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1 Introduction

The Hubble tension is a mismatch between the inferred value of the Hubble constant, H0,
when interpreting data from astronomical sources in the early and late Universes [1]. This
is most directly seen when comparing the value H0 = 67.27 ± 0.60 km s−1 Mpc−1 from
Planck’s observations of the Cosmic Microwave Background (CMB) [2], with the value
of H0 = 73.04 ± 1.04 km s−1 Mpc−1 from the SHOES observations of relatively nearby
supernovae [3]. Other observations of the early and late Universe seem to neatly line up with
the two values quoted above, providing a picture in which measurements of H0 made within
these two different regimes seem to be discordant with each other. Taken at face value, this
indicates a very serious problem with our understanding of the Universe. Even worse, it
seems to be a problem that is strongly resistant to resolution [4].

We wish to propose a possible explanation for this tension that is based on removing
mathematical restrictions that often appear in cosmological modelling, but which may not
be necessary, and which might even be inappropriate for modelling the real Universe. In
particular, we consider the following two foundational assumptions, which are involved in
most attempts at constructing models of our statistically homogeneous and istropic Universe:

(1) At some suitably chosen time, spatial averages of quantities such as expansion and
spatial curvature can be used to represent the state of the Universe.
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(2) The Universe can be represented by a homogeneous and istotropic space-time with
expansion and spatial curvature corresponding to those spatial averages.

At a superficial level, these two statements seem very similar. We will show that this is
not the case, and that assumption (2) is considerably stronger and more restrictive than
assumption (1). We will argue that the Hubble tension may be a manifestation of this
additional restriction, and that by discarding assumption (2) we can create a more general
class of cosmological models that may be able to account for the Hubble tension.

The basic idea we are proposing was discussed some time ago by Ellis and Stoeger, who
cast cosmological inferences from astronomical observations as a “fitting problem” [8]. Our
approach to investigating the fitting problem in the context of the Hubble tension will make
extensive use of Buchert’s spatial averaging formalism [9, 10], as well as Räsänen’s treatment
of the optical properties of statistically homogeneous and isotropic cosmologies [11, 12].
We will also coopt the language of Collins and Szafron in their work on cosmologies with
“intrinsic symmetries” [5–7], which make clear the distinction between a symmetry that exists
on a 3-space (an intrinsic symmetry) and a symmetry that exists on a 4-dimensional space-
time (an explicit symmetry). Our aim will be to use cosmological models with intrinsically
homogeneous and isotropic 3-spaces, in a fitting procedure of the type envisaged by Ellis
and Stoeger, in order to interpret cosmological observables without assuming the existence of
a cosmological space-time with explicit homogeneity and isotropy.

The plan of this paper is as follows: in section 2 we give an overview of Buchert’s
approach to spatial averaging, and show that in general there exist strong constraints on
space-times with explicit symmetries that share the properties of these averages. We take
this to indicate that building cosmologies from solutions to Einstein’s equations with explicit
symmetries may not be appropriate for modelling the real Universe. We then introduce
Räsänen’s approach to calculating the optical properties of statistically homogeneous and
isotropic universes in section 3, and discuss how an observer in such a universe could use
a Friedmann-Robertson-Walker (FRW) cosmology as a fitting model. In section 4 we show
that the use of such fitting models can lead directly to a Hubble tension, in keeping with the
discussion in ref. [13]. We also investigate the possibility that our hypothesis for relaxing the
Hubble tension could be checked by analysing the radial component of the Baryon Acoustic
Oscillations, and suggest that the DESI first-year data release may show hints of the required
signature. We then conclude in section 5. Appendices A and B contain mathematical proofs
of statements used in our arguments, and appendix C contains a table summarizing notation.

2 Spatial averaging and cosmological modelling

In this section we consider the scalar averaging formalism prescribed by Buchert [9, 10], which
provides a simple and mathematically elegant way of deriving spatial averages on a foliation of
space-time that is orthogonal to the flow of matter. This approach has been much studied since
its publication, and is perhaps the most widely known and successful approach to the problem
of extracting large-scale cosmological averages from an inhomogeneous space-time [14]. We
will then proceed to show that the average cosmological properties that result from a general,
inhomogeneous cosmological space-time cannot always be well represented by high-symmetry
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cosmological solutions of Einstein’s equations. It is this mismatch that is at the heart of our
proposed solution to the Hubble tension, and on which we will elaborate in what follows.

2.1 Buchert’s averaging formalism

The Buchert averaging formalism is based on the 1+3-covariant decomposition of all quantities
using the time-like 4-velocity of the irrotational flow of matter, uµ. Taking a covariant
derivative of this 4-vector allows one to write:

∇νuµ = −uν u̇µ + 1
3ϑhµν + ςµν , (2.1)

where hµν ≡ gµν + uµuν is the projection tensor onto the spaces orthogonal to uµ, and where
a dot denotes the time derivative uµ∇µ. The expansion scalar is defined by ϑ ≡ hµν∇µuν ,
and the symmetric shear tensor is defined by ςµν ≡

(
h

ρ
(µ h

τ
ν) − 1

3hµνhρτ
)
∇ρuτ .

The spatial average of any scalar, S, on the surfaces orthogonal to the fluid flow uµ

are then defined over a spatial domain D by

⟨S⟩ ≡
∫

D
√

h S d3x∫
D

√
h d3x

, (2.2)

where h is the determinant of hµν . From this average, it immediately follows that the
time derivative and averaging operators obey ⟨S⟩̇ − ⟨Ṡ⟩ = ⟨Sϑ⟩ − ⟨S⟩⟨ϑ⟩. Application of
these operations to the Ricci identities 2∇[µ∇ν]u

ρ = R ρ
µν τ uτ and the Gauss embedding

equation can be used to write

ȧ2
D

a2
D

= 8πG

3 ⟨µ⟩ + Λ
3 − ⟨R⟩

6 − Q
6 and äD

aD
= −4πG

3 ⟨µ⟩ + Λ
3 + Q

3 , (2.3)

where the matter content of the space-time has been taken to be dust with mass density µ,
where the scale factor aD is defined implicitly by ⟨ϑ⟩ = 3ȧD/aD, and where R is the Ricci
curvature scalar of the spaces orthogonal to uµ (for which hµν is the induced metric). The
average of the contracted second Bianchi identity gives ⟨µ⟩ ∝ a−3

D .
The two equations in (2.3), and the average mass conservation equation, look remarkably

similar in form to the Friedmann equations that govern the evolution of FRW models, but
with the spatial curvature parameter replaced by k → a2

D⟨R⟩/6, and with additional terms
containing the scalar

Q ≡ 2
3

(
⟨ϑ2⟩ − ⟨ϑ⟩2

)
− 2⟨ς2⟩ , (2.4)

where ς2 ≡ 1
2 ςµνςµν . A necessary integrability condition for the equations above is

Q̇ + 6 ȧD
aD

Q + ⟨R⟩̇ + 2 ȧD
aD

⟨R⟩ = 0 . (2.5)

This immediately shows that in the special case in which Q ∝ a−6
D the averaged equations (2.3)

take the form of Friedmann’s equations for a universe containing dust and a stiff fluid, or just
dust if Q = 0. In these special cases ⟨R⟩ ∝ a−2

D , and the averaged equations have a form that
is identical to the Friedmann equations, meaning that at late times the large-scale averages
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from Buchert’s formalism must behave in exactly the same way as the local equations of
homogeneous and isotropic dust-dominated cosmologies. For all other Q we have ⟨R⟩ not
proportional to a−2

D , which we will refer to as ‘the general case’.
The averaged cosmological quantities discussed above are not direct observables. They are,

however, direct representations of the kinematical and curvature properties of extended regions
of space. For example, the average expansion scalar ⟨ϑ⟩ gives the rate of volume expansion of
the spatial domain D, while the scale factor aD directly represents its spatial scale [9, 10].
Though not directly observable, such quantities are of clear interest for understanding the
large-scale properties of a cosmological space-time. To make inferences on cosmological
quantities from astronomical observables, however, one needs to go further and relate these
averages to the observables that are recorded by our telescopes (i.e. redshifts, luminosity
distances, etc). This will be the subject of section 3.

2.2 Cosmological models with symmetries

Let us now consider the space-times that are solutions of Einstein’s equations, and that admit
a foliation with leaves that have a spatial domain D that has at every point:

(i) an isotropic part of their expansion rate, θ, equal to ⟨ϑ⟩.

(ii) a Ricci curvature scalar, 3R, equal to ⟨R⟩.

In appendices A and B we show that in the general case there exist no explicitly homogeneous
and isotropic space-times that can obey both conditions (i) and (ii), as these geometries
simply do not allow sufficient freedom to simultaneously reproduce the averages of the rate
of expansion and curvature of space that can be produced within general inhomogeneous
cosmologies. Furthermore, there can exist no regular hypersurface-orthogonal and spherically-
symmetric barotropic perfect-fluid solutions of Einstein’s equations that can maintain the
averaged values of these quantities at all points in space, as well as no untilted homogeneous
perfect-fluid cosmologies of Bianchi types I or V (the simplest anisotropic cosmologies). These
results severely limit the high-symmetry solutions of Einstein’s equations that one could use
to fit the large-scale properties of the Universe in the general case, and strongly suggests
that we should not be using such space-times as models of a general inhomogeneous universe
(an idea previously discussed in refs. [11, 12]). This is counter to assumption (2) from the
introduction, as well as the vast majority of current approaches to cosmological modelling.

We are drawn to the conclusion that we should think of large-scale averages such as
⟨ϑ⟩ and ⟨R⟩ as simply being statistical properties of space at some moment of time, rather
than as corresponding directly to the properties of any cosmological solution of Einstein’s
equations with explicit symmetries, as in general the latter simply do not exist. If we
choose, we can instead think of the results of spatial averaging as constituting a new type of
cosmological model that consists of a set of intrinsically symmetric 3-spaces with properties
spatial curvature ⟨R⟩ and expansion ȧD/aD. This is in keeping with assumption (1) from the
introduction, and demonstrates that this is the weaker of the two assumptions. It is, however,
a considerable shift in perspective, as the resulting cosmological model should no longer be
thought of as having the properties of a space-time in its own right. This is not to say that
the real inhomogeneous Universe is not a proper space-time, satisfying Einstein’s equations,
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just that the family of intrinsically symmetric 3-spaces that form our new cosmological model
should not be expected to have this property. As we will see in the next sections, this change
in perspective could have significant consequences for interpreting the Hubble tension.

3 Optical properties and fitting models

In this section we will consider the optical properties of inhomogeneous space-times, and
the relationships between the averages of observable quantities, such as distance measures
and redshifts, and the averaged cosmological quantities from section 2.1. This will all be
done in statistically homogeneous and isotropic space-times, and will closely follow the work
of Räsänen [11, 12]. We will then consider the cosmological parameters that an observer
would infer if they interpeted these observations within a spatially flat FRW fitting model
(to be defined below).

3.1 Optical properties

The optical properties of statistically homogeneous and istropic cosmological models have
been considered in a very general sense by Räsänen in refs. [11, 12]. This work starts from
the Sachs optical equations [19], which are a set of evolution equations for the expansion θ̃,
shear σ̃µν and vorticity ω̃µν of congruences of null geodesics, derived under the geometric
optics approximation, but otherwise not restricted to any particular space-time. From these
quantities, the angular diameter distance and redshift of a source are given by

DA ∝ exp
(1

2

∫
dλ θ̃

)
and 1 + z = exp

(∫
dλ E

[1
3ϑ + ςµνeµeν

])
, (3.1)

where λ is an affine parameter along the given bundle of light rays, E = −uµkµ is the energy
of the photon, ϑ and ςµν are the expansion and shear of matter fields, and eµ is a space-like
unit vector orthogonal to the matter flow uµ and pointing in the direction of the ray of
light, and where Etherington’s theorem is valid along every ray of light [20]. After a careful
treatment, Räsänen argues that in dust-filled space-times we should expect that observations
made over cosmological scales should recover [11]

⟨DA⟩ ∝ exp
(1

2

∫
dλ ⟨θ̃⟩

)
and 1 + ⟨z⟩ = 1

aD
, (3.2)

where aD is the scale factor that appears in the averaged Friedmann equations (2.3). Differ-
entiation of these results, and application of the Sachs equations, then gives [11]

H
∂

∂⟨z⟩

[
(1 + ⟨z⟩)2H

∂

∂⟨z⟩
⟨DA⟩

]
= −

[
4πG⟨µ⟩ + ⟨σ̃2⟩

⟨E⟩2

]
⟨DA⟩ , (3.3)

where H = ȧD/aD is the large-scale expansion of space, and σ̃2 = 1
2 σ̃µν σ̃µν is the magnitude

of the null shear. For investigations of this result, including the effects of shear in the
matter flow, see e.g. [21–24].

In most applications in the real Universe the effects of null shear are expected to be
small [25], so in the present study will neglect the contribution of ⟨σ̃2⟩. In this case we can
manipulate eq. (3.3) into the following form:

D̈ + ȧD
aD

Ḋ +
(⟨R⟩

6 + Q
2

)
D = 0 , (3.4)
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where over-dots again denote differentiation with respect to time, uµ∇µ, and where we have
defined D ≡ (1 + ⟨z⟩)⟨DA⟩. This equation is a second-order ordinary differential equation,
which can be solved using the following initial conditions: D(t0) = 0 and Ḋ(t0) = −1, where
t0 is the present time. It can be seen that eq. (3.4) has two forcing terms that drive the
evolution of D; one from the averaged spatial curvature ⟨R⟩, and one from the scalar Q.
The first of these is present in standard FRW cosmologies, and is responsible for the strong
constraints that CMB measurements impose upon spatial curvature. The second is not
present in FRW cosmology, but can be seen to enter into eq. (3.4) in a similar way to the
spatial curvature. Eq. (3.4) explicitly demonstrates the link between averaged observables
and the quantities ⟨R⟩ and Q, which arise from the spatial averaging process in section 2.1.

In what follows we will solve the distance equation (3.4), together with the Friedmann
equations (2.3) and the integrability condition (2.5), after specifying some example forms
for Q. The results of this will give us the expansion history of our new cosmological models,
in terms of the scale factor and Hubble expansion at each instant of time, along with the
distance measure D. Our aim will not be to try and extract Q(t) from any particular model
of structure formation, as this is an extremely complicated subject that has proven to be
controversial in the literature on this subject, with different approaches yielding different
results (see e.g. [26–29]). Instead, we will consider some example functional forms of Q(t)
that we believe yield interesting results in the context of the Hubble tension.

3.2 Fitting models

With Q(t) specified, and average observables calculated, we wish to consider the parameters
that an observer would infer if they used spatially flat FRW as a fitting model for the Hubble
diagrams they observe in their inhomogeneous universe. The idea here is that observer would
be trying to extract all the information they can from the observations they record, under the
assumption the spatially flat FRW model is a good description of the universe in which they
live. The “fitting model” in this process is the FRW model, which we are distinguishing from
the “cosmological models” described in section 2, as in general FRW models are not capable
of capturing the full range of behaviours that can be displayed in a general inhomogeneous
cosmology (see section 2.2). That is, the “fitting model” should be considered to be the model
that the observer fits to their observational data, but that does not necessarily relate directly
to the average properties of the underlying space-time (see ref. [8] for further discussion).

Our approach to this problem will be to assume that our observers have access to perfectly
precise idealised observations of D(z), and that they fit a spatially-flat FRW model to this
data. We will then extract the values of the energy density ρ and the isotropic pressure p that
this observer would infer from their fitting model, as well as the Hubble rate as a function
of redshift H(z). This last quantity will be particularly important for the Hubble tension,
and in the next section we will show that in the general case even an idealised observer with
access to perfect observations may not infer the correct Hubble rate; in general, they would
infer different H from different observables, and hence be left with a Hubble tension.

To extract the Hubble rate that an observer would infer from an FRW fitting model of
the type described above, we can note that from eq. (3.4) the spatially-flat FRW limit tells us
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that aDḊ is a constant in time. This then gives the Hubble rate of the fitted FRW model as

HFRW = constant
dD/dz

, (3.5)

where the D in this equation would be the one determined from the real inhomogeneous
universe, and where the constant should be set by initial conditions. With the expansion
rate of the FRW fitting model determined, we can then extract the energy density and
pressure in the fitting model using

ρFRW = 3H2
FRW

8πG
and pFRW = 1

3(1 + z)dρFRW
dz

− ρFRW , (3.6)

which immediately gives the equation of state of the hypothetical fluid in the fitting model
as wFRW = pFRW/ρFRW. In general, none of these FRW quantities should be expected to
accurately represent the averages in the inhomogeneous universe, and in particular we should
expect HFRW ̸= H. It is the difference between these two quantities that will be the focus of
the next section, and which we interpret as being responsible for the Hubble tension.

4 Hubble tension and the radial BAO

In this section we will use some simple example forms for the function Q, and show that an
observer in a universe with such a function, who interpreted their astronomical data using an
FRW model, would infer an incorrect difference in Hubble rate between last scattering and
today. As a corollary of this hypothesis, we make a prediction for observations of the radial
component of the Baryon Acoustic Oscillations (BAO), and suggest that a signature of this
prediction appears to exist in the recent DESI first-year data release [31, 32].

4.1 Hubble tension

The functional forms of the magnitude Q, for the example cases we will consider, are shown
as red lines in figure 1, where we display the density parameters Ωi defined by

Ωµ = 8πG⟨µ⟩
3H2 , ΩΛ = Λ

3H2 , ΩR = − ⟨R⟩
6H2 , ΩQ = − Q

6H2 . (4.1)

Model (a), shown in the upper plot, has ΩQ with a positive value (corresponding to a negative
Q), and a maximum amplitude at t ≃ 0.15t0. This model corresponds to a universe that
contains a positive cosmological constant Λ, and develops some positive spatial curvature,
which subsequently decays. In this model the value of Λ is chosen such that ΩΛ/Ωµ = 0.7/0.3
at t = t0. Model (b), shown in the lower plot, has ΩQ with a negative value (corresponding
to a positive Q), and grows in amplitude all the way up to t = t0. This model has ΩΛ = 0, as
in this case the growing negative spatial curvature is sufficient to cause apparent acceleration
without a cosmological constant.

These two models are not chosen because we necessarily expect them to correspond
to the physical situation in the real Universe, but instead because they display properties
that are of interest for understanding how a Hubble tension could arise in the scenario we
are describing. They are intentionally extreme examples, chosen only to make a conceptual
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0.6

0.8

1.0

t/t0

Ω
i

(a) Model (a): a cosmology with Q < 0 and Λ > 0, in which a small negative Q
at early times sources positive ⟨R⟩.

Ωμ

ΩΛ

ΩR

ΩQ

0.0 0.2 0.4 0.6 0.8 1.0

-0.5

0.0

0.5

1.0

t/t0

Ω
i

(b) Model (b): a cosmology with Q > 0 and Λ = 0, in which a large positive Q
sources negative ⟨R⟩ at late times, which acts like dark energy.

Figure 1. The density parameters Ωi for the example cosmological models (a) and (b).

point. The behaviour exhibited in model (a) can be understood by recognising that the
integrability condition (2.5) means that a non-zero Q sources a spatial curvature ⟨R⟩ with
the opposite sign. When the value of Q decays back to zero, as t → t0, the spatial curvature
remains, and slowly decays as ⟨R⟩ ∝ a−2

D . The effect of the positive spatial curvature, in
this case, is to shift the true value of the Hubble rate away from that of the FRW fitting
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model, which is why we have included it. In model (b) the situation is somewhat different,
as the value of Q is large and positive. In this case the spatial curvature ⟨R⟩ is still being
sourced, but it is not the dominant contribution to the difference in Hubble rates between
the true cosmology and the FRW fitting model. Instead, in model (b) it is Q itself that is
the primary contributor to the Hubble tension, through its presence in eq. (2.3). Our two
models therefore illustrate two different ways of creating a Hubble tension.

Within our example models we can now solve eq. (3.4) to find the angular diameter
distance as a function of redshift, DA(z), and use Etherington’s theorem to find the luminosity
distance, DL(z). An FRW model can then be fitted to these distance-redshift relations,
though we note that different observables may require fitting in different ways. For example,
supernovae observations probe the luminosity distances at relatively low redshifts, and can
therefore be used to measure the local Hubble rate quite directly through the leading-order
approximation H0 ≃ z/DL, which from section 3 can be seen to be equal to ȧD/aD (assuming
we live in a typical region of the Universe). On the other hand, for the CMB we need to
require that the angular diameter distance to the last-scattering surface at z = 1100 takes the
same value in the fitting model as it does in the actual cosmology, in order for the angular
scale observed in the CMB fluctuations to be correctly reproduced. With the corresponding
FRW fitting model in hand, we can then determine the precise difference between the Hubble
rate at last scattering and that at any z ≲ 1100 in both the erroneous FRW model and the
true underlying inhomogeneous cosmology. To quantify the difference in Hubble rate between
last scattering at t = tLS, and some time t = t(z), we define

δH(z) ≡ H(t(z))
H(tLS) and δHFRW(z) ≡ HFRW(t(z))

HFRW(tLS) , (4.2)

and then
∆H

H
≡ δHFRW − δH

δH
, (4.3)

as the error inferred by using a spatially flat FRW universe to fit the CMB, where H = ȧD/aD.
This quantity is displayed in figure 2 for our two models, with the consequential point with
respect to the Hubble tension being given by the value of ∆H/H at z = 0. In both cases, the
difference in Hubble rate between last scattering and today is over-estimated in the FRW
model, with ∆H < 0 at low z. We suggest that it may be an inference error of this kind
that has led to the Hubble tension in the real Universe.

The two models discussed in this section provide two different mechanisms by which a
genuine Hubble tension could be produced. However, they also predict that the true value of
the Hubble rate, and the Hubble rate inferred from using an FRW fitting model, should be
different at redshifts z > 0 (the idea that the difference in Hubble rates should exist only at the
present time is clearly implausible). The precise value of the Hubble tension at z ≥ 0 depends
on the form of Q, as can be seen by the two curves corresponding to our two different models
taking different shapes in figure 2. This provides us an opportunity to test our hypothesis, by
considering observables that are directly sensitive to the Hubble rate at the different redshifts
(though one needs to be careful to ensure it is the true Hubble rate that the observable
depends upon, and not the inferred one from the FRW model). One such observable is the
radial component of the BAO observations, which is the subject of the next section.
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Δ
H
/H

Figure 2. The Hubble tension, ∆H/H, inferred by an observer who precisely models the angular
diameter distance using an FRW fitting model. The orange curve is model (a), and the blue curve is
model (b). The red stars represent the Hubble tension between Planck [2] (displayed on the r.h.s. of
the diagram) and SHOES [3] (displayed at z = 0). The black circles correspond to the DESI first-year
data from galaxies and quasars [31], and the black triangle to the data from the Lyman-α forest [32],
as discussed in section 4.2.

4.2 The radial BAO

The BAO feature can be measured in two different ways; either using the angular diameter
distance in order to determine the physical length scale corresponding to an angle on the sky
of the observer, or through the difference in redshift that is used to infer a physical radial
distance. The latter depends on the Hubble rate in order to get a representative physical
length scale. If the Hubble rate in the real Universe is different to the Hubble rate in the
fitting model, then the radial BAO scale will consequently appear different from expectations
based on FRW cosmology. In order to discuss the radial BAO, we can start by defining

α∥(z) ≡
Hfidrfid

drag
H rdrag

≃ Hfid

H
, (4.4)

which is the isotropic term in the general expression for this quantity [30]. Here, rdrag is
the comoving sound horizon, evaluated at the redshift at which baryon-drag optical depth
equals unity, and where objects labelled with a superscript “fid” are to be evaluated in the
fiducial FRW model used to change redshifts into distances in the survey. In the last equality
we have assumed that rdrag ≃ rfid

drag.
Within our class of models we can therefore interpret the constraints on α∥ in terms

of the induced Hubble tension at a given redshift, with

∆H

H
(z) ≃ α∥(z) − 1 . (4.5)
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Using the information from the DESI first-year galaxy and quasar results [31], and the
Lyman-α forest [32], we can therefore add some further data points to figure 2. We do this
using black dots and triangles, respectively, for the two sets of observables. There are some
clear discrepancies between the observations and the fiducial model, which in our present
framework is an indication of a Hubble tension at that redshift. From our figure 2, the
level of discrepancy appears very similar to the datum at z = 0 that corresponds to the
Hubble tension (though with a larger error bar). This is exactly as one would expect, if both
discrepancies have the same origin. This can be contrasted with the SDSS data [34].

5 Discussion

Taking the Hubble tension seriously, one is presented with a crisis in modern cosmology,
in which the favoured cosmological model results in discordant constraints on the same
parameter at high statistical significance. We suggest that this discordance may be due to
the cosmological model being overly simplistic, and suggest a radical alternative in which
statistical homogeneity and isotropy of space are not taken to imply that our cosmological
model should be close to a single space-time which at all points exhibits explicit symmetry.
We have shown that this view is necessary if one wishes to consider a cosmological model
in which spatial curvature develops, as has been suggested by a variety of approaches to
extracting averages from inhomogeneous cosmological space-times [9, 10, 35–37]. In such
cases, the large-scale expansion of space, and distance measures within that space, are no
longer tied by the same relationships, and a Hubble tension between inferences made using
different sets of observables can naturally arise.

We have demonstrated our hypothesis within Buchert’s averaging framework [9, 10],
using the distance measures derived by Räsänen for application in statistically homogeneous
and isotropic cosmologies [11, 12]. While the cosmological behaviours required to relax the
Hubble tension are very considerable departures from the standard approach to cosmology,
we find multiple ways in which this relaxation can be achieved. As a corollary of our
hypothesis, we also suggest that inferences on radial BAO parameter α∥ may be linked to
the Hubble tension, and suggest that this link may in fact have already been detected in
the DESI first-year data release [31, 32], which has so far been interpreted as corresponding
to dynamical dark energy [38]. While the Hubble tension cannot be used to reconstruct α∥
at all values of z, it does provide an anchor for the expected value at z = 0. Conversely,
if BAO observations become good enough, it may be possible to reconstruct ∆H/H as a
function of z explicitly, and use this to infer compatible values of the Hubble tension that
astronomers should be expected to measure using distance ladders. Such an approach may
allow for the possibility of reconstructing Q(z) from observations in the real Universe, rather
than trying to extract it from simulations only.

Our work differs from the vast majority of other approaches to solving the Hubble
tension problem in that it does not adjust how physics works in an FRW cosmology, but
rather changes the nature of what we consider a cosmological model to be by removing the
association with a space-time with explicit symmetries. In this regard it is subtly different
from previous work on the Hubble tension in averaged cosmology performed in ref. [39], in that
it does not require the introduction of a ‘template metric’ [40, 41]. It can also be compared
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with the work in ref. [42], which was performed in the context of comparing expansion rates
at different cosmological times in a simulation of a ‘silent universe’, and with the work in
ref. [13] which discusses the idea of the Hubble tension arising as a manifestation of the
fitting problem. Finally, we note that our scenario has the side-effect of reducing the age of
the Universe, which could have consequences for the S8 tension, as well as constraints from
the ages of astrophysical objects [43]. In future works, we hope to perform a detailed fitting
to a suite of cosmological observables, as in e.g. [44–46], in order to further investigate the
plausibility of this idea as a solution to the Hubble tension problem.
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A Explicitly homogeneous geometries

Let us try and find an explicitly homogeneous space-time geometry, obeying conditions (i)
and (ii) from section 2.2. To do this, we define a time-like congruence whose tangent vectors
have components nµ. If this congruence is orthogonal to homogeneous 3-spaces then it must
be irrotational, and can therefore be covariantly decomposed as

∇νnµ = nν ṅµ + 1
3θfµν + σµν , (A.1)

where fµν = gµν + nµnν is the projection tensor associated with nµ, and where an over-dot
now denotes the time derivative nµ∇µ. We used the symbols {gµν , θ, σµν} for the idealized
homogeneous geometry here, to distinguish them from those of the real inhomogeneous
universe {gµν , ϑ, ςµν} used above. The expansion scalar and shear of the homogeneous
geometry are, however, defined analogously.

The Gauss embedding equation and the Raychaudhuri equation, together with Einstein’s
equations, allow us to then write the following for the homogeneous geometry:

R = 16π G ρ − 2
3θ2 + 2σ2 + 2Λ (A.2)

θ̇ + 1
3θ2 = −4π G (ρ + 3p) − 2σ2 + Λ + ∇̃µṅµ + ṅµṅµ , (A.3)

where σ2 = 1
2σµνσµν , and where ρ = Tµνnµnν and p = 1

3Tµνfµν are the energy density and
isotropic pressure of the stress-energy tensor Tµν in the homogeneous model. The spatially
projected derivative ∇̃µ is defined such that e.g. ∇̃µṅν = f α

µ f β
ν ∇αṅβ.

By comparing the homogeneous equation (A.2) to the first of the averaged equations
in (2.3), and applying the two conditions 3R = ⟨3R⟩ and θ = ⟨ϑ⟩, we can immediately read
off that we require Q = 16π G (⟨µ⟩ − ρ) − 2σ2. Subsequently, comparing eq. (A.3) and the
second equation in (2.3), and using the result above, implies that we must have

8π G p = −8π G (ρ − ⟨µ⟩) + 2
3∇̃µṅµ + 2

3 ṅµṅµ , (A.4)
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where we have assumed that the time-derivative operators in the averaged and idealized
homogeneous geometries are identical. We can then use the shear evolution equation derived
from the Ricci identities and Gauss embedding equation to write

(σ2)̇ + 2θσ2 = σµνπµν − 3R∗µνσµν + σµν∇̃µṅν + σµν ṅµṅν , (A.5)

where πµν = f
α

(µ f
β

ν) Tµν − 1
3fµνfαβTαβ is the anisotropic stress tensor, and 3R∗

µν is the
trace-free part of the Ricci curvature tensor of the 3-spaces orthogonal to nµ. Now, if we
were to have πµν = 3R∗

µν = 0 = ṅµ then the right-hand side of eq. (A.5) would vanish,
and we would immediately have σ2 ∝ a−6, where the scale factor a is defined implicitly
by θ = 3ȧ/a. Under these same conditions, and taking ⟨ϑ⟩ = θ, the energy conservation
equations for ⟨µ⟩ and ρ imply

(ρ − ⟨µ⟩)̇ + 2θ(ρ − ⟨µ⟩) = ∇̃µqµ , (A.6)

where qµ = −Tαβnαfβµ is the momentum density. This means that if qµ = 0 then we also have
(ρ − ⟨µ⟩) ∝ a−6, and hence that Q ∝ a−6. This means that any homogeneous geometry with
πµν = 3R∗

µν = 0 = ṅµ = qµ cannot represent the general case. As πµν = 3R∗
µν = 0 = ṅµ = qµ

in every homogeneous and isotropic geometry, this means that no homogeneous and isotropic
geometries can be used to model the general case. Furthermore, as all homogeneous perfect
fluids have ṅµ = 0, and as spatial curvature is isotropic in all Bianchi type I and V geometries,
we can also note that there are no hypersurface-orthogonal perfect-fluid Bianchi type I or
V geometries that can be used to model the general case either.

B Spherically symmetric geometries

Reducing the symmetry requirements, it is possible to consider spherically symmetric geome-
tries. While these spaces will not satisfy the Copernican principle in the same way as the
homogeneous spaces from appendix A, they do allow for the construction of a space-time
that is isotropic around one particular point; the centre of symmetry. They could, therefore,
potentially act as cosmological geometries for observers positioned at that point.

Spherically symmetric cosmological models are well studied, and lend themselves to
the methods used to study locally-rotationally-symmetric (LRS) solutions of Einstein’s
equations [15]. In what follows we will follow the semi-tetrad approach used to systematically
study LRS cosmologies in ref. [16]. Here, the preferred space-like direction corresponding
to the axis of rotational symmetry is given by eµ, defined such that eµnµ = 0 and eµeµ = 1.
The acceleration, shear and electric parts of the Weyl tensor can then be written in the
semi-tetrad {nµ, eµ} as

ṅµ = ṅ eµ , σµν = 2√
3

σ eµν and Eµν = 2√
3

E eµν , (B.1)

where Eµν = nσnρCµσνρ and eµν = 1
2(3eµeν − fµν), and where Cµσνρ is the Weyl tensor.

Spherically symmetric space-times are of LRS class II and, in addition to the quantities
written above, require only the space-like expansion a = fµ

ν∇µeν in order to be specified.

– 13 –
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Now, for a perfect fluid with qµ = 0 = πµν the Ricci identities imply the constraint [16]

σ′ + 3
2 a σ = 1√

3
θ′ , (B.2)

where primes denote differentiation in the preferred space-like direction, eµ∇µ. If we require
of our spherically symmetric geometry that it has the same value of θ at each point in
space, and that σ = 0 at the centre of symmetry, then we can immediately see from the
equation above that we must have σ = 0 at all points. Solutions of this type have been
considered in refs. [17, 18].

In the present case, it can be seen that the shear-free restriction means that the back-
reaction scalar must take the form Q = 16π G (⟨µ⟩ − ρ). From the averaged equations in (2.3),
and the requirements that the spherically symmetric geometry takes the values of θ = ⟨ϑ⟩
and 3R = ⟨R⟩ at all points in space, we are then left with the result that we must have a
homogeneous energy density. For a perfect fluid with barotropic equation of state, p = p(ρ),
the Bianchi identities then imply for all p ≠ −ρ we must have [16]

ṅ = −∂p

∂ρ

ρ′

(ρ + p) = 0 . (B.3)

Using the results σ = ṅ = 0, the evolution equation for the spatial curvature scalar becomes

(3R)̇ + 2
3 θ 3R = 0 , (B.4)

which using the integrability condition (2.5) implies Q ∝ a−6. This means that there are no
regular hypersurface-orthogonal spherically-symmetric cosmological models with barotropic
perfect fluids that can model the general case either. In fact, it can be seen from the Bianchi
identities, which imply the constraint [16]

E′ + 3
2 a E = 4πG√

3
ρ′ , (B.5)

that the only regular solutions with E = 0 at the centre of symmetry, and ρ′ = 0 at all points,
must have E = 0 everywhere. This means that all such geometries are in fact FRW models,
and therefore that the only spherically symmetric solutions that could possibly model the
general case are those that contain fluids that are either (i) imperfect, (ii) not hypersurface
orthogonal, and/or (iii) not barotropic.

C Summary of notation

Our presentation requires the use of similarly named quantities applied in different situations,
so we present here a table summarizing the notation we have used in different contexts, to
help guide the reader. In particular, we have defined kinematic and curvature quantities in
referring to (i) the inhomogeneous geometry of the Universe, (ii) the geometry of idealized
cosmological models, and (iii) the optical properties of the Universe as shown in table 1.

The reader may note that “scalar curvature” is not defined in the case of the optical
quantities in the third row. They may also note that in the text we use ω̃µν to denote the
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expansion shear scalar curvature

(i) underlying geometry ϑ ςµν R
(ii) idealized cosmology θ σµν

3R

(iii) optical quantities θ̃ σ̃µν –

Table 1. Notation used for the expansion, shear and scalar curvature in the underlying geometry of
space-time, in the idealized cosmological model, and in bundles of null geodesics used for observations.

vorticity of null rays, and in appendix A we use 3R∗
µν to denote the trace-free part of the

Ricci curvature tensor in the idealized cosmological models considered there. We use uµ and
nµ to correspond to unit time-like vectors in the underlying space-time and the idealized
cosmological models, respectively.
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