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Abstract: Models based on a U(1)Lµ−Lτ gauge symmetry can explain the discrepancy
between the measured value and theoretical prediction of the muon anomalous magnetic
moment. Based on the latest experimental results, we revisit the analysis of neutrino mass
matrix structures in minimal U(1)Lµ−Lτ models where the U(1)Lµ−Lτ symmetry breaking
is caused by a single scalar field. Due to the charge assignment of the scalar field, each
model predicts a unique structure of the neutrino mass matrix, which demands non-trivial
relations among neutrino mass and mixing parameters. We find that the model called type
2+1, which features an SU(2)L doublet scalar Φ+1 with the U(1)Lµ−Lτ charge +1 and the
hypercharge +1/2 and predicts the B3 texture structure, is marginally acceptable under the
current neutrino oscillation data and cosmological observation. When the U(1)Lµ−Lτ gauge
symmetry is broken by the vacuum expectation value of the standard model non-singlet
representation such as Φ+1, there are additional contributions to flavor-changing meson decay
processes and atomic parity violation via mixing between the Z boson and the U(1)Lµ−Lτ

gauge boson Z ′. We newly evaluate the model-dependent constraints on the model and
find that the type 2+1 model is robustly ruled out. The model is extended to have an
additional vacuum expectation value of a standard model singlet scalar in order to avoid
the stringent constraints via the Z − Z ′ mixing. Finally, we clarify the allowed range of
the ratio of these vacuum expectation values.
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1 Introduction

The discovery of the Higgs boson in 2012 [1, 2] has established the Standard Model (SM)
of particle physics. It has successfully explained a variety of experimental results so far.
Nonetheless, the SM is not considered a theory of everything due to theoretical issues and
empirical problems, that indicates the extension of the SM.

In recent years, several experimental hints for physics beyond the SM have come out.
Among them is a discrepancy in the muon anomalous magnetic moment, also known as the
muon g − 2 anomaly. The world average value of the measured muon g − 2 at Brookhaven
National Laboratory [3–5] and Fermilab [6, 7] disagrees with the SM prediction. The prediction
crucially depends on the evaluation of the hadronic vacuum polarization (HVP) contribution
to the muon g − 2. Together with the HVP contribution based on the dispersive analysis
using e+e− → hadrons cross-section data until 2020, a 4.3σ discrepancy has been known [8],

∆aµ = aexp
µ − aSM

µ = (25.1± 5.9)× 10−10. (1.1)
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On the other hand, the BMW collaboration recently reported an update on lattice QCD
calculations of the leading order HVP contribution [9]. They obtained a value closer to the
experimental average, which mitigates the discrepancy up to the ∼ 2σ level. Their result
is partially supported by other lattice calculations afterwards [10, 11]. In the dispersive
approach, new data sets in the e+e− → hadrons scattering are available after ref. [8]. The
CMD-3 collaboration reported a new measurement of e+e− → π+π− cross-section [12, 13].
They obtained a similar value to the BMW result, yet this new CMD-3 result disagrees at the
2.5 – 5σ level with the previous dispersive determinations. The BABAR [14] and Belle-II [15]
collaborations separately reported measurements of e+e− → π+π−π0 cross-section. Their
results disagree with each other at the 2.5σ level. The origin of these disagreements in
the dispersive approach is still unknown. Therefore, while there is still plenty of room for
SM explanations, we need more precise cross-section data and ongoing efforts by lattice
groups to clarify the situation.

If the muon g − 2 discrepancy is taken as a clue to physics beyond the SM, it is natural
to ask what new physics models can accommodate this discrepancy. A model with a gauged
U(1)Lµ−Lτ symmetry is one such candidate [16–19]. In this model, the U(1)Lµ−Lτ gauge
boson Z ′ interacts with muon, but not with electron and quarks at the tree level. The
correction to the muon g − 2 from this new gauge interaction can close the gap in the value of
the muon g − 2 without conflicting other experimental bounds [20–23], although the NA64µ

experiment has recently reported a strong bound on the Z ′ boson [24].
Neutrino mass is another problem in the SM. In order to fit the measured pattern

of the neutrino oscillation parameters, the neutrino sector in the SM has to be extended
such that at least two neutrinos have non-zero masses. One of the simplest neutrino mass
generation mechanisms is the so-called seesaw mechanism [25–28], where heavy Majorana
right-handed neutrinos are added to the SM.

In models based on the U(1)Lµ−Lτ gauge symmetry, the neutrino mass generation is non-
trivially realized because the U(1)Lµ−Lτ symmetry restricts neutrino mass matrix structures.
In fact, the addition of only three right-handed neutrinos is not enough to explain the measured
neutrino oscillation data. To solve this problem in an economical way, one can newly introduce
a U(1)Lµ−Lτ charged scalar that develops a non-zero vacuum expectation value (VEV). In
refs. [29–31], the following three minimal models are considered in this direction:

• Type 1: an SU(2)L singlet scalar σ with the U(1)Lµ−Lτ charge +1,

• Type 2+1: an SU(2)L doublet scalar Φ+1 with the U(1)Lµ−Lτ charge +1,

• Type 2−1: an SU(2)L doublet scalar Φ−1 with the U(1)Lµ−Lτ charge −1.

The hypercharge of the additional singlet (doublet) scalar field σ (Φ±1) is taken to be 0
(+1/2). In these minimal models, the mass matrix for the light neutrinos has a two-zero
texture (minor) structure, that is, the (inverse) mass matrix for the light neutrinos has two
independent vanishing elements. This unique two-zero structure leads to close relations
among the neutrino oscillation parameters. Using these relations, undetermined parameters,
i.e., the neutrino Dirac and Majorana CP phases and the sum of the neutrino masses, are
predicted from the well-measured neutrino mixing angles and mass squared differences. In
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Fields (Le, Lµ, Lτ ) (eR, µR, τR) (Ne, Nµ, Nτ ) H Φ+1
U(1)Lµ−Lτ (0,+1,−1) (0,+1,−1) (0,+1,−1) 0 +1

SU(2)L 2 1 1 2 2

Table 1. Charge assignments of the relevant fields in the type 2+1 model.

refs. [29–31], it is shown that in the type 1 case, the sum of the neutrino masses predicted by
using the NuFITv4.0 global analysis [32] is consistent with the Planck 2018 limit [33] at the
3σ level for the normal mass ordering.1 On the other hand, the type 2+1 and type 2−1 cases
are excluded by the Planck 2018 limit, regardless of the neutrino mass orderings.

In the meantime, new neutrino oscillation data have become available. Accordingly, the
predictions for the neutrino oscillation parameters in the minimal gauged U(1)Lµ−Lτ models
will be updated. In this paper, therefore, we revisit these minimal models based on the
results of the latest NuFITv5.2 global analysis [34]. Then we find that the type 2+1 case
revives with the latest neutrino global parameters.

Besides updating the neutrino analysis, we carefully study new constraints in the minimal
models. Since the newly introduced SU(2)L doublet scalar Φ+1 breaks not only the U(1)Lµ−Lτ

gauge symmetry but also the electroweak (EW) symmetry, the Z ′ boson mixes with the Z

boson in their mass term [35]. After diagonalizing the mass matrix, the Z ′ boson couples to
the SM neutral current, resulting in a new contribution to atomic parity violation (APV) [36–
38]. Moreover, the coupling to the neutral current also induces flavor-changing meson decay
processes [36, 38]. In this paper, we analyze the new constraints on the gauged U(1)Lµ−Lτ

models from these phenomena via the Z − Z ′ mixing.
This paper is organized as follows. In section 2, we first introduce the minimal gauged

U(1)Lµ−Lτ models. We reanalyze the neutrino mass matrix structures in section 3. In
section 4, we consider the new model-dependent constraints on the gauged U(1)Lµ−Lτ models
with the additional SU(2)L doublet scalar. Finally, we summarize our results in section 5.

2 Types of minimal models

In this section, we introduce the minimal gauged U(1)Lµ−Lτ models [29, 30], where three
right-handed neutrinos Ni (i = e, µ, τ ) and a single U(1)Lµ−Lτ -breaking scalar are added to
the SM. The minimal models are classified according to the SU(2)L representation and the
U(1)Lµ−Lτ charge of the additional scalar. In this section, we summarize the matter content,
relevant interactions, and characteristics of neutrino mass matrix structures in the type 2+1
and 2−1 models. Details for the type 1 model are provided in appendix A.

2.1 Type 2+1

In addition to the SM fields and three right-handed neutrinos Ni, we introduce an SU(2)L

doublet scalar field Φ+1 with the U(1)Lµ−Lτ charge +1 and the hypercharge +1/2 in the
type 2+1 model. In table 1, we list the U(1)Lµ−Lτ charges and SU(2)L representations of
the lepton and scalar fields. The Lagrangian for the leptonic Yukawa interactions and mass

1For the inverted mass ordering, the type 1 case cannot reproduce the observed neutrino parameters.
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terms in this model is written by

L ⊃− ye ec
R(Le · H†)− yµ µc

R(Lµ · H†)− yτ τ c
R(Lτ · H†)

− yµe ec
R(Lµ · Φ†

+1)− yeτ τ c
R(Le · Φ†

+1)
− λe N c

e (Le · H)− λµ N c
µ(Lµ · H)− λτ N c

τ (Lτ · H)
− λτe N c

e (Lτ · Φ+1)− λeµ N c
µ(Le · Φ+1)

− 1
2MeeN c

e N c
e − Mµτ N c

µN c
τ +H.c., (2.1)

where Li (i = e, µ, τ) are the left-handed lepton doublets, (eR, µR, τR) are the right-handed
lepton singlets, and H is the Higgs doublet in the SM. In eq. (2.1), the middle dots (·)
between the SU(2)L doublet fields indicate the contraction of the SU(2)L indices. It is
assumed that H and Φ+1 acquire non-zero VEVs as

⟨H⟩ = 1√
2

(
0
v1

)
, ⟨Φ+1⟩ =

1√
2

(
0
v2

)
, (2.2)

where
√

v2
1 + v2

2 = v ≃ 246GeV is satisfied. After the EW and U(1)Lµ−Lτ symmetry breaking,
the above Yukawa interaction terms lead to the neutrino Dirac and Majorana mass terms:

L ⊃ −
(
νe νµ ντ

)
MD

N c
e

N c
µ

N c
τ

− 1
2
(
N c

e N c
µ N c

τ

)
MR

N c
e

N c
µ

N c
τ

+H.c., (2.3)

where

MD = 1√
2

 λev1 λeµv2 0
0 λµv1 0

λτev2 0 λτ v1

 , MR =

Mee 0 0
0 0 Mµτ

0 Mµτ 0

 . (2.4)

Then, the mass matrix for the light neutrinos is given by the seesaw mechanism [25–28] as

Mν ≃ −MDM−1
R MT

D

=


− λ2

ev2
1

2Mee
0 −v1v2(λeλτeMµτ +λτ λeµMee)

2MeeMµτ

0 0 −λµλτ v2
1

2Mµτ

−v1v2(λeλτeMµτ +λτ λeµMee)
2MeeMµτ

−λµλτ v2
1

2Mµτ
−λ2

τev2
2

2Mee

 . (2.5)

The mass matrix is symmetric and has two independent zeros in the (1, 2) and (2, 2) elements.
This structure is called the B3 texture [39–44]. We note that the Yukawa coupling matrix for
the charged leptons is assumed to be almost diagonal in order to avoid strong constraints
from flavor-violating decays of tau leptons, see refs. [29, 30] for the details.

2.2 Type 2−1

The type 2−1 model contains an SU(2)L doublet scalar Φ−1 with the U(1)Lµ−Lτ charge −1
and the hypercharge +1/2. The U(1)Lµ−Lτ charges and SU(2)L representations of the lepton
and scalar fields are shown in table 2. The Lagrangian for the leptonic Yukawa interactions
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Fields (Le, Lµ, Lτ ) (eR, µR, τR) (Ne, Nµ, Nτ ) H Φ−1
U(1)Lµ−Lτ (0,+1,−1) (0,+1,−1) (0,+1,−1) 0 −1

SU(2)L 2 1 1 2 2

Table 2. Charge assignments of the relevant fields in the type 2−1 model.

and the mass terms is given by

L ⊃− ye ec
R(Le · H†)− yµ µc

R(Lµ · H†)− yτ τ c
R(Lτ · H†)

− yτe ec
R(Lτ · Φ†

−1)− yeµ µc
R(Le · Φ†

−1)
− λe N c

e (Le · H)− λµ N c
µ(Lµ · H)− λτ N c

τ (Lτ · H)
− λµe N c

e (Lµ · Φ−1)− λeτ N c
τ (Le · Φ−1)

− 1
2MeeN c

e N c
e − Mµτ N c

µN c
τ +H.c. (2.6)

The U(1)Lµ−Lτ -breaking doublet scalar Φ−1 acquires a non-zero VEV:

⟨Φ−1⟩ =
1√
2

(
0
v2

)
. (2.7)

We use the same symbol v2 for the VEV of Φ−1 as that of Φ+1 because this does not cause
any confusion in the following analysis. After H and Φ−1 develop the VEVs, the Dirac
neutrino mass terms emerge from the Yukawa interactions. The mass matrix for the light
neutrinos is then given by

Mν ≃ −MDM−1
R MT

D

=


− λ2

ev2
1

2Mee
−v1v2(λeλµeMµτ +Meeλµλeτ )

2MeeMµτ
0

−v1v2(λeλµeMµτ +λeτ λµMee)
2MeeMµτ

−λ2
µev2

2
2Mee

−λµλτ v2
1

2Mµτ

0 −λµλτ v2
1

2Mµτ
0

 , (2.8)

where

MD = 1√
2

 λev1 0 λeτ v2
λµev2 λµv1 0
0 0 λτ v1

 , MR =

Mee 0 0
0 0 Mµτ

0 Mµτ 0

 . (2.9)

In the type 2−1 case, the mass matrix for the light neutrinos has zeros in the (1, 3) and
(3, 3) elements. This structure is known as the B4 texture. The off-diagonal elements of the
charged lepton mass matrix are assumed to be negligible as in the type 2+1 case.

2.3 Correction to muon g − 2

The U(1)Lµ−Lτ gauge boson Z ′ gives a sizable correction to the muon g−2. Notably, the muon
g−2 discrepancy between the SM prediction and experimental value can be resolved when the
Z ′ mass is mZ′ ∼ 10 – 40MeV [20–24]. The one-loop contribution to the muon g−2 is given by

∆aµ = g2
Z′

8π2

∫ 1

0
dx

2x2(1− x)m2
µ

x2m2
µ + (1− x)m2

Z′
, (2.10)

where gZ′ is the gauge coupling constant of the U(1)Lµ−Lτ gauge symmetry.
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3 Revisiting analysis for two-zero neutrino mass matrix structures

Neutrino mass matrix or its inverse matrix often has non-trivial structures in new physics
models with a lepton flavor symmetry. As seen in section 2, the neutrino mass matrices in the
minimal U(1)Lµ−Lτ models have two zero elements except for their symmetric counterparts.
Such matrix structures are known to provide a prediction for undetermined neutrino oscillation
parameters, i.e., the neutrino Dirac and Majorana CP phases and the sum of the neutrino
masses in terms of known neutrino oscillation parameters. In the minimal U(1)Lµ−Lτ models,
three neutrino mass matrix structures, called the C minor, B3 texture, and B4 texture,
are obtained [30]:

C :

∗ ∗ ∗
∗ 0 ∗
∗ ∗ 0

 , B3 :

∗ 0 ∗
0 0 ∗
∗ ∗ ∗

 , B4 :

∗ ∗ 0
∗ ∗ ∗
0 ∗ 0

 . (3.1)

In this section, we outline how to extract the predictions for the neutrino oscillation parameters
from the two-zero matrix structures. Then, we revisit the analysis for the B3 and B4 textures
and update the predictions. See refs. [29, 30] for further details of the analysis.

3.1 Methodology

The mass matrix for the light neutrinos is diagonalized by a unitary matrix U called the
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [45–48]:

U∗diag(m1, m2, m3)U † = Mν , (3.2)

where

U =

 c12c13 s12c13 s13e−iδCP

−s12c23 − c12s13s23eiδCP c12c23 − s12s13s23eiδCP c13s23
s12s23 − c12s13c23eiδCP −c12s23 − s12s13c23eiδCP c13c23


 1

eiα2/2

eiα3/2

 ,

(3.3)
with mi being the mass eigenvalues of the light neutrinos, cij ≡ cos θij and sij ≡ sin θij . From
this matrix relation eq. (3.2), the two-zero elements of Mν give two complex equations with
respect to nine real neutrino parameters (θ12, θ13, θ23, δCP, m1, m2, m3, α2, and α3). By
solving these equations, four of the nine parameters are determined by the remaining five.
Normally, the former four parameters are chosen to be less determined ones—δCP, m1, and
α2,3 — and the latter five to be well measured ones—θ12, θ13, θ23, ∆m2

21, and ∆m2
3ℓ, where

∆m2
3ℓ ≡ m2

3−m2
1 for the normal ordering (NO) and ∆m2

3ℓ ≡ m2
3−m2

2 for the inverted ordering
(IO). Putting the measured values in the five parameters, we obtain sharp predictions for
the four less-known parameters. It should be noted that the two complex equations follow
from the two-zero elements of Mν and are independent of how non-zero elements of Mν

are expressed in terms of UV model parameters.
To extract the predictions, we take the following steps:

1. Solve the two complex equations with respect to eiα2,3 . Then by taking their absolute
values, two real equations are obtained in terms of the seven parameters, i.e., θ12, θ13,
θ23, ∆m2

21, ∆m2
3ℓ, m1, and δCP. This step can be done analytically.

– 6 –
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Normal Ordering Inverted Ordering
Best fit ± 1σ 3σ range Best fit ± 1σ 3σ range

θ12[◦] 33.41+0.75
−0.72 31.31 → 35.74 33.41+0.75

−0.72 31.31 → 35.74
θ23[◦] 42.2+1.1

−0.9 39.7 → 51.0 49.0+1.0
−1.2 39.9 → 51.5

θ13[◦] 8.58+0.11
−0.11 8.23 → 8.91 8.57+0.11

−0.11 8.23 → 8.94
δCP[◦] 232+36

−26 144 → 350 276+22
−29 194 → 344

∆m2
21

10−5eV2 7.41+0.21
−0.20 6.82 → 8.03 7.41+0.21

−0.20 6.82 → 8.03
∆m2

3ℓ

10−3eV2 +2.507+0.026
−0.027 +2.427 → +2.590 −2.486+0.025

−0.028 −2.570 → −2.406

Table 3. The global fit results for the neutrino oscillation parameters from NuFITv5.2 [34]. The best fit
point ±1σ and 3σ ranges are tabulated for each neutrino mass ordering. Note that ∆m2

3ℓ ≡ m2
3−m2

1 > 0
for the normal ordering and ∆m2

3ℓ ≡ m2
3 − m2

2 < 0 for the inverted ordering.

2. Solve these two real equations with respect to m1. Then we are left with one real equation
in terms of δCP and the other five parameters. This step is also done analytically.

3. Numerically solve the remaining real equation with respect to δCP. A prediction for
δCP is obtained for given input values of θ12, θ13, θ23, ∆m2

21 and ∆m2
3ℓ. The predictions

for m1 and α2,3 are in turn derived by putting the predicted value of δCP back in the
solutions for m1 and α2,3 that we obtained beforehand.

In this way, ref. [30] systematically studied the predictions in the C minor, B3 texture
and B4 texture cases, based on the NuFITv4.0 global analysis of the neutrino oscillation
parameters [32]. The obtained predictions were compared with the Planck limit on the sum
of the light neutrino masses [33]. The C minor structure with the NO was consistent with
the measured oscillation parameters and Planck limit. Meanwhile, it turned out that the
B3 and B4 texture structures explained the neutrino parameters but were not consistent
with the Planck limit at that time.

Since ref. [30], a new global fit analysis, NuFITv5.2, of the neutrino oscillation parameters
has been released [34]. Cosmological analysis has also been refined. The bounds on the
sum of the light neutrino masses are evaluated under different assumptions of cosmological
datasets and models, statistical treatments, and neutrino mass ordering [33, 49–55]. Hence,
we reanalyze these three mass matrix structures based on the latest NuFITv5.2 data [34]
(see also table 3). The resulting predictions are compared with a new cosmological limit
with the Planck 2018 TTTEEE+lowE+lensing+BAO datasets in the ΛCDM+∑mν model
in ref. [52], which does not assume three light neutrinos are degenerate. In the following,
we show the results for the B3 texture and B4 texture cases. The results for the C minor
are provided in appendix A.

3.2 B3 texture

In the left (right) panel of figure 1, the horizontal red lines show non-trivial correlations
between θ23 and δCP for the B3 texture with the NO (IO). The parameters, θ12, θ13,∆m2

21,
and ∆m2

3ℓ, are fixed to their best fit values (see table 3). The green (yellow) band shows the
1σ (3σ) allowed range of δCP. The plot range of the x-axis is defined by the 3σ allowed range

– 7 –
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40 42 44 46 48 50
0.0

0.5

1.0

1.5

2.0

(a) Normal ordering(NO)

40 42 44 46 48 50
0.0

0.5

1.0

1.5

2.0

(b) Inverted Ordering(IO)

Figure 1. The horizontal red lines represent the predictions for the Dirac CP phase, δCP, as a
function of θ23 for the B3 texture case. The other parameters θ12, θ13,∆m2

21, and ∆m2
3ℓ are fixed to

their best fit values. The green (yellow) band shows experimentally favored regions of δCP at the 1σ

(3σ) level. The plot range of the x-axis is defined by the 3σ allowed range of θ23. The vertical blue
solid line corresponds to best fit value of θ23, and the regions between the blue dashed (dot-dashed)
lines are allowed at the 1σ (2σ) level.

40 42 44 46 48 50
0.0

0.1

0.2

0.3

0.4

0.5

(a) Normal ordering(NO)

40 42 44 46 48 50
0.0

0.1

0.2

0.3

0.4

0.5

(b) Inverted Ordering(IO)

Figure 2. The red line represents the prediction for the sum of the light neutrino masses,
∑

mi, as a
function of θ23 for the B3 texture case. The other parameters θ12, θ13,∆m2

21, and ∆m2
3ℓ are fixed to

their best fit values. The horizontal gray dashed line represents the 95 % C.L. upper bound on
∑

mi

from the cosmological observations:
∑

mi ≤ 0.15 eV for the NO and
∑

mi ≤ 0.17 eV for the IO [52].
The vertical blue lines are the same as those in figure 1.
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m1 [eV] m2 [eV] m3 [eV] α2/π α3/π δCP/π

B3 texture (IO) 0.064 0.065 0.041 −0.05 0.96 1.49

Table 4. The predictions for the neutrino masses, Majorana CP phases, and the Dirac CP phase in the
case of the B3 texture structure with the IO. The four neutrino oscillation parameters, θ12, θ13,∆m2

21,
and ∆m2

3ℓ, are fixed to their best fit values. The mixing angle θ23 is fixed to θ23 = 51.5◦, which is
allowed at the edge of the 3σ range.

40 42 44 46 48 50
0.0

0.1

0.2

0.3

0.4

0.5

(a) Normal ordering(NO)

40 42 44 46 48 50
0.0

0.1

0.2

0.3

0.4

0.5

(b) Inverted Ordering(IO)

Figure 3. The red line shows the prediction for the sum of the light neutrino masses,
∑

mi, as a
function of θ23 for the B4 texture case. The parameters θ12, θ13,∆m2

21, and ∆m2
3ℓ are fixed to their

best fit values. The vertical blue and horizontal gray lines are the same as those in figure 2 .

of θ23. The vertical blue solid line corresponds to the best fit value of θ23, and the regions
between the blue dashed (dot-dashed) lines are allowed at the 1σ (2σ) level. It is found that
the type 2+1 predicts δCP ≃ ±π/2, regardless of the neutrino mass ordering.

Similarly, we show in figure 2 the prediction for the sum of the light neutrino masses∑
mi as a function of θ23. The red curve corresponds to the prediction with θ12, θ13,∆m2

21,
and ∆m2

3ℓ fixed to their best fit values. The horizontal gray dashed line represents the 95 %
confidence-level (C.L.) upper bound from the cosmological observations, ∑mi ≤ 0.15 (0.17) eV
for NO (IO) [52]. The blue lines are the same as those in figure 1. Considering the cosmological
bound on ∑mi, the NO case is excluded within the 3σ range of θ23. On the other hand,
the IO case marginally survives at the edge of the 3σ range, i.e., θ23 ≃ 51.5◦. The revival of
the IO case is mainly due to the shift of the allowed range of θ23 and the relaxation of the
cosmological bound on ∑mi. The predictions for the neutrino parameters at θ23 = 51.5◦
are summarized in table 4.

3.3 B4 texture

We perform the same analysis for the B4 texture case. The predictions for the sum of the
neutrino masses are shown in figure 3. The vertical blue and horizontal gray lines are the
same as those in figure 2. It is easy to see that the B4 texture is excluded for both NO and IO.
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4 New constraints on the gauged U(1)Lµ−Lτ
model with Φ±1

We have so far focused on the structures of the neutrino mass matrix and the predictions
for the neutrino parameters in the minimal gauged U(1)Lµ−Lτ models. The results we
obtained above rely only on the two-zero matrix structures and are independent of the
details of the gauge and scalar sectors. In this section, we study experimental constraints
on the U(1)Lµ−Lτ gauge boson, with a special focus on the light gauge boson mass region
(10MeV ≲ mZ′ ≲ 40MeV) motivated by the muon g − 2 anomaly. We will see that when
the U(1)Lµ−Lτ -breaking scalar is an SU(2)L non-singlet, a mixing between the Z and Z ′

bosons is induced, thereby giving rise to stringent constraints from measurements of atomic
parity violation (APV) and rare meson decays.

4.1 Z − Z′ mixing

The U(1)Lµ−Lτ gauge boson Z ′ can mix with the Z boson and photon. We consider two
types of mixings [35],

Lgauge = −1
4BµνBµν − 1

4Z ′
µνZ ′µν + 1

2
ε

cos θW
BµνZ ′µν , (4.1)

LεZ
= m2

Z

2
(
Zµ Z ′

µ

)( 1 −εZ

−εZ m2
Z′/m2

Z

)(
Zµ

Z ′µ

)
, (4.2)

where Bµ is the U(1)Y gauge field, Z ′
µ is the U(1)Lµ−Lτ gauge field, Bµν ≡ ∂µBν − ∂νBµ,

Z ′
µν ≡ ∂µZ ′

ν − ∂νZ ′
µ, and Zµ ≡ cos θW W 3

µ − sin θW Bµ. The third term in eq. (4.1) is called
gauge kinetic mixing which is parametrized by a dimensionless parameter ε. The other mixing
εZ is called mass mixing, which is generated when an SU(2)L multiplet breaks the U(1)Lµ−Lτ

symmetry. Following the convention, the mass mixing is parametrized as

εZ = mZ′

mZ

δ, (4.3)

by a model-dependent parameter δ [36].
For ε, εZ ≪ 1 and mZ′ ≪ mZ , after canonically normalizing the gauge boson fields and

diagonalizing the gauge boson mass matrix, the Z ′ boson interacts with the SM fermions
in the form,

L ⊃ Z ′
µ(gZ′J

µ
Lµ−Lτ

+ εeJµ
EM + εZgZJµ

NC), (4.4)

where Jµ
Lµ−Lτ

, Jµ
EM, and Jµ

NC denote the Lµ−Lτ , electromagnetic (EM), and neutral currents,
respectively, and gZ = (g2 + g′2)1/2 with g′(g) being the U(1)Y (SU(2)L) gauge coupling
constant. One can see from eq. (4.4) that ε characterizes the photon-Z ′ mixing and εZ does
the Z–Z ′ mixing.2 Note that in the parameter space of our interest, we can safely ignore
the mass shifts of Z and Z ′ because of the tiny kinetic and mass mixings, i.e., MZ ≃ mZ

and MZ′ ≃ mZ′ , where MZ and MZ′ are their physical masses. Hence, we simply use mZ

and mZ′ to denote their physical masses.

2For a relatively heavy Z′, we can include the subleading effect by taking δ → δ + ε
m

Z′
m

Z
tan θW .

– 10 –



J
H
E
P
1
2
(
2
0
2
4
)
0
1
8

The mass mixing εZ is generated from the SU(2)L and U(1)Lµ−Lτ
symmetry breaking.

In our model, it is expressed by the masses of the Z and Z ′ bosons and the VEVs of the
U(1)Lµ−Lτ -breaking scalars. On the other hand, the kinetic mixing ε is a free parameter. In
our analysis, ε is assumed to be vanishing at some high-energy scale. In this case, a low-energy
value of the kinetic mixing is determined solely by the one-loop contribution, which is given by

ε = egZ′

12π2 ln m2
τ

m2
µ

≃ gZ′

70 , (4.5)

where mµ(τ) is the mass of the muon (tau).

4.2 Atomic parity violation

Measurements of the APV give strong constraints on exotic parity violation. Since the Z ′

boson mixes with the Z boson, the Z ′ interaction with the SM fields naturally violates the
parity symmetry and induces an additional contribution to the APV.

The effective Lagrangian relevant to the APV is given by

LAPV = GF√
2

{
geu

AV (eγµγ5e)(uγµu) + ged
AV (eγµγ5e)(dγµd)

}
, (4.6)

where GF stands for the Fermi constant, and geu
AV (ged

AV ) is the four-Fermi coupling between
the electron axial vector and up-quark (down-quark) vector currents. The nuclear weak
charge measured in the APV is expressed at leading order by

Qtree
W = −2

{
Np(2geu

AV + ged
AV ) + Nn(geu

AV + 2ged
AV )

}
, (4.7)

where Np (Nn) is the number of protons (neutrons) in a nucleus. In the SM, the weak charge
QW is written in the leading order by

QSM,tree
W = −Nn + Np(1− 4 sin2 θW ). (4.8)

The most precise measurement of the APV is currently obtained by the 6S → 7S

transition in cesium [56, 57]. Recently, by applying the new data-driven determination of the
neutron root-mean-square radius which is an important input to extract the atomic weak
charge from the measured APV, the experimental value has been updated [58];

Qexp
W (133

55Cs) = −72.94(43), (4.9)

while the SM value including the EW radiative corrections is given by

QSM
W (133

55Cs) = −73.23(1). (4.10)

The Z − Z ′ mixing modifies the atomic weak charge. The effect from the kinetic and
mass mixings can be taken into account by the following shifts in GF and sin2 θW [36],

GF → GF

(
1 + ε2

Z

m2
Z

Q2 + m2
Z′

)
= GF

(
1 + m2

Z′

Q2 + m2
Z′

δ2
)

, (4.11)

sin2 θW → sin2 θW

(
1− εεZ

cos θW

sin θW

m2
Z

Q2 + m2
Z′

)
, (4.12)
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where Q is the energy scale of the APV process. For Q2 ≪ m2
Z′ , the weak charge is modified as

QW ≃ QSM
W (1 + δ2) + 4Np

ε

εZ

δ2 cos θW sin θW , (4.13)

where we keep the leading correction of O(δ2). For the case of 133
55Cs, we have

QW (133
55Cs) ≃ QSM

W (133
55Cs)

{
1 + δ2

(
1− 1.25 ε

εZ

)}
. (4.14)

If Z ′ is light, we have to take propagator effects into account by replacing as δ2 → δ2KCs(mZ′),
where KCs(mZ′) is a correction factor given in table 1 of ref. [59]. Then, the APV bound
at 90 % C.L. is given by∣∣∣∣∣δ2

(
1− 1.25 ε

εZ

)
KCs(mZ′)

∣∣∣∣∣ ≲ 5.7× 10−3. (4.15)

For 5MeV ≤ mZ′ ≤ 100MeV, the correction factor takes 0.2 ≤ KCs ≤ 0.98. Note that
for ε/εZ ∼ 1/1.25, the contributions from ε and εZ are canceled, and the APV bound is
significantly relaxed.

4.3 Flavor-changing meson decay

Flavor-changing meson decay provides a good probe of a light Z ′ boson. In refs. [36, 38],
rare meson decay processes, K → πX and B → KX followed by X → e+e−, µ+µ−, νν̄, are
analyzed for a neutral gauge boson X coupled to the SM fermions only through ε and εZ .
The constraints on the mixing parameters highly depend on the main decay mode. As for the
K+ → π+X process, for example, they obtained δ2 ≲ 10−4/Br(X → e+e−) for X → e+e−

and δ2 ≲ 10−6/Br(X → invisible) for X → invisible in the ε → 0 limit.
In our case, Z ′ originates in the U(1)Lµ−Lτ gauge boson and couples equally to µ, τ , and

νµ,τ , which complicates the experimental signals in general. Nonetheless, in the parameter
space where the muon g − 2 discrepancy is explained, Z ′ decays only into the neutrinos, and
thus we consider Z ′ → invisible to be the main decay mode.3 In this case, the K+ → π+Z ′

decay provides the most stringent limit on the Z − Z ′ mixing.
Here, we evaluate the K+ → π+Z ′ decay width, following ref. [38], and then update the

experimental bound on δ. The leading contribution to K+ → π+Z ′ arises from the top-loop
diagram through the mass mixing εZ . The effect of the kinetic mixing ε is negligible in the
light Z ′ case. The partial decay width is given by

Γ(K+ → π+Z ′) ≃ 4π

√
λ(m2

K , m2
π, m2

Z′)
64π2m3

K

× |M|2, (4.16)

where mK ≡ mK+ = 493.677MeV, mπ = 139.570MeV, and λ(a, b, c) = a2 + b2 + c2 − 2ab −
2ac − 2bc is the Källén function. When the SU(2)L doublet scalar Φ+1 is responsible for the
U(1)Lµ−Lτ symmetry breaking, the squared decay amplitude is given by

|M|2 =
∣∣∣∣∣g3V ∗

tdVtsm2
t

128π2m3
W

mZ

mZ′
εZ

(
X1 +

X2
tan2 β

) (m2
K − m2

π)
2 f+(m2

Z′)
∣∣∣∣∣
2

, (4.17)

3The gauge boson Z′ can also decay into e+e− through the kinetic and mass mixings. However, the invisible
decay mode is dominant unless eε or gZεZ is comparable to gZ′ , which does not happen in our case.
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where Vti (i = d, s) is an element of the Cabibbo-Kobayashi-Maskawa matrix, mW is the
W boson mass, and tan β = v1/v2. In the calculation of the decay amplitude, we use the
hadronic matrix elements,

⟨π±(p)| sγµd |K±(k)⟩ = f+(q2)(k + p)µ, (4.18)
⟨π±(p)| sγµγ5d |K±(k)⟩ = 0, (4.19)

with qµ = (k − p)µ, and f+(0) = 1. The loop functions, X1 and X2, are written in terms
of the charged Higgs boson mass mH+ [60–62]:

X1 = 2 +
m2

H+

m2
H+ − m2

t

− 3m2
W

m2
t − m2

W

+
3m4

W (m2
H+ + m2

W − 2m2
t )

(m2
H+ − m2

W )(m2
t − m2

W )2 ln m2
t

m2
W

+
m2

H+

m2
H+ − m2

t

(
m2

H+

m2
H+ − m2

t

− 6m2
W

m2
H+ − m2

W

ln m2
t

m2
H+

)
, (4.20)

X2 =− 2m2
t

m2
H+ − m2

t

(
1 +

m2
H+

m2
H+ − m2

t

ln m2
t

m2
H+

)
. (4.21)

The X1 term converges to a non-zero value as mH+ → ∞, while the X2 term does to zero.
For the full formula of the partial decay width of K+ → π+Z ′ including the kinetic mixing
contribution, see e.g. ref. [38].

The branching ratio is given by

Br(K+ → π+Z ′) = Γ(K+ → π+Z ′)
τ−1

K+
, (4.22)

where τK+ = 1.2380×10−8 sec is the lifetime of the K+ meson. For the invisibly decaying Z ′,
the current best limit on Br(K+ → π+Z ′) is reported by the NA62 experiment [63], and we
have Br(K+ → π+Z ′) ≤ (1− 6)× 10−11 at 90% C.L. for mZ′ = [0, 260]MeV. Note that the
search in ref. [63] does not give the upper limit on the branching ratio for mZ′ = [100, 160]MeV,
because in that search all the π+ events corresponding to that mass range are exploited
to normalize the number of K+ incoming. Instead, such a mass region is relatively weakly
limited by the search for invisible π0 decays [64].

In figure 4, the constraints from the Cs APV and K+ → π+Z ′ are shown in the type
2+1 model for mZ′ = 10MeV (left) and for mZ′ = 40MeV (right). We simply take ε = 0
in the plot since the kinetic mixing has no significant impact. The mass of the Z ′ boson
and the mass mixing are given by

mZ′ = gZ′v cosβ, εZ = mZ′

mZ

cosβ. (4.23)

The blue hatched regions are excluded by the APV bound, while the green shaded regions are
excluded by the experimental bound on Br(K+ → π+Z ′). Note that for the Br(K+ → π+Z ′)
bound, a cancellation is found at mH± ≈ 530GeV, which corresponds to X1 ≈ 0. The
(light) red band indicates the favored region of the muon g − 2 anomaly at the 1σ (2σ) level.
Thanks to the insensitivity of the APV constraint to the charged Higgs boson mass, the entire
parameter region favored by the muon g − 2 anomaly is ruled out for mZ′ = 40MeV. On the
other hand, for mZ′ = 10MeV, the region favored by the muon g − 2 anomaly is marginally
alive at mH± ≈ 530GeV. However, we will see in the next subsection that all the parameter
region favored by the muon g − 2 anomaly is ruled out by constraints from the Higgs sector.
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(a) mZ′ = 10MeV (b) mZ′ = 40MeV

Figure 4. The experimental constraints from the APV and the flavor-changing meson decay
K+ → π+Z ′ are shown for mZ′ = 10MeV (left) and mZ′ = 40MeV (right). The green shaded region
is excluded by K+ → π+Z ′. The blue hatched region is also constrained by the APV. The (light) red
band indicates the parameter region which can solve the problem of the muon g − 2 anomaly at the
1σ (2σ) level.

4.4 Constraints from Higgs sector

The heavy scalars from the second doublet Φ+1 modify flavor physics observables and
the coupling strength of the Higgs boson to the SM particles. The measurements of those
observables are in good agreement with the SM predictions, thereby putting strong constraints
on the neutral Higgs mixing, masses of heavier scalar states as well as the VEV of the second
Higgs doublet. Here, we discuss the limits on the heavy scalars, by referring to a comprehensive
study in two Higgs doublet models (2HDM) with natural flavor conservation.

The model discussed in this paper has a similar Yukawa structure to the Type-I 2HDM. In
that model, the strong constraints are derived from the quark flavor-changing processes [65–67].
Global data for the quark flavor observables currently excludes tan β ≲ 3 for mH+ ≃ 300GeV,
mostly due to measurements of the B meson decays B → Xsγ, B0

d,s → µ+µ− and B meson
oscillation ∆MBs [67]. Regarding the neutral scalar mixing cos(β − α),4 the ATLAS and
CMS combined limit on the Higgs coupling strength weakly constrains the Type-I 2HDM,
and allows the range, −0.35 ≲ cos(β − α) ≲ 0, at 95 % C.L. [68].

The perturbative unitarity and EW precision observables also bring strong constraints
to our model, given that the U(1)Lµ−Lτ

symmetry forbids a quadratic term (H†Φ+1). In
the absence of this quadratic term, the masses of the CP-even and charged Higgs bosons
are determined solely by the EW VEV and scalar quartic couplings. Thus, it is not possible
to make the additional Higgs bosons arbitrarily heavy, and their masses are restricted by
the perturbative unitarity [69, 70]. In appendix B, we provide the definition of the Higgs
potential in our U(1)Lµ−Lτ -gauged 2HDM as well as the notation and relations, which enable

4The mixing angle α between the CP even neutral Higgs bosons is defined in appendix B.
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Figure 5. The constraints from the Higgs sector in the type 2+1 model for mZ′ = 10MeV. The
hatched region is excluded by the combination of the perturbative unitarity and EW T parameter.
The orange shaded region is excluded by the constraint from ∆MBs

.

us to easily translate the unitarity bounds given in refs. [69, 70] and study the constraint
from the EW oblique corrections. The relevant formulae for the EW oblique corrections are
found in ref. [71] with the absence of the CP odd Higgs boson.

In figure 5, the constraints from the Higgs sector are shown for mZ′ = 10MeV. Note
that there is a relation between gZ′ and tan β,

gZ′ =
mZ′

v

√
1 + tan2 β. (4.24)

The orange shaded region is excluded by the constraint from ∆MBs
, which gives the strongest

bound among all flavor observables. The hatched region is excluded by the perturbative
unitarity and the EW T parameter. We scan the Higgs mixing cos(β − α) within −0.35 ≲
cos(β − α) ≲ 0. The mass ratio mH0/mH± is varied from 0.1 to 2 in order to obtain
the conservative bound. It is clear from figure 5 that any value of gZ′ is ruled out at
mH± ≈ 530GeV. Therefore, the solution of the muon g − 2 anomaly is excluded in the
type 2+1 model.

4.5 Applications

Since the type 2+1 model is completely ruled out, we here consider a hybrid model as an
extension. The model features an SU(2)L singlet scalar σ with the U(1)Lµ−Lτ charge +1
in addition to the SU(2)L doublet Φ±1. The constraints from the APV and meson decay
can be relaxed by this extension.

In the hybrid model, the Z ′ mass and εZ are given by

m2
Z′ = g2

Z′(v2
σ + v2

2), εZ = mZ′

mZ

sign(QΦ) cosβ cos θ, (4.25)

– 15 –



J
H
E
P
1
2
(
2
0
2
4
)
0
1
8

where vσ/
√
2 is the VEV of σ, QΦ = ±1 for the scalar doublet Φ±1, and

tan θ = vσ

v2
. (4.26)

From the definition of δ, we find

δ = sign(QΦ) cosβ cos θ = sign(QΦ)
1 + tan2 θ

1
v

mZ′

gZ′
. (4.27)

Thus, for a given mZ′ , the bounds from the APV and K+ → π+Z ′ are weaken by a factor
(1+tan2 θ), compared with the result in figure 4. For mZ′ = 10 (40)MeV with tan θ = 10 (30),
we find that the muon g − 2 favored region is limited to the mass range mH± = 400–700
(300–1000) GeV. If the value of tan θ further increases, no mass bound is obtained for the
charged Higgs boson.

In this hybrid model, there is a cubic term µ H†Φσ, where µ is a parameter with mass
dimension one. Taking a large µ with a non-negligible VEV of σ, the effects of Φ tend to
decouple. In such a situation, the constraints from the perturbative unitarity, the EW T

parameter, and the Higgs mixing in the 2HDM sector are safely avoided. We also assume no
mixing between the singlet sector and doublet sector without conflicting other constraints.
Therefore, the hybrid model easily provides a viable parameter space for the solution to the
muon g − 2 discrepancy, while satisfying all other experimental and theoretical constraints.

In figure 6, we show the constraints from the K+ → π+Z ′ decay as well as the well-studied
U(1)Lµ−Lτ bounds. The latter bounds are derived by using ε ≃ gZ′/70. The green shaded
region is excluded by the meson decay with tan θ = 30, where mH± = 300GeV is assumed.
When we take tan θ = 10, the green shaded region is shifted to the region surrounded by the
green dashed one. In the (light) red region, the muon g − 2 discrepancy is explained at the 1σ

(2σ) level. The gray hatched region is excluded by the NA64µ experiment [24], white dwarf
cooling [72, 73], and effective number of neutrinos Neff [74, 75]. Consequently, tan θ should be
larger than about 10 to explain the muon g − 2 discrepancy by the U(1)Lµ−Lτ gauge boson.

5 Conclusion

The minimal gauged U(1)Lµ−Lτ models, which feature a single U(1)Lµ−Lτ -breaking scalar,
predict various non-trivial structures for the light neutrino mass matrix. We have revisited
the analysis of the B3 and B4 texture structures, which are realized in the models with one
additional SU(2)L doublet scalar. Using the latest global fit, NuFITv5.2, of the neutrino
oscillation parameters, we have found that only the B3 texture with the inverted mass
ordering is consistent with the current neutrino oscillation data and cosmological limit on the
sum of the neutrino masses. The allowed parameter region is very restricted and lies only at
θ23 ≃ 51.5◦, although the previous work concluded that this parameter space was excluded
using the data sets at that time. We have studied the new model-dependent constraints
on the U(1)Lµ−Lτ models with the extra SU(2)L doublet scalar by focusing on the APV
and the K+ → π+Z ′ decay. The constraints from the Higgs sector, such as the quark
flavor observables, perturbative unitarity, and EW precision data, have also been evaluated.
It has turned out that the model is robustly ruled out by combining these constraints if
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Figure 6. The constraints on the hybrid model. The green shaded region is excluded by the
K+ → π+Z ′ bound with tan θ = 30. The excluded region is enlarged to the region surrounded by the
green dashed curve when we take tan θ = 10. In the (light) red region, the muon g − 2 anomaly is
explained at the 1σ (2σ) level. The gray hatched region is excluded by the NA64µ experiment [24],
white dwarf cooling [72, 73], and effective number of neutrinos Neff [74–76].

the U(1)Lµ−Lτ gauge symmetry is broken solely by the SU(2)L doublet scalar. When an
additional SU(2)L singlet scalar is also responsible for the U(1)Lµ−Lτ symmetry breaking,
the constraints from the APV, meson decay, and Higgs sector are significantly relaxed. We
have found that the VEV ratio of the singlet scalar to the doublet scalar should be larger
than about 10 to explain the muon g − 2 discrepancy.
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A Analysis of C minor structure

The type 1 model contains an SU(2)L singlet scalar σ with the U(1)Lµ−Lτ charge +1 and
vanishing hypercharge. This model predicts the C minor structure for the light neutrino
mass matrix [39–44]. See table 5 for the U(1)Lµ−Lτ charge and the SU(2)L representation of
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Fields (Le, Lµ, Lτ ) (eR, µR, τR) (Ne, Nµ, Nτ ) H σ

U(1)Lµ−Lτ (0,+1,−1) (0,+1,−1) (0,+1,−1) 0 1
SU(2)L 2 1 1 2 1

Table 5. Field contents and their charge assignments of the type 1 model.

the relevant fields. The Lagrangian of the leptonic sector is given by

L ⊃− ye ec
R(Le · H†)− yµ µc

R(Lµ · H†)− yτ τ c
R(Lτ · H†)

− λe N c
e (Le · H)− λµ N c

µ(Lµ · H)− λτ N c
τ (Lτ · H)

− 1
2MeeN c

e N c
e − Mµτ N c

µN c
τ − λeµσN c

e N c
µ − λeτ σ∗N c

e N c
τ +H.c. (A.1)

The VEV of the additional scalar σ,

⟨σ⟩ = 1√
2

vσ, (A.2)

is solely responsible for breaking the U(1)Lµ−Lτ gauge symmetry. After H and σ acquire
the VEVs, the light neutrino masses are generated through the type-I seesaw mechanism.
The inverse of the light neutrino mass matrix takes the structure,

M−1
ν ≃ −(MDM−1

R MT
D)−1 =


−2Mee

λ2
ev2 −2λeµ⟨σ⟩

λeλµv2 −2λeτ ⟨σ⟩
λeλτ v2

−2λµe⟨σ⟩
λeλµv2 0 − 2Mµτ

λµλτ v2

−2λτe⟨σ⟩
λeλτ v2 − 2Mµτ

λµλτ v2 0

 , (A.3)

where

MD = v1√
2

λe 0 0
0 λµ 0
0 0 λτ

 , MR =

 Mee λeµ ⟨σ⟩ λeτ ⟨σ⟩
λµe ⟨σ⟩ 0 Mµτ

λτe ⟨σ⟩ Mµτ 0

 . (A.4)

The mass matrix structure like eq. (A.3) is called the C minor.
Following the analysis detailed in section 3, the predictions for the neutrino parameters

are obtained. In figure 7, we show the prediction for the sum of the light neutrino masses∑
mi in the case of NO.5 The red curves correspond to the predictions for ∑mi when

θ12, θ13,∆m2
21, and ∆m2

3ℓ are fixed to their best fit values. The vertical blue and horizontal
gray lines are the same as in figure 2. The type 1 model is allowed within the 2σ range of θ23.

B Higgs potential in the type 2±1 models

The Higgs potential in the type 2±1 models is given by

V = m2
1 (H†H) + m2

2 (Φ†Φ) + λ1
2 (H†H)2 + λ2

2 (Φ†Φ)2 + λ3(H†H)(Φ†Φ) + λ4(H†Φ)(Φ†H),
(B.1)

5In the case of IO, one cannot find the real solutions of δCP, m1 and α2,3 that satisfy the two complex
equations corresponding to the two zero elements of M−1

ν , when the other five parameters, θ12, θ13, θ23, ∆m2
21,

and ∆m2
3ℓ, are consistent with the neutrino oscillation data.
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Figure 7. The prediction for the sum of the light neutrino masses,
∑

mi, as a function of θ23 for the
C minor case. The red curves correspond to the predictions for

∑
mi when θ12, θ13,∆m2

21, and ∆m2
3ℓ

are fixed to their best fit values. The vertical blue and horizontal gray lines are the same as in figure 2.

where Φ denotes Φ+1 or Φ−1. The six real parameters m2
1, m2

2, and λ1–λ4 are replaced
by the physical parameters, the EW VEV v, the neutral Higgs mixing angles α, the Higgs
boson masses mh, mH0 , mH+ , and the VEV ratio of the two Higgs doublet fields tan β = v1

v2
.6

From the stationary conditions, we have

m2
1 = −v2

2
[
λ1 cos2 β + (λ3 + λ4) sin2 β

]
, (B.2)

m2
2 = −v2

2
[
λ2 sin2 β + (λ3 + λ4) cos2 β

]
. (B.3)

The doublet Higgs fields are parameterized as

H =
(

i ω+
1

1√
2(v1 + h1 − i z1)

)
, Φ =

(
i ω+

2
1√
2(v2 + h2 − i z2)

)
, (B.4)

and their mixing are defined by(
h1
h2

)
= R(α)

(
H0

h

)
,

(
z1
z2

)
= R(β)

(
z

G

)
,

(
ω+

1
ω+

2

)
= R(β)

(
ω+

H+

)
, (B.5)

where

R(θ) =
(
cos θ − sin θ

sin θ cos θ

)
. (B.6)

The fields z and ω± are would-be Nambu-Goldstone bosons for the EW symmetry breaking,
and G is the one for the U(1)Lµ−Lτ

symmetry breaking. The quartic couplings are rewritten

6The definition of tan β is inverted from the one in the ordinary 2HDMs [69, 70].
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by the physical parameters as

λ1 = 1
v2 sin2 β

(
m2

H0 cos2 α + m2
h sin2 α

)
, (B.7)

λ2 = 1
v2 cos2 β

(
m2

H0 sin2 α + m2
h cos2 α

)
, (B.8)

λ3 = 1
v2

[
(m2

H0 − m2
h)
sin 2α

sin 2β
+ 2m2

H+

]
, (B.9)

λ4 = 1
v2 (−2m2

H+). (B.10)
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medium, provided the original author(s) and source are credited.
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