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Summary 
A self-consistent model and numerical code for a relativistic electron ring loaded with ions was developed, using realistic distribution functions for adiabatically changing equilibria. The main result is that in an ion-focussed ring the "holding power" eξR_ is only about 20% of the ring peak electric field, whereas an additional electric image cylinder ("squirrel cage") allows ion acceleration up to 80% of the peak electric field. 

A. Introduction 
Collective ion acceleration by the strong electric fields in a ring of relativistic electrons has been the subject of many investigations in the past few years. 
In order to establish performance characteristics for an electron ring accelerator (ERA), one has to consider instability problems as well as the equilibrium state. Instabilities turned out to impose severe limits on the effectiveness of ion acceleration. The study of equilibrium is not only the starting point for instability investigations, but is also necessary for the basic question of the "holding power", which will be treated in this paper. Equilibrium models have been used in the past which often showed a substantial lack of self-consistency from the point of view of the Vlasov equation. Most of the theoretical work has been done along the following lines: 1. self-consistent particle codes1; with present-day computers they are restricted to short physical times and thus inappropriate for adiabatically changing equilibria. 2. virial theorems and macroscopic fluid models2,3,4. 3. models based on the Vlasov equation; simple models for rings at rest use uniform densities and harmonic betatron oscillations5,6,7 while others study nonuniform density effects without being self-consistent8,9, or calculate realistic ion distribution functions for uniform electron density10, whereas accelerated eauilibria are treated numerically employing microcanonical distribution functions and approximating ring cross-sections by ellipses11. 
The present paper is free from the simplifications of the above-mentioned models and gives numerical solutions of accelerated ring equilibria that are self-consistent within the framework of the Vlasov-Maxwell equations. In particular, it uses physically relevant distribution functions for either particle species and takes into account their time-dependence by means of appropriate adiabatic invariants. 

This work was performed under the terms of the agreement on association between the Max Planck Institut fur Plasmaphysik and EURATOM 

Β. Stationary Vlasov Equilibria for an Electron Ring with Ions 
I. Basic Equations 
For axisymmetric fields the electron motion is governed by the relativistic Hamiltonian in cylindrical coordinates 

(1) 
and particle velocities Ae is the only non-vanishing component of the vector potential and φ thetscalar potential, including self-fields Αθ = Αθext +Αθs ,Φ=Φ5 Ion motion is prescribed by the nonrelativistic Hamiltonian 

(2) where magnetic field effects are neglected and Ρθ≡ 0 Distribution functions 
satisfy the steady-state Vlasov equation (3) solved with Φ self-consistently calculated from the eauations 4 

with 
Hence we obtain two coupled nonlinear itegro-differential equations (4+) with appropriate boundary conditions to be imposed at infinity or on finite conductors. 
II. Exact Stationary Distribution Functions 
To determine the a knowledge of constants of motion is most useful since an arbitrary (differentiable) function of them solves (3). In the stationary case the total energy He,i and, for electrons, Pθ are constants that allow for a class of exact solutions of (3) which can be written as (5) (6) where g(Pθ) prescribes the momentum spread of the electrons, and fei is typically Gaussian-like for an ER, in contrast with other papers 7,11 where a δ-function leading to a uniform density inside a sharp boundary was chosen. 
Whether distribution functions (5), (6) are sufficiently general for an ER is a question of basic importance. In fact, it seems impossible in general to give explicitly an additional exact constant of motion comparable to the energy. Certain approximations are possible, however, which can be discussed more transparently in a model where transverse (,) and longitudinal (θ) energies are decoupled. 
III. Decoupling of Transverse and Longitudinal Energies 
For a given value of Pθ an equilibrium radius R(Pθ) and corresponding minimum energy Εe min(Pθ) are given for electrons according to the 
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following variational principle: (7) 
Since in ER applications the "transverse" energy Ee- Ee min is nonrelativistic, we may expand the square root in (1) to obtain a transverse Hamiltonian H with nonrelativistic features. We define a zero-order (i.e. neglecting self-fields) equilibrium radius Ro and minimum energy Ee min o for which we obtain from , (7) (for Bext symmetric in) 
The desired expansion to first order is 
with and V2θo=- /ro2 where it is assumed that higher variations of Pθ than second order are negligible compared with selfrfield. variations. Thus, we find with 

(8) 
IV. Approximate Solutions for Distribution Functions of a More General Nature 
The exact solutions (5), (6) expressed in He, Hi prescribe densities in (x,x,z,z)-phase space uniform on surfaces of constant energy. Let us consider an ensemble of phase points uniformly distributed on the surface H= Eo . Let us now assume a change in the external field Bext which deforms the energy surface. Clearly, a rapid change in Bext may lead to nonstationary phase space flow. The considered ensemble then lies in general on a fluctuating surface different from any energy surface.Fi-lamentation may lead after sufficiently long time to an effective stationary phase space distribution, which one can determine in general only by following the particle trajectories. 
Next, let us consider a change Bext(o) Bext(x) which is slow ( the slowly varying time) compared with the short oscillation times of the system such that the instantaneous distribution is free from short-time fluctuations. Two situations are of interest at the time (I): the original ensemble H(O)= E(o) is 

transformed into a new ensemble uniform on H()=E() with H() the new Hamiltonian 
(II) : (I) is not true 
In case (I) typically ergodic behaviour is present. More recent works on ergodic theory12,13,14 and computer calculations for two-dimensional particle motion15 have shown that even in quite general situations - depending on the amount of coupling between different degrees of freedom - an energy surface is separated into invariant to with Lebesgue measure greater than zero. There exist distribution functions nonuniform on energy surfaces. To determine them, one needs the additional invariants of the motion. Such invariants can in general be represented only in terms of asymptotic series, which were introduced in theories on adiabatic invariants relevant for confinement of particles in magnetic fields16,17. (A ¬ simple exception is rotational symmetry in x,z which shall be excluded here.) With increasing (nonlinear) coupling in x,z computer calculations15 have shown that "stochastic" trajectories which wander all over the whole energy 

surface dominate over the ordered motion (confined to invariant sections). In this case the usual asymptotic series expansions for invariants cannot be applied. There is pronounced ergodic behaviour and case (I) appears to give the appropriate prescription of the phase space flow. 
A rough estimate of the amount of nonlinear x,z -coupling in particle motion in realistic electron rings (with collective field strengths within the present limits) justifies the following treatment: 1) ions are described according to (I) with distribution functions (6) uniform on energy surfaces; 2) electron motion is weakly coupled and depends on still another invariant. The detailed form of the distribution functions will be established in the next section. 

C. Adiabatlcally Changing Equilibria 
Compression, ion loading and acceleration may be treated as slow processes compared with oscillation times of electrons and ions. The time-dependence of fe,fi during such adiabatic changes described by the parameter can be established by using adiabatic invariants in accordance with the conclusions at the end of Β IV. 
I. The Ion Distribution Function 
According to (I) ions on a surface Hi(o)= E(o) 
are redistributed on a new surface of Hi() . 
Because of Lioville's theorem the 4-dimensional 
phase space volume (9) 
is invariant and permits us to determine E(). Hence we obtain an (adiabatically) invariant distribution function for ions (for constant ion number) 

(10) which is related to (6) according to 
From (6) we obtain for (9') 
and 
For rest-gas ionization ions are produced with zero kinetic energy (neglecting their small azimuthal velocity) in the potential trough built up by the instantaneous electric space charge. The ionization probability is proportional to the electron density; the ionization rate αi may be time-dependent. Hence we obtain the following differential change of the distribution function 

(11) 
The integral can be transformed into a line integral along equipotential lines of Vi 
The functional determinant for transformation into.curvilinear coordinates Vi is derived 
as and with Vi'= t/ I dI we find (11') 
II. The Electron Distribution Function 
To determine an invariant distribution function for electrons, we require two adiabatic inva-
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riants instead of one for the ions. Taking into account nonlinear x,z-coupling, asymptotic series for the invariants should be the only correct procedure, but this is not useful for a straightforward numerical code. We therefore neglect x,z -coupling and obtain the simple separate adiabatic invariants 
(12) 

with A better approximation could be obtained by using the scaling law for radial and axial betatron oscillations : νx/νz , which is valid for the present experiments. In this case the radial phase space volume Ix is again an invariant The second invariant follows from the z-motion averaged over rapid oscillations due to the coupling with *. 
With (12) the invariant distribution function 
can be written as (13) 
and the density (apart from integration over 
III. Polarization and Particle Loss During Acceleration 
When an accelerating Brext or Ezext field is applied, forces acting on ions and electrons tend to polarize the ring in the z-direction. For sufficiently high acceleration particles evaporate from the ring as a result of the decreasing axial focussing. This results in a truncation of the distribution function (10) or (13) at a limiting value of I or Ix corresponding to the energy where the potential has a pass. 
For magnetic acceleration we have in a coordinate system moving with the ring 

(14) where nonrelativistic axial velocity is assumed. Force balance yields 
and thus 

D. Iterative Solution of the Self-Consistency Problem by a Numerical Code 
For given invariant distribution functions (10), (13) the integro-differential equations (4) assume the following form, using (9') and (12) 

(4") 
Self-consistent solutions for Aθ , Φ are supposed to exist for physical reasons. Equations (4'') have to be solved taking into account possible truncation of if there is insufficient focussing.Convergence of an iteration scheme to solve (4") depends critically on the mathematical properties of the operator defining the iteration, i.e. its eigenvalue spectrum. The following physical quantities are expected to influence convergence: number of particles to be confined, attractive or repulsive self-forces, several particle species interacting with each other, variable total particle numbers, boundary conditions. As far as the author knows, no mathematical criteria are available concerning convergence of an appropriate iteration scheme for the present coupled equations problem. 

The simplest "direct" iteration was attempted in the numerical code. In most of the cases it was convergent after few (5) iteration cycles. When iteration failed relaxation was introduced which connects subseauent iteratives according to Ψ ≡ (-α) Ψ(x)+αΨ(x+/2) (o<α). This "first-order relaxation" is convenient if direct itératives oscillate 
about some solution. 

In the present code divergence of both methods 
was used to indicate the nonexistence of an 
equilibrium solution. This is important for 
defining the maximum admissible accelerating 
force (holding power). 

The numerical code has the following characteristics 
(details see18): 
1) Toroidal geometry with 
an infinite conductivity 
boundary of rectangular 
cross-section to solve 
the Poisson and vector 
potential equations (on 
a 128 × 128 grid). Different 
electric and magnetic 
boundaries were 
allowed for to simulate 
a squirrel cage, which is 
transparent to magnetic 
but not electric fields19,20. 

Fig.1 Geometry 
2) After each step of differential ion production ΔFi= Fi/ t t(11') self-consistency is re-established according to (4"). 
3) At different stages of a full compression cycle, ion loading cycle and acceleration cycle the contribution of instabilities may be taken into account by increasing the occupied phase space volumes (9), (12). 

E. Results 
Computer runs are presented here with data adapted to the Garching ERA experiment (compressed rings) :Ne= 5·1012 , Ro = 2.3 cm, 
o = 27.2, n = 0.021 (at the end of compression); no momentum spread for simplicity. 
The electron distribution function was chosen as Fei ~ exp((-Ix/μ+Iz)/Imax).θ(Ix/μ+Iz-Imax) , with θ the step function and μ = 6 to obtain nearly circular ER cross-sections (small semiaxes x .3 cm). 
These initial conditions are common to all examples listed below. The ring is then loaded with ions (f=Ni/Ne , 0<f 0.05) and after-wards studied in two different surrounding structures (with acceleration): a) boundary CYL; two cylinders at = Ro±l.25 cm closed axially at z = ±2.5 cm (already present before ion loading) b) boundary SQC; cylinder at = Ro=1.25; electric image cylinder at = Ro/Psqc  (0.6Paqc 0.8), magnetic image cylinder at = RO+3(e-Ro). PSQC is a measure of the focussing strength of the "squirrel cage" simulated hereby. 
Table 1 shows characteristic ring data for the unloaded ER and loaded rings in CYL and SQC 
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(for = 0, no accel.). 2., 2 axial and radial electron ring width at half maximum density; e ξzpeak , e ξzedge ions peak electric field and the electric field at the edge of the ion subring that are produced by electron space charge; eνz2 self-field contribution to squared axial tune of the electrons (including toroidal and image effects); Ne/Neo confined electrons as fraction of originally (n=.) present electrons. 
Conclusion 

1) Inhomogeneous electron and ion densities. 
Fig.2-4show that the half-width of the density profiles of the ions is a factor 2 smaller than that of the electrons. 
2) Toroidal effects. 
In relativlstic electron rings an axial defocussing force occurs5 which is usually much stronger than the /r2 -repulsion of straight beams. Table 1 shows that without a squirrel cage an 0.5 (Ex. ) is necessary to keep all electrons confined (at n = 0, zero accel.). 
3) "Squirrel Cage" focussing. 
With a SQC the electron contribution eVz2  
can be made positive, which guarantees axial focussing of the electrons independent of the ion loading fraction (), provided that psqc is larger than 0.65 (Table 1). 
4) Acceleration and "holding power". 
We define the maximum "holding power" here as the highest admissible accelerating force κ (acting on the ions, see (14)) at which at least a residue of ions remains trapped in the ring. On acceleration an electron-ion ring is polarized, as a result of which the axial focussing of either particle species is reduced. 
Two principal situations can then be distinguished: 
a) Insufficient image focussing if the electron self-field contribution Δe νz2 is nearly zero or negative (for very small ) as in ex. - and wlth the weak SQC in  ex. ,. In this case electrons are gradually lost from the ring with increasing acceleration until complete ring disintegration and spontaneous loss of all ions (Pig.7). Without SQC nearly no acceleration is possible for =.0175. The maximum "holding power" is typically 25% of the peak electric field efz peak. 
b) Dominant image (SQC) focussing is present if e νz2. _is sufficiently positive as in ex. - , where electrons are well-focussed even for very small . In this case ions are gradually lost from the ring above a threshold acceleration ( 7.5 MeV/m). The maximum "holding power" is about 75% of eξzpeak (Fig· 7). 

Acknowledgements 
The author is indebted to Prof. A. Schluter and Dr. P. Merkel for discussions and to E. Springmann for computer programming. 

Bibliography 
1 J.P.Boris, R.Lee, NRL-Rep.2284(1971) 
2 W.H.Kegel,Plasma Physics 12,105(1969) 3 S.Yoshikawa,Princeton-MATT-816(1972) 4 P.Merkel,MPI .Plasmaphysik IPP 0/l8 (1973) 5 L.J.Laslett, LRL Berkeley, ERAN 30(1969) 6 W.A.Perkins, LRL Berkeley, ERAN 97(1970) 7 R.C.Davidson.J.D.Lawson, Univ.of Maryland-Rep.204P029(1972) 
8 L.J.Laslett, Symp.on Electr.Ring Accel.ERA19 
9 C.Bovet, LRL Berkeley, ERAN 88 (1970) 10 A.A.Drozdovskii,Rep.ITEF-10,Moscow(1973) 11 N.Y.Kazarinov,E.A.Perelshtein, Symp.on Coll. Meth.of Acceleration, Dubna(1972) 12 V.I.Arnold,in V.I.Arnold a.A.Avez,Problèmes 
Ergodiques de la Mécan.Classique,Paris(1967) 

13 J.Moser,Nachr.Akad.Wiss.Göttingen _1,1(1962) 
14 A.N.Kolmogorov,in R.Abraham, Found.of Mechan. 
App.D, New York(1967) 

15 M.Hénon,C.Heiles, Astron.J., 73(1964) 
16 M.Kruskal, J.Math.Phys.,806(l962) 
17 B.McNamara,K.J.Whiteman,J.Math.Phys.,2029 
(1967) 

l8 I.Hofmann, IPP 0/21 (1974) 
19 G.V.Dolbilov et.al.,JINR-P9-4737,Dubna(1969) 
20I.Hofmann, IPP 0/16 (1973) 

Figures 
(list of examples see Table 1) 

Fig. 
1 Electron density profiles, ex. (densities with maximum normalized to 1) 
2 Electron a.ion (dashed) dens.prof. ex. 
3 Electron a.ion (dashed) dens.prof. ex. 
4 Electron a.ion (dashed) dens.prof. ex. , 
5 Axial potent..electr.a.ions(dashed)ex., 
6 Axial potent, .electr. a. ions (dashed) ex., 
7 Ne/Ne o or Ni/Ni o (fraction of confined particl to originally-before roll out-pres.partiel.) 
as function of accelerating force. The leftside 
curves show examples with prevalent 
electron loss (Ne/Ne o 0; insufficient image focussing), the right-side curves prevalent 

ion loss (Ni/Ni o0; dominant image focussing). The hatched regions cover 0.001 .025. The 
dotted appendices indicate (numerical) ring 
disintegration. 

8 Density plots for electrons and ions in 
(x,z)-cross-sections, for ex. ,,: 
a)before ion loading (n=0.021, Ro =2.3 cm); b)loaded ring at =0.005; accelerated rings. 
The plots show lines of constant density 

e(x,z) and i(x,z) with uniform level difference Δ. The ion subring is thinner than the electron ring and slightly shifted to smaller radius. 
Table 1 
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Fig.1 

Fig. 2 

Fig. 3 

Fig. 4 

Fig. 5 

Fig. 6 

Fig. 7 

Fig. 8 
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