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Summary

A self-consistent model and numerical code for
a relativistic electron ring loaded with ions
was developed, using realistic distribution
functions for adiabatically changing equilibria.
The main result is that in an ion-focussed

ring the "holding power" e€g is only about 20%
of the ring peak electric fleld, whereas an
additional electric image cylinder ("squirrel
cage") allows ion acceleration up to 80% of

the peak electric field.

A. Introduction

Collective 1on acceleration by the strong
electric fields 1in a ring of relativistic
electrons has been the subject of many in-
vestigations in the past few years.

In order to establish performance characte-
ristics for an electron ring accelerator (KERA),
one has to consider instability problems as
well as the equilibrium state. Instabilities
turned out to 1mpose severe limits on the
effectiveness of ion acceleration The study
of equilibrium is not only the starting point
for instability investigations, but is also
necessary for the basic question of the "hold-
ing power", which will be treated in this
paper. Equilibrium models have been used in the
past which often showed a substantial lack of
self-consistency from the point of view of the
Vlasov equation. Most of the theoretical work
has been done along the followlng_ lines:

1. self-consistent particle codes*; with pre-
sent-day computers they are restricted to
short physical times and thus inappropriate for
adiabatically changing equilibria.

2. virial theorems and macroscopic fluid
models?2, 3,

5. models based on the Vlasov equation; simple
models for rings at rest use uniform densities
‘and harmonic betatron oscillations9:0,7 while
others study nonuniform density effects with-
cut being self—consistent8:9, or calculate re-
alistic ion distribution functions for uniform
electron densitylo, whereas accelerated ecqui-
libria are treated numerically employing micro-
canonical distribution functions and_approxima-
ting ring cross-sections by ellipsesll.

The present paper is free from the simplifica-
tions of the above-mentioned models and gives
numerical solutions of accelerated ring equi-
libria that are self-consistent within the
framework of the Vlasov-Maxwell equations. In
particular, it uses physically relevant distri-
bution functions for either particle species
and takes into account thelr time-dependence
by means of approprilate adiabatic invariants.

+This work was performed under the terms of the
agreement on association between the Max Planck
Institut filir Plasmaphysik and EURATOM

B. Stationary Vlasov Eogullibria
for an Electron Ring with Ions

I. Basic Eguations

For axisymmetric flelds the electron motion is
governed by the relativistic Hamiltonian in
cylindrical coordinates

Ho=(mi <t e cp - eduz) ?ﬂ*je =0 _

p : N with (1)
_E={P11P"P9} IP9=?9+§A9(1'!’ ’ 8=0 2 -4
and particle velocities ¥y = EAMI v U =(4-!)

Ae is the only non-vanishing component of the
vector potential and thgﬂsc?lar pogential,
including self-fields Ag= Ay +Ag ,¢='¢

Ton motion is prescribed by the nonrelativistic

Hamiltonian 2
Ho= Bfpm, + 20023 (2)
where magnetic field effects are neglected and
Pe= 0.
Distribution functions &J(ﬂl,W,Pz,RQ
satisfy the steady-state Vliasov equation
/gt fee =0 (3)
solved with.A.,¢ self—consistentlyscalculated
i -4 s .
from the eguations PG %,(fAe)) + 67‘)!,_ Ao=‘je (8

s $
Y (r %,47)+ 673114’ = bre(ne-ny) s with

o a{zre) ‘iap Fo,i. and j9= eNe Vo, = d.PVe {:g
Hence wé obtain two coupled nonlin€ar integro-
differential equationgs s .S

LAs = J(4s, 90, Lo* = Q(¢"As) ()
with appropriate boundary conditions to be im-
posed at infinity or on finite conductors.

I1I. Exact Stationary Distribution Functions

To determine the {;i a knowledge of constants
of motion is most useful since an arbitrary
(differentiable) function of them solves (3).
In the stationary case the total energy He,
and, for electrons, % are constants that
allow for a class of exact solutions of (3)

which can be written as (5)
5

fe = £.L (He)g(%) &

=1 L
where g(Ps) prescribes the momentum spread of
the electrons, and &L is typically Gaussian-
lik? for an ER, in contrast with other papers
7511 yhere a & -function leading to a uniform
density inside a sharp boundary was chosen.

Whether distribution functions (5), (6) are
sufficiently general for an ER 1s a question
of basic importance. In fact, it seems im-
possible in general to give explicitly an
additional exact constant of motion comparable
£to the energy. Certain approximations are
possible, however, which can be discussed more
transparently in a model where transverse (f,z)
and longitudinal (B) energies are decoupled.

III. Decoupling of Transverse and Longitudinal

Energies

For a given value of B an equilibrium radius
R(R) and corresponding minimum energy Ee 2)
are given for electrons according to the
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following varlational principle:
(He(flzl P~,P!1PS) =0

By=(=0, T, 2
Since in ER applications the "transverse"
energyE&— emn 1S nonrelativistice, we may ex-
pand the square root in (1) to obtain a trans-
verse Hamiltonian with nonrelativistic
features. We define a zero-order (i.e. neg-
lecting self-fields) eguilibrium radius R, and
?i?imum egg gy Eeﬁno for w?ich we obtailn fasn%
7 for S} tric in ): ™
% 2B oo 9= 0 Een (0B AR)
The desired expansiongto . first order, is <
He = (mac* + 3P, d (P slllpAD) + LR S RN Jedl o s

= m:pocz +L&1+P;)/2wnh + Vao(( P‘/R.J "%‘@rfgéé +% z,_*?&)ef
with o5 Eeminy frnoct Vooiﬁkﬁm.a-u ¢+ Po = /R%“E{ A;A(Ro 0)
and Vg, =4- Yy2 where it is assumed that
higher variations of ps than second order are
negligible compared with self—fie&g variations.
Thus, we find with m_s-—@@:h 6R3? m&’xrd},z=ﬁr

He, = PR3 %%’V; (a-w) e +mz‘)+%V%Ai'e¢i(8)

'1"‘"0]';
IV. Approximate Solutions for Distribution
Functions of a More General Nature

(7)

The exact sclutions (5), (6) expressed in FEL,
H{ prescribe densities in (X,Px,%,P: )-phase
space uniform on surfaces of constant energy.
Let us consider an ensemble of phase points
uniformly distributed on the surface H= E,

Let us noy assume a change in the external

field BR®™' which deforms the energy surface.

Clearly, a rapid change in B¥° may lead to

nonstationary phase space flow. The conslidered

ensemble then lies in general on a fluctuating
surface different from any energy surface.Fi-
lamentation may lead after sufficiently long
time to an effective stationary phase space
distributicn, which one can determine in gene-
ral only by following the particle trajecto-
ries,

ext ekt

Next, let us consider a change B©@ —» 3@)

which 1s slow (% the slowly varying time) com-

pared with the short oscillation times of the
system such that the instantaneous distribu-
tion is free from short-time fluctuations. Two
situations are of interest at the time =«

(I): the original ensemble Hb)= E() is
transformed into a new ensemble uniform
on Hi)=Ew with HE@) ¢he new Hamilto-
nian

(I1): (I) is not true

In case (I) typically ergodic behaviour is
?resgnt. More recent works on ergodic theorylg’
2:1% ang computer calculations for two-dimen-
sional particle motion have shown that even
in quite general situations - depending on the

amount of coupling between different degrees
of freedom - an energy surface is separated
into invariant tort with Lebesgue measure grea-
ter than zero. There exist distribution func-
tions nonuniform on energy surfaces. To deter-
mine them, one needs the additional invariants
of the motion. Such invariants can in general
be represented only in terms of asymptotic
series, which were introduced in theories on
adiabatic invariants relevant f?g confinement
of particles in magnetic fields!®s17. (a
simple exception 1s rotational symmetry in x2
which shall be excluded here.) With increasing
(nonlinear) coupling in x,z computer calcula-
tionsl5 have shown that "stochastic" trajec-
tories which wander all over the whole energy

surface dominate over the ordered motion (con-
fined to invarlant sections). In this case the
usual asymptotic series expansions for inva-
riants cannot be applied. There is pronounced
ergodic behaviour and case (I) appears to give
the appropriate prescription of the phase
space flow.

A rough estimate of the amount of nonlinear
x,2 -coupling in particle motion in realistic
electron rings (with collective field
strengths within the present limits) justi-
fies the following treatment: 1) ions are des-
cribed according to {(I) with distribution
functions (6) uniform on energy surfaces;

2) electron motion is weakly coupled and
depends on still another invariant. The de-
talled form of the distribution functions will
be established in the next section.

C. Adiabatically Changing
Eguilibria

Compression, ion loading and acceleration may
be treated as slow processes compared with
oscillation times of electrons and ions. The
fime-dependence of &, { during such adiabatic
changes described by the parameter t can be
established by using adiabatic invariants in
accordance with the conclusions at the end of
B IV.

I. The Ion Distribution Function

According to (I) icns on a surface H;(0)= E©

are redistributed on a new surface of H;().

Because of Liouville's theorem the 4-dimen-

sional phase space volume I T
T(Ex) = [dpedpp e ,  Z==0 (9)

R, Crx, s, oty x) §E

is invariant and permits us to determine E@).

Hence we obtain an (adiabatically) invariant

distribution function for ions (for constant

ion number)
¥(3) dT = ¥ (T(HD)dT

which is related to (6) according to
F,_Lr) dT =_I'F

el &E+ %4 dT 2 .t

From (6) we oEb'taLin for“I H, = &.’:ﬁi +V¢(K/?,'t)
I(E, ¥)=2mh [ (E—V)inclz Ll
and V&0 [

M) dieda = Twmg ?ZFL(I.(_T+VL,‘1)> aT
For rest-gas ionization ions are produced with
zero kinetic energy (neglecting their small
azimuthal velocity) in the potential trough
built up by the instantaneous electric space
charge. The ionization probability is propor-
tional to the electron density; the ionization
rate o may be time-dependent. Hence we obtain
the following differential change of the dis-
tré?w&?og function

It =o(-(&f (x,2 t)olx oz

T al & e;:'»s'wtx,l.f)eﬁa,w 34y ol
The integral can be transformed into a line
integral along equipotential lines of Ve

(10)

(9

(11)

The functional determinant for transformation
into,curyilinear coordinates V; & is derived
as &3 o) =IVVi|"ana with ay'= % d L we
find o - SEEY, [ melx,2t
>F, (I.%E_ ) b ﬂT(V\I/"l—) d& (111
(5

II. The Electron Distribution Function

To determine an invariant distribution function
for electrons, we require two adiabatic inva-
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riants instead of one for the ions. Taking in-
to account nonlinear X,2 -coupling, asymptotic
series for the invariants should be the only
correct procedure, but this is not useful for
a straightforward numerical code. We therefore
neglect x,2 -~coupling and obtain the simple se-
parate adiabatic invariants

L) = flpde, Libaw) =fad (12)

*
with — Hey (Px, P, Xk 2,%) = H,(Pm",t)+H;(Pi.'h’l)
A better approximation could be obtained by
using the scaling law for radial and axial be-
tatron oscillations: %4, 4 , which is valid
for the present experiments. In this case the
radial phase space volume I, is again an inva-
riant. The second invariant follows from the
g-motion averaged over rapid oscillations due
to the coupling with x.

With (12) the invariant distribution function
can be written as -

:Fe_L ( l,‘ ' I\—) de dI} = qT‘.l.(I"(}.{""L) 4 L!(H}‘z»dzk dIi ( 13)
and the density (gpart from integration over

%o )is me(x2)dade = [f (Tx I)de. dps

ITII. Polarization and Particle Loss During
Acceleration

axt ext
When an accelerating 3ror'Ez field 1s applied,
forces acting on ions and electrons tend to
polarize the ring in the z -direction. For
sufficiently high acceleration particles eva-
porate from the ring as a result of the de-
creasing axial focussing. This results in a
truncation of the distribution funection (10)
or (13) at a limiting value of I or I, corres-
ponding to the energy where the potential has
a pass.

For magnetic acceleration we have in a coordi-
nate system movingkwith the ring

Heys Hey + (e e By -mor.b)z = Hey + x'a

He 2 Hy = miba = Hi- w2 (14)
where nonrelativistic axial velocity is assum-
ed. Force balance yields (eYee/.~ MoYob)Ne = m;BN;

] axd
and thus k's N(/NeK , b=eVeq B /("‘LNVM.*"“!)Uo)
D. Iterative Solution of the Self-
Consistency Problem by a Numerical
Code

For given invariant distribution functions
(10;, (13) the integro-differential equations
(4') assume the following form, using (9') and

(12) l:Ai == ,%%/499 3@9)\’% EL(I‘,I,) dp, dp,
L ote 2 /a% 3@/%(1, ,It)dp'dpts‘ 8r‘in¢/r¢@>ﬁ (4"

Self-consistent solutions for A,, are sup-
posed to exist for physical reasons. Equations
(4''") nave to be solved taking into account
possible truncation of ¥ if there is insuffi-
cient focussing.Convergence of an iteration
scheme to solve (4") depends critically on the
mathematical properties of the operator defin-
ing the iteration, i.e.
The following physical quantities are expected
to influence convergence: number of particles
to be confined, attractive or repulsive self-
forces, several particle species interacting
with each other, variable total particle num-
bers, boundary conditions. As far as the
author knows, no mathematical criteria are
available concerning convergence of an appro-
priate iteration scheme for the present coupl-
ed equations problem.

its eigenvalue spectrum

The simplest "direct" iteration was attempted
in the numerical code. In most of the cases
it was convergent after few (£5) iteration
cyecles. When iteration failed relaxation was
introduced which connects subseguent iteratj-
ves according to a"‘? = "-°‘)’\|§Q) +a "{}2'4}”
(0¢%x£4), This "first-order relaxation" is
convenient if direct iteratives oscillate
about some sclution.

In the present code divergence of both methods
was used to indicate the nonexistence of an
equilibrium solution. This 1s important for
defining the maximum admissible accelerating
force (holding power).

The numerical code hag the following characte-
risties (detalls seel®): 2d

1) Toroldal geometry with :
an infinite conductivity ,

boundary of rectangular d
cross-section to solve 1 )i
the Poisson and vector ]
potential equations (on /
a 128 x 128 grid). Diffe- . L
rent electric and magne-

tic boundaries were

allowed for to simulate

a squirrel cage, which is
transparent to magnetic

but not electric fieldslg'gq

——— A
1
i

Fig.l Geometry

2) After eag&/step of differential ion pro-
duction &F;= %/ at(11') self-consistency is
re-established according to (4").

3) At different stages of a full compression
cycle, ion loading cycle and acceleration
cycle the contribution of instabilities may be
taken into account by lncreasing the occupiled
phase space volumes (9), (12).

E. Results

Computer runs are presented here with data
adapted to the Garching %RA experiment (com-
pressed rings): Ne = 5-1012, R, = 2.3 cm,

fo = 27.2, nn = 0.021 (at the end of compress-
ion); no momentum spread for simplicity.

The electrgon distrihution function was chosen
as Tu_ ~ elp(ery/”*r;)/r“:s' Q(L/p-*:tt‘rv«u ’

with @ the step function andma= 6 to obtain
nearly circular ER cross-sections (small semi-
axes a>b® .3 cm).

These initial conditions are common to all
examples listed below. The ring is then load-
ed with ions (f=Mf, , 0¢§£0.05) and after-
wards studied in two different surrounding
structures (with acceleration):

a) boundary CYL; two cylinders at+,=R,t1.25 an
closed axially atz = 2.5 cm (already pre-
sent before lon loading)

b) boundary SQC; cylinder at =R -1.25;
electric image cylinder at o= Ro/psg
(0.6 P £ 0.8), magnetic image cylinder
at 5= Re+3(%e~Ro ). Py 1s a measure of
the focussing strength of the "sguirrel
cage" simulated hereby.

Table 1 shows characteristic ring data for the
unloaded ER and loaded rings in CYL and SQC
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(form = 0, no accel.). 28, 2% axial and ra-
dial electron ring width at half maximum den-
Sity; € Corpenn, © tedge ims PEAK electric field

and the electric field at the edge of the ion
subring thaq_are produced by electron space
charge; A4,% self-field contribution to
squared axlal tune of the electrons (includ-
ing taddal and image effects); Ne Ne, con-
fined electrons as fraction of origlnally @Fm@
present electrons.

Conclusion
1) Inhomogeneous electron and icon densities.

Fig.2-¢show that the half-width of the densi-
ty profiles of the ions is a factor 2 smaller
than that of the electrons.

2) Toroidal effects.

In relativistic electron rings an axial defo-
cussing force occurs® which is usually much
stronger than the 0%1 -repulsion of straight
beams. Table 1 shows that without a squirrel
cage an 2 0.5 (Ex. 0))is necessary to keep
all electrons confined (atn= 0, zero accel.).

3} "Squirrel Cage" focussing.

2
With a SQC the electron contribution AV
can be made positive, which guarantees axial
focussing of the electrons independent of the
ion loading fraction (f), provided that Psac
is larger thano0.65 (Table 1).

4) Acceleration and "holding power".

We define the maximum "holding power" here as
the highest admissible accelerating force K
(acting on the ions, see (14)) at which at
least a residue of lons remains trapped in the
ring. On acceleration an electron-ion ring is
polarized, as a result of which the axial fo-
cussing of either particle species is reduced.

Two principal situations can then be distin-
guished:

a) Insufficient image focussing if ghe elec-
tron self-field contribution 4,% 1is near-
ly zero _or negative (for very small f) as
in ex, ® and with the weak SqC in
ex. s . In this case electrons are
gradually lost from the ring with increas-
ing acceleration until complete ring dis-
integration and spontaneous loss of all
ions (Fig.7 ). Without SQC nearly no
acceleration is possible for §=.017%. The
maximum "holding power" is typically £ 25%
of the peak electric field e 2 peak *

b) Dominagt image (SQC) focussing is present
if % s sufficiently positive as in
ex. - » Where electrons are well-fo-
cussed even for very small £. In this case
lons are gradually lost from the ring above
a threshold acceleration (& 7.5 MeV/m). The
maximum "holding power" is about 75% of
eEEM (Fig.7T ).

Acknowledgements

The author 1s indebted to Prof. A. Schliiter
and Dr. P. Merkel for discussions and to
E. Springmann for computer programming.

—

LoV ~OW SN -

PQHIXEHNvmnE Y

N
M

Bibliography

.P.Boris, R.Lee, NRL-Rep.2284(1971)
-H.Kegel,Plasma Physics 12,105(1969)
.Yoshikawa,Princeton-MATT-816(1972)
-Merkel,MPI f.Plasmaphysik IPP 0/18 (1973)
.J.Laslett, LRL Berkeley, ERAN 30(1969)
.A.Perkins, LRL Berkeley, ERAN 97(1970)
.C.Davidson.J.D.Lawson, Univ.of Maryland-
ep.204P029(1972)

-J.Laslett, Symp.on Electr.Ring Accel.ERAlQ
-Bovet, LRL Berkeley, ERAN 88 (1970)
.A.Drozdovskii,Rep.ITEF-10,Moscow(1973)
.Y.Kazarinov,E.A.Perelshtein, Symp.on Coll.
eth.of Acceleration, Dubna(1972)

12V.I.Arnold,in V.I.Arnold a.A.Avez,Problémes
Ergodiques de la Mécan.Classique,Paris{1967)
13 J.Moser,Nachr.Akad.Wiss.Gottingen 1,1(1962)
14 A.N.Kolmogorov, in R.Abraham, Found.of Mechan.

A

pp.D, New York(1967)

15M.Hénon,C.Heiles, Astron.J.69, 73(1964)
16M.Xruskal, J.Math.Phys.3,806{1962)
17 B.McNamara,K.J .Whiteman,J.Math.Phys.8,2029

(

1967)

18 I.Hofmann, IPP 0/21 (1974)
19G.V.Dolbilov et.al.,JINR-P9-4737,Dubna(1969)
20 I.Hofmann, IPP 0/16 (1973)

Figures

(1ist of examples see Table 1)

Fig.

1

Electron density profiles, ex.()
(densities with maximum normalized to 1

2 Electron a.lon (dashed) dens.prof. ex.

3 Electron a.ion (dashed) dens.prof. ex.

4 FElectron a.ion (dashed) dens.prof. ex.

5 Axial potent.f.electr.a.ions(dashed)ex.

6 Axial potent.f.electr.a.ions(dashed)ex.

7 Nef, or N\, (fraction of confined particl
to orlginally-before roll out-pres.particl.)
as function of accelerating force. The left-
side curves show examples with prevalent
electron loss (Vef20insufficient image fo-
cussing), the rightiside curves prevalent
ion loss w‘NG’O; dominant image focussing).
The hatched regions cover0.001§f4.025. The
dotted appendices indicate (numerical) ring
disintegration.

8 Density plots for electrons and ions in
(x,2 )-cross-sections, for ex. ,(0):
a)before ion loading (m=0.021, R, =25 cm);
b)loaded ring atmn =0.005; accelerated rings.
The plots show lines of constant density
me(x,2) and m;(x,2) with uniform level diffe-
rence &m. The lon subring is thinner than
the electron ring and slightly shifted to
smaller radius.

Table 1

v = Vi NI
[ #[bound] & IBlmle€zpeceeeies i Ae V2
\ befo load - -
ex (7 belorecpiadng 39 [ 29 | 14 0067 | 1
ex (@] o5 |CYL [23] .30 21 21 -.0069 | .97 |
Tg)‘(@ 05| n 5] .30 45 15 [ -.004F | .66
ex—_@ o5 N 230 .M 42 9 ~.0036 __ﬂ_
ex® 015 p=B8la5| W[ 25 23 006 | 4

MO EJIEREIEIET 22 025 |1 |

ex_@ .025 713|219 14 24 | G004

ex. Q01 n |50 19| 4% 17 0011 | 1

ex. 015 PooeB9 M| | 19 19 -.0012 |1 |

ex. oot | o0 |30 | 13 13 002 |4 |
ex. .05 PsgcB{-20 39| 19 3 .0053| 1
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