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1. Introduction
Bäcklund and Darboux transformations are methods for generating solutions to a variety of
ordinary and partial differential equations [21] by relating their solutions through differential
operators. Bäcklund transformations were originally introduced in the context of the sine-
Gordon equation [2], and in the meantime they have been constructed for a vast amount of
equations and models. Recent applications include the connection between KdV and mKdV
equations [10], the Boussinesq equation [20], systems of Burgers equations in higher dimension
[28], generalized KdV hierarchies [7], among many others. On the other hand, Darboux
transformations interrelate solutions of equations that have the same form, and in addition
they interrelate certain parameters that enter in those equations. As an example we consider
stationary Schrödinger equations, where the Darboux transformation simultaneously provides
interrelations between the respective solutions and potentials. In the Schrödinger context,
the Darboux transformation turned out to be the mathematical core of the supersymmetric
quantum mechanics (SUSY) formalism [3] [9]. This formalism has generated a vast amount
of applications, recent examples of which include spectral design in systems featuring certain
hyperbolic potentials [8], the construction of non-hermitian Hamiltonians [29], models with time-
dependent boundary conditions [5], just to name a few. While the Darboux transformation in
its initial form [6] [16] [17] was applicable to linear equations of second order, it has been
generalized to many different scenarios. Besides the Schrödinger case, Darboux transformations
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were established for many models governed by linear and nonlinear equations, see [11] [15] for a
comprehensive overview. Among these, one of the most important equations within relativistic
quantum theory is the Dirac equation. Darboux transformations were first constructed for the
latter equation in the one-dimensional case as a conjugate mapping to the Schrödinger scenario
[18]. An analogous derivation can be found in the two-dimensional situation [19] [25], such that
Darboux transformations for the Dirac and Schrödinger equations can be seen as equivalent, up
to a decoupling and recoupling procedure. While the aforementioned Darboux transformation
applies to the conventional form of the Schrödinger equation, a more general version can be
constructed for systems with quadratical energy dependence. This Darboux transformation can
be derived from results on coupled Korteweg-de Vries equations [27]. It consists of two different
algorithms, the first-order case of which was introduced in [14]. Generalizations to the higher-
order context were found and applied in [26]. A representation for the two algorithms and of
a mixed version can be given in terms of generalized Wronskians [24], containing the Darboux
transformation for the conventional Schrödinger equation as a special case. Similar to the
conventional case, the Darboux transformations for systems with quadratical energy dependence
in the potential can be adapted to the Dirac scenario by decoupling and recoupling, as shown
in the aforementioned reference. A further extension of the latter Darboux transformation can
be achieved by generalizing it to the two-dimensional Dirac equation. Based on the results in
[27], such an extension was found for first-order transformations [23]. The purpose of this work
is to construct the higher-order version of Darboux transformations for the Dirac equation in
two dimensions. It should be mentioned that this two-dimensional scenario has been studied
in many recent applications, for example [4] [12] [13] [22], among many more. However, in
the aforementioned and related research the restriction is imposed on the potential matrix to
depend on a single variable only. In the present work we drop this restriction, allowing the
diagonal potential to depend arbitrarily on the two variables. As a consequence, our higher-order
Darboux transformations can generate solvable Dirac systems that cannot be accessed through
known methods. For the sake of completeness we review the one-dimensional situation in section
2. Our decoupling procedure for the two-dimensional Dirac equation is shown in section 3, while
section 4 is devoted to the construction of our Darboux transformations. Afterwards we present
two simple examples in section 5.

2. Preliminaries
We will now present a brief summary of results on higher-order Darboux transformations in the
one-dimensional case [27]. For a real-valued constant λ, we define a differential operator Dλ as

Dλ =
d

dx
+ λ. (1)

Next, we implement this operator in a definition of generalized Wronskians. In this
generalization, the derivative is replaced by our operator (1). For sufficiently smooth functions
u1, ..., un and constants λ1, ..., λn we define

Wu1,...,un(x) = det



u1(x) u2(x) · · · un(x)

Dλ1u1(x) Dλ2u2(x) · · · Dλnun(x)

D2
λ1
u1(x) D2

λ2
u2(x) · · · D2

λn
un(x)

...
...

. . .
...

Dn−1
λ1

u1(x) Dn−1
λ2

u2(x) · · · Dn−1
λn

un(x)


. (2)

Now we introduce functions χ1, ..., χn that are obtained as follows

χj(x) = u′j(x)− f(x) uj(x) + λj uj(x), j = 1, ..., n. (3)
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where f is a function that enters in the equation that we will apply our Darboux transformations
to. More precisely, the pair of equations to be connected through Darboux transformations read

ψ′′(x)− f(x) ψ′(x) +
[
−λ2 + λ f(x) + e(x)

]
ψ(x) = 0 (4)

ψ̂′′(x)− f̂(x) ψ̂′(x) +
[
−λ2 + λ f̂(x) + ê(x)

]
ψ̂(x) = 0, (5)

where all involved functions are assumed to be sufficiently smooth. The first n-th order Darboux
transformation, applied to a solution ψ of (4), is given by

ψ̂(x) =
Wu1,...,un,ψ(x)

Wu1,...,un(x)
. (6)

The function ψ̂ is a solution of the transformed equation (5) if the following interrelations hold

ê(x) = e(x) +
d2

dx2
log [Wu1,...,un(x)] (7)

f̂(x) = f(x) +
d

dx
log

[
Wχ1,...,χn(x)

Wu1,...,un(x)

]
. (8)

A second n-th order Darboux transformation can be constructed from the first one through the
formulas

ψ̂T (x) = exp

 −x∫ f̂(t) dt

 ψ̂(−x), f̂T (x) = f(−x), êT (x) = e(−x)− f ′T (x). (9)

Here, the function ψ̂T is a solution of (5), where ê and f̂ must be replaced by êT and f̂T ,
respectively. This completes our review of the Darboux transformations for the one-dimensional
case. In two dimensions, our initial equation has the form

∂2φ1(x, z)

∂x2
− ∂2φ1(x, z)

∂z2
− f(x, z)

∂φ1(x, z)

∂x
+ f(x, z)

∂φ1(x, z)

∂z
+ e(x, z) φ1(x, z) = 0. (10)

First-order Darboux transformations were constructed for this equation [27]. In the following
section we will show that the two-dimensional Dirac equation with diagonal matrix potential
can be converted into the form (10). As such, higher-order Darboux transformations can be
constructed for the Dirac equation.

3. The two-dimensional Dirac equation
The purpose of the Darboux transformations that we will construct here, is to provide a mapping
between the solutions of two different Dirac equations. These two partner equations can be
written in the form

[σx px + σy py + V (x, y)] Φ(x, y) = 0 (11)[
σx px + σy py + V̂ (x, y)

]
Φ̂(x, y) = 0, (12)

where σx, σy stand for the Pauli matrices, px, py denote the momentum operators, V =

diag(V11, V22), V̂ = diag(V̂11, V̂22), are diagonal 2 × 2 matrices that represent the potentials.
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Furthermore, the two-component solutions are given by Φ and Φ̂, respectively. Starting out
with the initial equation (11), in the first step we introduce the solution components by

Φ(x, y) = [φ1(x, y), φ2(x, y)]T . (13)

Upon substitution of this setting into our Dirac equation along with the above definitions, we
obtain the following system

−i ∂φ1(x, y)

∂x
+
∂φ1(x, y)

∂y
+ V22(x, y) φ2(x, y) = 0 (14)

−i ∂φ2(x, y)

∂x
− ∂φ2(x, y)

∂y
+ V11(x, y) φ1(x, y) = 0. (15)

Without restriction we will now make the standing assumption that V11 6= 0, V22 6= 0. We can
solve the first equation (14) of the system with respect to φ2. This gives

φ2(x, y) =
1

V22(x, y)

[
i
∂φ1(x, y)

∂x
− ∂φ1(x, y)

∂y

]
. (16)

Substitution of this function into the second component (15) renders the latter equation in the
form

∂2φ1(x, y)

∂x2
+
∂2φ1(x, y)

∂y2
+

1

V22(x, y)

[
−∂V22(x, y)

∂x
+ i

∂V22(x, y)

∂y

]
∂φ1(x, y)

∂x
−

− 1

V22(x, y)

[
i
∂V22(x, y)

∂x
+
∂V22(x, y)

∂y

]
∂φ1(x, y)

∂y
+ V11(x, y) V22(x, y) φ1(x, y) = 0. (17)

In order to prepare for our Darboux transformations, let us now assume that u is a solution to
this equation. Next, we define the following functions e and f from the entries V11, V22 of our
initial potential matrix:

e(x, y) = V11(x, y) V22(x, y) (18)

f(x, y) =
1

V22(x, y)

[
∂V22(x, y)

∂x
− i ∂V22(x, y)

∂y

]
. (19)

Upon inserting these functions, our equation (17) takes the form

∂2φ1(x, y)

∂x2
+
∂2φ1(x, y)

∂y2
− f(x, y)

∂φ1(x, y)

∂x
− i f(x, y)

∂φ1(x, y)

∂y
+ e(x, y) φ1(x, y) = 0. (20)

In the next step we rewrite this equation, switching our coordinate y for another coordinate z
according to y = −iz. This gives

∂2φ1(x, z)

∂x2
− ∂2φ1(x, z)

∂z2
− f(x, z)

∂φ1(x, z)

∂x
+

+ f(x, z)
∂φ1(x, z)

∂z
+ e(x, z) φ1(x, z) = 0. (21)

Note that for the sake of brevity we did not rename the functions entering in (21), even
though their second argument changed. We observe that equation (21) coincides with (10).
Consequently, we can define an arbitrary-order Darboux transformation that connects solutions
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Transformed
equation (21)

6

Recouple and
coordinate change

-

Figure 1. Construction of the Darboux transformation for the Dirac equation.

and potentials of our Dirac equations (11) and (12) as the diagram in figure 1 visualizes. In
the first step, we decouple our Dirac equation (11) and switch the y-coordinate in order to
match the form (21) that was considered in [27]. Next, we perform a Darboux transformation
that generalizes the single-variable version reviewed in section 2. It then remains to reverse the
decoupling process and the coordinate change in order to reinstate Dirac form. These three
steps define a mapping between our initial Dirac equation (11) and its transformed counterpart
(12). The explicit form of this mapping will be determined in the following section.

4. Higher-order Darboux transformations
As can be seen from the diagram in figure 1, the construction of our Darboux transformations
is based on their counterparts for equation (21). Let us remark that the first-order case of
the Darboux transformations for the latter two-dimensional equation is explicitly shown in [27],
while the higher-order case is not shown. Now, as a starting point, we observe that the one-
dimensional equation (4) can be written by means of the operators (1) as

[D+λD−λ − f(x) D−λ + e(x)]ψ(x) = 0. (22)

In the same way we can express our two-dimensional equation (21) through the operators (1) if
we formally replace the parameter λ in the latter operators by the partial derivative with respect
to z. We have [

D+ ∂
∂z
D− ∂

∂z
− f(x, z) D− ∂

∂z
+ e(x, z)

]
φ1(x, z) = 0. (23)

Evaluation shows that this equation coincides with (21). Consequently, we must also be able to
express (20) in an analogous manner, since it is related to (23) by a coordinate change. Let us
first generalize the operators (1) by defining

D± =
∂

∂x
± i ∂

∂y
, (24)

which we can use to write equation (20) in the following form

[D−D+ − f(x, y) D+ + e(x, y)]φ1(x, y) = 0.
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We observe that this equation is expressed through operators (24) in the same way as the one-
dimensional case (22), except for differences in the notation. More precisely, the operator D+λj
was replaced by its two-dimensional counterpart D−. Hence, we will construct our Darboux
transformations by using the same approach that was taken in the one-dimensional scenario, see
section 2. To this end, we modify the definition of the generalized Wronskians (2) by switching
the operators (1) for their two-dimensional counterparts (24). Upon introducing functions uj ,
j = 1, ..., n, our generalized Wronskian reads

Wu1,...,un(x, y) = det



u1(x, y) u2(x, y) · · · un(x, y)

D−u1(x, y) D−u2(x, y) · · · D−un(x, y)

D2
−u1(x, y) D2

−u2(x, y) · · · D2
−un(x, y)

...
...

. . .
...

Dn−1
− u1(x, y) Dn−1

− u2(x, y) · · · Dn−1
− un(x, y)


. (25)

In the next step we proceed to rewrite the functions (3) that can be expressed by means of the
operators (1) as

χj(x) =
[
D+λj − f(x)

]
uj(x), j = 1, ..., n.

Consequently, we can introduce the two-dimensional version of these functions in the following
way

χj(x, y) = [D− − f(x, y)]uj(x, y)

=
∂uj(x, y)

∂x
− i ∂uj(x, y)

∂y
− f(x, y) uj(x, y), j = 1, ..., n. (26)

At this point we must distinguish two Darboux transformations, the one-dimensional versions of
which are shown in section 2. We will assume that the two-dimensional functions uj , j = 1, ..., n,
are solutions to equation (20).

• First Darboux transformation: We will now generalize the Darboux transformation
given in (6)-(8) to the scenario of two dimensions. Starting out with the transformed
solution (6), we must replace the generalized Wronskians (2) by their two-dimensional
counterparts (25). This yields

φ̂1(x, y) =
Wu1,...,un,φ1(x, y)

Wu1,...,un(x, y)
. (27)

Next, we need to determine the transformed functions ê and f̂ . These are given by the
following expressions

ê(x, y) = e(x, y) +

(
∂2

∂x2
+

∂2

∂y2

)
log [Wu1,...,un(x, y)] (28)

f̂(x, y) = f(x, y) +

(
∂

∂x
− i ∂

∂y

)
log

[
Wχ1,...,χn(x, y)

Wu1,...,un(x, y)

]
. (29)

Thus, the functions (27)-(29) enter in the transformed partner equation of (20). This
equation is given by

∂2φ̂1(x, y)

∂x2
+
∂2φ̂1(x, y)

∂y2
− f̂(x, y)

∂φ̂1(x, y)

∂x
− i f̂(x, y)

∂φ̂1(x, y)

∂y
+ ê(x, y) φ̂1(x, y) = 0.
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(30)

In the final step we must find the solution of our transformed Dirac equation (12) and
the associated transformed matrix potential. Before we do so, let us construct the second
Darboux transformation.

• Second Darboux transformation: As described in section 2, the two Darboux
transformations in the one-dimensional case are interrelated by the mapping (9). In two
dimensions, there is also such a mapping that can be written as [27]

φ̂1T (x, y) =
{

exp
[
−D−1− f̂(s, y)

]
φ̂1(s, y)

}
|s=−x

(31)

êT (x, y) = ê(−x, y)−D−f̂T (x, y) (32)

f̂T (x, y) =
[
D+D

−1
− f̂(s, y)

]
|s=−x

, (33)

note that D−1− represents the inverse operator of D−. We will now calculate the explicit
form of the three functions (31)-(33). Starting out with the first of them, we must determine

the action of the inverse operator D−1− on the function f̂ . We find

D−1− f̂(s, y) =

s∫
f̂(t, i s+ y − i t) dt. (34)

Substitution into (31) leads to

φ̂1T (x, y) =

exp

− s∫
f(t, i s+ y − i t) dt

 φ̂1(s, y)


|s=−x

= exp

− −x∫ f(t,−i x+ y − i t) dt

 φ̂1(−x, y)

= exp

− −x∫ f(t,−i x+ y − i t) dt

Wu1,...,un,φ1(−x, y)

Wχ1,...,χn(−x, y)
, (35)

where in the last step we used (27). Next, we continue by calculating (33), since we will
need the result for (32). Upon taking into account the form (34) of the inverse operator
D−1− and (29), we obtain

f̂T (x, y) =


(
∂

∂s
+ i

∂

∂y

) s∫
f̂(t, i s+ y − i t) dt+ log

[
Wχ1,...,χn(x, y)

Wu1,...,un(x, y)

]
s=−x

=

(
− ∂

∂x
+ i

∂

∂y

) −x∫
f̂(t,−i x+ y − i t) dt+ log

[
Wχ1,...,χn(−x, y)

Wu1,...,un(−x, y)

]

= f̂(−x, y) + 2 i

−x∫
∂f̂(t, s)

∂s |s=−i x+y−i t
dt+ log

[
Wχ1,...,χn(−x, y)

Wu1,...,un(−x, y)

]
(36)
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It remains to determine the explicit form of (32) that we obtain by combining (28), (34),
and (36). This gives

êT (x, y) = e(−x, y) +

(
∂2

∂x2
+

∂2

∂y2

)
log [Wu1,...,un(−x, y)]−

−
(
∂

∂x
− i ∂

∂y

)
(
− ∂

∂x
+ i

∂

∂y

) −x∫
f̂(t,−i x+ y − i t) dt+ log

[
Wχ1,...,χn(−x, y)

Wu1,...,un(−x, y)

] .

After applying the derivative operators, we arrive at the following result

êT (x, y) = e(−x, y) +

(
∂2

∂x2
+

∂2

∂y2

)
log [Wu1,...,un(−x, y)]−

− ∂f̂(−x, y)

∂x
+ 3 i

∂f̂(x, y)

∂y
− 4

−x∫ [
∂2f̂(t, s)

∂s2 |s=−i x+y−i t

]
dt−

−
(
∂

∂x
− i ∂

∂y

)
log

[
Wχ1,...,χn(−x, y)

Wu1,...,un(−x, y)

]
. (37)

Expressions (35)-(37) provide a representation of the second Darboux transformation. This

means that the function φ̂1T solves equation (30), if ê and f̂ are replaced by êT and f̂T ,
respectively.

In order to determine the transformed potential matrix, we first recast our formulas (18) and

(19) in terms of the quantities ê and f̂ . This gives

ê(x, y) = V̂11(x, y) V̂22(x, y) (38)

f̂(x, y) =
1

V̂22(x, y)

[
∂V̂22(x, y)

∂x
− i ∂V̂22(x, y)

∂y

]
, (39)

where the explicit form of ê, f̂ can be found in (28), (29) for the first Darboux transformation
and in (36), (37) for the second Darboux transformation, note that in the latter case they carry
an index T that for simplicity we left out above. In the next step we solve equations (38) and

(39) with respect to V̂11 and V̂22. We obtain

V̂11 = exp

− x∫
f̂(t,−x+ i y + t) dt

 ê

G(i x+ y)
(40)

V̂22 = exp

 x∫
f̂(t,−x+ i y + t) dt

G(i x+ y), (41)

note that G is an arbitrary function of its argument. Also, recall that in case of the second
Darboux transformation ê and f̂ must have an index T . Now that we have determined the
transformed Dirac potential, it remains to find the two-component solution of the Dirac equation
(12). Since the function φ̂1 or φ̂1T represents the first component in the Dirac solution (13),
according to (16) we can find the second component from

φ̂2T (x, y) =
1

V̂22(x, y)

[
i
∂φ̂1T (x, y)

∂x
− ∂φ̂1T (x, y)

∂y

]
. (42)

This result completes the construction of our higher-order Darboux transformations.
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5. Applications
In this section we will present two examples of applying our Darboux transformations to Dirac
systems. Our main focus is to keep calculations transparent by using functions that do not
involve excessively long expressions. For the same reason we restrict ourselves to Darboux
transformations of second order only.

5.1. Exponential-type potential
Let us consider our initial Dirac equation (11) for the following matrix potential

V (x, y) =

(
30 exp(y) sech(x)2 0

0 exp(−y)

)
, (43)

note that numerical factors were chosen such as to simplify subsequent calculations. The diagonal
entries of the potential can be read off as

V11(x, y) = 30 exp(y) sech(x)2 V22(x, y) = exp(−y). (44)

Upon substitution of these functions into the decoupled version (17) of our Dirac equation we
find

∂2φ1(x, y)

∂x2
+
∂2φ1(x, y)

∂y2
− i ∂φ1(x, y)

∂x
+
∂φ1(x, y)

∂y
+ 30 sech(x)2 φ1(x, y) = 0. (45)

It will be sufficient to work with a particular solution of this equation. Our solution is given by

φ1(x, y) =

{
c1 exp

[
−
(

1

2
+

1

2

√
4 k − 1

)
y

]
+ c2 exp

[
−
(

1

2
− 1

2

√
4 k − 1

)
y

]}
×

× P
1
2

√
4 k−1

5 [tanh(x)]

[
− 1− tanh(x)

] i
4
[
− 1 + tanh(x)

]− i
4

, (46)

where P stands for the Legendre function of the first kind [1] and c1, c2 are free constants. Note
that this function along with its counterpart φ2 from (16) forms a solution to our initial Dirac
equation (11) for the matrix potential (43). For the sake of brevity we omit to state φ2 here.
Now, in order to perform our Darboux transformations, we need to determine the functions e
and f , as defined in (18) and (19), respectively. Insertion of our potential entries (44) yields

e(x, y) = 30 sech(x)2 f(x, y) = i. (47)

Let us consider each of the two Darboux transformations separately.

• First Darboux transformation: Recall that this transformation is given by the formulas
(27)-(29), the second-order case of which is obtained by setting n = 2. In the next step we
need to define two transformation functions u1, u2 that solve equation (20). We take these
functions as the following special cases of our solution (46)

u1(x, y) = φ1(x, y)|c1=1,c2=0,k=101/4

= −945 exp

[(
−1

2
− 5 i

)
y

]
sech(x)5

[
− 1− tanh(x)

] i
4
[
− 1 + tanh(x)

]− i
4

(48)

u2(x, y) = φ1(x, y)|c1=0,c2=1,k=101/4

= −945 exp

[(
−1

2
+ 5 i

)
y

]
sech(x)5

[
− 1− tanh(x)

] i
4
[
− 1 + tanh(x)

]− i
4

.(49)
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Let us point out that the numerical value of k is chosen such that the transformation
functions become elementary. More precisely, we observe that for k = n2 + 1/4, n = 0, ..., 5,
the Legendre function in (46) degenerates to a polynomial. We will now proceed by finding
the results of the Darboux transformation. Starting out by evaluating (28), we insert our
transformation functions (48), (49), which leads to the result

ê(x, y) = 20 sech(x). (50)

Next, we calculate the functions χ1 and χ2 that enter in the result (29) of our Darboux
transformation. Upon evaluating (26), we get

χ1(x, y) = −4725 exp

[(
−1

2
− 5 i

)
y

]
sech(x)5

[
− 1− tanh(x)

]1+ i
4
[
− 1 + tanh(x)

]− i
4

(51)

χ2(x, y) = −4725 exp

[(
−1

2
+ 5 i

)
y

]
sech(x)5

[
− 1− tanh(x)

] i
4
[
− 1 + tanh(x)

]1− i
4

.

(52)

We substitute these functions along with (48), (49) into (29). This gives after simplification

f̂(x, y) = i− 2 tanh(x). (53)

Now that we have the functions ê and f̂ from (38) and (39), respectively, we find the
diagonal entries of the transformed Dirac matrix potential through (40), (41). This gives

V̂11(x, y) =
20 exp(−i x)

G(i x+ y)
(54)

V̂22(x, y) = exp(i x) sech(x)2 G(i x+ y). (55)

The complex exponentials can be absorbed by the arbitrary function G. Upon setting

G(x) = exp(−x), (56)

the potential entries (54) and (55) take the following real-valued form

V̂11(x, y) = 20 exp(y) (57)

V̂22(x, y) = exp(−y) sech(x)2. (58)

These are the diagonal components of the potential matrix V̂ that enters in our transformed
Dirac equation (12). It remains to determine a solution to the latter equation through (27).
We insert our transformation functions (48), (49), along with the solution (46). For the sake
of brevity, we implement the settings c1 = c2 = 1, k = 5/4 in the latter solution. Evaluation
of (27) gives the result

φ̂1(x, y) = 30 exp
(
−y

2

)
sech(x)5

{
cos(y)

[
30− 25 cosh(2 x) + cosh(4 x)

]
−

− i sin(y)

[
− 5 sinh(2 x) + sinh(4 x)

]}[
− 1− tanh(x)

] i
4
[
− 1 + tanh(x)

]− i
4

.

(59)
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The associated function φ̂2 can be found from (42). We obtain

φ̂2(x, y) = −1200 i exp
(y

2

)
cos(y) sech(x)

[
− 4 + 7 sech(x)2

]
tanh(x)×

×

[
− 1− tanh(x)

] i
4
[
− 1 + tanh(x)

]− i
4

. (60)

In summary, (59) and (60) form the two-component solution of our transformed Dirac
equation (12) for the diagonal matrix potential with entries (57), (58). The probability
density associated with the transformed solution is visualized in figure 2.

Figure 2. Graph of the probability density |Φ̂|2 = |φ̂1|2 + |φ̂2|2 associated with the solution
components (59) and (60).

• Second Darboux transformation: We will now apply formulas (35)-(37), where we
implement the second-order case n = 2, and follow the same approach as in the previous
case. To this end, we use the same transformation functions (48), (49) as in the previous
case. As a consequence, the functions (51), (52) also remain the same. Substitution into
(36) and (37) gives

êT (x, y) = 18 sech(x)2 f̂T (x, y) = i+ 2 tanh(x).

In the next step we plug these findings into the entries (40) and (41) of the transformed
potential matrix. Evaluation leads to

V̂11(x, y) = 18 exp(y) sech(x)4 (61)

V̂22(x, y) = exp(−y) cosh(x)2, (62)

note that we used the setting (56). Now we calculate the first component (35) of the solution
to our transformed Dirac equation (12). Since its general form is rather complicated, we
implement the parameter settings c1 = c2 = 1, k = 65/4. After simplification we obtain

φ̂1T (x, y) = 15120 exp
(
i x− y

2

)
sech(x)3 sinh(x+ 4 i y)×

×

[
− 1− tanh(x)

]− i
4
[
− 1 + tanh(x)

] i
4

. (63)
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The second component of our solution can be found through (42). We find

φ̂2T (x, y) = −45360 i exp
(
i x+

y

2

)
sech(x)6 cosh(2 x+ 4 i y)×

×

[
− 1− tanh(x)

]− i
4
[
− 1 + tanh(x)

] i
4

. (64)

Thus, (63) and (64) are components of the solution to our transformed Dirac equation (12)
for the diagonal matrix potential with entries (61), (62). The probability density associated
with the transformed solution is visualized in figure 3.

Figure 3. Graph of the probability density |Φ̂|2 =
∣∣∣φ̂1T ∣∣∣2 +

∣∣∣(φ̂2)
T

∣∣∣2 associated with the

solution components (63) and (64).

5.2. Polynomial-type potential
As in the previous application, our starting point is the initial Dirac equation (11) for a matrix
potential that this time is given by

V (x, y) =

(
k − x2 − y2 0

0 1

)
, (65)

where k is a parameter that will be discussed below. Our potential matrix is diagonal with
entries

V11(x, y) = k − x2 − y2 V22(x, y) = 1. (66)

In order to determine a solution to our Dirac equation for the potential (65), we plug the
potential entries into the equation (17). We find

∂2φ1(x, y)

∂x2
+
∂2φ1(x, y)

∂y2
+
(
k − x2 − y2

)
φ1(x, y) = 0. (67)
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This can be identified with a two-dimensional Schrödinger equation for stationary energy k and
harmonic oscillator potential. A solution can be given in the form

φ1(x, y) =

[
c1 exp

(
−x

2

2

)
H k1−1

2

(x) + c2 exp

(
x2

2

)
H−k1−1

2

(i x)

]
×

×

[
c3 exp

(
−y

2

2

)
H k2−1

2

(y) + c4 exp

(
y2

2

)
H−k2−1

2

(i y)

]
, (68)

where H stands for the Hermite function [1], and cj , j = 1, ..., 4, are free constants. Furthermore,
the parameters k1 and k2 must satisfy the constraint k = k1+k2. While φ1 is the first component
of the solution to our initial Dirac equation (11) for the potential (65), the associated second
component φ2 is found through formula (16). Now, upon substitution of the functions from (66)
into (18) and (19), we obtain

e(x, y) = k − x2 − y2 f(x, y) = 0. (69)

We are now ready to perform a Darboux transformation of second order. In the present example
we will restrict ourselves to applying the first case, governed by (27)-(29) for n = 2. This case
requires two transformation functions that we take from (68).

u1(x, y) = φ1(x, y)|c1=c3=1,c2=c4=0,k1=1,k2=3

= 2 exp

(
−x

2 + y2

2

)
y (70)

u2(x, y) = φ1(x, y)|c1=c4=0,c2=c3=1,k1=−1,k2=5

= exp

(
−x

2 − y2

2

)
(4 y2 − 2). (71)

We observe that these functions are elementary because the parameters k1 and k2 were chosen
accordingly, such that the Hermite functions degenerate to polynomials. Furthermore, note
that the choice for the latter two parameters dictates k = 4. We now insert the transformation
functions (70) and (71) into (28), which results in a complex-valued rational function, that we
do not show here due to its length. Next, we calculate the functions χ1 and χ2 from (26). This
gives

χ1(x, y) = exp

(
−x

2 + y2

2

)[
−2 x y + 2 i (y2 − 1)

]
(72)

χ2(x, y) = 2 exp

(
−x

2 − y2

2

)[
i y (2 y2 − 5) + x (2 y2 − 1)

]
. (73)

Upon substitution of these functions and (70), (71) into (29), we obtain f̂ . Since the explicit
form of this function is very long, we omit to state it here. Instead, we will state the entries of
the transformed Dirac potential matrix that are obtained from (40) and (41). The result reads

V̂11(x, y) =
−2 x y + 4 x y3 + i+ 2 i y2

−2 x y + 4 x y3 − i− 2 i y2
(74)

V̂22(x, y) =
2 x y [−6 + x2 + (5− 2 x2) y2 − 2 y4] + 3 i [2 + x2 + (2 x2 − 3) y2 + 2 y4]

−2 x y + 4 x y3 − i− 2 i y2
.

(75)
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Note that we chose the function G such as to absorb some complex terms. In the present case
it is not possible to render the potential matrix entries in real-valued form. Now, in order to
determine (27), we substitute the transformation functions (70), (71), and the solution (68) for
the parameter settings c1 = c3 = 1, c2 = c4 = 0, k1 = 3, k2 = 1. We obtain

φ̂1(x, y) = − 4 i exp

(
−x

2 + y2

2

)
(x− i y) [−3 + 2 y2 + x2 (4 y2 − 2)− 8 i x y]

4 x y3 − 2 x y − 2 i y2 − i
(76)

We construct the remaining solution component φ̂2 by means of (42). This gives

φ̂2(x, y) = 4 exp

(
−x

2 + y2

2

)
1 + 2 y2 + x2 (4 y2 − 2)

4 x y3 − 2 x y − 2 i y2 − i
. (77)

Hence, the two component solution of our transformed Dirac equation (12) is provided by (76)
and (77). The associated potential matrix entries are shown in (74), (75), and the probability
density associated with the transformed solution is visualized in the left part of figure 4. The
right part of that figure shows another example of a probability density obtained from a Darboux
transformation with the transformation functions

u1(x, y) = φ1(x, y)|c1=c3=1,c2=c4=0,k1=1,k2=5 (78)

u2(x, y) = φ1(x, y)|c1=c4=0,c2=c3=1,k1=−1,k2=7, (79)

and the overall settings

k = 6 k1 = k2 = 3. (80)

For the sake of brevity we omit to state calculations and results associated with these parameter
settings. Observe that the probability densities shown in figure 4 are bounded function. This

Figure 4. Graphs of probability densities |Φ̂|2 =
∣∣∣φ̂1∣∣∣2 +

∣∣∣φ̂2∣∣∣2 associated with the solution

components (76), (77).

is in contrast to the previous examples, where the probability densities behave like exponential
functions in y-direction.
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Figure 5. Graphs of probability densities |Φ̂|2 =
∣∣∣φ̂1∣∣∣2 +

∣∣∣φ̂2∣∣∣2 associated with the settings

(78)-(80).

6. Concluding remarks
In this work we have presented Wronskian representations of arbitrary-order Darboux
transformations for the two-dimensional Dirac equation with diagonal matrix potential. While
implementation is straightforward, technical difficulties can arise for a variety of reasons. First,
in order to apply the Darboux transformations, a solution to the initial equation is needed.
Finding such a solution can be tedious, given that the governing equation is two-dimensional.
Furthermore, the process of determining the transformed Dirac potential requires the resolution
of an integral that is difficult to do in a symbolic way, as the integrand is the result of the
Darboux transformation, which can be of complicated form or contain special functions. In
order to have better control over the Darboux transformations, it is desirable to have reality
and regularity conditions for the transformed potential as well as for the associated solutions of
the Dirac equation. These issues are subject to future research.
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