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 A B S T R A C T

The Compact Muon Solenoid detector at the Large Hadron Collider is a multipurpose experiment designed 
for studying proton–proton and heavy-ion collisions. It features a 3.8 T Solenoid magnet, a Silicon tracker, 
Electromagnetic and Hadronic Calorimeters, and the Muon system. For the High Luminosity LHC, CMS will 
undergo Phase-2 upgrades to handle higher collision rates, with PileUp increasing from 50 to 140/200 
interactions per bunch crossing, collision energy reaching 14 TeV, and peak luminosity rising to 5 − 7.5 × 1034

𝑐𝑚−2𝑠−1. These upgrades aim to enable even more precise Standard Model measurements, improvements in 
the Higgs sector, and searches for Beyond Standard Model physics. This document describes the main features 
of the Endcap Muon Track Finder ++ algorithm, developed in the CMS Software; it is the Level 1 Trigger 
algorithm upgrade being developed for Phase-2 of the currently used Endcap Track Finder. The efficiency of 
the algorithm was computed on simulations generated with and without RPC and iRPC ((i)RPC) information, 
using a pre-trained model.
1. The CMS Phase-2 Muon system upgrade

During the Phase-2 upgrade [1], the CMS experiment Muon system 
will be equipped with new detectors, as well as undergo upgrades 
of the electronics in order to sustain the new characteristics of the 
collider machine, brought on by HL-LHC [1]. In the Endcaps of the CMS 
experiment, there are three subsystems: the Cathode Strip Chambers 
(CSC), which will be equipped with better electronics, the Gas Electron 
Multipliers (GEM), which will have an upgraded electronic system and 
the addition of new chambers in one of the forward stations of the 
detector ME0, and Resistive Plate Chambers (RPCs), for which both 
the Link system upgrade and the addition of new improved detectors 
are expected. The reason behind these planned changes is that the two 
endcap regions face high muon and background rates and experience 
less magnetic bending, therefore making it more difficult to reliably 
trigger on muons in the very forward areas during HL-LHC. To increase 
the Muon system’s redundancy and enable robust track reconstruction 
— including early rejection of misidentified tracks at the Level-1 (L1) 
Trigger — the number of hits recorded per track must be increased. The 
Phase-2 upgrade of the Muon detector aims to restore an effective Muon 
system in the forward region by introducing new detectors, GE1/1, 
GE2/1, RE3/1, and RE4/1, which cover the pseudorapidity (𝜂) range 
up to 2.4, as shown in Fig.  1. The RPC Link system upgrade aims 
at improving the time resolution for the existing RPCs, placed in the 
𝜂 < 1.9 region of the CMS detector; all the off-chamber electronics 
| |

2 
will be replaced. Furthermore, in order to sustain the high particle rate 
and high PileUp (PU) environment of HL-LHC, new improved detectors, 
called iRPC, will be added to the 2 outer Stations of the CMS Endcap 
in the 1.8 < |𝜂| < 2.4 region. They will have an intrinsic time resolution 
of 0.5 ns.

2. The L1 Muon Trigger Phase-2 upgrade

The Phase-2 upgrade of the CMS L1 Trigger system [2] aims to 
maintain the signal selection efficiency at the level of the Phase-
1 system, and also significantly enhance the ability to detect new 
physics phenomena, including unconventional signatures [2]. The up-
graded L1 Trigger will retain a two-level strategy, but the maximum 
rate will increase to 750 kHz, and the latency will be extended to 
12.5 μs to incorporate more detailed detector information, including 
that coming from the Tracker and the Calorimeter. This extended 
latency will also support more sophisticated object reconstruction and 
the evaluation of global event quantities. The system can now consider 
using particle-flow techniques and machine learning in the trigger 
algorithms. Additionally, a new 40 MHz scouting system is proposed, 
which will use trigger primitives (TPs) and objects for real-time anal-
ysis, similar to the High-Level Trigger (HLT) scouting system already 
in place. This scouting system allows for data reduction by storing 
only high-level information from selected events, enabling searches 
for event correlations and signatures not easily identified by standard 
triggers. The Phase-2 L1 Trigger system is designed to handle inputs 
from various sub-detectors, as shown in Fig.  2. As for the muon trigger, 
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Fig. 1. Cross-section of a quadrant of CMS depicting the Phase-2 upgrades happening in 
the muon stations RE3/1, RE4/1, GE1/1, GE2/1, and ME0. The locations of the various 
muon stations are shown in different colours for both the Barrel and the Endcap.

Fig. 2. Functional diagram of the Phase-2 L1 trigger.

after receiving inputs from the various muon detectors, it processes 
data across different regions through three muon track finders: the 
Barrel Muon Track Finder (BMTF), the Overlap Muon Track Finder 
(OMTF) and the Endcap Muon Track Finder (EMTF). Muon candidates 
and stubs (short tracks, created by high energetic particles when they 
pass through the tracker) are sent to the Global Muon Trigger (GMT) 
by EMTF and OMTF, while the BMTF Layer-1, situated inside the GMT, 
only sends out stubs. The GMT is tasked with sorting the candidates in 
terms of momentum and quality, removing duplicates and generating 
track-matched muons and L1 tracks matched to muon stubs.

2.1. EMTF++ description

The EMTF++ is the upgrade of the Phase-1 EMTF, which also 
operates in the 1.2 < |𝜂| < 2.4 region. It follows the same function-
alities of EMTF with a few architectural and structural differences. The 
first function of the EMTF++ is the TP conversion, in which TPs are 
converted into EMTF segments, by mapping strips and wires/pads into 
integer 𝜙 and 𝜂 units. After the conversion is complete, EMTF++ can be 
divided into three main blocks: pattern recognition, track building, and 
parameter assignment. The algorithm takes as input GEM and iRPC TPs 
in addition to CSC and RPC ones. The reconstruction algorithm looks 
for pre-defined patterns, identifying the correlated CSC TPs across mul-
tiple stations. These are then matched to RPC TPs, and once the patterns 
are identified, the track building takes care of attaching segments to the 
previously identified best tracks. These segments are converted finally 
3 
into a set of features that are fed to a Deep Neural Network (DNN) 
for parameter assignment. The DNN is a feedforward Neural Network 
with 3 hidden layers that uses information like angular variables and 
bending information in order to assign momentum and displacement 
values. While Phase-1 EMTF used a boosted decision tree for this step, 
the upgraded algorithm uses deep learning in order to enhance the 
selection efficiency. The EMTF++ algorithm has been developed in the 
context of the CMS Software (CMSSW), used for many CMS computing 
activities ranging from data acquisition to data analysis.

3. Role of RPC and iRPC

In order to perform efficiency studies enhancing the roles of RPC 
and iRPC in EMTF++, two separate sets of single muon samples were 
generated with and without the information coming from RPC/iRPC. 
The removal of the RPC information allows to see the worsening of 
the efficiency due to the lack of matching between their TPs and the 
ones coming from the CSC system. The single muon samples with and 
without iRPC/RPC inputs were generated with no PU and with an av-
erage PU value of 200 with slightly different kinematics characteristics. 
The PU=200 sample was centrally produced with a flat 𝑝𝑇  distribution 
between 0 and 200 GeV and a generated |𝜂| range between 1.4 and 
3.1. The sample with no PU was privately produced using a custom-
made Particle Gun with a flat 𝑝𝑇  distribution between 2 and 120 GeV 
and a generated |𝜂| range between 1.2 and 2.4. Both samples cover 
the entire −𝜋 < 𝜙 < 𝜋 range. The efficiency is defined by requiring 
a value of 𝛥𝑅 < 0.1 between the generated muons and the tracks, 
where 𝛥𝑅 =

√

(𝛥𝜂)2 + (𝛥𝜙)2 indicates the angular distance in the 𝜂 − 𝜙
plane, 𝜙 being the azimuthal angle. A 𝑝𝑇  cut is applied on the L1 
muons (generated muons) for the numerator (denominator) across all 
the generated pseudorapidity bins extracted to station 2. Furthermore, 
a hit quality criterion optimized for single muon samples is applied, 
requiring at least one hit in station 1 and two hits coming from other 
stations. Fig.  3 shows the comparison of the efficiencies of EMTF and 
EMTF++, while Fig.  4 shows the efficiency of the algorithm on the 
single muon sample generated with the full detector information and no 
PU for different L1 muon 𝑝𝑇  cuts, showing the stability of the algorithm 
for higher thresholds. The dips in efficiency around the values of |𝜂| =
1.2 and |𝜂| = 2.4 are expected because of the fact that the muons 
triggered at the borders are assigned with a lower quality which leads 
to a lower efficiency. The additional drops around |𝜂| = 1.4 and |𝜂| = 1.6
are due to detector geometry constraints. The behaviour for low 𝑝𝑇  cuts 
in the last two bins is also due to the structure of the detector and 
resolution effects [2]. Fig.  5 shows the efficiency in bins of generated 
𝜂, extrapolated to station 2. The plots show the different values of the 
EMTF++ efficiency with and without the (i)RPC information added to 
the algorithm for the case of a single muon sample generated with and 
without PU information. The contribution of iRPC starts for |𝜂| > 1.8, 
so that significant dips in efficiencies are seen around 2 and 2.2 for 
the case without the (i)RPC subsystem. The drops in both efficiencies 
for the regions of the Endcaps below the |𝜂| = 1.8 threshold reflect 
the expected behaviour of the algorithm due to detector geometry and 
resolution effects [2].

Conclusion

The CMS Phase-2 upgrade of the Muon system and L1 Trigger 
system is designed to meet the requirements of HL-LHC. The up-
grade includes new improved RPCs and better electronics across all 
subsystems, enhancing time resolution and increasing coverage in high-
rapidity regions where particle density and PU are greatest. A major im-
provement is the upgrade to the Endcap Muon Track Finder, EMTF++, 
which now uses a DNN for track parameter assignment, providing 
better precision and reliability, compared to the previous boosted 
decision trees. Efficiency studies reveal that EMTF++ maintains high 
stability across 𝑝  thresholds and benefits significantly from (i)RPC 
𝑇
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Fig. 3. Efficiencies for Endcap single muon samples with 200 average pileup events 
as a function of 𝜂, for muons with 𝑝𝑇 > 20 GeV and a 𝐿1𝑝𝑇 > 20 GeV.

Fig. 4. Efficiencies of the algorithm for the sample containing (i)RPC information - 
the performance is stable when going to higher 𝑝𝑇  cuts.

data, especially in the |𝜂| > 1.8 range, under high PU conditions. 
Without (i)RPC data, efficiency in this region drops, highlighting the 
critical role of these subsystems in achieving uniform performance. To 
enhance the model, timing information from (i)RPC subsystem will 
be included as input to the NN. Once trained, efficiency studies will 
be conducted with various 𝑝𝑇  cuts and PU configurations to assess 
performance changes. Additionally, these analyses will be extended to 
different physics models, such as long-lived particles (LLP) decaying 
to muons, to evaluate the network’s adaptability and efficiency across 
diverse scenarios.
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4 
Fig. 5. Plots showing the different values of the EMTF++ efficiency with (blue circle) 
and without (red square) the (i)RPC information added to the algorithm for the case 
of a single muon final state sample (100k events) generated in the absence of PU (top) 
or with an average value of the PU of 200 (bottom). The algorithm was not optimized 
to account for the absence of the individual subsystems.
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