TECHNISCHE
@ UNIVERSITAT
DRESDEN

The magnetic dipole moment of the
muon in different SUSY models

Bachelor-Arbeit
zur Erlangung des Hochschulgrades
Bachelor of Science
im Bachelor-Studiengang Physik

vorgelegt von

Jobst Ziebell
geboren am 05.11.1992 in Herrljunga

Institut fiir Kern- und Teilchenphysik
Fachrichtung Physik
Fakultat Mathematik und Naturwissenschaften

Technische Universitat Dresden
2015

Eingereicht am 1. Juli 2015

1. Gutachter: Prof. Dr. Dominik Stockinger
2. Gutachter: Prof. Dr. Kai Zuber

Abstract

The magnetic dipole moment of the muon is one of the most precisely measured quantities in
modern physics. Theory however predicts values that disagree with measurement by several
standard deviations [1, Abstract].

Because this may hint at physics beyond the standard model, it is a great opportunity to ex-
amine the magnetic dipole moment in different supersymmetric models. It is then possible to
calculate dependences of the dipole moment on various model parameters as well as to find
constraints for their particular values.

The purpose of this paper is to describe how the magnetic dipole moment is obtained in su-
persymmetric extensions of the standard model and to document the implementation of its

calculation in FlexibleSUSY, a spectrum generator for supersymmetric models |2, Abstract|.

Contents

1 Introduction

2 The gyromagnetic ratio
2.1 In classical mechanics
2.2 In quantum mechanics

2.3 In quantum field theory

3 The implementation in FlexibleSUSY
3.1 The CH++ part e
3.2 The Mathematica part
3.3 The FlexibleSUSY part

4 Results

Appendices
A The Loop functions
B The VertexFunction template
C The DiagramEvaluator<...>:walue() functions
D

How to add more diagram types

Bibliography

11
12

13

17
17
17
18
19

20

1 Introduction

The Standard Model (SM) of particle physics provides a physical model of the fundamental
particles and their interactions. As of today, it is the most successful model of our universe on
the quantum level. It is not, however, complete. e.g. One of the most prominent features in
our perceived world is entirely missing from the model: gravity.

Nonetheless the SM gives very deep and accurate insights into the quantum behaviour of things.
Among the quantum phenomena that are described by the SM is the interaction of a lepton
with the electromagnetic field. This interaction gives rise to a physical observable: the magnetic
dipole moment of the corresponding lepton. Its value for the electron has been measured in
extremely precise experiments and agrees with the theoretical predictions.

When turning to the muon, another lepton, the theoretical predictions differ from the meas-
urements by several standard deviations |1, Abstract]. This is of course very exciting, since it
may hint at physics that lies beyond the realms of the SM.

Acknowledging that the SM gives a very good description of nature at the quantum level, it
sounds like a good idea to further extend the model in order to correct its shortcomings. This
is where supersymmetry (SUSY) comes into play.

The idea of SUSY is very simple. Each particle of half-integer spin (fermion) is assigned a
superpartner of integer spin (boson) and vice versa. The transformation turning fermions into
bosons and the other way around is called a SUSY-transformation.

It is important to note that as of now (June 2015) no SUSY particles have been observed yet.
Thus it is postulated that SUSY particles have a very large mass compared to the SM particles,
requiring very high energy collider experiments to be detected.

Now the presence and interactions of these new SUSY particles with the SM particles causes
the values of certain observables to change with respect to the SM. One of those observables
that is rather sensitive to SUSY interactions is the magnetic dipole moment of the muon. The
reason it is a lot more sensitive than the corresponding value for the electron is its higher mass,
enhancing the quantum contributions of virtual SUSY particles.

A very natural question to ask is why not to look at the tau lepton instead of the muon. Given
its even higher mass it should be even more sensitive to SUSY contributions. The reason for
not looking at the tau is that it is extremely short lived and hence precision measurements are

virtually impossible (as of today).

2 The gyromagnetic ratio

2.1 In classical mechanics

Let B denote the magnetic field and A the magnetic potential as is common in classical elec-
trodynamics. Furthermore fshall refer to the electric current density.
From classical magnetostatics it is well known that a current generates a magnetic potential

according to the Biot-Savart equation:

A"(T—.»):@/ j(_’/) d3/
A Jgs |77 — 7|

For a current [circulating in a planar coil C, this simplifies to

* ,Uof/
\r—r

Now, assuming that 7 is far away from the source (the region where j is nonzero), one can

perform a multipole expansion, giving

/

I I dr
,uo / _"Z Py(cos ¢) = /2;/ :(1+T—COS¢+)
C

where the P, are the Legendre polynomials and ¢ is the angle between 7 and 7. Considering

only the first two terms (the first one gives no contribution), one obtains

A2 C4m o

> I I X T
A =22 /dF'F-F’: i
drr? Jo 2

Here S is the surface vector of the area enclosed by the coil and m = I S is identified as the
magnetic dipole moment of the current loop.

Restricting the view to circular current loops, it is also possible to express the magnetic moment
in terms of the angular momentum Lofa particle with mass m moving along the current. With

—

L=mrxvand v = 27’;” I it follows that

2.2 In quantum mechanics 3

m= 17
2m

Now the gyromagnetic ratio can be defined! Postulating that L || m, one defines g to be the

factor linking L tom through the relation

- q =
m=—glL
ng

For the previous example it is now obvious that g is equal to 1.

2.2 In quantum mechanics

From the Dirac equation of relativistic quantum mechanics in the covariant notation

(thy" 0y, —me)p =0

where ¢ denotes a Dirac spinor follows that the orbital angular momentum in the sense of the
expectation value of the operator L is not conserved [3, p. 265-266]. To compensate for this
rather undesirable consequence a new quantity is introduced. The spin operator S of a wave
function obeying the Dirac equation is defined to exactly compensate this effect, so that the

total angular momentum

S~
>

Foby
is conserved. A)
Not too surprisingly both L and S affect the magnetic moment. Perhaps very surprisingly
though, an electron obeying the Dirac equation can be showed to have a spin gyromagnetic
ratio of gg = 2 [3, p. 266], while the orbital part is still g, = 1!

While this is astonishing all by itself, with ever increasingly sophisticated experiments, one has
measured the electron g factor (gs) to the mind-boggling accuracy of 1 : 10'2 [4, Abstract].

However the measured value is not exactly 2 but rather

975 = 1.00115965218085(76)

The reason for this deviation from the expected result has been very successfully modelled by

quantum field theory.

4 2 The gyromagnetic ratio

2.3 In quantum field theory

One defines the anomalous magnetic dipole moment a = %(g —2), where g is the g factor of the
particle in consideration. As shown by experiments the electron has a ~ 0.00115965218085 [4,
Abstract|. The deviations from a = 0 can be most easily understood by looking at Feynman
diagrams.

For the purpose of this paper the interesting interaction is that of a fermion with an electromag-
netic field i.e. a photon. Hence the Feynman graphs of interest will look as shown in figure 2.1.
The Feynman diagrams in this paper are drawn using the convention that curly lines depict

vector bosons, dashed lines mean scalar bosons and solid lines stand for fermions.

The zeroth-order graph (c.f. figure 2.2) involving no virtual particles gives the expected value
of g equal to 2. The are however higher order processes that also give contributions to the

magnetic dipole moment. Two examples of such one-loop diagrams are shown in figure 2.3.

To be consistent with [5, p. 45|, these diagram types will be referred to as type 3 and type 4
respectively. Throughout this paper only those diagram types will be taken into account. That
is done because in the most common SUSY models the major contributions to a, that are not
present in the SM, come from these diagrams. Thus the values of the vertices shown in figure
2.4 are needed. It is important to note that the vertex interaction with a photon never changes
the particle flavour and is symmetric between left and right chirality.

A corresponding one-loop diagram can be fully classified by specifying the particles b and g,
which will be referred to as photon emitter and exchange particle from here on. The photon
emitter is the particle having a vertex interaction with a photon and the exchange particle is
the particle being exchanged between the two muon interaction vertices.

Almost adopting the notation in [6, p. 9] define the following quantities:

Ab,g = ZLZZ + ZRZE

Bb,g = ZLZE -+ ZRZZ

S

Figure 2.1: Prototypical Feynman diagram depicting the interaction of a fermion with a
photon

2.3 In quantum field theory

f

Figure 2.2: Zeroth order Feynman graph showing the interaction of a fermion with a
photon

b -
gl o
ANNNK g
a4
B

S

Figure 2.3: Two one loop Feynman graphs showing the interaction of a fermion with a
photon. The dotted lines represent scalar bosons, the curly lines vector bosons and the solid
lines represent fermions.

Y
= iey" - chargecount
f
b
Y e
AN = ie(pp + pe)* - chargecount
-
b
f
b .
----- S =ie(z, P + 2rPRr)
g

Figure 2.4: The relevant vertices for diagram types 3 and 4

6 2 The gyromagnetic ratio

Where z;, and zg refer to the values in the last vertex of figure 2.4.

Still missing is the charge count of the photon emitter. It is found by calculating the corres-
ponding photon vertex and then normalising the result with respect to the value of a muon-
photon-muon vertex. The muon has by definition a charge count of one.

Now all ingredients necessary to calculate the contribution to the anomalous dipole moment of
diagrams of type 3 and 4 have been collected. Letting ¢ denote the normalised charge count,

generalising the contributions found in [6, p. 10|, one obtains:

2
. c m 1
Type 3 diagram: a, = 16712m_§ (EAb,gFlc(m) + 3 Ty Bb oI5 (v)) (2.1)
Type 4 diagram: a, = - m_i Ab N () + —ng FY (z) (2.2)
S 16w m? 6m, 07 '
Here x is a dimensionless mass ratio x = Z—é The loop functions [/é are defined in the
b

appendix.

There are some pitfalls in the above formulas though! The first is about the continuity of Fi.
When x approaches zero (i.e. in a type 3 diagram, when the photon emitter mass goes to zero)
F{ will diverge. But since in equation 2.1 there is a term m,, - F (), a, is still continuous.
The second problem lies in the chosen renormalisation scheme. In reality what has to be done,

is calculating the magnetic form factor Fy(0) [5, p. 42|, defined such that

a, = _mephysicalFM(o)

where m, physicar denotes the physical muon mass. Since for the calculations only masses in the
DR scheme will be used, one m,, factor in equations 2.1 and 2.2 has to be replaced with the
physical muon mass.

Thus arriving at the final set of equations:

. C My physicalM 1
Type 3 diagram: a, = 672 “p;/ng £ (EAb,gFlc(x) 3mg By F¥ (x)> (2.3)
. . - —C My, physical N N N
Type 4 diagram: a, = 672 “p;;lg £ (12Ab Fi¥(x) + = T Bb Fy'(x)) (2.4)

Now all that has to be done is finding all possible diagrams (of type 3 and 4) and adding up

all contributions.

3 The implementation in FlexibleSUSY

FlexibleSUSY is a program that creates spectrum generators for different SUSY models written
in Mathematica and C++ |2, Abstract]. It first executes model-dependent meta code, that
dynamically generates C++ code, which is then compiled into a binary file that can be executed
by the user.

Following this model, the implementation of the magnetic dipole moment of the muon (From

here on referred to GMM2 for g factor of muon minus two) can be split into three parts.
1. Writing generic C++ code that does not need to access the mathematica part
2. Writing a Mathematica module that generates the model-dependent (C++) code
3. Making FlexibleSUSY run the GMM2 code

The first two parts are not completely disentangled, but enough to view them separately.

3.1 The C++ part

FlexibleSUSY makes use of an intermediate step before it compiles the generic code. Instead
of pure C++ files, there are template C++ files, containing placeholders @PlaceholderName@.
These placeholders are the injection points for the mathematica-generated c-++ code.

The first task is to write such generic templated C-++ files.

Since not much functionality is added from a user’s point of view, one simple header file, de-
claring only one calculation routine is enough.

That is done in templates/g muon_minus_2.hpp.in. This file defines the function double
calculate_amuon(@ModelName@<Two__scale> &model) which will be the interface to the cal-
culation routine. The parameter of type @ModelName@<Two _scale> & is a reference to the
currently run model, which contains e.g. mass definitions, vertex functions etc.

The implementation part resides in templates/g muon_minus 2.cpp.in. It consist of some
helper and wrapper classes, the loop functions and the calculation of the a, contribution of
generic type 3 and 4 diagrams.

The implementation may sound complicated at first, but it offers a very clean interface, is very

easily extensible and is mostly DRY (a programming idiom - Do not Repeat Yourself). As a

8 3 The implementation in FlexibleSUSY

motivation the calculation routine generated by the Mathematica part will look as simple as

something like

double calculate amuon(const CMSSM<Two_scale> &model)
{

EvaluationContext context{ model };

double val = 0.0;

val += DiagramEvaluator<OneLoopDiagram<3>, Cha, Sv>::value(context);
val += DiagramEvaluator<OneLoopDiagram<3>, Fe, Ah>::value(context);
val += DiagramEvaluator<OneLoopDiagram<3>, Fe, hh>::value(context);
val += DiagramEvaluator<OneLoopDiagram<4>, Hpm, Fv>::value(context);
val += DiagramEvaluator<OneLoopDiagram<4>, Se, Chi>::value(context);

return val;

}

The Diagram classes

These are classes that represent diagram types. For the implementation of GMM?2 there is
a template OneLoopDiagram with explicitly instantiated specialisations OneLoopDiagram< 3>

and OneLoopDiagram </ >, since only the diagrams in figure 2.3 are implemented.

The loop functions

The loop functions F SQN referred to in the last chapter are implemented as OneLoop FunctionFix

where i € {1,2} and x € {C, N}. The implementations are rather straightforward. In general
they simply return the mathematical expression of the corresponding function evaluated with
double precision. Because however parts of the expressions diverge at x = 0 and = = 1, some
special cases have to be taken care of.

All loop functions except F¥ are continuous at 0. Therefore they first test whether the argument
is very small and if this is true the value of the mathematical limit as x — 0 is returned.

If the argument is close to 1, for all loop functions a Taylor expansion is used instead of the
direct expression. On an Intel Core i7 processor with 64-bit doubles the absolute error is in
all tested cases (which contain at least the taylored range as well as a region around zero) less

than 1072, This can be improved, but it was not deemed a priority.

3.1 The C++ part 9

The particle classes

These are completely generated by the Mathematica part. There is one empty base class
Particle from which every particle (family) is derived. A typical particle family may be Fe for
the leptons and a typical particle is VP for the photon. Which particles or particle families exist
depends on the chosen SUSY model and is ultimately governed by SARAH, a Mathematica
package used by FlexibleSUSY'. In fact there is a one-to-one mapping between the C++ particles
and the SARAH particles.

Two special particle (family) typedefs are always made, so that there will always be the classes
Photon and MuonFamily. These are needed for obvious reasons.

Every particle class contains a static member numberOfGenerations specifying the number of
SARAH generations that a particle family has. A particle may not be fully specified by its
generation index though! Some particles have e.g. a colour index as well.

It will always be assumed that a photon has exactly one generation.

There are also definitions for the antiparticles. Their types can be extracted by using the
anti template. For any particle (or antiparticle) P, typename anti<P>::type will represent the

corresponding antiparticle. For particles that are their own antiparticles these will be the same

types.

The evaluation context

This is a simple wrapper around the current model that is run. It contains a const reference
to the model object, so that e.g. vertex functions can be accessed and it also contains a simple
interface for retrieving particle masses. It is used like mass<Particle>() or mass<Particle>(
index) depending on whether the particle class has one or more generations. It also works for
antiparticles.

The concrete definitions are supplied by the mathematica part. But the definitions simply
forward the calls to the corresponding model class member functions e.g. get MFe(). In all

cases DR masses are returned.

The vertex classes

There are several different vertex classes. Some represent specific vertices with fully specified
particles, some define more general vertices where particle indices (e.g. lepton generation in-
dices) are not yet specified and some are helper classes, that should not be used directly.

Starting with the first ones, the fully specified vertex types, there are two classes SingleCom-
ponentedVertex and LeftAndRightComponentedVertex. These are simple wrappers around one
respectively two complex numbers and they can represent (but are not limited to!) the vertices

depicted in 2.4. They all have a member function bool isZero() that checks whether all absolute

10 3 The implementation in FlexibleSUSY

values are below a tiny numerical limit.

The more general vertices are a little more complicated in their definitions. The idea behind
their implementation is that the interfaces should be as simple as possible. Therefore the way
SARAH handles vertices is mimiced. To this end a template VertexFunction is introduced,

that is used as follows:

1. The type VertexFunction<Particlel, Particle2, Particle3, ...> represents a Feynman

vertex
2. All particles should of course be derived from the Particle class
3. There is no limit on the number of particles through use of variadic templates

4. There is a member typedef vertex type that defines the underlying fully specified vertex
type

5. There is a member typedef indices type that is an std::array of unsigned ints and a

specific length

6. There is a member typedef index bounds that contains the upper and lower limits of the

indices the particles have

7. There is a static member function vertexr type vertex(const indices_type €, const Fval-
uationContext €) that returns a fully specified vertex type for a given set of indices and

an FvaluationContext

8. There is a static member function template std::vector<unsigned int> particleIndices(
const indices _type €) that given a set of indices returns an array containing the indices
referring to the particle at the specified template index.

Furthermore the first index in the returned std::vector will always be the generation index

if the particle has one.

Given this very general interface it is possible to write one general algorithm for every diagram
type. Also because there are no restrictions on the represented vertices, this template can be
used even outside of the scope of the GMM2 module.

The implementation of the VertexFunction template is a little more intricate and can be found

in the appendix. However the concrete implementation is not relevant for its use.

The Diagram evaluator template

This is a general template taking any number of template arguments. Its purpose is to calculate

the contribution of all diagrams of a specific type with given Particles. Its intended use is

3.2 The Mathematica part 11

DiagramEvaluator< Diagram Type, Particles...> For this implementation there exist two partial

specializations:

1. DiagramFEvaluator<OneLoopDiagram<3>, PhotonEmitter, ExchangeParticle >

2. DiagramFEvaluator<OneLoopDiagram<4>, PhotonEmitter, FxchangeParticle>

Both have a static member function double value(const EvaluationContext €) that calcu-
lates the contributions for the respective diagrams. It is very important to note that both
PhotonEmitter and FxchangeParticle are derived from Particle and are in general not fully
specified. There may be open indices (generation, colour, ...) and the value() routine sums
up all contributions for all index combinations.

The implementation of the wvalue() routines is very straightforward and can be found in the

appendix.

The IndexBounds helper class

This is a simple helper class that represents upper and lower limits for a set of unsigned ints.
As is common for C++ ranges, the upper limits are non-inclusive. There are also C++ style

begin() and end() functions returning iterators. So the use of this class is very simple.

3.2 The Mathematica part

The Mathematica module meta/GMuonMinus2.m contains the code that dynamically generates
the model-dependent C++ code. Most of what happens here has already been mentioned in
the C+-+ section. The injection points for the dynamically generated C++ code are as follows:

1. @GMuonMinus2_Particles@, replaced by CreateParticles||:

Creates the particle classes

2. @GMuonMinus2 MuonFunctionPrototypes@, replaced by CreateMuonFunctionsl]:

Creates muon helper function prototypes e.g. muonCharge()

3. @GMuonMinus2 Diagrams@, replaced by CreateDiagrams|| :

Creates the diagram classes

4. @GMuonMinus2 VertexFunctionData@, replaced by CreateVertexFunctionDatal|:

Creates all VertezFunctionData specialisations

5. @GMuonMinus2_ Calculation@, replaced by CreateCalculationl|:

Creates the calculation code

12 3 The implementation in FlexibleSUSY

6. @GMuonMinus2 ThreadedCalculation@, replaced by CreateThreadedCalculationl|:

For now, just forwards to CreateCalculation]]

7. @GMuonMinus2 Definitions@, replaced by CreateDefinitions||:
Creates all function definitions: mass functions, muon functions and vertex function

specialisations

The main job of the Mathematica part is to find out which particles can be inserted into the
diagrams and to generate the corresponding vertex functions. The first part is done by iterating
over all relevant particles (scalar bosons, fermions and vector bosons) depending on the diagram
type and simply checking if the corresponding vertices are non-zero.

The second part is much more intricate. The goal here is to generate small VertexFunctionData
structures which are explained in the appendix. They contain just enough information so that
the C++ template VertexFunction can work out everything it needs by itself. This is again
in the spirit of DRY and also allows for extremely easy extensibility. Also the VertexFunction
member function vertez() is defined by the mathematica part. It simply forwards the call to

the current model object and stores the result in a fully specified vertex object.

3.3 The FlexibleSUSY part

Most of the work here is done in meta/FlezibleSUSY.m. The main part is the WriteGMuon-
Minus2Class[] function, that invokes the GMuonMinus2 module and copies the generated code
into the C++ file. Also MakeFlexibleSUSY]] is tweaked to store further nPointFunctions gen-
erated by GMuonMinus2 in the NPointFunctions/] function. These are then used to generate
the necessary vertex functions in the model class. In order for this to work a slight change
to SelfEnergies CreateNPointFunctions|| was made, so that it ignores nPointFunctions with a

Null head but still generates the correct vertices.

4 Results

Having implemented the calculation of a,, FlexibleSUSY has now been used to analyse the
theoretical predictions for the muon magnetic moment in the SUSY models CMSSM, E6SSM
and MRSSM.

The CMSSM is the constrained minimal supersymmetric model. 1t is a version of the MSSM, the
minimal supersymmetric model, with additional parameter constraints, such as GUT unification
and experimental results [7]. The E6SSM is based on the Eg group in mathematics and contains
additional particles corresponding to a multiplet of the Eg gauge group [8]. The MRSSM is the
minimal R-symmetric SUSY model. 1t contains the additional R-symmetry that might solve
different problems in SUSY models [9).

First the E6SSM was examined. The chosen input parameters were:

mo = 500 GeV
tan 8 = 10

Here myq corresponds to the running masses of the scalar particles in the DR scheme at the
unification (GUT) scale and tan f is the ratio of the vacuum expectation values.

Then the running masses of the fermionic particles at the GUT scale (mq/2) were varied, to
find the point where the contributions to a, are maximal. The resulting graph is shown in
figure 4.1 and has its peak at m;/, ~ 850GeV. It is very enlightening to look at which particles
contribute which amount to a,. For the E6SSM that data is compiled in table 4.1.

As predicted by [10, p. 13] (though only for the MSSM) the leading contributions are those of
chargino-sneutrino and neutralino-smuon loops, while contributions of loops containing Higgs

Bosons are suppressed.

Now the tan 8 dependence was analysed. For the E6SSM and the CMSSM the input parameters

mo = 500 GeV
ml/Q = 850 GeV

14

4 Results

a,(l

1.15x10710 -

1.1x10710

1.05x 107

600

‘ ‘ ‘ ‘ My, [GeV]
800 1000 1200 1400

Figure 4.1: a, in the E6SSM as a function of m; /o

Photon Emitter

Exchange Particle Contribution [10717]

Chargino(1) Muon Sneutrino 2.68704
Chargino(2) Muon Sneutrino —1.49412
Muon CP odd Higgs(1) —3.58096 - 104
Muon CP odd Higgs(2) —1.68216 - 10719
Muon CP odd Higgs(3) —1.36371- 1074
Muon CP even Higgs(1) 3.79381 - 1074
Muon CP even Higgs(2) 1.41508 - 10~*
Muon CP even Higgs(3) 5.79069 - 10710
Charged Higgs(1) Muon Neutrino —6.74896 - 10~°
Charged Higgs(2) Muon Neutrino —1.28891 - 1076
Smuon(1) Neutralino(1) —1.19125 - 107!
Smuon(1) Neutralino(2) 2.34885 - 1072
Smuon(1) Neutralino(3) —1.22858 - 107!
Smuon(1) Neutralino(4) 2.33048 - 1071
Smuon(1) Neutralino(5) 8.48621 - 1073
Smuon(1) Neutralino(6) —7.37169 - 1073
Smuon(2) Neutralino(1) 1.37325 - 1072
Smuon(2) Neutralino(2) —2.42069 - 107!
Smuon(2) Neutralino(3) —6.94937 - 1072
Smuon(2) Neutralino(4) 2.43027 - 1071
Smuon(2) Neutralino(5) —9.67685 - 1073
Smuon(2) Neutralino(6) 1.19754 - 1072
Total 1.15610

Table 4.1: Contributions to a, in the E6SSM at mg = 500, m;/, = 850 and tan § = 10

15

were used. For the MRSSM the values at the benchmark point with tan 8 = 10 from [9, p.
10-11] were used. Now tan was varied in the range [1,50] to find the impact on a,. The
results are plotted in figure 4.2.

Both the CMSSM and the E6SSM show the expected linear dependence of a, on tanpj as
predicted in [10, p. 12|. The MRSSM does apparently not display the same behaviour. There
a, seems to be independent of tan 8. This result is not unexpected. It meets the expectations
provided through private communication with Prof. Dr. Dominik Stéckinger, but has previously
not been investigated in literature.

Upon magnification though, more structure becomes visible as shown in figure 4.3, but the
variations are very small (= 1%), so that it is questionable whether they represent physical
phenomena or numerical artifacts. To determine this, further analysis that is not within the

scope of this paper would be required.

4 Results

16

all
1Lx107
-
-
-
-
-
-
-~
-
e
-
10 -
8.x 10710 e
-
-
e
-
-
-
-
-
-
-
-
e
el
-
-
5.x10710 |- e
-
- -
- .
- .
- .-
- .-
- .
e .-
e -
- -
e -
- .
e .-
ol -
4.x10 - -
e s
- -
- -
- e
-~ -
g e
- -
e P
- -
- -
2.x10710 - -
2.x10 - e
e .-
- .
- -
L .-
- e
e MRSSM
- t
- .-
-
eitig
= tan B[]
10 20 30 40

Figure 4.2: The dependence of a, on tan 3 in different SUSY models

a [l
B
0" "=
4
7.585x 107
’
’
’
’
:
758x 1071
’
L
:
il T S S S S S N tan
H 10 15 20 25 30 Al
.
"
L]

Figure 4.3: The dependence of a, on tan 3 in the MRSSM. It may only be a numerical
artifact

Appendices

A The Loop functions

The relevant loop functions are defined in [6, p. 49| as:

FC(z) = ﬁ@ + 31 — 627 + 2° + 62 log) (A.1)
FP(x) = ﬁ(—?) +4x — 2 — 2log x) (A.2)
FN(z) = (1——2:[:)4(1 — 67 + 32% + 22° — 627 log 7) (A.3)
FN(z) = 5 1 — 2 + 2rlogm) (A.4)

=

B The VertexFunction template

The VertexFunction template makes use of two helper templates. One is VertexFunctionHelper
and the other is VertexFunctionData. As suggested by the names the VertexFunctionData spe-
cialisations contain data regarding specific vertices and the VertexFunctionHelper template acts
as glue between VertexFunction and VertexFunctionData.

The main complication with the desired interface to VertexFunction is the fact that permuta-
tions of the particles should not change the overall layout and definition. There are several

solutions to this:

1. Using very complex metaprogramming idioms called generators, essentially letting C++
fix this by itself

2. Generate complete code for every needed permutation

3. Generate complete code for a canonical order and just the bare minimum for permutations

The main drawback of the first approach is obviously complexity. It is indeed very difficult
to get this right and the code is hardly readable at all. Also it tends to really challenge the

compiler, resulting in very long compile times. I decided against this. The second option is

18 Appendices

arguably the worst one, hence I went for the third solution.

It should be noted that parts of the implementation could be simplified significantly if full
C++11 conformance were guaranteed by the compiler. As of now backwards compatibility to
g++4.4 has to be maintained and thus complicates things.

The implementation can be described as follows: There are VertexFunctionData specialisations
for every necessary particle permutation. One of them is chosen as the canonical one and
contains a static const bool is_permutation flag that is set to false. The non-canonical ones
obviously have this flag set to true. A non-canonical VertexFunctionData specialisation then
only further contains a typedef orig type which is the canonical VertexFunction type and a
boost::mpl::vector c describing the permutation. A better implementation would use std::array
and constexpr for the permutation, but the latter is missing from g+-+4.4.

A canonical VertexFunctionData specialisation needs to contain more information. It con-
tains the typedefs index bounds and vertexr type, with the obvious definitions. Another
boost::mpl::vector c is used to specify how many indices the different particles have and stores
that in an array of offsets. Moreover a const index_bounds is also present for obvious reasons.
Now the VertexFunctionHelper template is specialised in two versions, one for canonical ver-
tices and one for permutations. The only new thing they define is the particleIndices() template
function, one canonical and one permuted variant.

The VertexFunction template is derived from the corresponding VertexFunctionHelper tem-
plate. It defines the member template function vertez(), that is expected to be specialised for

canonical vertices. The specialisation is then provided by the Mathematica part.

C The DiagramEvaluator<...>::value() functions

Here the implementation of the OneLoopDiagram<3> partial specialisation shall be discussed.
One main goal was to only need to write this code once for all type 3 diagrams. Therefore the
code has to be very generic and is the reason for the aforementioned abstractions. But because
the interfaces were chosen carefully, the code becomes rather straightforward.

The first observation is that only two VertexFunction types are needed. One for the vertex
involving the muon and one for the vertex with the photon. These are typedef’d as muon Ver-
texFunction and photonVertexFunction.

Now one has to iterate over all index combinations. Since there is a standard begin()/end()
interface, this is done in the usual C+-+ way. The current indices are stored in photon Ver-
texIndices and the value of the fully specified vertex is obtained and stored in photon Vertex.
One then checks for numerical significance with isZero() and continues with the next index
combination if there is none, moving further into the calculation if the vertex is non-zero.

The charge count of the photon emitter is then calculated and all indices concerning the photon

D How to add more diagram types 19

emitter are stored in photonFEmitterindices.

Now the same iteration is started for all index combinations in the muon vertex. It is also
ensured that only muon contributions are accounted for, by limiting the generation index of
the MuonFamily to the muon generation index if there is any. There are SARAH models where
the muon has its own particle family containing only itself.

Because the second loop is independent of the first, the photonEmitterIndices in the outer loop
have to match the ones in the inner loops. Only when they are the same, proceeding makes
sense.

The rest of the code is very self-explanatory. It is just the expression obtained in the Quantum
Field Theory part in the introduction implemented in C++.

One note of caution though! The DiagramFEvaluator template cannot distinguish between
particles and particle families, but it needs to be able to retrieve the masses of particles in
both cases. This is done seemingly simple with an if switch, specifying a generation index
only when necessary. If this was done naively though, it would always cause a compiler error,
since one of the function calls is undefined at compile time. This is circumvented by having the
mass template absorb calls that would be otherwise undefined into infinite recursions causing
a runtime error. The if switch however ensures that never happens and because the compiler

can easily optimise away the if statement no performance is lost here.

D How to add more diagram types

This part describes how to improve the value of a, by adding more diagram types. Suppose
for example support for TwoLoopDiagrams of type 42 should be added (whatever the 42 might
stand for). Then the following has to be done:

1. Implement the necessary loop functions in the C+- input file
2. Add TwoLoopDiagram/[42] to contributingFeynmanDiagram Types in GMuonMinus2.m

3. Write new overloads of CreateDiagramEvaluatorClass/], ContributingDiagramsOfTypel]
and VerticesForDiagram[] in GMuonMinus2.m

4. Implement DiagramFEvaluator<TwoLoopDiagram<42>, ...>:walue() in the C++ input
file

Everything else has already been abstracted. Therefore adding more diagrams is a rather simple

task, requiring almost only to write the corresponding evaluation routine.

Bibliography

[

2|

3]

4]

[5]

7]

8]

191

[10]

H. N. B. et al, “Precise measurement of the positive muon anomalous magnetic moment,”
Phys. Rev. Lett., vol. 86, pp. 22272231, Mar 2001.

P. Athron, J. hyeon Park, D. Stéckinger, and A. Voigt, “Flexiblesusy — a spectrum gener-
ator generator for supersymmetric models,” Computer Physics Communications, vol. 190,
no. 0, pp. 139 — 172, 2015.

Dirac, Quantum Mechanics. Oxford University Press, 3 ed., 1947.

D. Hanneke, S. F. Hoogerheide, and G. Gabrielse, “Cavity control of a single-electron
quantum cyclotron: Measuring the electron magnetic moment,” Phys. Rev. A, vol. 83,
p- 052122, May 2011.

D. Stockinger, “Einschleifenbeitrdge zu schwachen dipolmomenten und quark-

/squarkzerfillen im mssm,” diplomarbeit, Universitiat Karlsruhe, 1998.

H. Fargnoli, C. Gnendiger, S. Pakehr, D. Stockinger, and H. Stockinger-Kim, “Two-loop
corrections to the muon magnetic moment from fermion/sfermion loops in the mssm:
detailed results,” Journal of High Energy Physics, vol. 2014, no. 2, 2014.

G. L. Kane, C. Kolda, L. Roszkowski, and J. D. Wells, “Study of constrained minimal
supersymmetry,” Phys. Rev. D, vol. 49, pp. 6173-6210, Jun 1994.

P. Athron, D. Stockinger, and A. Voigt, “Threshold corrections in the exceptional super-
symmetric standard model,” Phys. Rev. D, vol. 86, p. 095012, Nov 2012.

P. Diessner, J. Kalinowski, W. Kotlarski, and D. Stockinger, “Higgs boson mass and elec-
troweak observables in the mrssm,” Journal of High Energy Physics, vol. 2014, no. 12,
2014.

D. Stockinger, “The muon magnetic moment and supersymmetry,” Journal of Physics G:
Nuclear and Particle Physics, vol. 34, no. 2, p. R45, 2007.

