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Abstract

Many accelerators employ axisymmetric structures, such
as RF cavities, induction cells, and solenoids, to accelerate
and transport charged particle beams. To analyze the motion
of the beam in solenoids, it is common to make a transfor-
mation to the rotating Larmor frame. In the presence of an
electric field, this transformation can be modified to obtain
further simplifications in the equation of motion. In this
paper, we explore the use of a complex Larmor phase to
simplify the equations of motion in the presence of simulta-
neous axial electric and magnetic fields, such as those found
in the induction cells of a linear induction accelerator. We
also analyze the corresponding envelope equation and find
that the natural emittance in this frame can be expressed in
terms of familiar quantities.

EQUATIONS OF MOTION

Our first task is to express the equations of motion in terms
of the complex transverse coordinate 𝜁 = 𝑥 + 𝑖𝑦, with the
fields in cylindrical coordinates. We begin with the Lorentz
force equation ̇⃗𝑝 = 𝑞 ( ⃗𝐸 + 𝑐 ⃗𝛽 × 𝐵⃗). Converting the time
derivatives on the left-hand side to longitudinal derivatives
(e.g. ̇⃗𝑥 = 𝑐𝛽𝑧 ⃗𝑥′), evaluating the cross-product ⃗𝛽 × 𝐵⃗ with

⃗𝛽 = 𝛽𝑧 [𝑥′ ̂𝑥 + 𝑦′ ̂𝑦 + ̂𝑧], and expressing the space charge
force as −∇𝜙𝑏/𝛾2 for a beam self-potential 𝜙𝑏,1 we obtain
the equation

⃗𝑥″ +
(𝛾𝛽𝑧)′

𝛾𝛽𝑧
⃗𝑥′

= 𝑞
𝑝𝑧

{ − 1
𝛾2 ∇𝜙𝑏

+ [𝑥
𝑟

𝐸𝑟
𝛽𝑧𝑐

− 𝑦
𝑟

𝐸𝜃
𝛽𝑧𝑐

− 𝑦
𝑟 𝐵𝑟 − 𝑥

𝑟 𝐵𝜃 + 𝑦′𝐵𝑧] ̂𝑥

+ [𝑦
𝑟

𝐸𝑟
𝛽𝑧𝑐

+ 𝑥
𝑟

𝐸𝜃
𝛽𝑧𝑐

+ 𝑥
𝑟 𝐵𝑟 − 𝑦

𝑟 𝐵𝜃 − 𝑥′𝐵𝑧] ̂𝑦

+ [
𝐸𝑧
𝛽𝑧𝑐

+ 𝑦𝑥′ − 𝑥𝑦′

𝑟 𝐵𝑟 + 𝑥𝑥′ + 𝑦𝑦′

𝑟 𝐵𝜃] ̂𝑧} .

If we define [𝐵𝜌] = 𝑝𝑧/𝑞, 𝐸⟂ = 𝐸𝑟 + 𝑖𝐸𝜃, 𝐵⟂ = 𝐵𝑟 + 𝑖𝐵𝜃,
and 𝜕⟂ = 𝜕𝑟+ 𝑖

𝑟𝜕𝜃, the transverse equations can be rewritten

∗ Work supported by the U.S. Department of Energy under Contract No.
DE-AC02-76SF00515.

† seantl@stanford.edu
1 This form of the beam self-force is applicable to beams much longer than

𝛾 times the beam radius, i.e., the beam is long in its rest frame [1].

as

𝜁″ + ⎡⎢
⎣

(𝛾𝛽𝑧)
′

𝛾𝛽𝑧
+ 𝑖

𝐵𝑧
[𝐵𝜌]

⎤⎥
⎦

𝜁′ −
𝐸⟂/𝛽𝑧𝑐 + 𝑖𝐵⟂

𝑟 [𝐵𝜌] 𝜁

= − 𝑞𝜕⟂𝜙𝑏
𝛽2

𝑧 𝛾3𝑚𝑐2
𝜁
𝑟 ,

(1)

and the longitudinal equation is

(𝛾𝛽𝑧)′

𝛾𝛽𝑧
= 1

[𝐵𝜌] [
𝐸𝑧0 − 𝜕𝑧𝜙𝑏/𝛾2

𝛽𝑧𝑐

+𝑦𝑥′ − 𝑥𝑦′

𝑟 𝐵𝑟 + 𝑥𝑥′ + 𝑦𝑦′

𝑟 𝐵𝜃] .
(2)

LARMOR FRAME TRANSFORMATION
WITH COMPLEX PHASE

At this point, the usual approach is to eliminate the 𝑖𝐵𝑧𝜁′

term by transforming to the Larmor frame and defining ̃𝜁 =
𝜁𝑒−𝑖𝜓(𝑧) with a real-valued phase 𝜓(𝑧). However, there is
no reason this phase needs to be real-valued. We can modify
the usual definition of the phase to eliminate the acceleration
damping term from the equation as well, and this yields some
convenient simplifications later on.

To transform the equation, we need the derivatives of 𝜁
in terms of ̃𝜁 and 𝜓:

𝜁′ = ( ̃𝜁′ + 𝑖𝜓′ ̃𝜁)𝑒𝑖𝜓

𝜁″ = [ ̃𝜁″ + 2𝑖𝜓′ ̃𝜁′ + (𝑖𝜓″ − 𝜓′2) ̃𝜁] 𝑒𝑖𝜓.

Let

𝑖𝜒′(𝑧) =
(𝛾𝛽𝑧)′

𝛾𝛽𝑧
+ 𝑖

𝐵𝑧
[𝐵𝜌]

𝜅(𝑧) = −
𝐸⟂/𝛽𝑧𝑐 + 𝑖𝐵⟂

𝑟 [𝐵𝜌] .

Then the left-hand side of Eq. (1) becomes

[ ̃𝜁″ + 𝑖 (2𝜓′ + 𝜒′) ̃𝜁′ + (𝜅 + 𝑖𝜓″ − 𝜓′2 − 𝜒′𝜓′) ̃𝜁] 𝑒𝑖𝜓 .

We can eliminate the ̃𝜁′ term by choosing 𝜓′ = −𝜒′/2,
or, in terms of physical variables,

𝜓(𝑧) − 𝜓(𝑧0) = −1
2 ∫

𝑧

𝑧0

𝐵𝑧0
[𝐵𝜌] 𝑑𝑧 + 𝑖

2 ln (
𝛾𝛽𝑧

𝛾0𝛽𝑧0
) .

This differs from the usual real Larmor phase 𝜓𝐿(𝑧) by
an adiabatic damping term. If we plug this into the transfor-
mation law 𝜁 = ̃𝜁𝑒𝑖𝜓(𝑧), then the solution in the lab frame
in terms of the solution in the modified Larmor frame ℒ̃ is

𝜁 = ̃𝜁𝑒𝑖[𝜓𝐿(𝑧)−𝜓𝐿(𝑧0)]√𝛾0𝛽𝑧0
𝛾𝛽𝑧

. (3)
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The next step is to simplify the effective focusing term.
Since 𝜓′ = −𝜒′/2,

𝜅̃ = 𝜅 + 𝑖𝜓″ − 𝜓′2 − 𝜒′𝜓′ = 𝜅 + 𝑖𝜓″ + 𝜓′2 .

If we neglect the effects of the longitudinal self-force
(which should be small for a beam with a slowly-varying
profile) and the longitudinal magnetic force (which is sec-
ond order in 𝑥 and 𝑥′) on the transverse motion, then the
longitudinal equation of motion allows us to express 𝜓′ as

𝜓′ = 𝑖
𝐸𝑧/𝛽𝑧𝑐 + 𝑖𝐵𝑧

2 [𝐵𝜌] . (4)

Recognizing that the applied fields appear in the equations
of motion as 𝐹⟂ ≡ 𝐸⟂/𝛽𝑧𝑐 + 𝑖𝐵⟂ and 𝐹𝑧 ≡ 𝐸𝑧/𝛽𝑧𝑐 + 𝑖𝐵𝑧,
we have

𝜅 = − 𝐹⟂
𝑟 [𝐵𝜌] and 𝜓′ = 𝑖

𝐹𝑧
2 [𝐵𝜌] .

Since [𝐵𝜌]′ / [𝐵𝜌] = (𝛾𝛽𝑧)′/(𝛾𝛽𝑧) ≈ 𝐸𝑧/𝛽𝑧𝑐 [𝐵𝜌],

−2𝑖𝜓″ =
𝐹′

𝑧
[𝐵𝜌] −

𝐹𝑧𝐸𝑧/𝛽𝑧𝑐
[𝐵𝜌]2 ,

so

𝜅̃ = −
1
𝑟 𝐹⟂ + 1

2𝐹′
𝑧

[𝐵𝜌] +
∣𝐹𝑧∣

2

4 [𝐵𝜌]2 .

Therefore,

̃𝜁″ + 𝜅̃(𝑧) ̃𝜁 = − 𝑞𝜕⟂𝜙𝑏
𝛽2

𝑧 𝛾3𝑚𝑐2
̃𝜁

𝑟 , (5)

where

𝜅̃(𝑧) =
∣𝐹𝑧∣

2

4 [𝐵𝜌]2 −
1
𝑟 𝐹⟂ + 1

2𝐹′
𝑧

[𝐵𝜌] ,

𝐹𝑧 =
𝐸𝑧
𝛽𝑧𝑐

+ 𝑖𝐵𝑧 , 𝐹⟂ = 𝐸⟂
𝛽𝑧𝑐

+ 𝑖𝐵⟂ ,

𝐸⟂ = 𝐸𝑟 + 𝑖𝐸𝜃 , 𝐵⟂ = 𝐵𝑟 + 𝑖𝐵𝜃 ,

𝜕⟂ = 𝜕𝑟 + 𝑖
𝑟𝜕𝜃 .

Note that 𝐹′
𝑧 = (𝜕𝑧 + 𝑥′𝜕𝑥 + 𝑦′𝜕𝑦 + 1

𝛽𝑧𝑐𝜕𝑡) 𝐹𝑧. If the ap-
plied fields are linear and time-independent, this reduces to
𝐹′

𝑧 = 𝜕𝑧𝐹𝑧.

LINEAR, TIME-INDEPENDENT,
AXISYMMETRIC APPLIED FIELDS

If the applied fields are axisymmetric and time-
independent, then only the axial and radial components are
nonzero. In the linear approximation,

⃗𝐸 ≈ 𝐸𝑧0 ̂𝑧 − 1
2𝑟𝐸′

𝑧0 ̂𝑟 and 𝐵⃗ ≈ 𝐵𝑧0 ̂𝑧 − 1
2𝑟𝐵′

𝑧0 ̂𝑟 ,

where 𝐸𝑧0(𝑧) ≡ 𝐸𝑧(𝑧, 𝑟 = 0) and similarly for 𝐵𝑧0. Then

2
𝑟 𝐹⟂ + 𝐹′

𝑧 = −
𝛽′

𝑧
𝛽𝑧

𝐸𝑧0
𝛽𝑧𝑐

.

We can clean up the expression for 𝜅̃ by expressing 𝛽′
𝑧/𝛽𝑧

in terms of 𝐸𝑧0. Assuming 𝛽𝑧 is much larger than 𝛽𝑥 and
𝛽𝑦,

𝛽′
𝑧

𝛽𝑧
≈ 1

𝛾2
𝐸𝑧0/𝛽𝑧𝑐

[𝐵𝜌] .

Therefore,

𝜅̃ = 1
4 [𝐵𝜌]2

⎡⎢
⎣
(1 + 2

𝛾2 ) (
𝐸𝑧0
𝛽𝑧𝑐

)
2

+ 𝐵2
𝑧0

⎤⎥
⎦

. (6)

Observe that 𝜅̃ ≈ ∣𝜓′∣2 for 𝛾 ≫ 1 in linear fields. Since the
space charge term also becomes negligible in the ultrarela-
tivistic limit,

̃𝜁″ +
𝐸2

𝑧0 + 𝑐2𝐵2
𝑧0

4 [𝐵𝜌]2 𝑐2
̃𝜁 = 0 . (7)

ENVELOPE EQUATION IN ℒ̃
In any real beam, we have a distribution of particles in six-

dimensional phase space, often described with coordinates
(𝑥, 𝑥′, 𝑦, 𝑦′, 𝑧, 𝛿), where 𝛿 = (𝑝 − 𝑝0)/𝑝0, and 𝑝0 is the
reference momentum. Let 𝜎̃ = √⟨ ̃𝜁∗ ̃𝜁⟩. Then

𝜎̃′ = ⟨ ̃𝜁∗ ̃𝜁′ + ̃𝜁′∗ ̃𝜁⟩
2𝜎̃ and

𝜎̃″ = 1
𝜎̃ [1

2⟨ ̃𝜁∗ ̃𝜁″ + ̃𝜁′′∗ ̃𝜁⟩ + ⟨ ̃𝜁′ ̃𝜁′∗⟩ − ⟨ ̃𝜁∗ ̃𝜁′ + ̃𝜁′∗ ̃𝜁⟩2

4𝜎̃2 ] .

Observe that the first term in brackets in the expression
for 𝜎̃″ is the real part of ⟨ ̃𝜁∗ ̃𝜁″⟩. Multiplying Eq. (5) by ̃𝜁∗

and taking the ensemble average, then taking the real part,
and finally dividing by 𝜎̃, we find

0 = 𝜎̃″ −
⟨ ̃𝜁∗ ̃𝜁⟩⟨ ̃𝜁′∗ ̃𝜁′⟩ − ⟨ℜ{ ̃𝜁∗ ̃𝜁′}⟩2

𝜎̃3 +
⟨ℜ𝜅̃ ̃𝜁∗ ̃𝜁⟩

𝜎̃

+ 1
𝜎̃⟨

1
𝑟 𝜕⟂𝜙𝑏

𝛾2𝛽𝑧𝑐 [𝐵𝜌]
̃𝜁∗ ̃𝜁⟩ .

We can define the emittance in ℒ as

̃𝜀 ≡ √⟨ ̃𝜁∗ ̃𝜁⟩⟨ ̃𝜁′∗ ̃𝜁′⟩ − ⟨ℜ{ ̃𝜁∗ ̃𝜁′}⟩2

and rewrite the envelope equation as

𝜎̃″ +
⟨ℜ{𝜅̃} ̃𝜁∗ ̃𝜁⟩

𝜎̃ − ̃𝜀2

𝜎̃3 + 1
𝜎̃⟨

1
𝑟 𝜕⟂𝜙𝑏

𝛾2𝛽𝑧𝑐 [𝐵𝜌]
̃𝜁∗ ̃𝜁⟩ = 0 .

If the applied fields are linear, then the focusing term is
just 𝜅̃(𝑧)𝜎̃. Additionally, if the beam is axisymmetric (but
not necessarily uniform), then the last term is −𝑃/𝜎̃, where
𝑃 = 𝐼𝑏/𝐼𝐴 (𝛾𝛽𝑧)

2 𝛾0𝛽𝑧0, 𝐼𝑏 is the beam current, and 𝐼𝐴 =
4𝜋𝜀0𝑚𝑐3/𝑞 is the Alfvèn current. In the case where both of
these conditions are met, the envelope equation reduces to

𝜎̃″ + 𝜅̃𝜎̃ − ̃𝜀
𝜎̃3 − 𝑃

𝜎̃ = 0 .
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PROPERTIES OF ̃𝜀
In terms of lab-frame quantities, it can be shown that

̃𝜀 =
𝛾𝛽𝑧

𝛾0𝛽𝑧0
√⟨∣𝜁∣2⟩⟨∣𝜁′∣2⟩ − ∣⟨𝜁∗𝜁′⟩∣2 + ⟨𝑟2 (𝜓′

𝐿 − 𝜃′)⟩2

=
𝛾𝛽𝑧

𝛾0𝛽𝑧0
√𝜀2

𝐿𝐶 + ⟨𝑝𝜃/𝑝𝑧⟩2 ,

where

𝜀𝐿𝐶 = √⟨ ⃗𝑟 ⋅ ⃗𝑟⟩⟨ ⃗𝑟′ ⋅ ⃗𝑟′⟩ − ⟨ ⃗𝑟 ⋅ ⃗𝑟′⟩2 − ⟨( ⃗𝑟 × ⃗𝑟′) ⋅ ̂𝑧⟩2

is the eigenemittance [2, 3] of the rotating beam (sometimes
referred to as the Lee-Cooper emittance [4]) and

𝑝𝜃 = [ ⃗𝑟 × (𝛾 ⃗𝛽𝑚𝑐 + 𝑞 ⃗𝐴)] ⋅ ̂𝑧

is the canonical angular momentum.
One of the most useful things to know about the emit-

tance is when it is conserved. If we define 𝑓𝑠𝑐 =
1
𝑟 𝜕⟂𝜙𝑏/𝛾2𝛽𝑧𝑐 [𝐵𝜌], then

1
2

𝑑 ̃𝜀2

𝑑𝑠 = ⟨ℜ ̃𝜁∗ ̃𝜁′⟩⟨ℜ(𝜅̃ + 𝑓𝑠𝑐) ̃𝜁∗ ̃𝜁⟩

− ⟨ ̃𝜁∗ ̃𝜁⟩⟨ℜ(𝜅̃ + 𝑓𝑠𝑐) ̃𝜁 ̃𝜁′∗⟩ .

From this, we can see that if 𝜅̃ + 𝑓𝑠𝑐 is uniform over the
beam cross-section, ̃𝜀 is conserved as a slice emittance, and
if the entire beam sees the same 𝜅̃ + 𝑓𝑠𝑐 as it passes through
the beamline, ̃𝜀 is conserved as a projected emittance. For
example, this condition is satisfied for a monoenergetic, uni-
form beam subject to linear, time-independent applied fields
(though the projected emittance is only conserved if the
beam current is uniform along the beam’s length). If the
beam is non-uniform, ̃𝜀 is still approximately conserved if
space charge is negligible.

CONCLUSION
By analyzing the beam in a frame adapted to both the

rotation and damping induced by the magnetic and elec-
tric fields, we can greatly simplify the analysis of charged

particle beams in certain classes of accelerators. For ex-
ample, in linear induction accelerators the beam is often
simultaneously focused and accelerated, with solenoids inte-
grated into the accelerating cells. The formalism presented
here provides a straightforward way to obtain well-known
results, including the form of the conserved emittance in
solenoid-focused accelerators. Although the equation of
motion becomes especially simple in axisymmetric fields,
Eq. (5) does not assume such a constraint. Therefore, this
formalism may also be used to account for the effects of
multipole fields in systems that would otherwise be best
analyzed in a rotating frame.
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