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Abstract

Many accelerators employ axisymmetric structures, such
as RF cavities, induction cells, and solenoids, to accelerate
and transport charged particle beams. To analyze the motion
of the beam in solenoids, it is common to make a transfor-
mation to the rotating Larmor frame. In the presence of an
electric field, this transformation can be modified to obtain
further simplifications in the equation of motion. In this
paper, we explore the use of a complex Larmor phase to
simplify the equations of motion in the presence of simulta-
neous axial electric and magnetic fields, such as those found
in the induction cells of a linear induction accelerator. We
also analyze the corresponding envelope equation and find
that the natural emittance in this frame can be expressed in
terms of familiar quantities.

EQUATIONS OF MOTION

Our first task is to express the equations of motion in terms
of the complex transverse coordinate { = x + iy, with the
fields in cylindrical coordinates. We begin with the Lorentz
force equation p = ¢ (E + cf x B). Converting the time
derivatives on the left-hand side to longitudinal derivatives
(e g X= cBx), evaluatlng the cross-product g x B with
B = B,[xX'X+y'y+7], and expressing the space charge
force as —V ¢,/ 2 for a beam self-potential ¢,,! we obtain
the equation
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If we define [Bp] = p./q,E, = E, +iEy, B = B, +iB,y,
and @, = d,+ x0dg, the transverse equations can be rewritten
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! This form of the beam self-force is applicable to beams much longer than
y times the beam radius, i.e., the beam is long in its rest frame [1].
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and the longitudinal equation is
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LARMOR FRAME TRANSFORMATION
WITH COMPLEX PHASE

At this point, the usual approach is to eliminate the iB,¢’
term by transforming to the Larmor frame and defining £ =
¢e~'¥ (@) with a real-valued phase y (z). However, there is
no reason this phase needs to be real-valued. We can modify
the usual definition of the phase to eliminate the acceleration
damping term from the equation as well, and this yields some
convenient simplifications later on.

To transform the equation, we need the derivatives of &
in terms of £ and y:

¢ = iy e
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Let
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Then the left-hand side of Eq. (1) becomes
[$7+iQy" + 1) &+ (e +iy” =y = y'y) {]e¥

We can eliminate the £’ term by choosing y’ = — y'/2,

or, in terms of physical variables,

) ~ _l z BZO i Yﬂz
w(z) —wl(zg) = 2 Jz [Bp] dZ+21n(70ﬁz0)'

This differs from the usual real Larmor phase y (z) by
an adiabatic damping term. If we plug this into the transfor-
mation law ¢ = e'¥ (), then the solution in the lab frame
in terms of the solution in the modified Larmor frame % is

¢ = g“e iy (2) =y 1 (20)] y}(l)zzo 3)
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The next step is to simplify the effective focusing term.
Since y' = - y’/2,

R=w+iy’ —y?— 'y =1c+iy” +y’?.

If we neglect the effects of the longitudinal self-force
(which should be small for a beam with a slowly-varying
profile) and the longitudinal magnetic force (which is sec-
ond order in x and x”) on the transverse motion, then the
longitudinal equation of motion allows us to express y” as

E +iB
W/:l-z/ﬁzc lZ. (4)

2[Bp]

Recognizing that the applied fields appear in the equations
of motionas F) = E,/B,c+iB, and F, = E,/f,c + iB,,
we have

F, F

and (I
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Since [Bp]" / [Bpl = (v B.)' /(v B-) ~ E./ B.c[Bp],
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Note that F, = (6Z +x'0, +y'd, + ﬁ%COI) F,. If the ap-
plied fields are linear and time-independent, this reduces to
F.=4.F,.

LINEAR, TIME-INDEPENDENT,
AXISYMMETRIC APPLIED FIELDS

If the applied fields are axisymmetric and time-
independent, then only the axial and radial components are
nonzero. In the linear approximation,

S 1, > 1,
E = EZOZ — ErEZOr and B = BZOZ - ErBZOr’
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where E,((z) = E, (z,r = 0) and similarly for B_,. Then

2 B E,
ZF, + F = 22
rot < B, B.c

We can clean up the expression for & by expressing 8./ 8.
in terms of E,y. Assuming g, is much larger than g, and

ﬂy’

:3_; ~ LEZO/ﬂZC
B. > [Bp]

Therefore,

~ _ 1 2 EzO ?
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Observe that ® = |y’ |2 for ¥y » 1 in linear fields. Since the
space charge term also becomes negligible in the ultrarela-
tivistic limit,
s, E%+c*BY
;//+ z0 , 20420. (7
4[Bp]” c?

ENVELOPE EQUATION IN %

In any real beam, we have a distribution of particles in six-
dimensional phase space, often described with coordinates
(x,x",y,¥',z,8), where § = (p — pgy)/po, and pg is the

reference momentum. Let & = y(Z*). Then

Observe that the first term in brackets in the expression
for &” is the real part of (£*Z”). Multiplying Eq. (5) by £*
and taking the ensemble average, then taking the real part,
and finally dividing by &, we find

P PNy Flw I\ Zx F\2 Iyt
0 = - LOED - UETY | (RED)
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We can define the emittance in & as

£ = (S ENEE) — (E T

and rewrite the envelope equation as

e (RREE) B2 1] tdidy s\
TS TS §<y2ﬂzc[8p]”>‘0'

If the applied fields are linear, then the focusing term is
just ¥(z)@. Additionally, if the beam is axisymmetric (but
not necessarily uniform), then the last term is —P /&, where
P=1,/1, (yﬁz)2 70PBz0- I is the beam current, and [, =
41 gymc> /q is the Alfven current. In the case where both of
these conditions are met, the envelope equation reduces to
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PROPERTIES OF ¢

In terms of lab-frame quantities, it can be shown that

~ _ 7B 2 12\
# = NP P -1

- b VETC + (Palp2)?s

Y0Bz0

P+ 2 (wp - 07)2

where

src= U -F) = (F- 72 —((Fx ) -2

is the eigenemittance [2, 3] of the rotating beam (sometimes
referred to as the Lee-Cooper emittance [4]) and

Do = [?x (yﬁmc+qg)] ‘Z

is the canonical angular momentum.
One of the most useful things to know about the emit-
tance is when it is conserved. If we define f,, =

30, ¢/72B.c[Bp], then

x2
%% = (RSN R(E +fe) £°8)

— (N R (% +£,0) E577).

From this, we can see that if ¥ + f;. is uniform over the
beam cross-section, £ is conserved as a slice emittance, and
if the entire beam sees the same ¥ + f;. as it passes through
the beamline, & is conserved as a projected emittance. For
example, this condition is satisfied for a monoenergetic, uni-
form beam subject to linear, time-independent applied fields
(though the projected emittance is only conserved if the
beam current is uniform along the beam’s length). If the
beam is non-uniform, £ is still approximately conserved if
space charge is negligible.

CONCLUSION

By analyzing the beam in a frame adapted to both the
rotation and damping induced by the magnetic and elec-
tric fields, we can greatly simplify the analysis of charged
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particle beams in certain classes of accelerators. For ex-
ample, in linear induction accelerators the beam is often
simultaneously focused and accelerated, with solenoids inte-
grated into the accelerating cells. The formalism presented
here provides a straightforward way to obtain well-known
results, including the form of the conserved emittance in
solenoid-focused accelerators. Although the equation of
motion becomes especially simple in axisymmetric fields,
Eq. (5) does not assume such a constraint. Therefore, this
formalism may also be used to account for the effects of
multipole fields in systems that would otherwise be best
analyzed in a rotating frame.
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