

, (4.8)

with T = t + (r∗ − ia cos θ), W = eiϕ cot θ
2 , ϕ = φ + 1

2p ln
∣∣∣ r−r+

r−r−

∣∣∣. The new
variables come from the factors in the explicit solutions of TRE and TAE for s =
1/2.

Because of the transition from the real variables {θ, ϕ} to the complex W , one
must make a transition from half-integer to integer values of the azimuthal number
m and so to replace m→ m± 1/2 in the factor δ

(
E + a2ω2 − 2maω + 1/4

)
.

Using 1
2
Kω,E,m(t, r, θ, φ) in Eq. (4.7), one can integrate:

1
2
Ψ(t, r, θ, φ) = ∆(r)−

1
2

√
(|W | + |W |−1) /2

∞∑
m=−∞

 1
2π

∫
Lω

dω eiωT
1
2
Aω,m

Wm.

(4.9)
Accounting for the stability condition ℑ(ω) > 0, the otherwise arbitrary integration
contour Lω ∈ Cω must lie in the upper complex half-plane.

If the amplitudes 1
2
Aω,m and the contour Lω are chosen in such way that for all

m ∈ Z there exist well defined integrals:

1
2π

∫
Lω

dω eiωT
1
2
Aω,m = 1

2
Am(T ), (4.10)

then the physical solution will be:

1
2
Ψ(t, r, θ, φ) = ∆(r)−

1
2

√
(|W | + |W |−1) /2

∞∑
m=−∞

1
2
Am (T )Wm. (4.11)

In this case, one must ensure that the sum in Eq. (4.11) is convergent. This can
happen, if one requires in some ring domain |W |∈(|W |′, |W |′′), 0< |W |′< |W |′′<∞
that this sum is a convergent Laurent series of some analytic function 1

2
A (T,W ).

The convergence criteria will impose certain conditions on the coefficients 1
2
Am (T )

in Eq. (4.11).
Then one arrives to the solution to the TME with spin 1/2 (to check that it is

a solution, one has to return to the Boyer-Lindquist coordinates) depending on an
arbitrary analytic function 1

2
A (T,W ) of the two variables T and W :

1
2
Ψ(t, r, θ, φ) = ∆(r)−

1
2

√
(|W | + |W |−1) /2 1

2
A (T,W ) . (4.12)
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The explicit form of the variable T shows that for r > r+ these solutions describe
one-way-running waves: incoming from space infinity running waves.

The singularities on the poles θ = 0, π can be removed by suitable choice of
variables. For example: for 1

2
A (T,W ) = 1/

√
(W +W−1) /2, 1

2
Ψ(t, r, θ, φ) =

∆(r)−
1
2 /
√

1 − sin2 ϕ sin2 θ which don’t have any singularities on the poles θ = 0, π.
However, one obtain two new singular lines ϕ = φ + 1

2p ln
∣∣∣ r−r+

r−r−

∣∣∣ = ±π/2 on the
equatorial plane θ = π/2. Therefore, the singularities were just moved to another
location. This result repeats also for functions of more general type. In any case, this
special form of the function 1

2
A (T,W ) yields finite nonzero values of the solution

on the poles θ = 0, π.
Furthermore, in order to secure a correct application of the linear perturbation

theory, one must know whether one can find a regular analytical function 1
2
A (T,W )

without singularities in the complex plane CW /{0,∞}, which, in addition, can re-
move the unbounded increase of the solutions due to the singularities of the factor√

(|W | + |W |−1) /2 in (4.12). At least two cases were found, for which the answer
is positive. We will consider in detail only one of them:

Using the basic equality
∞∑

m=−∞
WmIm(z)=exp

(
1
2

(
W+W−1

)
z
)

for the modified

Bessel functions Im(z) [132] we choose the coefficients in (4.11) in the specific form
1
2
Am (T ) = exp

(
− σ̄

2ω
2T 2

)
Im(ωT ), where ω = ωR + iωI is a fixed frequency and

σ̄ = sign(|ωR| − |ωI |). Then

1
2
Ψω(t, r, θ, φ) = ∆(r)−

1
2

√
(|W | + |W |−1) /2 exp

(
− σ̄

2
ω2T 2

)
exp

(
1
2
(
W+W−1

)
ωT

)
(4.13)

is a stable solution, since by construction it goes to zero when t → +∞. Its limit
for θ → 0, π is:

lim
θ→0,π

(
1
2
Ψω(t, r, θ, φ)

)
= ∆(r)−

1
2 e(−

σ̄
2
ω2T 2

0,π) lim
θ→0,π

(
1√
sin θ

e

(
|ω|
√

(t+r∗)2+a2

sin θ
eiΥω;0,π

))
.

(4.14)

where

Υω;0,π = ±

(
φ+

1
2p

ln
∣∣∣∣r − r+
r − r−

∣∣∣∣− arctan
(

a

t+ r∗

))
+ arg(ω), for θ = 0, or π

(4.15)
is the limit of the total phase of the term 1

2

(
W+W−1

)
ωT and T0,π = t+ (r∗ ∓ ia).

In Eq. (4.15) the sign (+) corresponds to the limit θ → 0 and the sign (−)
– to θ → π. From (4.14) one can see that if Υω;0,π ∈

(
−π

2 ,
π
2

)
the solution

1
2
Ψω(t, r, θ, φ) is bounded everywhere in the interval θ ∈ [0, π], (since in this case

lim
θ→0,π

(
1
2
Ψω(t, r, θ, φ)

)
= 0), while otherwise the limit diverges and the solution is

singular and unbounded around the poles.
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Since the value of the angle φ is arbitrary on the poles θ = 0, π, Υω;0,π is not
defined from a geometrical point of view and one can choose any value for it without
changing the geometrical points associated with the poles. In our case, fixing the
parameter Υω;0,π ∈

(
−π

2 ,
π
2

)
makes the solutions (4.14) to the TME for spin 1/2

smooth and bounded everywhere in the interval θ ∈ [0, π] – it is physically acceptable.
For another solution, finite everywhere in the interval θ ∈ [0, π], but with an

infinite number of bounded oscillations around the poles θ = 0, π, see [67]. A su-
perpositions of those two solutions can describe a more general bounded solutions to
the TAE with spin 1/2.

Knowing E(ω), we can find numerically the frequencies ω by imposing bound-
ary condition on the radial equation. The Kerr spacetime can be considered as a
background for different physical problems. As in flat spacetimes, one has to fix the
physics imposing the corresponding boundary conditions. A specific peculiarity of
Kerr spacetime is that in general TRE has 3 different singular points (Eq. (3.28)) –
r+, r− and ∞. To fix the correct physical problem we have to specify the boundary
conditions on two of them (the asymptotic behavior of the solution in these points).
This represents the so-called central two-point connection problem (as described in
[105]). In principle, we can impose boundary conditions on different pairs of singular
points (on r− and r+; on r− and ±∞; on r+ and ±∞; on −∞ and +∞) and each
of them will fix different type of physical situation.

Note that choosing a specific central two-point connection problem we are fixing
the physical problem independently of the bifurcation parameter b. This way, we
are able to study the bifurcation phenomenon in the given physical problem in
the whole range of b. Since we want to study jets from KBH and KNS, we start
with imposing BHBC on r+ and ∞ for the first case (a < M), where the regular
singularities are real. These boundary conditions are physically well motivated ([51],
[43]) and the central two-point connection problem for KBH has a clear physical
meaning. The same central two-point connection problem exists in the overspinning
case, nevertheless that its two regular singularities r± are complex. We use the same
boundary conditions for the case of jets from KNS, since the physics of the problem is
defined by its them. Thus we transform the BHBC to a naked singularity boundary
conditions using analytical continuation of the central two-point connection problem.

BHBC can be summarized to:
1. On the horizon (r → r+), we require only ingoing (in the horizon) waves. This

specifies which one of the two solutions of TRE (R1 or R2) works in each interval for
the frequency ω. In our case for any integer m, R1 is valid for Re(ω) ∈ (∓mωcr, 0),
R2 is valid in Re(ω) ∈ (∓∞,∓mωcr)

∪
(0,±∞) where ωcr = a/2Mr+ and the first

sign corresponds to m > 0.
2. On infinity (r → ∞) we allow only outgoing waves. Explicitly, on infinity we

have a linear combination of an ingoing (R←) and an outgoing (R→) wave:

R = C←R← + C→R→

where C←, C→ are unknown constants. In order to have only outgoing waves, we
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need to have C← = 0. Since this constant is unknown, we find it indirectly from:

C← =
R

R←
− C→

R→
R←

. (4.16)

If in this equation we set lim
r→∞

R→
R←

= 0, this will eliminate the second term in Eq.
(4.16). To do this, we complexify r and ω and choose the direction in the complex
plane Cr in which this limit tends to zero most quickly. This direction turns out to
be arg(r) = 3π/2 − arg(ω) i.e r =| r | e3/2iπ−i arg(ω) connecting the arguments of
the complexified r and ω ([39]). Having fixed that, it is enough to solve

C← = lim
|r|→∞

R

R←
= 0. (4.17)

in order to completely specify the spectra sω
jet
n,m. For KNS we use the same boundary

conditions in the complex domain (see above).
Since in this paper we calculate only the case s = −1, for jets from KBH and

KNS, we will omit the prefix s = −1 in front of ωn,m and also the index ”jet“.

4.3.2 Numerical results

In [125] and [126], we presented some preliminary results for the solutions of TAE.
They showed that the polynomial angular solution describes collimated structures
from various types for some arbitrary ω. In this work we will focus on the solutions
of the radial equations, thus fixing the spectrum ωn,m for jets from KBH and KNS.

Figure 4.23: Complex plot of the frequencies ωn for a = 0, with n = 0, 1... increasing
with the distance to the origin. For every n there are 2 roots with equal | Re(ω) |.

4.3.2.1 Numerical methods

To find the zeros of Eq. (4.17), we use the software package MAPLE which currently
is the only one able to work with Heun’s functions.
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The roots presented here are found with modified by the team Müller algorithm,
with precision 13 digits. Although the results for different versions of MAPLE may
vary in some cases due to improvements in the numerical algorithm, key values were
checked to match with at least 6 digits, in most cases – with more than 8 digits.

Figure 4.24: Complex plot of ω±0,m(a), n = 0 mode, for m=0, 1, 2. With red is ω+
0,m,

with blue crosses: ω−0,m, on the curve we mark some values of a. It’s clear that for
m> 0, ω+

0,m and ω−0,m coincide almost everywhere. For m ̸= 0 and a > 0, only one
of the frequencies in each pair ω1,m(a = 0) continues to be a root.

The parameters are fixed as follows : s = −1, M = 1/2, r = 110. This value for
the radial variable r is chosen so that it represents the actual numerical infinity –the
closest point at which the frequencies found by our numerical method stop changing
significantly for further increase of r (for fixed a,m, n). In study of the dependence
on a, the step for the rotational parameter is δa = 0.01 for a < M and becomes
adaptive for a > M .

In our work, we have studied in detail cases with m = 0, m = ±1, 2, covering
the cases | m |<| s |, | m |=| s |, | m |>| s |. The complete set of our numerical
results are available on request.
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a) d)

b) e)

c) f)

Figure 4.25: The dependence Re(ω)(a) and Im(ω)(a) for m = 0, 1, 2;n = 0. One
can see that Im(ω) → 0 for the bifurcation point b = 1 (a = M = 0.5) implying a
critical event in this point. Re(ω) ≡ ωcr for a < M for this mode.
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4.3.2.2 Summary of the results

Graphical representation of our results can be seen on the figures 2-11. For the case
a = 0 when no rotation is present, we find a set of pairs of frequencies with equal
imaginary parts and symmetrical in respect to the imaginary axis real parts. This
set (Fig. 4.23), looks infinite and it is independent from m (for a = 0) as it should
be. Frequencies are numbered with n according to their distance from the origin
| ωn |, starting with n = 0 for the lowest.

Although Fig. 4.23 shows the case without rotation, it drastically differs from
the results obtained by solving the Regge-Wheeler Equation for the Schwarzschild
metric in the QNM case ([39], [133] or see figure 4.6 in the next section), because of
the change of the conditions for the solutions of TAE.

Using the so found initial frequencies, we track their evolution with the change
of the rotational parameter a, following both pairs of frequencies for each n and

both signs in front of the square root in E(ω) = −(aω)2−2 aωm±2
√

(aω)2+aωm,
which we denote ω+

n,m and ω−n,m accordingly. On the figures, the number of points
we present is limited by the abilities of the MAPLE numerical procedures evaluating
the confluent Heun function.

The relation ωn,m(a) is nontrivial as can easily be seen on Fig. 4.24 and Fig.
4.25.

The results we obtained can be summarized as follows:

• The cases n = 0, 1 are special, because for them Re(ω+
0,m) ∼ Re(ω±1,m) (for

m > 0) while Im(ω+
0,m) << Re(ω±1,m) (for a = 0, Im(ω+

0,m) ≈ 0.024459i and it
decreases quickly to less than 10−7i for a > 0 and m = 1, 2; in the case m = 0
it decreases more slowly). Since the real parts of the two pairs are close for
a < M , and the imaginary part of the one is negligible, in our figures in that
range, we use only the complex frequencies ω±1,m) . This can be done without
loss of information, because for a > 0.1, Im(ω′ 1,2

0,m) < 10−10 (for m ̸= 0 and
a < M), which is less than the precision of our algorithm. ω−0,m (for m > 0)
however is different from ω+

0,m and have very small real and imaginary parts
and since our numerical precision for it is low, we would not discuss it. The
situation reverses for m < 0 when Re(ω−0,m) ∼ Re(ω±1,m).

• For m > 0, the real part of ω1,m decreases steadily with the increase of a,
having minimums at the points a = M and a ≥ M , but close to it – see Fig.
4.25 c), e). In the case m = 0, Re(ω1,0) has a maximum for a < M and then
has a minimum for a > M (Fig. 4.25 a) ).

• The imaginary part of ω1,m (Fig. 4.25 b), d), f)) for all the cases is positive, it
decreases for a < M and it tends to zero for a = M . For a = M , the solutions
of TRE can no longer be expressed in terms of confluent Heun functions. In
this case one has to use double confluent Heun function ([67]). We didn’t
calculate at this point. When a > M , Im(ωn,m) increases again until it
reaches almost constant value at high a.
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(a) (b)

(c)

Figure 4.26: Complex plot of some of the frequencies with different n (n = 1−7) we
obtained in the case m = 0, a) ω+

n,0, b)ω−n,0. It’s clear that for m = 0, the symmetry
observed for n = 1, continues in the higher modes. c) ω+

n,0 for n = 1− 17 (the black
dot stays for a = 0, green diamond – the last a where a root was found). The n = 0
mode isn’t plotted.
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• At a > M , m ̸= 1 we obtain two modes, with different values of the real and
imaginary parts. The real part of the first mode has a minimum at a = M ,
while the real part of the other has a minimum ”later“: at a > M . The
imaginary part of both modes tends to zero for a→M , but for a >> M , they
reach to constant with Im(ω0,m) − Im(ω1,m) ≈ 1. These two modes appear
for m = ±1,±2,±3 (Fig. 4.24 and Fig. 4.25). We couldn’t find other modes
for a > M using our numerical methods.

• Modes with n > 1 demonstrate highly nontrivial behavior and strong depen-
dence of the parameter a, even though numerically, they cannot be traced to
a > M and in some cases we are able to fix very limited number of points.

For m = 0, those modes persistently demonstrate signs of loops ( see Fig. 4.26
and Fig.4.28), which seem to disappear for m ̸= 0(Fig. 4.30, Fig. 4.31).

The real parts of the modes with n > 1 seem to form a surface whose physical
meaning is yet unknown, while their imaginary parts are splitting in two with
increasing of the rotation (Fig.4.29, Fig.4.31).

• The frequencies ω+
n,m and ω−n,m are symmetric for the case m = 0 (Fig. 4.27),

any n and they coincide for the cases m ̸= 0, n = 1 for a ≥ am, where am tends
to zero for sufficiently big m (for m = 1, am = 0.1, for m = 2, am = 0.04, for
m = 5, am = 0.02, for m = 10, am = 0). For n > 1, ω+

n,m and ω−n,m do not
coincide.

(a) (b)

Figure 4.27: A particular case of the symmetry observed in the frequencies, for
n = 0, m = 0, a < M , for ω±n,m. For m ̸= 0 ω+

n,m and ω−n,m coincide for a > am.

• There is a symmetry in our spectra, which is confirmed for m = ±0, 1, 2 for
all of the modes (except for some points):

Re(ω1,2
m,n) = −Re(ω2,1

−m,n), Im(ω1,2
m,n) = Im(ω2,1

−m,n),

where here the index 1, 2 numbers the frequency from the pair corresponding
to each m,n (frequencies with positive and negative real part for each m,n on
Fig. 4.23).
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This symmetry allows us to study for example only the case m > 0 if or when
it works numerically better.

From the figures, one can clearly see that the relation ω1,m(a) demonstrates
systematic for every m behavior characterized by some form of critical event at the
bifurcation point a = M , where the damping of the perturbation (Im(ωn,m)) tends
to zero. Physically, this transition corresponds to the change of the topology of the
ergo-surface visualized on Fig. 3.1.

a) b)

c) d)

Figure 4.28: 2 cases showing the detailed behavior of modes with n > 1 for m = 0.
a),b) correspond to n = 1 and c),d) to n = 5, for ω−n,0

4.3.2.3 Analysis of the results

The spectra we presented demonstrates a clear transition at the bifurcation point
a = M , matching the transition from a rotating black hole to an extremal black hole
demanded by the theory of black holes. Since we can approach the point a = M

from both directions, it seems natural to speak also of extremal naked singularity,
for a → M , but a > M . From our figures it is clear that the behavior of the
spectra when a→M from both sides is similar – the imaginary part of the critical
frequency tends to zero at that points, and quickly rises to a (different) constant
for a ̸= M . We couldn’t find any frequencies with negative imaginary parts in this
case, thus it seems that the jets from KBH and KNS are stable even in the regime
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a) b)

c) d)

Figure 4.29: a), b) - Re(ω) and Im(ω) with n = 1..5, m = 0, ω+
n,0 c),d): Re(ω) and

Im(ω) with n = 0..18 for m = 0. In c) and d) we plotted the two conjugate roots
on one plot. The violet lines correspond to the n = 0 mode.

of naked singularities. This differs from the QNM case, in which QNM from naked
singularities are unstable.

Another example of unstable spectra is the one in [134] where a completely dif-
ferent boundary conditions for overspinning Kerr space-time are considered. There,
the authors have analyzed central two-point connection problem on the singular
interval r ∈ (−∞,∞). As we see, the jets in our case are stable and there is no
contradiction since we study a completely different physical problem. Not only for
our jets the stability condition remains fulfilled, but the discrete level of the spectra
of the jets from KBH and KNS appear to be smooth in the whole interval (except
for the bifurcation point a = M) thus implying that jets from naked singularities
defined by the polynomial condition of TAE generate numerically of a spectra of
stable perturbation.

Another surprise is that Re(ω0,m) ≡ mωcr for a < M for both cases in n = 0,
where ωcr is the critical frequency of superradiance. Supperradiance is a process in
which the energy of the reflected from the horizon wave is bigger than the energy
of the in-falling wave and it leads to extraction of energy from the black hole at
expense of its rotational energy. For the QNM case, superradiance occurs when
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a) b)

c)

Figure 4.30: a) Complex plot of all of the frequencies with n > 1 for m = −1 a)
more detailed plot of the first few modes (n = 3− 14) for ω+

0,m – there are no loops
for | m |= 1 , b) a plot of frequencies n = 1− 17 for ω+

n,−1, c) frequencies n = 1− 17
for ω−n,−1.

ω < mωcr = ma/2Mr+ (for real frequencies ωcr!) and it leads to the interesting
phenomena that although in local frame, the wave is ingoing to the horizon, at
infinity it is actually seen as outgoing (following from the signs of the group and
phase velocities) (see [42], and also [20], [135], [136], [137], [138],
[24]).

In our case, we observe two frequencies whose real parts coincide with the critical
frequency of superradiance, however, only one of them is real, the other also has an
imaginary part with similar magnitude. To the best of our knowledge this is the
first time that an imaginary part of this quantity is discovered solving BH boundary
conditions in pure vacuum (i.e. without any mirrors, additional fields, etc).

Another hint of the importance of the obtained in QNM studies critical frequency
is that in our results, it represents the two lowest modes in our spectra and the only
ones, which we can trace to a > M . Although this certainly can be due to the
numerical routines we use, its persistence for every m speaks of possible deeper
physical meaning.
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a) b)

c) d)

Figure 4.31: Re(ω) and Im(ω) for modes with n > 1, m = −1: a) and b) are the
real and imaginary parts of ω+

n,−1, c) and d) are the real and imaginary part of
ω−n,−1. There is a clear asymmetry between the cases.

The complexity of the critical frequency shows an essential difference between
our jets-from-KBH and KNS solutions and standard QNM, obtained using regular
solutions of the angular equation (Eq. (3.27)) ( [51]). The fact that in general the
real and imaginary parts of ωjets

n,m are with the same magnitude (which can be easily
verified on all of our complex plots) means that the perturbations will damp with
time on the same time scale on which they oscillate (or shorter for the bigger Im(ω),
following from Ψ ∼ e−Im(ω)teiRe(ω)t ), thus preventing in most cases such systems
from turning into a gravitational bomb (a system of KBH or KNS and mirrors in
which the wave will reflect from the horizon becoming more and more energetic
until the whole system becomes unstable and explodes [63]; in nature, a role of
such ”mirror“ may be played for example a massive scalar field [139]). Although the
perturbation in general damps quickly for a ̸= M , this situation changes at the limit
a → M – the imaginary part of ω then tends to zero, both for a < M and a > M

near the bifurcation point a = M . At this case the perturbation will damp very
slowly with time while oscillating violently, opening the possibility for interesting
physical phenomena which deserve an additional detailed consideration.

The best fit for our numerical data for the lowest modes (n = 0) turns out to be
formula (3.4a) in [67]:

ω0,m = (−m+ 4iN
√
M2/a2 − 1 )ωcr, N = 0, 1 (4.18)

Here, the formula is written in terms of ωQNM
cr since it is more relevant to the
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Figure 4.32: Comparison between our numerical results plotted with blue (red)
circles and the analytical formula (magenta lines). The excellent fit is spoiled only
for m = 0, a < 0.5

problem at hand. The fit can be seen on Fig. 4.32. Clearly this formula offers a
very good fit to the data, except for the case m = 0, a < M where this formula
gives zeros, differing from our numerical results. Numerically, if we compare ALL
the points obtained in our numerical evaluations (the two lowest n = 0 modes for
a < M corresponding to N = 0, 1 in Eq. (4.18) and the only two modes available
for a > M , which corresponds to N = 0, 1 in Eq. (4.18), for m = 0,±1,±2)
with the values calculated with formula (Eq. (4.18)) for the corresponding a, the
two sets coincide with at least 5 digits in the worst few cases, and with at least
10 digits for most of the points. Taking into account that this exact formula is
analytically obtained from the properties of the confluent Heun functions in the
case of polynomial condition imposed on the TRE and not on TAE and that the
routines with which MAPLE evaluates the Heun function and their precision are
unknown, this match is extremely inspiring. Besides, it poses many questions about
the physics behind this formula.

The formula (4.18) appears without derivation also in [59] (also in [140]), where
the authors impose QNM boundary conditions meaning they work with the regular
solutions of TAE. In their paper, the formula (Eq. (4.18)) is written in terms of
the temperature of the horizon and according to the authors it fits very well the
frequencies they obtained for the case l = m = 2 (=| s |) and also it matches the
imaginary parts of the modes (n = 1, 2, 3...) when m > 0 (for the other cases it
doesn’t work).

In contrast, in our numerical results, formula (Eq. (4.18)) describes the lowest
mode (n = 0) of all the m equally well (except m = 0, a < M), while it fails to
describe the modes with n > 0 – the formula ω for N = n or N = n + 1 matches
only the relative magnitude of the modes and has no resemblance to their highly
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nontrivial behavior. The fit doesn’t improve even for the highest mode (n = 20) we
were able to obtain. A surprising similarity between the two cases (jets and QNM)
is that the real parts of the higher modes (n > 0) in our results also seem to tend
to the lowest mode ω0,m ≡ ωjet

cr . However, since in our case, the frequencies come in
pairs, the frequencies with opposite to ωjet

cr sign do not tend to ωjet
cr , but they have

a definite limit.
Despite the differences, the appearance of formula (Eq. (4.18)) in the two cases

corresponding to different physical problems is interesting and raises questions about
the underlying physics it represents. It also contributes to the validity of our ap-
proach, since our results are comparable in some points with [59] who use a com-
pletely different, but well established in QNM physics numerical approach (Leaver’s
method of continued fractions).

Additionally, one may use the so-obtained spectrum, to plot how the angular
solution changes with the rotational parameter a. Example for one of those fre-
quencies m = 0, N = 1 can be found on fig. 4.33. Clearly, there is some form of
critical event at a = M , which can be seen even in the angular solution. Further-
more, the primary jets, seem to appear around both the horizontal and the vertical
axes, in contrast with the expectation of jets only in the direction of the rotation.
(Here, we plot the cross-section ϕ = const, where on the axes we have the Cartesian
coordinates – x, y 12).

4.3.3 Summary of the results

We presented new results of the numerical studies of our model of central engine
inspired by the properties of GRB. We have already showed that the polynomial
requirement imposed on the TAE leads to a collimated jet-like shapes observed
in the angular part of the solution, thus clearly offering a natural mechanism for
collimation due to purely gravitational effects([36]).

Continuing with the TRE, we impose standard black hole boundary conditions
and we obtain a highly nontrivial spectra ωn,m(a). The numerical spectra for the
lowest modes n = 0 is best described by the analytical result in [67], where, however,
the polynomial conditions are imposed on TRE instead. Although unexpected, this
fit serves as a confirmation of both our numerical approach and the analytical result
and it is a hint for the deeper physics at work in those cases. Interestingly, the
formula in question (Eq. (4.18)) works only for the lowest mode (n = 0) for each
m and correctly describes two frequencies with coinciding for a < M real parts and
different imaginary parts (zero and comparable to the real part accordingly). The
modes with higher n are not described by it and have highly nontrivial behavior
– they seem to have a definite limit, which coincides with the critical frequency in
some of the cases.

12Note that in Maple, the spherical coordinates are defined by x = r sin(ϕ) cos(θ), y =

r sin(ϕ) sin(θ), z = rcos(ϕ) and thus the intervals for the angles are ϕ = [0, π], θ = [0, 2π) and
one should be careful with the change of variables
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(a) a=0 (b) a=0.45 (c) a=0.55

(d) a=0.7 (e) a=1.5

Figure 4.33: Density plot of the value of the solution for one of the roots of the
radial equation – ω = −m+ 4i

√
1/4a2 − 1 for m = 1, a = 0..1.5, ϕ = const
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The imaginary part of our complex frequencies remains positive, ensuring sta-
bility of the solutions in direction of time-future infinity and indicating an explosion
in direction of time-past infinity. There is, however, an obviously critical transi-
tion when a → M , where the imaginary part of the frequency decrease to zero
suggesting slower damping with time. This could have interesting implications for
rapidly-rotating black holes or naked singularities close to the extremal regime. As
we have shown the value M/a = 1 describes a bifurcation of Kerr metric. For
a >> M , the imaginary part remains approximately constant in both directions.
This is surprising, since according to theory of QNM of KNS, the naked-singularity
regime should be unstable. There is no contradiction, because the different bound-
ary conditions we use, define different physical situation – we work with jets from
KBH or KNS. Our numerical results suggest that these jets are stable even for a
KNS.





Chapter 5

Summary and conclusions

In this thesis we have presented our study of the spectra of linearized perturbations
of rotating and non-rotating black holes in the following cases:

1. Jets from rotating black holes: electromagnetic perturbations.
2. Quasi-normal modes of non-rotating black holes: electromagnetic and gravi-

tational perturbations.
3. Quasi-normal modes of rotating black holes: electromagnetic perturbations.
The spectra were obtained for the first time, using the novel approach of imposing

the boundary conditions directly on the exact analytical solutions of the differential
equations, instead of to some their approximation, thus allowing a more physically
clear interpretation of the results and also more control over the problematic regions
in the complex plane, such as branch cuts.

In this work, two types of boundary conditions were considered – the quasi-
normal boundary conditions consisting of the black hole boundary conditions
and the angular regularity condition; and the jet-boundary conditions consisting
of the black hole boundary conditions and the angular singularity condition. As
expected, the different boundary conditions led to different spectra, which can be
used as a characteristic signature of the astrophysical object which produced them.
This is particularly important in view of the recent developments in observational
astrophysics, which ask for a reconsideration of the theory of the central engines
of GRBs. To facilitate the application of the results in astrophysics, the spectra of
the electromagnetic quasi-normal modes of the Kerr black hole were presented in
physical units.

The summary of the results is:
1. The spectrum for the modes of the BH primary jets, was obtained for the first

time. It was demonstrated that it is qualitatively different from the QNM spectrum,
even though they differ only by the condition imposed on the solutions of the angular
equation. Its important property is that it is stable in both the black hole and the
naked singularity regime. We also showed that not all the obtained modes obey the
black hole boundary condition – some of them correspond to white-hole boundary
condition. An analytical formula was found which fits with very high precision the
two lowest modes in this case.

2. The quasi-normal frequencies of non-rotating BH described by the Regge-
Wheeler equation and also the Teukolsky radial equation for a = 0 (for s = −2) were
calculated, solving both the corresponding radial equations or the transcendental
system of spectral equations featuring the confluent Heun functions. In the so-
obtained spectrum, the modes with n < 3 coincide with high precision with the
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already-published by other authors frequencies. The modes with higher n, however,
show important deviations. Those differences are partially due to the existence of
branch cuts in the solutions of the radial equation.

3. To study the effect of the branch cuts on the numerically obtained frequencies,
the epsilon-method was introduced. Using this method, one can move the branch
cuts and thus to study the dependence of the frequencies on the argument of the
complex radial variable. This method was used in the case of gravitational QNMs of
non-rotating black hole to confirm n = 8 that is not an algebraically special mode.
Also, with the ε-method, for the first time here is studied the dependence of the
so-obtained frequencies on small deviations in the phase condition and it is shown
how this non-trivial dependence evolves with n. In this case, some of the modes are
independent of ε, which should be expected since the frequencies should not depend
on the radial variable. Other modes, however, depend critically on the value of ε
and they can differ seriously from the already published results.

4. The quasi-normal frequencies of KBH were calculated for the first time,
solving directly the two-dimensional transcendental system of spectral equations
featuring the confluent Heun functions. For low n, the so-obtained results also repeat
with high precision the already published by other authors results. For high n, the
frequencies once again demonstrate a dependence on the proximity of a branch cut
of the solution of the radial equation. This dependence persists with the increase of
the rotation and it may lead to profiles in the complex plane, significantly deviating
when obtained for different values of ε. Therefore, using the ε-method, we were
able to produce new QNM spectra, different from the already known one. Such
new spectra poses the question which one should be compared with astrophysical
observations and why.

As a conclusion, the exploration of the application of the confluent Heun func-
tions in studying the QNMs and the primary jet modes of the Schwarzschild and the
Kerr metric showed that by using the exact solutions of the differential equations,
one can obtain different spectra for different boundary conditions and values of the
parameters and thus to obtain both more complete picture of the already known
spectra and also qualitatively new information.

Additionally to the physical problems we considered, to obtain the quasi-normal
spectra, we developed a new root-finding algorithm for solving two-dimensional sys-
tems of two complex-valued transcendental equations. The new method was tested
in different elementary systems and it was successfully used to obtain the QNM
spectra presented here. Since the Heun-type equations occur in various physical
problems (discussed in Chapter 2: “The confluent Heun Equation and its solutions”),
the method can have numerous applications.

The epsilon-method which we used to move the branch cuts in the solutions
of the TRE can be further used to study the stability of the solutions around the
singular point at infinity in the whole complex plane. The stability of the solutions
around this point, is still an open question, since the frequencies we obtained depend
seriously of the value of the parameter ε, i.e. of the position in the radial complex
plane.
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Finally, this work was also a test for the numerical realization of the confluent
Heun functions in Maple, which currently is the only software package able to
work with them. Our results show that although flawed, the Maple subroutines
evaluating the confluent Heun function are able to produce the expected from the
theory results and also qualitatively new results, thus they can be used in other fields
of the physics and the science as a whole. Our work also showed the importance
of the Heun functions to the physics and the need of better algorithms for their
evaluation.





Appendix A

Numerical methods

A.1 Overview of the problems in front of root-finding
algorithms

From the previous chapters, it is clear that the Heun functions offer many opportu-
nities to the physics. The work with them, however, is more than complicated, due
to the lack of well developed analytical theory of those functions. In this situation,
the best approach is to rely on the numerical realization of those functions in the
software package maple. This realization, however, has some important problems
which were discussed in the chapter dedicated to those functions. The key problems
are:

1. There are points for which the routines which evaluate those functions break
down, thus one cannot rely on the analytical properties of the function in the whole
complex plane.

2. The derivative of the confluent Heun functions outside of the unit-circle
|z| < 1 has lower precision than the function at the same point.

3. The evaluation of the confluent Heun function in the complex domain relies on
numerical integration, which means that it can be significantly slower than the eval-
uation of other special functions (for example, the hypergeometric function). This
happens only for |z| > 1, since for |z| < 1 there are appropriate power-series expan-
sions. This, however, means that when solving equations featuring those functions,
the convergence of the root-finding algorithm is essential.

An example of application of the confluent Heun functions is the problem of
quasi-normal modes (QNM) of rotating and non-rotating black holes. In this case,
one has to solve a two-dimensional connected spectral problem with two complex
equations in each of which one encounters the confluent Heun functions.

Solving such system of two complex-valued nonlinear transcendental equations
numerically is a task with varying difficulty, depending on the non-linearity of the
system, the types of functions involved and the dimension of the space determined
by the system. There are many well-known iterative root-finding algorithms, but
most of them are specialized and optimized to work with a narrow set of functions –
for example polynomials or functions with real-valued roots. The two most heavily
relied upon one-dimensional algorithms – the secant method and Newton’s method
(or the Newton-Raphson method, [143, 144, 145, 146]) can work with a wide set
of complex valued functions under proper conditions (see [146]), but they have
their weak sides. Newton’s method requires the evaluation of the function and
its first derivative at each iteration. This increases the computational cost of the
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algorithm and it makes the algorithm unusable when the procedure evaluating the
derivative of the function has numerical problems (for example see the discussion for
the Heun functions below) or when derivative becomes zero or changes sign. The
secant method avoids this limitation, but in the general case, it has lower order
of convergence (∼ 1.618) compared to that of Newton’s method (= 2) and the
convergence of both of them is strongly dependent on the initial guess.

These problems of the algorithms are inherited by their multi-dimensional ver-
sions such as the generalized Newton-Raphson method ([145]) and the generalized
secant method (Broyden’s method, [147]). Although those problems can have vary-
ing severity, there are systems in which those algorithms cannot be used effectively.
There are also some novel approaches (see [148], [149]), but when they rely on the
same one-dimensional algorithms, they are likely to share their weaknesses as well.
Clearly there is a need for new algorithms that will enlarge the class of functions we
are able to work with efficiently.

Particularly, for systems featuring confluent Heun functions, the Newton’s
method cannot be used as a root-finding algorithm. Broyden’s algorithm works
well in most cases, but it is slowly convergent even close to a root. It is clear, then,
that we need a novel algorithm, that will offer quicker convergence than Broyden’s
algorithm, but without relying on derivatives. One such algorithm, in the case of
a system of two equations in two variables, is the two-dimensional generalization
of the Müller algorithm which out team developed. The one-dimensional Müller
algorithm ([150]) is a quadratic generalization of the secant method, that works well
in the case of a complex function of one variable. It has very good convergence for a
large class of functions (∼ 1.84) and it is very efficient when the starting point (the
initial guess) is close to a root. It is also well convergent when working with special
transcendental functions. The two-dimensional Müller algorithm seems to inherit
some of the advantages of its one-dimensional counterpart like good convergence and
usability on large class of functions as our tests show. The new algorithm was used
to solve the QNM problem in the case of a Schwarzschild black hole and it proved to
work without significant deviations from the results published by Andersson ([58])
and Fiziev ([62]). Also, preliminary results for the QNM of the Kerr black hole
are discussed and for them we also obtain a very good coincidence with published
results [94].

The chapter is organized as follows: Section 2 reviews the one-dimensional Müller
algorithm and its two-dimensional generalization, in Section 3 we discuss some phys-
ical application of the method and the numerical results obtained with it and in
Section 4 we summarize our results. In the Appendix, the new algorithm is tested
on various additional and more simple examples to verify its functionality.
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A.2 The Müller algorithm

A.2.1 One-dimensional Müller’s algorithm

The one-dimensional Müller algorithm ([145, 150]) is iterative method which at each
step evaluates the function at three points, builds the parabola crossing those points
and finds the two points where that parabola crosses the x-axis. The next iteration
is the the point farthest from the initial point.

Explicitly, for every three points xj−2, xj−1, xj and the corresponding values of
the function f(x) → fj−2, fj−1, fj , the next iteration xj+1 is:

xj+1 = xj− (xj−xj−1)
2C

max (D1 ,D2 )
, where

A = fj q−q(1+q)fj−1 + q2fj−2, B = (2 q+1) fj−(1+q)2 fj−1+q2fj−2,

C = (1+q) fj , D1 ,2 = B ±
√
B2−4AC and q =

xj − xj−1

xj−1 − xj−2
.

We will indicate the one-dimensional Müller algorithm by the map:

µ : µ(xin, F (x)) −→
P
xfin,

where xin, xfin are the starting and end points of the algorithm and the integer P
is the number of iterations in which the algorithm completes.

The exit-condition for the one-dimensional Müller algorithm is | xP − xP−1 |<
10−d, where d is the number of digits of precision we require. This we found to be
the best exit-condition since it works independently of the actual numerical zero in
use, which may vary for the confluent Heun function.

The advantages of this algorithm are that it does not use derivatives and gen-
erally it has higher convergence than the secant method, especially when used on
special functions such as the confluent Heun function. For example the spectra in
[62] and [97] was obtained by the authors using that method.

A.2.2 Two-dimensional Müller’s algorithm

The two-dimensional Müller method comes as a natural extension of the one-
dimensional Müller method.

For two complex-valued functions F1(x, y) and F2(x, y) we want to find such
pairs of complex numbers (xI , yI ) which are solutions of the system:{

F1(xI , yI ) = 0

F2(xI , yI ) = 0
(A.1)

where I = 1, . . . numbers the solution in use. From now on, we will omit the index
I, considering that we work with one arbitrary particular solution. Finding all the
solutions of a system is beyond the scope of this article.
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Consider the functions F1(x, y), F2(x, y) as two-dimensional complex surfaces
z = F1(x, y) and z = F2(x, y) in a three-dimensional space of the complex variables
{x, y, z}1. Normally, to solve the system, one expresses the relation y(x) from one of
the equations, then by substituting it in the other equation, one solves it for x and
from y(x) one finds y. In the general case, however, this is not possible. The idea
of our code is to approximately follow that procedure by finding an approximate
linear relation y(x) between the two variables and then using it to find the root of
function of one variable trough the one-dimensional Müller algorithm.

To find the linear relation y(x), at each iteration we form the plane passing
trough three points of one of the functions and then the equation of the line of
intersection between that plane and the plane z = 0 is used as the approximate
relation y(x). This basically means that the so found y(x) is an approximate solution
of one of the equations which ideally should be near the real solution in the z = 0
plane. Substituting this relation in the other function, we run the one-dimensional
Müller algorithm on it to fix the value of one of the variables, say x. Using the
value of x in the first function, we again run the one-dimensional Müller algorithm
on it to fix the value of the other variable – y. Alternatively one can substitute the
value of x directly in y(x) to obtain y. This ends one iteration of the algorithm.
The process repeats until the difference between two consecutive iterations becomes
smaller than certain pre-determined number. This process is systematized on Fig.
(A.1).

Explicitly, the code starts by evaluating the two functions F1,2(xi, yi) in three
starting pairs of points (i = 1, 2, 3) that ideally should be near one of the roots of
the system. In our case, those three initial pairs are obtained from one starting pair
to which we add and subtract certain small complex number. This artificial choice is
done only in the first iteration (n = 3), afterwards we use the output of the last three
iterations to form (xn−2, yn−2), (xn−1, yn−1), (xn, yn) and the respective F1,2(x, y).
Thus on every iteration after n = 3 the actual complex functions F1,2(xn, yn) are
evaluated only once outside of the one-dimensional Müler subroutines.

Next we construct the plane passing trough those three points for one of the
functions, say F2 by solving the linear system:

C1xn−2 + C2yn−2 + C3 = F2(xn−2, yn−2)

C1xn−1 + C2yn−1 + C3 = F2(xn−1, yn−1)

C1xn + C2yn + C3 = F2(xn, yn).

From it one obtains the coefficients C1, C2, C3 of the plane z=C1x+ C2y + C3.
This plane is intersected with the plane z = 0 (i.e. C1x + C2y + C3 = 0) and

the equation of the line between those two planes is the approximate relation y(x)
of the two variables.

We substitute that relation in the first function F1(x, y) → F1(x, y(x)) and we
start the one-dimensional Müller on that “linearized“ function of only one variable,

1Equivalently, we can consider four real surfaces in five-dimensional real hyperspace, which are
defined by four real functions of four real variables
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Figure A.1: A block scheme of the two-dimensional Müller algorithm. λ(C1, C2, C3)
is the plane with equation z = C1x + C2y + C3 that crosses trough the 3 pairs of
points (xi, yi) and the function F2 evaluated in them. The plane ν is defined by
the equation z = 0. The one-dimensional Müller algorithm, µ(tin, F (t)) → tfin, is
applied on the function of one variable F (t) with starting point tin and final point
tfin.

x. After some pre-determined maximal number of iterations, the exiting point is
chosen for xn+1 ( µ(xn, F1(x, y = y(x))) → xn+1

2) .
Then, there are two possibilities.
Algorithm M1: one could use directly the relation y(x = xn+1) to find y = yn+1.

Or,
Algorithm M2: One can substitute x = xn+1 in the other function F2(x, y) →

F2(x = xn+1, y) in order to find yn+1 using again the one-dimensional Müller algo-
rithm (µ(yn, F2(xn+1, y)) → yn+1).

Our numerical experiments showed that both approaches lead to convergent
procedure.

After (xn+1, yn+1) are fixed, the two functions F1,2(xn+1, yn+1) are evaluated
and if the new points are not roots, the iterations continue.

The exit-strategy in the two-dimensional Müller algorithm is as follows:

1. To avoid hanging of the algorithm or its deviation from the actual root of the
system, we fix maximal number of iterations for the one-dimensional Müller
subroutine, P . From our experience small P (3–10) gives best convergence.

2. The precision-condition (| xj −xj−1 |< 10−d) remains in force for the one-
dimensional Müller. Usually the algorithm exits, because of j > P during the

2Since the maximal number of iterations in the one-dimensional Müller algorithm is fixed, for
simplicity we will omit the index P in this sub-section. The index of the iterations of the two-
dimensional Müller algorithm is n.



92 Appendix A. Numerical methods

first few iterations of the two-dimensional Müller and the closer to the roots
it gets, the smaller number of iterations are needed in the one-dimensional
Müller to reach d and to exit.

3. The precision d defined by the absolute value of the difference between two con-
secutive pairs (xn, yn) (combined with the values of functions F1(x, y), F2(x, y)
at them) – | xn − xn−1 |< 10−d, | yn − yn−1 |< 10−d is the primary exit-
condition of the two-dimensional Müller. When d becomes smaller than cer-
tain value, the algorithm exits with a root.

4. To keep the two-dimensional Müller algorithm from hanging, a maximal num-
ber of iterations N is set after which the algorithm reaches exits without fixing
a root.

5. A common problem occurs when one of the functions becomes zero before
the other function. In those cases, the algorithm accepts the fixed value for
a root, say xfin, and runs the one-dimensional Müller on the other variable
until it fixes a root – µ(yn, F2(xfin, y)) → yfin. The algorithm then exits with
a possible root: (xfin, yfin).

The procedure can be fine-tuned trough change in the starting pair of points, the
initial deviation or by switching the places of the functions, or even by replacing the
functions with their independent linear combinations.

As we will show in what follows, this method inherits some of the advantages
of the one-dimensional Müller algorithm, like the quick convergence in proximity of
the root and the vast class of functions that it can work with. The major disadvan-
tage comes from the complicated behavior of the two-dimensional complex surfaces
defined by the functions F1,2(x, y) which require one to find the best combination of
starting points and number of iterations in the one-dimensional Müller subroutine
so that the algorithm converges to the required root (if it is known or suspected).
Generally, it is hard to tell when one point is "close" to a root. In some cases, even
if certain starting pair of points is close to a root in terms of some norm, using it
as a starting point in the algorithm may still lead to convergence to another root
or simply to require more iterations to reach the desired root than if other pair of
starting points were used.

It is important to note that unlike Broyden’s algorithm and Newton’s algo-
rithm which are not dependent on the order of the equations in the system, our
two-dimensional Müller algorithm depends on the order of the equations. The nu-
merical experiments show that while for some systems, changing the places of the
equations has little or no effect on the convergence, in other cases, it slows down or
completely breaks down the convergence. While such inherent asymmetry certainly
is a weakness of the algorithm, there are ways around it. For example, one may al-
ternate the places of the equations at each iteration or use their independent linear
combinations (F ∗1,2 = α1,2F1 + β1,2F2). Those approaches make the algorithm more
robust, but since they may cost speed, we prefer to set the order of the equations
manually.
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A technical disadvantage is that the whole procedure is more CPU-expensive
than Newton’s method and Broyden’s method, since it generally makes more evalu-
ations of the functions – each one-dimensional Müller makes at least 1 iteration on
every step of the two-dimensional Müller, thus it makes at least 4 evaluations of each
function. This is because on each iteration of the two-dimensional Müller algorithm
the functions in use change and thus one cannot use previous evaluations to reduce
time. Still, in some cases, as demonstrated in [128] for some simple examples and
also below, the so-constructed algorithm is quicker or comparable to Newton’s or
Broyden’s method.

A.3 Numerical testing

All the algorithms are realized as procedures on the software package maple, the
tests are done on maple 15, on Linux x64, CPU Intel Centrino Core 2 Duo, on
2.2GHz. The number of digits that maple uses when making calculations with
software floating-point numbers is set to 64. For Newton’s method and Broyden’s
method we used the analytical formulas [145], where the Jacobian in both cases is
evaluated exactly or with finite differences respectively (i.e. without the Sherman-
Morrison formula).

The times presented below are obtained after running each procedure 10 times
using the garbage collection function gc(); in maple on each calculation, so that
each run represents an independent numerical experiment. The total time for each
method is then divided by 10 and rounded to 3 digits of significance. This way, even
though the times depend on the system load at the moment, they are representative
for the four methods in each example. The notable exception of this ”averaging“ are
all the systems featuring Heun functions, where such procedure would require too
much time and thus they are evaluated only once, using the function gc();.

The precision in all the examples is 15 digits, but only the first 10 after the
decimal point are presented here. In all the cases, the initial deviation where needed
is 0.001. Some of the examples are from [151] p.617-618.

The numerical results for the test-systems are summarized in Table A.1 in the
Appendix. In it, we compare Newton’s method, Broyden’s method and the two
versions of the two-dimensional Müller algorithm discussed in section 2.2. – M2
which uses two one-dimensional Müller subroutines to fix the (xn+1, yn+1) and M1
which uses one one-dimensional Müller subroutine to find xn+1 and then it evaluates
directly yn+1 = (−C3 − C1xn+1)/C2. The number in the brackets in the NM1 and
NM2 columns is P , the maximal iterations in the one-dimensional Müller subroutine.
Everywhere in the table, for each (xin, yin), the four algorithms exit with the same
(xfin, yfin) with precision of 15 digits.

A.3.1 Elementary functions

1. F1(x, y) = y2 + 3x− 5 + x2 = 0
F2(x, y) = x2 + 3y − 1 = 0
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2. F1(x, y) = x(1 − x) + 4y = 12
F2(x, y) = (x− 2)2 + (2y − 3)2 = 25

For those systems (rows S=1,2 in table A.1), the number of iterations and the time
needed to find a root in the two-dimensional Müller algorithms (for M1 in particular)
are generally close to those of Broyden’s algorithm (tN <tB ≈ tM1<tM2). For real
roots, however, the algorithms M1 and M2 are the quickest of the four.

A.3.2 Trigonometric, exponential and logarithmic functions

3. F1(x, y) = y − 1/4 sin(x) − 1/4 cos(y) = 0
F2(x, y) = 5x2 − y2 = 0

4. F1(x, y) = exp(−3x) cos(y) + x = 0
F2(x, y) = x2 − 3yx+ y2 = 0

Again, for real roots, the two-dimensional Müller methods are quicker than both
other methods (rows S=3,4 in table A.1). Newton’s method is much quicker when
the initial conditions and the roots are complex.

It is important to discuss the dependency of two-dimensional Müller methods
(M1 and M2) from the maximal number of iterations in the one-dimensional Müller
subroutine, P . In many cases, changing P only affects the time needed for the
algorithms to complete. There are cases, however, where this parameter becomes
critical. For example, when one uses as starting points (4.4-5.0i, 8.5-16i) on the
system S = 5, the following 7 roots are obtained:

r0 =(0.3487096094+0.4633971546i, 0.9129336096+1.2131895010i)

r1 =(3.0248444374−4.3689275542i, 7.9191455477−11.4380008313i)

r±2 =(0.1632674377±0.6065137375i, 0.0623626119±0.2316676331i)

r3 =(1.1119158619−1.8296636950i, 2.9110335191−4.7901217415i)

r4 =(4.0158133827−5.6039287836i, 10.5135359284−14.6712760260i)

r5 =(−5.3999170768−3.12 × 10−37i,−14.1371664435−4.38 × 10−43i)

From them, Newton’s method converges to the root r0 (after 25 iterations), Broy-
den’s method – to r1 (after 27 iterations). With the two-dimensional Müller methods
(M1 and M2) depending on the parameter P one obtains:

• with M2: r+2 for P = 3, 9, 10, 12 − 14 and P > 16, r0 for P = 5, r5 for P = 6,
and r−2 for P = 8 (after averagely 10 iterations),

• with M1: r3 for P = 3, r4 for P = 4 − 10 and P > 16 and r1 for P = 11 − 14
(after averagely 11 iterations).

Similar behavior is observed in the next example:
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5. F1(x, y) = ln(x2 + y2) − sin(yx) − ln(2) + ln(π) = 0
F2(x, y) = ex−y + cos(yx) = 0.

For real starting points, Newton’s method is not convergent, since it remains locked
to the real axis. Broyden’s method also did not exit with a root for real starting
points. The two-dimensional Müller methods on the other side, when started from
(0.5,0.5) gave the root r−1 (see below). Other purely real initial conditions either
gave a root or the algorithm did not converge.

Using the complex initial conditions (2.27+0.001i, 1.27), the following four roots
were found:

r0 = (0.2129109625−2.4380400935i,−1.3216238026−4.6551486236i)

r±1 = (0.9203224533±0.7487874838i, 1.4188731053∓0.5453380689i)

r2 = (−1.6645201248+1.380553001i, 1.66452012482+1.38055300197i)

Newton’s method exits with r0 after 24 iterations. Broyden’s algorithm is not
convergent. From the two-dimensional Müller algorithms one obtains:

• with M2 after averagely 12 iterations: r−1 for P = 3, r2 for P = 4 and r+1 for
P ≥ 5 .

• with M1 after averagely 14 iterations: r+1 for P = 3 and P ≥ 5 and r−1 for
P = 4.

From the last two systems it is clear that P represents an additional parameter
of the two-dimensional Müller algorithm. It can be used to improve convergence,
but in some cases, it can lead to different roots for the same initial conditions. Such
instability depends on the system and it can be avoided by starting the algorithm
closer to the root.

A.3.3 Special functions

Finally, we consider the following two systems:

6. F1(x, y) = x2 − y + 5 sin(x− 2) = 0
F2(x, y) = J(3, y) + 5x− 3 = 0

7. F1(x, y) = x7 − ey + 2F2([1], [3], x2 − 3x) = 0
F2(x, y) = H1(7, y + 1 − x) = 0

where J() is the Bessel functions of the first kind, H1() is the Hankel function of
the first kind and 2F2 is the generalized hypergeometric function.

In this case (rows S=6,7 in table A.1) the two-dimensional Müller algorithms are
comparable to Newton’s algorithm, while Broyden’s algorithm is often the quickest
of the four. This is likely due to the computational burden of the derivative or of



96 Appendix A. Numerical methods

each additional function evaluation. Note, however, that our goal is not to have
an algorithm that is better than Newton’s method, but to have an algorithm that
has good convergence and that does not need to evaluate derivatives. In that, the
performance of the new algorithms is satisfactory, especially since in some cases like
6.2 and 6.3, Müller’s algorithms are the quickest.

A.3.4 Discussion

Figure A.2: A graphical comparison between the times needed by the Newton
method, the Broyden method and the Müller methods M1 and M2. With red we
denote Newton’s method, with green – Broyden’s method, with blue – M1, with
black – M2.

The numerical investigations above (see Fig.A.2 and also table A.1) show that in
general, the two modifications of the two-dimensional Müler algorithm work com-
parably well to the more established algorithms – Newton’s and Broyden’s, even
if sometimes they require more time and iterations to fix a root. In some specific
cases, like those with real roots or those featuring confluent Heun functions (see
Section 3), however, the two-dimensional Müler algorithms are often the quickest of
the four.

It was demonstrated that while in Newton’s and Broyden’s algorithms the exit
points depend only on the starting points (when the initial deviation is fixed), the
two-dimensional Müller algorithm depends also on the number of iterations in the
one-dimensional Müller subroutine (P ). Surprisingly, the time for fixing a root do
not depend in a straight-forward way from P , since sometimes increasing P leads to
decreasing of the total time. This can be expected, because P is the maximal number
of iterations in the one-dimensional Müller subroutine, but the actual number of
iterations depends on the precision. Therefore, this is one more way to fine-tune the
algorithm to achieve a known or suspected root.

The examples also showed the importance of the order of the functions in the
system (see the systems in the table A.1 marked with * and †). While in most cases
all the four algorithms find at least one root of the system, there are initial conditions
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which lead to a divergence or to ”undesired“ root. This problem can be avoided by
starting the procedure closer to the root, changing the places of the equations in the
system or using a linear combination of the functions (say F1→F1+F2, F2→F1−F2).
We conclude that even though the new algorithms admit some further improvements
and developments, they work well enough to be tested in real physics problem.

S (x)initial (x)final tNewton [s] tBroyden [s] tM2[s] tM1[s]
(y)initial (y)final NNewton NBroyden NM2 NM1

1
1.689 1.1890465736 0.019 0.026 0.018 0.013
−0.637 −0.1379439181 8 10 10*(3) 8(3)
1.321+3.520i 0.8214691720+3.5201983985i 0.021 0.033 0.066 0.033
3.738−1.927i 4.2389950548−11.9278229759i 8 10 12(3) 8(3)
1.321−3.520i 0.8214691720−3.5201983985i 0.021 0.033 0.063 0.033
3.738+1.927i 4.2389950548+1.9278229759i 8 10 12(3) 8(3)

2
−.5 −1.0000000000 0.020 0.032 0.019 0.013
3 3.5000000000 8 10 9(4) 9(3)
3.046 2.5469464699 0.019 0.035 0.020 0.016
3.484 3.9849974627 8 10 10(3) 9(3)
0.726+4.335i 0.2265267650+4.3352949767i 0.024 0.037 0.033 0.036
-2.242−0.592i -1.7424987313−0.5927935709i 8 9 7(6) 8(6)

3
0.621 0.1212419114 0.039 0.044 0.023 0.019
−0.228 0.2711051557 10† 13† 9(3)† 8(4)*†
-0.422+1.476i -.9222203725+1.4764038337i 0.045 0.061 0.081 0.086
-2.562+3.301i -2.062147443+3.3013393343i 9 11 8(4) 11*(3)
1.468−1.635i 0.9685241736−1.6351708695i 0.043 0.062 0.077 0.086
-2.665+3.656i -2.1656858901+3.6563532190i 9 11 7(5) 11*(3)

4
−.35 −0.5600551872 0.045 0.047 0.032 0.035
−1.05 −1.4662435158 11 12 7(4) 10(4)
0.55 − 0.6i 0.3487096094−0.4633971546i 0.048 0.067 0.082 0.097
1.14 − 1i 0.9129336096−1.213189501i 10 12 7(6) 13*(3)

6
1.2 + 0.09i .6863031247 0.141 0.134 0.220 0.271

−5.5 + 0.01i -4.3646459533 9† 11† 9*(4)† 11(3)†
7.2 − 3.6i 5.8404591703−3.0854927956i 0.188 0.171 0.156 0.198

-11.9+5.001i -10.6712592035+5.7445552813i 11 14 10*(3) 14*(4)
-5.1 − 1.006i -4.9297777922−1.1922443124i 0.196 0.191 0.161 0.168

16.0 + 5.51i 17.4620338366+5.7870418188i 11 15 11(3) 13(3)

7
1.1 − .45i 0.8288091244−0.4046494664i 0.476 0.249 0.640 0.333

-2.4 − 4.2i -2.3507488745−4.6830120304i 10 13 11(3) 12(3)
.5 − .87i 0.2656154750−0.8757700972i 0.457 0.233 0.577 0.316

-3.21 − 5.14i -2.9139425238−5.1541326612i 10 13 8*(4) 11*(3)

Table A.1: S numbers the system in use, t and N label the time and the iterations
needed for the algorithms to exit. * denotes the roots dependent on the order of the
equations in M1 and M2. In the † case, the places of the equations were switched
to obtain that root.
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A.4 Some applications of the method – QNMs of non-
rotating and rotating black holes

We will work only with the confluent Heun functions, which are much better studied
than the other types of Heun functions, due to their numerous physical applications.
Besides their numerical implementation was used successfully in previous works by
the authors. For details on the numerical testing, see [128].

A.4.1 First example: Non-rotating black hole

First, we consider the problem of the gravitational QNMs of a nonrotating black
hole so that the precision of the new method can be tested on a very well studied
physical problem. The physical results in this case were published in [110], so here
we will focus on the numerical details instead.

To find the QNMs, one uses the exact solutions of the Regge-Wheeler equations,
describing the linearized perturbations of Schwarzschild metric, in terms of confluent
Heun functions([62]). From [62], when the mass of the BH is set to 2M=1, we obtain
the following system of the type (A.1):

F1 =(cos(θ)−1)(cos(θ)+1)LegendreP(l, 2, cos(θ))=0 (A.2)

F2 = HeunC
(
−2 iω, 2 iω, 4,−2ω2, 4−l−l2+2ω2, 1−|r |e−i((π+ε)/2+arg(ω))

)
=0,

where ω is a complex frequency, l is the angular momentum of the perturbation,
θ ∈ [0, π] is the angle which we set to θ = π − 10−7 and |r| = 20. HeunC is the
confluent Heun function ([106]) in maple notations

Using Eqs. (A.2), we run the two-dimensional Müller algorithm to find the
unknown l and ω with precision of the algorithms set to 15 digits.

From the theory, it is known that l is an integer and l = 2, 3.... Comparing
with the results obtained by the two-dimensional Müller algorithm, for the first root
l = 2, one has l = 1.99(9) + 1 × 10−17i, with the first different from 9 digit being
the 17th. This shows that the new algorithm is capable of solving systems with one
purely integer root in the pair with the expected precision.

A comparison of the new algorithm with the well-known Newton’s and Broyden’s
methods, can be found in Table A.2.

Mode: 0 1 2 3 4 5 6 7 8 9 10
tB [s] 100 99 156 196 386 240 253 282 302 368 398
tM2 [s] 317 413 595 741 1175 799 874 892 1364 971 1355
tM1 [s] 202 218 335 357 497 457 396 613 623 594 667

Table A.2: The times needed for Broyden’s method (tB) and the two-dimensional
Müller methods (tM1 and tM2) to fix a root. Note that while the precision of the
former is 10 digits, the precision of the other two is 14 − 15 digits. To obtain those
times, we solve the system: [F1 + F2, F1 − F2] with starting points: ω[n] + 0.01 +
0.01i, 2.1 + 0.01i, where n = 0..10.
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Because the phase condition r =| r | e−i(1+ε)π/2−iarg(ω) includes the complex
argument in non-analytical way, which cannot be differentiated, this problem cannot
be solved directly using Newton’s method. Broyden’s method works but with serious
limitation of its precision. This happens, because one of the roots y in the pair (x, y)
is a real integer, while the other is complex and the algorithm fixes the integer root
very quickly, thus the finite differences in the Jacobian become infinity. Because
of this, the algorithm is able to fix only the first 10 − 11 digits, while the other
algorithms fix 14 − 15 digits. Therefore, although Broyden’s algorithm gives better
times (see Table A.2) than the two-dimensional Müller algorithms, its precision is
much lower and for modes with big imaginary part, it cannot be increased even
by raising the software floating-point number to very high values. Furthermore,
from Table A.2, one can see that the time needed for the each algorithm to exit
with a root dramatically increases with n. This emphasize on the importance of
the convergence of the algorithm, which may become critical in physical problems
where multiple roots must be found (see the second example).

The numerical results for the QNMs are summed in Table (A.3). In it, the QNM
frequencies obtained from Sys. (A.2) are compared to those found by Andersson
([58]) with the phase amplitude method. Recently, those results were confirmed
by Fiziev (see [62]) with the one-dimensional Müller method applied on the exact
solutions of the radial equation in terms of the confluent Heun function for l = 2 . To
check the accurateness of the new method, we evaluate ∆ =| ωMuller2d−ωAndersson |.

n Our ω Andersson’s ω ∆

0 0.7473433689+0.177924631i* 0.747343368+0.177924630i 1.68 × 10−9

1 0.6934219938+0.547829750i* 0.693421994+0.547829714i 3.60 × 10−8

2 0.6021069092+0.956553966i* 0.602106910+0.956553966i 1.02 × 10−9

3 0.5030099245+1.410296405i* 0.503009924+1.410296404i 1.01 × 10−9

4 0.4150291596+1.893689782i* 0.415029160+1.893689782i 4.41× 10−10

5 0.3385988064+2.391216108i 0.338598806+2.391216108i 9.67× 10−10

6 0.2665046810+2.895821253i 0.266504680+2.895821252i 1.48 × 10−9

7 0.1856446684+3.407682345i 0.185644672+3.407682344i 3.90 × 10−9

8 0.030649006+3.996823690i 0+3.998000i** 0.0306
9 0.1265270180+4.605289542i 0.126527010+4.605289530i 1.44 × 10−8

10 0.1531069502+5.121653272i 0.153106926+5.121653234i 4.52 × 10−8

Table A.3: A list of the frequencies we obtained for the QNMs of Schwarzschild black
hole compared with the numbers found by Andersson. ∆=|ωMuller2d − ωAndersson |.
The first 5 frequencies (n = 0 − 4, marked with *) were obtained also by Fiziev
using the confluent Heun functions and coincide with the presented here except for
the n = 1 where the published by Fiziev value is 0.693421994 + 0.547829750i. The
8th mode, marked with **, was obtained by Leaver [45]. Note that in the table, our
results are with negative sign of the imaginary part only to facilitate the comparison.
Because of the different sign-convention, the actual sign in front of the imaginary
part of our frequencies is positive

From the table, it is clear that in most cases, the modes obtained with the
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two-dimensional Müller algorithm coincide with those obtained by Andersson with
more than 8 digits of precision in most cases and for modes n = 4, 5, 6, there are
9 coinciding digits. Since Andersson published 9 digits of his frequencies, such
precision is certainly encouraging and shows that both the new method and the
confluent Heun functions work satisfactory in this case. These results also confirm
the roots for n = 0, 1, 2, 3, 4 published in [62].

The mode with biggest deviation from the expected value is n = 8 in table A.3
and it was already discussed in the Section ”Quasi-normal modes of nonrotating
black holes“. In brief it is due to the branch cuts in the radial function, which also
lead to non-trivial dependence of the frequencies on ε (where arg(ω)+arg(r) = −Π/2
and ε < 1): for n < 4 ωn = ±|ℜ(ωn)|+ℑ(ωn)i); for n > 4 ωn(ε) = −sgn(ε)|ℜ(ωn)|+
ℑ(ωn)i and for n = 8, |ε| < 0.75, ωn=8 =sgn(ε) 0.030649006 + 3.996823690i.

Because of this, the value for n = 8 in the table A.3 was obtained for positive ε
(ε = 0.3), unlike the other modes with n ≥ 5, which were obtained for ε = −0.3.

The applicability of the second equation in the system Eqs.(A.2), F2, may depend
on the parameter ε, so the behavior of the solutions of Eqs.(A.2) under the variation
of ε is still an open problem studied here for the first time. The frequencies presented
here are stable with precision of 6 digits at the worst and usually around 9 digits
with respect to a change of ε in the corresponding intervals.

A.4.2 Second example: Rotating black holes

A more complicated system to solve can be found in the case of QNMs from rotating
black holes. The two-dimensional Müller algorithm was applied successfully in this
case too and the complete results can be found in [133]. Here, one can find some
details on the numerical procedures used in this case.

To find the QNMs of a rotating black hole, one uses the exact solutions of the
Teukolsky radial and angular equations, describing the linearized electromagnetic
perturbations of the Kerr metric, in terms of confluent Heun functions, as stated
for the first time in full detail in [62]. From [67], for the values of the parameters:
s=-1, M=1/2, |r| = 110, m=0, a=0.01, θ = π/3, one obtains:

F1(x, y) = HeunC(−1.9996ix, 2.0002ix+1.0000, 0.0002ix−1.0000,−1.9996x(i+x), 1.9995x2−y

+0.5000+1.9998ix,−110.02e(4.7124i−iarg(x))+1.0000).(110.00e(4.7124i−iarg(x)))(2.00+0.0002ix) =0

F2(x, y) =
HeunC′(0.04x,−1.00, 1.00,−0.04x, 0.50−1.00y+0.02x−0.0001x2, 0.25)

HeunC(0.04x,−1.00, 1.00,−0.04x, 0.50−1.00y+0.02x−0.0001x2, 0.25)
+

HeunC′(−0.04x, 1.00,−1.00, 0.04x, 0.50−1.00y−0.02x−0.0001x2, 0.75)

HeunC(−0.04x, 1.00,−1.00, 0.04x, 0.50−y − 0.02x−0.0001x2, 0.75)
=0

where HeunC’ is the derivative of the confluent Heun function ([106]) as defined in
maple.

For brevity, here the radial equation F1(x, y) was rounded to only 4 digits of
significance. In our numerical experiments, we used the complete system with soft-
ware floating-point number set to 64, where the derivatives of the confluent Heun
functions HeunC′ were replaced with the associate δN confluent Heun function ac-
cording to equation (3.7) of [104]. This was done to avoid the numerical evaluation
HeunC′ so that the peculiarities of the numerical implementation of the confluent
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Heun function (i.e. the use of maple fdiff procedure) are minimized. The difference
in the times needed to fix a root when HeunC′ is used and when it is not used is
small for the modes (i.e.x) with small imaginary part (∆t ∼ 15s), but it increases
with the mode number, until it becomes significant for modes with big imaginary
part (for the 10th mode – R = 3 in table A.4 – the difference is already ∆t ∼ 100s).
This slowdown is due to the time-consuming numerical integration in the complex
domain, needed for the evaluation of HeunC′.

R (x)initial (x)final tBroyden [s] tM2[s] tM1[s]
(y)initial (y)final NBroyden NM2 NM1

1
0.49 + 0.18i 0.4965436315+0.1849695292i 208 102 92
2.001 + 0.1i 1.9999915063−0.7347653.10−5i 23 9(5)* 11(4)*

2
0.17 + 0.97i 0.3495869222+1.0503235984i 449 229 244

2.001 + 0.1i
2.0000392386 −
0.2937407.10−4i

34 12(5)* 15(5)*

3
0.07 + 5.147i 0.0608496029+5.1191008697i 868 568 489
2.001+0.051i 2.0010479243−0.2491318.10−4i 36 11(5)* 17(5)*

Table A.4: QNMs of Kerr BH for s = −1. R numbers the root, t and N label
the time and the iterations needed for the algorithms to exit. * denotes the roots
dependent on the order of the equations in M1 and M2.

For that system, three pairs of starting points were used:(0.49 + 0.18i, 2.001 +
0.1i), (0.17 + 0.97i, 2.001 + 0.1i), (0.069 + 5.146i, 2.001 + 0.051i). The results can
be found in table A.4. One sees that the two modifications of the two-dimensional
Müller algorithm M1 and M2 are much quicker than the Broyden algorithm (tM1 ∼
tM2 < tB). Newton’s method cannot be used.

The supremacy of the Müller algorithms is clear and it is not isolated – it is
observed for other modes or values of the parameters (for example, for m = 1).
To check the precision of the method, the first two modes were compared with the
already published results of electromagnetic QNMs of a Kerr black hole (see [94])
and were found to coincide with at least 9 digits of significance with them. We could
not find a published value for the third mode.

This example show that the two-dimensional Müller method is much better
suited for solving systems involving the Heun functions than the already known
algorithms.

A.5 Conclusion

We presented the general idea of a method for solving a system of two complex-
valued nonlinear transcendental equations with complex roots based on the one-
dimensional Müller method. The new method is aimed to provide adequate way
to deal with systems featuring Heun functions, which cannot be solved efficiently
by the known root-finding methods. Tests on such systems from the QNM physics
proved that in those cases, the new method indeed work better than the other
methods (For examples including elementary functions and simple special functions
see [128].). The complete mathematical investigation of the proposed new method,
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and especially its theoretical order of convergence under proper conditions on the
class of functions F1, F2 is still an open problem.

With the two-dimensional Müller algorithm one can find the roots of the Regge-
Wheeler equation [62], the Zerilli equation [66], the Teukolsky radial and angular
equations [67], all of which are solved analytically in terms of confluent Heun func-
tions. Using this algorithm, we were able to solve directly the problem of quasi-
normal modes of a Schwarzschild and Kerr black hole with higher precision than
that of the Broyden method. The so found solutions agree to great extent with
previous published numerical results thus confirming the usefulness of the method.

The method has already been used independently, see the recent references [141,
142].
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Scientific contributions

1. The spectrum of electromagnetic primary jets of rotating black holes and naked
singularity is found using the exact analytical solutions of the Teukolsky angu-
lar and the Teukolsky radial equations in terms of confluent Heun functions.
The perturbations remain stable for both rotating black holes and naked sin-
gularities.

2. It was shown that the two lowest modes of the jets-spectrum can be described
with very high precision by previously found by Fiziev analytical formula
deduced from the properties of the confluent Heun functions.

3. The quasi-normal modes spectrum of gravitational perturbations on the
Schwarzschild metric has been found using the exact analytical solutions of the
Regge-Wheeler equation. The so-obtained spectra matches with high precision
already published results, evaluated trough different methods. Additionally,
the same spectrum has been calculated from the exact analytical solutions of
the Teukolsky radial equation for the first time.

4. The quasi-normal modes spectrum of rotating black hole has been obtained by
solving two-dimensional spectral system of transcendental equations featuring
the confluent Heun functions. For the first time, trough the exact solutions
of the radial equation has been explored the dependence of those solutions
and their spectra with respect to the branch cuts in those radial solutions. A
new method for studying those branch cuts in the complex r-plane has been
introduced.

5. A new algorithm for solving complex two-dimensional systems of transcenden-
tal equations has been developed and test in a number of non-physical and
physical problems.
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