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Abstract

The Simons Observatory is a cosmic microwave background experiment stationed
atop Cerro Toco, at an elevation of 5200 ms in Chile’s Atacama Desert. The receiv-
ers of the Observatory will contain more than 60,000 transition edge sensor bolom-
eters. In order to read out this large detector count in a scalable manner, we utilize
a microwave superconducting quantum interference device (SQUID) multiplexing
scheme where each detector is inductively coupled to an rf SQUID, which in turn
is inductively coupled to a GHz resonator. More than 2000 SQUIDs and resonators
are fabricated on a single 76.2-mm-diameter silicon wafer. To qualify wafers before
integration, we cryogenically screen ~ 10% of the devices on each wafer by use of
a standard set of measurements. From these data, we report parameter value trends
in 47 wafers that were fabricated in the past two years. We show good control in
key parameters such as frequency placement, internal quality factor, and response to
applied flux. We demonstrate a wafer acceptance yield of 86%.
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1 Introduction

The Simons Observatory (SO) is a cosmic microwave background experiment
located in the Atacama Desert of Chile [1]. The initial instrument configuration con-
tains over 60,000 transition edge sensor (TES) bolometers. To read out the large
number of sensors in a scalable manner, we utilize microwave superconducting
quantum interference device (SQUID) multiplexers (#mux), a frequency-division
multiplexer capable of reading out thousands of signal channels on one microwave
transmission line [2, 3]. Different implementations of the ymux have been devel-
oped by other research groups for separate applications [4, 5]. The cryogenic mul-
tiplexer topology and 65-channel chip design used for the SO are described in [6].
When packaged into 1820-channel detector modules and read out with custom room
temperature electronics [7], the ymux read out noise has been shown to be 2.5X less
than the expected detector noise [8]. Currently in SO, we have used the ymux to
characterize twenty-six 90/150 GHz detector modules totaling 38,000 TES bolom-
eters [9]. The remaining detector module verification is in progress. Here we report
on the cryogenic qualification of 47 ymux wafers, prior to their delivery and integra-
tion into SO detector modules.

2 Experimental Setup and Method

Microwave SQUID multiplexer wafers are fabricated in the Boulder Microfabricaton
Facility at the National Institute of Standards and Technology (NIST). Each 76.2mm
wafer contains 32 ymux chips (see Fig. 1 left): two copies of a 14-chip multiplexer
set with resonant frequencies spanning 4—6 GHz and four additional chips that are
packaged into a single microwave line and screened to determine wafer fidelity. In
addition, there are a variety of test structures useful for directly probing the Joseph-
son junction fabrication quality. The relevant test structure to this work is one that
consists of 200 2.5 pmx2.5um junctions wired in series.
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Fig. 1 Left: An image of a single 20x4mm pmux chip. Right: Cryogenic rf readout chain utilizing a sin-
gle 6-way microwave switch. The power divider on the input side of the readout chain replaces a second
microwave switch. This reduces complexity and power dissipation.
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We have fabricated, screened, and qualified 47 ymux wafers over two years. All
of these wafers are the final design version, v3.3.2; thus, earlier versions are not
included. v3.3.2 is currently comprised of wafers 21-65 and additionally includes
wafers 52b and 56b which were both created using experimental processes that are
still under development. Occasionally, wafers were excluded solely by room temper-
ature tests or by cursory cryogenic checks and are not represented in this analysis
either. Wafer qualification consists of two primary measurements that are both taken
at 120 mK. We install the devices at the cold stage of an adiabatic demagnetization
refrigerator within the rf readout chain shown schematically on the right of Fig. 1.
First, we measure the microwave transmission (S,;) across 4-6 GHz to determine
the resonance frequency (f,), pairwise spacing ( f,f+1 - f,f, where j is the resonator
index), and the internal quality factor (Q;) of each resonator. Second, we determine
the device response to an applied stimulus. We measure S,, for each resonator chan-
nel as a function of dc magnetic flux applied to the channel’s rf SQUID. This applied
flux shifts f, periodically. We fit the response to determine A, a critical design
parameter defined as:

P Ly _ 27rICLS’ a
L, (0]

o

where L, is the self-inductance of the rf SQUID, L; = ®,/2xI, is the Josephson
inductance, @ is the magnetic flux quantum, and I, is the junction superconducting
critical current. In-depth screening details, parameter definitions and fitting func-
tions are described in [10]. In the remaining sections, we present wafer trend screen-
ing results of these 47 ymux wafers and comment on a few critical developments.

3 Results
Figure 2 presents the resonator frequency statistics of up to 4 chips screened from

each of the 47 wafers. The left-hand-side plot shows the difference between the
designed and achieved chip band edges, that is, the maximum and minimum f,
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Fig.2 Left: Absolute frequency error of each ymux wafer. Wafers 52b and 56b were both created using
experimental processes that are still under development. Right: Pairwise channel spacing of each ymux
wafer
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within each chip. The data show an absolute resonator placement error of ~ 0.5%.
The right-hand-side plot of Fig. 2 shows that the typical range of interquartile
nearest neighbor frequency spacing is well above the 0.5 MHz specification,
which is determined from considerations of cross talk [11].

Figure 3 depicts the Q; statistics for each wafer screened at NIST. Q, is an
important performance parameter as it impacts sensitivity, the number of chan-
nels that can be multiplexed on one rf transmission line, and cross talk. Through
broader development within SO, we have empirically determined that Q; > 50000
meets or exceeds our dynamic range and sensitivity requirements [8]. This Q,
specification is exceeded in 92% of the screened wafers. The root cause of low
Q, wafers has yet to be determined, but the low occurrence rate still allows the
timely delivery of readout devices to the SO. We also note that the reported Q,
in Fig. 3 may be a lower limit due to our wirebonding configuration used for the
screening process. We intentionally use few microwave grounding wirebonds to
conserve bondpad space needed in the final SO multiplexer assemblies. In sepa-
rate work, insufficient chip grounding has been shown to reduce Q, [10].

Figure 4 shows the A values across all wafers screened at NIST. 4 values for
wafers 21-39 are highly variable and consistently greater than the target of
A ~ 1/3. While values in the range of ~0.5 are still usable, albeit with decreased
sensitivity, occasionally wafers were produced with A exceeding 1 (not included
in Fig. 4), leading to a hysteretic response that is unusable. By ensuring the
devices have a A value of ~ 1/3, we avoid hysteresis while simultaneously opti-
mizing sensitivity. In contrast, wafers 40—-65 are on target with substantially lower
variation. The reason for this trend is discussed below.
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Fig. 3 Internal quality factor (Q;) of each yumux wafer screened at NIST
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Fig.4 A values across ymux wafers

4 Discussion

The results show good control of the main performance parameters throughout
two years of multiplexer fabrication, with one exception. The median A of wafer
numbers < 40 is both higher than designed and highly varying, 4 = 0.43 + 0.15.
Upon further investigation, transmission electron microscope images suggested
that the 7 nm aluminum layer used in the Josephson junctions provided inconsist-
ent coverage. This non-uniformity resulted in pinhole defects which lead to shorts
in the Josephson junctions. Beginning with wafer 40, we doubled the thickness of
the aluminum layer in the Nb — Al— Al, O; —Nb junction stackup to 14 nm, which
resulted in more consistent yield. For wafer numbers > 40, A = 0.32 + 0.03,
reducing the standard deviation by a factor of 5.

During the process, we implemented a new diagnostic test for each wafer,
which makes use of the Josephson junction test structure. Figure 5 plots the
median A values determined from cryogenic measurements versus the room tem-
perature resistance (R) values of the test structure. From the Ambegaokar—Barat-
off relation, the IR, product of a Josephson junction is proportional to the super-
conducting gap A [12]. Therefore a measurement of R constrains /. and thus
A. Occasionally we have encountered R values of ~ 10 kQ which correspond
to unusable, hysteretic umux channels. This test structure has become a useful
diagnostic, not only for finished devices but throughout the wafer fabrication
process. As shown in Fig. 5, R < 40 kQ produces A outliers. In-process wafers
with R < 40 kQ are terminated and new wafers begun, which has resulted in an
increased turnaround time of reliable devices.

In general, the absolute frequency of the resonators is largely inconsequential.
However, in the SO implementation there exists a requirement to avoid ~ 30 MHz
of bandwidth in each 500 MHz block due to the room temperature electronics
architecture [7]. Resonators that fall within these bandwidths are not read out.
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Fig.5 A vs R measurements across yumux wafers. R measurements were not standard practice for wafers
< 39 and thus some data were not collected from this range

The absolute frequency error presented in Fig. 2 results in a yield reduction of
~ 6%. Nonetheless, the SO detector modules presented in [9] exceed their overall
yield requirements.

5 Conclusion

We have demonstrated a screening protocol that has been used to qualify over
87,000 readout channels for Simons Observatory. This method does not require
that each chip be screened individually, in contrast to what has been done his-
torically for other multiplexers. It has been determined that spot-checking ~ 10%
of the chips on a wafer is sufficient, streamlining the qualification process. The
nature of the rapid test result feedback aided in the quick diagnosis and resolution
of the variable A issue. After solving the aluminum junction thickness issue, our
wafer yield is 86%. From these screening results, we have demonstrated long-
term fabrication stability of microwave SQUID multiplexer chips. Looking for-
ward, the conclusion of Simons Observatory paves the way for the Advanced
Simons Observatory (ASO). ASO requires 18 additional ymux wafers, and so, we
will continue to utilize this method until its completion.
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