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Abstract: Numerous experimental observations place Dark Matter (DM) as a
central character in our cosmological history. Many extensions to the Standard
Model of particles physics provide candidates for DM, often predicting interactions
additional to gravity. This gives us the opportunity to experimentally probe these
extensions and determine the nature of DM. In this thesis, we explore how direct
DM detection could be used most effectively to achieve this goal. With this in
mind, we have developed a tool for performing multidimensional parameter scans.
This tool allows us to evaluate the capabilities of current and future detectors for
detecting and understanding DM interactions. We show that by extending the
energy region analysed, detection sensitivities and parameter reconstruction can
be improved substantially. These insights play an important role in more global
analyses, where hints of DM could come from other experiments, but verification

depends on direct detection.
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Chapter 1

The Status of Dark Matter

Dark Matter (DM) plays an essential role in our understanding of the Universe and
its evolution. This omnipresent yet utterly mysterious form of matter cries out for
deeper understanding. Here we review what is known about DM, the constraints
placed on its properties from cosmology and astrophysics, and the role it plays in

theories beyond the Standard Model.

In the 20*" century, astronomers started to determine the total mass of galaxies and
galaxy clusters by using dynamics and their understanding of gravity. They could
compare this total mass with the amount of luminous matter belonging to said system,
with what is known as the mass-to-light ratio. Fairly early on, estimates suggested
that a large amount of matter in galaxies and galaxy clusters is invisible [4, 5], but
only after developments in radio astronomy and spectrography did a clearer picture
form. Precise measurements of the rotational speeds of stars and neutral hydrogen
gave clear indications that the matter profile of galaxies tended not to follow that

of the luminous matter [6,7].



2 Chapter 1. The Status of Dark Matter

Objects in the outer regions of spiral galaxies orbit around a galactic center, with

some circular velocity, v.. According to Newtonian gravity, this is given by,

UZ<T) = ) (1'1>

where G is gravitational constant and M (r) is the mass contained at distance r from
the galactic center. We have assumed here that the mass distribution is spherically
symmetric, i.e., M (r) = [; 4w’ p(r')dr’, where p is the matter density. Astronomers
measured the v, of objects at different distances to build what is known as a rotation
curve, allowing them to infer the mass distributions of a given galaxy. A number of
different galaxies showed that for large distances, far beyond the region where the
majority of stars reside, the rotation curve is approximately flat, v.(r) = const., as

shown in Figure 1.1. This implies that

2

p(r) = Z:ZE:Q. (1.2)
These mass distributions have no luminous counterpart, either in gaseous or stellar
matter. Further evidence for this kind of large symmetrical structure in galaxies
came from the development of N-body simulations. They showed that rotating spiral
galaxies are in fact unstable without the addition of a DM halo [8-10]. This also
gave some motivation for the assumption of spherical symmetry use to derive Eq. 1.2,
which, to a first a approximation is still the accepted picture. It was becoming clear
that a large amount non-luminous matter was present in these galaxies, exactly how

much was uncertain, but many mass-to-light ratios were reported between 3-10 [11].

An alternative solution to this missing mass problem was proposed with Modified
Newtonian Dynamics (MOND) [13,14], which affects small acceleration scales. Ini-
tially introduced as a phenomenological model, substantial work has been conducted
to try to embed MOND into a more fundamental theoretical framework. In particu-
lar, the initial formulation of MOND was not relativistic and therefore inconsistent

with General Relativity (GR). One of the great successes of GR is that it successfully
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Figure 1.1: Rotation curve for the NGC 6503 galaxy. Also shown is the
predicted rotation curve from different components of the galaxy. Figure taken
from Ref. [12].

predicts the phenomenon of gravitational lensing, where the light from background
stars is bent by a massive foreground object. In many cases this can be used to
simply determine the total mass of a foreground galaxy or cluster, which can in
turn be compared with the luminous matter measured in the object [15]. TeVeS [16],
standing for Tensor-Vector-Scalar gravity, was developed as a modified gravity that
is consistent with lensing results and rotation curves, it still however, has difficulties

reproducing gas density distributions found in galaxy clusters [17].

Greater problems occur, when one considers cluster mergers. The most famous being
the Bullet Cluster, a collision between two galaxy clusters, leaving a shock front
formation in the gas component. Lensing can produce information about where
the predominant matter lies whereas X-ray astronomy gives information about the
gaseous matter that interacts and collides as expected. From Figure 1.2 we can see

the difference the two measurements. Lensing shows that the two clusters simply
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57' 56'

-55'58"
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Figure 1.2: Image of the bullet cluster collision. The green contours on the
left and right represent the matter density as inferred by from gravitational
lensing. On the left, stellar matter is shown also. On the right, the distribution
hot gas from X-ray observations is depicted by the color grading. As can be
seen, the majority of the mass in the clusters moves straight past each other,
unaffected. Images taken from [20].

passed through each other, whereas X-ray images tell the story of a violent collision.
Over the years more of these mergers have been studied [18] providing processes that
are very difficult to reconcile with TeVeS. In the particle interpretation however, this

simply constrains the strength of self-interaction within the dark sector to [19]

Tsell 9 em? g ! (1.3)
mpwm

where og.¢ is the interaction cross section for DM, self scattering, and mpy is DM

mass.

Both the Bullet Cluster and galaxy rotation curves could be explained by some
population of dim astrophysical objects, such as brown dwarfs. In fact, these objects
are commonly dubbed massive astronomical compact halo objects (MACHOs) and
were the subject of two experimental searches looking for micro-lensing events [21,22].
The EROS collaboration constrained MACHOSs in the mass range 10~7 — 1 Mg, to
be less than 8% of DM halo mass [21]. This result seemed to make the MACHO
explanation for DM less probable. More convincing evidence comes when considering

the role DM had in Big Bang Cosmology.



With the discovery of Hubble’s law [23] and the Cosmic Microwave Background
(CMB) [24], physicists sought to understand how the universe evolved from a hot
dense plasma to what we see today. Galaxies no longer had to just be stable, they

had to be created.

The very early stages of the Universe are driven by a period of Cosmic Inflation,
which has the effect of pushing the curvature of the space-time metric to zero [25].
Following inflation is a period of reheating, where the energy from the rapid expansion
gets converted into hot SM particles. The homogeneous and isotropic metric, with

zero curvature is described by the FRW metric,
ds? = dt* — a?(t) (dr® + r2d6? + r? sin®(0)de?) (1.4)

in spherical coordinates and a(t) is the scale factor where a(ty) = 1 for the current
epoch, to. The Hubble parameter (H(t) = a/a) is often expressed in terms of the
dimensionless parameter,

H(t)

h(t) = .
®) 100 km s—! Mpc™!

(1.5)

Substituting this metric into Einstein’s field equation leads to the Friedmann equa-

tion,

_ 8rGp.

H2
3 )

(1.6)

where once again, flatness is assumed such that the energy density p. in this equation
is actually known as the critical density, i.e. the density required to have a flat

universe, the value of which is p. = 1.054 x 107° h? GeV cm 2.

The equation of state p = wp can be applied to different forms of energy density,
such as matter (w = 0) or radiation (w = 1/3), and in an expanding Universe evolves
as,

P_ _3(1+w
o= 31w, (1.7)
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which produces the result p,, o< a=3 for matter and p, oc a=* for radiation. Therefore,

by measuring the densities of today, one can solve

Q,, Q, 1/2
H(a) = Hy | =22 + 2% 4 (1.8)

a’ at

to calculate how the scale factor has changed over time. The (2’s are density para-
meters normalised by p., i.e. ; = p;/p. and Q¢ is dark energy which is not the

topic of this Thesis.

From the temperature of the photons in the Cosmic Microwave Background (CMB),
we can infer that the early universe was not only very dense, but also very hot. These
high temperatures would produce quarks and baryons. A few minutes after the Big
Bang, the universe cooled enough to support simple nuclei forming in a process known
as Big Bang Nucleosynthesis (BBN) [26]. These light elements were formed from the
primordial plasma, first forming protons and neutrons, then deuterium, helium-3,
helium-4 and lithium. The cleanest prediction to test BBN is the abundance of
deuterium, which is not known to be produced by any astrophysical source. The
observed abundance of deuterium D/H ~ 107> can be explained by a baryon density
of Oy, h? ~ 0.02 [27,28]. The baryon and photon densities here would provide us with
a minuscule amount of energy density, resulting in an open Universe!. Measurements

of the CMB anisotropies provide a way to test this.

The CMB is the afterglow from recombination [29,30], an event that took place
approximately 380,000 years after the Big Bang. Similarly to BBN, recombination
occurs when the Universe cooled enough to support composite particles, but this time
the particles are neutral atoms. When this happens, photons can travel unimpeded,
so the Universe becomes transparent. Before then, Thomson scattering between
photons and ions kept baryonic matter and radiation closely connected forming a

plasma fluid. The photons emitted from this time are still visible today and, due to

LA universe with negative curvature



the earlier period of inflation, the temperature distribution on the sky is remarkably
homogeneous. Importantly, there are small temperature fluctuations that give a

tremendous amount of information about the structure of the early Universe.

At the Big Bang, density perturbations exist at all scales and are pushed out of
causal contact by inflation i.e. at super horizon scales. Whilst above the horizon
scale, perturbations are frozen, and will not grow or shrink. In the radiation era,
perturbations begin to enter the horizon. They start to compress under gravity
and expand with radiation pressure, producing Baryon Acoustic Oscillations (BAO).
However, a pure dark matter perturbation will not produce BAOs and instead will

slowly grow.

Since the pattern of the CMB is observed on a 2D surface, it is usually analysed
using the angular power spectrum, where the multipole order, ¢, can be related to
angular size. The oscillation modes that provide the greatest temperature variations
are caused by perturbations that, at the time of recombination have just reached
an extrema. Therefore, the first peak in the power spectrum is determined by the
time it takes for one compression to occur. Since the speed of BAOs and the time
of recombination is known, the multipole order of this peak is predictable. When
translating this ¢ to angular size as observed on the CMB today, only the total
energy density affect the result. The first peak was measured by WMAP, where
they reported a flat curvature [31,32]. In order to extract information about the
components of €2, subsequent peaks need to be measured. For DM specifically, Qpyr,
the first three peaks of the CMB are sufficient. This is because the relative heights
of the peaks allow one to disentangle multiple effects. The relative baryon density
produces an enhancement of odd peaks due to baryon loading in oscillations, whereas
the total matter density can be inferred by observing which perturbations entered
the horizon before matter radiation equality. This can be observed via the effect of

Gravitational Driving [33].
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Figure 1.3: Angular power spectrum of the CMB temperature fluctuations
taken from Ref. [34]. The curve represents the best assuming ACDM cosmolo-
gical model. Residuals are shown in the bottom panel.

The various physical effects produce the intricate power spectrum, that through the
precise experimental measurements of Planck, place the most stringent bounds on
the total density of DM, Qpy A% = 0.1199 £ 0.0027 [34]. Figure 1.3 shows the power

spectrum in Ref. [34] where D is the variance in temperature.

Figure 1.4 shows the consistency between the measurements of the baryon density
), coming from the CMB [34] and the deuterium abundance [35]. This implies that
baryons are a sub dominant component of matter in the universe, even at very early

times. Suggesting that DM is some new fundamental particle that is missing from

the Standard Model (SM) of particle physics?.

The SM is the quantum field theory description of the most fundamental constituents
of our universe. Employing local gauge symmetries, it describes particle interactions

and provides some of the most precise agreement between experiment and theory

2It should be noted that Primordial Black Holes (PBHs) created via inflation could account
for DM, but in most mass regions, this possibility is ruled out, with the possible exception of
Mppn ~ 10712 M. See ref. [36] for a recent review.
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Figure 1.4: Concordance between Deuterium to Hydrogen abundance found
in Ref. [35] and the the Planck collaborations result reported in Ref. [34]. The
black curve corresponds to BBN calculations of primordial abundances as a
function of baryon density €, h* [37].

across any discipline. The SM gauge group is SU(3).®SU(2),®U(1)y, where the
first group corresponds to the strong force, the second describes the weak interaction
and the third hypercharge. Through the Higgs mechanism, the electroweak gauge
symmetry is broken, SU(2),®U(1)y —U(1)gy, giving the bosons W* and Z°
masses. The U(1)gy symmetry describes electromagnetism, mediated by the massless

photon.

The gauge fields are vector fields that transform in the adjoint representation, whereas
the particle content, if charged under such group, transforms under the fundamental
representation. The charge assignments of the SM are shown in Table 1.1, notice

the different assignments for left-handed and right-handed chiral fields.

When electroweak symmetry breaking occurs, The Higgs field H, acquires a non-

zero vacuum expectation value m, providing masses to fermions via the Yukawa
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SUB) [SU@), [ Uy
Q. = (32) 3 2 1/6
L = (?j) 1 2 —1/2
ur 3 1 2/3
dp 3 1 | —1/3
In 1 1 —1
G 8 1 0
Wi 1 3 0
B, 1 1 0
H 1 | 2 | 1)2

Table 1.1: Quantum numbers for the SM fields. Remember that 1 in an SU(N)
group is uncharged under that group and transforms trivially, whereas N and
N2-1 transform in the fundamental and adjoint representations respectively.
For U(1), an uncharged field has the quantum number 0. The subscripts refer
to the chirality of the fields

interactions [3§]

LD YYQ, Huly + YIQ, Hdj + hoo. — 2V uhy + 2V, dh +he. (19)

\/5 v2 Y

where H = ioc2H* and the unitary gauge has been chosen for the Higgs field. Indices
i and j run over the three generations of quarks. The Yukawa matrices Y;; need not
be diagonal in general. In order to diagonalise the mass terms, one transforms the

SM Lagrangian via four unitary matrices, up g — U} pur,g and dp g — Uf pdp k.
This is not without consequence because the charged W boson couples to both up
and down quarks, leading to

EL’}/'u'dLW: — ﬂL’}/"L(UTLL)T’yHUgdLW—"_ = ﬂL’)/MVCKMdLW:— (110)

where Vogn = (U2)TU¢ is the Cabibbo-Kobayashi-Maskawa (CKM) matrix [39,40]
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and can be represented as a 3 X 3 matrix

‘/11 ‘/12 ‘/13 Vud Vus Vub
V=UlUi=| Vo Vap Vas | =| Viu Ve Vi |- (1.11)
Vi Vi Vi Via Vie Vi

The CKM matrix is very well measured, providing one of the minimal bars for entry
that BSM models have to meet. Often BSM models adopt what is called Minimal
Flavour Violation (MFV) [41,42] which states that all new flavour changing effects

follow the pattern shown in the standard model.

For leptons, mass is generated in a similar way, however neutrinos are only observed
to be part of the left-handed SU(2), doublet, so there is no renormalisable neutrino

mass term in the SM,

v

V2

For the charged leptons its observed that in the flavour basis, Y

LOYIL HE +hee. — —=YLIl +he. (1.12)

L = diag(me, my, m.).
Measured quark mixing and the lack of mixing in the charged lepton sector are
rather constraining for BSM physics. However, there are known inconsistencies with
the SM and nature. For example, neutrino flavour oscillations observed in many
experiments (see refs. [43-46]) requires at least two neutrinos to have mass [47,48].

Therefore, in the neutrino mass basis,
ZL’}/MVLVV:— — U;)jMNSZLi’}/MVLjW;, (113)

where Uppns is the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix and one
relates the mass basis to the interaction basis via, v, = >; Uy, Oscillation
experiments are sensitive to the parameters in the PMNS as well as the square

difference of the neutrino masses Amg; = m? —m;.
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Any theory that supersedes the SM will have to describe neutrino masses. If neutrinos
are Dirac fermions, then a right handed neutrino is invoked, vg, for each generation
with mass. Current mass bounds suggest a very small Yukawa coupling 3, ~ 10713,
indicating to many that new physics is required. Interestingly, the vy particle are
not charged via any of the gauge fields in the standard model, making it an excellent
DM candidate. Below we will see that main complication comes when producing
these sterile particles that in the correct amount to be DM. However, prior to this
consideration the Tremaine-Gunn bound can be derived just from looking at the
scale of DM structures in the Universe, this resulting in the constraint the DM mass

must be above 0.4 keV [49].

If the neutrino is a Majorana fermion the only mass term is the dimension 5 Weinberg
operator. Terms above dimension 4 are indicative of higher energy physics which
becomes non-local at low energies. Reminiscent of the 4-Fermi theory of weak
interactions [50], this approach at least provides a good explanation as to why
neutrino masses are so small, since they are suppressed by the scale of the new
physics. UV completions such as the seesaw mechanism often predict new particles

that are DM candidates.

Inexplicably small parameters, like the neutrino and electron masses may have no
further explanation. Fermion masses are technically natural, meaning their quantum
corrections are proportional to the bare values. For a scalar particle like the Higgs,
this is not true. In fact, the Higgs should be sensitive to any high scale physics that
it couples to. Higher energy physics is expected at the Planck scale for gravitational
effects and at ~ 100 GeV, where hypercharge develops a Landau pole, despite all
this, the measured Higgs mass is 125.2 GeV [51,52]. Many BSM models set out to
remedy this and along the way predict the existence of new particles. Perhaps the
most famous class of DM particle comes from supersymmetry (SUSY) [53], which

predicts every SM particle has a superpartner. In order to stabilize protons, a global
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symmetry named R-parity is usually invoked, which, in turn, stabilizes the lightest
supersymmetric particle (LSP) [54]. A generic feature of SUSY models is that they
exist at higher energies so the mass of the LSP is, in many cases, expected to be

around the weak scale.

In contrast, Axion Like Particles (ALPs) are predicted to be much lighter (m, <
eV). Axions were originally introduced to solve the strong CP problem, originating

from the term

0
3272

Tr [GW@W} , (1.14)

where 0 is a dimensionless parameter, G, and G w are the QCD field strength tensor
and its dual. This term is allowed via all the symmetries of the SM and contributes
to the electric dipole moment of the neutron in conjunction with the quark mass
matrix, M,,

0 =0+ arg (det M) . (1.15)

Experimentally, the electric dipole of the neutron is yet to be measured, but results
are sensitive enough to constrain # < 107'°, suggesting a fine tuning between 6
and arg (det M,). The axion solution introduces a global U(1)pq symmetry which is
spontaneously broken, resulting in a pseudo-Goldstone boson, known as the axion [55,
56]. Nowadays ALPs find motivation from a large array of BSM models, many of

which make explicit connection to DM, see Ref. [57] for a review.

The aforementioned problems with the SM could be considered small fry when one
considers the observed Baryon Asymmetry of the Universe (BAU). This asymmetry
is not only observed now, its been observe in both the CMB and BBN measurements.
The conditions to dynamically produce BAU in the early universe are known as
the Sakharov conditions [58]. They state that there must be processes that exhibit,
baryon number violation, CP violation and a departure from thermodynamic equi-

librium. Within the SM, these processes are not present to the level required and
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has motivated many extensions.

An interesting possibility is that the processes that drive the BAU also drive an
asymmetry in DM, giving the abundance seen today, this is known as Asymmetric

Dark Matter (ADM). Such models tend to be in the ~ GeV range [59].

Despite these issues, the SM is still tremendously predictive and manages to agree
with a wide range of experiments. In order to get some hint as to how to move
past the SM, there is a huge experimental and theoretical effort in testing, with ever
increasing degrees of precision, SM processes. One such effort is in observations of
Meson decays, where there are hints of a discrepancy. In Chapter 6 we use these

hints to motivate a specific DM model.

Current efforts to improve the SM show that, in many cases, particle physicists
would be looking for new particles with DM characteristics with or without the
evidence from Astrophysics. The idea that DM will be explained by some extension
to the SM is not only well motivated, it could also hold the key to solving other

outstanding problems.

In order for DM candidates to be viable, they need to be created in the early universe,
producing the correct relic abundance we observe in the CMB. Once a model and
a production mechanism is chosen, constraints and predictions follow. However,
as shown above there is no shortage of DM models and as will be shown below,
there are multiple production mechanisms. When considering the early universe,
thermodynamic principles are particularly helpful. If there is some non-gravitational
coupling between DM and SM matter, as is predicted by many BSM theories, the

number density, n,, of DM is described by the Boltzmann equations,

d3
fu, + 3Hn, = (297:)3/0[10] EZX’ (1.16)
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where g, is the internal degrees of freedom, p, is the three-momentum and E, is
energy. C'is the collisional operator and depends on the specific model, i.e. which
processes change the number density, n,. For example, a model that connects
DM particles, x and the SM particles, f, via 2 — 2 scattering only, leads to the

Boltzmann equation

n, +3Hn, :nfv(awﬁ_}w—ni(awﬁ_}ﬁ, (1.17)
where (o v) is the thermally averaged cross-section defined by
1 Ppx &py
= —(E, + Ex)/T], 1.18
(o0 U>XX—>ff Ny Bqlxgq ) 2B 2E. Oyx—1f €xXp[—(Ey + Ex)/T] ( )

where T is temperature. Thermally averaged decay rates (I') can be defined similarly.
Assuming that CP in not violated implies that (0 v) sy = (0 V)7, leads to
the simplification

ny +3Hn, = (ov) (nff - ni) : (1.19)

SM particles in the early universe are in equilibrium and thus follow the corresponding

thermal number densities,

3 T 3/2
Mol = gspB@Ti)’ and Nor = g (m) el=mI/T (1.20)
2 2

depending on whether they relativistic or not at a given temperature. The constant
epp is just a numerical factor that is 3/4 for Fermions and 1 for Bosons. The
condition where a particle species can maintain thermal equilibrium is that the
particle interaction rate, in our 2 — 2 example, annihilation rate, n, (o v), must
be greater than the expansion rate, H(¢). As the universe cools and expands,
the annihilation rate can drop below H(T'), at which point, the particle no longer
interacts quickly enough and its comoving number density, Y = n/s, freezes-out.

This behavior is captured by modifying Eq.(1.17) to,

dy OU)S /9 9
dT:<HT> (v2-v2,). (1.21)

X €q, X

3

where we used the conservation of entropy, i.e. sR° is a constant and assumed
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that this process happens in the radiation dominant era so that 7 = —HT. In
the relativistic limit, Y. y, is temperature independent, meaning that the late time
value for Y is simply the equilibrium value evaluated at the time of freeze out.
The number density of an equilibrium species and a decoupled species today differ
because the number of radiation degrees of freedom contributing to the radiation
energy density, g., and the radiation degrees of freedom contributing to the radiation

entropy density,gs. change over time. They are approximately given by

A T\
* — i R by i\ = 5 122
I bt%):ns g <T> " 8 fer%i:ons g <T) ( )
TN\ 7 T\°
xS — 7 p— - 1 — , ].23
J bgnsg (T> i 8fer§>nsg <T) ( )

where the T;/T factors are relevant for particles that remain relativistic but are no
longer in thermal equilibrium, i.e. 7; is the temperature of decouples species i. The

relationship of g2, /g. over temperature is shown in Figure 1.5.

As a concrete example the neutrinos freeze out at 7'~ 1 MeV, meaning that their

density is given by

X80 Yeo(Ty) PPy, im,

Q,h? =
Pe 91eV ’

(1.24)

where we have summed over different generations of active neutrinos. We see here
that if we wanted neutrinos to play the role of hot DM, i.e. that Q, h? = 0.11 we
would need the masses of the three generations to sum to ~ 9 eV, which is of orders
of magnitude higher than experimental upper bounds of 0.12 eV [60]. SM neutrinos
could contribute to the measured abundance of DM in our universe, however not all
measurements, our strongest measurements of the Qpy come from the CMB. SM
neutrinos were relativistic at the time of recombination and therefore would not
contribute to this measurement of Qpy. The effects of massive neutrinos could be

felt in later stage structure formation [61].

Speculating that a relativistic particle which is coupled via a BSM gauge boson
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Figure 1.5: The dashed line comes from the simply counting the relativistic
degrees of freedom in both Eq.(1.22) and Eq.(1.23) as contributions to the en-
ergy and entropy density respectively. Ref. [62] calculates these contributions
more precisely and considers the QCD phase transition at different temperat-
ures, which we show with solid lines. We see that the approximation holds up
fairly well.

that is heavier than the weak scale, Mgy > My, doesn’t help either because the

changing g, values provide the result

2 My

Q.h” =
X 910eV’

(1.25)

suggesting still a very light DM particle. A relativistically produced DM of these

masses would not cool quickly enough to provide small density perturbations seen

in the CMB.

For a non-relativistic particle the equilibrium comoving number density is

45g [m [m\>/?
Yeqn = ==/ 5 | = —m/T 1.26
= o 8(T> ‘ (1.26)

Therefore, after introducing the variable x = m/T, eq.(1.21) becomes,

dy

==X (v2-7,). (1.27)

X X
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Figure 1.6: Numerical solutions to eq.(1.27) for different values of m, on the
left and (o v) on the right. A dotted line at x = 20 is included to show limited
variation.

where

A~ 0.264 (g*s/giﬂ) Mpym, (o v), (1.28)

The ratio between g, and gi/ % is usefully shown in Figure 1.5. In this limit, we can

expand (o v) in powers of v via the plane-wave expansion,
(0v) = (o) + (o v)pv* + ... (1.29)

where the subscripts are named in accordance with plane-wave scattering nomen-
clature. Since v* ~ T'/m, the highest order of () is independent of velocity, i.e.

V.

Figure 1.6 shows the general behaviour of Y, as it freezes out. For a large range of
masses and cross sections, the freeze out temperature is Ty ~ 20m,. We see that Y
is quite sensitive to m,, but since the p, = s0Y5/m,, the constraint of the CMB fairly
insensitive to mass, with the approximate result (o v) ~ 3 x 10725 cm?®s™! across the
GeV to TeV range. This value for o is very similar to that of electroweak processes.
A coincidence dubbed the "WIMP miracle" which initially was very encouraging for

the many extensions of the SM that predicted new physics at the weak scale.

Approximating an annihilation cross section of some weak-scale interaction o ~
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G%mi leads to the Lee-Weinberg [63,64] bound m, 2 6 GeV and requiring that
unitarity is respected leads to an upper bound m, < 100 TeV [65]. Both bounds can
be avoided, for example, the upper bound is alleviated for composite DM candidates
and the lower bound can be circumvented for certain scalar models [66]. Despite this,
these two bounds tend to define the mass window usually considered when WIMPs
are being discussed. As we will see, this mass range is where many experiments are

most sensitive and therefore able to probe these thermally produced candidates.

A particular DM interaction with the SM that we return to throughout this thesis is
known as anapole DM [67] interaction. This refers to the lowest dimension operator

that couples a Majorana fermion and a photon and respects CP7T symmetry,
AXY*Y° XD Fu, (1.30)

where F), is the electromagnetic field strength tensor and .4 has mass dimension
—2 parameter, which can be mapped on to the parameters of a higher energy
theory. In comparison, a Dirac fermion, has many higher dimension terms that
couple to the photon including dimension 5 operators such as the magnetic and
electric dipoles, making current experimental constraints more prohibitive. DM being
Majorana by nature provides one with a tantalizingly simple reason for DM being
so dark. Assuming that Eq.(1.30) is the only relevant interaction for annihilation,

the thermally average cross section in the small my limit is

<ny_>ﬁv> = 4.,42047713< (1> (1.31)

X

where « is the fine structure constant. Notice here that this is a pure P-wave
contribution, which is a consequence of Pauli blocking, where the incoming Majorana
particles must have opposite spin. As we will see in Chapter 6 a more complete UV
model of Majorana DM may provide alternate channels for annihilation, but the

suppression of S-wave contributions remains.
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More varied dark sectors are easily incorporated into this framework by introducing
coupled Boltzmann equations [68]. If the mass splitting between the DM candidate
and the next lightest dark sector particle is small, then the process of co-annihilation
takes place, which often works by depleting the abundance, allowing for stronger

couplings.

The assumption that DM at some point was in thermal equilibrium with the SM is
not completely necessary to create the correct relic abundance. If the coupling to
the SM is so weak that equilibrium is never achieved, the thermal bath will be able
to produce DM in effectively a one way process. This leads to a slow arrival to a
stable abundance. This scenario is known as the Freeze-in mechanism and provides
models that couple exceptionally weakly to the SM a way to be realised as DM.
These candidates are known as Feebly Interacting Massive Particles (FIMPs) [69, 70]
and can produce the correct relic abundance for a wide range of masses, typically
between eV and TeV. Despite the fact that FIMPs have never reached thermal
equilibrium, they have been created with energy from the SM bath. If scattering is
possible among the FIMPs they themselves may thermalise and reach equilibrium [71].
Other such FIMPs may be metastable and decay into a thermal DM candidate, such
is the scenario of SuperWIMPs [72]. SuperWIMPs increase their abundance by the

metastable decay, meaning their connection to the SM can be small.

Somewhat similar to the freeze in mechanism is the process where sterile neutrinos
are created through neutrino mixing [73-75], this can result in what are known as
warm DM candidates. Like in the relativistic freeze out scenario above, sterile are
produced with enough kinetic energy to wash out structures that might be observable.
However, if they are in the keV range, they will only affect objects below the size
of a galactic sub-halo. These are known as warm DM candidates as opposed to
cold DM. Determining whether DM is cold or warm is an active discussion in the

community [76,77].
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The creation mechanisms above rely on fairly ordinary thermodynamic frameworks,
non-thermal mechanisms are also known for the production of cosmic relics. Some of
which are produced gravitationally during inflation or reheating such as WIMPZillas
[78] or Despicable DM [79], they tend to predict very large masses m, > 10'* GeV.
However, the misalignment mechanism [80] is a non-thermal process that allows for
very light DM candidates. It occurs when a shift symmetry is broken such that a
scalar field becomes very slightly massive. This scalar field in the expanding universe

evolves as

¢ +3H¢ +m?p = 0. (1.32)

The solution of which gives a matter like evolution in the universe, i.e. ps ~ R™3.
This mechanism is typically associated with ALPs which have some associated global
U(1) symmetry breaking. The lower bound (m, < 107%® GeV) comes from the de

Broglie wavelength of ¢ having to be smaller than dwarf spheroidal galaxies.

It is clear that there are many different ways in which DM could be realised in our
Universe. The above production mechanisms show that we have not constrained
the possibilities much, motivating greater experimentation. Figure 1.7 schematically
shows the three directions for detecting DM. These are known as indirect detection,

collider detection and direct detection.

Indirect

X SM

X SM

Direct Collider

Figure 1.7: The different avenues for DM detection.
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Indirect detection applies to models in which DM can annihilate or decay into
some SM particles, depicted by Figure 1.7, reading the diagram left to right. Many
models that are produced through thermal freeze out would produce detectable
signals, with the exception of those with P-wave thermal cross sections. If the
products of annihilation or decay are photons or neutrinos, they would travel to
earth unperturbed. Satellite and ground based telescopes look to regions of high DM
density like the center of the Milky Way, to test DM models. The Fermi Large Area
Telescope (LAT) [81] is able to constrain annihilation into photons in the mass region
of 100 MeV — 100 GeV. However, studies of a gamma ray excess in the center of the
Milky Way have shown that the astrophysical background is difficult to separate [82].
Dwarf spheroidal galaxies are a clean DM structure to look for signals [83] because
they do not contain many background sources of gamma-ray, on the other hand,
they carry larger uncertainties associated with the DM structure. For masses above
100 GeV the experiments HESS [84] and HAWC [85] are more sensitive. Neutrino
detectors such as IceCube [86] and Antares [87] detect high energy neutrinos as well
as the direction of the source, enabling them to constrain certain sources, such as
the Galactic center or the Sun, which may contain an increased DM density within

it [88].

Signatures of diffuse particles in the interstellar medium such as antiprotons and
positrons can be used to constrain DM models. If there is equal amounts of DM
and anti DM as in the WIMP case, this could produce more SM antiparticles than
predicted by astrophysics. Experiments such as AMS-02 [89] and PAMELA [90,91]

were able to constrain models in between 100 MeV — 1 TeV in DM mass.

There are a number of puzzling anomalies coming from indirect detection, such as
the Galactic center excess [92,93] and high energy IceCube events [91,94,95], however
for the purpose of this thesis, we take the position that these are not DM events and

they will be explained by astrophysics. In Chapter 6 we will incorporate constraints
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from indirect detection to test a phenomenologically motivated model.

Collider searches specifically refer to the processes where DM is created via SM
collisions. If the mediator particles connecting DM to the SM are heavy as with
many scenarios, high energy collisions are required to produce DM efficiently. Pair
production as shown in Figure 1.7 actually leaves no signature in detectors. Therefore
processes that emit some visible signature as well as producing DM are constrained,
such as the mono-X plus missing transverse energy signature, where X can be a
jet, photon or Z°. The jet is required for the detector to tag the event, otherwise,
the production of the DM would not be detected. Currently, the LHC [96,97] is
searching for such signals and in Chapter 6 we comment more on specific channels

and future colliders.

Assuming the mediating particle has a mass much higher than the transfer mo-
mentum ¢, one can use an effective field theory (EFT) approach. This uses experi-

mental data to constrain non-renormalisable operators such as,

XV XTV"q q XYY XTV Y q
7/&2 an A2 .

(1.33)
EFTs are most effective when you can be sure that new physics is much heavier
than ¢. This may not be the case with the LHC. Therefore, the simplified model
framework was introduced in Ref. [98] to avoid the possible break down of any EFT.
In this framework, DM is accompanied by a single mediator, which has certain

couplings depending on its nature. For example, a scalar mediator will only interact

via scalar and psuedo-scalar interactions at tree-level.

As of yet, collider searches have not observed any non-SM signal, and therefore place
constraints on DM models. In the event that DM is light and very weakly connected
to the SM, perhaps by a light mediator also, searches by fixed target experiments

like SHiP [99] are important. They use high luminosities to search for these new
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mediators. This in essence is similar to the collider direction in Figure 1.7.

Direct detection attempts to observe scattering interactions between DM and SM
matter by measuring the energy deposition from a scattering. Commonly, elastic scat-
tering is assumed and target materials are placed in underground facilities [100,101].
A worldwide experimental effort has resulted in extremely sensitive experiments,
which have probed DM interactions with ordinary matter with unprecedented pre-
cision. In the absence of confirmed DM signal, stringent upper bounds on the DM

elastic scattering cross section with nuclei have been reported [102-108].

Currently, detectors that use dual phase time projection chambers (TPC), such as
LUX [109], Xenon-1T [102], and PandaX [104], dominate the search for DM masses
above 10 GeV. These searches utilize two types of signals: a prompt photon signal
from the scintillation in the liquid xenon and a proportional charge signal amplified
in the gas phase. The ratio of the two allows to distinguish electron from neutron
recoils. The position of the interaction in the TPC can be determined from the drift
times and light pattern of the signals, allowing to define a background-free fiducial
volume due to self-shielding. The next-generation of liquid noble gas detectors, using
xenon (such as LZ [110], XENONnT [111], and DARWIN [112]) or argon (DarkSide-
20k [113] and DEAP [114]) will probe the parameter space of weakly interacting

massive particles (WIMPs) with unprecedented precision.

However, since these experiments typically have a threshold energy of around ~ few
keV, with the exception of the DarkSide-50 result [115], constraining lower mass
DM is difficult. Experiments based on crystal detectors such as the germanium,
SuperCDMS [116] and calcium tungstate, CRESST [107] have made substantial gains
in the quest to lower the energy threshold of direct detection experiments. These
experiments are capable of detecting energy deposition via phonons, however CDMS

can detect ionization while CRESST detects scintillation signals. Furthermore, the
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experiment NEWS-G [117] utilises new spherical proportional counters and light
noble gases to search for light DM. Due their relatively light nuclei as well as low
thresholds, these experiments are the prominent players in constraining DM masses
below ~ 6 GeV. This comes at the price however, as these collaborations have less
exposure than their heavier counterparts and therefore do not reach the same level

of sensitivity.

There have been interesting recent developments both theoretically and experimental
to explore other technologies for direct detection of dark matter. These have looked
mainly at low mass DM models [118], which look for electron recoils, through a
variety of different methods. This has also prompted the more traditional direct
detection experiments to interpret their data to constrain electron recoils. For larger
masses some novel searches of current experiments are being proposed [119] as well
as some futuristic alternatives [120]. Within a similar mass range of the noble gas
experiments, paleo-detectors [121] have recently been proposed, as well as directional

detectors [122].

This Thesis reviews contributions made to the field of DM particle phenomenology,
with a specific focus on what can be learned from direct detection experiments as a

standalone technology and withing more global analysis strategies.

Chapter 2 expands more on the principles of direct detection, with particular atten-
tion to nuclear recoils, developing the Non-Relativistic Effect Field Theory (NREFT)
framework [123,124]. This framework was developed to allow for more model in-
dependent analyses of direct detect experiments. This prompts the discussion in
Chapter 3 which reviews how data from direct detection can be interpreted statist-
ically and how that can fit in with efforts to reconstruct parameters in the event of

detection.
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Chapter 4 is based on Ref. [1] and introduces RAPIDD, a surrogate model that
speeds up the computation of the nuclear recoil spectrum of dark matter particles
in direct detection experiments. RAPIDD replaces the exact calculation of the
nuclear responses by ordinary polynomials, providing a very fast evaluation of para-
meter space. We validate this method on the multi-dimensional parameter space
resulting from the NREFT description and include astrophysical uncertainties in
the description of the dark matter halo. To demonstrate the power of this tool, we
study the complementarity of different targets to discriminate simplified dark matter

models.

Chapter 5 presents an investigation into the benefits of increasing the maximum
nuclear recoil energy analysed in direct detection experiments [2]. In agreement
with previous literature, we show that, an increased maximum energy leads to more
stringent upper bounds on the DM-nucleus cross section for the NREFT operators,
especially those with an explicit momentum dependence. We extend the energy
region of interest to show that the optimal values of the maximum energy for xenon
and argon are of the order of 500 keV and 300 keV, respectively. We then show how,
if a signal compatible with DM is observed, an enlarged energy region of interest
leads to a better measurement of the DM mass and couplings. We do this in two and
three-dimensional parameter space. We find that this modification is an excellent
way to identify the linear combination of momentum-dependent and momentum-
independent operators. Finally, we show enlarging the analysis window allows us to

test astrophysical parameters of the DM halo, such as the DM escape speed.

Chapter 6 presents an extension of the Standard Model that addresses the hints
of lepton flavour universality violation observed in B — K®[*[~ decays at LHCb,
while providing a viable candidate for DM [3]. The combination of cosmological
and flavour constraints sets an upper limit on the dark matter and mediator masses.

Using understanding from previous chapters, we predict the direct detection response
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to determine whether the DM candidate can be Majorana or Dirac. Studying LHC
dijet and dilepton searches, lower bounds on the dark matter and mediator masses can
be set. Combining LHC constraints with the sensitivity of current and future direct
detection experiments show that parts of the parameter space could be accessible
in the future to multi-ton experiments. Future collider and direct DM searches

complement each other to probe large areas of the parameter space for this model.

Finally in Chapter 7 concludes this thesis by reviewing the results presented, places

the work within the wider search for DM and comments on prospects moving forward.






Chapter 2

Direct Detection of Dark Matter

In this chapter, we review the direct detection of DM. After discussing the general
principles, we focus on the effective theory approach developed in Refs [123,124]. In
Section 2.2, we provide examples of how one can trace parameters from the higher
energy Lagrangian to the non-relativistic effective theory (NREFT), making use
of nuclear response functions. Finally, in Section 2.3 we will review the current

state-of-the-art results from direct detection experiments.

The standard picture of DM given in Chapter 1 is that the dark matter halo extends
much further from the Galactic center than the observable matter. Therefore an
experiment on the Earth would be immersed in the halo and may be able to detect
local DM. The DM particles, here y, traversing through the Earth would deposit
some energy via scattering. For purely gravitational interactions this is effect is
minuscule but, with electroweak-scale interactions as expected for many candidates,

interactions could be detectable.

As with any collisional process, the number of events N is given by the flux, ®,
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N N

Figure 2.1: DM interacting with nucleons. The incoming and outgoing
DM particles have momenta of p' and p’, respectively, whereas incoming and
outgoing nucleons have momenta k and k', respectively. We choose the transfer

—

momentum to be defined by §=p—p =k’ — k

multiplied by the interaction cross-section and time. The flux of the incident DM
depends on the number density, n,, which can be related to the local density, po,
its mass, m,, and the incident velocity, v, described by a distribution, f(¢/). The

expected event rate in a given energy bin, k, is then given by

Eji1 dR Po€ Bt . doyr
N, = / dE _ / dE / & T 2.1
b ¢ Ek RdER mT mX Ek R Umin va(v) dER ( )

where in the first equality, dR/dFg, is the differential rate, often presented in
differential rate units (dru = (kg days keV)™!), and is expanded in the second
equality. The exposure, ¢, is the product of detector mass, which is related to target
nuclei mass, mr and time. The integral limit v,,;, refers to the minimum velocity

required to induce a recoil of energy Fg, calculated from basic kinematics,

VUmin = \/mTER/Qu% (22)

where % is the DM-nucleus reduced mass.

The particle physics nature of the DM is encoded in the DM-nucleus differential
scattering cross section, do,r/dER and is schematically depicted in Figure 2.1 with a

blob representing any short distance physics occurring. The incoming and outgoing
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DM particles, x, have p'and p’ momenta, respectively. For the nucleon, NV, they have
momenta k and &’L. The transfer momentum is therefore g=p—p = k' — k. Note
that processes like inelastic scattering, either the nucleon or DM could be excited to
a higher energy state N’ or y'. We introduce the vectors K = k+K and P = P+

to keep some of the results later more concise.

Taking a DM mass on the lower end of the typical WIMP window, where m, <
my, and using 2.2, the maximum energy DM could deposit to a given target is
proportional to both masses, EFr mi /mr. For example, the Milky-Way escape

velocity, vese ~ 600 km s71

means that a m, ~ 6 GeV DM particle will maximally
be able to recoil a xenon atom by ~ 1 keV. At the heavier end, DM mass becomes
irrelevant and the maximum energy deposited is o« my, for xenon we have ~ 1
MeV. We will see in Chapter 5, that the point at which the maximum energy deposit

becomes insensitive to DM mass is itself dependent on the target material, for Xenon

this is just above ~ 500 GeV.

2.1 Effective Theory of DM-nucleus interactions

The effective field theories most familiar to particle physicists are relativistic, where
the known field content is combined in a gauge and Lorentz invariant way to produce
a series of higher dimensional operators as discussed in Chapter 1. These operators

are parameterised by their Wilson coefficients, ¢,
ct ct
£:£SM+Z%O§5) +Z%o§6) T (2.3)

and A is the scale of new physics. In the non-relativistic regime however, the relevant

degrees of freedom are presumed to be Galilean invariant. These are quantities, such

LOften the nucleon is taken to be at rest initially.
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as the transfer momentum, ¢, incident velocity, v, and spins of the nucleons and the
DM particles, Sy , gx- The resulting non-relativistic effective field theory (NREFT)
is then described in terms of a Lagrangian that contains four-fermion operators of

elastic scattering between a DM particle and a target nucleon,
Lint = ZZCﬁV(’)i)ﬁx’N*N’. (2.4)
N i

In this expression, N*, xy* are non-relativistic fields, which are simply constructed
out of quantum mechanical annihilation and creation operators. The sums over N
and i are over the nucleons and operators respectively. The coefficients, ¢, are real
parameters that will be related to the high energy theory. The operator variables
of the effective Lagrangian must be invariant under Galilean transformations, which
we build from the relevant degrees of freedom. Also, since interactions must be

Hermitian, its customary to build operators out of Hermitian pieces,

- o q & =
1q, U =0+ —, S, SN, 2.5
2,LLN X ( )
where ¢ is defined such that o+ - § = 0 due to energy conservation. If one assumes
that the scattering is mediated at most by a spin-1 particle, then at most the resultant

non-relativistic operator can only be quadratic in ¢ and @+, limiting the number of

operators quite significantly. These have been summarized in table 2.1.

Notice that there is no O, in table 2.1, this is simply the operator v?, which is often

discarded as it cannot be produced at leading order in the non-relativistic limit [124].

For the non-relativistic fields in Eq.(2.4) we have the choice to normalise them such
that there mass dimension is 1 or 3/2, so the coefficients are dimensionless or have
mass dimension —2. In the relativistic case in Eq.(2.3) the coefficients are often
redefined to absorb the cut-off scale A, i.e. {c(d)}:mass_d. This gives an estimate
for the lower limit of the new physics scale. With the NREFT Lagrangian, there

is no mass scale to explicitly absorb, but by choosing the field normalisation, one
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g-independent q-dependent
gi i %11N§N O3 = Z?N : {TZ?N X {rj}
Or — & - ¢ 05 =8y - [ x ¥
Og =8, -9+ Oy = iS, - [ng qu]
012 = SX . {SN X QL} 010 _ iSN T’?N
2 O =S, - -4

A Aq dfpendtant Ops = i [gx . ‘Aj,\l} [SN ) W?N}
O = [Sx W?N}JSN'W?N} (’)MZZ'[SX %} [SN,‘A,J_}
=[50 ][5 x54) 4]

Table 2.1: List of non-relativistic EF'T operators for spin-1/2 and spin-1 DM
particles, classified according to their dependence on the momentum exchange.

can have ¢’s with mass dimension —2. Physical results of course are independent of

these choices.

Since the non-relativistic fields are constructed with just creation and annihilation
operators and there are no propagators in the diagram (Figure 2.1), no subtlety is

required for calculating the matrix element,

My = ZZCZNQ-. (2.6)

The total DM-nucleus matrix element squared is calculated by evaluating these
contributions coherently over the entire nucleus. This requires state of the art nuclear
physics calculations, the results from which have been provided in the literature

[123-126] and are parameterised by nuclear form factors F; j’N/,

M — m% NN']_-N,N’ 9.7
‘ T|—7zzcicj ij (2.7)

MNMN' NN i
where here the coefficients are chosen to be dimensionless. These form factors have
very different amplitudes due to how the contributions sum coherently. For example,
O couples to the number of nucleons in atoms which leads to the classic enhancement
by atomic number squared, A%. In Figure 2.2 we show how these different operator

responses have different relative sizes by plotting the differential rates rates resulting
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Figure 2.2: Recoil spectra for a number of common operator responses. All
spectra are calculated with couplings ¢; = 1 to give an impression of the
difference in size of the responses. The mass of the DM particle provoking
these spectra is m, = 100 GeV.

from setting each operator coefficient to 1. Figure 2.2 also shows that the strength
of operator response is also somewhat dependent of the target material, we have

shown responses from common targets, xenon, germanium, argon and fluorine.

The spectral bumps that can be seen in xenon panel in Figure 2.2, are typical of form
factors, however, since numerous isotopes are present for xenon, these resonances
are smoothed out somewhat. We see that the simpler isotopes of germanium, argon
and fluorine do not exhibit such resonant behaviour. One cause of the different
spectra between targets is the relation (2.2). We notice that the fluorine spectra
abruptly vanishes at EFr ~ 150 keV, this is simply the endpoint of the spectra for
fluorine, which is lower than for the other target materials since it is relativity light
and therefore the point where incident DM would have to be traveling at velocities

greater than v is reached earlier.

When calculating the interaction coherently over the nucleus, overlapping modes can
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lead to interference terms between the following pairs of EFT operators, (Oy, O3),
(O4,05), (O4,04), and (Og, Og). Furthermore, there will always be interferences
between the proton and neutron contributions across the same EFT operator, if the
sign of nucleon couplings are opposite, cancellations occur. Once we have Wz we

can obtain the differential cross-section from standard quantum field theory [50],

1 _
do = | M > dIlps, 2.8
2B @E)5 — 5] 1 s (28)

where Iy ps is the Lorentz invariant phase space. Since direct detection experiments
are insensitive to recoil direction but sensitive to recoil energy, the differential cross-

section is written in the form,

d ! !
2L iy AN, (2.9)

which can be directly plugged into Eq. (2.1) to give the number of expected recoils in
a particular energy range for a given exposure. If one had chosen the normalisation

where the coefficients had mass dimension —2, our differential cross section would

be

do T , ,
df; " or U2Z > jv}—zij (0%, 4°). (2.10)

tj N,N’'=n,p

When presenting results, often the dimension —2 coefficients are multiplied by factors
of the Higgs vacuum expectation value m, = 246 GeV to estimate the scale of
new physics that is mediating between DM and the SM. Interestingly however,
the NREFT is not contingent on the mediator itself being heavy. As long as the
incoming and outgoing particles are non-relativistic, it is consistent to incorporate

light mediators into this framework.
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2.2 Matching the relativistic and non-relativistic

theories

In this section we will outline the procedure for going from some relativistic Lag-
rangian to the non-relativistic one. After introducing the general procedure, we give

some illustrative examples.

The objective is to rewrite the high energy Lagrangian in terms of non-relativistic one
in Eq. (2.4). First, one needs to express the Lagrangian in terms of the DM and SM
currents JpmJsm. These currents can have a complicated Lorentz structure which
depends on the underlying physics. In a t-channel scattering, the two currents are

connected via a mediating particle, introducing a propagator term ~ where

M is the mass of the mediator. The limit where M is large is usually taken, allowing
the propagator to be treated as simple contact operator. For direct detection, the
typical transfer momentum in DM-nuclei interactions is ~ keV and for many models
of interest, mediator masses are indeed much larger. The mass dependence is usually
absorbed into the coefficients at this point and normalised to the Higgs vacuum

expectation value, this choice is made because in several well motivated DM models,

the electroweak scale appears.

In the canonical view of EFTs, the integration of the mediator is the essential part
of an effective field theory. However, for this effective theory, this is not necessary.
Instead in this regime, the "effective" description comes from the fact that we need to
describe the collisions between DM and composite nuclei that have the fundamental
Standard Model fields embedded within them. A quark current will, for example,
be of the form gI'%, where I' represents the set of matrices in spinor-space which

can be a linear combination of the basis matrices,

= {1, RN a“”}. (2.11)
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In order to determine how DM interacts with nucleons, we have to embed our
quark field current into nucleon field currents. This is done by calculating the
hadronic matrix element, (N|[gI'%|N), where |N) represents a nucleon, and we
have suppressed its momentum and spin dependence. The nucleon bilinears are
constrained to respect the same global symmetries C, P and 7. For example the
1y"1) has the same symmetries as ipo*’q,1) where ¢, is the momentum running
through the current, which in the direct detection case, is the transfered momentum.

The quark current is thus equivalent to the following nucleon-level interaction,
qlq — (N[gl'q|N) = 3 F{*"(¢*)NTN, (2.12)
J

where the sum over j is over the different Lorentz structures that share the same

F (q’N)(q2) encode the internal

symmetries as I'. For each of these, the form factors Fj

structure of the nucleon. Ref [127], provides results for these form factors that are

calculated using chiral perturbation theory and nonperturbative results.

Furthermore, the dominant interactions in the recoil may not necessarily result
from quark interactions and instead can be due to couplings to gluons. There are
certainly severe constraints on DM having any QCD charge, but interactions can
arise from higher dimensions. In particular, if DM couples via some new mediator
to heavy quarks, loop suppressed diagrams connecting DM to gluons will contribute
the most to the cross section due to the relatively tiny distribution of these quarks
in the the nucleons. The effective gluon operators are determined once again by the
symmetries of the quark current and their scaling by some matching. Results are

given in [128,129] for the matching to these gluon operators.

The partonic form factors need to be included when embedding these operators into
the nucleons. This requires different techniques depending on the type of gluon
current. The scalar case can be derived using the QCD scale anomaly [130] whereas

results for the pseudoscalar require chiral perturbation theory [127].
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The embedding of the SM fields into the nucleons relies on the aforementioned separ-
ation of SM and DM currents, Jsy and Jpy, this is important because the hadron
matrix element is calculated as a local operator expansion. This is more evident in
t-channel processes, where the gI'%q vertex is in the diagram. However, the s-channel
processes in direct detection arise from YI'g vertices, leading to nonlocal operator,
requiring the we calculate (N |YF§S_%XFQ|N ). The result however can still be cal-
culated using the local operators because s ~ (my 4+ m,)? > (¢*, Aqep). Therefore,
one can make use of Fierz transformations [131,132] to rewrite the interaction in

terms of JpmJsm.

After calculating the hadron matrix elements, one is left with an expression which
is in terms of DM and nucleon fields, but still described in the relativistic regime.
Instead of trying to represent the fields N and N in terms of their non-relativistic
counterparts N1 and N, its more straightforward to find the currents that will arise
from calculating the relativistic matrix element, and then take the non-relativistic
limit. Since nucleons are fermionic, this means we’ll always have to take the limit of

spinor currents. In the Weyl basis the fermion spinor fields take the form,

aipy = | V208 and oy = | VP (2.13)
VP ag —Vp-on

where o = (1, %) and o = (1, — &) are the four-vector generalisations of the Pauli

matrices. The s superscript runs over the possible spins of the particle which will be

summed. The spin operator is defined as follows ? = %7, ¢ and 7 are the standard

solutions the the Dirac equation in the relativistic limit. Spin can also be defined

by ? = S’Tgﬁ . Taking a first order approximation in the non-relativistic limit we

get the following,
o 1 [CGM=p-0)€

u(p)® ~ —— : (2.14)
MRV (2M +p-o)€?

where here we have the normalisation u(p)u(p) = 2M, corresponding to the non

relativistic fields having mass dimension 1. When working in the convention where
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the fields have mass dimension 3/2, our spinor fields are normalised such that
u(p)u(p) = 2M. From here, one can immediately start to take some results in the
form of nucleon fermion bilinears, by defining, £7¢ = Zy. This gives u(p)u(p) =

2mnZy and leads to results such as, u(p)ivdu(p) = —2i¢ - 5.

For bilinears with Lorentz indices, one will find a four-vector or tensor result that

will be contracted with the DM current. Some useful identities are
005 = (Sijlg + ’ieijkak and €ijk€ijk = 5ja5kb — 5jb5ka- (215)
which lead to results such as,

2mN1N

Kly—27 x S |

u(ko)y " u(ky) = (2.16)

In practice, the non-relativistic limits of different bilinear structures can be taken
from published results such as [123,133]. However, there are some cases where the
results do not go to sufficiently high terms in ¢, which we will see with the monopole

interaction below.

In the proceeding subsections, we present two characteristic examples: WIMPs and

DM with photon couplings.

The WIMP particle

As discussed in Chapter 1 the original inspiration for WIMP DM was precisely the
fact that a particle with weak scale interactions can thermally freeze-out, giving
the correct abundance. Thus, we will start by considering a weakly interacting

fermion that is mediated through the Z boson. In this case, we can integrate out
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the mediator
— _ 9192 _ . _
Lie = 9XV'XZ, + D 920002, — Liw =), @xv“xqvuq7 (2.17)
q q
giving the Jf\J&, structure. The quarks are embedded by evaluating the hadron
matrix element (2.12). For gy#q there are two terms that contribute [127,131],
(N qlN) = PO (@R N + 5 = FP (@ N N, (219
my
where the two form factors I} and F, are known as Dirac and Pauli form factors.
The Dirac form factor in the zero momentum limit counts the number of valence
quarks in the nucleon, for example F?(0) = 2. Therefore, assuming that g is the
same for all quarks, the quark level coupling will be related the nucleon coupling by
a factor of 3, g)¥ = 3¢4 and will be the same for both N = n, p. The Pauli factor
gives some description of how different quarks contribute to the nucleon magnetic

moments [50]
F"P(0) =1.609,  F{*P(0) = —2.097,  F{*P(0) = —0.064, (2.19)

where one can use isospin symmetry to obtain the result for the neutron. Here,
assuming ¢, is the same for all quarks, the nucleon coupling is —0.552g4 for both

proton and neutron.

_i
2mpy

Evaluating both the xv,xN7*N and X7,x5-—No"q,N leads to multiple terms,

but focusing on the lowest order in ¢, we get the result,
N N
99 _ dmymyg1g
Lig = > =X XNVN & Y ——— 32T Ty + O(q) + ... (2.20)
N Mz N mz
Comparing this with table 2.1 we see we have only one operator coefficient at the

lowest order in g,
N _ Amymygigy

‘! e (2.21)

To express this result in the convention of eq. (2.10), we simply divide ¢’ by 4mym,

and multiply by m?. Notice that in general the expectation ¢;m? ~ 1 may be
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substantially affected by nucleon form factors in the matching calculation. In this
specific case however the Dirac Form factors are order 1 numbers and do not alter the

expectation that ¢;m? ~ 1 for a DM particle interacting via a weak scale interaction.

DM with coupling to photons

DM may also interact via the photon through some loop process [134-139]. In some
BSM scenerios, this is the leading contribution. These interactions can be described
in terms of an effective Lagrangian. Once more considering a DM fermion, the

effective Lagrangian is
d
Ling = 5%2’0’”’75)([7’“,, + gYU‘“’XFW + b XV X0 Fp + AXY* X0  Fy (2.22)

where these terms are known as the electric and magnetic dipole moments, the charge
radius and the anapole moment interactions respectively. The first two terms have
mass dimension 5 while the latter two have mass dimension 6, hence the parameters

d and p have mass dimension —1 while b, and A have mass dimension —2.

The photon couples to quarks via eQ),gA,q. Being massless, the photon cannot be
integrated out like the Z-boson was above. Including the photon propagator in the

Feynman-'t Hooft gauge [50], the interaction operator becomes
p_ .y _
F.,—Q, zq—’;q%q — z?q%q ) (2.23)

Noticing that both dipole moments are multiplied by a ¢*” factor means we can
combine the two terms into one, making use of the fact that o*” is antisymmetric.

The quark fields 7, g are embedded in the nucleon field to get a nuclear term

?

ZZZ’; [QNN%N + 2mNaNNUWqVN ) (2.24)
N
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Summing over the Dirac and Pauli form factor contributions gives the QQn and ay
factors. @y is just the electric charge of the nucleon, while ay are the anomalous

magnetic moments of the nucleons, a, = 1.793 and a,, = —1.913.

For the two final terms in Eq (2.22), the treatment of the photon propagator can be

skipped by using its equation of motion,
0"F,, = —e Z QqqVuq- (2.25)
q

Hence, we have a very similar structure when embedding quarks into the nucleons

here. If one takes the first Gordon identity from,

_ 1
NN = —N (K" +ic"q,)N
2mN

Nic"'~°q,N = NK"~4°N.

the coefficient of the Nio*q, N term is now Qun + ay = jiy, which is known as the
nucleon magnetic moment [140], in units of the nuclear magneton puy = —e/(2my).

This value is also more commonly expressed in terms of the g-factor, g = 2fiy.

Taking the non-relativistic limit explicitly as outlined in the previous section leaves

us with the following results,

d 1
5@'0’“’75)(FW — dQNe—28me?V(911, (2.26)
q
K QN Os gN m?VOG
EXO'“ XFMV — 4uemeN mol + QNmN? + M ((94 — q2 ,
(2.27)
beVMXaVF;w — 4mmebxe Z QNola (228)
N
AXWMVE’)@”FW — 4meNeAZ (2QNOs — gnOy) . (2.29)
N

As mentioned above, care is required when using published results of the non-

relativistic limit such as those in Refs. [123,133]. A specific example relevant to the
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models considered here is the magnetic dipole interaction, when using Ref. [133] to
calculate the response, the matching gives 0, only if you go to the next order in

momentum do you get the required result.

Typically, the largest of these interactions is the charge radius, followed by the dipole

moments.

2.3 Current Experimental landscape

In Chapter 1 we discussed the state-of-the-art experiments in direct detection. Now
that we have reviewed how direct detection works, we will present the current
experimental situation. Typically, experiments present their results in the spin-
independent or spin-dependent plane, which is easily related to the NREFT basis.

S

The spin-independent cross section, 7, is the zero-momentum cross section from

the O, interaction, and is related by the expression

N 2 2
oW = 1o (g;lmxf = :;;i (&) (2.30)

xN —
where the coefficient ¢ and ¢ are dimensionless, but ¢ is result of the convention that
normalises dimension —2 coefficients with factors of the Higgs vev, m,. The current
exclusion limits are shown in Figure 2.3. One can see the mass range that is being
probed by these experiments is vast. Above ~ 10 GeV the dual phase liquid xenon
experiments PandaX [104] and Xenon-1T [102] have the most stringent bounds.
Below this is where lighter target experiments such as CRESST [107], Darkside-
50 [115], NEWS-G [117] and CDMS [116] are able to push to lower thresholds and

provide competitive constraints on lower masses, the lowest of which is NEWS-G at

0.5 GeV.
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Figure 2.3: The current exclusion limits of spin-independent (O;) interactions
between DM () and nucleons (N) for an array of experiments. The exclusion
limits presented here are to the same confidence as quoted in the relevant
papers. Refs. [102,104, 107,115, 116] provide 90% confidence for the upper
limit exclusions for PandaX, XenonlT, CRESST, Darkside-50, NEWS-G and
CDMS respectively. For DAMA, the 30 (90% C.L.) reconstruction regions are
shown [141].

Notice the DAMA /LIBRA best fit region is included here. The DAMA [142] signal
has persisted despite more sensitive experiments seemingly excluding in. Confusing
experimental situations like this is precisely where the large freedom from the NREFT
could come in useful. Studies have shown that its becoming increasingly difficult
to reconcile the situation, resorting to highly tuned models that favor specifically
the Sodium or Iodine target of DAMA/LIBRA [143,144]. Experiments such as
ANATIS [145] and COSINE [146] are currently taking data with the same target
material in an effort to verify the modulation signal, and have already started to

rule out some parts of the DAMA region.

Also included is the neutrino floor, which represents the experimental sensitiv-
ity where the coherent neutrino background is expected to be detected in exper-
iments [147]. The expected neutrino fluxes from the sun and the atmosphere can

be found in Refs. [148-152]. We see the Xenon-1T is very close to reaching it, thus
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Figure 2.4: (Left) The best constraints on proton-DM spin dependent in-
teraction, including direct detection and annihilation constraints coming from
SuperK and IceCube. (Right) Constraints on the neutron-DM spin dependent
interaction.

the floor that is shown in Figure 2.3 is for a xenon target [147]. As direct detec-
tion experiments improve, separating the neutrino floor from possible DM signals
will become increasingly important. One way to do this is by exploiting the sea-
sonal fluctuations of incident DM speeds in annual modulation [153], the other is
by developing directional detection experiments [122], which would give important

information on the origin of incident particles.

For the spin-dependent cross section the zero-momentum cross section stems from
the Oy response, and is related to the coefficients by,

3(cy)?

2567 (my + 1My )”

SD __
xN —

_ 3ui (@)’

16mm?

(2.31)

Figure 2.4 provides us with the current exclusion limits for the spin-dependent
interactions with protons and neutrons. Notice that for the for odf, the leading
experiment is PICO-60 [154], due to its high number of unpaired protons. Also, in
this plane, the neutrino detectors Super-Kamiokande [155] and IceCube [156] are
able to constraint DM interactions via capture in the sun. The o]} interaction is

probed well by the neutron rich xenon targets as seen in the right panel in Figure 2.4.

In this chapter, the details of the two dominant conventions for presenting the
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operator coefficients have been kept. In proceeding chapters, we adopt the whereby

¢ has mass dimension —2 and is multiplied by factors of m,,.



Chapter 3

Determining Dark Matter

Properties from Direct Detection

The previous chapter reviewed the family of NREFT operators arising from elastic
scattering. The nuclear response to these operators can very different, ie. ¢-
independent responses increase at ¢ — 0, whereas g-dependent interactions vanish
in the same limit. Section 2.2 showed how the properties of DM and the UV model
can determine which NREFT operators are at play in direct detection and how they
relate. Of course, we are interested in working backwards, from experimental results

to statements about the nature of DM.

Earlier work in the literature explored how DM signatures produce specific spectral
shapes in the nuclear recoil spectrum, allowing one to reconstruct DM properties
such as mass and cross section [157,158]. With the inclusion of the full NREFT basis,
experimental information about the spectral shape allows one to distinguish non-
standard momentum dependence [159]. Furthermore, this information is crucially

important for background discrimination, and properly interpreting null results [160].
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Additionally, the recoil spectrum is dependent on astrophysical parameters that
describe our Milky Way halo [161], as well as the nuclear form factors [162]. Such
complications make it more difficult to extract the particle physics information. It
has been shown that using different experimental targets [163-165] is crucial for
disentangling the particle physics. Combining the results from multiple targets and
techniques strongly constrains theoretical models in the absence of a detection and

allows for determination of the underlying physics of the interaction once a signal is

seen [166-168].

When trying to determine these parameters, one has to account for sources of error
under some statistical framework. Of course, when incorporating the details of
direct detection experiments the reconstruction of DM parameters is subject to these
statistical limitations [169]. Its important to understand these limitations when
attempting identify the right theory of DM [140,170-173]. This is not only to ready
ourselves for future experimental results, but also to perhaps identify blind-spots in

the current strategy.

Adopting a completely agnostic approach, the reconstruction of DM parameters is
extremely challenging in the multi-dimensional EF'T parameter space. It is clear
that the next generation of experiments, with their multiple targets, will be a good

start in the effort to probe the general EFT parameter space [174,175].

In order to frame the work presented in the proceeding chapters we will present
some basic statistical tools in Section 3.1. This leads to a discussion on nuisance
parameters, which for direct detection usually come from astrophysics which is
described in Section 3.2. The final section of this chapter briefly reviews various
different strategies that have been explored in the literature and will be returned to

in the rest of this thesis.
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3.1 Statistical tools

As described in Eq.(2.1), the recoil spectrum can be collected via a series of en-
ergy bins. Modeling each bin as a independent measurement leads to the Poisson

distribution as the relevant description of probability,

Nﬁobs e—Nth

P(Nobs|Nth) - Nb | s

(3.1)

this gives the probability that one observes N, events given that one expects
N = Npu(©) + N, for a set of parameters © = {x,y,z...}. Here Npy is just
the DM signal predicted for the parameters and N, is the expected background
events. The value of N(©) also depends on the specific model M;, where the
subscript differentiates between models. Therefore, we can write the probability as
P(Nobs| Np, ©, M;). The likelihood of an experiment with multiple bins is simply the

product of the Poisson distribution evaluated at each bin, i.e.
Likelihood = [ P(Nobs x| No, ©, M;). (3.2)
k

Following a frequentist approach, this probability is interpreted as the frequency
of the outcome of a repeatable experiment [176]. Therefore a 90% C.L. is to be
interpreted as the point when 90% of experiments would have detected more than

Nops events given a theoretical expectation Ny,

S PmINLO, M) =09 — NZ P(mINy, O, M) =0.1.  (3.3)
m=Nops+1 m=0

For example, taking a background free experiment that observes no events (N, =

Nyps = 0) results in N3P = 2.303. This procedure is sufficient to get an estimate

for the projected sensitivity of future experiments when the expected background is

separable from signal. Even after an experiment has published its results, this method

can be used effectively. For example the recent XENONIT result observed Nops = 2

events where Ny, = 1.62 background events were expected from the collaboration’s

models [102]. Using the Poisson distribution and solving Eq.(3.3) leads to N3 =
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3.68. Figure 3.1 shows that this method gives fairly close agreement to the full
experimental analysis as reported in Refs. [102,177,178]. One can see the simple
Poissonian method is insufficient to match the experimental results for masses below
~ 50 GeV. This can be explained by the fact that the observed events N, are both
in the high recoil region, above Fr ~ 25 keV. Since DM particle with masses less
that 50 GeV and interacting via Oy, is expected to provoke a much greater number
of recoils at lower energy, this kind of signal is very unlikely, so Ny can be dismissed

as background with greater confidence.

Therefore, to improve this estimate, one needs to include some information about

the signal features, the Test Statistic (T'S) defined by,

(3.4)

TS(\) = —2log <L1kehhood(Nobs|Nb, @,/\/li)) 7

Likelihood (Nops|Ny,)

The TS(A) is approximately the same as a x? distribution with the same number of

degrees of freedom as parameters. Substituting in the Poisson distribution,

Nowm. k + Ny i

TS()\) = Z l_QNObS’k 10g ( Nb .

) + 2NDM7;€] : (3.5)
k

Note that this is not well defined at Ny, x = 0 or N, = 0. To find the 90% C.L.
bounds, one just looks up the corresponding x? value [179] and solves for Npy.
This method is best suited when the experimental backgrounds are known, which

is not always the case. In the case of an unknown background, one can estimate

Likelihood(Nops|Np) by maximising Likelihood(Nops| Ny, ©, M;) and using the result.

In the event of positive DM signal, regions of parameter space that maximise the
likelihood give an indication of the parameter values, assuming model M;. This
approach is particularly well suited for constructing confidence intervals to determine
the true value of parameters. The intervals are defined via Wilks’ theorem [176,

179, 180], making use of the cumulative distribution function Fe, where for the
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Figure 3.1: Exclusion limits published in 2018 for the XENONIT experiment
[102]. We see that the naive Poissonian method is effective at replicated
published experimental limits in the mass region above ~ 100 GeV.

one-dimensional interval we have,

— 2log

Likelihood(x) o
<F,(1-aqa), 3.6
max (Likelihood(z,y, z,...)) = X1 (1=a) (3.6)

where we have defined Likelihood(z) = max, . (Likelihood(z,y, z,...)) and « is a
number that one chooses in correspondence with their desired confidence level [179].
Furthermore, when comparing models in the frequentist picture, it is usually sufficient
to compare likelihood values across different models via the ratio test which replaces

the fraction in Eq.(3.4) with

_ max(Likelihood(M,))
o max(Likelihood(M3))’

The Bayesian framework provides its own analogue to these intervals, known as the
probability density function (p.d.f.) which describe the state of knowledge of the
true value of the parameter, and for a set of continuous variables © is the same as

the posterior probability,

~ Likelihood(Nops|©, M)p(©, M)
[ d® Likelihood(Ngs|©, M) p(©, M)’

P(O|Nops, M)
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where p(©, M) is the prior, which is taken to be flat when there is no previous
data taken into account. The integral in the denominator is known as the evidence
€(Nobs|M;) which can be compared with other models being considered to find the

probability of the model,

5(*]\'fobs|-/\/ti)

PT’(Mz) = Zj €(Nobs|,/\/lj).

(3.9)

Bayesian methods require an integration and therefore are more computationally
expensive, however when a new data set is released, one could incorporate a previous
study by using the posterior probability P(O|Nys, M;) as the prior, whereas in
the frequentist framework, one is required to conduct the analysis over all previous

datasets again.

Often when performing an analysis, one may use several parameters that are not
known perfectly and are not being probed particularly with the experiment at hand.
These are referred to as nuisance parameters and can be marginalised over to obtain

the marginalised posterior
P(O|Nype, M) = / AvP(Nops|O, v, MYP()P(O, M), (3.10)

where v is some parameter that has a prior taken from a different set of experiments.

3.2 Astrophysical inputs and their uncertainties

Commonly, astrophysical parameters are considered as nuisance parameters in the
direct detection calculations. Unlike many particle physics experiments, the incident
particle beam, the DM flux in this case, is not under laboratory control. The standard
practice has been to adopt an idealised model where the halo is a spherical, isotropic

and smooth distribution, know as the Standard Halo Model (SHM) [181,182]. Which
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takes the form,

1,2
Po ¥ —3v

Fsam = —— —, 3.11

SHM = 5 P < o2 ) (3:11)

where pg and o are constants and ¥ = —® + ®; is the potential defined relative

to the potential at a particular point ®,. The density and velocity distributions
are [183],

p(x) = /d3v.7:($,v) and flv) = /dga:]-"(:z,v), (3.12)

from this definition, one can see that,

v

f(v) x exp (—2> (3.13)

202

which is usually considered unrealistic because the finite mass of the galaxy will have
some escape velocity, vese such that, above it, f(v) is zero, for f(v) in Eq.(3.13), this
is not the case. Practically, this is often implemented by truncating f(v) at ves,
creating now an unrealistic discontinuity. One can validate the use of this model to
obtain results that agree with rotation curves, namely that p oc =2, by using the

Poisson’s equation.

Parameter inputs for the SHM model are precisely the type of nuisance parameters
that enter in the statistical analysis. In particular the local DM density, p,, the
galactic escape velocity ves. and the central velocity vy. Over the years, speculative
halos with more extravagant features have been considered, such triaxiality [184],

anisotropies [185-187] and substructures such as streams [188-190].

In Chapter 4 we make use of a generalised DM halo parameterisation, defined by

the following velocity distribution function
k
flv) = [67”2/1“”3 - e*”gsc/k”g} O (Vese — ), (3.14)

which recovers the SHM distribution with a smooth transition to zero at v — v,

when k£ = 1. Since this distribution is still isotropic, d*v f(v) = 4mv?f(v), one can
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Figure 3.2: The variation of the halo distribution function Eq.(3.15) due to
the nuisance parameters k, vy and ves.. When panel is not varying a particular

panel its SHM value is taken, i.e. k =1, vg = 220 km s™! and vese = 544 km

S—l

produce the normalised speed distribution,

k

F(v) = Ny '? [/ — e7ee/ M) ©(v,40 — v), (3.15)
where N;, = vg)e*yg I3 dy yz(e*(y2*y3)/k — 1)k and y, = vese/vo. Figure 3.2 shows
how varying these parameters affects the high-velocity tail [185,191-194]. We have
considered variations in the halo parameters as ve,, € [478,610] km s, vy €
[170,290] km s™', and k € [0.5,3.5], which are included in our scan as nuisance

parameters.

When one calculates the distribution of DM velocity as seen by an Earth observer,
one has to include the velocity of the Earth with respect to the Sun [195] and the
circular and peculiar velocity of the Sun with respect to the Local Standard of rest.
In this thesis we use the values as given in Ref. [196], i.e. veire & (0,230,0) kms™?
and vpee &~ (11.10,12.24,7.25) km s, The halo integrals that contribute to velocity
independent particle interactions, 1(vmm) are shown in Figure 3.3. We see that the
variations in parameters k, vy and ve are largest in the tail of the distribution,
which is consistent with Figure 3.2. The logarithmic plot in Figure 3.3 really shows
how the variation can lead a differences of orders of magnitude. However, since these
differences are in the tail, these halo parameters effect parameter reconstructions

for lower mass DM models (below 30 GeV). Although, as we show in Chapter 5,

by extending the analysis region of experiments to include the high velocity end of
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Figure 3.3: The same as Figure 3.2 but now for the halo integral n(v). The
Earth and Sun’s motions are incorporated for these evaluations. We have also
shown the plots on a logarithmic because the differences in the tail of the
distribution are important for the recoil spectra, especially for low DM masses.

the distribution, astrophysical uncertainties effect the particle physics interpretation

even for heavier DM models.

The local DM density is also subject to observational uncertainties, and we have
considered here a range py € [0.2,0.6] GeV cm™? [197-200]. These ranges are
consistent (although broader) than those obtained in recent analysis of N-body

simulations that include the effect of baryons Ref. [196,201].

The early motivations for deviation came from both N-body simulations and the
desire to understand how these astrophysical uncertainties could possibly affect direct
detection. Simulations that only included collisionless cold dark matter provided
evidence for departures to the standard velocity distributions [202-205], there was
even evidence for anisotropic DM halos [191,193,206-209]. More recent simulations
that include baryonic effects however, show that a SHM description seems more
appropriate [196,201]. Interestingly, recent surveys have been able to shed light on
the sub-structure within the halo and are thus able to make some clear measurements

of the local DM. In fact, recent Gaia [210] data presents the interesting possibility of
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a stream which is impacting the Milky Way "head-on" [211]. Which could potentially

see some real effect in the recoil signal for dark matter models [212].

The effects of the dark matter halo have been well explored in the literature, the key
features being that any uncertainty in p, just scales with the strength of coupling
whereas the velocity distribution effects primarily mass reconstruction for masses
of the target m, ~ myp or lower. As we will see in Chapter 5, the tail could
also be important for relatively low mass DM particles, provided direct detection

experiments can extend the signal region to probe it.

3.3 Analysis Strategies

Multiple strategies can be employed to let data drive the determination of particle
nature of DM in an agnostic way. Here we will describe some methods put forward

in the literature [168,171,213-216].

Perhaps the most agnostic strategy is to open up the analysis to all operator coeffi-
cients shown in Table 2.1, allowing for differences over neutron and proton couplings.
This is, of course more computationally expensive, and for parameter scans leads
to the computer science problem known as the curse of dimensionality [217], which
refers to the fact that as you move to higher and higher dimensions, a larger propor-
tion of the volume is in the edges. Making the situation more difficult, the number
of direct detection experiments is small, which in general is insufficient to break
many degeneracies. Highly degenerate parameter spaces makes high dimensional

parameter scans less feasible and desirable.

Initial approaches to deal with the NREFT basis avoided this problem by assuming
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that any direct detection signal will be dominated by only one operator [218,219].
For exclusion limits, this approach is largely appropriate, with the important caveat
that some models allow for interference effects that produce cancellations [127].
Furthermore, as seen in section 2.2, a dark matter model often leads to multiple
responses in the NREFT basis. Although it is true that in many cases O is the
dominant interaction by virtue of the A? enhancement, this assumes that coefficients
are similar in size. When it comes to reconstructing parameters, including an
interplay of responses would be necessary to effectively determine the dark matter

parameters [127].

Another approach is to take specific UV Lagrangian terms allowing the couplings to
be free but then track those relations to the corresponding EFT basis [171,214]. This
neglects the possibility of having multiple new terms in the Lagrangian which could
come with different couplings. Pursuing this kind of analysis requires a parameter
fit to each model you are considering and then comparing their fits in a statistically
significant way. Ultimately, Pr(M;) depends on the model space one is considering,

therefore its necessary to include a comprehensive set.

One strategy we propose, attempts to incorporate aspects of the aforementioned
frameworks in an effort to be as agnostic as reasonably possible. Using Simplified
Models [98] introduced in Chapter 1 as a starting point, one can determine which
NREFT operators will be non-zero, leading to different operator sets for each model,

we can then allow the NREFT coefficients to be free parameters.

In Chapter 4 we consider a set of simplified DM models, in which a DM particle
and a new mediator are added to the SM Lagrangian. The EFT operators for direct
detection can be recovered in the non-relativistic limit [220]. These models will are
labeled according to the nature of the DM and mediator as follows: SS (scalar DM

with scalar or pseudoscalar mediator), SV (scalar DM with vector mediator), FS
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(fermion DM with scalar or pseudoscalar mediator), FV (fermion DM with vector

mediator).

The interaction Lagrangians for such models are [221],

Lgs = —g1mgSTSp — %STS¢2 — hdq¢ — ihaqy’qo;
Lsy = _%STSVMV“ —i94(5'9,8 — 9,5"S)V* — hag,.gV*q — hag gV
Lrs = —MXX¢ — iAaXY X0 — hi7qe — ihag° ¢

Lrv = =AXV" XV — MXV* XV — ha@r,gV* — hagy gV,

fields S and y are for dark matter scalars or fermions respectively and ¢ and V' are
for scalar and vector mediators. Notice with a scalar mediator, a different hadron
matrix element needs to be calculated, (N|m,qq|N) and (N|m,qiv°q|N), leading to
different values when relating couplings from (3.16) to C? and C™, details of which

are contained in Refs. [127,220].

With these models we assume universal quark couplings, i.e. hy = h¥ = hd. This is
done to comply with MFV introduced in Chapter 1. This assumption also reduces
the dimensions of the analysis. In the scalar mediating case, the often considered
isospin conserving case C? = C", is no longer the true. By following Refs. [127,220]

the results A = 0.96h] and k% = 0.25h5 can be obtained.

The leading contributions to the DM-nucleus scattering rate for each simplified

DM model can be calculated using the machinery outlined in chapter 2 to get the

matching,
hi hYY

=190 L 20, (3.16)
Mg Mg
—2hNg4 4hN94

L3y = ;;’/ O + n;l%/ Or; (3.17)
RV hY X hY X AP

L3 = 220y + 220+ 2200y, - L220y; (3.18)

¢ Mg My mg mg
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2 2 2
i my, my, my, my My my,

DY 4hN )\ AP Y\ h¥ s m hY A
which are consistent with Refs. [216,220] giving the subset of NREFT responses for
each model. Notice that for the (FV) model, we have 5 different operator responses
coming from 4 independent couplings to the mediator, this redundancy is expressed
by ¢} = b — & (my/m,). By inspecting Table 2.1, notice that, Os, Og, Oy, O1

and 017 have a non-trivial momentum dependence.

Notice that the operators arising from this set of simplified models is not complete.
If we broadened our model space to other simplified models then other operator
responses would come into play. For example, a spin-1 DM candidate, mediated by
a different spin-1 particle gives rise to O and Oy4 [220,222], whereas spin-1 DM
mediated by a spin-1/2 particle [220] gives rise to Op2. The operators such as Os,

013 and Oq5 are not known to come at first order from any simplified model.

This framework along with considering non-standard halos introduces a non-negligible
computational expense. In the next chapter we will outline a novel approach that we
have developed to accurately simulate direct detection responses, including possible

cancellations and variations in the halo model in a computationally cheap way.






Chapter 4

RAPIDD: Reconstruction
Algorithm of Parameters In Direct

Detection

In this chapter we introduce a novel method for simulating the direct detection
experiments. It was developed in order to increase the the feasibility of performing
higher dimensional analyses, outlined in Chapter 3. We saw in Eq.(2.1) that in
order to calculate the expected number of counts N in the ™ energy bin, one is
required to perform two integrations. Additional detector effects can be included
such as energy resolution, Res(E}, Er) which is generally incorporated as a Gaussian

smearing, and energy-dependent efficiency, €(ER).

As stated in Chapter 3 calculating Eq.(2.1) in a multidimensional parameter space
can be very costly. In order to speed up this process, we have developed RAPIDD,
a surrogate model that allows a fast and accurate determination of the expected

DM spectrum in direct detection experiments. In particular, we have used the
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PROFESSOR tool [223] to parameterise the experimental response in terms of simple
polynomial functions. The polynomial fits are obtained for each individual exper-
iment via a training process, which employs the exact calculation and the specific
details of each experiment. After this (expensive) offline phase, the resulting sur-
rogate model is considerably faster than the exact calculation, especially when the
dimensionality of the parameter space is large. Thus, it is ideal to explore the general
EFT parameter space, to investigate the complementarity of different targets, or to
use in scans that require a large number of evaluations. In this article we validate
RAPIDD, and we use it to test the identification of simplified DM models using

mock direct detection data from upcoming experiments.

This chapter is organised as follows. In Section 4.1, we explain how the surrogate
model RAPIDD is built. We comment on possible limitations and explain how
these are dealt with in our analysis. In Section 4.2 we test RAPIDD in some simple
scenarios, based on one and two effective operators to describe the DM-nucleus
scattering cross section, and also including astrophysical uncertainties. To illustrate
our method, in Section 4.3, we apply it to study the reconstruction of parameters to
the simplified model approach described in chapter 3, involving up to four different
operators, employing three different experimental targets. Finally, our conclusions

are presented in Section 4.4.

4.1 Parametrization of the DM detection rate

In this section, we explain the construction of a surrogate model to compute the
expected number of DM events in direct detection experiments. Our goal is to
speed up the computation without losing precision, then to adapt it to explore

multi-dimensional parameter spaces and large scans. To this aim, we have developed
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RAPIDD (Reconstruction Algorithm of Parameters In Direct Detection), a Python

code based on the PROFESSOR tool (used extensively in particle collider analyses).

The idea of replacing the expensive part of a calculation with an approximate model
is certainly not new. In fact a very similar approach taken in this work has been
successfully applied in the field of collider physics. Where parameters of Monte-
Carlo programs were optimised using numerical x? minimisation [224] or constrain

to effective field theory operators in BSM physics scenarios [225-227].

The objective function of our optimization problem is a binned likelihood, con-
structed from a signal prediction and data (we will use mock data to simulate
hypothetical future results) as defined in Eq (3.2) over k bins. We assume that
each experimental dataset follows an independent Poissonian distribution, so the full

likelihood function is equivalent to the product of the likelihoods for each experiment

Ha Likelihood (Nobs,a|N67 @, M,)

Traditionally, such analyses are conducted by interfacing a likelihood evaluator with
the signal generating code directly. Modern statistical tools are very efficient and
especially the introduction of nested sampling prevents wasting CPU cycles on points
of the parameter space where the likelihood is low. However, this approach relies on
exactly evaluating the signal prediction at every iteration which in turn means that
the run-time of the likelihood evaluation is dominated by the run-time of the signal
prediction of eq. (2.1). This effectively limits its applicability to low-dimensional
parameter spaces or more general to cases where the statistical analysis does not

become prohibitively expensive.

In this work we replace each exact N with an ordinary polynomial that has been
trained on a sample of N? at various points of the model parameter space, ®, using

PROFESSOR. In that sense, our surrogate model is simply a collection of polynomials
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Figure 4.1: Execution time of the surrogate model RAPIDD (red lines)
as a function of the number livepoints used in MultiNest runs [228,229]. For
reference, the gray lines represent the runtime of the full physics code. The solid
(dashed) lines correspond to the case without (with) astrophysical uncertainties.

and the computational gain is due to the polynomials being much cheaper to evaluate
than the true N¢ in eq. (3.2). In Figure 4.1 we compare the execution time of our
surrogate model with that of the full physics code as a function of the number
of livepoints used in MultiNest. We have observed a consistent improvement of
approximately two orders of magnitude in the speed of the computation in the

simplest runs with a small number of parameters.

It goes without saying that the method allows for other parametrization functions.
We choose polynomials, however, as they are numerically robust, easy to understand
and relatively cheap to train. Their usage is further motivated by the fact that
the number of DM events in a given energy bin, given by equation (2.1), is in
general a smooth function of the DM parameters (mass and couplings) in a given
energy range. There are exceptions to this mild behaviour that will require a more
careful treatment, namely accidental cancellations due to interference terms between
different operators, and threshold effects for low DM masses. We briefly summarise

PROFESSOR here before addressing these points.

The objective of PROFESSOR is to translate the exact signal prediction in equa-
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tion (2.1) for each bin, N{¢(®), into an ordinary polynomial, Pg(®). To do so
we first choose a polynomial order O appropriate for the physics problem at hand.
With O and © given, the structure of the polynomial is fixed. What remains to be
done is to determine the Neoefrs coefficients, df, ;, that allow to approximate the true
behaviour of N2 (@) such that

Neoefs

N{(©) = Pi(O)= 3 di, O =di- 6, (4.1)
=1

where O, are suitable combinations of the actual parameters!, ©.

The algorithm to determine d2 requires the knowledge of the exact N (@) at some
randomly sampled points of the parameter space. Having sampled and evaluated N}
for at least Neoers points (a task that can trivially be parallelised) we can construct
a matrix equation

]\?l? = Mg - div (4'2)

where Mg is a matrix where each row contains the values of © for each sampled
point, and N & is a vector of the resulting number of events. This allows us to solve
for di using the (pseudo-) inverse of Mg, which in the PROFESSOR program is

evaluated by means of a singular value decomposition.

The minimal number of points (i.e. fully determined matrix) is given by the number
of coefficients of an r-th order polynomial in D dimensions. The exact number is
given in [223]. We found it beneficial to oversample by approximately a factor of 2

in order to have greater statistics when validating our parameterization.

Although extremely robust and justified whenever Taylor’s theorem applies, the
validity of the polynomial approximation is not guaranteed and must be checked

before attempting any likelihood evaluation. For the most part, standard techniques

I For example, for a quadratic polynomial in a two dimensional parameter space © = (my, 1) =
(z,y), these would take on the form d2 = (a, Bz, By, Yaz Vays Vyy), and © = (1,2, y, 22, zy, y?).
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such as checking the polynomial prediction against its own exact inputs provided by

the PROFESSOR toolkit were used. In this work specifically we were confronted with

the following limitations:

(i)

Low-mass DM: The number of expected DM events for a given energy bin is in
general a smooth function of the DM mass (and therefore susceptible to be fit
by a polynomial). The only subtlety to take into account is that, for a given

DM mass, there is a maximum recoil energy, given by

12
maxr __ xT 2
ER =2 esc

(4.3)

where veq. is the escape velocity in the DM halo. If the incident particle is
light enough, experiments will be able to probe the end point of the spectrum,
which means that N} is zero above a given energy bin. In our parametrisation,
this discontinuity is difficult to fit precisely with a polynomial function. We
have circumvented this difficulty by multiplying by a Heaviside step function

which automatically incorporates condition (5.2).

Accidental cancellations: as already mentioned in the introduction, there are
interference terms between the different isospin contributions for each operator,
as well as between some of the EFT operators. These subtleties are difficult
to capture with the single polynomial approximation proposed in eq. (4.1).
Instead, we have found that it is much more convenient to use various polyno-
mials (one for each effective operator, including also the interference term), as

follows

Ni@) =Y > PrTT(e). (4.4)

ij 7,7/=0,1

Building the parametrisation in this way makes the training stage quicker,
because the required number of sample points is reduced. Solving equation
(4.2) for the coefficients in a lower dimension is also quicker than in a higher

dimension, which compensates for building multiple polynomials for each di-
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Target | Exposure Energy window | Bin No
Xe 5.6x10° kg days | 3-30 keV 27
Ge 91250 kg days 0.35-50 keV 49
Ar 7.3x10° kg days | 5.0-30 keV 24

Table 4.1: Specifications of the direct detection experiments considered in
this chapter. Bin no. refers to the number of equally spaced bins we use for
each target.

mension.

(iii) Precision loss: For consistency, we have monitored the precision of the surrogate
model by comparing the DM spectrum obtained for the best fit point with the
surrogate model and with the physics code. We have found that in general the
agreement was excellent, well below 1% for the examples shown in this paper.
We have found that precision can be lost in some cases of high dimensionality,
but that this behaviour can be corrected if a higher order in the polynomial fit
is used. Likewise, the surrogate model can be less precise towards the edges
of the parameter space used in the training phase. This is easily avoided by

training the surrogate model in a wider window than for the intended use.

4.2 Examples

In this section we consider various simple examples that allow us to validate our
surrogate model. We have selected various DM benchmark points that are within
the reach of future G2 experiments and we have attempted to reconstruct the DM
parameters (mass and couplings) using RAPIDD, and compare it with the full

calculation.

In Table4.1, we summarise the experimental configurations that we have considered

in this work. These were motivated by future direct detection experiments. The
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energy ranges were chosen so as to mimic the planned G2 experiments SuperCDMS
[230] (for Ge and Si), LZ, XENONIT, PandaX [104,231,232] (for Xe) and DarkSide
[112] (for Ar). The values for the exposures have been chosen to mimic G2 for xenon
and argon targets with LZ [231] (~ 15 tonne year) and Darkside-20k (~ 20 tonne
year) respectively. On the other hand, to maximise the complementarity, we chose
a even further future germanium experiment, with roughly five times the expected
exposure of SuperCDMS [230] (2.04 x 10%*kg days). It is important to note, however,
that at this point we are not interested in replicating the whole experimental setup,
and for simplicity we also assume a constant efficiency, e(Er) = 1, and perfect energy
resolution, Res(Ey, Er) = 6(EyR — Eg), in Eq.(2.1). These quantities vary from
experiment to experiment, and can be straightforwardly incorporated in our method,

only having a cost in the initial training time.

The parameter reconstruction is carried out using MultiNest 2.9 [228,229], which
is interfaced with RAPIDD. In order to test the results with the full computation,
we also interface MultiNest to our own numerical code that computes the number
of recoil events using Eq.(2.1). In both cases, we use the same definition for the
likelihood, based on a binned analysis of the resulting data. Scans are performed
with 15000 live points and a tolerance of 0.0001 to reach a good sampling of the
profile likelihood (defined below) as found in Ref. [233].

The experimental data consists of the predicted sets of binned DM rates for each
target, D = ({A\{}). The parameter space is therefore ® = (m,, ¢J). Logarithmic
priors are assumed for the EFT couplings and for the DM mass. Regarding the
properties of the DM halo, in the first examples we will consider the Standard Halo
Model (SHM). The SHM is characterised by an isotropic Maxwell-Boltzmann velocity
distribution function [234] in Eq. 2.1. We have used the following values for the local
dark matter density, py = 0.4 GeV cm™2, central velocity, vy = 220 km s™!, and

escape velocity, ves. = 544 km s~!. In this first example, we have not incorporated
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uncertainties in these quantities, but we will address this in Section 4.2, together

with the generalisation to other DM halos.

One operator: spin-independent scattering

In order to tune our method, we have started with a canonical scenario, where the
DM-nucleus scattering cross section is described by a single operator. We have
chosen Oy, which corresponds to the standard spin-independent scattering, and we
have assumed that the couplings of the DM to protons and neutrons are equal. We

are therefore left with a two-dimensional parameter space (m,, cJ).

We have chosen two benchmark points, a low mass case with m, = 30 GeV and
a higher mass case, where m, = 100 GeV. The coupling to O; is ¢} = m2& =
5 x 107° in both cases. Where we can relate these values to the zero-velocity spin-
independent DM-nucleon scattering cross-section in Eq(2.30). In these examples we

are considering purely isoscalar couplings (cf = ¢! = ¢?). The parameterization was

trained using 1000 random points in the (m,, ) plane.

In Figure 4.2 we show the reconstruction of DM parameters for both benchmark
points, the light mass, which is shaded red, and the high mass which is shaded
blue. The black lines indicate the 20 (95% C.L.) and 1o (68% C.L.) regions calcu-
lated by the physics code. We have assumed observation in a future xenon experi-
ment with setup as in Table 4.1. The best fit points are, respectively, (m,, ) =
(30.0 GeV, 5.00 x 107°) and (99.7GeV, 4.99 x 107°), and the 10 and 20 regions
span the same areas. Without having lost accuracy, the great advantage of the
parametrisation method is its speed. While the full computation took approximately
40 minutes for each example, the results using the surrogate model took just 10

seconds (after an initial training phase of approximately 2 minutes). To calculate
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Figure 4.2: Reconstruction of DM parameters in the (m,, ¢) plane for two
benchmark points. The best-fit point and 1o (68% C.L.) and 20 (95% C.L.)
regions are shown for the results obtained with RAPIDD (red cross and shaded
areas) and the full physics code (black stars and solid and dashed black lines).

the contours in these plots we have used functions provided by Superplot [180].

As mentioned in Section 4.1, low DM masses are a potential challenge for our
surrogate model. With this test we have shown that RAPIDD is reliable in this

mass regime.

Operator interference and isospin-violating couplings

As explained in Chapter 2, each operator’s response is summed over proton and
neutron interaction (or equivalently, isoscalar and isovector interactions ). Likewise,
there are interference terms among some of the EFT operators. Due to the resulting
interference terms, accidental cancellations can occur between these responses. For
example, the interaction rate of isospin-violating dark matter [235-238] is extremely
sensitive to the nuclear target. In fact, for specific choices of DM couplings to
protons and neutrons, one can greatly suppress the expected rate in certain targets,

a strategy that has been employed to try to reconcile positive DM hints (such as
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DAMA and CoGeNT) with the negative results from other experiments (mainly

XENON). For a recent review on isospin-violating DM models, see Ref. [239].

This finely tuned cancellation is a challenge for our parametrisation technique. In
particular, we have checked that a polynomial approximation of the total response,
dR/dERg, is unable to properly capture this subtle behaviour. As already mentioned
in Section 4.1, this problem can be addressed by using independent parametrisations
for each isospin contribution and for each interference term, as in equation (4.4).
In this particular example, we will use different polynomials for each of the three
contributions, P°, PV and P}!. Each of these vary smoothly with the input para-
meters (my, ¢, ¢i) and this ensures a much more reliable reconstruction, including
cancellations.

We show in Figure4.3 the results of a three-dimensional scan (m,, ¢}, ¢j) for a
benchmark point that exhibits a large degree of fine-tuning. When comparing to the
result using the full calculation, we can observe that our parametrisation method
recovers the correct shape of the reconstructed areas, including the region where the
negative interference takes place. As in previous examples, the time employed by our
method was considerably shorter. Notice that the best fit point in our reconstruction
(red cross) does not coincide with that of the nominal point (black star). However,

the best-fit point calculated by RAPIDD is well within the 1o contour.

Having proved that this prescription treats cancellations accurately, RAPIDD’s
default setting is to produce output from a series of polynomials as described in

equation (4.4).
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Figure 4.3: Reconstruction of DM parameters in (m,, ¢}, ¢{). The best-fit
point and 1o (68% C.L.) and 20 (95% C.L.) regions are shown for the results
obtained with RAPIDD (red cross and shaded areas) and the full physics code
(black star and solid and dashed black lines).

Generalised DM halos

As reviewed in Chapter 3 the SHM is the canonical choice used to present the results
from direct detection experiments. It is particularly convenient because the velocity
integral can be solved analytically, which greatly reduces computing time. However,
as seen previously, there are strong motivations to move beyond the SHM, and when
we do, direct detection experiments are affected by these variations [161,164,240-242],
especially when probing low-mass DM candidates [241]. For example, changes in the
velocity distribution function can significantly alter the population of DM particles

with enough speed to produce recoils above the experimental threshold.

Our surrogate model can be easily adjusted to a general velocity distribution function.
In fact, it is for general halos that this method is more advantageous: whereas the
full calculation relies on numerically solving the velocity integral, in our method,

this only has to be done in the training phase.
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As a final test of our method, we have applied our reconstruction routine to the
same example as in the previous subsections, but considering a generalised DM
halo, defined by Eqn.(3.14), considering variations in the halo parameters as ves. €
[478,610) km s, vy € [170,290] km s, k € [0.5, 3.5] as well as py € [0.2,0.6] GeV cm ™
[197-200], which are included in our scan as nuisance parameters. These ranges are
consistent (although broader) than those obtained in recent analysis of N-body

simulations that include the effect of baryons Ref. [196,201].

Figure 4.4 shows the resulting reconstruction of DM parameters in this generalised
halo. As expected, the 10 and 2 o regions are wider as a consequence of astrophys-
ical uncertainties. Since the benchmark point in this example is of relatively high
mass, our xenon experiment will not probe the tail of the halo function. Therefore,
remembering the results from Section 3.2, uncertainties in k, vy and ves. will not
provide large variations in our parameter reconstruction. Instead, the uncertainty
in p, provides a simple scaling uncertainty in the strength of coupling. This can be
seen when we compare Figure 4.4 to the higher mass BP in Figure 4.2, the contours

are simply fatter.

As for validating RAPIDD, like in the previous examples, we observe no difference
between the results obtained with RAPIDD and those obtained with the full physics
code. We therefore conclude that our surrogate model is fast and reliable, and easily

applicable to generalised DM halos.

Finally, RAPIDD can also incorporate velocity distribution functions which are
defined as a function of the velocity, but not necessarily given by an analytical

formula. This is useful to interpret results from numerical simulations (see e.g.,

Refs. [196,242]).
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Figure 4.4: Reconstruction of DM parameters in the (m,, ¢J) plane when
astrophysical uncertainties are included. The best-fit point and 10 (68% C.L.)
and 20 (95% C.L.) regions are shown for the results obtained with RAPIDD
(red cross and shaded areas) and the full physics code (black star and solid and
dashed black lines).

4.3 Simplified dark matter models

Having proved the reliability and speed of RAPIDD in the previous section, we
will now exploit this tool to illustrate how future data might constrain DM para-
meters in a multi-dimensional parameter space. In this section we consider a set
of simplified DM models, as described in chapter 3. The EFT operators for direct
detection can be recovered in the non-relativistic limit [220]. For concreteness, the
relation between models and operators is as follows: SS {O;, Oy}, SV {0y, O7},
FS {0y, Og, O, O11}, FV {04, O4, O7, Og, Og}.

We will consider a hypothetical future situation in which several direct detection
experiments observe an excess in their data that can be attributed to DM particles.
We will attempt to reconstruct the data within the context of different simplified
models. As already mentioned in Chapter 3, in general, a single experimental target
is unable to unambiguously determine the DM couplings, thus we consider a signal

in three targets, Ge, Xe, and Ar.
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Name | Model | DM Parameters || Nxe | Nage | Nar
m, = 10 GeV

BP1 | SS cg=1x10"* 93 |10 |50
Cig0 — 5
m, = 100 GeV

BP2 | SS g =3x10"° 206 | 2 30
Cclp =9 X 101
m, = 30 GeV
C1 = 0.0

BP3 | FS cg = 60 256 |1 0
Cig0 — 0.0
C11 — 0.0

Table 4.2: Benchmark points considered in this chapter. They all satisfy
experimental constraints from direct detection experiments, and are within the
reach of next generation detectors. For reference, we indicate the total number
of DM events expected in each of the experimental configurations of Table4.1.

We have selected a number of benchmark points, shown in Table 4.2, all of which sat-
isfied the experimental bounds from direct detection experiments prior to XENON1T
results. We include one example with a low-mass DM particle (BP1) and another
one with a heavier candidate (BP2), since they give rise to different issues in the

parameter reconstruction. We have also chosen a point motivated by Pseudoscalar-

mediated DM [140,237] (BP3).

As mentioned in Chapter 3 we have assumed universal couplings of the DM to quarks,
which leads to a specific relation between the isoscalar and isovector components of
the DM-nucleus coupling [216], thereby effectively reducing the dimensionality of
the parameter space. Here we have presented our benchmark point in terms nucleon
inependent couplings, but quark universality requires that ¢/ = ¢;(1.96/2.0) =
c1/0.96 and ¢y = ¢10(1.6) = ¢},/0.25 for the SS BPs, whereas for the FS BP isospin

is conserved ¢ = ' = ¢;.

For each benchmark point, we have generated mock data for the experimental

setups of Table4.2. Then, using this data, we have attempted to reconstruct the
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DM parameters (mass and couplings) for each simplified DM model (SS, SV, FS,
FV) using RAPIDD linked with MultiNest. In all cases, we have computed the
reconstruction corresponding to each individual target, as well as the one resulting
from the combination of data from the three targets. For brevity, we only show the
resulting profile likelihoods in the multi-dimensional parameter space to describe
some results more clearly, the most important result from this section is the DM

spectra corresponding to the best-fit points in each model.

BP1 (light DM):

Our first benchmark point, with m, = 10 GeV, is an example of low-mass DM candid-
ate which provokes both the O; and Oy responses at similar strengths. Ordinarily,
these operators are fairly distinguishable since they have different momentum de-
pendence (¢° and ¢! for O; and Oy respectively). However, due to the small DM
mass, the characteristic peak of Oy spectrum is below the analysis threshold for
xenon and therefore, can be mistaken for the typical exponential behaviour of a
g-independent response. This is a challenge for parameter reconstruction that can
be alleviated through the use of multiple targets. The profile likelihoods shown in

Figure 4.5 illustrate this point very well.

Figure 4.5 shows the the 20 contours of single target experiments such as xenon,
germanium and argon with colors blue, green and orange respectively. For the
low masses that we are considering, the responses of operators O; and Oy, are
very similar in both germanium and xenon. When you consider both experiments
simultaneously you start to see tension between them, exhibited by the contours in
the {O1, O} plane, which start to separate in the low ¢; region. However, these
two targets are unable to resolve the degeneracy and in principle, only are able to

place an upper bound on the corresponding couplings.
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We can observe this effect in the {O;, Oy} plane of Figure 4.5, where the germanium
contours are not closed. The argon target plays a pivotal role in breaking the degen-
eracy by virtue of the detector being insensitive to the spin-dependent interaction
O19. The insensitivity is shown by the orange vertical contour in the {O, Oy}
plane. When running the reconstruction with all experiments, closed contours in SS

are achieved.
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Figure 4.5: Profile likelihood for the reconstruction of DM parameters for the
simulated data of benchmark point BP1, using simplified model SS. Dashed
blue, green, and orange lines correspond to the 2 o (95% C.L.) contours obtained
for individual targets of xenon, germanium, and argon. The light and dark
pink shaded regions bounded by black dashed and solid lines correspond to
the 1o (68% C.L.) and 20 (95% C.L.) contours obtained for the combination
of the three targets. The best fit point is represented by an white star. For
reference, the one-dimensional profile likelihoods are also shown.

The full reconstructions for the SV, FS and FV models are not shown because
they tell a very similar story, with the exception that for the fermion DM models,

there is much greater freedom with coefficients. This translates into great blocks of
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unconstrained parameter space, and contours which are unable to be closed.

In Figure 4.6, we show the DM differential rate obtained for the best fit points in
each simplified model and target. The different columns represent, from left to right,
SS, SV, FS, and FV, and the different rows represent, from top to bottom, Ge, Xe,
and Ar. The vertical grey dashed lines represent the energy range used in the fit for
each target. In each plot, the red line corresponds to the differential rate predicted
by the benchmark point (BP1), and the thick, dashed, black line is the differential
rate obtained for the best-fit point (combining the data of the three targets). The
individual contributions from NREFT operators are shown by means of a dot-dashed
lines (for operators with a canonical momentum dependence) and dotted lines (for
operators with an extra momentum-dependence). The table below the plot indicates
the parameters for the best-fit point in each simplified model, using the same colour

code as the figure.

As the results show, the DM mass is very well-reconstructed around the nominal
value. Given the small DM mass, the end-point of the DM spectrum falls within
the energy range analysed in the three experiments. Notice that this argument is
independent of the effective operator (the right mass is obtained in all scenarios),

and therefore it does not help in discriminating the different models.

In all four models, the reconstruction favours a leading contribution from operator
01, consistent with the original benchmark point. The small contribution from a
momentum-dependent operator is either attributed to Oy, (in SS and FS) or Oy (in

FV).

In fact the FV example is particularly interesting in this case because given the
shape of Oy, one might assume that a better fit should be achievable. Remember

however that the size of ¢g directly implicates the size of both ¢; and cg. Both O;
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and Og have similar spectra to O; but importantly are different in the tail, and thus
unable to be viable replacement for ¢;. Therefore, both contributions have to be

kept to a minimum, restricting the effect Oy can have.

In order to quantify and compare the goodness of the resulting fits, we have computed
the log-likelihood of each best-fit point, as given by the likelihood. We can observe
that a relatively good fit is obtained in all four scenarios, with a slight preference

for the right model SS and also FS (but only in the scenario where FS—SS).

Notice that in this kind of analysis, it is customary to compare hypothesis by
means of the Bayesian evidence, however, we are dealing with models of different
dimensionality and we would observe the rather trivial result that models with more
free parameters are favoured. As explained for example in Ref. [218], one could start
by calculating the evidence for 2D slices of the parameter space and thus identify

the most likely set of parameters before moving to larger dimensions.

Finally, as a consistency check, we have compared the binned DM spectrum for the
best fit points obtained with RAPIDD and with the full physics code. We have
observed that the number of DM events per bin obtained with the surrogate model
and the real one differ by less than 1% when fourth order polynomials are employed
for models SS, SV, and FS. We have found that model FV requires a fifth order

polynomial to attain the same degree of precision.
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Figure 4.6: Reconstruction of parameters for BP1: Differential rate as a
function of the recoil energy corresponding to the best fit point in each sim-
plified models (columns) and for each of the experimental targets (rows). The
thick black line corresponds to the full differential rate obtained from the best
fit point (after combination of data from the three targets) in each of the
simplified models. For reference, the thick red line shows the differential rate
corresponding to the benchmark point. The thin dotted (dot-dashed) lines rep-
resent the individual contributions from momentum dependent (independent)
operators. The vertical dashed lines delimit the energy range explored for each
target. The table indicates the parameters for the best fit points in each case
(using the same colour code as the lines in the plots), and the value for its
log-likelihood calculated using eq. 3.2. Gray shading is used to denote the true
model (SS in this case).
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BP2 (Heavy DM)

We now turn our attention to a larger value of the DM mass. Benchmark point BP2
features a 100 GeV particle. This implies that the resulting spectrum is flatter and
displaced towards larger values of the recoil energy. It should be noted that with
the configurations chosen in Table 4.1, only the xenon and argon targets would be
sensitive to this signal. Since we have assumed a smaller exposure for germanium,
the expected number of events for this target is merely Ng. = 1, which only leads

an upper bound in the corresponding couplings.

Due to the heavier DM mass, the endpoint of the recoil spectrum lies beyond the
energy window of all three targets, which makes its reconstruction more difficult.
Moreover, the (small) contribution from the momentum-dependent operator Oy
flattens out the spectrum at large energies. This is properly identified in models SS
and FS (for which the resulting value of ¢jy is comparable to that of the original
benchmark point), resulting also in a very good reconstruction of the DM mass.
However, in the SV model for which there is no momentum-dependent operator and
for FV where Oy is severly constrained by its relation to O; and Og, the best fit
is obtained for a much larger value of the DM mass (in model SV the best fit is
actually towards the boundary of the reconstructed area with m, ~ 1000 GeV), so

as to compensate for the flatter spectrum.

To illustrate this point, the full profile likelihood in the whole parameter space can
be found in Figures 4.7 (SS), 4.8 (SV). As we see in these plots, the reconstructed
DM mass has a large uncertainty, and even if the right value is obtained for the
best-fit point (model SS), the 20 region is unbounded from above. This effect is
well known, and is exacerbated by astrophysical uncertainties in the DM escape
velocity [164,243]. Possible ways to improve this from the experimental side will be

discussed more in Chapter 5.
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Figure 4.7: Profile likelihood for the reconstruction of DM parameters for the
simulated data of benchmark point BP2, using simplified model SS. Much like
Figure 4.5, dashed blue, green, and orange lines correspond to the 20 (95%
C.L.) contours obtained for individual targets of xenon, germanium, and argon.
The light and dark pink shaded regions bounded by black dashed and solid
lines correspond to the 1o (68% C.L.) and 20 (95% C.L.) contours obtained
for the combination of the three targets. The best fit point is represented by
an white star. For reference, the one-dimensional profile likelihoods are also
shown.

Perhaps more subtly, however, is the fact that the vector mediated model is unable
to reproduce this extra flatness coming from the secondary response O;y. We see in
the 1D profile likelihood in Figure 4.8 there seems to be very little preference for a
particular mass and it in fact disfavours the "true' mass of BP2. When we compare

this to Figure 4.7 we see a preference for a specific mass.

However, statistically speaking, both interpretations are still completely valid as
we can see in the Figure 4.10. This Figure shows how well all models are able to
reproduce the spectrum. Where the most important spectra for this data set are the
xenon and argon ones. Once again we see F'S — 5SS with the best-fit point. We do
see however that if germanium exposure such that the signal was seen clearly, the

models SV and FV would be less able to match the data. Furthermore, Figure 4.10
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Figure 4.8: The same as in Figure 4.7, but for simplified model SV.

shows that pushing the signal region of interest ROI to higher recoil energies will

improve model discrimination.

In the table below Figure 4.10, the recoil spectra of the reconstructed points are very
similar for models SS and FS. This is not surprising, since once more the response
in both cases is dominated by the same set of operators. These two models are
difficult to disentangle using direct detection alone, but as recent analyses points
out, a combination with LHC data could shed light onto the nature of the DM and

the mediator [244].

The goodness of the fit for models SV and FV is not much worse, but the reconstruc-
ted areas are extremely degenerate. For example in model F'V there is a complete
degeneracy between operators O, O4, O7 and Og as shown in Figure 4.9. The severe
degeneracies are not present in the results for BP1 and this is because the tail of
the spectrum is being probed in experiments. It is this region that allows one to

make some discrimination between these operators. Moreover, in the high m, limit
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the Oy coefficient becomes completely dependent on cg and due to the dominance
in strength of the Og form factors over that of Oy, there is no chance of using Oy to

flatten the spectrum in the way that Oyy does for the scalar mediated models.
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log 1(c%)

3 -2.0 -15 -1.0 -0.5 0.0
logyy (my/[GeV]) 9 log1o(<})

Figure 4.9: The same as in Figure 4.7, but for simplified model FV.
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Figure 4.10: The same as in Figure 4.6, but for benchmark point BP2.
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Momentum-dependent DM (BP3)

Finally, we have selected an example based on fermion DM with a pure pseudo-
scalar mediator (model FS with only operator Og), since this gives rise to a very
characteristic spectrum which vanishes at small recoil energies. Notice that given
our choice of parameters for benchmark point BP3 of Table 4.2, only xenon sees a
relevant number of DM events, since the exposure in germanium is insufficient and
Og does not produce a response in Argon. However, the data from the other targets
is still useful to set up upper bounds on specific operators as we see in Figure 4.11

and Figure 4.12.
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Figure 4.11: Profile likelihood for the reconstruction of DM parameters for
the simulated data of benchmark point BP3, using simplified model SS. Much
like Figure 4.5, dashed blue, green, and orange lines correspond to the 20 (95%
C.L.) contours obtained for individual targets of xenon, germanium, and argon.
The light and dark pink shaded regions bounded by black dashed and solid
lines correspond to the 1o (68% C.L.) and 20 (95% C.L.) contours obtained
for the combination of the three targets. The best fit point is represented by
an white star. For reference, the one-dimensional profile likelihoods are also
shown.

In Figure 4.11 we see that germanium and argon targets are able to improve the
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Figure 4.12: The same as in Figure 4.11, but for simplified model SV.

reconstruction only in a small way. For example the {m,, ¢;} plane shows how argon
can provide some complementarity by restricting some parameter values allowed by
xenon alone. In model SS, the best fit is obtained for large O, as it has a non-trivial
momentum dependence, much like the BP’s Og leading response. We have not shown

the F'S profile likelihoods, but they quite clearly favor Og responses.

Complementarity really comes into play when the wrong model is being considered.
Taking the SV scan in Figure 4.12, one can see in the {m,, ¢;} plane how the
argon exclusion is completely inconsistent with the best fit region from the xenon
experiment. A similar situation occurs for the FV scan. The substantial tension
between the areas obtained using only xenon data and those using the other targets,
causes problems for interpreting the data for these models. If only xenon data is
considered, the best fit areas favour a leading contribution from operator O;. When
argon data is included, the best-fit area corresponds to large values of O7 in model
SV or Oy in FV (to which argon is insensitive). It is also worth noting that without

this tension we know that the O; would be a bad fit to the Og signal, but the tension
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between experiments is valuable information when trying to find the best model.

Figure 4.13 shows the differential DM rate corresponding to the best fit points in

each model. We can now observe that only the right scenario (FS) produces a good

fit to the signal and this is because F'S — SS is no longer possible. The reason

is that Qg is the only operator of the set considered here that is ¢*> dependent. In

contrast, Oy only depends on ¢ and thus leads to a different shape. As the table

below Figure 4.13 shows, the statistically preferred model coincides with the true

model quite unequivocally.
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Figure 4.13: The same as in Figure4.6, but for benchmark point BP3. No
events are expected for argon in the last row of plots.

As in previous examples, we have checked the accuracy of the surrogate model in

the best fit points, obtaining a difference of less than a 1% with the full physics
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computation.

4.4 Summary

In this chapter we have introduced RAPIDD, a surrogate model to compute the
binned DM spectrum in direct detection experiments. RAPIDD substitutes the
full physics computation with a much faster parametrisation in terms of ordinary
polynomials of the DM mass and couplings. The surrogate model is initially trained
for a given choice of parameters using the full calculation of the DM rate for a given

set of direct detection experiments. The parametrisation is then extracted using the

PROFESSOR tool.

We have validated our surrogate model using a range of examples that explore
the reconstruction of DM parameters using mock-data in the multi-dimensional
parameter space of effective field theories motivated from simplified DM models. We
have identified and overcome two difficulties, corresponding to the case of low-mass
dark matter and the interference between different operators. We have also checked
that RAPIDD can successfully incorporate a generic DM halo, as such obtained from
N-body simulations, and include astrophysical uncertainties in the halo parameters.
In a few selected benchmark points, we have compared our results with those of the
full physics calculation, obtaining a perfect agreement and a runtime approximately

two orders of magnitude smaller.

As a final test of the full potential of RAPIDD, we have attempted the reconstruction
of DM parameters in the context of a set of simplified models using three experimental
setups, inspired by future DM detectors. We have considered the cases of scalar

and fermion DM particles, with either scalar or vector mediators. In these models,
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the dimensionality of the parameter space (once astrophysical uncertainties are
included as nuisance parameters) ranges from six to nine dimensions and include
operators with non trivial momentum dependence. We have found that fourth order
polynomials provide a good fit, with errors smaller than 1%, except for the example
with highest dimensionality, where fifth order polynomials were required. Using three
experimental targets (Ge, Xe, and Ar), we have illustrated the advantage of target
complementarity. Although in general, the right model cannot be fully determined
due to the limitations of experimental data, analyses like this one can be used to

assess the suitability of future experimental targets.

In conclusion, RAPIDD is well suited to perform fast and accurate scans in a large
number of dimensions. It is therefore ideal to explore the wide parameter space of
effective field theory operators and could be used by experimental collaborations
for a quick interpretation of their results. RAPIDD can also be used in scans that
require a large number of evaluations, such as in global scans of particle physics

models.



Chapter 5

Improving the Reach of Direct

Detection

The tools developed in the previous chapter are ideal to test the performance of
future detectors and thus optimise them during the design phase. In this chapter
we review Ref. [2], where we investigated the benefits of increasing the maximum
nuclear recoil energy analysed in DM direct detection experiments. We extend the
energy region of interest (ROI) and show improvements in sensitivity and parameter
reconstruction, particular for determining the DM mass. We see that the optimal
values of the maximum energy for xenon and argon are of the order of 500 keV and
300 keV, respectively. With this improved set up we return to three-dimensional
parameter reconstructions and apply it to the specific case of scalar DM and anapole
DM. We find that opening the energy ROI is an excellent way to identify the linear
combination of momentum-dependent and momentum-independent operators, and
it is crucial to correctly distinguish these models and could well improve the results
seen in Chapter 4. Finally, we show how an enlarged energy ROI also allows us to

test astrophysical parameters of the DM halo, such as the DM escape speed.
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In order to optimise the discovery potential of current and future detectors, one
must have an excellent control over the experimental background, either by reducing
it through the use of shielding and employing extremely radiopure materials or by
understanding any source of irreducible background. Likewise, the characteristics
of the expected signature from DM interactions must be well known, as this defines

the region of interest in which a signal might be expected.

As we showed in Chapter 2 the velocity and momentum-independent spin-independent
(SI) and spin-dependent (SD) operators, are often considered to interpret results from
direct detection experiments and derive bounds on the DM-nucleon scattering cross
section. For these operators, the expected nuclear recoil spectrum is approximately
exponential, with most of the signal concentrated in the keV and sub-keV region and
a slope that decreases with increasing DM mass. Thus, in order to capture most of
the DM signal, a great effort is made in lowering the experimental energy threshold.
This also helps probing lighter DM particles, which leave a smaller energy deposit

in the detector.

However, as seen previously the shape of the DM spectrum changes substantially for
other EFT operators, mainly for those with a non-trivial momentum dependence,
which display a characteristic bump at large recoil energies [116]. Likewise, the
higher end of the recoil spectrum is particularly sensitive to some of the astrophysical
parameters, as seen in Chapter 3. All of this motivates widening the energy window

analysed in direct detection experiments.

The possibility of extending the energy range of direct detection to include the high
energy end of the recoil spectrum has been addressed in the literature. Earlier
work in this area [245-248| studied inelastic and exothermic DM [246, 248, 249,
and more recent works have pointed out the effects on EFT operators for elastic

scattering [152,171,250]. The prospects of reconstructing the DM speed distribution
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and particle physics parameters from direct detection data for an extended energy
window up to 1 MeV has also been studied in ref. [251] for the canonical SI cross

section.

In this chapter, we will study in detail the advantages of extending the energy window,
with emphasis on xenon and argon based detectors. We consider large values for the
maximum nuclear recoil energy, and study the optimal energy ranges for xenon and
argon to maximise the sensitivity to EF'T operators. Then, assuming a DM detection,
we investigate how an extended energy range improves the reconstruction of DM
parameters (mass and couplings), incorporating the effect of nuclear form factors
and the neutrino floor in this energy range. We also extend our study to investigate
how a larger energy range can give us access to some astrophysical parameters of

the DM halo.

This chapter is organised as follows. In Section 5.1, we discuss what the experimental
prospects are for going to higher energies. In Section 5.2, we explain the various
aspects of DM detection that would benefit from an increase in the maximum energy;,
thereby utilizing a larger part of the overall spectrum. This will lead to a significant
improvement in the exclusion limits for momentum-dependent EFT operators, a
better reconstruction of the DM mass and couplings, and a better sensitivity to
astrophysical parameters such as the escape speed. Finally, our conclusions are

presented in Section 5.3.
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5.1 Energy Region of Interest in direct detection

experiments

The region of interest (ROI), defined as the range between the minimum (threshold)
energy, F¥" and a maximum energy E%** is normally chosen to maximise the
potential for DM discovery while keeping the background under control. For simpli-
city, in this chapter we continue to assume £(FEr) = 1. Furthermore, in this chapter,
until explicitly stated, we will assume the SHM for the local DM distribution with
parameters given in Table 5.2, when we consider an alternative halo model motivated

by recent hydrodynamic simulations.

In Chapter 4 we saw that momentum-dependent operators can arise via simplified
models. However, here we return to the case of the only dimension six operator
that interacts with the electromagnetic field for Majorana particles [67]. This is
the anapole DM interaction introduced in Chapter 2 and defined by the interaction
Lagrangian L, = AxY7*v°x0,F*. We saw explicitly that in the non-relativistic
limit, the effective operator for anapole interactions, O 4, is a linear combination of
the momentum-independent operator Og and the momentum-dependent Oy with
the Lagrangian as follows [133,140, 177,

L= NZ Ae(2Qn0s — gnOg) X YNTN, (5.1)

—

where e is the electron charge, Qn is the nucleon charge, and gy are the nucleon
g-factors (g, = 5.59 and g¢,, = 3.83). We can parameterize the coupling strength as
o= A%u3 /7 [140].

In this work, we focus on the effect of higher recoil energies in noble liquid detectors
which employ either liquid xenon or liquid argon. Although the qualitative results

can be extrapolated to other targets and experiments, the main advantage is for
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heavy DM particles, where noble liquid detectors excel.

The primary DM signature is the spectrum of nuclear recoils reconstructed using
the resulting charge and light signals in liquid and double phase noble gas detectors.
There are also a series of background sources that limit the experimental sensitivity.
These originate either from natural radioactivity, mostly from naturally occurring
2380 and #*?Th chains, as well as cosmic muon and spallation induced fission products.
The dominant backgrounds for many DM searches are neutrons that interact with
nuclei in the detector target via elastic scattering. This produces a nuclear recoil
similar to the expected signal. High energy cosmogenic neutrons of up to a few GeV
might be produced by spallation reactions of cosmic muons on nuclei in the detector
or the surrounding rock. Further (a,n) reactions where an « particle can initiate
nuclear reactions in the target nucleus while emitting a neutron and spontaneous
fission reactions produce neutrons at moderately low energies of around a few MeV.
Just as for standard low recoil DM searches, such energy depositions can end up
in the region of interest for our searches. Typically the background levels decrease
by orders of magnitude from the low energy DM search region of 10 keV to higher
energies above 100 keV [252]. Thus searches in the high nuclear recoil energy range

can achieve very good sensitivities.

DM is expected to scatter only once in the detector because of its low interaction
probability. In contrast most backgrounds are expected to scatter multiple times.
Therefore experimentally these backgrounds are identified and rejected by removing
multiple scatter events. In the case of high energy nuclear recoils certain instrumental
background processes (such as accidental coincidence between single-electron and
single-photon noise) might become relatively more important. Another type of
instrumental background relevant for the high nuclear energy regime occurs when
one of the multiple scatters takes place outside of the sensitive volume and the other

one inside the sensitive volume. Then the multiple scatter is mis-characterized as
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single-scatter and also its charge yield is not properly reconstructed. These effects

are highly dependent on detector geometry and cannot be generally assessed here.

When reconstructing the energy of an incoming particle from the measured light
and charge yields, calibration data is necessary. Current noble liquid detectors have
developed a comprehensive understanding of backgrounds and calibrations for low
recoil energies. If the energy ROI is to be widened, these studies have to be extended
as well. The energy scale is determined either directly by using mono-energetic
neutron sources or by comparing measured neutron energy with simulations. While
the former method is more robust, only a fairly small amount of possible neutron
sources can be used. Monte Carlo simulations can be used over a wider energy range,
but they require additional assumptions and have large uncertainties. Currently
energies only up to about 76 keV nuclear recoil energy are calibrated, although with

good accuracy [253].

Presently the highest energy calibrations performed are using D-D neutron generat-
ors, providing neutrons of about 2.5 MeV, thus leading to maximal recoils in liquid
xenon of about 76 keV [253]. D-T neutron generators could provide much higher
energies, up to about 14.1 MeV, enabling the calibration of nuclear recoils up to an
energy of approximately 430 keV in a xenon detector which is very well suited to
the extended search window which we propose in this work. Argon, because of its
lower atomic mass, can use the same sources to calibrate recoils of about 230 and

1300 keV, respectively [254].

In this analysis, we consider two simplified xenon and argon experimental setups,
shown in table 5.1, which are motivated by future detectors such as LZ, XENONnT,
PandaX, and DARWIN [104, 112,231, 232] (for Xe), as well as DarkSide and DEAP
[112,114] (for Ar). For each of these setups, we have adopted two configurations: a

nominal range for the energy ROI, based on current specifications, and an extended
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Target | Exposure [ton yr| | Nominal ROI [keV] | Extended ROI [keV]
Xe 15.3 3—30 3 — 500
Ar 20 5 — 50 5 — 300

Table 5.1: Specifications of the xenon and argon experiments considered in
this work inspired by future LZ [232] and DarkSide [112] experiments, respect-
ively.

ROI motivated by the possible improvements in calibrating/reducing the high energy

background, as explained in the previous section.

Notice that when considering nuclear recoils at high energies, such approximate
nuclear responses can be subject to uncertainties [255]. There are also chiral effective
theory effects which can induce corrections to the recoil spectra due to inter-nucleon
interactions mediated by meson exchange [256,257]. These can, in turn, alter the
shape of the nuclear responses [125]. We have not included these uncertainties in our
analysis. On the one hand, they would not alter the end point of the nuclear recoil
spectrum as this only depends on kinematics. On the other hand, the changes in the
shape can be relevant for momentum-dependent operators. Determining how much
these uncertainties translate into uncertainties on the exclusion limits or parameter
reconstruction is beyond the scope of this work. Nonetheless, this work can be seen

as a motivation to better understand such uncertainties.

Opening the energy ROI could also improve searches for inelastic scattering where
the target nucleus becomes excited. Inelastic scattering has been studied before for a
xenon target, since the low-lying excitations of ?Xe (39.6 keV) and '*!'Xe (80.2 keV)
are within the nominal ROI [258,259]. More nuclear transitions could be accessible
with an increased ROI, for example, the first excitation of *?Xe (668 keV), which
has a large isotopic abundance. However, at these energies, only the high speed tail
of the local DM velocity distribution would be probed, weakening the strength of
the signal. The de-excitation of the nucleus would produce a photon, requiring a

dedicated search strategy in direct detection. The ?Xe and '®'Xe transitions are
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produced by a change in nuclear spin, constraining the type of interactions producing
them. State-of-the-art calculations for such transitions exist for the axial-vector
current (Y7*7°x)(qv*v°q) [260,261], which refers to the spin-dependent interaction
(Oy,). Some of the interactions we consider in this work would be able to excite the
xenon isotopes, however a calculation of the form factor for this transition is beyond
the scope of this study. Inelastic scattering is in general sub-dominant [259], but

studying this signal could be important for improving parameter reconstruction.

5.2 Benefits of enlarging the energy window

In this section we provide concrete examples that illustrate the advantages of enlar-
ging the energy window in the search for DM signals. We will address the effect that
a wider ROI has on deriving exclusion limits for EFT operators if no DM signal is
found, on the reconstruction of DM parameters in the event of a positive signal, and

on gaining sensitivity to the astrophysical parameters describing the DM halo.

Exclusion limits

The first advantage of increasing the energy range in direct detection data analysis is
to obtain better upper bounds on the DM-nucleus cross section, if no excess over the
background is found. This argument strongly relies on the expected recoil spectrum

from DM interactions and therefore it varies significantly for different EFT operators.

In particular, for the canonical SI and SD (O; and Oy, respectively) the nuclear
recoil spectrum has an approximate exponential behaviour as a function of the

recoil energy. A similar behaviour is observed for those EFT operators without an
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explicit momentum dependence, namely Oz g 12, although the different form factors
induce some variation. In general, if DM interactions are dominated by any of
these operators one would expect that most of the DM signal is concentrated at low
energies, and thus the usual strategy of lowering the energy threshold to enlarge the
ROI would be optimal. On the other hand, the recoil spectrum for operators with an
explicit momentum dependence exhibit a characteristic peak at high energies, and
vanish when Er — 0. The position of this peak is shifted to higher energies as the
mass of the DM particle increases. The structure of the nuclear form factors at high
energy can also induce further features in the recoil spectrum. Recalling table 2.1,
this applies to the vast majority of EFT operators Os56.9.10,11,13,14,15- As we saw in
Chapter 4, Oy depends quadratically on the transferred momentum, and has a very
unique spectral shape. For these operators, it is possible that a significant part of
the signal lies at large recoil energies and could be missed if the analysis window is

not large enough [152,250].

To illustrate the discussion above, in Figure 5.1 we compare the recoil spectrum of
a typical ¢g-independent operator (O;) with that of a g-dependent operator (Oyy),
and a ¢?-dependent operator (Og), as they would be observed in a xenon detector.
We also include the non-trivial example of an anapole interaction, which involves a
linear combination of operators Og and Ogy. We display the spectra for three DM
masses, m, = 100, 500, and 1000 GeV, and fix the couplings such that each example
produces 100 nuclear recoil events in the nominal energy range [3, 30] keV. The
vertical dashed lines represent the maximum energy in the nominal and extended

ROI cases, namely ER®* = 30 and 500 keV, respectively.

Irrespectively of the EFT operator, the DM spectrum for elastic scattering displays

a maximum energy as a function of the DM escape speed from the Galaxy, ves., and
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Figure 5.1: The expected recoil spectrum for EFT operators, O; (top left
panel), Og (top right panel), Oy (bottom left panel), and for anapole interac-
tions (bottom right panel) in a xenon experiment. The DM mass is chosen to
be m,, = 100 GeV (solid), 500 GeV (dashed), and 1000 GeV (dotted). The ver-
tical dashed lines represent ER** = 30 keV and 500 keV. The coupling for each
operator has been fixed to produce 100 events in the energy range [3, 30] keV.

the DM and target nucleus masses,
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For large DM masses, the maximum energy is a function of the target mass, E% ~

2

esc*

end

2mpyvZ,.. Using the SHM parameters, we obtain E3'“ ~ 1600 keV for a xenon target

and E4 ~ 500 keV for an argon target.

As we can observe, if ER®* is increased, a significant part of the DM signal for
momentum-dependent operators can be accessed, especially for heavy DM particles,
with a more substantial improvement for Og. In the case of anapole interactions,
an enlarged energy range would allow us to probe the region where the momentum-

independent Og dominates over the momentum-dependent Oy (which displays a
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Figure 5.2: Projected exclusion limits for a xenon detector for EFT operators,
O1, Og, Oq9, and for anapole interactions. The solid, dashed, and dotted lines
correspond to ER** = 30, 250 and 500 keV, respectively.

bump at large energies).

In Figure 5.2 we present the upper limits at 90% confidence level on the 2, 2 |
and c?, coefficients, as well as on the coupling of the anapole moment A, assuming
no DM signal in a xenon detector with an exposure of 15.3 ton yr (as given in
table 5.1). The solid, dashed, and dotted lines show the results for F3** = 30, 250
and 500 keV, respectively. As we can observe, the improvement for momentum-
independent operators (such as @) is negligible, whereas momentum-dependent
operators greatly benefit from the increased energy range. In the case of Og, the

exclusion limit can improve by more than one order of magnitude for DM masses

above m,, =~ 300 GeV.

We have explicitly checked that in the case of a xenon detector, the improvement in

the exclusion limits that one obtains when ER®* increases from 500 keV to 1600 keV
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Figure 5.3: The sensitivity of Xenon experiments as a function of the ER**
in the experiment. We show the results for two heavy DM particles m, =1
TeV (solid) and m, = 10 TeV (dashed).
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Figure 5.4: Projected exclusion limits for an argon detector for EF'T operators,
O; and Oy;. The solid, dashed, and dotted lines correspond to ER** = 50, 100
and 300 keV, respectively.

is minimal, and therefore the optimal value of the maximum recoil energy is Fg** ~
500 keV. In Figure 5.3 how this was determined, where the coupling value the
experiment is sensitive to, for exposure in table 5.1 at m, = 10%, is plotted as a

function of ER**.

We obtain qualitatively similar results for an argon detector. Figure 5.4 shows the
exclusion limits obtained for operators O; and the ¢-dependent ;. Notice that
argon is insensitive to Og and Oj;y. We present the results for ER** = 50, 100,
and 300 keV. Once again, the improvement in momentum-independent operators
is marginal, but the sensitivity for momentum-dependent ones is greatly enhanced.
The improvement for higher values of EE®* is minimal and hence the optimal value

of the maximum energy for an argon detector is E** ~ 300 keV.
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We have checked that the results for other momentum-dependent operators are
qualitatively similar to those of Oy, with small differences that can be attributed

to the corresponding form factors.

Dark matter parameter reconstruction

In this section we will examine how increasing E®* effects the inference of the mass
and couplings of the DM particle from the nuclear recoil spectrum as discussed in
Chapter 3 and Refs. [157-159]. From the discussion in the previous section, we can
imagine that an increased energy range in the analysis window would lead to a better
measurement of the recoil spectrum and, consequently, to a better measurement of
the DM parameters.

In particular, the endpoint of the nuclear recoil spectrum, E®4 (see eq. 5.2), provides
a good measurement of the DM mass, irrespective of the EFT operator. This

complements other information that can be obtained from the spectral shape.

As we can observe in Figure 5.1, the endpoint for a 100 GeV DM particle is above the
canonical energy window considered in xenon experiments, but could be observed
with a larger ER**. Notice that in the limit of very heavy DM particles, the endpoint
is only a function of the target mass and therefore the capability of reconstruction

is eventually lost.

We have chosen a set of representative benchmark points and use eq. (2.1) to compute
the simulated spectrum, N¢P, which we take as the observed event rate. We explore
the DM parameter space and for each point, A = {m,, ¢;}, in the DM mass and
EFT coupling plane, we compute the expected number of DM events in a given

energy bin, Ni(\). We then construct the same binned likelihood as in Chapters
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3 (Eq.3.2). We assume here a bin width of 1 keV in the nominal ROIs. For the
extended ROIs we increase the bin size to 50 keV in xenon and 10 keV in argon®. In
order to calculate the profile likelihood and to effectively scan the parameter space,
we use MultiNest [228]. The confidence intervals in the parameter space are then
extracted using Superplot [180]. To speed up the computation of the number of DM

events in the EFT framework, we use the surrogate model RAPIDD [1].

In order to quantify the improvement in the DM mass reconstruction when the energy
range is extended, we simulate a future DM excess, assuming a given EFT operator
and DM mass. Then we attempt to reconstruct it using the binned likelihood defined
in eq. (3.2). By construction, the best fit point coincides with the simulated DM
mass, but we also determine the 1o confidence interval of the reconstructed masses,

(m3,, mi.), from which we define

- +
A, = (”7;1" ”7;1”) . (5.3)
X X

Where the true value is at A,, = 1 and A,, € [0, oo]. For concreteness, we will
consider benchmark points that predict observation of 100 DM-induced nuclear recoil

events in the nominal ROI.

Figure 5.5 shows the resulting A,, as a function of the DM mass for a reconstruction
using 100 events for each value of the DM mass. From the left to right panels, we
present the results for EFT operators O1, Og, and O7;. The different coloured areas

correspond to different energy ROIs, with ER®* = 30, 250, and 500 keV.

Let us first concentrate on the canonical spin-independent operator O;. For the
nominal ROI, with Eg** = 30 keV the 1o region is unbounded from above for DM

masses above 60 GeV, something we observed with the results for BP2 in our sim-

Lacking information about energy calibration in the extended ROI, we have decided to take
a conservative approach and increase the bin size. A smaller bin size could in principle lead to a
better parameter reconstruction.
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Figure 5.5: Mass reconstruction parameter, A, (defined in eq. 5.3), as a
function of the DM mass for operators Oy, Og, and O, from the left to right
panels in a xenon detector. We have assumed a benchmark point, for each value
of the DM mass, that produces 100 nuclear recoil events. The light to dark grey
regions correspond to different energy ROIs, with ER** = 30, 250,500 keV,
respectively.

plified model example in Chapter 4. As ER®* increases, larger DM masses can be
accessed and with ER** = 250 keV one can successfully reconstruct DM masses up to
100 GeV. Meaning perhaps, in the case study of Chapter 4, we could have differenti-
ated between scalar and vector mediated particle models. The optimal energy range
of Eg™* = 500 keV would allow us to reconstruct DM masses up to just 200 GeV.
For any DM mass above this value, there is no upper bound in the reconstructed
value. Interestingly, the lower limit of the reconstruction also benefits from a larger
Eg®*. It should also be noted that the relative improvement in reconstruction from
having a maximum energy above 500 keV is minimal. The reconstruction for 100
nuclear recoil events shows that the limitation in the reconstruction of DM masses
is not due to poor statistics. Indeed, even with a larger number of events, there is

no proper DM mass reconstruction for O, above m, ~ 200 GeV.

The benefit of enlarging the energy ROI is more pronounced for momentum-dependent
operators, such as Og and Oyy. In both cases, increasing E5** leads to a much better
DM mass reconstruction, where DM masses as heavy as m, ~ 2 TeV can be resolved.
This is in contrast with the nominal ROI, which only allows reconstruction up to
m, ~ 60 GeV. It should be noted that even when the upper limit of the reconstructed

mass becomes unbounded (A,,, — oo) the lower limit can still improve substantially
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Figure 5.6: Results from a 3D parameter scan, fitting mock data from our
benchmark point with mass m, =1 TeV and a coupling to O, and Oy which
produces 100 counts in the [3,30] keV window. The 20 countours are shown
from light gray to dark gray for Eg** = 30, 250 and 500 keV, respectively. The
white star represents the benchmark point.

it ER** is further increased.

Having a good reconstruction of the DM mass also helps in measuring the DM
couplings and removing degeneracies in the parameter space. We illustrate this
with an example, motivated by the case of scalar DM with a scalar mediator, in
which the parameter space is three-dimensional and consists of the DM mass and
operators O; and O;9. We have selected a benchmark point with m, =1 TeV and
equal contributions from O; and O, that give 100 counts in the usual [3,30] keV
energy window. This benchmark point is special because, as we saw in the discussion

above, m, values can be bounded from above in the extended energy ROI. Figure 5.6
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Figure 5.7: Same as figure 5.6 but for m, = 500 GeV and a coupling via the
anapole moment. The black dashed line in the (¢, cg) plane represents the
relation among these couplings in an anapole DM model.

represents the 20 reconstructed region in the 3D parameter space (m,, c(l], 6(1)0) for
the three choices ER** = 30, 250, and 500 keV. As we can observe, the nominal ROI
is insufficient to determine any of the three parameters and large degeneracies are

observed in the three planes.

For example, the data can be consistent with light DM that interacts mainly through
O or with heavier DM and a linear combination of O and O;5. When the energy
ROI is extended, the light DM solution disappears and eventually, with ER®* =

500 keV, a full reconstruction of the three parameters is possible.

As a second example, we have selected a benchmark point that corresponds to
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anapole DM, with m, = 500 GeV and cg = ¢§ = 2Ae, ¢f =0, cg = cs = —(2/gp)cy =
—(2/gn)cy. For simplicity we have already imposed the correct relation among the
couplings to protons and neutrons and we have attempted to reconstruct the DM
parameters in the 3D plane (m,, cs, ¢g). The results are shown in Figure 5.7, and in
the (cg, cg) plane we indicate the anapole relation between both couplings by means
of a dashed black line. As in the previous example, the results with the nominal
ROI are not sufficient to provide a good measurement of any of the parameters
and large degeneracies are visible. For ER® = 250 keV, the region with low DM
mass and a leading Oy contribution disappears and although there is still a residual
degeneracy in the (cg, ¢g) plane, the results already reproduce the anapole relation
along the dashed line. Notice that, from the spectrum in the bottom right panel
of Figure 5.1, we can see that this energy is enough to observe the characteristic
shape of Oy but it is insufficient to measure the end point of the spectrum. With
the extended ROI (EF®* = 500 keV), a good measurement is obtained for the three

parameters. Without enlarging the energy ROI, it would be impossible to properly

identify this scenario as anapole DM.

Astrophysical uncertainties

In this section we examine whether this experimental setup will improve our un-
derstanding about astrophysical uncertainties as introduced in Chapter 3. In an
attempt to conduct a more refined analysis, we have opted to consider self consistent
halos as opposed to treating all astrophysical parameters as nuisance parameters as

in Chapter 4.

The way we obtained internally consistent velocity distributions is to extract them
from cosmological simulations. High resolution cosmological simulations including

baryonic physics have recently become available and are able to reproduce import-
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Parameter | vpeax [km 7 | v, [km s7 | vese [km 7] | po [GeV cm ™
SHM 220 220 544 0.4
EAGLE 288.64 254.06 874.76 0.68

Table 5.2: The peak speed of the Maxwellian velocity distribution, local
circular speed, Galactic escape speed, and the local DM density assumed in
the SHM (row 1) and extracted from the simulated MW-like galaxy in the
EAGLE simulation farthest from the SHM (row 2).

ant galactic properties with significant agreement with observations. Recently it
was shown that the local DM velocity distribution extracted from state-of-the-art
hydrodynamic simulations fit a Maxwellian distribution well, but with a peak speed
which can be different from the local circular speed [196,242,262,263]. Ref. [196]
used the EAGLE and APOSTLE high resolution simulations which include both
DM and baryons and identified 14 simulated Milky Way-like galaxies by taking into
account observational constraints on the Milky Way. The range of the best fit peak
speeds of the Maxwellian distribution for the simulated Milky Way-like galaxies was
found to be 223 — 289 km/s. To include in the analysis of direct detection data the
largest possible deviation with respect to the SHM predicted by simulations, we will
consider the simulated MW-like galaxy in EAGLE/APOSTLE with the local DM
velocity distribution furthest from the SHM. The parameters of this halo, along with
the fiducial parameters of the SHM are given in table 5.2. For both halo models,
we consider the same velocity of the Earth with respect to the Sun and the peculiar

velocity of the Sun discussed in Chapter 3 and as given in ref. [196].

For the current recoil energy range probed by direct detection experiments, uncer-
tainties in the high velocity tail of the DM velocity distribution become especially
important for light DM masses. This is because for a fixed maximum recoil energy,
low DM masses lead to a high minimum DM speed, vy, where the experiments
probe the tail of the DM velocity distribution. In particular, the range of the best fit
peak speeds for the Maxwellian velocity distribution allowed by hydrodynamic sim-
ulations of MW-like galaxies [196,242] translates into an uncertainty in the allowed

regions or exclusion limits set by direct detection experiments, for low mass (10’s
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of GeV) DM particles. However, if the maximum recoil energy in an experiment
is significantly increased, even larger DM masses (100’s of GeV) lead to high vy,

where the experiments become sensitive to the tails of the DM velocity distribution.

In order to disentangle astrophysical uncertainties, one has to consider results from
multiple targets. As discussed extensively in the literature, this complementarity
will also help with particle parameter reconstruction [163-167,264]. Hence, we will
once again consider future Xe and Ar detectors. To determine whether increasing
the energy window will help us overcome astrophysical uncertainties for large DM
masses, we produce a series of data resulting in 100 and 1000 counts in the two
detector configurations given in table 5.1, for a 100 GeV DM, and arising from
the two halo models (SHM and EAGLE) we are considering, which we take as the
true halo model. We then perform a parameter reconstruction for each experiment
separately, assuming the SHM for both cases. If one was to observe some tension
between the two experiments, it would suggest that the assumption of the SHM is

incorrect.

Figure 5.8 shows the profile likelihood for the reconstruction of DM parameters
for a 100 GeV benchmark point that produces 100 counts in our Xe (red) and Ar
(blue) detector configurations using the nominal (top row) and extended (bottom
row) ROIs given in table 5.1, for a coupling to O;. It is clear from Figure 5.8 that
by opening the energy window for both experiments, we achieve stronger constraints
on the coupling and DM mass and this in turn can put tension between the two
experiments for the EAGLE halo model. However, we see that with 100 counts this
tension is not very strong, and it would be difficult to rule out the SHM at high

significance.

There are some general comments to be made. If the halo assumed in the recon-

struction of the DM parameters has a ve. below the true value, then the spectra will
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Figure 5.8: Profile likelihoods for the reconstruction of DM parameters for a
100 GeV DM benchmark point that produces 100 counts in our future Xe and
Ar detector configurations given in table 5.1, for a coupling only to O;. Red
and blue shaded regions correspond to 20 (light shade) and 1o (dark shade)
regions obtained from the individual targets of Xe and Ar, respectively. The
top row corresponds to the nominal configuration of the experiments assuming
an energy window of [3, 30] keV for Xe and [5, 50] keV for Ar. The bottom
row corresponds to the extended configuration assuming an energy window of
[3, 500] keV for Xe and [5, 300] keV for Ar. The left and right panels correspond
to the SHM and EAGLE halo models, respectively, which were assumed to
generate the data (i.e. the true halo model). Every parameter scan has been
performed assuming the SHM with values given in table 5.2.

appear to come from a DM particle with a larger m,. Notice that the smaller the
mass of the target nucleus, the greater the effect. Furthermore, for m, > my, the
higher the value of m,,, the higher is the coupling strength, causing the reconstructed
region to move upwards. This can be seen in Figure 5.8, where the reconstructed
region for the EAGLE halo which has a larger escape speed compared to the SHM, is
shifted to masses larger than 100 GeV. This shift is even larger for the Ar experiment

which has a smaller target nucleus mass. These results complement the findings of
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Figure 5.9: Same as figure 5.8, but with an experimental exposure increased
by a factor of 10, i.e. a benchmark point that produces 1000 counts.

Ref. [251], where it was found that the reconstructed areas could significantly im-
prove with an extended analysis window. Our results strengthen the complementary

role between xenon and argon targets for the study of large mass DM.

In order to see whether greater statistics would improve our ability to distinguish
between different halos we ran the analysis again but with ten times the original
exposure given in table 5.1 for both the Xe and Ar experiments. To do this, we had
to include the neutrino floor as a known background into the calculation. Figure 5.9
shows the results for the O; benchmark that produces a 1000 counts. We see that
for both halos, the different experiments are completely consistent in the nominal
setup. Once we open the energy window we start to have tension between different
experiments for the EAGLE halo. In particular, the 20 regions for the different

detectors are completely separated for the EAGLE halo, and hence the SHM could
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Figure 5.10: Same as figure 5.8 but with a coupling only to operator O;.

be ruled out in this case.

As an example of an operator with a different behavior with respect to Oy, we next
consider the Oy, operator which exhibits a ¢-dependence. Figure 5.10 shows the
results for coupling to Oy for a 100 GeV benchmark point that produces 100 counts
in Xe and Ar. We can see that even with a 100 counts, when the energy window is
opened, Oq; interactions can cause greater tension between the two experiments for

the EAGLE halo, resulting in separated 1o regions for Xe and Ar.
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5.3 Summary

In this chapter based on the article [2], we have investigated the benefits of enlarging
the region of interest of the nuclear recoil energy in the analysis of direct DM detection
data. In particular, we have studied how increasing the maximum recoil energy, ER**,
will allow us to extract more information from the tail of the nuclear recoil spectrum.
We have concentrated on elastic DM-nucleus scattering and considered an EFT
approach to describe the interaction. Focusing on future xenon and argon detectors,
we have investigated the implications that a larger E5'®* has on setting limits on DM

couplings, on measuring the DM parameters, and on obtaining information about

the astrophysical parameters of the DM halo.

In agreement with previous studies, we find that a larger Eg** would lead to more
stringent upper bounds on the DM-nucleus cross section, especially for momentum-
dependent operators. For example, in xenon experiments, the sensitivity to Og and
O1p can increase by approximately an order of magnitude for DM masses above
approximately 300 GeV, and in argon a similar improvement can be achieved for
O11. We have determined that the optimal values of the maximum energy are
Eg™ =~ 500 keV for xenon and Eg** ~ 300 keV for argon. This would require a
good knowledge of the experimental background at those energies, as well as proper

calibration (that could be achieved using a D-T source).

We have also studied how well the mass and couplings of the DM particle could
be reconstructed from future data if an excess over the background is observed.
We point out that a larger ER** would allow for a much better measurement of
the DM mass, mainly from the observation of the end-point of the nuclear recoil
spectrum. For momentum-independent operators, the improvement is modest. For

example, in the case of O; the extended ROI allows to reconstruct DM masses up

to approximately 200 GeV. However, the improvement for momentum-dependent
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operators is much more impressive. For example, for operator Og DM masses as

large as 2 TeV can be reconstructed with an extended ROI.

Furthermore, we showed how this improvement can translate to three-dimensional
parameter reconstruction, concentrating on two examples: scalar DM with scalar me-
diator, and anapole DM. Our results show that opening the energy ROI is an excellent
way to identify the linear combination of momentum-dependent and momentum-
independent operators. This is crucial to distinguish different DM models in the

range of heavy DM masses.

Finally, we have shown that an extended energy ROI can also be used to test
astrophysical parameters of the DM halo, such as the DM escape speed. In a series
of examples, we have simulated direct detection data using two different halo models
and attempted to reconstruct the DM couplings and mass using the Standard Halo
Model. We have observed that an extended ROI and target complementarity can

help in identifying when the wrong hypothesis is used in the data analysis.






Chapter 6

Potential hints of Dark Matter

from Flavour Anomalies

6.1 Introduction

So far we have explored solely direct detection and how to optimise the discovery
potential as well as discrimination power of the experiments. In this chapter however,
we present a study of a specific DM model, motivated by potential anomalies found in
studies of meson decays as mentioned in Chapter 1. Once a specific model has been
chosen, it becomes an imperative to show that it does in fact provide a candidate
for DM, i.e. that it is created to the correct abundance (outlined in Chapter 1), and

that it is not already excluded by current experimental bounds.

The specific processes that motivate the model in this chapter are B meson decays.
The rates of which have been reported as anomalous by the LHCb, hinting at the

possibility of lepton flavour universality violation [265,266]. The SM predicts equal
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rates for the processes B — K®utp~ and B — K®ete™, and it is customary to
study the ratios of these branching fractions, defined as R(K) and R(K™), since
the dependencies on hadronic matrix elements (and associated uncertainties) cancel
out [267]. The measurements of these hadronically clean observables deviate con-
sistently (although perhaps with not enough statistical significance) from the SM
prediction R(K*)) = 1 [268]. These hints are complemented by measurements of
other observables that are more sensitive to hadronic physics. In particular, the
differential branching fractions [265, 266, 269] and angular observables [270-277] as-
sociated to the processes B — ¢utp~ and B — K™ putu~ also deviate from the
SM predictions. Interestingly, all the apparent anomalies involve the transition

b— sutu.

In order to account for these experimental results, one can modify the SM effective
Hamiltonian, which involves penguin and box diagrams, by including one-loop contri-
butions from new exotic particles. A full classification of the various particle combin-
ations, considering different gauge representations, was presented in Refs. [278,279].
Among the different models, some featured neutral scalar or fermions that, if stable,
could play the role of dark matter (DM)!. The first possibility was investigated in
Ref. [305], where it was found that the large new couplings required to reproduce
the correct DM relic abundance induce sizeable 1-loop contributions to DM-nucleon
scattering, leading to very strong limits from direct detection experiments. In ad-
dition, as reported by [306], the Higgs portal coupling typically dominates over
other new physics effects. The second possibility was addressed in Ref. [307], where
the fermionic dark matter field was accompanied by one additional scalar and one

additional coloured fermion.

1An alternative to this one-loop solution is to consider Z’ [280,281] or leptoquark [282,283]
tree-level contributions, see e.g., Ref. [284] and references therein. The DM problem has been
addressed in the framework of these constructions [285], see e.g., Refs. [286-300] for the Z’, and
Refs. [301-304] for the leptoquark models.
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In this work, we consider a modification of the model of Ref. [307]. Namely, we
will also assume a fermionic dark matter particle, but with two extra scalar fields,
one of which has a colour charge. On top of this, we include the latest SM the-
oretical prediction for the mass difference in B,—mixing [308], which differs from
the experimental observation by 1.8 ¢. In order to reduce this tension and provide
an explanation for the B anomalies, complex couplings are needed, leading to new
CP-violation sources, a scenario that has not been studied in the context of one-loop
models so far. We explore the parameter space of this model, taking into account

all the flavour observables, DM constraints, and LHC collider signatures.

In Section 6.2, we introduce the details of the particle physics model, address the
constraints from the observed DM relic abundance and Bs—mixing and discuss
the implications on the model’s parameter space. In Section 6.3, we compute the
DM-nucleus scattering cross section and study current constraints and the future
reach of direct DM detection experiments. Finally, in Section 6.4, we investigate the
possibility of observing this scenario at the LHC, for which we take into account
dijet and dimuon searches. We also include a projection of the potential reach of the
High Luminosity phase of the LHC. We then combine these results with the direct

detection projections and constraints. A summary is presented in Section 6.5.

6.2 Our model

The model considered is one in which the DM particle is a Majorana fermion, y, with
two extra scalar fields, ¢, and ¢;, which couple to left-handed quarks and leptons,

respectively?. The interactions between the new particles and the SM are described

2As we will comment in Section 6.3, the alternative construction with Dirac DM is ruled out
mainly by experimental results from direct DM detection.
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| 1SUB) [ SU@) | UMy || 2 ]
R 2 1/6 | -1
o | 1 2 172 | -1
Y| 1 1 0 | -1

Table 6.1: Quantum numbers of the new fields. We also indicate the charges
under Z,.

by the Lagrangian,
LAY = Aq,QidgPrX + AL, Lid Prx + h.c., (6.1)

where ); and L; denote the SM left-handed quark and lepton doublets of each
generation, and Ao, and A, are the corresponding new couplings. The quantum
numbers for the new fields are summarised in Table 6.1. We impose a Z5 parity
under which the SM fields are invariant, and which guarantees the stability of the
DM candidate, as long as mg, , > m,. Upon rotation from the electroweak to the
quark mass eigenbasis, the couplings Ag, are rotated in flavour space. Assuming
that the electroweak and mass eigenbasis are aligned for the leptons and down-type
quarks, the couplings to the up-type quarks are generated by the CKM rotation as
follows:

20, Qi — A, (uriVij, dr;) - (6.2)

From now on, we will denote the couplings in the mass eigenbasis with the corres-

ponding quark or lepton label. These couplings are, in general, complex.
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Figure 6.1: One-loop diagram contribution from the new particles to the
b — syt~ transitions.

This model induces new physics contributions to flavour observables at the loop
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level. In particular, a new box diagram appears for the b — sutp~ transition, as
shown in Figure 6.1. These effects can be described using a relativistic effective field
theory approach, thus parameterising the new contributions as corrections to the

corresponding Wilson coefficients of the effective Hamiltonian,

e
I = —T;thv;(cgog + CLOL + CioOr + ClyOly) + hec. (6.3)

where the effective operators Ogy, Oy, Oy, O, are defined as:

Oy = (5" Pb)(iun) (6.4)
Oy = (57" Pab) () (6.5)
O = (59" Pub)(ism) (6.6)
o = O;f(év”PRb)(ﬂw%u)- (6.7)

The Wilson coefficients Cy, Cj, C1g, C1, contain both the SM and new physics (NP)

contributions,

Cy = C3M+Cy",

Co = CR"+CY, (6.8)

with the primed coefficients defined in an equivalent way.

Global fits [284,309-317] have been used to determine the new physics contribution
to the Wilson coefficients in order to reproduce the observed experimental results.
These fits favour C3¥ = —CNF, and suggest that no new physics is required for
operators involving electrons or tau leptons. Because of this, we assume negligible
couplings to the first quark generation (i.e., Ao, = 0) and to the first and third
lepton generations (i.e., A, = A; = 0). This provides an explanation for the Ry

anomalies, while relaxing the bounds from other searches.

Therefore, in total, we are left with six free parameters in this model, namely the

masses of the three new particles (m,, mg,, mgy,), and the couplings to b—type
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quarks, s—type quarks, and leptons (Xy, As, A,).

It should be noted that the couplings A;|¢;|?|H|* and Xg|¢,|*|H|* are allowed by
gauge symmetry in the Lagrangian of Eq. (6.1). However, they only lead to an
overall shift to the masses of ¢; and ¢, after electroweak symmetry breaking since
the couplings to the Higgs play no phenomenological role in the relevant range of
¢1,, masses. Likewise, the terms A\3|¢ H|* and A\4|¢,H|* are also allowed by gauge
symmetry. They typically induce a small split in the masses of the neutral and
charged components of the doublets ¢; and ¢, in the range of ¢;, masses that
survive the collider constraints. Finally, a term of the form (¢;H)? can lead to
large contributions to neutrino masses at one loop, which forces the corresponding

coupling to be extremely small [307]. We will neglect these couplings in the following.

As mentioned above, similar models have been discussed in the literature, featuring
either scalar DM [305,318-320] or fermionic DM [307]. Our model differs from that
of Ref. [307] in that we have two extra scalar fields which couple to the lepton or

quark sectors.

Dark matter relic abundance and indirect detection

constraints

In order for y to be a viable DM candidate, it must reproduce the observed relic
abundance, which can be inferred from Planck satellite data to be Qh? = 0.1199 +
0.0022 [34]. The pair-annihilation proceeds through the two ¢—channel diagrams
with ¢, and ¢;, shown in Figure 6.2, allows for a relic abundance to be realised via

thermal freeze-out discussed in Chapter 1.

The stringent flavour constraints force the couplings to quarks to be much smaller
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Figure 6.2: Tree-level contributions to the DM pair annihilation.

than the couplings to leptons (muons and neutrinos), and the combination of flavour
and collider bounds impose mg, > myg,, with coloured scalars generally above 1 TeV.
Therefore DM annihilation into a g~ p* or v,v, pair is the dominant channel. The
thermally-averaged annihilation cross section, (ov), can be expressed as a plane wave
expansion in terms of the dimensionless parameter x = m, /7. As with the case
where the Majorana fermion annihilates primarily through the anapole interaction
(Eq.(1.31)), the zero-velocity term is helicity suppressed, and the leading contribution

comes from the linear term in 1/x [321],

_ Pl (g, +m3)

(ov) =

K| —

167 (mil + mi)4 ’ (69)

where we have neglected the muon and the neutrino masses. In order to reproduce

the correct relic abundance, we can now impose (ov) = 2.2 x 10726 cm?® s71 (where

x ~ 20 at freeze-out) [322].

If our DM candidate were a Dirac fermion, the helicity suppression would not be
present and the dominant contribution would be velocity independent, meaning that
(ov) today is the same as at the time of freeze out. Figure 6.3 shows how indirect
detection constraints impact the Dirac case. AMS [323,324] and Fermi [325] exclude
a cross section today that provides the correct relic abundance below m, ~ 20
GeV. In the velocity dependent Majorana case, the expected thermal cross-section
is much lower due to the difference of velocities in the Galaxy today and the time of

freeze-out.



124 Chapter 6. Dark Matter from Flavour Anomalies

10—23_
o
B XX o §°
Tm 10—24_ <
g
O,
T 1072 e
Mo~ (9 ViDirac
0264
101 102
my [GeV]

Figure 6.3: The indirect detection constraints for the annihilation to muons
from Fermi [325] and AMS [323,324]. The thermal cross sections today is
shown for the Dirac DM candidate in this model.

We will use Eq.(6.9) and the relic abundance condition to fix my, as a function of the

other parameters, thus effectively reducing by one the number of free parameters.

B;—mixing and other flavour constraints

This model introduces new couplings to the s and b quarks (and to the rest of the
quarks by rotation of the CKM matrix). We must therefore incorporate constraints

from B meson physics.

The most relevant bounds are those that involve b — su™p~ transitions. The new

physics contribution to the Wilson coefficient comes from box and photon-penguin



6.2. Our model 125

diagrams [278,279], CIF = CP** + Cy, with?

V2 AN
1287t G, Vi Vi
V3N

Ccy = E 6.10
9 8GFm,(2z} ‘/tb‘/;;; 9(x(I) ) ( )

Csl;ox |/\u‘2 (F($q7Il> + QG(acq,xl)) )

2

where we have defined the dimensionless variables x, = m3_/m3 and x; = mj /m?,

and the loop functions are:

B 1 2?log x y*logy
P = G =y T U= —n T U=pPh—2)
1 xlogx ylogy
G(z,y) A—n)i-y) (-22@—y) (O-y2ly—2)
Fyz) = "2 +92° 180+ Glogz+11 (6.11)

36(z —1)*

The term G(z,, ;) vanishes if x is a Dirac particle.

In order to constrain the Wilson coefficients we use the first global fit that takes into
account the possibility that Cy and C}y are complex [326]. This is a scenario that
arises when new CP-violation sources are introduced, and has not been studied in

detail in the literature so far.

Likewise, the new physics contribution to B,—mixing can be parameterised in terms

of an effective Hamiltonian,
HE = CHE (507" Prba) (357, Prbs) , (6.12)

where « and [ are colour indices. The new physics contribution to the Wilson

coefficient is given by

LN (F g 7g) + 2G 0, 7,)) | (6.13)

Cly = s
BB 128m2m],

where the loop functions F' and G were already defined in Eq. (6.11).

3We have neglected the Z-penguin contribution to Cj'¥, since it is suppressed by (my/mz)?
and is subdominant compared to the photon exchange.
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NP

In order to quantify the allowed magnitude of the Wilson coefficient C';5, we follow

the steps of [308] and introduce a complex parameter A in the following way:

MEM 4 MY

= |Alea
M3

(6.14)

Y

where MM and MYF describe the SM and new physics contributions to B,—mixing,
and their values are given by the corresponding box diagrams. The complex phase,
oA, quantifies the CP-violating effects introduced by the imaginary parts of the new

couplings. We find:

AMEP CNE
Al = Sy =1+ ol
s BB
CNE
¢n = Arg <1+C§ﬁ>, (6.15)
BB

where AM; is the mass difference of the mass eigenstates of the B, meson.

The parameter |A| can be constrained using the most precise experimental meas-
urement of AM; [327] and the last update on its theoretical prediction [308], which

show a 1.8¢ difference,

AM® = (17.757 +0.021) ps—',

AMM = (20.01 £1.25)ps™*. (6.16)

The dominant uncertainties in the calculation of AMSM come from lattice predictions
for the non-perturbative bag parameter, B, and decay constant, fp,, and to a lesser
extent from the uncertainty in the values of CKM elements. Both of these errors have
been considerably reduced since the last theory update for the mass difference [328].
The last average given by the lattice community [329] gives significantly more precise

values for B and fp,.

From these values, one can infer |A| = 0.887 + 0.055, and using the data provided
in Ref. [308] we obtain CY = 4.897 x 10~° TeV>. Using Eq. (6.15) we find that
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the Wilson coefficient has to satisfy

ReCONEN?  (Im OB\
J(H ZsﬁfB) +<Hés£3> € [0.777,0.998] (20). (6.17)
BB BB

CP-violating effects are further constrained by the CP asymmetry of the golden

mode By — J/¢ ¢ [327],
G5 (Bs = J/1¢) = sin(pa — 26,) = —0.021 £ 0.031 , (6.18)

where [, = 0.01852 £ 0.00032 [330], and penguin contributions are neglected. Using
Eq. (6.15), this can be interpreted as an additional constraint on the real and

imaginary parts of C’gg (and in turn, on the real and imaginary parts of the couplings

A
S/\p )
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0.2} - 0.2F - 0.2F
01} - oaf - oaf @
) - = - =
3 3 3
= 0.0f - = 00f = 00f
E E T E
—0f S —odf S —odf
—02} - -o2f - -0z}
-0.2 -0.1 0.0 0.1 -0.2 -0.1 0.0 0.1 -0.2 -0.1 0.0 0.1
Re [AsAG] Re [AsA7] Re [AsA7]
my =10 GeV, my, = 358 GeV my =50 GeV, my, =799 GeV m, =150 GeV, my = 1373 GeV
0.2t 0.2f
0.1t 0.4t
23 - 2 =3
3 -3 3
= 00 - = 00 =
E - E - E
-01}f -0.1F
-0.2f -0.2f
-02 -01 00 0.1 0.2 -02 -04 00 0.1 0.2 -02 -04 00 0.1 0.2
Re [As}] Re [AA3] Re [A:5]

Figure 6.4: The dark (light) green area is the lo (20) allowed region by
b — sutu~ observables in the (Re(AsA;), Im(AsAf)) plane. Dark (light) blue
regions correspond to lo (20) B;— mixing allowed regions. We take A, = VAr
and mgy, = 1.5TeV (top row), 2.5TeV (bottom row). The specific values of
My, Mg, are given in the plot and my, is fixed to reproduce the measured DM

relic abundance.
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In Figure 6.4, the effect of all of these constraints on the real and imaginary parts of
the couplings As\; for several benchmark points is shown. Regions that are allowed
by b — sutu~ observables and B,—mixing (given by Egs. (6.17) and (6.18)) are
shaded in green and blue, respectively. For illustrative purposes, the figure shows the
constraints for multiple values of DM and mediator masses, while keeping A\, = Var
fixed. We remind the reader that once the DM mass is fixed, the m,, is constrained

by the relic density restriction Eq. (6.9).

As we can observe, in order to simultaneously satisfy both types of constraints,
complex couplings are needed (Im(AsA;) # 0). Also, as the mass of the dark matter
particle and the mediators increase, both areas are more difficult to reconcile. In
practise, this leads to an upper bound on the masses of the exotic new particles. The

precise limit depends on the choice of couplings, which we will discuss in Section 6.4.

Finally, the new physics couplings to the up-type quarks are generated via CKM

rotation,

>\u = ‘/;,LS)\S + Vub)\by

Ae = Visds + V. (6.19)

These couplings generate a new physics contribution to D°—mixing, and the Wilson

coefficient C’g is obtained replacing As; and A} in Eq. (6.13) by A, and A}, respect-

P
D

ively.

In contrast to B;—mixing, there is no precise theory determination for the mass
difference in the D° system. Therefore, in order to constrain the new physics
contribution to Cp,p we use the measured value of the mass difference in D —mixing.

The experimental bound on the mixing diagram is given by [331]

Mps|S® €10.6,7.5] x 102 ps™'  (20), 6.20
DD
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whereas the new physics contribution to D°—mixing is described by

CH= _
Mialop = S22l p0l0|2°), (6.21)

where O is a combination of operators containing all possible SM and new physics
contributions to D°—mixing. Using the last results from [332] we get the following

bound on the Wilson coefficient:

|CH2] < 5.605 x 107 TeV ™2 (20). (6.22)

Although this model induces new physics contributions to other flavour observables
(such as b — sy, b — svv and effective Zp™p~ and Zg;q; couplings), their size is
very small and does not produce significant deviations from current experimental

searches.

Benchmark scenarios

All the new physics contributions to the observables described above depend on five
independent parameters: the three masses of the new particles, m,, my, and my,

the product of the couplings A\;\; and the absolute value of the coupling |\,|.

The three masses only enter the Wilson coefficients through the factor m;, 2 and the
dimensionless loop functions. In addition, all the Wilson coefficients are proportional
to AsAp or [A,|* or both. In order to constrain our model, we consider two scenarios
by fixing the value of |A,|. Then we scan over the mass parameters m,, and mg,_, with
mg, fixed by the requirement of reproducing the correct relic abundance, and check
all the flavour observables described in Section 6.2. In this way, for any combination
of masses and a fixed value of |\,| we get a set of allowed values for A;\;. We

consider two hierarchies between |\g| and |\y| that lead to different constraints from
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D°—mixing, and, ensuring that Im(A;\}) # 0, we define the following benchmark

scenarios:
(A1) |\, =2, with A\, = AJ; (B1) |\l = V4m, with Ay = A%;
(A2) |>‘u| = 2, with Ay = 4\}; (B2) ’)‘u‘ = V4m, with A\ = 4%,

where |)\,| = V47 is the perturbative limit. After establishing a hierarchy between
|As| and |Ay|, we calculate their maximum and minimum allowed values from the
corresponding maximum and minimum allowed values of A\;A;. Scenarios with |Ag| >
|\s| are excluded by D°—mixing constraints. Likewise, as we will see in Section 6.4,

smaller values of A\, are constrained by LHC bounds.

6.3 Direct DM detection prospects and

constraints

In this section we return to familiar territory and discuss whether our model is
expected to produce an observable response in direct detection experiments. We
have calculated this response, by matching the model parameters to the effective
DM-nucleon interaction terms in Eq.(2.4) and Table 2.1. By rotating the quark
interaction in Figure 6.2, we see that the leading tree-level process is a s-channel one.
As discussed in Section 2.2, we can recover the JpmJsum via the Fierz transformations.
These result in scalar (Yx1¢) and vector (xy*xty,1) type interactions. The latter
is the leading contribution to O, for Dirac DM [333], but it vanishes in the case of
Majorana DM. For scalar type interactions Majorana DM does not in general vanish,

but with our models chiral structure, i.e. A\g,Q;0,PrY, it does.

The other interaction coming from the tree-level process is the spin-dependent inter-
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action Oy, which as we know from Figure 2.2, is much weaker than the O; response.
Additionally, sub-dominant couplings to the first generation of quarks, and given
that mg, > mg,, one-loop processes with the lepton scalar ¢; contributes to the DM-
nucleon scattering cross sections to a greater extent than the tree level. The leptons
loop contributions couple to photons as discussed in Chapter 2. In Section 2.2, the
generic fermionic DM that involve the exchange of a photon can be classified as
electric and magnetic dipoles (Yio"v°xF,, and Xo"*xF,,, respectively), anapole
(Xv*~°x0"F,.,), and charge radius (xy*x9"F,,). However, in the particular case
of Majorana DM considered in this work, the magnetic dipole and charge radius
effective couplings are forbidden by charge conjugation symmetry. Thus, the dom-
inant one-loop interaction to the photon is the now familiar anapole moment from
Chapters 2 and 5 which gives contributions to the Og and Qg operators following
the result in Eq.(2.29).

To make the connection with the parameters of the model, one has to integrate out
the scalar ¢; and leptons that run in the loop shown in Figure 6.5. Similar models
have been considered in the literature [334] giving the result,

A 2 3 1 3u—3 —1—¢€)?%—4e
A= _% 7108;& - +op o€ arctanh \/(M ) (6.23)
96m2m2 |2 7€ \/(M—1—€)2—4€ pw—1-+e

with 4 = mJ, /m? and e = mj /m?. The nuclear responses to the Og and Oy operators
are markedly weaker than that of Oy, which implies that, in general, the scattering
cross section is very small and beyond current experimental limits. Note that a loop
similar to that of Figure 6.5 but with ¢, and ¢ running in the loop instead. The

contributions of such diagrams will be suppressed by comparison.

Another contribution which is not a priori sub dominant comes from the so-called
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Figure 6.5: Loop process that leads to DM anapole interaction in this model.

twist-2 operators [335-337],

1 . 1
O'ZV = iql <D,u7u + Du'Yu - Zguup) q (6 24)
1 .
— A A A ~Apo
Ofw = Gquup — Zg#,,GpGG P

where here D), is the covariant derivative, we have made use of the Dirac slash
notation ) = y*D,, and Gﬁy is the gluon field strength tensor. These operators

when embedded in the nucleons via the evaluation of the hadron matrix element

become,
(N[0 N@)) = = (b = 31k ) (0(2: ) + (2 1) o
N 6.25
(N(p)|05,| N(p)) = —niN (pupu - im?vmw) 9(2; 1),

where q(z, 1), q(x, 1) and g(x, p) are the PDFs of quarks, antiquarks and gluon at
the factorization scale u, see Ref. [336] for details. From the NREFT perspective,

the m?% terms will contribute to the scalar interaction,

A 2
CgN) _ Z ‘2 Q| —7
Q 32 (mX - m¢q)

Because of the increased sensitivity to the O; response, it is possible that despite the

(6.26)

extra mass suppressions with respect to the spin-dependent and anapole interaction,

the twist-2 modification may well be dominant.

Given the range of DM masses that we consider in this study, the main constraint
is due to XenonlT results [102], which we simulate using the prescription outlined

in Appendix A of Ref. [177], achieving good agreement as shown in Chapter 3.
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Where here we have adopted the so-called standard halo model [181] with local DM
density p, = 0.4 GeV/cmg, a central velocity of vy = 220 km s !, and a escape
speed of Ve = 544 km s~ to calculate the number of expected recoils in a specific

experiment.

As we can see in Figure 6.6, the theoretical predictions for this model are beyond
the reach of current experimental searches. We also show the reach of future direct
detection experiments. The LZ detector, will employ 5.6 tons of liquid xenon with
1000 days exposure as outlined in [231,338]. The DarkSide-20k experiment [113],
is an argon detector which will employ 20 tons of fiducial mass for a duration of
10 years. We have assumed that the DarkSide collaboration will be able to achieve
a threshold energy of 5 keV, a reasonable assumption considering the results from
DarkSide-50 [115]. For reference we have also calculated the neutrino floor for
anapole interactions in the (A, m, ) plane and for the O, interactions in the (c1, m,)
plane. We have used the prescription described in Ref. [147] and the expected

neutrino fluxes from Refs. [148-152].

It is clear that our model favourably lays in a region of parameter space that would
be probed by a generation of experiments with multi-ton targets, that can probe
near or even slightly beyond the neutrino floor. Spectral analysis with the neutrino
background compounded with annual modulation data, could provide complete
discrimination between model and the anapole moment which is both velocity and

momentum dependent.

Notice in Figure 6.6 that the Anapole and O; responses have very different character.
This is simply explained by the benchmarks we have chosen and what parameters
are allowed to run freely. By looking at Eq.(6.23) one can see that, once \, is fixed,
A is simply a function of SM values and m,, this produces the straight line we

see in Figure6.6. The ¢; plane is much more free with our scan, this is because ¢y
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Figure 6.6: Theoretical predictions for the anapole (left) and spin-
independent (right) couplings, A and ¢, as a function of the DM mass, m,, for
the four benchmark points: A1l (red points), A2 (green), B1 (orange), and B2
(blue). For comparison, we show the current exclusion line by XenonlT [102]
and the predicted reach of LZ [231,338] and DarkSide-20k [113]. The shaded
area represents the neutrino floor.

depends on the quark couplings to the new mediator, a coupling that is varied over
in our analysis. We see a pattern develop however, at m, increases, the variation of
possible ¢; values gets smaller and smaller. This is a reflection on the fact that the
flavour anamolies are running out of parameter space to satisfy both the leptonic

decays and B;-mixing as shown in Figure 6.4.

We have neglected to show the spin-dependent O, interactions in Figure 6.6 because
they are always sub-dominant. It is clear from the variation of ¢; contributions that
the quark interactions are fairly unconstrained in this model and in fact current
XenonlT results are constraining this model via its twist-2 contribution. The figure
is unable to capture the density of the parameter point, but its worth noting that
only 1% of points have a dominant ¢; contribution in XenonlT. This suggests that
the situation where ¢; contribution is high, is by no means required by the model,
and instead it is just a possibility that is not ruled out by the flavour constraints

mentioned in Section 6.2.

Had we chosen to work with a Dirac fermion, the dipole and charge radius contribu-
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tions should have been added. As it has been pointed out in Ref. [333], the fairly
large coupling to muons that is required to explain the flavour anomalies leads to
effective DM couplings that are orders of magnitude higher than those coming from
the tree level contribution, the most important being the charge-radius interaction.

This we have checked, and in fact above m, ~ 10 GeV, all our parameter points are

excluded by XenonlT.

Below m,, ~ 10 GeV, the model is excluded by indirect detection bounds as discussed
in Section 6.2. Unlike in the Majorana case, the S-wave contribution to the thermal

cross section (ow) is no longer helicity suppressed and hence excluded [339].

6.4 LHC constraints and prospects for

high-luminosity

In this section, we study the experimental signatures that this model would produce
at the LHC. DM search strategies in both ATLAS and CMS involve analysing
final states containing jets and leptons produced in association with a DM particle,
identified from missing transverse energy. In this model, direct production of the
coloured and leptonic scalar doublets ¢, and ¢, respectively, typically leads to such

final states.

Let us first consider production processes that involve the coloured scalar, ¢,. In this
case, our model could lead to visible signals in final states with both monojet / dijet +
Fr signatures. When the new physics coupling A, is smaller than the strong
interaction coupling, aqep, pure QCD processes constitute the main contribution
to the cross section [340]. In this model, this implies that QCD diagrams dominate

over those with new physics couplings. As a consequence, monojet searches for this
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model are less effective than dijet searches and we will concentrate on the latter.
The dijet + Fr processes are shown in Figure 6.7, where diagrams (a) correspond
to the QCD contributions, and diagrams (b) and (c¢) involve new physics couplings.
The main production channel is the pair production of the coloured scalar particles,

that subsequently decays into a DM particle and a quark,

PP = PPy | Gqbq | qPq — qq + Er. (6.27)

In addition, the scalar doublet ¢, has the same quantum numbers as squarks in
supersymmetric (SUSY) models. Therefore, the kinematics in its production and
decay in diagrams (a) of Figure 6.7 mimic those of squarks in SUSY models with
decoupled gluinos. As a consequence, limits from ATLAS and CMS squark searches

can be used to constrain the model.

One can also consider the pair production of the leptonic scalar, ¢;. In this case,
the production process is mediated by W or Z bosons and involves the electroweak
coupling, as shown in Figure 6.8. The decays of ¢; lead to clean final states with one
or two leptons and missing energy. Although flavour constraints require A\, > A, the
cross section of this process is smaller than the production of the coloured mediator
for similar mediator masses. However, since my, is fixed for every value of m, to
reproduce the correct relic abundance, there are regions of the parameter space

where both searches are complementary. We will here consider the process

pp — didy — pp/pr + B, (6.28)

where the dimuon channel leads to the strongest constraints. As in the previous case,
we can exploit the analogy between ¢; and sleptons to use the limits from slepton

searches to constrain this model.
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Figure 6.7: Diagrams for the pair production of the coloured scalar mediator,
¢q, leading to dijet + fr signatures in the final state. Diagrams (al)-(a4)
are generated by purely QCD interactions, and diagrams (b), (c1)—(c4) are
generated by DM t-channel exchange.

Simulation details

We have implemented this model in Feynrules 2.3 [341]. The calculation of the

matrix elements and the event generation is done using MadGraph5_aMCONLO 2.6.3

[342]. Production and decay of the new particles are considered independently using

the narrow width approximation, as implemented in MadSpin [343], which further

accounts for spin correlations in decay chains?. We then use Pythia 8.235 [344] to

shower the parton-level events and we pass the output to CheckMATE 2.0.26 [345],

which compares the expected signal with supersymmetric searches at the LHC and

derives an exclusion limit. As we have explained above, we can apply squark and

slepton searches to constrain the coloured and leptonic mediator, respectively.

4The narrow width approximation is not valid in benchmark points Bl and B2, for which we
have taken interference effects into account.
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Figure 6.8: Diagrams for the pair production of the leptonic scalar mediator,
¢, leading to pp/pv + Fr signatures in the final state.

In order to describe initial and final state radiation and reproduce the correct jet
structure precisely, we consider leading order (LO) production with parton shower
matching and multijet merging when needed. The LO multijet merging techniques
describe how parton shower emissions can be combined with full matrix element
calculations to achieve a better accuracy in the description of the radiation spectrum.
Using this technique, every jet is classified according to its pr and then compared
to a hardness scale (Q.,;. In this way, emissions above the hardness scale Q). are
described at LO accuracy using the corresponding matrix element calculation for an
extra hard, wide-angle QCD emission in the final state, while emissions below this
scale are defined as soft or collinear jets and the all-orders resummation description
from the parton shower is preserved. Note that even though O(ay) corrections are
included using this procedure, the calculation remains formally L.O + LL accurate

after parton shower due to missing virtual corrections.

After hadronization, the showered events and the production cross sections are
passed to CheckMATE. Each model point is tested against all the implemented ex-
perimental analyses to determine the optimal signal region. For this signal region,
CheckMATE compares the simulated signal with the actual experimental observation

and determines whether the model point is excluded at the 90% confidence level.
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Results

Constraints from LHC searches for the four benchmark points defined in Section 6.2
are presented in Figure 6.9 on the (m,, mg, ) plane, for all the points that satisfy the
flavour constraints of Section 6.2 and that reproduce the correct DM relic abundance.
This figure shows the complementarity between the experimental limits obtained
from the pp — jj + Fr and pp — pp + Fr searches. The experimental results
used in our analysis are summarised in Table 6.2. The colour code represents the
average value of the coupling || in the region allowed by flavour constraints, defined
as [ Ap|mean = (|Ab|max + [Ao|min)/2, Where |Ap|max and [Ap|min are the maximum and
minimum allowed values respectively. The variation of our results when choosing

either the minimum or maximum value for |\y| has been checked and is insignificant.

Regarding the pp — jj + Fr search, the limits in every scenario show that for
the lightest DM mass, coloured mediators with masses below ~1 TeV are excluded.
Even though heavier DM produces larger amounts of missing energy in final states,
the cross section decreases rapidly with the m,, leading to similar exclusion limits.
It is interesting to note that exclusion limits are slightly stronger for the scenarios
with |Ap¢| > |Asc|, where mediators with masses below ~1.1 TeV are excluded. The
reason for this is that final states with either top or bottom quarks are more sensitive
to some experimental searches. The most stringent experimental search involves
final states with at least two (bb production) or four (¢ production) jets or exactly
two leptons and missing energy [346]. In particular, the most sensitive signal region
is optimised to detect events featuring a DM particle produced in association with

a tt pair, which decays fully hadronically.

Regarding the pp — pp + Fr search, the limits show that models with dark matter
masses below approximately 30 GeV are ruled out for |\,| = 2, with the exclusion

limit going down to ~ 13 GeV for |A,| = v/4w. This corresponds to mediator masses
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Figure 6.9: LHC limits from the pp — jj + Fr (green) and pp — pup + Er
(blue) searches. On the left (right), results for the scenario with |\,| = 2
(|\.] = V/4r) are presented. The figures in the upper panel correspond to
A = A%, while the bottom panel shows limits for A\, = 4\}. The colour code
represents the average value of the coupling |Ay| in the region allowed by flavour
constraints, as defined in the text. Solid lines represent the current exclusion
limits, whereas dashed ones correspond to the projected reach of the LHC High
luminosity phase.

below 360 GeV for |\,| = 2 and 410 GeV for |\,| = v/47. The pp — pu + B cross
section mainly depends on my,, so the limits on m, can be understood through its
relation with my, given by the DM relic condition (6.9) for a particular value of
Au- The most stringent search involves final states with 20 4 07, 2/ and at least 2
jets, or 3l and missing energy [347]. In particular, the most sensitive signal region
is characterised by 2/ 4+ 07 and a dilepton invariant mass my; > 300 GeV, and it is

optimised to target slepton pair production.

The most remarkable result is that LHC limits completely exclude the scenario with

|IAul =2 and A\, = A%, as well as a sizeable region of the scenario with A\, = 4% for
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| /s | Search | Final state | £ [fb~'] |
13 TeV | 1710.11412 [346] tt/bb+ Fr| 361
ATLAS-CONF-2017-039 [347] 20 /3l + Fr| 361
14 TeV | atlas_phys_pub_013_011 [34§] tt + Fr 3000
atlas_phys 2014 010_hl 31[349] | 21 /3l + Er | 3000

Table 6.2: List of experimental searches sensitive to our model, where [
denotes electron and muon. The third column describes the final state targeted
by the analysis and the last column displays the total integrated luminosity.

the same |),|. These constraints become weaker for larger values of |\,| and, for the
scenarios with |\,| = V4w, most of the parameter space is allowed. It is crucial to
note that the limits coming from final states with jets and leptons are complementary
to each other. While the former exclude regions of the parameter space with large
m, and small mg,, the latter rule out models with very heavy mediator masses my,
and light dark matter. Importantly, these limits are also complementary to the ones
coming from direct detection, where dark matter masses below 12 GeV lie below the
neutrino floor. Therefore, it is fundamental to consider both approaches to explore

the model.

It is worth mentioning that the small couplings required by flavour constraints
lead to decay widths slightly below the QCD scale for mg, < 370 GeV. Strictly
speaking, this means that the computation of the decay width cannot be handled
perturbatively and that the new particle ¢, may hadronize into bound states with
SM quarks, analogous to R-hadrons [350], before decaying. However, the typical
width involved is Ty, ~ O(1072) — O(10~%) GeV, which means lifetimes of the order
7 ~ 10722 5, so any potential bound state would decay promptly in the detector.
This region of the parameter space is excluded by ATLAS and CMS R-hadron
searches [351,352].

We have also studied the limits that could be obtained with 3000 fb™! of 14 TeV data

once the LHC High Luminosity (HL) phase [353] is completed. The experimental
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searches giving the strongest exclusion limits target the same final states and are
shown in the low panel of Table 6.2. As we can observe in the plots, the main gain
would come from the leptonic channels, which would allow to test a considerable
amount of the model’s parameter space. In particular, scenarios with |\, < 2 would
be completely excluded. The axes of Figure 6.9 are somewhat misleading with the
relative gain from the HL-LHC between the leptonic and hadronic channels since
the scales are vastly different. It is perhaps more illuminating to consider how the
values for m,, correspond to mg, values. From Eq.6.9 one can determine that the
improvement in the HL. phase will move the constraints by under 200 GeV. This is

still a slightly better improvement when comparing to the dijet searches.

Evaluating why this is, is somewhat difficult without performing the analysis that
CheckMATE provides, ourselves. In Figure 6.10 we show an event distribution of

a point in the |\ for A, = v4m and A, = 4\% scan which is just above the

constraints from the 13 TeV results but will be constrained by the 14 TeV, HL
analysis, in the leptonic channel. We see that the increased energy increases the
cross-section somewhat for both channels so the cause for the difference is unlikely
to be there. Upon investigation of the CheckMATE analysis files, the analysis cuts
are reducing the new physics signal from the dijet channel substantially. Why this is

and how we can improve such searches is currently the subject under investigation,

but outside the scope of the work being presented here.

Combining these results with those of Section 6.3, we have Figure 6.11. Once LHC
constraints are considered, the parameter points where the anapole interaction is
dominant are the only ones left. Our results suggest that future multi-ton direct
detection experiments, such as DarkSide [113], would be able to probe this model
in the mass range m, ~ 10 — 60 GeV. It is very interesting to point out that many
of the points in this DM mass range feature very heavy ¢, and therefore would be

beyond the reach of collider searches. In a sense, future direct DM detection and
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Figure 6.10: Kinematic distributions for dijet (green) and dilepton (blue)
signals produced by a benchmark point, which just escapes the constraints for
current 13 TeV bounds but will be constrained by the leptonic channel of the
HL-LHC. We plot the distribution for both energies of 13 TeV and 14 TeV with

a fixed luminosity of 10 fb~!.

the LHC complement each other to probe a large part of the model’s parameter

space. There are parameter points below the current projected direct detection

experiments. However, if the flavour anomalies persist, this model will provide an

additional motivation for pushing direct detection below the neutrino floor.
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Figure 6.11: The same as in Figure 6.6, but including constraints coming

from collider results as shown in Figure 6.9.
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6.5 Summary

In this article, we have studied a particle physics model that addresses the hints of
lepton flavour universality violation observed by LHCb in b — su™pu~ transitions,
and that provides a solution to the dark matter problem. The scenario that we have
analysed incorporates two new scalar fields and a Majorana fermion that provide

one-loop contributions to B meson decays.

The Majorana fermion is stable and can reproduce the observed DM relic abundance.
We have studied the effect of new physics in flavour observables, for which B;—mixing
and b — sutpu~ processes provide the most important constraints. In order to find
an explanation for the B anomalies and to reduce the 1.8 0 tension between the
predicted and measured mass difference in Bs—mixing, complex couplings are needed.
We have used results from the first global fit that takes into account this possibility.
The combination of flavour bounds and constraints on the DM relic abundance leads
to upper limits on the masses of the exotic states, and in general points towards a

rather light DM candidate (with a mass m, < 200 GeV).

We have investigated how DM direct detection experiments constrain this model.
Given the range of DM masses that we consider in this study, the main constraint
is due to Xenonl1T results. The small new couplings required by flavour constraints
means that one-loop contributions to the DM-nucleon scattering cross section are
generally larger than the tree level process. In many cases, the dominant loop
induced interaction is the anapole moment. We have shown that this model is not
excluded by current data and could be probed by the next generation of experiments

with multi-ton targets in the mass range m, ~ 10 — 60 GeV.

Finally, we have studied the signatures that this model would produce at the LHC.

The dominant processes are the pair production of the coloured and leptonic scalars.
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For the former, the strongest exclusion limits are given by dijet + ot searches. For
the latter, the final states are very clean, containing 1 or 2 leptons and missing energy.
Both searches are complementary and exclude different regions of the parameter
space, setting lower bounds on DM and mediator masses. The high-luminosity
phase improves bounds coming from both searches, with dilepton being the most
pronounced. The collider constraints are weakened when the A, parameter is pushed
towards the perturbative limit. These results have been combined with those for
direct detection and show that after LHC data is considered the anapole interaction

is always dominant.






Chapter 7

Conclusions

The precise nature of DM still eludes us, but this thesis has hopefully shed light on
the kinds of analysis that will lead to a greater understanding. Chapter 1 discussed
the pivotal role DM plays in our cosmic history without predicting its mass or how
it interacts with the SM. Because of this, the theory space for DM is truly expansive.
It is our job to exclude as many of these theories as possible. Over the last decade,
experimental probes have made some great progress, but there is much more work

to be done.

Currently, direct detection is probing very interesting regions of parameter space.
Particularly for DM candidates that could have been thermally produced via freeze-
out. In order to fully appreciate the signals one expects from these experiments, the
NREFT introduced in Chapter 2, should be used. This framework enables more
model independent analyses reviewed in Chapter 3. With this approach we can be

sure our search strategy is a comprehensive as possible.

With a more model independent approach, one finds that there is a high degree of
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uncertainty, especially when attempting to reconstruct parameters. Luckily however,
multiple direct detection experiments are underway or being developed now, provid-
ing an excellent opportunity to maximise what can be learnt about DM. To this
end, we developed the code RAPIDD, introduced in Chapter 4, which simulates
DM signals in direct detection by making use of polynomials. This novel technique
showed promising improvements in terms of speed and sacrificed a minimal amount
of accuracy. This software allowed for a case study where we evaluated the degen-
eracies between a subset of simplified models for a series of benchmark points. As
shown for the reconstructions of BP1 and BP2, the different simplified models are
able mimic each other well. Only when the true nature of DM is particularly unique,
like the pseudoscalar mediated Fermion taken for BP3, is the discrimination power

of multiple experiments enough.

The situation is particularly bad if the DM mass is above ~ 50 GeV. Above this
value, the recoil spectrum is fairly flat and featureless. Chapter 5 explores the
possibility of improving mass reconstruction by extending the signal region analyzed
by experiments, and therefore capturing the tail of the spectrum. These features
enable a better understanding of the DM mass and can provide great improvements
for experimental sensitivities. For example, exclusion limits for anapole DM can
be improved by an order of magnitude as shown in Figure 5.2. This increased
understanding of the DM mass would have great implications for the degeneracy of
signals, providing better reconstructions of couplings. Furthermore, improvements
like this across multiple experiments with different target materials could even
provide some insight into the DM halo, where statistical tensions can arise between

experiments if a the SHM is assumed.

These works above, hopefully go some way toward realising the potential of direct
detection, but ultimately, this technology will be a part of the global experimental

effort to determine the nature of DM. In Chapter 6 we combined direct detection with
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collider, flavour and indirect detection constraints in an effort to probe a specific
particle model that can explain both, the anomalies found in meson decays and
DM. We found that, if the anomalous measurements persist, future direct detection
experiments will play a central role in probing the full parameter space for our

particular model.

The mystery of DM remains one of the biggest problems facing particle and astro-
physicists alike. When attempting to understand something where so little is known,
it can feel like shooting in the dark. However, situations like this one, gives the
community the opportunity to challenge our assumptions and to take stock of the
information we have, and what information we really want. Through this process,
we can find novel ways to look for new physics and learn how to distinguish between

different solutions to the DM problem.
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